Statistical Compression for Climate Model Output
Hammerling, D.; Guinness, J.; Soh, Y. J.
2017-12-01
Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.
Model output statistics applied to wind power prediction
Energy Technology Data Exchange (ETDEWEB)
Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)
1999-03-01
Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.
texreg: Conversion of Statistical Model Output in R to LATEX and HTML Tables
Directory of Open Access Journals (Sweden)
Philip Leifeld
2013-11-01
Full Text Available A recurrent task in applied statistics is the (mostly manual preparation of model output for inclusion in LATEX, Microsoft Word, or HTML documents usually with more than one model presented in a single table along with several goodness-of-fit statistics. However, statistical models in R have diverse object structures and summary methods, which makes this process cumbersome. This article first develops a set of guidelines for converting statistical model output to LATEX and HTML tables, then assesses to what extent existing packages meet these requirements, and finally presents the texreg package as a solution that meets all of the criteria set out in the beginning. After providing various usage examples, a blueprint for writing custom model extensions is proposed.
National Research Council Canada - National Science Library
Hart, Kenneth
2003-01-01
The skill of a mesoscale model based Model Output Statistics (MOS) system that provided hourly forecasts for 18 sites over northern Utah during the 2002 Winter Olympic and Paralympic Games is evaluated...
On the statistical comparison of climate model output and climate data
International Nuclear Information System (INIS)
Solow, A.R.
1991-01-01
Some broad issues arising in the statistical comparison of the output of climate models with the corresponding climate data are reviewed. Particular attention is paid to the question of detecting climate change. The purpose of this paper is to review some statistical approaches to the comparison of the output of climate models with climate data. There are many statistical issues arising in such a comparison. The author will focus on some of the broader issues, although some specific methodological questions will arise along the way. One important potential application of the approaches discussed in this paper is the detection of climate change. Although much of the discussion will be fairly general, he will try to point out the appropriate connections to the detection question. 9 refs
On the statistical comparison of climate model output and climate data
International Nuclear Information System (INIS)
Solow, A.R.
1990-01-01
Some broad issues arising in the statistical comparison of the output of climate models with the corresponding climate data are reviewed. Particular attention is paid to the question of detecting climate change. The purpose of this paper is to review some statistical approaches to the comparison of the output of climate models with climate data. There are many statistical issues arising in such a comparison. The author will focus on some of the broader issues, although some specific methodological questions will arise along the way. One important potential application of the approaches discussed in this paper is the detection of climate change. Although much of the discussion will be fairly general, he will try to point out the appropriate connections to the detection question
International Nuclear Information System (INIS)
Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.
2015-01-01
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method
Finding the Root Causes of Statistical Inconsistency in Community Earth System Model Output
Milroy, D.; Hammerling, D.; Baker, A. H.
2017-12-01
Baker et al (2015) developed the Community Earth System Model Ensemble Consistency Test (CESM-ECT) to provide a metric for software quality assurance by determining statistical consistency between an ensemble of CESM outputs and new test runs. The test has proved useful for detecting statistical difference caused by compiler bugs and errors in physical modules. However, detection is only the necessary first step in finding the causes of statistical difference. The CESM is a vastly complex model comprised of millions of lines of code which is developed and maintained by a large community of software engineers and scientists. Any root cause analysis is correspondingly challenging. We propose a new capability for CESM-ECT: identifying the sections of code that cause statistical distinguishability. The first step is to discover CESM variables that cause CESM-ECT to classify new runs as statistically distinct, which we achieve via Randomized Logistic Regression. Next we use a tool developed to identify CESM components that define or compute the variables found in the first step. Finally, we employ the application Kernel GENerator (KGEN) created in Kim et al (2016) to detect fine-grained floating point differences. We demonstrate an example of the procedure and advance a plan to automate this process in our future work.
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
DEFF Research Database (Denmark)
Ranaboldo, Matteo; Giebel, Gregor; Codina, Bernat
2013-01-01
A combination of physical and statistical treatments to post‐process numerical weather predictions (NWP) outputs is needed for successful short‐term wind power forecasts. One of the most promising and effective approaches for statistical treatment is the Model Output Statistics (MOS) technique....... The proposed MOS performed well in both wind farms, and its forecasts compare positively with an actual operative model in use at Risø DTU and other MOS types, showing minimum BIAS and improving NWP power forecast of around 15% in terms of root mean square error. Further improvements could be obtained...
Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard
2013-01-01
Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.
Parsing statistical machine translation output
Carter, S.; Monz, C.; Vetulani, Z.
2009-01-01
Despite increasing research into the use of syntax during statistical machine translation, the incorporation of syntax into language models has seen limited success. We present a study of the discriminative abilities of generative syntax-based language models, over and above standard n-gram models,
Output from Statistical Predictive Models as Input to eLearning Dashboards
Directory of Open Access Journals (Sweden)
Marlene A. Smith
2015-06-01
Full Text Available We describe how statistical predictive models might play an expanded role in educational analytics by giving students automated, real-time information about what their current performance means for eventual success in eLearning environments. We discuss how an online messaging system might tailor information to individual students using predictive analytics. The proposed system would be data-driven and quantitative; e.g., a message might furnish the probability that a student will successfully complete the certificate requirements of a massive open online course. Repeated messages would prod underperforming students and alert instructors to those in need of intervention. Administrators responsible for accreditation or outcomes assessment would have ready documentation of learning outcomes and actions taken to address unsatisfactory student performance. The article’s brief introduction to statistical predictive models sets the stage for a description of the messaging system. Resources and methods needed to develop and implement the system are discussed.
Directory of Open Access Journals (Sweden)
Sutikno Sutikno
2010-08-01
Full Text Available One of the climate models used to predict the climatic conditions is Global Circulation Models (GCM. GCM is a computer-based model that consists of different equations. It uses numerical and deterministic equation which follows the physics rules. GCM is a main tool to predict climate and weather, also it uses as primary information source to review the climate change effect. Statistical Downscaling (SD technique is used to bridge the large-scale GCM with a small scale (the study area. GCM data is spatial and temporal data most likely to occur where the spatial correlation between different data on the grid in a single domain. Multicollinearity problems require the need for pre-processing of variable data X. Continuum Regression (CR and pre-processing with Principal Component Analysis (PCA methods is an alternative to SD modelling. CR is one method which was developed by Stone and Brooks (1990. This method is a generalization from Ordinary Least Square (OLS, Principal Component Regression (PCR and Partial Least Square method (PLS methods, used to overcome multicollinearity problems. Data processing for the station in Ambon, Pontianak, Losarang, Indramayu and Yuntinyuat show that the RMSEP values and R2 predict in the domain 8x8 and 12x12 by uses CR method produces results better than by PCR and PLS.
Energy Technology Data Exchange (ETDEWEB)
Reichert, B.K.; Bengtsson, L. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Aakesson, O. [Sveriges Meteorologiska och Hydrologiska Inst., Norrkoeping (Sweden)
1998-08-01
Recent proxy data obtained from ice core measurements, dendrochronology and valley glaciers provide important information on the evolution of the regional or local climate. General circulation models integrated over a long period of time could help to understand the (external and internal) forcing mechanisms of natural climate variability. For a systematic interpretation of in situ paleo proxy records, a combined method of dynamical and statistical modeling is proposed. Local 'paleo records' can be simulated from GCM output by first undertaking a model-consistent statistical downscaling and then using a process-based forward modeling approach to obtain the behavior of valley glaciers and the growth of trees under specific conditions. The simulated records can be compared to actual proxy records in order to investigate whether e.g. the response of glaciers to climatic change can be reproduced by models and to what extent climate variability obtained from proxy records (with the main focus on the last millennium) can be represented. For statistical downscaling to local weather conditions, a multiple linear forward regression model is used. Daily sets of observed weather station data and various large-scale predictors at 7 pressure levels obtained from ECMWF reanalyses are used for development of the model. Daily data give the closest and most robust relationships due to the strong dependence on individual synoptic-scale patterns. For some local variables, the performance of the model can be further increased by developing seasonal specific statistical relationships. The model is validated using both independent and restricted predictor data sets. The model is applied to a long integration of a mixed layer GCM experiment simulating pre-industrial climate variability. The dynamical-statistical local GCM output within a region around Nigardsbreen glacier, Norway is compared to nearby observed station data for the period 1868-1993. Patterns of observed
2017-09-01
application of statistical inference. Even when human forecasters leverage their professional experience, which is often gained through long periods of... application throughout statistics and Bayesian data analysis. The multivariate form of 2( , ) (e.g., Figure 12) is similarly analytically...data (i.e., no systematic manipulations with analytical functions), it is common in the statistical literature to apply mathematical transformations
U.S. Environmental Protection Agency — This dataset contains WRF model output. There are three months of data: July 2012, July 2013, and January 2013. For each month, several simulations were made: A...
U.S. Environmental Protection Agency — CMAQ and CMAQ-VBS model output. This dataset is not publicly accessible because: Files too large. It can be accessed through the following means: via EPA's NCC tape...
DEFF Research Database (Denmark)
Breinholt, Anders; Møller, Jan Kloppenborg; Madsen, Henrik
2012-01-01
While there seems to be consensus that hydrological model outputs should be accompanied with an uncertainty estimate the appropriate method for uncertainty estimation is not agreed upon and a debate is ongoing between advocators of formal statistical methods who consider errors as stochastic...... and GLUE advocators who consider errors as epistemic, arguing that the basis of formal statistical approaches that requires the residuals to be stationary and conform to a statistical distribution is unrealistic. In this paper we take a formal frequentist approach to parameter estimation and uncertainty...... necessary but the statistical assumptions were nevertheless not 100% justified. The residual analysis showed that significant autocorrelation was present for all simulation models. We believe users of formal approaches to uncertainty evaluation within hydrology and within environmental modelling in general...
Ribalaygua, Jaime; Gaitán, Emma; Pórtoles, Javier; Monjo, Robert
2018-05-01
A two-step statistical downscaling method has been reviewed and adapted to simulate twenty-first-century climate projections for the Gulf of Fonseca (Central America, Pacific Coast) using Coupled Model Intercomparison Project (CMIP5) climate models. The downscaling methodology is adjusted after looking for good predictor fields for this area (where the geostrophic approximation fails and the real wind fields are the most applicable). The method's performance for daily precipitation and maximum and minimum temperature is analysed and revealed suitable results for all variables. For instance, the method is able to simulate the characteristic cycle of the wet season for this area, which includes a mid-summer drought between two peaks. Future projections show a gradual temperature increase throughout the twenty-first century and a change in the features of the wet season (the first peak and mid-summer rainfall being reduced relative to the second peak, earlier onset of the wet season and a broader second peak).
Model output: fact or artefact?
Melsen, Lieke
2015-04-01
As a third-year PhD-student, I relatively recently entered the wonderful world of scientific Hydrology. A science that has many pillars that directly impact society, for example with the prediction of hydrological extremes (both floods and drought), climate change, applications in agriculture, nature conservation, drinking water supply, etcetera. Despite its demonstrable societal relevance, hydrology is often seen as a science between two stools. Like Klemeš (1986) stated: "By their academic background, hydrologists are foresters, geographers, electrical engineers, geologists, system analysts, physicists, mathematicians, botanists, and most often civil engineers." Sometimes it seems that the engineering genes are still present in current hydrological sciences, and this results in pragmatic rather than scientific approaches for some of the current problems and challenges we have in hydrology. Here, I refer to the uncertainty in hydrological modelling that is often neglected. For over thirty years, uncertainty in hydrological models has been extensively discussed and studied. But it is not difficult to find peer-reviewed articles in which it is implicitly assumed that model simulations represent the truth rather than a conceptualization of reality. For instance in trend studies, where data is extrapolated 100 years ahead. Of course one can use different forcing datasets to estimate the uncertainty of the input data, but how to prevent that the output is not a model artefact, caused by the model structure? Or how about impact studies, e.g. of a dam impacting river flow. Measurements are often available for the period after dam construction, so models are used to simulate river flow before dam construction. Both are compared in order to qualify the effect of the dam. But on what basis can we tell that the model tells us the truth? Model validation is common nowadays, but validation only (comparing observations with model output) is not sufficient to assume that a
Directory of Open Access Journals (Sweden)
D. Hirdman
2010-01-01
Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport, this paper studies the sources of equivalent black carbon (EBC, sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To determine where these substances originate, the measurement data were combined with calculations using FLEXPART, a Lagrangian particle dispersion model. The climatology of atmospheric transport from surrounding regions on a twenty-day time scale modelled by FLEXPART shows that the stations Zeppelin, Alert and Barrow are highly sensitive to surface emissions in the Arctic and to emissions in high-latitude Eurasia in winter. Emission sensitivities over southern Asia and southern North America are small throughout the year. The high-altitude station Summit is an order of magnitude less sensitive to surface emissions in the Arctic whereas emissions in the southern parts of the Northern Hemisphere continents are more influential relative to the other stations. Our results show that for EBC and sulphate measured at Zeppelin, Alert and Barrow, northern Eurasia is the dominant source region. For sulphate, Eastern Europe and the metal smelting industry in Norilsk are particularly important. For EBC, boreal forest fires also contribute in summer. No evidence for any substantial contribution to EBC from sources in southern Asia is found. European air masses are associated with low ozone concentrations in winter due to titration by nitric oxides, but are associated with high ozone concentrations in summer due to photochemical ozone formation. There is also a strong influence of ozone depletion events in the Arctic boundary layer on measured ozone concentrations in spring
Problems in Modelling Charge Output Accelerometers
Directory of Open Access Journals (Sweden)
Tomczyk Krzysztof
2016-12-01
Full Text Available The paper presents major issues associated with the problem of modelling change output accelerometers. The presented solutions are based on the weighted least squares (WLS method using transformation of the complex frequency response of the sensors. The main assumptions of the WLS method and a mathematical model of charge output accelerometers are presented in first two sections of this paper. In the next sections applying the WLS method to estimation of the accelerometer model parameters is discussed and the associated uncertainties are determined. Finally, the results of modelling a PCB357B73 charge output accelerometer are analysed in the last section of this paper. All calculations were executed using the MathCad software program. The main stages of these calculations are presented in Appendices A−E.
Probing NWP model deficiencies by statistical postprocessing
DEFF Research Database (Denmark)
Rosgaard, Martin Haubjerg; Nielsen, Henrik Aalborg; Nielsen, Torben S.
2016-01-01
The objective in this article is twofold. On one hand, a Model Output Statistics (MOS) framework for improved wind speed forecast accuracy is described and evaluated. On the other hand, the approach explored identifies unintuitive explanatory value from a diagnostic variable in an operational....... Based on the statistical model candidates inferred from the data, the lifted index NWP model diagnostic is consistently found among the NWP model predictors of the best performing statistical models across sites....
Multi-model MPC with output feedback
Directory of Open Access Journals (Sweden)
J. M. Perez
2014-03-01
Full Text Available In this work, a new formulation is presented for the model predictive control (MPC of a process system that is represented by a finite set of models, each one corresponding to a different operating point. The general case is considered of systems with stable and integrating outputs in closed-loop with output feedback. For this purpose, the controller is based on a non-minimal order model where the state is built with the measured outputs and the manipulated inputs of the control system. Therefore, the state can be considered as perfectly known and, consequently, there is no need to include a state observer in the control loop. This property of the proposed modeling approach is convenient to extend previous stability results of the closed loop system with robust MPC controllers based on state feedback. The controller proposed here is based on the solution of two optimization problems that are solved sequentially at the same time step. The method is illustrated with a simulated example of the process industry. The rigorous simulation of the control of an adiabatic flash of a multi-component hydrocarbon mixture illustrates the application of the robust controller. The dynamic simulation of this process is performed using EMSO - Environment Model Simulation and Optimization. Finally, a comparison with a linear MPC using a single model is presented.
Sampling, Probability Models and Statistical Reasoning Statistical
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...
Robust optimization of the output voltage of nanogenerators by statistical design of experiments
Song, Jinhui; Xie, Huizhi; Wu, Wenzhuo; Roshan Joseph, V.; Jeff Wu, C. F.; Wang, Zhong Lin
2010-01-01
Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
Robust optimization of the output voltage of nanogenerators by statistical design of experiments
Song, Jinhui
2010-09-01
Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.
Energy Technology Data Exchange (ETDEWEB)
Rashid, Md. Mamunur, E-mail: mdmamunur.rashid@mymail.unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Beecham, Simon, E-mail: simon.beecham@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chowdhury, Rezaul K., E-mail: rezaulkabir@uaeu.ac.ae [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, PO Box 15551 (United Arab Emirates)
2015-10-15
A generalized linear model was fitted to stochastically downscaled multi-site daily rainfall projections from CMIP5 General Circulation Models (GCMs) for the Onkaparinga catchment in South Australia to assess future changes to hydrologically relevant metrics. For this purpose three GCMs, two multi-model ensembles (one by averaging the predictors of GCMs and the other by regressing the predictors of GCMs against reanalysis datasets) and two scenarios (RCP4.5 and RCP8.5) were considered. The downscaling model was able to reasonably reproduce the observed historical rainfall statistics when the model was driven by NCEP reanalysis datasets. Significant bias was observed in the rainfall when downscaled from historical outputs of GCMs. Bias was corrected using the Frequency Adapted Quantile Mapping technique. Future changes in rainfall were computed from the bias corrected downscaled rainfall forced by GCM outputs for the period 2041–2060 and these were then compared to the base period 1961–2000. The results show that annual and seasonal rainfalls are likely to significantly decrease for all models and scenarios in the future. The number of dry days and maximum consecutive dry days will increase whereas the number of wet days and maximum consecutive wet days will decrease. Future changes of daily rainfall occurrence sequences combined with a reduction in rainfall amounts will lead to a drier catchment, thereby reducing the runoff potential. Because this is a catchment that is a significant source of Adelaide's water supply, irrigation water and water for maintaining environmental flows, an effective climate change adaptation strategy is needed in order to face future potential water shortages. - Highlights: • A generalized linear model was used for multi-site daily rainfall downscaling. • Rainfall was downscaled from CMIP5 GCM outputs. • Two multi-model ensemble approaches were used. • Bias was corrected using the Frequency Adapted Quantile Mapping
Diffeomorphic Statistical Deformation Models
DEFF Research Database (Denmark)
Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus
2007-01-01
In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....
Validation of models with multivariate output
International Nuclear Information System (INIS)
Rebba, Ramesh; Mahadevan, Sankaran
2006-01-01
This paper develops metrics for validating computational models with experimental data, considering uncertainties in both. A computational model may generate multiple response quantities and the validation experiment might yield corresponding measured values. Alternatively, a single response quantity may be predicted and observed at different spatial and temporal points. Model validation in such cases involves comparison of multiple correlated quantities. Multiple univariate comparisons may give conflicting inferences. Therefore, aggregate validation metrics are developed in this paper. Both classical and Bayesian hypothesis testing are investigated for this purpose, using multivariate analysis. Since, commonly used statistical significance tests are based on normality assumptions, appropriate transformations are investigated in the case of non-normal data. The methodology is implemented to validate an empirical model for energy dissipation in lap joints under dynamic loading
Sanov and central limit theorems for output statistics of quantum Markov chains
Energy Technology Data Exchange (ETDEWEB)
Horssen, Merlijn van, E-mail: merlijn.vanhorssen@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Guţă, Mădălin, E-mail: madalin.guta@nottingham.ac.uk [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)
2015-02-15
In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Such higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.
Statistics & Input-Output Measures for School Libraries in Colorado, 2002.
Colorado State Library, Denver.
This document presents statistics and input-output measures for K-12 school libraries in Colorado for 2002. Data are presented by type and size of school, i.e., high schools (six categories ranging from 2,000 and over to under 300), junior high/middle schools (five categories ranging from 1,000-1,999 to under 300), elementary schools (four…
Fernandes, Tania; Kolinsky, Regine; Ventura, Paulo
2009-01-01
This study combined artificial language learning (ALL) with conventional experimental techniques to test whether statistical speech segmentation outputs are integrated into adult listeners' mental lexicon. Lexicalization was assessed through inhibitory effects of novel neighbors (created by the parsing process) on auditory lexical decisions to…
Enhanced surrogate models for statistical design exploiting space mapping technology
DEFF Research Database (Denmark)
Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.
2005-01-01
We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...
A two stage data envelopment analysis model with undesirable output
Shariff Adli Aminuddin, Adam; Izzati Jaini, Nur; Mat Kasim, Maznah; Nawawi, Mohd Kamal Mohd
2017-09-01
The dependent relationship among the decision making units (DMU) is usually assumed to be non-existent in the development of Data Envelopment Analysis (DEA) model. The dependency can be represented by the multi-stage DEA model, where the outputs from the precedent stage will be the inputs for the latter stage. The multi-stage DEA model evaluate both the efficiency score for each stages and the overall efficiency of the whole process. The existing multi stage DEA models do not focus on the integration with the undesirable output, in which the higher input will generate lower output unlike the normal desirable output. This research attempts to address the inclusion of such undesirable output and investigate the theoretical implication and potential application towards the development of multi-stage DEA model.
Exclusion statistics and integrable models
International Nuclear Information System (INIS)
Mashkevich, S.
1998-01-01
The definition of exclusion statistics, as given by Haldane, allows for a statistical interaction between distinguishable particles (multi-species statistics). The thermodynamic quantities for such statistics ca be evaluated exactly. The explicit expressions for the cluster coefficients are presented. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models. The interesting questions of generalizing this correspondence onto the higher-dimensional and the multi-species cases remain essentially open
Mezzenga, Emilio; D'Errico, Vincenzo; Sarnelli, Anna; Strigari, Lidia; Menghi, Enrico; Marcocci, Francesco; Bianchini, David; Benassi, Marcello
2016-01-01
The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.
NACP Site: Terrestrial Biosphere Model Output Data in Original Format
National Aeronautics and Space Administration — ABSTRACT: This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American...
NACP Site: Terrestrial Biosphere Model Output Data in Original Format
National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...
Downscaling climate model output for water resources impacts assessment (Invited)
Maurer, E. P.; Pierce, D. W.; Cayan, D. R.
2013-12-01
Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.
Exclusion statistics and integrable models
International Nuclear Information System (INIS)
Mashkevich, S.
1998-01-01
The definition of exclusion statistics that was given by Haldane admits a 'statistical interaction' between distinguishable particles (multispecies statistics). For such statistics, thermodynamic quantities can be evaluated exactly; explicit expressions are presented here for cluster coefficients. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models of the Calogero-Sutherland type. The interesting questions of generalizing this correspondence to the higher-dimensional and the multispecies cases remain essentially open; however, our results provide some hints as to searches for the models in question
Modelling Waste Output from Trout Farms
DEFF Research Database (Denmark)
Frier, J. O.; From, J.; Larsen, Torben
1995-01-01
to calculate waste discharge from existing and planned aquaculture activities. A special purpose is simulating outcome of waste water treatment and altered feeding programmes. Different submodels must be applied for P, N, and organics, as well as for the different phases of food and waste treatment. Altogether...... this calls for an array of co-operating submodels for a sufficient coverage of the options. In all the required fields there is some scientific background for numerical model approaches, and some submodels have been proposed. Because of its multidisciplinary character a synthesized approach is still lacking...
Czech Academy of Sciences Publication Activity Database
Paulescu, M.; Brabec, Marek; Boata, R.; Badescu, V.
2017-01-01
Roč. 121, 15 February (2017), s. 792-802 ISSN 0360-5442 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : photovoltaic plant * output power * forecasting * fuzzy model * generalized additive model Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 4.520, year: 2016
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Hansen, Kurt Schaldemose
2004-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....
The multi-factor energy input–output model
International Nuclear Information System (INIS)
Guevara, Zeus; Domingos, Tiago
2017-01-01
Energy input–output analysis (EIO analysis) is a noteworthy tool for the analysis of the role of energy in the economy. However, it has relied on models that provide a limited description of energy flows in the economic system and do not allow an adequate analysis of energy efficiency. This paper introduces a novel energy input–output model, the multi-factor energy input–output model (MF-EIO model), which is obtained from a partitioning of a hybrid-unit input–output system of the economy. This model improves on current models by describing the energy flows according to the processes of energy conversion and the levels of energy use in the economy. It characterizes the vector of total energy output as a function of seven factors: two energy efficiency indicators; two characteristics of end-use energy consumption; and three economic features of the rest of the economy. Moreover, it is consistent with the standard model for EIO analysis, i.e., the hybrid-unit model. This paper also introduces an approximate version of the MF-EIO model, which is equivalent to the former under equal energy prices for industries and final consumers, but requires less data processing. The latter is composed by two linked models: a model of the energy sector in physical units, and a model of the rest of the economy in monetary units. In conclusion, the proposed modelling framework improves EIO analysis and extends EIO applications to the accounting for energy efficiency of the economy. - Highlights: • A novel energy input–output model is introduced. • It allows a more adequate analysis of energy flows than current models. • It describes energy flows according to processes of energy conversion and use. • It can be used for other environmental applications (material use and emissions). • An approximate version of the model is introduced, simpler and less data intensive.
Statistical modeling for degradation data
Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru
2017-01-01
This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.
Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.
Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J
2012-09-01
Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.
Statistical modelling with quantile functions
Gilchrist, Warren
2000-01-01
Galton used quantiles more than a hundred years ago in describing data. Tukey and Parzen used them in the 60s and 70s in describing populations. Since then, the authors of many papers, both theoretical and practical, have used various aspects of quantiles in their work. Until now, however, no one put all the ideas together to form what turns out to be a general approach to statistics.Statistical Modelling with Quantile Functions does just that. It systematically examines the entire process of statistical modelling, starting with using the quantile function to define continuous distributions. The author shows that by using this approach, it becomes possible to develop complex distributional models from simple components. A modelling kit can be developed that applies to the whole model - deterministic and stochastic components - and this kit operates by adding, multiplying, and transforming distributions rather than data.Statistical Modelling with Quantile Functions adds a new dimension to the practice of stati...
A Statistical Programme Assignment Model
DEFF Research Database (Denmark)
Rosholm, Michael; Staghøj, Jonas; Svarer, Michael
When treatment effects of active labour market programmes are heterogeneous in an observable way across the population, the allocation of the unemployed into different programmes becomes a particularly important issue. In this paper, we present a statistical model designed to improve the present...... duration of unemployment spells may result if a statistical programme assignment model is introduced. We discuss several issues regarding the plementation of such a system, especially the interplay between the statistical model and case workers....
Statistical models of petrol engines vehicles dynamics
Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.
2017-10-01
This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.
Appropriatie spatial scales to achieve model output uncertainty goals
Booij, Martijn J.; Melching, Charles S.; Chen, Xiaohong; Chen, Yongqin; Xia, Jun; Zhang, Hailun
2008-01-01
Appropriate spatial scales of hydrological variables were determined using an existing methodology based on a balance in uncertainties from model inputs and parameters extended with a criterion based on a maximum model output uncertainty. The original methodology uses different relationships between
Research Outputs of England's Hospital Episode Statistics (HES) Database: Bibliometric Analysis.
Chaudhry, Zain; Mannan, Fahmida; Gibson-White, Angela; Syed, Usama; Ahmed, Shirin; Majeed, Azeem
2017-12-06
Hospital administrative data, such as those provided by the Hospital Episode Statistics (HES) database in England, are increasingly being used for research and quality improvement. To date, no study has tried to quantify and examine trends in the use of HES for research purposes. To examine trends in the use of HES data for research. Publications generated from the use of HES data were extracted from PubMed and analysed. Publications from 1996 to 2014 were then examined further in the Science Citation Index (SCI) of the Thompson Scientific Institute for Science Information (Web of Science) for details of research specialty area. 520 studies, categorised into 44 specialty areas, were extracted from PubMed. The review showed an increase in publications over the 18-year period with an average of 27 publications per year, however with the majority of output observed in the latter part of the study period. The highest number of publications was in the Health Statistics specialty area. The use of HES data for research is becoming more common. Increase in publications over time shows that researchers are beginning to take advantage of the potential of HES data. Although HES is a valuable database, concerns exist over the accuracy and completeness of the data entered. Clinicians need to be more engaged with HES for the full potential of this database to be harnessed.
Global sensitivity analysis for models with spatially dependent outputs
International Nuclear Information System (INIS)
Iooss, B.; Marrel, A.; Jullien, M.; Laurent, B.
2011-01-01
The global sensitivity analysis of a complex numerical model often calls for the estimation of variance-based importance measures, named Sobol' indices. Meta-model-based techniques have been developed in order to replace the CPU time-expensive computer code with an inexpensive mathematical function, which predicts the computer code output. The common meta-model-based sensitivity analysis methods are well suited for computer codes with scalar outputs. However, in the environmental domain, as in many areas of application, the numerical model outputs are often spatial maps, which may also vary with time. In this paper, we introduce an innovative method to obtain a spatial map of Sobol' indices with a minimal number of numerical model computations. It is based upon the functional decomposition of the spatial output onto a wavelet basis and the meta-modeling of the wavelet coefficients by the Gaussian process. An analytical example is presented to clarify the various steps of our methodology. This technique is then applied to a real hydrogeological case: for each model input variable, a spatial map of Sobol' indices is thus obtained. (authors)
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Statistical Model of Extreme Shear
DEFF Research Database (Denmark)
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.
2005-01-01
In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...
Statistical Models for Social Networks
Snijders, Tom A. B.; Cook, KS; Massey, DS
2011-01-01
Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For
Sensometrics: Thurstonian and Statistical Models
DEFF Research Database (Denmark)
Christensen, Rune Haubo Bojesen
. sensR is a package for sensory discrimination testing with Thurstonian models and ordinal supports analysis of ordinal data with cumulative link (mixed) models. While sensR is closely connected to the sensometrics field, the ordinal package has developed into a generic statistical package applicable......This thesis is concerned with the development and bridging of Thurstonian and statistical models for sensory discrimination testing as applied in the scientific discipline of sensometrics. In sensory discrimination testing sensory differences between products are detected and quantified by the use...... and sensory discrimination testing in particular in a series of papers by advancing Thurstonian models for a range of sensory discrimination protocols in addition to facilitating their application by providing software for fitting these models. The main focus is on identifying Thurstonian models...
Investigation of solar photovoltaic module power output by various models
International Nuclear Information System (INIS)
Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.
2012-01-01
This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)
Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation
Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi
2016-09-01
We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.
Classical model of intermediate statistics
International Nuclear Information System (INIS)
Kaniadakis, G.
1994-01-01
In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions
A model to predict the power output from wind farms
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.
Textual information access statistical models
Gaussier, Eric
2013-01-01
This book presents statistical models that have recently been developed within several research communities to access information contained in text collections. The problems considered are linked to applications aiming at facilitating information access:- information extraction and retrieval;- text classification and clustering;- opinion mining;- comprehension aids (automatic summarization, machine translation, visualization).In order to give the reader as complete a description as possible, the focus is placed on the probability models used in the applications
System convergence in transport models: algorithms efficiency and output uncertainty
DEFF Research Database (Denmark)
Rich, Jeppe; Nielsen, Otto Anker
2015-01-01
of this paper is to analyse convergence performance for the external loop and to illustrate how an improper linkage between the converging parts can lead to substantial uncertainty in the final output. Although this loop is crucial for the performance of large-scale transport models it has not been analysed...... much in the literature. The paper first investigates several variants of the Method of Successive Averages (MSA) by simulation experiments on a toy-network. It is found that the simulation experiments produce support for a weighted MSA approach. The weighted MSA approach is then analysed on large......-scale in the Danish National Transport Model (DNTM). It is revealed that system convergence requires that either demand or supply is without random noise but not both. In that case, if MSA is applied to the model output with random noise, it will converge effectively as the random effects are gradually dampened...
Modeling the power output of piezoelectric energy harvesters
Al Ahmad, Mahmoud
2011-04-30
Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.
Modeling the power output of piezoelectric energy harvesters
Al Ahmad, Mahmoud; Alshareef, Husam N.
2011-01-01
Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
Improved model for statistical alignment
Energy Technology Data Exchange (ETDEWEB)
Miklos, I.; Toroczkai, Z. (Zoltan)
2001-01-01
The statistical approach to molecular sequence evolution involves the stochastic modeling of the substitution, insertion and deletion processes. Substitution has been modeled in a reliable way for more than three decades by using finite Markov-processes. Insertion and deletion, however, seem to be more difficult to model, and thc recent approaches cannot acceptably deal with multiple insertions and deletions. A new method based on a generating function approach is introduced to describe the multiple insertion process. The presented algorithm computes the approximate joint probability of two sequences in 0(13) running time where 1 is the geometric mean of the sequence lengths.
Statistical modeling of geopressured geothermal reservoirs
Ansari, Esmail; Hughes, Richard; White, Christopher D.
2017-06-01
Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive design. Inspectional analysis on the partial differential equations governing this design yields a minimum number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless groups are explained and confirmed using models with similar dimensionless groups but different dimensional parameters. This study models dimensionless production temperature and thermal recovery factor as the responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting method. These selected numbers are used in the regression models. The developed models are reduced to have a minimum number of predictors and interactions. The reduced final models are then presented and assessed using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can be used to translate the output of a numerical simulator into simple predictive models in other research areas involving numerical simulation.
Robust Output Model Predictive Control of an Unstable Rijke Tube
Directory of Open Access Journals (Sweden)
Fabian Jarmolowitz
2012-01-01
Full Text Available This work investigates the active control of an unstable Rijke tube using robust output model predictive control (RMPC. As internal model a polytopic linear system with constraints is assumed to account for uncertainties. For guaranteed stability, a linear state feedback controller is designed using linear matrix inequalities and used within a feedback formulation of the model predictive controller. For state estimation a robust gain-scheduled observer is developed. It is shown that the proposed RMPC ensures robust stability under constraints over the considered operating range.
Active Learning with Statistical Models.
1995-01-01
Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with
A classical statistical model of heavy ion collisions
International Nuclear Information System (INIS)
Schmidt, R.; Teichert, J.
1980-01-01
The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru
Binny, Diana; Mezzenga, Emilio; Lancaster, Craig M; Trapp, Jamie V; Kairn, Tanya; Crowe, Scott B
2017-06-01
The aims of this study were to investigate machine beam parameters using the TomoTherapy quality assurance (TQA) tool, establish a correlation to patient delivery quality assurance results and to evaluate the relationship between energy variations detected using different TQA modules. TQA daily measurement results from two treatment machines for periods of up to 4years were acquired. Analyses of beam quality, helical and static output variations were made. Variations from planned dose were also analysed using Statistical Process Control (SPC) technique and their relationship to output trends were studied. Energy variations appeared to be one of the contributing factors to delivery output dose seen in the analysis. Ion chamber measurements were reliable indicators of energy and output variations and were linear with patient dose verifications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Fremdling, Rainer; Staeglin, Reiner
2012-01-01
The objective of this contribution is to present the final results of a long-term research project which aimed at constructing an input-output table for Germany in 1936. Our research can be seen as follow-up of the activities of the German Imperial Statistical Office (Statistisches Reichsamt) which
Modelling Analysis of Forestry Input-Output Elasticity in China
Directory of Open Access Journals (Sweden)
Guofeng Wang
2016-01-01
Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.
Evacuation emergency response model coupling atmospheric release advisory capability output
International Nuclear Information System (INIS)
Rosen, L.C.; Lawver, B.S.; Buckley, D.W.; Finn, S.P.; Swenson, J.B.
1983-01-01
A Federal Emergency Management Agency (FEMA) sponsored project to develop a coupled set of models between those of the Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) system and candidate evacuation models is discussed herein. This report describes the ARAC system and discusses the rapid computer code developed and the coupling with ARAC output. The computer code is adapted to the use of color graphics as a means to display and convey the dynamics of an emergency evacuation. The model is applied to a specific case of an emergency evacuation of individuals surrounding the Rancho Seco Nuclear Power Plant, located approximately 25 miles southeast of Sacramento, California. The graphics available to the model user for the Rancho Seco example are displayed and noted in detail. Suggestions for future, potential improvements to the emergency evacuation model are presented
Modelling innovation performance of European regions using multi-output neural networks.
Hajek, Petr; Henriques, Roberto
2017-01-01
Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.
Modelling innovation performance of European regions using multi-output neural networks.
Directory of Open Access Journals (Sweden)
Petr Hajek
Full Text Available Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.
Model validation and calibration based on component functions of model output
International Nuclear Information System (INIS)
Wu, Danqing; Lu, Zhenzhou; Wang, Yanping; Cheng, Lei
2015-01-01
The target in this work is to validate the component functions of model output between physical observation and computational model with the area metric. Based on the theory of high dimensional model representations (HDMR) of independent input variables, conditional expectations are component functions of model output, and the conditional expectations reflect partial information of model output. Therefore, the model validation of conditional expectations tells the discrepancy between the partial information of the computational model output and that of the observations. Then a calibration of the conditional expectations is carried out to reduce the value of model validation metric. After that, a recalculation of the model validation metric of model output is taken with the calibrated model parameters, and the result shows that a reduction of the discrepancy in the conditional expectations can help decrease the difference in model output. At last, several examples are employed to demonstrate the rationality and necessity of the methodology in case of both single validation site and multiple validation sites. - Highlights: • A validation metric of conditional expectations of model output is proposed. • HDRM explains the relationship of conditional expectations and model output. • An improved approach of parameter calibration updates the computational models. • Validation and calibration process are applied at single site and multiple sites. • Validation and calibration process show a superiority than existing methods
A PRODUCTIVITY EVALUATION MODEL BASED ON INPUT AND OUTPUT ORIENTATIONS
Directory of Open Access Journals (Sweden)
C.O. Anyaeche
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Many productivity models evaluate either the input or the output performances using standalone techniques. This sometimes gives divergent views of the same system’s results. The work reported in this article, which simultaneously evaluated productivity from both orientations, was applied on real life data. The results showed losses in productivity (–2% and price recovery (–8% for the outputs; the inputs showed productivity gain (145% but price recovery loss (–63%. These imply losses in product performances but a productivity gain in inputs. The loss in the price recovery of inputs indicates a problem in the pricing policy. This model is applicable in product diversification.
AFRIKAANSE OPSOMMING: Die meeste produktiwiteitsmodelle evalueer of die inset- of die uitsetverrigting deur gebruik te maak van geïsoleerde tegnieke. Dit lei soms tot uiteenlopende perspektiewe van dieselfde sisteem se verrigting. Hierdie artikel evalueer verrigting uit beide perspektiewe en gebruik ware data. Die resultate toon ‘n afname in produktiwiteit (-2% en prysherwinning (-8% vir die uitsette. Die insette toon ‘n toename in produktiwiteit (145%, maar ‘n afname in prysherwinning (-63%. Dit impliseer ‘n afname in produkverrigting, maar ‘n produktiwiteitstoename in insette. Die afname in die prysherwinning van insette dui op ‘n problem in die prysvasstellingbeleid. Hierdie model is geskik vir produkdiversifikasie.
Statistical shape model with random walks for inner ear segmentation
DEFF Research Database (Denmark)
Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma
2016-01-01
is required. We propose a new framework for segmentation of micro-CT cochlear images using random walks combined with a statistical shape model (SSM). The SSM allows us to constrain the less contrasted areas and ensures valid inner ear shape outputs. Additionally, a topology preservation method is proposed...
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
Directory of Open Access Journals (Sweden)
Jordi Marcé-Nogué
2017-10-01
Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
GIGMF - A statistical model program
International Nuclear Information System (INIS)
Vladuca, G.; Deberth, C.
1978-01-01
The program GIGMF computes the differential and integrated statistical model cross sections for the reactions proceeding through a compound nuclear stage. The computational method is based on the Hauser-Feshbach-Wolfenstein theory, modified to include the modern version of Tepel et al. Although the program was written for a PDP-15 computer, with 16K high speed memory, many reaction channels can be taken into account with the following restrictions: the pro ectile spin must be less than 2, the maximum spin momenta of the compound nucleus can not be greater than 10. These restrictions are due solely to the storage allotments and may be easily relaxed. The energy of the impinging particle, the target and projectile masses, the spin and paritjes of the projectile, target, emergent and residual nuclei the maximum orbital momentum and transmission coefficients for each reaction channel are the input parameters of the program. (author)
About the use of rank transformation in sensitivity analysis of model output
International Nuclear Information System (INIS)
Saltelli, Andrea; Sobol', Ilya M
1995-01-01
Rank transformations are frequently employed in numerical experiments involving a computational model, especially in the context of sensitivity and uncertainty analyses. Response surface replacement and parameter screening are tasks which may benefit from a rank transformation. Ranks can cope with nonlinear (albeit monotonic) input-output distributions, allowing the use of linear regression techniques. Rank transformed statistics are more robust, and provide a useful solution in the presence of long tailed input and output distributions. As is known to practitioners, care must be employed when interpreting the results of such analyses, as any conclusion drawn using ranks does not translate easily to the original model. In the present note an heuristic approach is taken, to explore, by way of practical examples, the effect of a rank transformation on the outcome of a sensitivity analysis. An attempt is made to identify trends, and to correlate these effects to a model taxonomy. Employing sensitivity indices, whereby the total variance of the model output is decomposed into a sum of terms of increasing dimensionality, we show that the main effect of the rank transformation is to increase the relative weight of the first order terms (the 'main effects'), at the expense of the 'interactions' and 'higher order interactions'. As a result the influence of those parameters which influence the output mostly by way of interactions may be overlooked in an analysis based on the ranks. This difficulty increases with the dimensionality of the problem, and may lead to the failure of a rank based sensitivity analysis. We suggest that the models can be ranked, with respect to the complexity of their input-output relationship, by mean of an 'Association' index I y . I y may complement the usual model coefficient of determination R y 2 as a measure of model complexity for the purpose of uncertainty and sensitivity analysis
Hay, Lauren E.; LaFontaine, Jacob H.; Markstrom, Steven
2014-01-01
The accuracy of statistically downscaled general circulation model (GCM) simulations of daily surface climate for historical conditions (1961–99) and the implications when they are used to drive hydrologic and stream temperature models were assessed for the Apalachicola–Chattahoochee–Flint River basin (ACFB). The ACFB is a 50 000 km2 basin located in the southeastern United States. Three GCMs were statistically downscaled, using an asynchronous regional regression model (ARRM), to ⅛° grids of daily precipitation and minimum and maximum air temperature. These ARRM-based climate datasets were used as input to the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, physical-process watershed model used to simulate and evaluate the effects of various combinations of climate and land use on watershed response. The ACFB was divided into 258 hydrologic response units (HRUs) in which the components of flow (groundwater, subsurface, and surface) are computed in response to climate, land surface, and subsurface characteristics of the basin. Daily simulations of flow components from PRMS were used with the climate to simulate in-stream water temperatures using the Stream Network Temperature (SNTemp) model, a mechanistic, one-dimensional heat transport model for branched stream networks.The climate, hydrology, and stream temperature for historical conditions were evaluated by comparing model outputs produced from historical climate forcings developed from gridded station data (GSD) versus those produced from the three statistically downscaled GCMs using the ARRM methodology. The PRMS and SNTemp models were forced with the GSD and the outputs produced were treated as “truth.” This allowed for a spatial comparison by HRU of the GSD-based output with ARRM-based output. Distributional similarities between GSD- and ARRM-based model outputs were compared using the two-sample Kolmogorov–Smirnov (KS) test in combination with descriptive
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
Prioritizing Interdependent Production Processes using Leontief Input-Output Model
Directory of Open Access Journals (Sweden)
Masbad Jesah Grace
2016-03-01
Full Text Available This paper proposes a methodology in identifying key production processes in an interdependent production system. Previous approaches on this domain have drawbacks that may potentially affect the reliability of decision-making. The proposed approach adopts the Leontief input-output model (L-IOM which was proven successful in analyzing interdependent economic systems. The motivation behind such adoption lies in the strength of L-IOM in providing a rigorous quantitative framework in identifying key components of interdependent systems. In this proposed approach, the consumption and production flows of each process are represented respectively by the material inventory produced by the prior process and the material inventory produced by the current process, both in monetary values. A case study in a furniture production system located in central Philippines was carried out to elucidate the proposed approach. Results of the case were reported in this work
An analytical model for an input/output-subsystem
International Nuclear Information System (INIS)
Roemgens, J.
1983-05-01
An input/output-subsystem of one or several computers if formed by the external memory units and the peripheral units of a computer system. For these subsystems mathematical models are established, taking into account the special properties of the I/O-subsystems, in order to avoid planning errors and to allow for predictions of the capacity of such systems. Here an analytical model is presented for the magnetic discs of a I/O-subsystem, using analytical methods for the individual waiting queues or waiting queue networks. Only I/O-subsystems of IBM-computer configurations are considered, which can be controlled by the MVS operating system. After a description of the hardware and software components of these I/O-systems, possible solutions from the literature are presented and discussed with respect to their applicability in IBM-I/O-subsystems. Based on these models a special scheme is developed which combines the advantages of the literature models and avoids the disadvantages in part. (orig./RW) [de
A Markovian model of evolving world input-output network.
Directory of Open Access Journals (Sweden)
Vahid Moosavi
Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.
A Markovian model of evolving world input-output network.
Moosavi, Vahid; Isacchini, Giulio
2017-01-01
The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.
Statistical modeling of Earth's plasmasphere
Veibell, Victoir
The behavior of plasma near Earth's geosynchronous orbit is of vital importance to both satellite operators and magnetosphere modelers because it also has a significant influence on energy transport, ion composition, and induced currents. The system is highly complex in both time and space, making the forecasting of extreme space weather events difficult. This dissertation examines the behavior and statistical properties of plasma mass density near geosynchronous orbit by using both linear and nonlinear models, as well as epoch analyses, in an attempt to better understand the physical processes that precipitates and drives its variations. It is shown that while equatorial mass density does vary significantly on an hourly timescale when a drop in the disturbance time scale index ( Dst) was observed, it does not vary significantly between the day of a Dst event onset and the day immediately following. It is also shown that increases in equatorial mass density were not, on average, preceded or followed by any significant change in the examined solar wind or geomagnetic variables, including Dst, despite prior results that considered a few selected events and found a notable influence. It is verified that equatorial mass density and and solar activity via the F10.7 index have a strong correlation, which is stronger over longer timescales such as 27 days than it is over an hourly timescale. It is then shown that this connection seems to affect the behavior of equatorial mass density most during periods of strong solar activity leading to large mass density reactions to Dst drops for high values of F10.7. It is also shown that equatorial mass density behaves differently before and after events based on the value of F10.7 at the onset of an equatorial mass density event or a Dst event, and that a southward interplanetary magnetic field at onset leads to slowed mass density growth after event onset. These behavioral differences provide insight into how solar and geomagnetic
Accessing National Water Model Output for Research and Application: An R package
Johnson, M.; Coll, J.
2017-12-01
With the National Water Model becoming operational in August of 2016, the need for a open source way to translate a huge amount of data into actionable intelligence and innovative research is apparent. The first step in doing this is to provide a package for accessing, managing, and writing data in a way that is both interpretable, portable, and useful to the end user in both the R environment, and other applications. This can be as simple as subsetting the outputs and writing to a CSV, but can also include converting discharge output to more meaningful statistics and measurements, and methods to visualize data in ways that are meaningful to a wider audience. The NWM R package presented here aims to serve this need through a suite of functions fit for researchers, first responders, and average citizens. A vignette of how this package can be applied to real-time flood mapping will be demonstrated.
Ziolkowski, Cezary; Kelner, Jan M.
2018-04-01
A method to evaluate the statistical properties of the reception angle seen at the input receiver that considers the receiving antenna pattern is presented. In particular, the impact of the direction and beamwidth of the antenna pattern on distribution of the reception angle is shown on the basis of 3D simulation studies. The obtained results show significant differences between distributions of angle of arrival and angle of reception. This means that the presented new method allows assessing the impact of the receiving antenna pattern on the correlation and spectral characteristics at the receiver input in simulation studies of wireless channel. The use of this method also provides an opportunity for analysis of a co-existence between small cells and wireless backhaul, what is currently a significant problem in designing 5G networks.
Linearised model for PV panel power output variation with changes ...
Indian Academy of Sciences (India)
PALLAVI BHARADWAJ
2017-10-26
Oct 26, 2017 ... change in system input, namely: irradiance and temperature, with its output, namely: array current and power. ... of a solar cell as shown in figure 1, with appropriate scaling according to ... measurement-based methods [8–13].
NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs
National Aeronautics and Space Administration — This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that various...
NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs
National Aeronautics and Space Administration — ABSTRACT: This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that...
Statistical modelling of fish stocks
DEFF Research Database (Denmark)
Kvist, Trine
1999-01-01
for modelling the dynamics of a fish population is suggested. A new approach is introduced to analyse the sources of variation in age composition data, which is one of the most important sources of information in the cohort based models for estimation of stock abundancies and mortalities. The approach combines...... and it is argued that an approach utilising stochastic differential equations might be advantagous in fish stoch assessments....
Statistical lung model for microdosimetry
International Nuclear Information System (INIS)
Fisher, D.R.; Hadley, R.T.
1984-03-01
To calculate the microdosimetry of plutonium in the lung, a mathematical description is needed of lung tissue microstructure that defines source-site parameters. Beagle lungs were expanded using a glutaraldehyde fixative at 30 cm water pressure. Tissue specimens, five microns thick, were stained with hematoxylin and eosin then studied using an image analyzer. Measurements were made along horizontal lines through the magnified tissue image. The distribution of air space and tissue chord lengths and locations of epithelial cell nuclei were recorded from about 10,000 line scans. The distribution parameters constituted a model of lung microstructure for predicting the paths of random alpha particle tracks in the lung and the probability of traversing biologically sensitive sites. This lung model may be used in conjunction with established deposition and retention models for determining the microdosimetry in the pulmonary lung for a wide variety of inhaled radioactive materials
Comparison of Laboratory Experimental Data to XBeach Numerical Model Output
Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc
2016-04-01
generating data sets for testing and validation of sediment transport relationships for sand transport in the presence of waves and currents. In these series, there is no structure in the basin. The second and third series of experiments were designed to generate data sets for development of tombolos in the lee of detached 4m-long rubble mound breakwater that is 4 m from the initial shoreline. The fourth series of experiments are conducted to investigate tombolo development in the lee of a 4m-long T-head groin with the head section in the same location of the second and the third tests. The fifth series of experiments are used to investigate tombolo development in the lee of a 3-m-long rubble-mound breakwater positioned 1.5 m offshore of the initial shoreline. In this study, the data collected from the above mentioned five experiments are used to compare the results of the experimental data with XBeach numerical model results, both for the "no-structure" and "with-structure" cases regarding to sediment transport relationships in the presence of only waves and currents as well as the shoreline changes together with the detached breakwater and the T-groin. The main purpose is to investigate the similarities and differences between the laboratory experimental data behavior with XBeach numerical model outputs for these five cases. References: Baykal, C., Sogut, E., Ergin, A., Guler, I., Ozyurt, G.T., Guler, G., and Dogan, G.G. (2015). Modelling Long Term Morphological Changes with XBeach: Case Study of Kızılırmak River Mouth, Turkey, European Geosciences Union, General Assembly 2015, Vienna, Austria, 12-17 April 2015. Gravens, M.B. and Wang, P. (2007). "Data report: Laboratory testing of longshore sand transport by waves and currents; morphology change behind headland structures." Technical Report, ERDC/CHL TR-07-8, Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de
Statistical modelling for ship propulsion efficiency
DEFF Research Database (Denmark)
Petersen, Jóan Petur; Jacobsen, Daniel J.; Winther, Ole
2012-01-01
This paper presents a state-of-the-art systems approach to statistical modelling of fuel efficiency in ship propulsion, and also a novel and publicly available data set of high quality sensory data. Two statistical model approaches are investigated and compared: artificial neural networks...
Actuarial statistics with generalized linear mixed models
Antonio, K.; Beirlant, J.
2007-01-01
Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics
Spherical Process Models for Global Spatial Statistics
Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.
2017-01-01
Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture
Use of medium-range numerical weather prediction model output to produce forecasts of streamflow
Clark, M.P.; Hay, L.E.
2004-01-01
This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases
Statistical Models and Methods for Lifetime Data
Lawless, Jerald F
2011-01-01
Praise for the First Edition"An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ."-Choice"This is an important book, which will appeal to statisticians working on survival analysis problems."-Biometrics"A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook."-Statistics in MedicineThe statistical analysis of lifetime or response time data is a key tool in engineering,
Statistics and the shell model
International Nuclear Information System (INIS)
Weidenmueller, H.A.
1985-01-01
Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
Statistical Model-Based Face Pose Estimation
Institute of Scientific and Technical Information of China (English)
GE Xinliang; YANG Jie; LI Feng; WANG Huahua
2007-01-01
A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.
Uncertainty the soul of modeling, probability & statistics
Briggs, William
2016-01-01
This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book devoted to the philosophy of data aimed at working scientists and calls for a new consideration in the practice of probability and statistics to eliminate what has been referred to as the "Cult of Statistical Significance". The book explains the philosophy of these ideas and not the mathematics, though there are a handful of mathematical examples. The topics are logically laid out, starting with basic philosophy as related to probability, statistics, and science, and stepping through the key probabilistic ideas and concepts, and ending with statistical models. Its jargon-free approach asserts that standard methods, suc...
Semi-Automated Processing of Trajectory Simulator Output Files for Model Evaluation
2018-01-01
ARL-TR-8284 ● JAN 2018 US Army Research Laboratory Semi-Automated Processing of Trajectory Simulator Output Files for Model...Semi-Automated Processing of Trajectory Simulator Output Files for Model Evaluation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...although some minor changes may be needed. The program processes a GTRAJ output text file that contains results from 2 or more simulations , where each
Specification and Aggregation Errors in Environmentally Extended Input-Output Models
Bouwmeester, Maaike C.; Oosterhaven, Jan
This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result
Automated statistical modeling of analytical measurement systems
International Nuclear Information System (INIS)
Jacobson, J.J.
1992-01-01
The statistical modeling of analytical measurement systems at the Idaho Chemical Processing Plant (ICPP) has been completely automated through computer software. The statistical modeling of analytical measurement systems is one part of a complete quality control program used by the Remote Analytical Laboratory (RAL) at the ICPP. The quality control program is an integration of automated data input, measurement system calibration, database management, and statistical process control. The quality control program and statistical modeling program meet the guidelines set forth by the American Society for Testing Materials and American National Standards Institute. A statistical model is a set of mathematical equations describing any systematic bias inherent in a measurement system and the precision of a measurement system. A statistical model is developed from data generated from the analysis of control standards. Control standards are samples which are made up at precise known levels by an independent laboratory and submitted to the RAL. The RAL analysts who process control standards do not know the values of those control standards. The object behind statistical modeling is to describe real process samples in terms of their bias and precision and, to verify that a measurement system is operating satisfactorily. The processing of control standards gives us this ability
Statistical mechanics of attractor neural network models with synaptic depression
International Nuclear Information System (INIS)
Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato
2009-01-01
Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.
Möller, M.; Obleitner, F.; Reijmer, C.H.; Pohjola, V.A.; Glowacki, P.; Kohler, J.
2016-01-01
Large-scale modeling of glacier mass balance relies often on the output from regional climate models (RCMs). However, the limited accuracy and spatial resolution of RCM output pose limitations on mass balance simulations at subregional or local scales. Moreover, RCM output is still rarely available
Topology for statistical modeling of petascale data.
Energy Technology Data Exchange (ETDEWEB)
Pascucci, Valerio (University of Utah, Salt Lake City, UT); Mascarenhas, Ajith Arthur; Rusek, Korben (Texas A& M University, College Station, TX); Bennett, Janine Camille; Levine, Joshua (University of Utah, Salt Lake City, UT); Pebay, Philippe Pierre; Gyulassy, Attila (University of Utah, Salt Lake City, UT); Thompson, David C.; Rojas, Joseph Maurice (Texas A& M University, College Station, TX)
2011-07-01
This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled 'Topology for Statistical Modeling of Petascale Data', funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program. Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is thus to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, our approach is based on the complementary techniques of combinatorial topology and statistical modeling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modeling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. This document summarizes the technical advances we have made to date that were made possible in whole or in part by MAPD funding. These technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3) new integrated topological and statistical methods.
Statistical modelling of citation exchange between statistics journals.
Varin, Cristiano; Cattelan, Manuela; Firth, David
2016-01-01
Rankings of scholarly journals based on citation data are often met with scepticism by the scientific community. Part of the scepticism is due to disparity between the common perception of journals' prestige and their ranking based on citation counts. A more serious concern is the inappropriate use of journal rankings to evaluate the scientific influence of researchers. The paper focuses on analysis of the table of cross-citations among a selection of statistics journals. Data are collected from the Web of Science database published by Thomson Reuters. Our results suggest that modelling the exchange of citations between journals is useful to highlight the most prestigious journals, but also that journal citation data are characterized by considerable heterogeneity, which needs to be properly summarized. Inferential conclusions require care to avoid potential overinterpretation of insignificant differences between journal ratings. Comparison with published ratings of institutions from the UK's research assessment exercise shows strong correlation at aggregate level between assessed research quality and journal citation 'export scores' within the discipline of statistics.
Daily precipitation statistics in regional climate models
DEFF Research Database (Denmark)
Frei, Christoph; Christensen, Jens Hesselbjerg; Déqué, Michel
2003-01-01
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km...
Infinite Random Graphs as Statistical Mechanical Models
DEFF Research Database (Denmark)
Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria
2011-01-01
We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a ...
Matrix Tricks for Linear Statistical Models
Puntanen, Simo; Styan, George PH
2011-01-01
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and
Statistical physics of pairwise probability models
DEFF Research Database (Denmark)
Roudi, Yasser; Aurell, Erik; Hertz, John
2009-01-01
(dansk abstrakt findes ikke) Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data......: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying...
Distributions with given marginals and statistical modelling
Fortiana, Josep; Rodriguez-Lallena, José
2002-01-01
This book contains a selection of the papers presented at the meeting `Distributions with given marginals and statistical modelling', held in Barcelona (Spain), July 17-20, 2000. In 24 chapters, this book covers topics such as the theory of copulas and quasi-copulas, the theory and compatibility of distributions, models for survival distributions and other well-known distributions, time series, categorical models, definition and estimation of measures of dependence, monotonicity and stochastic ordering, shape and separability of distributions, hidden truncation models, diagonal families, orthogonal expansions, tests of independence, and goodness of fit assessment. These topics share the use and properties of distributions with given marginals, this being the fourth specialised text on this theme. The innovative aspect of the book is the inclusion of statistical aspects such as modelling, Bayesian statistics, estimation, and tests.
Aspects of statistical model for multifragmentation
International Nuclear Information System (INIS)
Bhattacharyya, P.; Das Gupta, S.; Mekjian, A. Z.
1999-01-01
We deal with two different aspects of an exactly soluble statistical model of fragmentation. First we show, using zero range force and finite temperature Thomas-Fermi theory, that a common link can be found between finite temperature mean field theory and the statistical fragmentation model. We show the latter naturally arises in the spinodal region. Next we show that although the exact statistical model is a canonical model and uses temperature, microcanonical results which use constant energy rather than constant temperature can also be obtained from the canonical model using saddle-point approximation. The methodology is extremely simple to implement and at least in all the examples studied in this work is very accurate. (c) 1999 The American Physical Society
Measuring power output intermittency and unsteady loading in a micro wind farm model
Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan
2016-01-01
In this study porous disc models are used as a turbine model for a wind-tunnel wind farm experiment, allowing the measurement of the power output, thrust force and spatially averaged incoming velocity for every turbine. The model's capabilities for studying the unsteady turbine loading, wind farm power output intermittency and spatio temporal correlations between wind turbines are demonstrated on an aligned wind farm, consisting of 100 wind turbine models.
Performance modeling, loss networks, and statistical multiplexing
Mazumdar, Ravi
2009-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I
Simple statistical model for branched aggregates
DEFF Research Database (Denmark)
Lemarchand, Claire; Hansen, Jesper Schmidt
2015-01-01
, given that it already has bonds with others. The model is applied here to asphaltene nanoaggregates observed in molecular dynamics simulations of Cooee bitumen. The variation with temperature of the probabilities deduced from this model is discussed in terms of statistical mechanics arguments....... The relevance of the statistical model in the case of asphaltene nanoaggregates is checked by comparing the predicted value of the probability for one molecule to have exactly i bonds with the same probability directly measured in the molecular dynamics simulations. The agreement is satisfactory......We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule...
Advances in statistical models for data analysis
Minerva, Tommaso; Vichi, Maurizio
2015-01-01
This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.
Structured statistical models of inductive reasoning.
Kemp, Charles; Tenenbaum, Joshua B
2009-01-01
Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.
Model for neural signaling leap statistics
International Nuclear Information System (INIS)
Chevrollier, Martine; Oria, Marcos
2011-01-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5 0 C, awaken regime) and Levy statistics (T = 35.5 0 C, sleeping period), characterized by rare events of long range connections.
Statistical models based on conditional probability distributions
International Nuclear Information System (INIS)
Narayanan, R.S.
1991-10-01
We present a formulation of statistical mechanics models based on conditional probability distribution rather than a Hamiltonian. We show that it is possible to realize critical phenomena through this procedure. Closely linked with this formulation is a Monte Carlo algorithm, in which a configuration generated is guaranteed to be statistically independent from any other configuration for all values of the parameters, in particular near the critical point. (orig.)
Model for neural signaling leap statistics
Chevrollier, Martine; Oriá, Marcos
2011-03-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.
Model for neural signaling leap statistics
Energy Technology Data Exchange (ETDEWEB)
Chevrollier, Martine; Oria, Marcos, E-mail: oria@otica.ufpb.br [Laboratorio de Fisica Atomica e Lasers Departamento de Fisica, Universidade Federal da ParaIba Caixa Postal 5086 58051-900 Joao Pessoa, Paraiba (Brazil)
2011-03-01
We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5{sup 0}C, awaken regime) and Levy statistics (T = 35.5{sup 0}C, sleeping period), characterized by rare events of long range connections.
Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model
Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-01-01
This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.
Energy Technology Data Exchange (ETDEWEB)
Khan, Sahubar Ali Mohd. Nadhar, E-mail: sahubar@uum.edu.my; Ramli, Razamin, E-mail: razamin@uum.edu.my; Baten, M. D. Azizul, E-mail: baten-math@yahoo.com [School of Quantitative Sciences, UUM College of Arts and Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah (Malaysia)
2015-12-11
Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers’ efficiency.
International Nuclear Information System (INIS)
Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul
2015-01-01
Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers’ efficiency
Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul
2015-12-01
Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers' efficiency.
Computer models and output, Spartan REM: Appendix B
Marlowe, D. S.; West, E. J.
1984-01-01
A computer model of the Spartan Release Engagement Mechanism (REM) is presented in a series of numerical charts and engineering drawings. A crack growth analysis code is used to predict the fracture mechanics of critical components.
COMBINING LONG MEMORY AND NONLINEAR MODEL OUTPUTS FOR INFLATION FORECAST
Heri Kuswanto; Irhamah Alimuhajin; Laylia Afidah
2014-01-01
Long memory and nonlinearity have been proven as two models that are easily to be mistaken. In other words, nonlinearity is a strong candidate of spurious long memory by introducing a certain degree of fractional integration that lies in the region of long memory. Indeed, nonlinear process belongs to short memory with zero integration order. The idea of the forecast is to obtain the future condition with minimum error. Some researches argued that no matter what the model is, the important thi...
Growth curve models and statistical diagnostics
Pan, Jian-Xin
2002-01-01
Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.
The Comparison of Point Data Models for the Output of WRF Hydro Model in the IDV
Ho, Y.; Weber, J.
2017-12-01
WRF Hydro netCDF output files contain streamflow, flow depth, longitude, latitude, altitude and stream order values for each forecast point. However, the data are not CF compliant. The total number of forecast points for the US CONUS is approximately 2.7 million and it is a big challenge for any visualization and analysis tool. The IDV point cloud display shows point data as a set of points colored by parameter. This display is very efficient compared to a standard point type display for rendering a large number of points. The one problem we have is that the data I/O can be a bottleneck issue when dealing with a large collection of point input files. In this presentation, we will experiment with different point data models and their APIs to access the same WRF Hydro model output. The results will help us construct a CF compliant netCDF point data format for the community.
Topology for Statistical Modeling of Petascale Data
Energy Technology Data Exchange (ETDEWEB)
Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Levine, Joshua [Univ. of Utah, Salt Lake City, UT (United States); Gyulassy, Attila [Univ. of Utah, Salt Lake City, UT (United States); Bremer, P. -T. [Univ. of Utah, Salt Lake City, UT (United States)
2013-10-31
Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, the approach of the entire team involving all three institutions is based on the complementary techniques of combinatorial topology and statistical modelling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modelling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. The overall technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modelling, and (3) new integrated topological and statistical methods. Roughly speaking, the division of labor between our 3 groups (Sandia Labs in Livermore, Texas A&M in College Station, and U Utah in Salt Lake City) is as follows: the Sandia group focuses on statistical methods and their formulation in algebraic terms, and finds the application problems (and data sets) most relevant to this project, the Texas A&M Group develops new algebraic geometry algorithms, in particular with fewnomial theory, and the Utah group develops new algorithms in computational topology via Discrete Morse Theory. However, we hasten to point out that our three groups stay in tight contact via videconference every 2 weeks, so there is much synergy of ideas between the groups. The following of this document is focused on the contributions that had grater direct involvement from the team at the University of Utah in Salt Lake City.
Bayesian models a statistical primer for ecologists
Hobbs, N Thompson
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili
Models of asthma: density-equalizing mapping and output benchmarking
Directory of Open Access Journals (Sweden)
Fischer Tanja C
2008-02-01
Full Text Available Abstract Despite the large amount of experimental studies already conducted on bronchial asthma, further insights into the molecular basics of the disease are required to establish new therapeutic approaches. As a basis for this research different animal models of asthma have been developed in the past years. However, precise bibliometric data on the use of different models do not exist so far. Therefore the present study was conducted to establish a data base of the existing experimental approaches. Density-equalizing algorithms were used and data was retrieved from a Thomson Institute for Scientific Information database. During the period from 1900 to 2006 a number of 3489 filed items were connected to animal models of asthma, the first being published in the year 1968. The studies were published by 52 countries with the US, Japan and the UK being the most productive suppliers, participating in 55.8% of all published items. Analyzing the average citation per item as an indicator for research quality Switzerland ranked first (30.54/item and New Zealand ranked second for countries with more than 10 published studies. The 10 most productive journals included 4 with a main focus allergy and immunology and 4 with a main focus on the respiratory system. Two journals focussed on pharmacology or pharmacy. In all assigned subject categories examined for a relation to animal models of asthma, immunology ranked first. Assessing numbers of published items in relation to animal species it was found that mice were the preferred species followed by guinea pigs. In summary it can be concluded from density-equalizing calculations that the use of animal models of asthma is restricted to a relatively small number of countries. There are also differences in the use of species. These differences are based on variations in the research focus as assessed by subject category analysis.
Including model uncertainty in the model predictive control with output feedback
Directory of Open Access Journals (Sweden)
Rodrigues M.A.
2002-01-01
Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.
Statistical transmutation in doped quantum dimer models.
Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P
2012-07-06
We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.
STATISTICAL MODELS OF REPRESENTING INTELLECTUAL CAPITAL
Directory of Open Access Journals (Sweden)
Andreea Feraru
2016-06-01
Full Text Available This article entitled Statistical Models of Representing Intellectual Capital approaches and analyses the concept of intellectual capital, as well as the main models which can support enterprisers/managers in evaluating and quantifying the advantages of intellectual capital. Most authors examine intellectual capital from a static perspective and focus on the development of its various evaluation models. In this chapter we surveyed the classical static models: Sveiby, Edvisson, Balanced Scorecard, as well as the canonical model of intellectual capital. Among the group of static models for evaluating organisational intellectual capital the canonical model stands out. This model enables the structuring of organisational intellectual capital in: human capital, structural capital and relational capital. Although the model is widely spread, it is a static one and can thus create a series of errors in the process of evaluation, because all the three entities mentioned above are not independent from the viewpoint of their contents, as any logic of structuring complex entities requires.
Output fields from the NOAA WAVEWATCH IIIÂ® wave model monthly hindcasts
National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA WAVEWATCH IIIÂ® hindcast dataset comprises output fields from the monthly WAVEWATCH IIIÂ® hindcast model runs conducted at the National Centers for...
International Nuclear Information System (INIS)
Balagyra, V.S.; Ryabka, P.M.
1999-01-01
For measuring the charged particle energy calculations of mean square angles of electron beam multiple Coulomb scattering at output combined accelerator target were undertaken according to seven theoretical models. Mollier method showed the best agreement with experiments
Investigation on the integral output power model of a large-scale wind farm
Institute of Scientific and Technical Information of China (English)
BAO Nengsheng; MA Xiuqian; NI Weidou
2007-01-01
The integral output power model of a large-scale wind farm is needed when estimating the wind farm's output over a period of time in the future.The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed.After analyzing the incoming wind flow characteristics and their energy distributions,and after considering the multi-effects among the wind turbine units and certain assumptions,the incoming wind flow model of multi-units is built.The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided.Finally,an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data.The characteristics of a large-scale wind farm are also discussed.
(ajst) statistical mechanics model for orientational
African Journals Online (AJOL)
Science and Engineering Series Vol. 6, No. 2, pp. 94 - 101. STATISTICAL MECHANICS MODEL FOR ORIENTATIONAL. MOTION OF TWO-DIMENSIONAL RIGID ROTATOR. Malo, J.O. ... there is no translational motion and that they are well separated so .... constant and I is the moment of inertia of a linear rotator. Thus, the ...
Statistical Model Checking for Biological Systems
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel
2014-01-01
Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...
Topology for Statistical Modeling of Petascale Data
Energy Technology Data Exchange (ETDEWEB)
Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pebay, Philippe Pierre [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Levine, Joshua [Univ. of Utah, Salt Lake City, UT (United States); Gyulassy, Attila [Univ. of Utah, Salt Lake City, UT (United States); Rojas, Maurice [Texas A & M Univ., College Station, TX (United States)
2014-07-01
This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled "Topology for Statistical Modeling of Petascale Data", funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program.
Establishing statistical models of manufacturing parameters
International Nuclear Information System (INIS)
Senevat, J.; Pape, J.L.; Deshayes, J.F.
1991-01-01
This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature
Statistical models for optimizing mineral exploration
International Nuclear Information System (INIS)
Wignall, T.K.; DeGeoffroy, J.
1987-01-01
The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)
A statistical model for mapping morphological shape
Directory of Open Access Journals (Sweden)
Li Jiahan
2010-07-01
Full Text Available Abstract Background Living things come in all shapes and sizes, from bacteria, plants, and animals to humans. Knowledge about the genetic mechanisms for biological shape has far-reaching implications for a range spectrum of scientific disciplines including anthropology, agriculture, developmental biology, evolution and biomedicine. Results We derived a statistical model for mapping specific genes or quantitative trait loci (QTLs that control morphological shape. The model was formulated within the mixture framework, in which different types of shape are thought to result from genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate QTL genotype-specific shapes based on a shape correspondence analysis. Computer simulation was used to investigate the statistical property of the model. Conclusion By identifying specific QTLs for morphological shape, the model developed will help to ask, disseminate and address many major integrative biological and genetic questions and challenges in the genetic control of biological shape and function.
Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Jung–Min Yang
2016-01-01
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the ...
Performance modeling, stochastic networks, and statistical multiplexing
Mazumdar, Ravi R
2013-01-01
This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan
Statistical models for competing risk analysis
International Nuclear Information System (INIS)
Sather, H.N.
1976-08-01
Research results on three new models for potential applications in competing risks problems. One section covers the basic statistical relationships underlying the subsequent competing risks model development. Another discusses the problem of comparing cause-specific risk structure by competing risks theory in two homogeneous populations, P1 and P2. Weibull models which allow more generality than the Berkson and Elveback models are studied for the effect of time on the hazard function. The use of concomitant information for modeling single-risk survival is extended to the multiple failure mode domain of competing risks. The model used to illustrate the use of this methodology is a life table model which has constant hazards within pre-designated intervals of the time scale. Two parametric models for bivariate dependent competing risks, which provide interesting alternatives, are proposed and examined
Statistical physics of pairwise probability models
Directory of Open Access Journals (Sweden)
Yasser Roudi
2009-11-01
Full Text Available Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying and using pairwise models. We build on our previous work on the subject and study the relation between different methods for fitting these models and evaluating their quality. In particular, using data from simulated cortical networks we study how the quality of various approximate methods for inferring the parameters in a pairwise model depends on the time bin chosen for binning the data. We also study the effect of the size of the time bin on the model quality itself, again using simulated data. We show that using finer time bins increases the quality of the pairwise model. We offer new ways of deriving the expressions reported in our previous work for assessing the quality of pairwise models.
Pandemic recovery analysis using the dynamic inoperability input-output model.
Santos, Joost R; Orsi, Mark J; Bond, Erik J
2009-12-01
Economists have long conceptualized and modeled the inherent interdependent relationships among different sectors of the economy. This concept paved the way for input-output modeling, a methodology that accounts for sector interdependencies governing the magnitude and extent of ripple effects due to changes in the economic structure of a region or nation. Recent extensions to input-output modeling have enhanced the model's capabilities to account for the impact of an economic perturbation; two such examples are the inoperability input-output model((1,2)) and the dynamic inoperability input-output model (DIIM).((3)) These models introduced sector inoperability, or the inability to satisfy as-planned production levels, into input-output modeling. While these models provide insights for understanding the impacts of inoperability, there are several aspects of the current formulation that do not account for complexities associated with certain disasters, such as a pandemic. This article proposes further enhancements to the DIIM to account for economic productivity losses resulting primarily from workforce disruptions. A pandemic is a unique disaster because the majority of its direct impacts are workforce related. The article develops a modeling framework to account for workforce inoperability and recovery factors. The proposed workforce-explicit enhancements to the DIIM are demonstrated in a case study to simulate a pandemic scenario in the Commonwealth of Virginia.
Directory of Open Access Journals (Sweden)
Asma Foughali
2015-07-01
Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to
Mathematical model of accelerator output characteristics and their calculation on a computer
International Nuclear Information System (INIS)
Mishulina, O.A.; Ul'yanina, M.N.; Kornilova, T.V.
1975-01-01
A mathematical model is described of output characteristics of a linear accelerator. The model is a system of differential equations. Presence of phase limitations is a specific feature of setting the problem which makes it possible to ensure higher simulation accuracy and determine a capture coefficient. An algorithm is elaborated of computing output characteristics based upon the mathematical model suggested. A capture coefficient, coordinate expectation characterizing an average phase value of the beam particles, coordinate expectation characterizing an average value of the reverse relative velocity of the beam particles as well as dispersion of these coordinates are output characteristics of the accelerator. Calculation methods of the accelerator output characteristics are described in detail. The computations have been performed on the BESM-6 computer, the characteristics computing time being 2 min 20 sec. Relative error of parameter computation averages 10 -2
Equilibrium statistical mechanics of lattice models
Lavis, David A
2015-01-01
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...
Statistical shape and appearance models of bones.
Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A
2014-03-01
When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone. Copyright © 2013 Elsevier Inc. All rights reserved.
Statistical Models of Adaptive Immune populations
Sethna, Zachary; Callan, Curtis; Walczak, Aleksandra; Mora, Thierry
The availability of large (104-106 sequences) datasets of B or T cell populations from a single individual allows reliable fitting of complex statistical models for naïve generation, somatic selection, and hypermutation. It is crucial to utilize a probabilistic/informational approach when modeling these populations. The inferred probability distributions allow for population characterization, calculation of probability distributions of various hidden variables (e.g. number of insertions), as well as statistical properties of the distribution itself (e.g. entropy). In particular, the differences between the T cell populations of embryonic and mature mice will be examined as a case study. Comparing these populations, as well as proposed mixed populations, provides a concrete exercise in model creation, comparison, choice, and validation.
Cellular automata and statistical mechanical models
International Nuclear Information System (INIS)
Rujan, P.
1987-01-01
The authors elaborate on the analogy between the transfer matrix of usual lattice models and the master equation describing the time development of cellular automata. Transient and stationary properties of probabilistic automata are linked to surface and bulk properties, respectively, of restricted statistical mechanical systems. It is demonstrated that methods of statistical physics can be successfully used to describe the dynamic and the stationary behavior of such automata. Some exact results are derived, including duality transformations, exact mappings, disorder, and linear solutions. Many examples are worked out in detail to demonstrate how to use statistical physics in order to construct cellular automata with desired properties. This approach is considered to be a first step toward the design of fully parallel, probabilistic systems whose computational abilities rely on the cooperative behavior of their components
Input-output model for MACCS nuclear accident impacts estimation¹
Energy Technology Data Exchange (ETDEWEB)
Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-27
Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.
The efficiency of the agricultural sector in Poland in the light output-input model1
Directory of Open Access Journals (Sweden)
Czyżewski Andrzej
2015-05-01
Full Text Available The study turns attention to the use of the input-output model (account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector. In the introductory part the essence of the account of interbranch flows has been specified, pointing to its historical origin and place in the economic theory, and the morphological structure of the individual parts (quarters of the model has been presented. Then the study discusses the application of the account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector, defining and characterizing a number of indicators which allow to conclude on the effectiveness of the agricultural sector on the basis of the account of interbranch flows. The last, empirical part of the study assesses the effectiveness of the agricultural sector in Poland on the basis of interbranch flows statistics for the years 2000 and 2005. The analyses allowed to demonstrate increased efficiency of the agricultural sector in Poland after Poland joined the EU, and also to say that the account of interbranch flows is an important tool enabling comprehensive assessment of the effectiveness of the agricultural sector in the macro-scale, through the prism of the effect - disbursement, which accounts for its exceptional suitability in this kind of analyses.
Statistical Modelling of Wind Proles - Data Analysis and Modelling
DEFF Research Database (Denmark)
Jónsson, Tryggvi; Pinson, Pierre
The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles.......The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles....
A statistical model for instable thermodynamical systems
International Nuclear Information System (INIS)
Sommer, Jens-Uwe
2003-01-01
A generic model is presented for statistical systems which display thermodynamic features in contrast to our everyday experience, such as infinite and negative heat capacities. Such system are instable in terms of classical equilibrium thermodynamics. Using our statistical model, we are able to investigate states of instable systems which are undefined in the framework of equilibrium thermodynamics. We show that a region of negative heat capacity in the adiabatic environment, leads to a first order like phase transition when the system is coupled to a heat reservoir. This phase transition takes place without a phase coexistence. Nevertheless, all intermediate states are stable due to fluctuations. When two instable system are brought in thermal contact, the temperature of the composed system is lower than the minimum temperature of the individual systems. Generally, the equilibrium states of instable system cannot be simply decomposed into equilibrium states of the individual systems. The properties of instable system depend on the environment, ensemble equivalence is broken
Logarithmic transformed statistical models in calibration
International Nuclear Information System (INIS)
Zeis, C.D.
1975-01-01
A general type of statistical model used for calibration of instruments having the property that the standard deviations of the observed values increase as a function of the mean value is described. The application to the Helix Counter at the Rocky Flats Plant is primarily from a theoretical point of view. The Helix Counter measures the amount of plutonium in certain types of chemicals. The method described can be used also for other calibrations. (U.S.)
ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING
Palas Roy; Naba Kumar Mondal; Biswajit Das; Kousik Das
2013-01-01
High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India) has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Mul...
Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.
2018-05-01
Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed
Energy Technology Data Exchange (ETDEWEB)
Shi, Yan; Wu, Tiecheng; Cai, Maolin; Liu, Chong [Beihang University, Beijing (China)
2016-03-15
Hydropneumatic transformer (short for HP transformer) is used to pump pressurized hydraulic oil. Whereas, due to its insufficient usage of energy and low efficiency, a new kind of HP transformer: EEUHP transformer (Expansion energy used hydropneumatic transformer) was proposed. To illustrate the characteristics of the EEUHP transformer, a mathematical model was built. To verify the mathematical model, an experimental prototype was setup and studied. Through simulation and experimental study on the EEUHP transformer, the influence of five key parameters on the output flow of the EEUHP transformer were obtained, and some conclusions can be drawn. Firstly, the mathematical model was proved to be valid. Furthermore, the EEUHP transformer costs fewer of compressed air than the normal HP transformer when the output flow of the two kinds of transformers are almost same. Moreover, with an increase in the output pressure, the output flow decreases sharply. Finally, with an increase in the effective area of hydraulic output port, the output flow increases distinctly. This research can be referred to in the performance and design optimization of the EEUHP transformers.
A simple statistical model for geomagnetic reversals
Constable, Catherine
1990-01-01
The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.
Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs.
Vitolo, Claudia; Di Giuseppe, Francesca; D'Andrea, Mirko
2018-01-01
The name caliver stands for CALIbration and VERification of forest fire gridded model outputs. This is a package developed for the R programming language and available under an APACHE-2 license from a public repository. In this paper we describe the functionalities of the package and give examples using publicly available datasets. Fire danger model outputs are taken from the modeling components of the European Forest Fire Information System (EFFIS) and observed burned areas from the Global Fire Emission Database (GFED). Complete documentation, including a vignette, is also available within the package.
Statistical Modelling of the Soil Dielectric Constant
Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy
2010-05-01
The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of
Kumar, Sujay V.; Wang, Shugong; Mocko, David M.; Peters-Lidard, Christa D.; Xia, Youlong
2017-11-01
Multimodel ensembles are often used to produce ensemble mean estimates that tend to have increased simulation skill over any individual model output. If multimodel outputs are too similar, an individual LSM would add little additional information to the multimodel ensemble, whereas if the models are too dissimilar, it may be indicative of systematic errors in their formulations or configurations. The article presents a formal similarity assessment of the North American Land Data Assimilation System (NLDAS) multimodel ensemble outputs to assess their utility to the ensemble, using a confirmatory factor analysis. Outputs from four NLDAS Phase 2 models currently running in operations at NOAA/NCEP and four new/upgraded models that are under consideration for the next phase of NLDAS are employed in this study. The results show that the runoff estimates from the LSMs were most dissimilar whereas the models showed greater similarity for root zone soil moisture, snow water equivalent, and terrestrial water storage. Generally, the NLDAS operational models showed weaker association with the common factor of the ensemble and the newer versions of the LSMs showed stronger association with the common factor, with the model similarity increasing at longer time scales. Trade-offs between the similarity metrics and accuracy measures indicated that the NLDAS operational models demonstrate a larger span in the similarity-accuracy space compared to the new LSMs. The results of the article indicate that simultaneous consideration of model similarity and accuracy at the relevant time scales is necessary in the development of multimodel ensemble.
Statistical Downscaling of Temperature with the Random Forest Model
Directory of Open Access Journals (Sweden)
Bo Pang
2017-01-01
Full Text Available The issues with downscaling the outputs of a global climate model (GCM to a regional scale that are appropriate to hydrological impact studies are investigated using the random forest (RF model, which has been shown to be superior for large dataset analysis and variable importance evaluation. The RF is proposed for downscaling daily mean temperature in the Pearl River basin in southern China. Four downscaling models were developed and validated by using the observed temperature series from 61 national stations and large-scale predictor variables derived from the National Center for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. The proposed RF downscaling model was compared to multiple linear regression, artificial neural network, and support vector machine models. Principal component analysis (PCA and partial correlation analysis (PAR were used in the predictor selection for the other models for a comprehensive study. It was shown that the model efficiency of the RF model was higher than that of the other models according to five selected criteria. By evaluating the predictor importance, the RF could choose the best predictor combination without using PCA and PAR. The results indicate that the RF is a feasible tool for the statistical downscaling of temperature.
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.
2012-12-01
General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.
Multi input single output model predictive control of non-linear bio-polymerization process
Energy Technology Data Exchange (ETDEWEB)
Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model
Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong
In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying
Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model
Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong
2016-01-01
In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying
Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models
Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.
2016-01-01
A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of
DIMITRI 1.0: Beschrijving en toepassing van een dynamisch input-output model
Wilting HC; Blom WF; Thomas R; Idenburg AM; LAE
2001-01-01
DIMITRI, the Dynamic Input-Output Model to study the Impacts of Technology Related Innovations, was developed in the framework of the RIVM Environment and Economy project to answer questions about interrelationships between economy, technology and the environment. DIMITRI, a meso-economic model,
Logistics flows and enterprise input-output models: aggregate and disaggregate analysis
Albino, V.; Yazan, Devrim; Messeni Petruzzelli, A.; Okogbaa, O.G.
2011-01-01
In the present paper, we propose the use of enterprise input-output (EIO) models to describe and analyse the logistics flows considering spatial issues and related environmental effects associated with production and transportation processes. In particular, transportation is modelled as a specific
ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING
Directory of Open Access Journals (Sweden)
Palas Roy
2013-01-01
Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.
Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Aminmohammad Saberian
2014-01-01
Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.
Modeling and control of the output current of a Reformed Methanol Fuel Cell system
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar
2015-01-01
In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...... dynamics, as well as a battery model based on an equivalent circuit model and a balance of plant power consumption model. The models are tuned with experimental data and verified using a verification data set. The model is used to develop an output current controller which can control the charge current...... of the battery. The controller is a PI controller with feedforward and anti-windup. The performance of the controller is tested and verified on the physical system....
Modeling of Output Characteristics of a UV Cu+ Ne-CuBr Laser
Directory of Open Access Journals (Sweden)
Snezhana Georgieva Gocheva-Ilieva
2012-01-01
Full Text Available This paper examines experiment data for a Ne-CuBr UV copper ion laser excited by longitudinal pulsed discharge emitting in multiline regime. The flexible multivariate adaptive regression splines (MARSs method has been used to develop nonparametric regression models describing the laser output power and service life of the devices. The models have been constructed as explicit functions of 9 basic input laser characteristics. The obtained models account for local nonlinearities of the relationships within the various multivariate subregions. The built best MARS models account for over 98% of data. The models are used to estimate the investigated output laser characteristics of existing UV lasers. The capabilities for using the models in predicting existing and future experiments have been demonstrated. Specific analyses have been presented comparing the models with actual experiments. The obtained results are applicable for guiding and planning the engineering experiment. The modeling methodology can be applied for a wide range of similar lasers and laser devices.
Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul
2017-11-01
In recent years eco-efficiency which considers the effect of production process on environment in determining the efficiency of firms have gained traction and a lot of attention. Rice farming is one of such production processes which typically produces two types of outputs which are economic desirable as well as environmentally undesirable. In efficiency analysis, these undesirable outputs cannot be ignored and need to be included in the model to obtain the actual estimation of firm's efficiency. There are numerous approaches that have been used in data envelopment analysis (DEA) literature to account for undesirable outputs of which directional distance function (DDF) approach is the most widely used as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, slack based DDF DEA approaches considers the output shortfalls and input excess in determining efficiency. In situations when data uncertainty is present, the deterministic DEA model is not suitable to be used as the effects of uncertain data will not be considered. In this case, it has been found that interval data approach is suitable to account for data uncertainty as it is much simpler to model and need less information regarding the underlying data distribution and membership function. The proposed model uses an enhanced DEA model which is based on DDF approach and incorporates slack based measure to determine efficiency in the presence of undesirable factors and data uncertainty. Interval data approach was used to estimate the values of inputs, undesirable outputs and desirable outputs. Two separate slack based interval DEA models were constructed for optimistic and pessimistic scenarios. The developed model was used to determine rice farmers efficiency from Kepala Batas, Kedah. The obtained results were later compared to the results obtained using a deterministic DDF DEA model. The study found that 15 out of 30 farmers are efficient in all cases. It
Optimizing refiner operation with statistical modelling
Energy Technology Data Exchange (ETDEWEB)
Broderick, G [Noranda Research Centre, Pointe Claire, PQ (Canada)
1997-02-01
The impact of refining conditions on the energy efficiency of the process and on the handsheet quality of a chemi-mechanical pulp was studied as part of a series of pilot scale refining trials. Statistical models of refiner performance were constructed from these results and non-linear optimization of process conditions were conducted. Optimization results indicated that increasing the ratio of specific energy applied in the first stage led to a reduction of some 15 per cent in the total energy requirement. The strategy can also be used to obtain significant increases in pulp quality for a given energy input. 20 refs., 6 tabs.
Average Nuclear properties based on statistical model
International Nuclear Information System (INIS)
El-Jaick, L.J.
1974-01-01
The rough properties of nuclei were investigated by statistical model, in systems with the same and different number of protons and neutrons, separately, considering the Coulomb energy in the last system. Some average nuclear properties were calculated based on the energy density of nuclear matter, from Weizsscker-Beth mass semiempiric formulae, generalized for compressible nuclei. In the study of a s surface energy coefficient, the great influence exercised by Coulomb energy and nuclear compressibility was verified. For a good adjust of beta stability lines and mass excess, the surface symmetry energy were established. (M.C.K.) [pt
Computational and Statistical Models: A Comparison for Policy Modeling of Childhood Obesity
Mabry, Patricia L.; Hammond, Ross; Ip, Edward Hak-Sing; Huang, Terry T.-K.
As systems science methodologies have begun to emerge as a set of innovative approaches to address complex problems in behavioral, social science, and public health research, some apparent conflicts with traditional statistical methodologies for public health have arisen. Computational modeling is an approach set in context that integrates diverse sources of data to test the plausibility of working hypotheses and to elicit novel ones. Statistical models are reductionist approaches geared towards proving the null hypothesis. While these two approaches may seem contrary to each other, we propose that they are in fact complementary and can be used jointly to advance solutions to complex problems. Outputs from statistical models can be fed into computational models, and outputs from computational models can lead to further empirical data collection and statistical models. Together, this presents an iterative process that refines the models and contributes to a greater understanding of the problem and its potential solutions. The purpose of this panel is to foster communication and understanding between statistical and computational modelers. Our goal is to shed light on the differences between the approaches and convey what kinds of research inquiries each one is best for addressing and how they can serve complementary (and synergistic) roles in the research process, to mutual benefit. For each approach the panel will cover the relevant "assumptions" and how the differences in what is assumed can foster misunderstandings. The interpretations of the results from each approach will be compared and contrasted and the limitations for each approach will be delineated. We will use illustrative examples from CompMod, the Comparative Modeling Network for Childhood Obesity Policy. The panel will also incorporate interactive discussions with the audience on the issues raised here.
Statistical pairwise interaction model of stock market
Bury, Thomas
2013-03-01
Financial markets are a classical example of complex systems as they are compound by many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or they are agent-based models with rules designed in order to recover some empirical behaviors. Here we show that the pairwise model is actually a statistically consistent model with the observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach only based on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.
An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules
Directory of Open Access Journals (Sweden)
Abdul Qayoom Jakhrani
2014-01-01
Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.
Statistical modeling to support power system planning
Staid, Andrea
This dissertation focuses on data-analytic approaches that improve our understanding of power system applications to promote better decision-making. It tackles issues of risk analysis, uncertainty management, resource estimation, and the impacts of climate change. Tools of data mining and statistical modeling are used to bring new insight to a variety of complex problems facing today's power system. The overarching goal of this research is to improve the understanding of the power system risk environment for improved operation, investment, and planning decisions. The first chapter introduces some challenges faced in planning for a sustainable power system. Chapter 2 analyzes the driving factors behind the disparity in wind energy investments among states with a goal of determining the impact that state-level policies have on incentivizing wind energy. Findings show that policy differences do not explain the disparities; physical and geographical factors are more important. Chapter 3 extends conventional wind forecasting to a risk-based focus of predicting maximum wind speeds, which are dangerous for offshore operations. Statistical models are presented that issue probabilistic predictions for the highest wind speed expected in a three-hour interval. These models achieve a high degree of accuracy and their use can improve safety and reliability in practice. Chapter 4 examines the challenges of wind power estimation for onshore wind farms. Several methods for wind power resource assessment are compared, and the weaknesses of the Jensen model are demonstrated. For two onshore farms, statistical models outperform other methods, even when very little information is known about the wind farm. Lastly, chapter 5 focuses on the power system more broadly in the context of the risks expected from tropical cyclones in a changing climate. Risks to U.S. power system infrastructure are simulated under different scenarios of tropical cyclone behavior that may result from climate
Acceleration transforms and statistical kinetic models
International Nuclear Information System (INIS)
LuValle, M.J.; Welsher, T.L.; Svoboda, K.
1988-01-01
For a restricted class of problems a mathematical model of microscopic degradation processes, statistical kinetics, is developed and linked through acceleration transforms to the information which can be obtained from a system in which the only observable sign of degradation is sudden and catastrophic failure. The acceleration transforms were developed in accelerated life testing applications as a tool for extrapolating from the observable results of an accelerated life test to the dynamics of the underlying degradation processes. A particular concern of a physicist attempting to interpreted the results of an analysis based on acceleration transforms is determining the physical species involved in the degradation process. These species may be (a) relatively abundant or (b) relatively rare. The main results of this paper are a theorem showing that for an important subclass of statistical kinetic models, acceleration transforms cannot be used to distinguish between cases a and b, and an example showing that in some cases falling outside the restrictions of the theorem, cases a and b can be distinguished by their acceleration transforms
Atmospheric corrosion: statistical validation of models
International Nuclear Information System (INIS)
Diaz, V.; Martinez-Luaces, V.; Guineo-Cobs, G.
2003-01-01
In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs
Towards a Statistical Model of Tropical Cyclone Genesis
Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.
2017-12-01
Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.
El Haimar, Amine; Santos, Joost R
2014-03-01
Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics. © 2013 Society for Risk Analysis.
Spherical Process Models for Global Spatial Statistics
Jeong, Jaehong
2017-11-28
Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.
A statistical mechanical model of economics
Lubbers, Nicholas Edward Williams
Statistical mechanics pursues low-dimensional descriptions of systems with a very large number of degrees of freedom. I explore this theme in two contexts. The main body of this dissertation explores and extends the Yard Sale Model (YSM) of economic transactions using a combination of simulations and theory. The YSM is a simple interacting model for wealth distributions which has the potential to explain the empirical observation of Pareto distributions of wealth. I develop the link between wealth condensation and the breakdown of ergodicity due to nonlinear diffusion effects which are analogous to the geometric random walk. Using this, I develop a deterministic effective theory of wealth transfer in the YSM that is useful for explaining many quantitative results. I introduce various forms of growth to the model, paying attention to the effect of growth on wealth condensation, inequality, and ergodicity. Arithmetic growth is found to partially break condensation, and geometric growth is found to completely break condensation. Further generalizations of geometric growth with growth in- equality show that the system is divided into two phases by a tipping point in the inequality parameter. The tipping point marks the line between systems which are ergodic and systems which exhibit wealth condensation. I explore generalizations of the YSM transaction scheme to arbitrary betting functions to develop notions of universality in YSM-like models. I find that wealth vi condensation is universal to a large class of models which can be divided into two phases. The first exhibits slow, power-law condensation dynamics, and the second exhibits fast, finite-time condensation dynamics. I find that the YSM, which exhibits exponential dynamics, is the critical, self-similar model which marks the dividing line between the two phases. The final chapter develops a low-dimensional approach to materials microstructure quantification. Modern materials design harnesses complex
Input-output and energy demand models for Ireland: Data collection report. Part 1: EXPLOR
Energy Technology Data Exchange (ETDEWEB)
Henry, E W; Scott, S
1981-01-01
Data are presented in support of EXPLOR, an input-output economic model for Ireland. The data follow the listing of exogenous data-sets used by Batelle in document X11/515/77. Data are given for 1974, 1980, and 1985 and consist of household consumption, final demand-production, and commodity prices. (ACR)
From LCC to LCA Using a Hybrid Input Output Model – A Maritime Case Study
DEFF Research Database (Denmark)
Kjær, Louise Laumann; Pagoropoulos, Aris; Hauschild, Michael Zwicky
2015-01-01
As companies try to embrace life cycle thinking, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) have proven to be powerful tools. In this paper, an Environmental Input-Output model is used for analysis as it enables an LCA using the same economic input data as LCC. This approach helps...
Analyses of gust fronts by means of limited area NWP model outputs
Czech Academy of Sciences Publication Activity Database
Kašpar, Marek
67-68, - (2003), s. 559-572 ISSN 0169-8095 R&D Projects: GA ČR GA205/00/1451 Institutional research plan: CEZ:AV0Z3042911 Keywords : gust front * limited area NWP model * output Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.012, year: 2003
Input-Output model for waste management plan for Nigeria | Njoku ...
African Journals Online (AJOL)
An Input-Output Model for Waste Management Plan has been developed for Nigeria based on Leontief concept and life cycle analysis. Waste was considered as source of pollution, loss of resources, and emission of green house gasses from bio-chemical treatment and decomposition, with negative impact on the ...
The economic impact of multifunctional agriculture in Dutch regions: An input-output model
Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.
2013-01-01
Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture
The economic impact of multifunctional agriculture in The Netherlands: A regional input-output model
Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.
2012-01-01
Multifunctional agriculture is a broad concept lacking a precise and uniform definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model is constructed for multifunctional
a mathematical model for predicting output in an oilfield in the niger
African Journals Online (AJOL)
eobe
resultant model was found to have greater utility in predicting oil field output as it produced less residual. The ... decision making by the oilfield manager is facilitated by reliable ... Scaling laws from percolation theory was used to predict oilfield ...
Input-output model of regional environmental and economic impacts of nuclear power plants
International Nuclear Information System (INIS)
Johnson, M.H.; Bennett, J.T.
1979-01-01
The costs of delayed licensing of nuclear power plants calls for a more-comprehensive method of quantifying the economic and environmental impacts on a region. A traditional input-output (I-O) analysis approach is extended to assess the effects of changes in output, income, employment, pollution, water consumption, and the costs and revenues of local government disaggregated among 23 industry sectors during the construction and operating phases. Unlike earlier studies, this model uses nonlinear environmental interactions and specifies environmental feedbacks to the economic sector. 20 references
International Nuclear Information System (INIS)
Pantic, Lana S.; Pavlović, Tomislav M.; Milosavljević, Dragana D.; Radonjic, Ivana S.; Radovic, Miodrag K.; Sazhko, Galina
2016-01-01
Five different models for calculating solar module temperature, output power and efficiency for sunny days with different solar radiation intensities and ambient temperatures are assessed in this paper. Thereafter, modeled values are compared to the experimentally obtained values for the horizontal solar module in Nis, Serbia. The criterion for determining the best model was based on the statistical analysis and the agreement between the calculated and the experimental values. The calculated values of solar module temperature are in good agreement with the experimentally obtained ones, with some variations over and under the measured values. The best agreement between calculated and experimentally obtained values was for summer months with high solar radiation intensity. The nonlinear model for calculating the output power is much better than the linear model and at the same time predicts better the total electrical energy generated by the solar module during the day. The nonlinear model for calculating the solar module efficiency predicts the efficiency higher than the STC (Standard Test Conditions) value of solar module efficiency for all conditions, while the linear model predicts the solar module efficiency very well. This paper provides a simple and efficient guideline to estimate relevant parameters of a monocrystalline silicon solar module under the moderate-continental climate conditions. - Highlights: • Linear model for solar module temperature gives accurate predictions for August. • The nonlinear model better predicts the solar module power than the linear model. • For calculating solar module power for Nis we propose the nonlinear model. • For calculating solar model efficiency for Nis we propose adoption of linear model. • The adopted models can be used for calculations throughout the year.
Current algebra, statistical mechanics and quantum models
Vilela Mendes, R.
2017-11-01
Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.
Statistical model for OCT image denoising
Li, Muxingzi
2017-08-01
Optical coherence tomography (OCT) is a non-invasive technique with a large array of applications in clinical imaging and biological tissue visualization. However, the presence of speckle noise affects the analysis of OCT images and their diagnostic utility. In this article, we introduce a new OCT denoising algorithm. The proposed method is founded on a numerical optimization framework based on maximum-a-posteriori estimate of the noise-free OCT image. It combines a novel speckle noise model, derived from local statistics of empirical spectral domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge preservation. The proposed approach exhibits satisfying results in terms of speckle noise reduction as well as edge preservation, at reduced computational cost.
Heinrichs, U; Bussmann, N; Engels, R; Kemmerling, G; Weber, S; Ziemons, K
2002-01-01
The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2x2x10 mm sup 3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO sub 4) and exposed to a sup 2 sup 2 Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551+-35% by mechanical polishing the surface compared to 100+-5% for raw crystals. Etching the surface increased the light output to 441+-29%. The untreated crystals had an energy resolution of 24.6+-4.0%. By mechanical polishing the surfac...
ANALYSIS OF THE BANDUNG CHANGES EXCELLENT POTENTIAL THROUGH INPUT-OUTPUT MODEL USING INDEX LE MASNE
Directory of Open Access Journals (Sweden)
Teti Sofia Yanti
2017-03-01
Full Text Available Input-Output Table is arranged to present an overview of the interrelationships and interdependence between units of activity (sector production in the whole economy. Therefore the input-output models are complete and comprehensive analytical tool. The usefulness of input-output tables is an analysis of the economic structure of the national/regional level which covers the structure of production and value-added (GDP of each sector. For the purposes of planning and evaluation of the outcomes of development that is comprehensive both national and smaller scale (district/city, a model for regional development planning approach can use the model input-output analysis. Analysis of Bandung Economic Structure did use Le Masne index, by comparing the coefficients of the technology in 2003 and 2008, of which nearly 50% change. The trade sector has grown very conspicuous than other areas, followed by the services of road transport and air transport services, the development priorities and investment Bandung should be directed to these areas, this is due to these areas can be thrust and be power attraction for the growth of other areas. The areas that experienced the highest decrease was Industrial Chemicals and Goods from Chemistry, followed by Oil and Refinery Industry Textile Industry Except For Garment.
Using Weather Data and Climate Model Output in Economic Analyses of Climate Change
Energy Technology Data Exchange (ETDEWEB)
Auffhammer, M.; Hsiang, S. M.; Schlenker, W.; Sobel, A.
2013-06-28
Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.
Directory of Open Access Journals (Sweden)
Sie Long Kek
2015-01-01
Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.
Energy Technology Data Exchange (ETDEWEB)
Rice, P [Oak Ridge National Lab., TN; Smith, V K
1977-11-01
This paper describes a forty-two nonlinear equation model of the U.S. petroleum industry estimated over the period 1946 to 1973. The model specifies refinery outputs and prices as being simultaneously determined by market forces while the domestic output of crude oil is determined in a block-recursive segment of the model. The simultaneous behavioral equations are estimated with nonlinear two-stage least-squares adjusted to reflect the implications of autocorrelation for those equations where it appears to be a problem. A multi-period sample simulation, together with forecasts for 1974 and 1975 are used to evaluate the model's performance. Finally, it is used to forecast to 1985 under two scenarios and compared with the Federal Energy Administration's forecast for the same period. 2 figures, 8 tables, 38 references.
New advances in statistical modeling and applications
Santos, Rui; Oliveira, Maria; Paulino, Carlos
2014-01-01
This volume presents selected papers from the XIXth Congress of the Portuguese Statistical Society, held in the town of Nazaré, Portugal, from September 28 to October 1, 2011. All contributions were selected after a thorough peer-review process. It covers a broad range of papers in the areas of statistical science, probability and stochastic processes, extremes and statistical applications.
A statistical model for predicting muscle performance
Byerly, Diane Leslie De Caix
The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing
CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK
Directory of Open Access Journals (Sweden)
Baranov A. O.
2017-03-01
Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.
Statistical Model Checking of Rich Models and Properties
DEFF Research Database (Denmark)
Poulsen, Danny Bøgsted
in undecidability issues for the traditional model checking approaches. Statistical model checking has proven itself a valuable supplement to model checking and this thesis is concerned with extending this software validation technique to stochastic hybrid systems. The thesis consists of two parts: the first part...... motivates why existing model checking technology should be supplemented by new techniques. It also contains a brief introduction to probability theory and concepts covered by the six papers making up the second part. The first two papers are concerned with developing online monitoring techniques...... systems. The fifth paper shows how stochastic hybrid automata are useful for modelling biological systems and the final paper is concerned with showing how statistical model checking is efficiently distributed. In parallel with developing the theory contained in the papers, a substantial part of this work...
DEFF Research Database (Denmark)
Rasmussen, Bjarne D.; Jakobsen, Arne
1999-01-01
Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....
Fluctuations of offshore wind generation: Statistical modelling
DEFF Research Database (Denmark)
Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik
2007-01-01
The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...
Linear and quadratic models of point process systems: contributions of patterned input to output.
Lindsay, K A; Rosenberg, J R
2012-08-01
In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.
Application of a Linear Input/Output Model to Tankless Water Heaters
Energy Technology Data Exchange (ETDEWEB)
Butcher T.; Schoenbauer, B.
2011-12-31
In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.
Towards systematic evaluation of crop model outputs for global land-use models
Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr
2016-04-01
Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include
Network Data: Statistical Theory and New Models
2016-02-17
and with environmental scientists at JPL and Emory University to retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution ...Beijing, May, 2013 Beijing Statistics Forum, Beijing, May, 2013 Statistics Seminar, CREST-ENSAE, Paris , March, 2013 Statistics Seminar, University...to retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution monitoring and management. Satellite- retrieved Aerosol Optical
Mathematical model of statistical identification of information support of road transport
Directory of Open Access Journals (Sweden)
V. G. Kozlov
2016-01-01
Full Text Available In this paper based on the statistical identification method using the theory of self-organizing systems, built multifactor model the relationship of road transport and training system. Background information for the model represented by a number of parameters of average annual road transport operations and information provision, including training complex system parameters (inputs, road management and output parameters. Ask two criteria: stability criterion model and test correlation. The program determines their minimum, and is the only model of optimal complexity. The predetermined number of parameters established mathematical relationship of each output parameter with the others. To improve the accuracy and regularity of the forecast of the interpolation nodes allocated in the test data sequence. Other data form the training sequence. Decision model based on the principle of selection. Running it with the gradual complication of the mathematical description and exhaustive search of all possible variants of the models on the specified criteria. Advantages of the proposed model: adequately reflects the actual process, allows you to enter any additional input parameters and determine their impact on the individual output parameters of the road transport, allows in turn change the values of key parameters in a certain ratio and to determine the appropriate changes the output parameters of the road transport, allows to predict the output parameters road transport operations.
Quantum statistical model for hot dense matter
International Nuclear Information System (INIS)
Rukhsana Kouser; Tasneem, G.; Saleem Shahzad, M.; Shafiq-ur-Rehman; Nasim, M.H.; Amjad Ali
2015-01-01
In solving numerous applied problems, one needs to know the equation of state, photon absorption coefficient and opacity of substances employed. We present a code for absorption coefficient and opacity calculation based on quantum statistical model. A self-consistent method for the calculation of potential is used. By solving Schrödinger equation with self-consistent potential we find energy spectrum of quantum mechanical system and corresponding wave functions. In addition we find mean occupation numbers of electron states and average charge state of the substance studied. The main processes of interaction of radiation with matter included in our opacity calculation are photon absorption in spectral lines (Bound-bound), photoionization (Bound-free), inverse bremsstrahlung (Free-free), Compton and Thomson scattering. Bound-bound line shape function has contribution from natural, Doppler, fine structure, collisional and stark broadening. To illustrate the main features of the code and its capabilities, calculation of average charge state, absorption coefficient, Rosseland and Planck mean and group opacities of aluminum and iron are presented. Results are satisfactorily compared with the published data. (authors)
Saugel, Bernd; Grothe, Oliver; Wagner, Julia Y
2015-08-01
When comparing 2 technologies for measuring hemodynamic parameters with regard to their ability to track changes, 2 graphical tools are omnipresent in the literature: the 4-quadrant plot and the polar plot recently proposed by Critchley et al. The polar plot is thought to be the more advanced statistical tool, but care should be taken when it comes to its interpretation. The polar plot excludes possibly important measurements from the data. The polar plot transforms the data nonlinearily, which may prevent it from being seen clearly. In this article, we compare the 4-quadrant and the polar plot in detail and thoroughly describe advantages and limitations of each. We also discuss pitfalls concerning the methods to prepare the researcher for the sound use of both methods. Finally, we briefly revisit the Bland-Altman plot for the use in this context.
Directory of Open Access Journals (Sweden)
Mariana Santos Matos Cavalca
2012-01-01
Full Text Available One of the main advantages of predictive control approaches is the capability of dealing explicitly with constraints on the manipulated and output variables. However, if the predictive control formulation does not consider model uncertainties, then the constraint satisfaction may be compromised. A solution for this inconvenience is to use robust model predictive control (RMPC strategies based on linear matrix inequalities (LMIs. However, LMI-based RMPC formulations typically consider only symmetric constraints. This paper proposes a method based on pseudoreferences to treat asymmetric output constraints in integrating SISO systems. Such technique guarantees robust constraint satisfaction and convergence of the state to the desired equilibrium point. A case study using numerical simulation indicates that satisfactory results can be achieved.
Measurement needs guided by synthetic radar scans in high-resolution model output
Varble, A.; Nesbitt, S. W.; Borque, P.
2017-12-01
Microphysical and dynamical process interactions within deep convective clouds are not well understood, partly because measurement strategies often focus on statistics of cloud state rather than cloud processes. While processes cannot be directly measured, they can be inferred with sufficiently frequent and detailed scanning radar measurements focused on the life cycleof individual cloud regions. This is a primary goal of the 2018-19 DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) and NSF Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaigns in central Argentina, where orographic deep convective initiation is frequent with some high-impact systems growing into the tallest and largest in the world. An array of fixed and mobile scanning multi-wavelength dual-polarization radars will be coupled with surface observations, sounding systems, multi-wavelength vertical profilers, and aircraft in situ measurements to characterize convective cloud life cycles and their relationship with environmental conditions. While detailed cloud processes are an observational target, the radar scan patterns that are most ideal for observing them are unclear. They depend on the locations and scales of key microphysical and dynamical processes operating within the cloud. High-resolution simulations of clouds, while imperfect, can provide information on these locations and scales that guide radar measurement needs. Radar locations are set in the model domain based on planned experiment locations, and simulatedorographic deep convective initiation and upscale growth are sampled using a number of different scans involving RHIs or PPIs with predefined elevation and azimuthal angles that approximately conform with radar range and beam width specifications. Each full scan pattern is applied to output atsingle model time steps with time step intervals that depend on the length of time
Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*
Castruccio, Stefano
2014-03-01
The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.
The Canadian Defence Input-Output Model DIO Version 4.41
2011-09-01
Request to develop DND tailored Input/Output Model. Electronic communication from AllenWeldon to Team Leader, Defence Economics Team onMarch 12, 2011...and similar contain- ers 166 1440 Handbags, wallets and similar personal articles such as eyeglass and cigar cases and coin purses 167 1450 Cotton yarn...408 3600 Radar and radio navigation equipment 409 3619 Semi-conductors 410 3621 Printed circuits 411 3622 Integrated circuits 412 3623 Other electronic
A Synergistic Approach for Evaluating Climate Model Output for Ecological Applications
Directory of Open Access Journals (Sweden)
Rachel D. Cavanagh
2017-09-01
Full Text Available Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer, there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output.
Grouping influences output interference in short-term memory: a mixture modeling study
Directory of Open Access Journals (Sweden)
Min-Suk eKang
2016-05-01
Full Text Available Output interference is a source of forgetting induced by recalling. We investigated how grouping influences output interference in short-term memory. In Experiment 1, the participants were asked to remember four colored items. Those items were grouped by temporal coincidence as well as spatial alignment: two items were presented in the first memory array and two were presented in the second, and the items in both arrays were either vertically or horizontally aligned as well. The participants then performed two recall tasks in sequence by selecting a color presented at a cued location from a color wheel. In the same-group condition, the participants reported both items from the same memory array; however, in the different-group condition, the participants reported one item from each memory array. We analyzed participant responses with a mixture model, which yielded two measures: guess rate and precision of recalled memories. The guess rate in the second recall was higher for the different-group condition than for the same-group condition; however, the memory precisions obtained for both conditions were similarly degraded in the second recall. In Experiment 2, we varied the probability of the same- and different-group conditions with a ratio of 3 to 7. We expected output interference to be higher in the same-group condition than in the different-group condition. This is because items of the other group are more likely to be probed in the second recall phase and, thus, protecting those items during the first recall phase leads to a better performance. Nevertheless, the same pattern of results was robustly reproduced, suggesting grouping shields the grouped items from output interference because of the secured accessibility. We discussed how grouping influences output interference.
An Optimized Grey Dynamic Model for Forecasting the Output of High-Tech Industry in China
Directory of Open Access Journals (Sweden)
Zheng-Xin Wang
2014-01-01
Full Text Available The grey dynamic model by convolution integral with the first-order derivative of the 1-AGO data and n series related, abbreviated as GDMC(1,n, performs well in modelling and forecasting of a grey system. To improve the modelling accuracy of GDMC(1,n, n interpolation coefficients (taken as unknown parameters are introduced into the background values of the n variables. The parameters optimization is formulated as a combinatorial optimization problem and is solved collectively using the particle swarm optimization algorithm. The optimized result has been verified by a case study of the economic output of high-tech industry in China. Comparisons of the obtained modelling results from the optimized GDMC(1,n model with the traditional one demonstrate that the optimal algorithm is a good alternative for parameters optimization of the GDMC(1,n model. The modelling results can assist the government in developing future policies regarding high-tech industry management.
A BRDF statistical model applying to space target materials modeling
Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen
2017-10-01
In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.
Statistical Challenges in Modeling Big Brain Signals
Yu, Zhaoxia
2017-11-01
Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible solutions, and highlight future research directions.
Statistical Challenges in Modeling Big Brain Signals
Yu, Zhaoxia; Pluta, Dustin; Shen, Tong; Chen, Chuansheng; Xue, Gui; Ombao, Hernando
2017-01-01
Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible
Directory of Open Access Journals (Sweden)
Keller Alevtina
2017-01-01
Full Text Available The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the adequacy of such an algorithm itself allows: evaluating the appropriateness of investments in fixed assets, studying the final financial results of an industrial enterprise, depending on management decisions in the depreciation policy. It is necessary to note that the model in question for the enterprise is always degenerate. It is caused by the presence of zero rows in the matrix of capital expenditures by lines of structural elements unable to generate fixed assets (part of the service units, households, corporate consumers. The paper presents the algorithm for the allocation of depreciation costs for the model. This algorithm was developed by the authors and served as the basis for further development of the flowchart for subsequent implementation with use of software. The construction of such algorithm and its use for dynamic input-output models of industrial enterprises is actualized by international acceptance of the effectiveness of the use of input-output models for national and regional economic systems. This is what allows us to consider that the solutions discussed in the article are of interest to economists of various industrial enterprises.
Statistical Learning Theory: Models, Concepts, and Results
von Luxburg, Ulrike; Schoelkopf, Bernhard
2008-01-01
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.
Online Statistical Modeling (Regression Analysis) for Independent Responses
Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus
2017-06-01
Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.
Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling
Directory of Open Access Journals (Sweden)
Marek Antosiewicz
2016-04-01
Full Text Available Environmental taxes constitute a crucial instrument aimed at reducing resource use through lower production losses, resource-leaner products, and more resource-efficient production processes. In this paper we focus on material use and apply a multi-sector dynamic stochastic general equilibrium (DSGE model to study two types of taxation: tax on material inputs used by industry, energy, construction, and transport sectors, and tax on output of these sectors. We allow for endogenous adoption of resource-saving technologies. We calibrate the model for the EU27 area using an IO matrix. We consider taxation introduced from 2021 and simulate its impact until 2050. We compare the taxes along their ability to induce reduction in material use and raise revenue. We also consider the effect of spending this revenue on reduction of labour taxation. We find that input and output taxation create contrasting incentives and have opposite effects on resource efficiency. The material input tax induces investment in efficiency-improving technology which, in the long term, results in GDP and employment by 15%–20% higher than in the case of a comparable output tax. We also find that using revenues to reduce taxes on labour has stronger beneficial effects for the input tax.
Modelling health and output at business cycle horizons for the USA.
Narayan, Paresh Kumar
2010-07-01
In this paper we employ a theoretical framework - a simple macro model augmented with health - that draws guidance from the Keynesian view of business cycles to examine the relative importance of permanent and transitory shocks in explaining variations in health expenditure and output at business cycle horizons for the USA. The variance decomposition analysis of shocks reveals that at business cycle horizons permanent shocks explain the bulk of the variations in output, while transitory shocks explain the bulk of the variations in health expenditures. We undertake a shock decomposition analysis for private health expenditures versus public health expenditures and interestingly find that while transitory shocks are more important for private sector expenditures, permanent shocks dominate public health expenditures. Copyright (c) 2009 John Wiley & Sons, Ltd.
Usefulness of non-linear input-output models for economic impact analyses in tourism and recreation
Klijs, J.; Peerlings, J.H.M.; Heijman, W.J.M.
2015-01-01
In tourism and recreation management it is still common practice to apply traditional input–output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input–output (NLIO) model, in which price-induced input
International Nuclear Information System (INIS)
Kirste, D.
2008-01-01
A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.
DEFF Research Database (Denmark)
Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai
2006-01-01
A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...
Integer Set Compression and Statistical Modeling
DEFF Research Database (Denmark)
Larsson, N. Jesper
2014-01-01
enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...
Prediction model and treatment of high-output ileostomy in colorectal cancer surgery.
Fujino, Shiki; Miyoshi, Norikatsu; Ohue, Masayuki; Takahashi, Yuske; Yasui, Masayoshi; Sugimura, Keijiro; Akita, Hirohumi; Takahashi, Hidenori; Kobayashi, Shogo; Yano, Masahiko; Sakon, Masato
2017-09-01
The aim of the present study was to examine the risk factors of high-output ileostomy (HOI), which is associated with electrolyte abnormalities and/or stoma complications, and to create a prediction model. The medical records of 68 patients who underwent colorectal cancer surgery with ileostomy between 2011 and 2016 were retrospectively investigated. All the patients underwent surgical resection for colorectal cancer at the Osaka Medical Center for Cancer and Cardiovascular Diseases (Osaka, Japan). A total of 7 patients with inadequate data on ileostomy output were excluded. Using a group of 50 patients who underwent surgery between 2011 and 2013, the risk of HOI was classified by a decision tree model using a partition platform. The HOI prediction model was validated in an additional group of 11 patients who underwent surgery between 2014 and 2016. Univariate analysis of clinical factors demonstrated that young age (P=0.003) and high white blood cell (WBC) count (Pmodel, three factors (gender, age and WBC on postoperative day 1) were generated for the prediction of HOI. The patients were classified into five groups, and HOI was observed in 0-88% of patients in each group. The area under the curve (AUC) was 0.838. The model was validated by an external dataset in an independent patient group, for which the AUC was 0.792. In conclusion, HOI patients were classified and an HOI prediction model was developed that may help clinicians in postoperative care.
Transport coefficient computation based on input/output reduced order models
Hurst, Joshua L.
The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator
Statistical modelling for social researchers principles and practice
Tarling, Roger
2008-01-01
This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-l...
Linear Mixed Models in Statistical Genetics
R. de Vlaming (Ronald)
2017-01-01
markdownabstractOne of the goals of statistical genetics is to elucidate the genetic architecture of phenotypes (i.e., observable individual characteristics) that are affected by many genetic variants (e.g., single-nucleotide polymorphisms; SNPs). A particular aim is to identify specific SNPs that
Sullivan, Sharon G.; Barr, Catherine; Grabois, Andrew
2002-01-01
Includes six articles that report on prices of U.S. and foreign published materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and review media statistics. (LRW)
Sullivan, Sharon G.; Grabois, Andrew; Greco, Albert N.
2003-01-01
Includes six reports related to book trade statistics, including prices of U.S. and foreign materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and numbers of books and other media reviewed by major reviewing publications. (LRW)
Two-dimensional modeling of x-ray output from switched foil implosions on Procyon
Bowers, R. L.; Nakafuji, G.; Greene, A. E.; McLenithan, K. D.; Peterson, D. L.; Roderick, N. F.
1996-09-01
A series of two-dimensional radiation magnetohydrodynamic calculations are presented of a Z-pinch implosion using a plasma flow switch. Results from a recent experiment using the high explosive driven generator Procyon, which delivered 16.5 MA to a plasma flow switch and switched about 15 MA into a static load, are used to study the implosion of a 29 mg load foil [J. H. Goforth et al., ``Review of the Procyon Explosive Pulsed Power System,'' in Ninth IEEE Pulsed Power Conference, June 1993, Albuquerque, edited by K. R. Prestwich and W. L. Baker (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1993), p. 36]. The interaction of the switch with the load plasma and the effects of background plasma on the total radiation output is examined. Models which assume ideal switching are also included. Also included are the effects of perturbations in the load plasma which may be associated with initial vaporization of the load foil. If the background plasma density in the switch region and in the load region does not affect the dynamics, the pinch is predicted to produce a total radiation output of about 4 MJ. Including perturbations of the load plasma associated with switching and assuming a background plasma density after switching in excess of 10-7 g/cm3 results in a total output from the pinch of about 0.6 MJ.
Monetary Policy and Industrial Output in the BRICS Countries: A Markov-Switching Model
Directory of Open Access Journals (Sweden)
Kutu Adebayo Augustine
2017-12-01
Full Text Available This paper examines whether the five BRICS countries share similar business cycles and determines the probability of any of the countries moving from a contractionary regime to an expansionary regime. The study further examines the extent to which changes in monetary policy affect industrial output in expansions relative to contractions. Employing the Peersman and Smets (2001 Markov-Switching Model (MSM and monthly data from 1994.01–2013.12, the study reveals that the five BRICS countries have similar business cycles. The results further demonstrate that the BRICS countries’ business cycles are characterized by two distinct growth rate phases: a contractionary regime and an expansionary regime. It can also be observed that the area-wide monetary policy has significantly large effects on industrial output in recessions as well as in booms. It has also been established that there is a high probability of moving from state one (recession to state two (expansion and that on average, the probabilities of staying in state 2 (expansion are high for each of the five countries. It is, therefore, recommended that the BRICS countries should sustain uniform policy consistency (monetary policy, especially as they formulate and implement economic policies to stimulate industrial output.
Statistical models and methods for reliability and survival analysis
Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo
2013-01-01
Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
Detection of no-model input-output pairs in closed-loop systems.
Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio
2017-11-01
The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Geometric modeling in probability and statistics
Calin, Ovidiu
2014-01-01
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...
Challenges in dental statistics: data and modelling
Matranga, D.; Castiglia, P.; Solinas, G.
2013-01-01
The aim of this work is to present the reflections and proposals derived from the first Workshop of the SISMEC STATDENT working group on statistical methods and applications in dentistry, held in Ancona (Italy) on 28th September 2011. STATDENT began as a forum of comparison and discussion for statisticians working in the field of dental research in order to suggest new and improve existing biostatistical and clinical epidemiological methods. During the meeting, we dealt with very important to...
A statistical model of future human actions
International Nuclear Information System (INIS)
Woo, G.
1992-02-01
A critical review has been carried out of models of future human actions during the long term post-closure period of a radioactive waste repository. Various Markov models have been considered as alternatives to the standard Poisson model, and the problems of parameterisation have been addressed. Where the simplistic Poisson model unduly exaggerates the intrusion risk, some form of Markov model may have to be introduced. This situation may well arise for shallow repositories, but it is less likely for deep repositories. Recommendations are made for a practical implementation of a computer based model and its associated database. (Author)
Toward a more robust variance-based global sensitivity analysis of model outputs
Energy Technology Data Exchange (ETDEWEB)
Tong, C
2007-10-15
Global sensitivity analysis (GSA) measures the variation of a model output as a function of the variations of the model inputs given their ranges. In this paper we consider variance-based GSA methods that do not rely on certain assumptions about the model structure such as linearity or monotonicity. These variance-based methods decompose the output variance into terms of increasing dimensionality called 'sensitivity indices', first introduced by Sobol' [25]. Sobol' developed a method of estimating these sensitivity indices using Monte Carlo simulations. McKay [13] proposed an efficient method using replicated Latin hypercube sampling to compute the 'correlation ratios' or 'main effects', which have been shown to be equivalent to Sobol's first-order sensitivity indices. Practical issues with using these variance estimators are how to choose adequate sample sizes and how to assess the accuracy of the results. This paper proposes a modified McKay main effect method featuring an adaptive procedure for accuracy assessment and improvement. We also extend our adaptive technique to the computation of second-order sensitivity indices. Details of the proposed adaptive procedure as wells as numerical results are included in this paper.
Statistical models of shape optimisation and evaluation
Davies, Rhodri; Taylor, Chris
2014-01-01
Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.
Decision- rather than scenario-centred downscaling: Towards smarter use of climate model outputs
Wilby, Robert L.
2013-04-01
Climate model output has been used for hydrological impact assessments for at least 25 years. Scenario-led methods raise awareness about risks posed by climate variability and change to the security of supplies, performance of water infrastructure, and health of freshwater ecosystems. However, it is less clear how these analyses translate into actionable information for adaptation. One reason is that scenario-led methods typically yield very large uncertainty bounds in projected impacts at regional and river catchment scales. Consequently, there is growing interest in vulnerability-based frameworks and strategies for employing climate model output in decision-making contexts. This talk begins by summarising contrasting perspectives on climate models and principles for testing their utility for water sector applications. Using selected examples it is then shown how water resource systems may be adapted with varying levels of reliance on climate model information. These approaches include the conventional scenario-led risk assessment, scenario-neutral strategies, safety margins and sensitivity testing, and adaptive management of water systems. The strengths and weaknesses of each approach are outlined and linked to selected water management activities. These cases show that much progress can be made in managing water systems without dependence on climate models. Low-regret measures such as improved forecasting, better inter-agency co-operation, and contingency planning, yield benefits regardless of the climate outlook. Nonetheless, climate model scenarios are useful for evaluating adaptation portfolios, identifying system thresholds and fixing weak links, exploring the timing of investments, improving operating rules, or developing smarter licensing regimes. The most problematic application remains the climate change safety margin because of the very low confidence in extreme precipitation and river flows generated by climate models. In such cases, it is necessary to
Borsboom, D.; Haig, B.D.
2013-01-01
Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science
Statistical Tests for Mixed Linear Models
Khuri, André I; Sinha, Bimal K
2011-01-01
An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a
Statistical modelling of traffic safety development
DEFF Research Database (Denmark)
Christens, Peter
2004-01-01
there were 6861 injury trafficc accidents reported by the police, resulting in 4519 minor injuries, 3946 serious injuries, and 431 fatalities. The general purpose of the research was to improve the insight into aggregated road safety methodology in Denmark. The aim was to analyse advanced statistical methods......, that were designed to study developments over time, including effects of interventions. This aim has been achieved by investigating variations in aggregated Danish traffic accident series and by applying state of the art methodologies to specific case studies. The thesis comprises an introduction...
A statistical mechanical model for equilibrium ionization
International Nuclear Information System (INIS)
Macris, N.; Martin, P.A.; Pule, J.
1990-01-01
A quantum electron interacts with a classical gas of hard spheres and is in thermal equilibrium with it. The interaction is attractive and the electron can form a bound state with the classical particles. It is rigorously shown that in a well defined low density and low temperature limit, the ionization probability for the electron tends to the value predicted by the Saha formula for thermal ionization. In this regime, the electron is found to be in a statistical mixture of a bound and a free state. (orig.)
Statistical image processing and multidimensional modeling
Fieguth, Paul
2010-01-01
Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something - an artery, a road, a DNA marker, an oil spill - from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
Fluctuations and correlations in statistical models of hadron production
International Nuclear Information System (INIS)
Gorenstein, M. I.
2012-01-01
An extension of the standard concept of the statistical ensembles is suggested. Namely, the statistical ensembles with extensive quantities fluctuating according to an externally given distribution are introduced. Applications in the statistical models of multiple hadron production in high energy physics are discussed.
Analysis and Evaluation of Statistical Models for Integrated Circuits Design
Directory of Open Access Journals (Sweden)
Sáenz-Noval J.J.
2011-10-01
Full Text Available Statistical models for integrated circuits (IC allow us to estimate the percentage of acceptable devices in the batch before fabrication. Actually, Pelgrom is the statistical model most accepted in the industry; however it was derived from a micrometer technology, which does not guarantee reliability in nanometric manufacturing processes. This work considers three of the most relevant statistical models in the industry and evaluates their limitations and advantages in analog design, so that the designer has a better criterion to make a choice. Moreover, it shows how several statistical models can be used for each one of the stages and design purposes.
Modeling of uncertainties in statistical inverse problems
International Nuclear Information System (INIS)
Kaipio, Jari
2008-01-01
In all real world problems, the models that tie the measurements to the unknowns of interest, are at best only approximations for reality. While moderate modeling and approximation errors can be tolerated with stable problems, inverse problems are a notorious exception. Typical modeling errors include inaccurate geometry, unknown boundary and initial data, properties of noise and other disturbances, and simply the numerical approximations of the physical models. In principle, the Bayesian approach to inverse problems, in which all uncertainties are modeled as random variables, is capable of handling these uncertainties. Depending on the type of uncertainties, however, different strategies may be adopted. In this paper we give an overview of typical modeling errors and related strategies within the Bayesian framework.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Statistical modeling and extrapolation of carcinogenesis data
International Nuclear Information System (INIS)
Krewski, D.; Murdoch, D.; Dewanji, A.
1986-01-01
Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis
Plan Recognition using Statistical Relational Models
2014-08-25
corresponding undirected model can be significantly more complex since there is no closed form solution for the maximum-likelihood set of parameters unlike in...algorithm did not scale to larger training sets, and the overall results are still not competitive with BALPs. 5In directed models, a closed form solution...opinions of ARO, DARPA, NSF or any other government agency. References Albrecht DW, Zukerman I, Nicholson AE. Bayesian models for keyhole plan
Multivariate statistical modelling based on generalized linear models
Fahrmeir, Ludwig
1994-01-01
This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...
A Water-Withdrawal Input-Output Model of the Indian Economy.
Bogra, Shelly; Bakshi, Bhavik R; Mathur, Ritu
2016-02-02
Managing freshwater allocation for a highly populated and growing economy like India can benefit from knowledge about the effect of economic activities. This study transforms the 2003-2004 economic input-output (IO) table of India into a water withdrawal input-output model to quantify direct and indirect flows. This unique model is based on a comprehensive database compiled from diverse public sources, and estimates direct and indirect water withdrawal of all economic sectors. It distinguishes between green (rainfall), blue (surface and ground), and scarce groundwater. Results indicate that the total direct water withdrawal is nearly 3052 billion cubic meter (BCM) and 96% of this is used in agriculture sectors with the contribution of direct green water being about 1145 BCM, excluding forestry. Apart from 727 BCM direct blue water withdrawal for agricultural, other significant users include "Electricity" with 64 BCM, "Water supply" with 44 BCM and other industrial sectors with nearly 14 BCM. "Construction", "miscellaneous food products"; "Hotels and restaurants"; "Paper, paper products, and newsprint" are other significant indirect withdrawers. The net virtual water import is found to be insignificant compared to direct water used in agriculture nationally, while scarce ground water associated with crops is largely contributed by northern states.
International trade inoperability input-output model (IT-IIM): theory and application.
Jung, Jeesang; Santos, Joost R; Haimes, Yacov Y
2009-01-01
The inoperability input-output model (IIM) has been used for analyzing disruptions due to man-made or natural disasters that can adversely affect the operation of economic systems or critical infrastructures. Taking economic perturbation for each sector as inputs, the IIM provides the degree of economic production impacts on all industry sectors as the outputs for the model. The current version of the IIM does not provide a separate analysis for the international trade component of the inoperability. If an important port of entry (e.g., Port of Los Angeles) is disrupted, then international trade inoperability becomes a highly relevant subject for analysis. To complement the current IIM, this article develops the International Trade-IIM (IT-IIM). The IT-IIM investigates the resulting international trade inoperability for all industry sectors resulting from disruptions to a major port of entry. Similar to traditional IIM analysis, the inoperability metrics that the IT-IIM provides can be used to prioritize economic sectors based on the losses they could potentially incur. The IT-IIM is used to analyze two types of direct perturbations: (1) the reduced capacity of ports of entry, including harbors and airports (e.g., a shutdown of any port of entry); and (2) restrictions on commercial goods that foreign countries trade with the base nation (e.g., embargo).
Multiregional input-output model for the evaluation of Spanish water flows.
Cazcarro, Ignacio; Duarte, Rosa; Sánchez Chóliz, Julio
2013-01-01
We construct a multiregional input-output model for Spain, in order to evaluate the pressures on the water resources, virtual water flows, and water footprints of the regions, and the water impact of trade relationships within Spain and abroad. The study is framed with those interregional input-output models constructed to study water flows and impacts of regions in China, Australia, Mexico, or the UK. To build our database, we reconcile regional IO tables, national and regional accountancy of Spain, trade and water data. Results show an important imbalance between origin of water resources and final destination, with significant water pressures in the South, Mediterranean, and some central regions. The most populated and dynamic regions of Madrid and Barcelona are important drivers of water consumption in Spain. Main virtual water exporters are the South and Central agrarian regions: Andalusia, Castile-La Mancha, Castile-Leon, Aragon, and Extremadura, while the main virtual water importers are the industrialized regions of Madrid, Basque country, and the Mediterranean coast. The paper shows the different location of direct and indirect consumers of water in Spain and how the economic trade and consumption pattern of certain areas has significant impacts on the availability of water resources in other different and often drier regions.
Statistical Modelling of Extreme Rainfall in Taiwan
L-F. Chu (Lan-Fen); M.J. McAleer (Michael); C-C. Chang (Ching-Chung)
2012-01-01
textabstractIn this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model.
Statistical Modelling of Extreme Rainfall in Taiwan
L. Chu (LanFen); M.J. McAleer (Michael); C-H. Chang (Chu-Hsiang)
2013-01-01
textabstractIn this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model.
On the Logical Development of Statistical Models.
1983-12-01
1978). "Modelos con parametros variables en el analisis de series temporales " Questiio, 4, 2, 75-87. [25] Seal, H. L. (1967). "The historical...example, a classical state-space representation of a simple time series model is: yt = it + ut Ut = *It-I + Ct (2.2) ut and et are independent normal...on its past values is displayed in the structural equation. This approach has been particularly useful in time series models. For example, model (2.2
A Noise Robust Statistical Texture Model
DEFF Research Database (Denmark)
Hilger, Klaus Baggesen; Stegmann, Mikkel Bille; Larsen, Rasmus
2002-01-01
Appearance Models segmentation framework. This is accomplished by augmenting the model with an estimate of the covariance of the noise present in the training data. This results in a more compact model maximising the signal-to-noise ratio, thus favouring subspaces rich on signal, but low on noise......This paper presents a novel approach to the problem of obtaining a low dimensional representation of texture (pixel intensity) variation present in a training set after alignment using a Generalised Procrustes analysis.We extend the conventional analysis of training textures in the Active...
Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael
2017-10-01
We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected
Wavelet transform-vector quantization compression of supercomputer ocean model simulation output
Energy Technology Data Exchange (ETDEWEB)
Bradley, J N; Brislawn, C M
1992-11-12
We describe a new procedure for efficient compression of digital information for storage and transmission purposes. The algorithm involves a discrete wavelet transform subband decomposition of the data set, followed by vector quantization of the wavelet transform coefficients using application-specific vector quantizers. The new vector quantizer design procedure optimizes the assignment of both memory resources and vector dimensions to the transform subbands by minimizing an exponential rate-distortion functional subject to constraints on both overall bit-rate and encoder complexity. The wavelet-vector quantization method, which originates in digital image compression. is applicable to the compression of other multidimensional data sets possessing some degree of smoothness. In this paper we discuss the use of this technique for compressing the output of supercomputer simulations of global climate models. The data presented here comes from Semtner-Chervin global ocean models run at the National Center for Atmospheric Research and at the Los Alamos Advanced Computing Laboratory.
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
12th Workshop on Stochastic Models, Statistics and Their Applications
Rafajłowicz, Ewaryst; Szajowski, Krzysztof
2015-01-01
This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.
Materials Informatics: Statistical Modeling in Material Science.
Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch
2016-12-01
Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Introduction to statistical modelling: linear regression.
Lunt, Mark
2015-07-01
In many studies we wish to assess how a range of variables are associated with a particular outcome and also determine the strength of such relationships so that we can begin to understand how these factors relate to each other at a population level. Ultimately, we may also be interested in predicting the outcome from a series of predictive factors available at, say, a routine clinic visit. In a recent article in Rheumatology, Desai et al. did precisely that when they studied the prediction of hip and spine BMD from hand BMD and various demographic, lifestyle, disease and therapy variables in patients with RA. This article aims to introduce the statistical methodology that can be used in such a situation and explain the meaning of some of the terms employed. It will also outline some common pitfalls encountered when performing such analyses. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D
2015-09-01
Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.
Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.
2017-01-01
Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable
Latent domain models for statistical machine translation
Hoàng, C.
2017-01-01
A data-driven approach to model translation suffers from the data mismatch problem and demands domain adaptation techniques. Given parallel training data originating from a specific domain, training an MT system on the data would result in a rather suboptimal translation for other domains. But does
Behavioral and statistical models of educational inequality
DEFF Research Database (Denmark)
Holm, Anders; Breen, Richard
2016-01-01
This paper addresses the question of how students and their families make educational decisions. We describe three types of behavioral model that might underlie decision-making and we show that they have consequences for what decisions are made. Our study thus has policy implications if we wish...
Statistical modelling of fine red wine production
Directory of Open Access Journals (Sweden)
María Rosa Castro
2010-01-01
Full Text Available Producing wine is a very important economic activity in the province of San Juan in Argentina; it is therefore most important to predict production regarding the quantity of raw material needed. This work was aimed at obtaining a model relating kilograms of crushed grape to the litres of wine so produced. Such model will be used for predicting precise future values and confidence intervals for determined quantities of crushed grapes. Data from a vineyard in the province of San Juan was thus used in this work. The sampling coefficient of correlation was calculated and a dispersion diagram was then constructed; this indicated a li- neal relationship between the litres of wine obtained and the kilograms of crushed grape. Two lineal models were then adopted and variance analysis was carried out because the data came from normal populations having the same variance. The most appropriate model was obtained from this analysis; it was validated with experimental values, a good approach being obtained.
Statistical models of global Langmuir mixing
Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean
2017-05-01
The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.
Sampling, Probability Models and Statistical Reasoning -RE ...
Indian Academy of Sciences (India)
random sampling allows data to be modelled with the help of probability ... g based on different trials to get an estimate of the experimental error. ... research interests lie in the .... if e is indeed the true value of the proportion of defectives in the.
Statistical Model Checking for Product Lines
DEFF Research Database (Denmark)
ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto
2016-01-01
average cost of products (in terms of the attributes of the products’ features) and the probability of features to be (un)installed at runtime. The product lines must be modelled in QFLan, which extends the probabilistic feature-oriented language PFLan with novel quantitative constraints among features...
A Statistical Model for Energy Intensity
Directory of Open Access Journals (Sweden)
Marjaneh Issapour
2012-12-01
Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.
Structured Statistical Models of Inductive Reasoning
Kemp, Charles; Tenenbaum, Joshua B.
2009-01-01
Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet…
National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC OA team will model the effects of ocean acidification on regional marine species and ecosystems using food web models, life-cycle models, and bioenvelope...
Statistical Analysis and Modelling of Olkiluoto Structures
International Nuclear Information System (INIS)
Hellae, P.; Vaittinen, T.; Saksa, P.; Nummela, J.
2004-11-01
Posiva Oy is carrying out investigations for the disposal of the spent nuclear fuel at the Olkiluoto site in SW Finland. The investigations have focused on the central part of the island. The layout design of the entire repository requires characterization of notably larger areas and must rely at least at the current stage on borehole information from a rather sparse network and on the geophysical soundings providing information outside and between the holes. In this work, the structural data according to the current version of the Olkiluoto bedrock model is analyzed. The bedrock model relies much on the borehole data although results of the seismic surveys and, for example, pumping tests are used in determining the orientation and continuation of the structures. Especially in the analysis, questions related to the frequency of structures and size of the structures are discussed. The structures observed in the boreholes are mainly dipping gently to the southeast. About 9 % of the sample length belongs to structures. The proportion is higher in the upper parts of the rock. The number of fracture and crushed zones seems not to depend greatly on the depth, whereas the hydraulic features concentrate on the depth range above -100 m. Below level -300 m, the hydraulic conductivity occurs in connection of fractured zones. Especially the hydraulic features, but also fracture and crushed zones often occur in groups. The frequency of the structure (area of structures per total volume) is estimated to be of the order of 1/100m. The size of the local structures was estimated by calculating the intersection of the zone to the nearest borehole where the zone has not been detected. Stochastic models using the Fracman software by Golder Associates were generated based on the bedrock model data complemented with the magnetic ground survey data. The seismic surveys (from boreholes KR5, KR13, KR14, and KR19) were used as alternative input data. The generated models were tested by
Modeling statistical properties of written text.
Directory of Open Access Journals (Sweden)
M Angeles Serrano
Full Text Available Written text is one of the fundamental manifestations of human language, and the study of its universal regularities can give clues about how our brains process information and how we, as a society, organize and share it. Among these regularities, only Zipf's law has been explored in depth. Other basic properties, such as the existence of bursts of rare words in specific documents, have only been studied independently of each other and mainly by descriptive models. As a consequence, there is a lack of understanding of linguistic processes as complex emergent phenomena. Beyond Zipf's law for word frequencies, here we focus on burstiness, Heaps' law describing the sublinear growth of vocabulary size with the length of a document, and the topicality of document collections, which encode correlations within and across documents absent in random null models. We introduce and validate a generative model that explains the simultaneous emergence of all these patterns from simple rules. As a result, we find a connection between the bursty nature of rare words and the topical organization of texts and identify dynamic word ranking and memory across documents as key mechanisms explaining the non trivial organization of written text. Our research can have broad implications and practical applications in computer science, cognitive science and linguistics.
Advanced data analysis in neuroscience integrating statistical and computational models
Durstewitz, Daniel
2017-01-01
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerfu...
Statistically Based Morphodynamic Modeling of Tracer Slowdown
Borhani, S.; Ghasemi, A.; Hill, K. M.; Viparelli, E.
2017-12-01
Tracer particles are used to study bedload transport in gravel-bed rivers. One of the advantages associated with using of tracer particles is that they allow for direct measures of the entrainment rates and their size distributions. The main issue in large scale studies with tracer particles is the difference between tracer stone short term and long term behavior. This difference is due to the fact that particles undergo vertical mixing or move to less active locations such as bars or even floodplains. For these reasons the average virtual velocity of tracer particle decreases in time, i.e. the tracer slowdown. In summary, tracer slowdown can have a significant impact on the estimation of bedload transport rate or long term dispersal of contaminated sediment. The vast majority of the morphodynamic models that account for the non-uniformity of the bed material (tracer and not tracer, in this case) are based on a discrete description of the alluvial deposit. The deposit is divided in two different regions; the active layer and the substrate. The active layer is a thin layer in the topmost part of the deposit whose particles can interact with the bed material transport. The substrate is the part of the deposit below the active layer. Due to the discrete representation of the alluvial deposit, active layer models are not able to reproduce tracer slowdown. In this study we try to model the slowdown of tracer particles with the continuous Parker-Paola-Leclair morphodynamic framework. This continuous, i.e. not layer-based, framework is based on a stochastic description of the temporal variation of bed surface elevation, and of the elevation specific particle entrainment and deposition. Particle entrainment rates are computed as a function of the flow and sediment characteristics, while particle deposition is estimated with a step length formulation. Here we present one of the first implementation of the continuum framework at laboratory scale, its validation against
Knoben, Wouter; Woods, Ross; Freer, Jim
2016-04-01
Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.
Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification
Directory of Open Access Journals (Sweden)
A. Sarri
2012-06-01
Full Text Available Due to the catastrophic consequences of tsunamis, early warnings need to be issued quickly in order to mitigate the hazard. Additionally, there is a need to represent the uncertainty in the predictions of tsunami characteristics corresponding to the uncertain trigger features (e.g. either position, shape and speed of a landslide, or sea floor deformation associated with an earthquake. Unfortunately, computer models are expensive to run. This leads to significant delays in predictions and makes the uncertainty quantification impractical. Statistical emulators run almost instantaneously and may represent well the outputs of the computer model. In this paper, we use the outer product emulator to build a fast statistical surrogate of a landslide-generated tsunami computer model. This Bayesian framework enables us to build the emulator by combining prior knowledge of the computer model properties with a few carefully chosen model evaluations. The good performance of the emulator is validated using the leave-one-out method.
Statistical meandering wake model and its application to yaw-angle optimisation of wind farms
DEFF Research Database (Denmark)
Thøgersen, Emil; Tranberg, Bo; Herp, Jürgen
2017-01-01
deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple...... wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using...... the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain...
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
Statistical mechanics of the cluster Ising model
International Nuclear Information System (INIS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-01-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Statistical mechanics of the cluster Ising model
Energy Technology Data Exchange (ETDEWEB)
Smacchia, Pietro [SISSA - via Bonomea 265, I-34136, Trieste (Italy); Amico, Luigi [CNR-MATIS-IMM and Dipartimento di Fisica e Astronomia Universita di Catania, C/O ed. 10, viale Andrea Doria 6, I-95125 Catania (Italy); Facchi, Paolo [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Fazio, Rosario [NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, 56126 Pisa (Italy); Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Florio, Giuseppe; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Vedral, Vlatko [Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)
2011-08-15
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Sensitivity analysis of model output - a step towards robust safety indicators?
International Nuclear Information System (INIS)
Broed, R.; Pereira, A.; Moberg, L.
2004-01-01
The protection of the environment from ionising radiation challenges the radioecological community with the issue of harmonising disparate safety indicators. These indicators should preferably cover the whole spectrum of model predictions on chemo-toxic and radiation impact of contaminants. In question is not only the protection of man and biota but also of abiotic systems. In many cases modelling will constitute the basis for an evaluation of potential impact. It is recognised that uncertainty and sensitivity analysis of model output will play an important role in the 'construction' of safety indicators that are robust, reliable and easy to explain to all groups of stakeholders including the general public. However, environmental models of transport of radionuclides have some extreme characteristics. They are, a) complex, b) non-linear, c) include a huge number of input parameters, d) input parameters are associated with large or very large uncertainties, e) parameters are often correlated to each other, f) uncertainties other than parameter-driven may be present in the modelling system, g) space variability and time-dependence of parameters are present, h) model predictions may cover geological time scales. Consequently, uncertainty and sensitivity analysis are non-trivial tasks, challenging the decision-maker when it comes to the interpretation of safety indicators or the application of regulatory criteria. In this work we use the IAEA model ISAM, to make a set of Monte Carlo calculations. The ISAM model includes several nuclides and decay chains, many compartments and variable parameters covering the range of nuclide migration pathways from the near field to the biosphere. The goal of our calculations is to make a global sensitivity analysis. After extracting the non-influential parameters, the M.C. calculations are repeated with those parameters frozen. Reducing the number of parameters to a few ones will simplify the interpretation of the results and the use
Design and Output Performance Model of Turbodrill Blade Used in a Slim Borehole
Directory of Open Access Journals (Sweden)
Yu Wang
2016-12-01
Full Text Available Small-diameter turbodrills have great potential for use in slim boreholes because of their lower cost and higher efficiency when used in geothermal energy and other underground resource applications. Multistage hydraulic components consisting of stators and rotors are key aspects of turbodrills. This study aimed to develop a suitable blade that can be used under high temperature in granite formations. First, prediction models for single- and multi-stage blades were established based on Bernoulli’s Equation. The design requirement of the blade for high-temperature geothermal drilling in granite was proposed. A Φ89 blade was developed based on the dimensionless parameter method and Bezier curve; the parameters of the blade, including its radial size, symotric parameters, and blade profiles, were input into ANASYS and CFX to establish a calculation model of the single-stage blade. The optimization of the blade structure of the small-diameter turbodrill enabled a multistage turbodrill model to be established and the turbodrill’s overall output performance to be predicted. The results demonstrate that the design can meet the turbodrill’s performance requirements and that the multistage model can effectively improve the accuracy of the prediction.
Functional summary statistics for the Johnson-Mehl model
DEFF Research Database (Denmark)
Møller, Jesper; Ghorbani, Mohammad
The Johnson-Mehl germination-growth model is a spatio-temporal point process model which among other things have been used for the description of neurotransmitters datasets. However, for such datasets parametric Johnson-Mehl models fitted by maximum likelihood have yet not been evaluated by means...... of functional summary statistics. This paper therefore invents four functional summary statistics adapted to the Johnson-Mehl model, with two of them based on the second-order properties and the other two on the nuclei-boundary distances for the associated Johnson-Mehl tessellation. The functional summary...... statistics theoretical properties are investigated, non-parametric estimators are suggested, and their usefulness for model checking is examined in a simulation study. The functional summary statistics are also used for checking fitted parametric Johnson-Mehl models for a neurotransmitters dataset....
Statistical modelling in biostatistics and bioinformatics selected papers
Peng, Defen
2014-01-01
This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and fu...
CM-DataONE: A Framework for collaborative analysis of climate model output
Xu, Hao; Bai, Yuqi; Li, Sha; Dong, Wenhao; Huang, Wenyu; Xu, Shiming; Lin, Yanluan; Wang, Bin
2015-04-01
CM-DataONE is a distributed collaborative analysis framework for climate model data which aims to break through the data access barriers of increasing file size and to accelerate research process. As data size involved in project such as the fifth Coupled Model Intercomparison Project (CMIP5) has reached petabytes, conventional methods for analysis and diagnosis of model outputs have been rather time-consuming and redundant. CM-DataONE is developed for data publishers and researchers from relevant areas. It can enable easy access to distributed data and provide extensible analysis functions based on tools such as NCAR Command Language, NetCDF Operators (NCO) and Climate Data Operators (CDO). CM-DataONE can be easily installed, configured, and maintained. The main web application has two separate parts which communicate with each other through APIs based on HTTP protocol. The analytic server is designed to be installed in each data node while a data portal can be configured anywhere and connect to a nearest node. Functions such as data query, analytic task submission, status monitoring, visualization and product downloading are provided to end users by data portal. Data conform to CMIP5 Model Output Format in each peer node can be scanned by the server and mapped to a global information database. A scheduler included in the server is responsible for task decomposition, distribution and consolidation. Analysis functions are always executed where data locate. Analysis function package included in the server has provided commonly used functions such as EOF analysis, trend analysis and time series. Functions are coupled with data by XML descriptions and can be easily extended. Various types of results can be obtained by users for further studies. This framework has significantly decreased the amount of data to be transmitted and improved efficiency in model intercomparison jobs by supporting online analysis and multi-node collaboration. To end users, data query is
Lakra, Suchita; Mandal, Sanjoy
2017-06-01
A quadruple micro-optical ring resonator (QMORR) with multiple output bus waveguides is mathematically modeled and analyzed by making use of the delay-line signal processing approach in Z-domain and Mason's gain formula. The performances of QMORR with two output bus waveguides with vertical coupling are analyzed. This proposed structure is capable of providing wider free spectral response from both the output buses with appreciable cross talk. Thus, this configuration could provide increased capacity to insert a large number of communication channels. The simulated frequency response characteristic and its dispersion and group delay characteristics are graphically presented using the MATLAB environment.
Towards Measures to Establish the Relevance of Climate Model Output for Decision Support
Clarke, L.; Smith, L. A.
2007-12-01
to weight climate model output in the decision process; one obvious example is the question of over what spatial and time averages modelers expect information in current climate distributions to be robust. The IPCC itself suggests continental/seasonal, while distributions over 10's of kilometers/hourly is on offer. Our aim here is not to resolve this discrepancy, but to develop methods with which it can be addressed. This is illustrated in the context of using another physically based, imperfect model setting: using Newton's laws in an actual case of NASA hazard evaluation. Our aim is to develop transparent standards of good practice managing expectations, which will allow model improvements over the next decades to be seen as progress by the users of climate science.
International Nuclear Information System (INIS)
Chang Yuan; Ries, Robert J.; Wang Yaowu
2010-01-01
A complete understanding of the resource consumption, embodied energy, and environmental emissions of civil projects in China is difficult due to the lack of comprehensive national statistics. To quantitatively assess the energy and environmental impacts of civil construction at a macro-level, this study developed a 24 sector environmental input-output life-cycle assessment model (I-O LCA) based on 2002 Chinese national economic and environmental data. The model generates an economy-wide inventory of energy use and environmental emissions. Estimates based on the level of economic activity related to planned future civil works in 2015 are made. Results indicate that the embodied energy of construction projects accounts for nearly one-sixth of the total economy's energy consumption in 2007, and may account for approximately one-fifth of the total energy use by 2015. This energy consumption is dominated by coal and oil consumptions. Energy-related emissions are the main polluters of the country's atmosphere and environment. If the industry's energy use and manufacturing techniques remain the same as in 2002, challenges to the goals for total energy consumption in China will appear in the next decade. Thus, effective implementation of efficient energy technologies and regulations are indispensable for achieving China's energy and environmental quality goals.
A new chance-constrained DEA model with birandom input and output data
Tavana, M.; Shiraz, R. K.; Hatami-Marbini, A.
2013-01-01
The purpose of conventional Data Envelopment Analysis (DEA) is to evaluate the performance of a set of firms or Decision-Making Units using deterministic input and output data. However, the input and output data in the real-life performance evaluation problems are often stochastic. The stochastic input and output data in DEA can be represented with random variables. Several methods have been proposed to deal with the random input and output data in DEA. In this paper, we propose a new chance-...
Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P
1999-01-01
Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
A new solar power output prediction based on hybrid forecast engine and decomposition model.
Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando
2018-06-12
Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Does the DHET research output subsidy model penalise high-citation publication? A case study
Directory of Open Access Journals (Sweden)
Yolande X. Harley
2016-05-01
Full Text Available South African universities are awarded annual subsidy from the Department of Higher Education and Training (DHET based on their research publication output. Journal article subsidy is based on the number of research publications in DHET-approved journals as well as the proportional contribution of authors from the university. Co-authorship with other institutions reduces the subsidy received by a university, which may be a disincentive to collaboration. Inter-institutional collaboration may affect the scientific impact of resulting publications, as indicated by the number of citations received. We analysed 812 journal articles published in 2011 by authors from the University of Cape Town’s Faculty of Health Sciences to determine if there was a significant relationship between subsidy units received and (1 citation count and (2 field-weighted citation impact. We found that subsidy units had a significant inverse relationship with both citation count (r= -0.247; CI = -0.311 – -0.182; p"less than"0.0001 and field-weighted citation impact (r= -0.192; CI= -0.258 – -0.125; p"less than"0.0001. These findings suggest that the annual subsidy awarded to universities for research output may inadvertently penalise high-citation publication. Revision of the funding model to address this possibility would better align DHET funding allocation with the strategic plans of the South African Department of Science and Technology, the National Research Foundation and the South African Medical Research Council, and may better support publication of greater impact research.
Impacts of manure application on SWAT model outputs in the Xiangxi River watershed
Liu, Ruimin; Wang, Qingrui; Xu, Fei; Men, Cong; Guo, Lijia
2017-12-01
SWAT (Soil and Water Assessment Tool) model has been widely used to simulate agricultural non-point source (ANPS) pollution; however, the impacts of livestock manure application on SWAT model outputs have not been well studied. The objective of this study was to investigate the environmental effects of livestock manure application based on the SWAT model in the Xiangxi River watershed, which is one of the largest tributaries of the Three Gorges Reservoir in China. Three newly-built manure databases (NB) were created and applied to different subbasins based on the actual livestock manure discharging amount. The calibration and validation values of SWAT model outputs obtained from the NB manure application and the original mixed (OM) manure were compared. The study results are as follows: (1) The livestock industry of Xingshan County developed quickly between 2005 and 2015. The downstream of the Xiangxi River (Huangliang, Shuiyuesi and Xiakou) had the largest livestock amount, and largely accounted for manure, total nitrogen (TN) and total phosphorus (TP) production (>50%). (2) The NB manure application resulted in less phosphorus pollution (1686.35 kg for ORGP and 31.70 kg for MINP) than the OM manure application. Compared with the upstream, the downstream was influenced more by the manure application. (3) The SWAT results obtained from the NB manure had a better calibration and validation values than those from the OM manure. For ORGP, R2 and NSE values were 0.77 and 0.65 for the NB manure calibration; and the same values for the OM manure were 0.72 and 0.61, respectively. For MINP, R2 values were 0.65 and 0.62 for the NB manure and the OM manure, and the NSE values were 0.60 and 0.58, respectively. The results indicated that the built-in fertilizer database in SWAT has its limitation because it is set up for the simulation in the USA. Thus, when livestock manure is considered in a SWAT simulation, a newly built fertilizer database needs to be set up to represent
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
Mixed deterministic statistical modelling of regional ozone air pollution
Kalenderski, Stoitchko
2011-03-17
We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..
International Nuclear Information System (INIS)
Suolanen, V.; Ilvonen, M.
1998-10-01
Computer model DETRA applies a dynamic compartment modelling approach. The compartment structure of each considered application can be tailored individually. This flexible modelling method makes it possible that the transfer of radionuclides can be considered in various cases: aquatic environment and related food chains, terrestrial environment, food chains in general and food stuffs, body burden analyses of humans, etc. In the former study on this subject, modernization of the user interface of DETRA code was carried out. This new interface works in Windows environment and the usability of the code has been improved. The objective of this study has been to further develop and diversify the user interface so that also probabilistic uncertainty analyses can be performed by DETRA. The most common probability distributions are available: uniform, truncated Gaussian and triangular. The corresponding logarithmic distributions are also available. All input data related to a considered case can be varied, although this option is seldomly needed. The calculated output values can be selected as monitored values at certain simulation time points defined by the user. The results of a sensitivity run are immediately available after simulation as graphical presentations. These outcomes are distributions generated for varied parameters, density functions of monitored parameters and complementary cumulative density functions (CCDF). An application considered in connection with this work was the estimation of contamination of milk caused by radioactive deposition of Cs (10 kBq(Cs-137)/m 2 ). The multi-sequence calculation model applied consisted of a pasture modelling part and a dormant season modelling part. These two sequences were linked periodically simulating the realistic practice of care taking of domestic animals in Finland. The most important parameters were varied in this exercise. The performed diversifying of the user interface of DETRA code seems to provide an easily
Robin M. Reich; C. Aguirre-Bravo; M.S. Williams
2006-01-01
A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...
DEFF Research Database (Denmark)
Badger, Jake; Frank, Helmut; Hahmann, Andrea N.
2014-01-01
This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...
A Model of Statistics Performance Based on Achievement Goal Theory.
Bandalos, Deborah L.; Finney, Sara J.; Geske, Jenenne A.
2003-01-01
Tests a model of statistics performance based on achievement goal theory. Both learning and performance goals affected achievement indirectly through study strategies, self-efficacy, and test anxiety. Implications of these findings for teaching and learning statistics are discussed. (Contains 47 references, 3 tables, 3 figures, and 1 appendix.)…
Kolmogorov complexity, pseudorandom generators and statistical models testing
Czech Academy of Sciences Publication Activity Database
Šindelář, Jan; Boček, Pavel
2002-01-01
Roč. 38, č. 6 (2002), s. 747-759 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1564 Institutional research plan: CEZ:AV0Z1075907 Keywords : Kolmogorov complexity * pseudorandom generators * statistical models testing Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.341, year: 2002
Statistical properties of several models of fractional random point processes
Bendjaballah, C.
2011-08-01
Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Principles for statistical inference on big spatio-temporal data from climate models
Castruccio, Stefano
2018-02-24
The vast increase in size of modern spatio-temporal datasets has prompted statisticians working in environmental applications to develop new and efficient methodologies that are still able to achieve inference for nontrivial models within an affordable time. Climate model outputs push the limits of inference for Gaussian processes, as their size can easily be larger than 10 billion data points. Drawing from our experience in a set of previous work, we provide three principles for the statistical analysis of such large datasets that leverage recent methodological and computational advances. These principles emphasize the need of embedding distributed and parallel computing in the inferential process.
Principles for statistical inference on big spatio-temporal data from climate models
Castruccio, Stefano; Genton, Marc G.
2018-01-01
The vast increase in size of modern spatio-temporal datasets has prompted statisticians working in environmental applications to develop new and efficient methodologies that are still able to achieve inference for nontrivial models within an affordable time. Climate model outputs push the limits of inference for Gaussian processes, as their size can easily be larger than 10 billion data points. Drawing from our experience in a set of previous work, we provide three principles for the statistical analysis of such large datasets that leverage recent methodological and computational advances. These principles emphasize the need of embedding distributed and parallel computing in the inferential process.
Improving statistical reasoning theoretical models and practical implications
Sedlmeier, Peter
1999-01-01
This book focuses on how statistical reasoning works and on training programs that can exploit people''s natural cognitive capabilities to improve their statistical reasoning. Training programs that take into account findings from evolutionary psychology and instructional theory are shown to have substantially larger effects that are more stable over time than previous training regimens. The theoretical implications are traced in a neural network model of human performance on statistical reasoning problems. This book apppeals to judgment and decision making researchers and other cognitive scientists, as well as to teachers of statistics and probabilistic reasoning.
Embodied water analysis for Hebei Province, China by input-output modelling
Liu, Siyuan; Han, Mengyao; Wu, Xudong; Wu, Xiaofang; Li, Zhi; Xia, Xiaohua; Ji, Xi
2018-03-01
With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.
Computing Models of M-type Host Stars and their Panchromatic Spectral Output
Linsky, Jeffrey; Tilipman, Dennis; France, Kevin
2018-06-01
We have begun a program of computing state-of-the-art model atmospheres from the photospheres to the coronae of M stars that are the host stars of known exoplanets. For each model we are computing the emergent radiation at all wavelengths that are critical for assessingphotochemistry and mass-loss from exoplanet atmospheres. In particular, we are computing the stellar extreme ultraviolet radiation that drives hydrodynamic mass loss from exoplanet atmospheres and is essential for determing whether an exoplanet is habitable. The model atmospheres are computed with the SSRPM radiative transfer/statistical equilibrium code developed by Dr. Juan Fontenla. The code solves for the non-LTE statistical equilibrium populations of 18,538 levels of 52 atomic and ion species and computes the radiation from all species (435,986 spectral lines) and about 20,000,000 spectral lines of 20 diatomic species.The first model computed in this program was for the modestly active M1.5 V star GJ 832 by Fontenla et al. (ApJ 830, 152 (2016)). We will report on a preliminary model for the more active M5 V star GJ 876 and compare this model and its emergent spectrum with GJ 832. In the future, we will compute and intercompare semi-empirical models and spectra for all of the stars observed with the HST MUSCLES Treasury Survey, the Mega-MUSCLES Treasury Survey, and additional stars including Proxima Cen and Trappist-1.This multiyear theory program is supported by a grant from the Space Telescope Science Institute.
Model outputs - Developing end-to-end models of the Gulf of California
National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the northern Gulf of California, linking oceanography, biogeochemistry, food web...
National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...
Modeling imbalanced economic recovery following a natural disaster using input-output analysis.
Li, Jun; Crawford-Brown, Douglas; Syddall, Mark; Guan, Dabo
2013-10-01
Input-output analysis is frequently used in studies of large-scale weather-related (e.g., Hurricanes and flooding) disruption of a regional economy. The economy after a sudden catastrophe shows a multitude of imbalances with respect to demand and production and may take months or years to recover. However, there is no consensus about how the economy recovers. This article presents a theoretical route map for imbalanced economic recovery called dynamic inequalities. Subsequently, it is applied to a hypothetical postdisaster economic scenario of flooding in London around the year 2020 to assess the influence of future shocks to a regional economy and suggest adaptation measures. Economic projections are produced by a macro econometric model and used as baseline conditions. The results suggest that London's economy would recover over approximately 70 months by applying a proportional rationing scheme under the assumption of initial 50% labor loss (with full recovery in six months), 40% initial loss to service sectors, and 10-30% initial loss to other sectors. The results also suggest that imbalance will be the norm during the postdisaster period of economic recovery even though balance may occur temporarily. Model sensitivity analysis suggests that a proportional rationing scheme may be an effective strategy to apply during postdisaster economic reconstruction, and that policies in transportation recovery and in health care are essential for effective postdisaster economic recovery. © 2013 Society for Risk Analysis.
Linear summation of outputs in a balanced network model of motor cortex.
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.
Directory of Open Access Journals (Sweden)
Olav Slupphaug
2001-01-01
Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.
Modelling Implicit Communication in Multi-Agent Systems with Hybrid Input/Output Automata
Directory of Open Access Journals (Sweden)
Marta Capiluppi
2012-10-01
Full Text Available We propose an extension of Hybrid I/O Automata (HIOAs to model agent systems and their implicit communication through perturbation of the environment, like localization of objects or radio signals diffusion and detection. To this end we decided to specialize some variables of the HIOAs whose values are functions both of time and space. We call them world variables. Basically they are treated similarly to the other variables of HIOAs, but they have the function of representing the interaction of each automaton with the surrounding environment, hence they can be output, input or internal variables. Since these special variables have the role of simulating implicit communication, their dynamics are specified both in time and space, because they model the perturbations induced by the agent to the environment, and the perturbations of the environment as perceived by the agent. Parallel composition of world variables is slightly different from parallel composition of the other variables, since their signals are summed. The theory is illustrated through a simple example of agents systems.
Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs
International Nuclear Information System (INIS)
Apergis, Nicholas; Aye, Goodness C.; Barros, Carlos Pestana; Gupta, Rangan; Wanke, Peter
2015-01-01
This paper presents an efficiency assessment of selected OECD countries using a Slacks Based Model with undesirable or bad outputs (SBM-Undesirable). In this research, SBM-Undesirable is used first in a two-stage approach to assess the relative efficiency of OECD countries using the most frequent indicators adopted by the literature on energy efficiency. Besides, in the second stage, GLMM–MCMC methods are combined with SBM-Undesirable results as part of an attempt to produce a model for energy performance with effective predictive ability. The results reveal different impacts of contextual variables, such as economic blocks and capital–labor ratio, on energy efficiency levels. - Highlights: • We analyze the energy efficiency of selected OECD countries. • SBM-Undesirable and MCMC–GLMM are combined for this purpose. • Find that efficiency levels are high but declining over time. • Analysis with contextual variables shows varying efficiency levels across groups. • Capital-intensive countries are more energy efficient than labor-intensive countries.
Statistical validation of normal tissue complication probability models
Xu, Cheng-Jian; van der Schaaf, Arjen; van t Veld, Aart; Langendijk, Johannes A.; Schilstra, Cornelis
2012-01-01
PURPOSE: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: A penalized regression method, LASSO (least absolute shrinkage
Some remarks on the statistical model of heavy ion collisions
International Nuclear Information System (INIS)
Koch, V.
2003-01-01
This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions
Eigenfunction statistics for Anderson model with Hölder continuous ...
Indian Academy of Sciences (India)
The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India ... Anderson model; Hölder continuous measure; Poisson statistics. ...... [4] Combes J-M, Hislop P D and Klopp F, An optimal Wegner estimate and its application to.
Mechanisms Regulating the Cardiac Output Response to Cyanide Infusion, a Model of Hypoxia
Liang, Chang-seng; Huckabee, William E.
1973-01-01
When tissue metabolic changes like those of hypoxia were induced by intra-aortic infusion of cyanide in dogs, cardiac output began to increase after 3 to 5 min, reached a peak (220% of the control value) at 15 min, and returned to control in 40 min. This pattern of cardiac output rise was not altered by vagotomy with or without atropine pretreatment. However, this cardiac output response could be differentiated into three phases by pretreating the animals with agents that block specific activities of the sympatho-adrenal system. First, ganglionic blockade produced by mecamylamine or sympathetic nerve blockade by bretylium abolished the middle phase of the cardiac output seen in the untreated animal, but early and late phases still could be discerned. Second, beta-adrenergic receptor blockade produced by propranolol shortened the total duration of the cardiac output rise by abolishing the late phase. Third, when given together, propranolol and mecamylamine (or bretylium) prevented most of the cardiac output rise that follows the early phase. When cyanide was given to splenectomized dogs, the duration of the cardiac output response was not shortened, but the response became biphasic, resembling that seen after chemical sympathectomy. A similar biphasic response of the cardiac output also resulted from splenic denervation; sham operation or nephrectomy had no effect on the monophasic pattern of the normal response. Splenic venous blood obtained from cyanide-treated dogs, when infused intraportally, caused an increase in cardiac output in recipient dogs; similar infusion of arterial blood had no effects. These results suggest that the cardiac output response to cyanide infusion consists of three components: an early phase, related neither to the autonomic nervous system nor to circulating catecholamines; a middle phase, caused by a nonadrenergic humoral substance released from the spleen by sympathetic stimulation; and a late phase, dependent upon adrenergic receptors
A no extensive statistical model for the nucleon structure function
International Nuclear Information System (INIS)
Trevisan, Luis A.; Mirez, Carlos
2013-01-01
We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon.
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are
Statistical models and NMR analysis of polymer microstructure
Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Thiessen, Erik D
2017-01-05
Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274: , 1926-1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105: , 2745-2750; Thiessen & Yee 2010 Child Development 81: , 1287-1303; Saffran 2002 Journal of Memory and Language 47: , 172-196; Misyak & Christiansen 2012 Language Learning 62: , 302-331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39: , 246-263; Thiessen et al. 2013 Psychological Bulletin 139: , 792-814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik
Models for probability and statistical inference theory and applications
Stapleton, James H
2007-01-01
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...
Directory of Open Access Journals (Sweden)
S.N.M.P. Simamora
2014-10-01
Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.
Multiregional input-output model for China's farm land and water use.
Guo, Shan; Shen, Geoffrey Qiping
2015-01-06
Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.
Directory of Open Access Journals (Sweden)
May Tan May
2018-01-01
Full Text Available In recent years, there has been an increase in crude palm oil (CPO demand, resulting in palm oil mills (POMs seizing the opportunity to increase CPO production to make more profits. A series of equipment are designed to operate in their optimum capacities in the current existing POMs. Some equipment may be limited by their maximum design capacities when there is a need to increase CPO production, resulting in process bottlenecks. In this research, a framework is developed to provide stepwise procedures on identifying bottlenecks and retrofitting a POM process to cater for the increase in production capacity. This framework adapts an algebraic approach known as Inoperability Input-Output Modelling (IIM. To illustrate the application of the framework, an industrial POM case study was solved using LINGO software in this work, by maximising its production capacity. Benefit-to-Cost Ratio (BCR analysis was also performed to assess the economic feasibility. As results, the Screw Press was identified as the bottleneck. The retrofitting recommendation was to purchase an additional Screw Press to cater for the new throughput with BCR of 54.57. It was found the POM to be able to achieve the maximum targeted production capacity of 8,139.65 kg/hr of CPO without any bottlenecks.
A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews
Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi
2018-03-01
Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.
Modeling and notation of DEA with strong and weak disposable outputs.
Kuntz, Ludwig; Sülz, Sandra
2011-12-01
Recent articles published in Health Care Management Science have described DEA applications under the assumption of strong and weak disposable outputs. As we confidently assume that these papers include some methodical deficiencies, we aim to illustrate a revised approach.
Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.
2009-08-01
Terrestrial biosphere models show large uncertainties when simulating carbon and water cycles, and reducing these uncertainties is a priority for developing more accurate estimates of both terrestrial ecosystem statuses and future climate changes. To reduce uncertainties and improve the understanding of these carbon budgets, we investigated the ability of flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine-based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and an improved model (based on calibration using flux observations). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using flux observations (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs, and model calibration using flux observations significantly improved the model outputs. These results show that to reduce uncertainties among terrestrial biosphere models, we need to conduct careful validation and calibration with available flux observations. Flux observation data significantly improved terrestrial biosphere models, not only on a point scale but also on spatial scales.
Right-sizing statistical models for longitudinal data.
Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M
2015-12-01
Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).
A Stochastic Fractional Dynamics Model of Rainfall Statistics
Kundu, Prasun; Travis, James
2013-04-01
Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is designed to faithfully reflect the scale dependence and is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. The main restriction is the assumption that the statistics of the precipitation field is spatially homogeneous and isotropic and stationary in time. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of the radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment. Some data sets containing periods of non-stationary behavior that involves occasional anomalously correlated rain events, present a challenge for the model.
Wind climate estimation using WRF model output: method and model sensitivities over the sea
DEFF Research Database (Denmark)
Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo
2015-01-01
setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface...... temperature used as lower boundary conditions. Also, the strength and form (grid vs spectral) of the nudging is quite irrelevant for the mean wind speed at 100 m. Large sensitivity is found to the choice of boundary layer parametrization, and to the length of the period that is discarded as spin-up to produce...... a wind climatology. It is found that the spin-up period for the boundary layer winds is likely larger than 12 h over land and could affect the wind climatology for points offshore for quite a distance downstream from the coast....
Statistical geological discrete fracture network model. Forsmark modelling stage 2.2
International Nuclear Information System (INIS)
Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan
2007-11-01
. These models describe fracture intensity and size as a single range from borehole to outcrop scale; and - the combined outcrop scale and tectonic fault models (OSM+TFM), where separate distributions for size and intensity describe the fractures observed at outcrop scale (largely joints) and the features observed at regional scales (lineaments that are largely faults or deformation zones). Fracture intensity and fracture size are not rigidly coupled. The stochastic intensity model is build using power laws, and combines fracture intensity data from outcrops (P21) and boreholes (P10) to simultaneously match both data sets. Intensity statistics are presented for each fracture set in each domain, and the spatial variation of intensity described as a function of lithology or as a gamma distribution where possible. This report also describes the sources of uncertainty in the methodologies, data, and analyses used to build the version 2.2 geological DFN, and offers insight as to the potential magnitudes of their effects on downstream models. The outputs of the geological DFN modeling process are recommended parameters or statistical distributions describing fracture set orientations, radius sizes, volumetric intensities, spatial correlations and models, and other parameters necessary to build stochastic models (lithology and scaling corrections, termination matrices)
Statistical geological discrete fracture network model. Forsmark modelling stage 2.2
Energy Technology Data Exchange (ETDEWEB)
Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)
2007-11-15
. These models describe fracture intensity and size as a single range from borehole to outcrop scale; and - the combined outcrop scale and tectonic fault models (OSM+TFM), where separate distributions for size and intensity describe the fractures observed at outcrop scale (largely joints) and the features observed at regional scales (lineaments that are largely faults or deformation zones). Fracture intensity and fracture size are not rigidly coupled. The stochastic intensity model is build using power laws, and combines fracture intensity data from outcrops (P21) and boreholes (P10) to simultaneously match both data sets. Intensity statistics are presented for each fracture set in each domain, and the spatial variation of intensity described as a function of lithology or as a gamma distribution where possible. This report also describes the sources of uncertainty in the methodologies, data, and analyses used to build the version 2.2 geological DFN, and offers insight as to the potential magnitudes of their effects on downstream models. The outputs of the geological DFN modeling process are recommended parameters or statistical distributions describing fracture set orientations, radius sizes, volumetric intensities, spatial correlations and models, and other parameters necessary to build stochastic models (lithology and scaling corrections, termination matrices)
Modeling DPOAE input/output function compression: comparisons with hearing thresholds.
Bhagat, Shaum P
2014-09-01
Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Normal-hearing adults (n = 16) aged 22-42 yr were recruited. DPOAE I/O functions (L₂ = 45-70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1-2 kHz frequency range. American Academy of Audiology.
Modeling CCN effects on tropical convection: An statistical perspective
Carrio, G. G.; Cotton, W. R.; Massie, S. T.
2012-12-01
This modeling study examines the response of tropical convection to the enhancement of CCN concentrations from a statistical perspective. The sensitivity runs were performed using RAMS version 6.0, covering almost the entire Amazonian Aerosol Characterization Experiment period (AMAZE, wet season of 2008). The main focus of the analysis was the indirect aerosol effects on the probability density functions (PDFs) of various cloud properties. RAMS was configured to work with four two-way interactive nested grids with 42 vertical levels and horizontal grid spacing of 150, 37.5, 7.5, and 1.5 km. Grids 2 and 3 were used to simulate the synoptic and mesoscale environments, while grid 4 was used to resolve deep convection. Comparisons were made using the finest grid with a domain size of 300 X 300km, approximately centered on the city of Manaus (3.1S, 60.01W). The vertical grid was stretched using with 75m spacing at the finest levels to provide better resolution within the first 1.5 km, and the model top extended to approximately 22 km above ground level. RAMS was initialized on February 10 2008 (00:00 UTC), the length of simulations was 32 days, and GSF data were used for initialization and nudging of the coarser-grid boundaries. The control run considered a CCN concentration of 300cm-3 while other several other simulations considered an influx of higher CCN concentrations (up to 1300/cc) . The latter concentration was observed near the end of the AMAZE project period. Both direct and indirect effects of these CCN particles were considered. Model output data (finest grid) every 15 min were used to compute the PDFs for each model level. When increasing aerosol concentrations, significant impacts were simulated for the PDFs of the water contents of various hydrometeors, vertical motions, area with precipitation, latent heat releases, among other quantities. In most cases, they exhibited a peculiar non-monotonic response similar to that seen in two previous studies of ours
Variability aware compact model characterization for statistical circuit design optimization
Qiao, Ying; Qian, Kun; Spanos, Costas J.
2012-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2006-01-01
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo
Speech emotion recognition based on statistical pitch model
Institute of Scientific and Technical Information of China (English)
WANG Zhiping; ZHAO Li; ZOU Cairong
2006-01-01
A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.
Multiple commodities in statistical microeconomics: Model and market
Baaquie, Belal E.; Yu, Miao; Du, Xin
2016-11-01
A statistical generalization of microeconomics has been made in Baaquie (2013). In Baaquie et al. (2015), the market behavior of single commodities was analyzed and it was shown that market data provides strong support for the statistical microeconomic description of commodity prices. The case of multiple commodities is studied and a parsimonious generalization of the single commodity model is made for the multiple commodities case. Market data shows that the generalization can accurately model the simultaneous correlation functions of up to four commodities. To accurately model five or more commodities, further terms have to be included in the model. This study shows that the statistical microeconomics approach is a comprehensive and complete formulation of microeconomics, and which is independent to the mainstream formulation of microeconomics.
Adaptive Maneuvering Frequency Method of Current Statistical Model
Institute of Scientific and Technical Information of China (English)
Wei Sun; Yongjian Yang
2017-01-01
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
Modelling diversity in building occupant behaviour: a novel statistical approach
DEFF Research Database (Denmark)
Haldi, Frédéric; Calì, Davide; Andersen, Rune Korsholm
2016-01-01
We propose an advanced modelling framework to predict the scope and effects of behavioural diversity regarding building occupant actions on window openings, shading devices and lighting. We develop a statistical approach based on generalised linear mixed models to account for the longitudinal nat...
On an uncorrelated jet model with Bose-Einstein statistics
International Nuclear Information System (INIS)
Bilic, N.; Dadic, I.; Martinis, M.
1978-01-01
Starting from the density of states of an ideal Bose-Einstein gas, an uncorrelated jet model with Bose-Einstein statistics has been formulated. The transition to continuum is based on the Touschek invariant measure. It has been shown that in this model average multiplicity increases logarithmically with total energy, while the inclusive distribution shows ln s violation of scaling. (author)
Castruccio, Stefano
2015-04-02
One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.
Castruccio, Stefano; Genton, Marc G.
2015-01-01
One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.
Complex Data Modeling and Computationally Intensive Statistical Methods
Mantovan, Pietro
2010-01-01
The last years have seen the advent and development of many devices able to record and store an always increasing amount of complex and high dimensional data; 3D images generated by medical scanners or satellite remote sensing, DNA microarrays, real time financial data, system control datasets. The analysis of this data poses new challenging problems and requires the development of novel statistical models and computational methods, fueling many fascinating and fast growing research areas of modern statistics. The book offers a wide variety of statistical methods and is addressed to statistici
Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2
Directory of Open Access Journals (Sweden)
Gutmann Michael
2005-02-01
Full Text Available Abstract Background It has been shown that the classical receptive fields of simple and complex cells in the primary visual cortex emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse or independent. We investigate how to learn features beyond the primary visual cortex from the statistical properties of modelled complex-cell outputs. In previous work, we showed that a new model, non-negative sparse coding, led to the emergence of features which code for contours of a given spatial frequency band. Results We applied ordinary independent component analysis to modelled outputs of complex cells that span different frequency bands. The analysis led to the emergence of features which pool spatially coherent across-frequency activity in the modelled primary visual cortex. Thus, the statistically optimal way of processing complex-cell outputs abandons separate frequency channels, while preserving and even enhancing orientation tuning and spatial localization. As a technical aside, we found that the non-negativity constraint is not necessary: ordinary independent component analysis produces essentially the same results as our previous work. Conclusion We propose that the pooling that emerges allows the features to code for realistic low-level image features related to step edges. Further, the results prove the viability of statistical modelling of natural images as a framework that produces quantitative predictions of visual processing.
Validation of statistical models for creep rupture by parametric analysis
Energy Technology Data Exchange (ETDEWEB)
Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)
2012-01-15
Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).
Understanding and forecasting polar stratospheric variability with statistical models
Directory of Open Access Journals (Sweden)
C. Blume
2012-07-01
Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely the multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.
Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong
2017-12-01
Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.
Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.
2017-12-01
Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.
Statistical Validation of Engineering and Scientific Models: Background
International Nuclear Information System (INIS)
Hills, Richard G.; Trucano, Timothy G.
1999-01-01
A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made
Statistical Validation of Normal Tissue Complication Probability Models
Energy Technology Data Exchange (ETDEWEB)
Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)
2012-09-01
Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.
Statistical validation of normal tissue complication probability models.
Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis
2012-09-01
To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.
Shell model in large spaces and statistical spectroscopy
International Nuclear Information System (INIS)
Kota, V.K.B.
1996-01-01
For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
Growth Curve Models and Applications : Indian Statistical Institute
2017-01-01
Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas. There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of app lied work, and these contributions have been externally r...
Jacquin, A. P.
2012-04-01
This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the
IMPACT OF TRADE OPENNESS ON OUTPUT GROWTH: CO INTEGRATION AND ERROR CORRECTION MODEL APPROACH
Directory of Open Access Journals (Sweden)
Asma Arif
2012-01-01
Full Text Available This study analyzed the long run relationship between trade openness and output growth for Pakistan using annual time series data for 1972-2010. This study follows the Engle and Granger co integration analysis and error correction approach to analyze the long run relationship between the two variables. The Error Correction Term (ECT for output growth and trade openness is significant at 5% level of significance and indicates a positive long run relation between the variables. This study has also analyzed the causality between trade openness and output growth by using granger causality test. The results of granger causality show that there is a bi-directional significant relationship between trade openness and economic growth.
Statistical modelling for recurrent events: an application to sports injuries.
Ullah, Shahid; Gabbett, Tim J; Finch, Caroline F
2014-09-01
Injuries are often recurrent, with subsequent injuries influenced by previous occurrences and hence correlation between events needs to be taken into account when analysing such data. This paper compares five different survival models (Cox proportional hazards (CoxPH) model and the following generalisations to recurrent event data: Andersen-Gill (A-G), frailty, Wei-Lin-Weissfeld total time (WLW-TT) marginal, Prentice-Williams-Peterson gap time (PWP-GT) conditional models) for the analysis of recurrent injury data. Empirical evaluation and comparison of different models were performed using model selection criteria and goodness-of-fit statistics. Simulation studies assessed the size and power of each model fit. The modelling approach is demonstrated through direct application to Australian National Rugby League recurrent injury data collected over the 2008 playing season. Of the 35 players analysed, 14 (40%) players had more than 1 injury and 47 contact injuries were sustained over 29 matches. The CoxPH model provided the poorest fit to the recurrent sports injury data. The fit was improved with the A-G and frailty models, compared to WLW-TT and PWP-GT models. Despite little difference in model fit between the A-G and frailty models, in the interest of fewer statistical assumptions it is recommended that, where relevant, future studies involving modelling of recurrent sports injury data use the frailty model in preference to the CoxPH model or its other generalisations. The paper provides a rationale for future statistical modelling approaches for recurrent sports injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Statistical surrogate models for prediction of high-consequence climate change.
Energy Technology Data Exchange (ETDEWEB)
Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick
2011-09-01
In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.
Al Azawi, Mayce
2015-01-01
The goal of this work is to develop statistical natural language models and processing techniques based on Recurrent Neural Networks (RNN), especially the recently introduced Long Short- Term Memory (LSTM). Due to their adapting and predicting abilities, these methods are more robust, and easier to train than traditional methods, i.e., words list and rule-based models. They improve the output of recognition systems and make them more accessible to users for browsing and reading...
Output variability caused by random seeds in a multi-agent transport simulation model
DEFF Research Database (Denmark)
Paulsen, Mads; Rasmussen, Thomas Kjær; Nielsen, Otto Anker
2018-01-01
Dynamic transport simulators are intended to support decision makers in transport-related issues, and as such it is valuable that the random variability of their outputs is as small as possible. In this study we analyse the output variability caused by random seeds of a multi-agent transport...... simulator (MATSim) when applied to a case study of Santiago de Chile. Results based on 100 different random seeds shows that the relative accuracies of estimated link loads tend to increase with link load, but that relative errors of up to 10 % do occur even for links with large volumes. Although...
Statistical Model of the 2001 Czech Census for Interactive Presentation
Czech Academy of Sciences Publication Activity Database
Grim, Jiří; Hora, Jan; Boček, Pavel; Somol, Petr; Pudil, Pavel
Vol. 26, č. 4 (2010), s. 1-23 ISSN 0282-423X R&D Projects: GA ČR GA102/07/1594; GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Interactive statistical model * census data presentation * distribution mixtures * data modeling * EM algorithm * incomplete data * data reproduction accuracy * data mining Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.492, year: 2010 http://library.utia.cas.cz/separaty/2010/RO/grim-0350513.pdf
The Statistical Modeling of the Trends Concerning the Romanian Population
Directory of Open Access Journals (Sweden)
Gabriela OPAIT
2014-11-01
Full Text Available This paper reflects the statistical modeling concerning the resident population in Romania, respectively the total of the romanian population, through by means of the „Least Squares Method”. Any country it develops by increasing of the population, respectively of the workforce, which is a factor of influence for the growth of the Gross Domestic Product (G.D.P.. The „Least Squares Method” represents a statistical technique for to determine the trend line of the best fit concerning a model.
Applied systems ecology: models, data, and statistical methods
Energy Technology Data Exchange (ETDEWEB)
Eberhardt, L L
1976-01-01
In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.
Analyzing sickness absence with statistical models for survival data
DEFF Research Database (Denmark)
Christensen, Karl Bang; Andersen, Per Kragh; Smith-Hansen, Lars
2007-01-01
OBJECTIVES: Sickness absence is the outcome in many epidemiologic studies and is often based on summary measures such as the number of sickness absences per year. In this study the use of modern statistical methods was examined by making better use of the available information. Since sickness...... absence data deal with events occurring over time, the use of statistical models for survival data has been reviewed, and the use of frailty models has been proposed for the analysis of such data. METHODS: Three methods for analyzing data on sickness absences were compared using a simulation study...... involving the following: (i) Poisson regression using a single outcome variable (number of sickness absences), (ii) analysis of time to first event using the Cox proportional hazards model, and (iii) frailty models, which are random effects proportional hazards models. Data from a study of the relation...
A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects
Directory of Open Access Journals (Sweden)
Shuai Luo
2016-02-01
Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.
The input and output management of solid waste using DEA models: A case study at Jengka, Pahang
Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah
2017-08-01
Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.
International Nuclear Information System (INIS)
Zhang, Yan; Zheng, Hongmei; Yang, Zhifeng; Su, Meirong; Liu, Gengyuan; Li, Yanxian
2015-01-01
Chinese regions frequently exchange materials, but regional differences in economic development create unbalanced flows of these resources. In this study, we examined energy by assessing embodied energy consumption to describe the energy-flow structure in China's seven regions. Based on multi-regional monetary input–output tables and energy statistical yearbooks for Chinese provinces in 2002 and 2007, we accounted for both direct and indirect energy consumption, respectively, and the integral input and output of the provinces. Most integral inputs of energy flowed from north to south or from east to west, whereas integral output flows were mainly from northeast to southwest. This differed from the direct flows, which were predominantly from north to south and west to east. This demonstrates the importance of calculating both direct and indirect energy flows. Analysis of the distance and direction traveled by the energy consumption centers of gravity showed that the centers for embodied energy consumption and inputs moved southeast because of the movements of the centers of the Eastern region. However, the center for outputs moved northeast because the movement of the Central region. These analyses provide a basis for identifying how regional economic development policies influence the embodied energy consumption and its flows among regions. - Highlights: • We integrated multi-regional input–output analysis with ecological network analysis. • We accounted for both direct and indirect energy consumption. • The centers of gravity for embodied energy flows moved southeast from 2002 to 2007. • The results support planning of energy consumption and energy flows among regions.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.
2017-12-01
The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.
International Nuclear Information System (INIS)
Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung
2012-01-01
Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.
Simple classical model for Fano statistics in radiation detectors
Energy Technology Data Exchange (ETDEWEB)
Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)
2008-02-01
A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.
Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J
2011-09-01
When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.
Development of 3D statistical mandible models for cephalometric measurements
International Nuclear Information System (INIS)
Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Hong, Helen; Yoo, Ji Hyun
2012-01-01
The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.
Development of 3D statistical mandible models for cephalometric measurements
Energy Technology Data Exchange (ETDEWEB)
Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)
2012-09-15
The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.
Statistical sampling and modelling for cork oak and eucalyptus stands
Paulo, M.J.
2002-01-01
This thesis focuses on the use of modern statistical methods to solve problems on sampling, optimal cutting time and agricultural modelling in Portuguese cork oak and eucalyptus stands. The results are contained in five chapters that have been submitted for publication
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Statistical Modeling of Energy Production by Photovoltaic Farms
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Pelikán, Emil; Krč, Pavel; Eben, Kryštof; Musílek, P.
2011-01-01
Roč. 5, č. 9 (2011), s. 785-793 ISSN 1934-8975 Grant - others:GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : electrical energy * solar energy * numerical weather prediction model * nonparametric regression * beta regression Subject RIV: BB - Applied Statistics, Operational Research
Model selection for contingency tables with algebraic statistics
Krampe, A.; Kuhnt, S.; Gibilisco, P.; Riccimagno, E.; Rogantin, M.P.; Wynn, H.P.
2009-01-01
Goodness-of-fit tests based on chi-square approximations are commonly used in the analysis of contingency tables. Results from algebraic statistics combined with MCMC methods provide alternatives to the chi-square approximation. However, within a model selection procedure usually a large number of
Syntactic discriminative language model rerankers for statistical machine translation
Carter, S.; Monz, C.
2011-01-01
This article describes a method that successfully exploits syntactic features for n-best translation candidate reranking using perceptrons. We motivate the utility of syntax by demonstrating the superior performance of parsers over n-gram language models in differentiating between Statistical
Using statistical compatibility to derive advanced probabilistic fatigue models
Czech Academy of Sciences Publication Activity Database
Fernández-Canteli, A.; Castillo, E.; López-Aenlle, M.; Seitl, Stanislav
2010-01-01
Roč. 2, č. 1 (2010), s. 1131-1140 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue models * Statistical compatibility * Functional equations Subject RIV: JL - Materials Fatigue, Friction Mechanics
Statistical properties of the nuclear shell-model Hamiltonian
International Nuclear Information System (INIS)
Dias, H.; Hussein, M.S.; Oliveira, N.A. de
1986-01-01
The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt
Hierarchical modelling for the environmental sciences statistical methods and applications
Clark, James S
2006-01-01
New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.
A Statistical Model for the Estimation of Natural Gas Consumption
Czech Academy of Sciences Publication Activity Database
Vondráček, Jiří; Pelikán, Emil; Konár, Ondřej; Čermáková, Jana; Eben, Kryštof; Malý, Marek; Brabec, Marek
2008-01-01
Roč. 85, c. 5 (2008), s. 362-370 ISSN 0306-2619 R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear regression * gas consumption modeling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.371, year: 2008
Statistical learning modeling method for space debris photometric measurement
Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen
2016-03-01
Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.
Workshop on Model Uncertainty and its Statistical Implications
1988-01-01
In this book problems related to the choice of models in such diverse fields as regression, covariance structure, time series analysis and multinomial experiments are discussed. The emphasis is on the statistical implications for model assessment when the assessment is done with the same data that generated the model. This is a problem of long standing, notorious for its difficulty. Some contributors discuss this problem in an illuminating way. Others, and this is a truly novel feature, investigate systematically whether sample re-use methods like the bootstrap can be used to assess the quality of estimators or predictors in a reliable way given the initial model uncertainty. The book should prove to be valuable for advanced practitioners and statistical methodologists alike.
Statistical models describing the energy signature of buildings
DEFF Research Database (Denmark)
Bacher, Peder; Madsen, Henrik; Thavlov, Anders
2010-01-01
Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA......-values, time constants of the building, and other parameters related to the heat dynamics. A method for selecting the most appropriate model for a given building is outlined and finally a perspective of the applications is given. Aknowledgements to the Danish Energy Saving Trust and the Interreg IV ``Vind i...
Improved air ventilation rate estimation based on a statistical model
International Nuclear Information System (INIS)
Brabec, M.; Jilek, K.
2004-01-01
A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements
Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.
1979-12-01
also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970
Statistical and RBF NN models : providing forecasts and risk assessment
Marček, Milan
2009-01-01
Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...
A Statistical Model for Synthesis of Detailed Facial Geometry
Golovinskiy, Aleksey; Matusik, Wojciech; Pfister, Hanspeter; Rusinkiewicz, Szymon; Funkhouser, Thomas
2006-01-01
Detailed surface geometry contributes greatly to the visual realism of 3D face models. However, acquiring high-resolution face geometry is often tedious and expensive. Consequently, most face models used in games, virtual reality, or computer vision look unrealistically smooth. In this paper, we introduce a new statistical technique for the analysis and synthesis of small three-dimensional facial features, such as wrinkles and pores. We acquire high-resolution face geometry for people across ...
Statistical modelling of transcript profiles of differentially regulated genes
Directory of Open Access Journals (Sweden)
Sergeant Martin J
2008-07-01
Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data
WE-A-201-02: Modern Statistical Modeling
Energy Technology Data Exchange (ETDEWEB)
Niemierko, A.
2016-06-15
Chris Marshall: Memorial Introduction Donald Edmonds Herbert Jr., or Don to his colleagues and friends, exemplified the “big tent” vision of medical physics, specializing in Applied Statistics and Dynamical Systems theory. He saw, more clearly than most, that “Making models is the difference between doing science and just fooling around [ref Woodworth, 2004]”. Don developed an interest in chemistry at school by “reading a book” - a recurring theme in his story. He was awarded a Westinghouse Science scholarship and attended the Carnegie Institute of Technology (later Carnegie Mellon University) where his interest turned to physics and led to a BS in Physics after transfer to Northwestern University. After (voluntary) service in the Navy he earned his MS in Physics from the University of Oklahoma, which led him to Johns Hopkins University in Baltimore to pursue a PhD. The early death of his wife led him to take a salaried position in the Physics Department of Colorado College in Colorado Springs so as to better care for their young daughter. There, a chance invitation from Dr. Juan del Regato to teach physics to residents at the Penrose Cancer Hospital introduced him to Medical Physics, and he decided to enter the field. He received his PhD from the University of London (UK) under Prof. Joseph Rotblat, where I first met him, and where he taught himself statistics. He returned to Penrose as a clinical medical physicist, also largely self-taught. In 1975 he formalized an evolving interest in statistical analysis as Professor of Radiology and Head of the Division of Physics and Statistics at the College of Medicine of the University of South Alabama in Mobile, AL where he remained for the rest of his career. He also served as the first Director of their Bio-Statistics and Epidemiology Core Unit working in part on a sickle-cell disease. After retirement he remained active as Professor Emeritus. Don served for several years as a consultant to the Nuclear
WE-A-201-02: Modern Statistical Modeling
International Nuclear Information System (INIS)
Niemierko, A.
2016-01-01
Chris Marshall: Memorial Introduction Donald Edmonds Herbert Jr., or Don to his colleagues and friends, exemplified the “big tent” vision of medical physics, specializing in Applied Statistics and Dynamical Systems theory. He saw, more clearly than most, that “Making models is the difference between doing science and just fooling around [ref Woodworth, 2004]”. Don developed an interest in chemistry at school by “reading a book” - a recurring theme in his story. He was awarded a Westinghouse Science scholarship and attended the Carnegie Institute of Technology (later Carnegie Mellon University) where his interest turned to physics and led to a BS in Physics after transfer to Northwestern University. After (voluntary) service in the Navy he earned his MS in Physics from the University of Oklahoma, which led him to Johns Hopkins University in Baltimore to pursue a PhD. The early death of his wife led him to take a salaried position in the Physics Department of Colorado College in Colorado Springs so as to better care for their young daughter. There, a chance invitation from Dr. Juan del Regato to teach physics to residents at the Penrose Cancer Hospital introduced him to Medical Physics, and he decided to enter the field. He received his PhD from the University of London (UK) under Prof. Joseph Rotblat, where I first met him, and where he taught himself statistics. He returned to Penrose as a clinical medical physicist, also largely self-taught. In 1975 he formalized an evolving interest in statistical analysis as Professor of Radiology and Head of the Division of Physics and Statistics at the College of Medicine of the University of South Alabama in Mobile, AL where he remained for the rest of his career. He also served as the first Director of their Bio-Statistics and Epidemiology Core Unit working in part on a sickle-cell disease. After retirement he remained active as Professor Emeritus. Don served for several years as a consultant to the Nuclear
Directory of Open Access Journals (Sweden)
Guangyi Zhang
2016-09-01
Full Text Available In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.
International Nuclear Information System (INIS)
Weathers, J.B.; Luck, R.; Weathers, J.W.
2009-01-01
The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.
Energy Technology Data Exchange (ETDEWEB)
Weathers, J.B. [Shock, Noise, and Vibration Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: James.Weathers@ngc.com; Luck, R. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)], E-mail: Luck@me.msstate.edu; Weathers, J.W. [Structural Analysis Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: Jeffrey.Weathers@ngc.com
2009-11-15
The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.
Computer modelling of statistical properties of SASE FEL radiation
International Nuclear Information System (INIS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1997-01-01
The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY
Stochastic geometry, spatial statistics and random fields models and algorithms
2015-01-01
Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.
International Nuclear Information System (INIS)
Liu, Xiuli; Moreno, Blanca; García, Ana Salomé
2016-01-01
A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.
Does the DHET research output subsidy model penalise high-citation publication? A case study
Yolande X. Harley; Esmari Huysamen; Carlette Hlungwani; Tania S. Douglas
2016-01-01
South African universities are awarded annual subsidy from the Department of Higher Education and Training (DHET) based on their research publication output. Journal article subsidy is based on the number of research publications in DHET-approved journals as well as the proportional contribution of authors from the university. Co-authorship with other institutions reduces the subsidy received by a university, which may be a disincentive to collaboration. Inter-institutional collaboration may ...
GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science
Caron, L.; Ivins, E. R.; Larour, E.; Adhikari, S.; Nilsson, J.; Blewitt, G.
2018-03-01
We provide a new analysis of glacial isostatic adjustment (GIA) with the goal of assembling the model uncertainty statistics required for rigorously extracting trends in surface mass from the Gravity Recovery and Climate Experiment (GRACE) mission. Such statistics are essential for deciphering sea level, ocean mass, and hydrological changes because the latter signals can be relatively small (≤2 mm/yr water height equivalent) over very large regions, such as major ocean basins and watersheds. With abundant new >7 year continuous measurements of vertical land motion (VLM) reported by Global Positioning System stations on bedrock and new relative sea level records, our new statistical evaluation of GIA uncertainties incorporates Bayesian methodologies. A unique aspect of the method is that both the ice history and 1-D Earth structure vary through a total of 128,000 forward models. We find that best fit models poorly capture the statistical inferences needed to correctly invert for lower mantle viscosity and that GIA uncertainty exceeds the uncertainty ascribed to trends from 14 years of GRACE data in polar regions.
A Model Fit Statistic for Generalized Partial Credit Model
Liang, Tie; Wells, Craig S.
2009-01-01
Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…
Risk prediction model: Statistical and artificial neural network approach
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.
2009-04-01
Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg
Statistical model selection with “Big Data”
Directory of Open Access Journals (Sweden)
Jurgen A. Doornik
2015-12-01
Full Text Available Big Data offer potential benefits for statistical modelling, but confront problems including an excess of false positives, mistaking correlations for causes, ignoring sampling biases and selecting by inappropriate methods. We consider the many important requirements when searching for a data-based relationship using Big Data, and the possible role of Autometrics in that context. Paramount considerations include embedding relationships in general initial models, possibly restricting the number of variables to be selected over by non-statistical criteria (the formulation problem, using good quality data on all variables, analyzed with tight significance levels by a powerful selection procedure, retaining available theory insights (the selection problem while testing for relationships being well specified and invariant to shifts in explanatory variables (the evaluation problem, using a viable approach that resolves the computational problem of immense numbers of possible models.
Experimental, statistical, and biological models of radon carcinogenesis
International Nuclear Information System (INIS)
Cross, F.T.
1991-09-01
Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig
Multimesonic decays of charmonium states in the statistical quark model
International Nuclear Information System (INIS)
Montvay, I.; Toth, J.D.
1978-01-01
The data known at present of multimesonic decays of chi and psi states are fitted in a statistical quark model, in which the matrix elements are assumed to be constant and resonances as well as both strong and second order electromagnetic processes are taken into account. The experimental data are well reproduced by the model. Unknown branching ratios for the rest of multimesonic channels are predicted. The fit leaves about 40% for baryonic and radiative channels in the case of J/psi(3095). The fitted parameters of the J/psi decays are used to predict the mesonic decays of the pseudoscalar eta c. The statistical quark model seems to allow the calculation of competitive multiparticle processes for the studied decays. (D.P.)
Statistical 3D damage accumulation model for ion implant simulators
Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.
Statistical 3D damage accumulation model for ion implant simulators
International Nuclear Information System (INIS)
Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided
SoS contract verification using statistical model checking
Directory of Open Access Journals (Sweden)
Alessandro Mignogna
2013-11-01
Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.
Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation
Platnick, Steven E.
2011-01-01
The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.
Steam generators clogging diagnosis through physical and statistical modelling
International Nuclear Information System (INIS)
Girard, S.
2012-01-01
Steam generators are massive heat exchangers feeding the turbines of pressurised water nuclear power plants. Internal parts of steam generators foul up with iron oxides which gradually close some holes aimed for the passing of the fluid. This phenomenon called clogging causes safety issues and means to assess it are needed to optimise the maintenance strategy. The approach investigated in this thesis is the analysis of steam generators dynamic behaviour during power transients with a mono dimensional physical model. Two improvements to the model have been implemented. One was taking into account flows orthogonal to the modelling axis, the other was introducing a slip between phases accounting for velocity difference between liquid water and steam. These two elements increased the model's degrees of freedom and improved the adequacy of the simulation to plant data. A new calibration and validation methodology has been proposed to assess the robustness of the model. The initial inverse problem was ill posed: different clogging spatial configurations can produce identical responses. The relative importance of clogging, depending on its localisation, has been estimated by sensitivity analysis with the Sobol' method. The dimension of the model functional output had been previously reduced by principal components analysis. Finally, the input dimension has been reduced by a technique called sliced inverse regression. Based on this new framework, a new diagnosis methodology, more robust and better understood than the existing one, has been proposed. (author)
Structural reliability in context of statistical uncertainties and modelling discrepancies
International Nuclear Information System (INIS)
Pendola, Maurice
2000-01-01
Structural reliability methods have been largely improved during the last years and have showed their ability to deal with uncertainties during the design stage or to optimize the functioning and the maintenance of industrial installations. They are based on a mechanical modeling of the structural behavior according to the considered failure modes and on a probabilistic representation of input parameters of this modeling. In practice, only limited statistical information is available to build the probabilistic representation and different sophistication levels of the mechanical modeling may be introduced. Thus, besides the physical randomness, other uncertainties occur in such analyses. The aim of this work is triple: 1. at first, to propose a methodology able to characterize the statistical uncertainties due to the limited number of data in order to take them into account in the reliability analyses. The obtained reliability index measures the confidence in the structure considering the statistical information available. 2. Then, to show a methodology leading to reliability results evaluated from a particular mechanical modeling but by using a less sophisticated one. The objective is then to decrease the computational efforts required by the reference modeling. 3. Finally, to propose partial safety factors that are evolving as a function of the number of statistical data available and as a function of the sophistication level of the mechanical modeling that is used. The concepts are illustrated in the case of a welded pipe and in the case of a natural draught cooling tower. The results show the interest of the methodologies in an industrial context. [fr
Statistical meandering wake model and its application to yaw-angle optimisation of wind farms
International Nuclear Information System (INIS)
Thøgersen, E; Tranberg, B; Greiner, M; Herp, J
2017-01-01
The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms. (paper)
Statistical meandering wake model and its application to yaw-angle optimisation of wind farms
Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M.
2017-05-01
The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.
Martin, Justin D.
2017-01-01
This essay presents data from a census of statistics requirements and offerings at all 4-year journalism programs in the United States (N = 369) and proposes a model of a potential course in statistics for journalism majors. The author proposes that three philosophies underlie a statistics course for journalism students. Such a course should (a)…
A statistical model for radar images of agricultural scenes
Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.
1982-01-01
The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.
International Nuclear Information System (INIS)
Evans, Philip M.; Mosleh-Shirazi, M. Amin; Harris, Emma J.; Seco, Joao
2006-01-01
A new model of the light output from single-crystal scintillators in megavoltage energy x-ray beams has been developed, based on the concept of a Lambertian light guide model (LLG). This was evaluated in comparison with a Monte Carlo (MC) model of optical photon transport, previously developed and reported in the literature, which was used as a gold standard. The LLG model was developed to enable optimization of scintillator detector design. In both models the dose deposition and light propagation were decoupled, the scintillators were cuboids, split into a series of cells as a function of depth, with Lambertian side and entrance faces, and a specular exit face. The signal in a sensor placed 1 and 1000 mm beyond the exit face was calculated. Cesium iodide (CSI) crystals of 1.5 and 3 mm square cross section and 1, 5, and 10 mm depth were modeled. Both models were also used to determine detector signal and optical gain factor as a function of CsI scintillator thickness, from 2 to 10 mm. Results showed a variation in light output with position of dose deposition of a factor of up to approximately 5, for long, thin scintillators (such as 10x1.5x1.5 mm 3 ). For short, fat scintillators (such as 1x3x3 mm 3 ) the light output was more uniform with depth. MC and LLG generally agreed to within 5%. Results for a sensor distance of 1 mm showed an increase in light output the closer the light originates to the exit face, while a distance of 1000 mm showed a decrease in light output the closer the light originates to the exit face. For a sensor distance of 1 mm, the ratio of signal for a 10 mm scintillator to that for a 2 mm scintillator was 1.98, whereas for the 1000 mm distance the ratio was 3.00. The ratio of quantum efficiency (QE) between 10 and 2 mm thicknesses was 4.62. We conclude that these models may be used for detector optimization, with the light guide model suitable for parametric study
Discrete ellipsoidal statistical BGK model and Burnett equations
Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei
2018-06-01
A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.
Statistics of a neuron model driven by asymmetric colored noise.
Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin
2015-02-01
Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.
Spatio-temporal statistical models with applications to atmospheric processes
International Nuclear Information System (INIS)
Wikle, C.K.
1996-01-01
This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model
Solar radiation data - statistical analysis and simulation models
Energy Technology Data Exchange (ETDEWEB)
Mustacchi, C; Cena, V; Rocchi, M; Haghigat, F
1984-01-01
The activities consisted in collecting meteorological data on magnetic tape for ten european locations (with latitudes ranging from 42/sup 0/ to 56/sup 0/ N), analysing the multi-year sequences, developing mathematical models to generate synthetic sequences having the same statistical properties of the original data sets, and producing one or more Short Reference Years (SRY's) for each location. The meteorological parameters examinated were (for all the locations) global + diffuse radiation on horizontal surface, dry bulb temperature, sunshine duration. For some of the locations additional parameters were available, namely, global, beam and diffuse radiation on surfaces other than horizontal, wet bulb temperature, wind velocity, cloud type, cloud cover. The statistical properties investigated were mean, variance, autocorrelation, crosscorrelation with selected parameters, probability density function. For all the meteorological parameters, various mathematical models were built: linear regression, stochastic models of the AR and the DAR type. In each case, the model with the best statistical behaviour was selected for the production of a SRY for the relevant parameter/location.
A statistical model for porous structure of rocks
Institute of Scientific and Technical Information of China (English)
JU Yang; YANG YongMing; SONG ZhenDuo; XU WenJing
2008-01-01
The geometric features and the distribution properties of pores in rocks were In-vestigated by means of CT scanning tests of sandstones. The centroidal coordl-nares of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob-ability density functions upon which the random distribution of pore position, dis-tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex-amine the stress distribution, the pattern of element failure and the inoaculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.
A statistical model for porous structure of rocks
Institute of Scientific and Technical Information of China (English)
2008-01-01
The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.
Bayesian statistic methods and theri application in probabilistic simulation models
Directory of Open Access Journals (Sweden)
Sergio Iannazzo
2007-03-01
Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.
Can spatial statistical river temperature models be transferred between catchments?
Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.
2017-09-01
There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across
Probing the exchange statistics of one-dimensional anyon models
Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis
2018-05-01
We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.
Statistical inference to advance network models in epidemiology.
Welch, David; Bansal, Shweta; Hunter, David R
2011-03-01
Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.
Statistical Modeling of Large Wind Plant System's Generation - A Case Study
International Nuclear Information System (INIS)
Sabolic, D.
2014-01-01
This paper presents simplistic, yet very accurate, descriptive statistical models of various static and dynamic parameters of energy output from a large system of wind plants operated by Bonneville Power Administration (BPA), USA. The system's size at the end of 2013 was 4515 MW of installed capacity. The 5-minute readings from the beginning of 2007 to the end of 2013, recorded and published by BPA, were used to derive a number of experimental distributions, which were then used to devise theoretic statistical models with merely one or two parameters. In spite of the simplicity, they reproduced experimental data with great accuracy, which was checked by rigorous tests of goodness-of-fit. Statistical distribution functions were obtained for the following wind generation-related quantities: total generation as percentage of total installed capacity; change in total generation power in 5, 10, 15, 20, 25, 30, 45, and 60 minutes as percentage of total installed capacity; duration of intervals with total generated power, expressed as percentage of total installed capacity, lower than certain pre-specified level. Limitation of total installed wind plant capacity, when it is determined by regulation demand from wind plants, is discussed, too. The models presented here can be utilized in analyses related to power system economics/policy, which is also briefly discussed in the paper. (author).
Statistical models of a gas diffusion electrode: II. Current resistent
Energy Technology Data Exchange (ETDEWEB)
Proksch, D B; Winsel, O W
1965-07-01
The authors describe an apparatus for measuring the flow resistance of gas diffusion electrodes which is a mechanical analog of the Wheatstone bridge for measuring electric resistance. The flow resistance of a circular DSK electrode sheet, consisting of two covering layers and a working layer between them, was measured as a function of the gas pressure. While the pressure first was increased and then decreased, a hysteresis occurred, which is discussed and explained by a statistical model of a porous electrode.
A Statistical Model for Soliton Particle Interaction in Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans; Truelsen, J.
1986-01-01
A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....
Statistical model of a gas diffusion electrode. III. Photomicrograph study
Energy Technology Data Exchange (ETDEWEB)
Winsel, A W
1965-12-01
A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.
A statistical model of structure functions and quantum chromodynamics
International Nuclear Information System (INIS)
Mac, E.; Ugaz, E.; Universidad Nacional de Ingenieria, Lima
1989-01-01
We consider a model for the x-dependence of the quark distributions in the proton. Within the context of simple statistical assumptions, we obtain the parton densities in the infinite momentum frame. In a second step lowest order QCD corrections are incorporated to these distributions. Crude, but reasonable, agreement with experiment is found for the F 2 , valence and q, anti q distributions for x> or approx.0.2. (orig.)
Modeling the basic superconductor thermodynamical-statistical characteristics
International Nuclear Information System (INIS)
Palenskis, V.; Maknys, K.
1999-01-01
In accordance with the Landau second-order phase transition and other thermodynamical-statistical relations for superconductors, and using the energy gap as an order parameter in the electron free energy presentation, the fundamental characteristics of electrons, such as the free energy, the total energy, the energy gap, the entropy, and the heat capacity dependences on temperature were obtained. The obtained modeling results, in principle, well reflect the basic low- and high-temperature superconductor characteristics
Environmental radionuclide concentrations: statistical model to determine uniformity of distribution
International Nuclear Information System (INIS)
Cawley, C.N.; Fenyves, E.J.; Spitzberg, D.B.; Wiorkowski, J.; Chehroudi, M.T.
1980-01-01
In the evaluation of data from environmental sampling and measurement, a basic question is whether the radionuclide (or pollutant) is distributed uniformly. Since physical measurements have associated errors, it is inappropriate to consider the measurements alone in this determination. Hence, a statistical model has been developed. It consists of a weighted analysis of variance with subsequent t-tests between weighted and independent means. A computer program to perform the calculations is included
International Nuclear Information System (INIS)
De Oliveira, Z.M.
1980-01-01
A detailed analysis of the simple statistical model description for delayed neutron emission of 87 Br, 137 I, 85 As and 135 Sb has been performed. In agreement with experimental findings, structure in the #betta#-strength function is required to reproduce the envelope of the neutron spectrum from 87 Br. For 85 As and 135 Sb the model is found incapable of simultaneously reproducing envelopes of delayed neutron spectra and neutron branching ratios to excited states in the final nuclei for any choice of #betta#-strength function. The results indicate that partial widths for neutron emission are not compatible with optical-model transmission coefficients. The simple shell model with pairing is shown to qualitatively describe the main features of the #betta#-strength functions for decay of 87 Br and 91 93 95 97 Rb. It is found that the location of apparent resonances in the experimental data are in rough agreement with the location of centroids of strength calculated with this model. An extension of the shell model picture which includes the Gamow-Teller residual interaction is used to investigate decay properties of 84 86 As, 86 92 Br and 88 102 Rb. For a realistic choice of interaction strength, the half lives of these isotopes are fairly well reproduced and semiquantitative agreement with experimental #betta#-strength functions is found. Delayed neutron emission probabilities are reproduced for precursors nearer stability with systematic deviations being observed for the heavier nuclei. Contrary to the assumption of a structureless Gamow-Teller giant resonance as embodied gross theory of #betta#-decay, we find that structures in the tail of the Gamow-Teller giant resonances are expected which strongly influence the decay properties of nuclides in this region
Energy Technology Data Exchange (ETDEWEB)
Nillius, Peter, E-mail: nillius@mi.physics.kth.se; Klamra, Wlodek; Danielsson, Mats [Royal Institute of Technology (KTH), Stockholm SE-100 44 (Sweden); Sibczynski, Pawel [National Centre for Nuclear Research, Otwock 05-400 (Poland); Sharma, Diksha; Badano, Aldo [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Silver Spring, Maryland 20993 (United States)
2015-02-15
Purpose: The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. Methods: The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridMANTIS, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. Results: The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV{sup −1} while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV{sup −1}. The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the
Statistical methods for mechanistic model validation: Salt Repository Project
International Nuclear Information System (INIS)
Eggett, D.L.
1988-07-01
As part of the Department of Energy's Salt Repository Program, Pacific Northwest Laboratory (PNL) is studying the emplacement of nuclear waste containers in a salt repository. One objective of the SRP program is to develop an overall waste package component model which adequately describes such phenomena as container corrosion, waste form leaching, spent fuel degradation, etc., which are possible in the salt repository environment. The form of this model will be proposed, based on scientific principles and relevant salt repository conditions with supporting data. The model will be used to predict the future characteristics of the near field environment. This involves several different submodels such as the amount of time it takes a brine solution to contact a canister in the repository, how long it takes a canister to corrode and expose its contents to the brine, the leach rate of the contents of the canister, etc. These submodels are often tested in a laboratory and should be statistically validated (in this context, validate means to demonstrate that the model adequately describes the data) before they can be incorporated into the waste package component model. This report describes statistical methods for validating these models. 13 refs., 1 fig., 3 tabs
Estimating preferential flow in karstic aquifers using statistical mixed models.
Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N
2014-01-01
Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.
A generalized statistical model for the size distribution of wealth
International Nuclear Information System (INIS)
Clementi, F; Gallegati, M; Kaniadakis, G
2012-01-01
In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature. (paper)
A generalized statistical model for the size distribution of wealth
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2012-12-01
In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.
UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata
DEFF Research Database (Denmark)
Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand
2012-01-01
on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. U PPAAL - SMC comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback...... in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool – including modeling and specification formalisms as well as techniques applied – together with applications of the tool to case studies....
A model independent safeguard against background mismodeling for statistical inference
Energy Technology Data Exchange (ETDEWEB)
Priel, Nadav; Landsman, Hagar; Manfredini, Alessandro; Budnik, Ranny [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl St. 234, Rehovot (Israel); Rauch, Ludwig, E-mail: nadav.priel@weizmann.ac.il, E-mail: rauch@mpi-hd.mpg.de, E-mail: hagar.landsman@weizmann.ac.il, E-mail: alessandro.manfredini@weizmann.ac.il, E-mail: ran.budnik@weizmann.ac.il [Teilchen- und Astroteilchenphysik, Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)
2017-05-01
We propose a safeguard procedure for statistical inference that provides universal protection against mismodeling of the background. The method quantifies and incorporates the signal-like residuals of the background model into the likelihood function, using information available in a calibration dataset. This prevents possible false discovery claims that may arise through unknown mismodeling, and corrects the bias in limit setting created by overestimated or underestimated background. We demonstrate how the method removes the bias created by an incomplete background model using three realistic case studies.
Scalzo, F.
1983-01-01
Sensor redundancy management (SRM) requires a system which will detect failures and reconstruct avionics accordingly. A probability density function to determine false alarm rates, using an algorithmic approach was generated. Microcomputer software was developed which will print out tables of values for the cummulative probability of being in the domain of failure; system reliability; and false alarm probability, given a signal is in the domain of failure. The microcomputer software was applied to the sensor output data for various AFT1 F-16 flights and sensor parameters. Practical recommendations for further research were made.
Document Categorization with Modified Statistical Language Models for Agglutinative Languages
Directory of Open Access Journals (Sweden)
Tantug
2010-11-01
Full Text Available In this paper, we investigate the document categorization task with statistical language models. Our study mainly focuses on categorization of documents in agglutinative languages. Due to the productive morphology of agglutinative languages, the number of word forms encountered in naturally occurring text is very large. From the language modeling perspective, a large vocabulary results in serious data sparseness problems. In order to cope with this drawback, previous studies in various application areas suggest modified language models based on different morphological units. It is reported that performance improvements can be achieved with these modified language models. In our document categorization experiments, we use standard word form based language models as well as other modified language models based on root words, root words and part-of-speech information, truncated word forms and character sequences. Additionally, to find an optimum parameter set, multiple tests are carried out with different language model orders and smoothing methods. Similar to previous studies on other tasks, our experimental results on categorization of Turkish documents reveal that applying linguistic preprocessing steps for language modeling provides improvements over standard language models to some extent. However, it is also observed that similar level of performance improvements can also be acquired by simpler character level or truncated word form models which are language independent.
Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data
White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.
2017-12-01
As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.
A neighborhood statistics model for predicting stream pathogen indicator levels.
Pandey, Pramod K; Pasternack, Gregory B; Majumder, Mahbubul; Soupir, Michelle L; Kaiser, Mark S
2015-03-01
Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale.
Efficient Parallel Statistical Model Checking of Biochemical Networks
Directory of Open Access Journals (Sweden)
Paolo Ballarini
2009-12-01
Full Text Available We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.
Statistical models for expert judgement and wear prediction
International Nuclear Information System (INIS)
Pulkkinen, U.
1994-01-01
This thesis studies the statistical analysis of expert judgements and prediction of wear. The point of view adopted is the one of information theory and Bayesian statistics. A general Bayesian framework for analyzing both the expert judgements and wear prediction is presented. Information theoretic interpretations are given for some averaging techniques used in the determination of consensus distributions. Further, information theoretic models are compared with a Bayesian model. The general Bayesian framework is then applied in analyzing expert judgements based on ordinal comparisons. In this context, the value of information lost in the ordinal comparison process is analyzed by applying decision theoretic concepts. As a generalization of the Bayesian framework, stochastic filtering models for wear prediction are formulated. These models utilize the information from condition monitoring measurements in updating the residual life distribution of mechanical components. Finally, the application of stochastic control models in optimizing operational strategies for inspected components are studied. Monte-Carlo simulation methods, such as the Gibbs sampler and the stochastic quasi-gradient method, are applied in the determination of posterior distributions and in the solution of stochastic optimization problems. (orig.) (57 refs., 7 figs., 1 tab.)
Model-generated air quality statistics for application in vegetation response models in Alberta
International Nuclear Information System (INIS)
McVehil, G.E.; Nosal, M.
1990-01-01
To test and apply vegetation response models in Alberta, air pollution statistics representative of various parts of the Province are required. At this time, air quality monitoring data of the requisite accuracy and time resolution are not available for most parts of Alberta. Therefore, there exists a need to develop appropriate air quality statistics. The objectives of the work reported here were to determine the applicability of model generated air quality statistics and to develop by modelling, realistic and representative time series of hourly SO 2 concentrations that could be used to generate the statistics demanded by vegetation response models
The GNASH preequilibrium-statistical nuclear model code
International Nuclear Information System (INIS)
Arthur, E. D.
1988-01-01
The following report is based on materials presented in a series of lectures at the International Center for Theoretical Physics, Trieste, which were designed to describe the GNASH preequilibrium statistical model code and its use. An overview is provided of the code with emphasis upon code's calculational capabilities and the theoretical models that have been implemented in it. Two sample problems are discussed, the first dealing with neutron reactions on 58 Ni. the second illustrates the fission model capabilities implemented in the code and involves n + 235 U reactions. Finally a description is provided of current theoretical model and code development underway. Examples of calculated results using these new capabilities are also given. 19 refs., 17 figs., 3 tabs
The Impact of Statistical Leakage Models on Design Yield Estimation
Directory of Open Access Journals (Sweden)
Rouwaida Kanj
2011-01-01
Full Text Available Device mismatch and process variation models play a key role in determining the functionality and yield of sub-100 nm design. Average characteristics are often of interest, such as the average leakage current or the average read delay. However, detecting rare functional fails is critical for memory design and designers often seek techniques that enable accurately modeling such events. Extremely leaky devices can inflict functionality fails. The plurality of leaky devices on a bitline increase the dimensionality of the yield estimation problem. Simplified models are possible by adopting approximations to the underlying sum of lognormals. The implications of such approximations on tail probabilities may in turn bias the yield estimate. We review different closed form approximations and compare against the CDF matching method, which is shown to be most effective method for accurate statistical leakage modeling.
Schedulability of Herschel revisited using statistical model checking
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel
2015-01-01
-approximation technique. We can safely conclude that the system is schedulable for varying values of BCET. For the cases where deadlines are violated, we use polyhedra to try to confirm the witnesses. Our alternative method to confirm non-schedulability uses statistical model-checking (SMC) to generate counter...... and blocking times of tasks. Consequently, the method may falsely declare deadline violations that will never occur during execution. This paper is a continuation of previous work of the authors in applying extended timed automata model checking (using the tool UPPAAL) to obtain more exact schedulability...... analysis, here in the presence of non-deterministic computation times of tasks given by intervals [BCET,WCET]. Computation intervals with preemptive schedulers make the schedulability analysis of the resulting task model undecidable. Our contribution is to propose a combination of model checking techniques...
Experimental investigation of statistical models describing distribution of counts
International Nuclear Information System (INIS)
Salma, I.; Zemplen-Papp, E.
1992-01-01
The binomial, Poisson and modified Poisson models which are used for describing the statistical nature of the distribution of counts are compared theoretically, and conclusions for application are considered. The validity of the Poisson and the modified Poisson statistical distribution for observing k events in a short time interval is investigated experimentally for various measuring times. The experiments to measure the influence of the significant radioactive decay were performed with 89 Y m (T 1/2 =16.06 s), using a multichannel analyser (4096 channels) in the multiscaling mode. According to the results, Poisson statistics describe the counting experiment for short measuring times (up to T=0.5T 1/2 ) and its application is recommended. However, analysis of the data demonstrated, with confidence, that for long measurements (T≥T 1/2 ) Poisson distribution is not valid and the modified Poisson function is preferable. The practical implications in calculating uncertainties and in optimizing the measuring time are discussed. Differences between the standard deviations evaluated on the basis of the Poisson and binomial models are especially significant for experiments with long measuring time (T/T 1/2 ≥2) and/or large detection efficiency (ε>0.30). Optimization of the measuring time for paired observations yields the same solution for either the binomial or the Poisson distribution. (orig.)
Fast optimization of statistical potentials for structurally constrained phylogenetic models
Directory of Open Access Journals (Sweden)
Rodrigue Nicolas
2009-09-01
Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.
Estimating Predictive Variance for Statistical Gas Distribution Modelling
International Nuclear Information System (INIS)
Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo
2009-01-01
Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.