WorldWideScience

Sample records for model organisms representing

  1. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zeli [Pacific Northwest National Laboratory, Richland WA USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Li, Hongyi [Montana State University, Bozeman MT USA; Tesfa, Teklu [Pacific Northwest National Laboratory, Richland WA USA; Vanmaercke, Matthias [Département de Géographie, Université de Liège, Liege Belgium; Poesen, Jean [Department of Earth and Environmental Sciences, Division of Geography, KU Leuven, Leuven Belgium; Zhang, Xuesong [Pacific Northwest National Laboratory, Richland WA USA; Lu, Hui [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing China; Hartmann, Jens [Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg Germany

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  2. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    Science.gov (United States)

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi; Tesfa, Teklu; Vanmaercke, Matthias; Poesen, Jean; Zhang, Xuesong; Lu, Hui; Hartmann, Jens

    2017-12-01

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1,081 and 38 small catchments (0.1-200 km2), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important for SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.

  3. What Happens when Representations Fail to Represent? Graduate Students' Mental Models of Organic Chemistry Diagrams

    Science.gov (United States)

    Strickland, Amanda M.; Kraft, Adam; Bhattacharyya, Gautam

    2010-01-01

    As part of our investigations into the development of representational competence, we report results from a study in which we elicited sixteen graduate students' expressed mental models of commonly-used terms for describing organic reactions--functional group, nucleophile/electrophile, acid/base--and for diagrams of transformations and their…

  4. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.

    Science.gov (United States)

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  5. Why Don’t More Farmers Go Organic? Using A Stakeholder-Informed Exploratory Agent-Based Model to Represent the Dynamics of Farming Practices in the Philippines

    Directory of Open Access Journals (Sweden)

    Laura Schmitt Olabisi

    2015-10-01

    Full Text Available In spite of a growing interest in organic agriculture; there has been relatively little research on why farmers might choose to adopt organic methods, particularly in the developing world. To address this shortcoming, we developed an exploratory agent-based model depicting Philippine smallholder farmer decisions to implement organic techniques in rice paddy systems. Our modeling exercise was novel in its combination of three characteristics: first, agent rules were based on focus group data collected in the system of study. Second, a social network structure was built into the model. Third, we utilized variance-based sensitivity analysis to quantify model outcome variability, identify influential drivers, and suggest ways in which further modeling efforts could be focused and simplified. The model results indicated an upper limit on the number of farmers adopting organic methods. The speed of information spread through the social network; crop yields; and the size of a farmer’s plot were highly influential in determining agents’ adoption rates. The results of this stylized model indicate that rates of organic farming adoption are highly sensitive to the yield drop after switchover to organic techniques, and to the speed of information spread through existing social networks. Further research and model development should focus on these system characteristics.

  6. A Symbolic Logic for Representing Linear Models.

    Science.gov (United States)

    Hall, Charles E.

    A set of symbols is presented along with logical operators which represent the possible manipulations of the linear model. The use of these symbols and operators is to simplify the representation of analysis of variance models, correlation models and factor analysis models. (Author)

  7. Representing uncertainty on model analysis plots

    Directory of Open Access Journals (Sweden)

    Trevor I. Smith

    2016-09-01

    Full Text Available Model analysis provides a mechanism for representing student learning as measured by standard multiple-choice surveys. The model plot contains information regarding both how likely students in a particular class are to choose the correct answer and how likely they are to choose an answer consistent with a well-documented conceptual model. Unfortunately, Bao’s original presentation of the model plot did not include a way to represent uncertainty in these measurements. I present details of a method to add error bars to model plots by expanding the work of Sommer and Lindell. I also provide a template for generating model plots with error bars.

  8. Representing Uncertainty on Model Analysis Plots

    Science.gov (United States)

    Smith, Trevor I.

    2016-01-01

    Model analysis provides a mechanism for representing student learning as measured by standard multiple-choice surveys. The model plot contains information regarding both how likely students in a particular class are to choose the correct answer and how likely they are to choose an answer consistent with a well-documented conceptual model.…

  9. Representing Context in Hypermedia Data Models

    DEFF Research Database (Denmark)

    Hansen, Frank Allan

    2005-01-01

    As computers and software systems move beyond the desktopand into the physical environments we live and workin, the systems are required to adapt to these environmentsand the activities taking place within them. Making applicationscontext-aware and representing context informationalong side...... application data can be a challenging task. Thispaper describes how digital context traditionally has beenrepresented in hypermedia data models and how this representationcan scale to also represent physical context. TheHyCon framework and data model, designed for the developmentof mobile context...

  10. STATISTICAL MODELS OF REPRESENTING INTELLECTUAL CAPITAL

    Directory of Open Access Journals (Sweden)

    Andreea Feraru

    2016-06-01

    Full Text Available This article entitled Statistical Models of Representing Intellectual Capital approaches and analyses the concept of intellectual capital, as well as the main models which can support enterprisers/managers in evaluating and quantifying the advantages of intellectual capital. Most authors examine intellectual capital from a static perspective and focus on the development of its various evaluation models. In this chapter we surveyed the classical static models: Sveiby, Edvisson, Balanced Scorecard, as well as the canonical model of intellectual capital. Among the group of static models for evaluating organisational intellectual capital the canonical model stands out. This model enables the structuring of organisational intellectual capital in: human capital, structural capital and relational capital. Although the model is widely spread, it is a static one and can thus create a series of errors in the process of evaluation, because all the three entities mentioned above are not independent from the viewpoint of their contents, as any logic of structuring complex entities requires.

  11. SPECIFIC MODELS OF REPRESENTING THE INTELLECTUAL CAPITAL

    Directory of Open Access Journals (Sweden)

    Andreea Feraru

    2014-12-01

    Full Text Available Various scientists in the modern age of management have launched different models for evaluating intellectual capital, and some of these models are analysed critically in this study, too. Most authors examine intellectual capital from a static perspective and focus on the development of its various evaluation models. In this chapter we surveyed the classical static models: Sveiby, Edvisson, Balanced Scorecard, as well as the canonical model of intellectual capital. In a spectral dynamic analysis, organisational intellectual capital is structured in: organisational knowledge, organisational intelligence, organisational values, and their value is built on certain mechanisms entitled integrators, whose chief constitutive elements are: individual knowledge, individual intelligence and individual cultural values. The organizations, as employers, must especially reconsider those employees’ work who value knowledge because they are free to choose how, and especially where they are inclined to invest their own energy, skills and time, and they can be treated as freelancers or as some little entrepreneurs .

  12. Formal Information Model for Representing Production Resources

    OpenAIRE

    Siltala, Niko; Järvenpää, Eeva; Lanz, Minna

    2017-01-01

    Part 2: Intelligent Manufacturing Systems; International audience; This paper introduces a concept and associated descriptions to formally describe physical production resources for modular and reconfigurable production systems. These descriptions are source of formal information for (automatic) production system design and (re-)configuration. They can be further utilized during the system deployment and execution. The proposed concept and the underlying formal resource description model is c...

  13. A conceptual framework to represent the theoretical domain of “innovation capability” in organizations

    Directory of Open Access Journals (Sweden)

    Ramon B. Narcizo

    2017-01-01

    Full Text Available The term ‘innovation capability’ has been used recurrently in the innovation literature, but there is still considerable divergence about its meaning and implication to organizations. A consensus exists that, to innovate, organizations must possess innovation capability, and that the ownership of this feature is not a binary process, but rather an evolutionary level process. This evolutionary logic is analogous to the basic structure of organizational maturity models. However, the literature integrating innovation capability into a maturity perspective is still limited. Considering these premises, from a broad bibliographical research, this article presents a framework of reference to represent the entire theoretical domain of innovation capability. Its purpose is to classify the main types of models about this construct available in the reference literature. It is organized at increasing levels of complexity, so that each level creates the conceptual conditions for the construction of more comprehensive models. Similar to the main use cases for maturity models, there are three basic levels for the framework: descriptive; comparative; and, finally, prescriptive models of innovation capability. Considering this cumulative framework, the authors argue that, to be fully understood, innovation capability should be studied using the perspective of maturity models.

  14. Selection of Representative Models for Decision Analysis Under Uncertainty

    Science.gov (United States)

    Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.

    2016-03-01

    The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.

  15. Acquiring, Representing, and Evaluating a Competence Model of Diagnostic Strategy.

    Science.gov (United States)

    Clancey, William J.

    This paper describes NEOMYCIN, a computer program that models one physician's diagnostic reasoning within a limited area of medicine. NEOMYCIN's knowledge base and reasoning procedure constitute a model of how human knowledge is organized and how it is used in diagnosis. The hypothesis is tested that such a procedure can be used to simulate both…

  16. Analysis of Mental Processes Represented in Models of Artificial Consciousness

    Directory of Open Access Journals (Sweden)

    Luana Folchini da Costa

    2013-12-01

    Full Text Available The Artificial Consciousness concept has been used in the engineering area as being an evolution of the Artificial Intelligence. However, consciousness is a complex subject and often used without formalism. As a main contribution, in this work one proposes an analysis of four recent models of artificial consciousness published in the engineering area. The mental processes represented by these models are highlighted and correlations with the theoretical perspective of cognitive psychology are made. Finally, considerations about consciousness in such models are discussed.

  17. Representing vegetation processes in hydrometeorological simulations using the WRF model

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund

    For accurate predictions of weather and climate, it is important that the land surface and its processes are well represented. In a mesoscale model the land surface processes are calculated in a land surface model (LSM). These pro-cesses include exchanges of energy, water and momentum between...... data and the default vegetation data in WRF were further used in high-resolution simulations over Denmark down to cloud-resolving scale (3 km). Results from two spatial resolutions were compared to investigate the inuence of parametrized and resolved convec-tion. The simulations using the parametrized...

  18. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  19. Representing the environment 3.0. Maps, models, networks.

    Directory of Open Access Journals (Sweden)

    Letizia Bollini

    2014-05-01

    Full Text Available Web 3.0 is changing the world we live and perceive the environment anthropomorphized, making a stratifation of levels of experience and mediated by the devices. If the urban landscape is designed, shaped and planned space, there is a social landscape that overwrite the territory of values, representations shared images, narratives of personal and collective history. Mobile technology introduces an additional parameter, a kind of non-place, which allows the coexistence of the here and elsewhere in an sort of digital landscape. The maps, mental models, the system of social networks become, then, the way to present, represented and represent themselves in a kind of ideal coring of the co-presence of levels of physical, cognitive and collective space.

  20. Technogenic impact on physiological and cytogenic indices of reproductive organs of Tilia genus representatives

    Directory of Open Access Journals (Sweden)

    T. I. Iusypiva

    2015-01-01

    Full Text Available This paper addresses the problem of technogenic pollution which is a dramatic stress-factor for plants effectively acting as a green filter for cleaning air, water, and soil. It results in their growth rate changes, seasonal development speed deviations and plant appearance variations. Green belt to consume industrial emissions and to create the esthetic look seems to be an urgent matter to deal with technogenic pollution. Lime tree decorative characteristics depend significantly on the state of their reproductive organs (flower, inflorescence and fruit. On the other hand, biometric indices of woody plant reproductive organs are sensitive parameters characterizing the plant response to pollutants. The study discusses complex environmental pollution impact caused by sulfur (IV and nitrogen (IV oxides as well as heavy metals on physiological and cytogenetic characteristics of reproductive organs of Tіlia L. genus representatives in conditions of steppe Prydniprovye. The research objectives were T. amurensis L. аnd T. cordаta Mill. Samples were collected in May and June 2014 on two sample areas. The research area borders with both heavy traffic road and Interpipe NTRP CJSC, Dnipropetrovsk, Ukraine, that features such pollutants as SO2, NO2, iron, manganese, zinc, mercury, chrome. The control area is located in the Botanical garden of Oles Honchar Dnipropetrovsk National University. The research proved that biometric and cytogenetic parameters of generic organo of Tilia genus representatives were dramatically sensitive to the impact of pollutants. Moreover, T. cordаta was the most sensitive among species under study to multicomponent environmental pollution when assessed by criteria of suppression of woody plant reproductive capacity formation. The other benefit of this study consisted in monitoring of the blossom rate of both species that appeared to scale down substantially in the technogenic environment. Man-induced stress factors caused

  1. Representativeness of the Spinal Cord Injury Model Systems National Database.

    Science.gov (United States)

    Ketchum, Jessica M; Cuthbert, Jeffrey P; Deutsch, Anne; Chen, Yuying; Charlifue, Susan; Chen, David; Dijkers, Marcel P; Graham, James E; Heinemann, Allen W; Lammertse, Daniel P; Whiteneck, Gale G

    2018-02-01

    Secondary analysis of prospectively collected observational data. To assess the representativeness of the Spinal Cord Injury Model Systems National Database (SCIMS-NDB) of all adults aged 18 years or older receiving inpatient rehabilitation in the United States (US) for new onset traumatic spinal cord injury (TSCI). Inpatient rehabilitation centers in the US. We compared demographic, functional status, and injury characteristics (nine categorical variables comprising of 46 categories and two continuous variables) between the SCIMS-NDB (N = 5969) and UDS-PRO/eRehabData (N = 99,142) cases discharged from inpatient rehabilitation in 2000-2010. There are negligible differences (exist for age categories, sex, race/ethnicity, marital status, FIM Motor score, and time from injury to rehabilitation admission. Important differences (>10%) exist in mean age and preinjury occupational status; the SCIMS-NDB sample was younger and included a higher percentage of individuals who were employed (62.7 vs. 41.7%) and fewer who were retired (10.2 vs. 36.1%). Adults in the SCIMS-NDB are largely representative of the population of adults receiving inpatient rehabilitation for new onset TSCI in the US. However, users of the SCIMS-NDB may need to adjust statistically for differences in age and preinjury occupational status to improve generalizability of findings.

  2. Discriminatively learning for representing local image features with quadruplet model

    Science.gov (United States)

    Zhang, Da-long; Zhao, Lei; Xu, Duan-qing; Lu, Dong-ming

    2017-11-01

    Traditional hand-crafted features for representing local image patches are evolving into current data-driven and learning-based image feature, but learning a robust and discriminative descriptor which is capable of controlling various patch-level computer vision tasks is still an open problem. In this work, we propose a novel deep convolutional neural network (CNN) to learn local feature descriptors. We utilize the quadruplets with positive and negative training samples, together with a constraint to restrict the intra-class variance, to learn good discriminative CNN representations. Compared with previous works, our model reduces the overlap in feature space between corresponding and non-corresponding patch pairs, and mitigates margin varying problem caused by commonly used triplet loss. We demonstrate that our method achieves better embedding result than some latest works, like PN-Net and TN-TG, on benchmark dataset.

  3. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  4. Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study

    International Nuclear Information System (INIS)

    Cherkezyan, Lusik; Backman, Vadim; Stypula-Cyrus, Yolanda; Subramanian, Hariharan; White, Craig; Dela Cruz, Mart; Wali, Ramesh K; Goldberg, Michael J; Bianchi, Laura K; Roy, Hemant K

    2014-01-01

    Nuclear alterations are a well-known manifestation of cancer. However, little is known about the early, microscopically-undetectable stages of malignant transformation. Based on the phenomenon of field cancerization, the tissue in the field of a tumor can be used to identify and study the initiating events of carcinogenesis. Morphological changes in nuclear organization have been implicated in the field of colorectal cancer (CRC), and we hypothesize that characterization of chromatin alterations in the early stages of CRC will provide insight into cancer progression, as well as serve as a biomarker for early detection, risk stratification and prevention. For this study we used transmission electron microscopy (TEM) images of nuclei harboring pre-neoplastic CRC alterations in two models: a carcinogen-treated animal model of early CRC, and microscopically normal-appearing tissue in the field of human CRC. We quantify the chromatin arrangement using approaches with two levels of complexity: 1) binary, where chromatin is separated into areas of dense heterochromatin and loose euchromatin, and 2) grey-scale, where the statistics of continuous mass-density distribution within the nucleus is quantified by its spatial correlation function. We established an increase in heterochromatin content and clump size, as well as a loss of its characteristic peripheral positioning in microscopically normal pre-neoplastic cell nuclei. Additionally, the analysis of chromatin density showed that its spatial distribution is altered from a fractal to a stretched exponential. We characterize quantitatively and qualitatively the nanoscale structural alterations preceding cancer development, which may allow for the establishment of promising new biomarkers for cancer risk stratification and diagnosis. The findings of this study confirm that ultrastructural changes of chromatin in field carcinogenesis represent early neoplastic events leading to the development of well

  5. Voxel models representing the male and female ICRP reference adult: a dosimetric tool for medical imaging

    Science.gov (United States)

    Zankl, M.; Schlattl, H.; Becker, J.; Petoussi-Henss, N.; Hoeschen, C.

    2008-03-01

    For optimisation in diagnostic medical imaging it is important to consider the relation between diagnostic image quality and patient dose. In the past, schematic representations of the human body were commonly used for dosimetric simulations together with Monte Carlo codes. During the last two decades, voxel models were introduced as an improvement to these body models. Studies performed by various research groups have shown that the more realistic organ topology of voxel models constructed from medical image data of real persons has an impact on calculated doses for external as well as internal exposures. As a consequence of these findings, the ICRP decided to use voxel models for the forthcoming update of organ dose conversion coefficients. These voxel models should be representative of an average population, i.e. they should resemble the ICRP reference anatomical data with respect to their external dimensions and their organ masses. To meet the ICRP requirements, our group at the Helmholtz Zentrum München (formerly known as GSF-National Research Center for Environment and Health) constructed voxel models of a male and female adult, based on the voxel models of two individuals whose body height and weight resembled those of the male and female ICRP reference adult. The organ masses of both models were adjusted to the ICRP reference anatomical data, without spoiling their realistic anatomy. The paper describes the method used for this process and the resulting voxel models.

  6. Social tagging: a model for representing information in the blogosphere

    Directory of Open Access Journals (Sweden)

    Elaine Pérez Sanchidrián

    2015-04-01

    Full Text Available Objective: The study addresses the theoretical and conceptual aspects related to social labeling. Has the advantages of labels on different platforms of Web 2.0. Exposes some of the major sites of social labeling system including Flickr, Delicious, Technorati is destcan, among others. Terminologically analyzed using the tags in the blogosphere as a model for representing information. Methods: The research took as methods of qualitative content analysis to identify the behavior of the international literature on this subject and the metric analysis to characterize the use of social labeling in the blogosphere. Results: The study led to qualitatively describe the use of labels on blogs and their terminological particularities associated with the following aspects: creating labels in these spaces is related to a number of social issues among which we can highlight: Politics, Culture, economy, Gender, History, Sexuality, Discrimination, Health, Environment, Technology. The labels on these platforms are defined from the general to the particular and there is no limit concurrency for its creation, usually the authors cite for each post 4-7 labels in order to spread their content as possible in the community. Conclusions: This study enables reflect the social impact of using labels on platforms like blogs.

  7. Modeling of Cementitious Representative Volume Element with Additives

    Science.gov (United States)

    Shahzamanian, M. M.; Basirun, W. J.

    CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200μm at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.

  8. Guidance for the Model User on Representing Human Behavior in Egress Models.

    Science.gov (United States)

    Kuligowski, Erica D; Gwynne, Steven M V; Kinsey, Michael J; Hulse, Lynn

    2017-03-01

    Structures are currently designed and constructed in accordance with prescriptive and performance-based (PBD) methodologies to ensure a certain level of occupant safety during fire emergencies. The performance-based approach requires the quantification of both ASET (Available Safe Egress Time) and RSET (Required Safe Egress Time) to determine the degree of safety provided. This article focuses on the RSET side of the equation, for which a fire protection or fire safety engineer would use some type of egress modelling approach to estimate evacuation performance. Often, simple engineering equations are applied to estimate the RSET value. Over time, more sophisticated computational tools have appeared-that go beyond basic flow calculations; e.g. simulating individual agent movement. Irrespective of the approach adopted, appropriate and accurate representation of human behavior in response to fire within these approaches is limited, mainly due to the lack of a comprehensive conceptual model of evacuee decision-making and behavior during fire emergencies. This article initially presents the set of behavioral statements, or mini-theories, currently available from various fire and disaster studies, organized using the overarching theory of decision-making and human behavior in disasters. Once presented, guidance is provided on how these behavioral statements might be incorporated into an evacuation model, in order to better represent human behavior in fire within the safety analysis being performed. The intent here is to improve the accuracy of the results produced by performance-based calculations and analyses.

  9. Using fuzzy cognitive maps in modelling and representing weather ...

    African Journals Online (AJOL)

    ... and characterization of visual sky objects (such as moon, clouds, stars, rainbow, etc) in forecasting weather is a significant subject of research. In order to realize the integration of visual weather lore knowledge in modern weather forecasting systems, there is a need to represent and scientifically substantiate weather lore.

  10. [Evolvement of ecological footprint model representing ecological carrying capacity].

    Science.gov (United States)

    Cao, Shu-yan; Xie, Gao-di

    2007-06-01

    Ecological footprint (EF) is an important index of ecological carrying capacity. The original EF model is excellent in simplicity, aggregation, comparability, and lifelikeness in presenting results, but short in predictability, configuration, and applicability. To overcome these shortcomings, many researches were conducted to modify and promote the EF model, and developed it from static with single time scale to diversified ones, which included: 1) time series EF model, 2) input-output analysis based EF model, 3) integrated assessment incorporated EF model, 4) land disturbance degree based EF model, and 5) life cycle analysis based EF model, or component EF model. The function of EF as a measurement of ecological carrying capacity was significantly improved, but its accuracy and integrality still need to be advanced.

  11. Chemistry education based on concepts represented by mental models

    OpenAIRE

    Gibin, Gustavo Bizarria; Ferreira, Luiz Henrique

    2010-01-01

    The current legislation determines that the chemist must have a solid comprehension about chemical concepts. Literature presents the concept of mental model, which is determinant to the learning of phenomena and concepts. This paper presents some mental models that students of the Chemistry course at UFSCar have about chemical concepts. A lot of incoherence was observed in student's mental models, which is an evidence that there are problems in the learning of chemistry education.

  12. A time fractional model to represent rainfall process

    Directory of Open Access Journals (Sweden)

    Jacques Golder

    2014-01-01

    Full Text Available This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered α-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE with tempered α-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered á-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered α-stable waiting times is more efficient in reproducing the observed behavior.

  13. Modeling Methodologies for Representing Urban Cultural Geographies in Stability Operations

    National Research Council Canada - National Science Library

    Ferris, Todd P

    2008-01-01

    ... 2.0.0, in an effort to provide modeling methodologies for a single simulation tool capable of exploring the complex world of urban cultural geographies undergoing Stability Operations in an irregular warfare (IW) environment...

  14. Representing and managing uncertainty in qualitative ecological models

    NARCIS (Netherlands)

    Nuttle, T.; Bredeweg, B.; Salles, P.; Neumann, M.

    2009-01-01

    Ecologists and decision makers need ways to understand systems, test ideas, and make predictions and explanations about systems. However, uncertainty about causes and effects of processes and parameter values is pervasive in models of ecological systems. Uncertainty associated with incomplete

  15. Representing climate, disturbance, and vegetation interactions in landscape models

    Science.gov (United States)

    Robert E. Keane; Donald McKenzie; Donald A. Falk; Erica A.H. Smithwick; Carol Miller; Lara-Karena B. Kellogg

    2015-01-01

    The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special...

  16. NON-GOVERNMENTAL ORGANIZATIONS REPRESENTING THE INTERESTS OF PATIENTS’ ENGAGEMENT IN HEALH POLICY

    Directory of Open Access Journals (Sweden)

    Gintarė Petronytė

    2017-03-01

    Full Text Available This article focuses on engagement in health policy of non-governmental organizations representing the interests of patients (NGOs. A qualitative study using a semi-structured interview method was performed in July–October 2015, involving nine representatives of NGOs from Vilnius and Kaunas. NGOs’ engagement in health policy was evaluated by applying the framework of the theoretical stakeholder participation ladder, which was developed by Arnstein and later extended by Friedman and Miles. NGOs’ engagement in health policy could be attributed to the levels of consultation and involvement, considering their collaboration with governmental institutions and political involvement. Their engagement in health policy could not be attributed to the level of delegated power (shared influence and responsibility when involved into the processes of decision formulation and decision-making. NGOs are involved in health policy by working groups and other working bodies established by governmental institutions. Financing, close interinstitutional collaboration, competencies of NGOs and their active participation are required for NGOs’ engagement in health policy. The main collaboration form between NGOs and the Ministry of Health is the Lithuanian patients’ forum, however, constant information, involvement in decision making processes and the initiation of collaboration are the key prerequisites for the development of closer collaboration. Internal and external barriers limit NGOs’ engagement in health policy: hierarchical relationships, the lack of equal collaboration and dialogue with governmental institutions, limited financial, time and human resources.

  17. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  18. Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.

    Science.gov (United States)

    Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C

    2014-04-01

    Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.

  19. A Topic Model Approach to Representing and Classifying Football Plays

    KAUST Repository

    Varadarajan, Jagannadan

    2013-09-09

    We address the problem of modeling and classifying American Football offense teams’ plays in video, a challenging example of group activity analysis. Automatic play classification will allow coaches to infer patterns and tendencies of opponents more ef- ficiently, resulting in better strategy planning in a game. We define a football play as a unique combination of player trajectories. To this end, we develop a framework that uses player trajectories as inputs to MedLDA, a supervised topic model. The joint maximiza- tion of both likelihood and inter-class margins of MedLDA in learning the topics allows us to learn semantically meaningful play type templates, as well as, classify different play types with 70% average accuracy. Furthermore, this method is extended to analyze individual player roles in classifying each play type. We validate our method on a large dataset comprising 271 play clips from real-world football games, which will be made publicly available for future comparisons.

  20. Representing spatial information in a computational model for network management

    Science.gov (United States)

    Blaisdell, James H.; Brownfield, Thomas F.

    1994-01-01

    While currently available relational database management systems (RDBMS) allow inclusion of spatial information in a data model, they lack tools for presenting this information in an easily comprehensible form. Computer-aided design (CAD) software packages provide adequate functions to produce drawings, but still require manual placement of symbols and features. This project has demonstrated a bridge between the data model of an RDBMS and the graphic display of a CAD system. It is shown that the CAD system can be used to control the selection of data with spatial components from the database and then quickly plot that data on a map display. It is shown that the CAD system can be used to extract data from a drawing and then control the insertion of that data into the database. These demonstrations were successful in a test environment that incorporated many features of known working environments, suggesting that the techniques developed could be adapted for practical use.

  1. Model Complexities of Shallow Networks Representing Highly Varying Functions

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2016-01-01

    Roč. 171, 1 January (2016), s. 598-604 ISSN 0925-2312 R&D Projects: GA MŠk(CZ) LD13002 Grant - others:grant for Visiting Professors(IT) GNAMPA-INdAM Institutional support: RVO:67985807 Keywords : shallow networks * model complexity * highly varying functions * Chernoff bound * perceptrons * Gaussian kernel units Subject RIV: IN - Informatics, Computer Science Impact factor: 3.317, year: 2016

  2. Model and observed seismicity represented in a two dimensional space

    Directory of Open Access Journals (Sweden)

    M. Caputo

    1976-06-01

    Full Text Available In recent years theoretical seismology lias introduced
    some formulae relating the magnitude and the seismic moment of earthquakes
    to the size of the fault and the stress drop which generated the
    earthquake.
    In the present paper we introduce a model for the statistics of the
    earthquakes based on these formulae. The model gives formulae which
    show internal consistency and are also confirmed by observations.
    For intermediate magnitudes the formulae reproduce also the trend
    of linearity of the statistics of magnitude and moment observed in all the
    seismic regions of the world. This linear trend changes into a curve with
    increasing slope for large magnitudes and moment.
    When a catalogue of the magnitudes and/or the seismic moment of
    the earthquakes of a seismic region is available, the model allows to estimate
    the maximum magnitude possible in the region.

  3. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    Science.gov (United States)

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Model analysis: Representing and assessing the dynamics of student learning

    Directory of Open Access Journals (Sweden)

    Lei Bao

    2006-02-01

    Full Text Available Decades of education research have shown that students can simultaneously possess alternate knowledge frameworks and that the development and use of such knowledge are context dependent. As a result of extensive qualitative research, standardized multiple-choice tests such as Force Concept Inventory and Force-Motion Concept Evaluation tests provide instructors tools to probe their students’ conceptual knowledge of physics. However, many existing quantitative analysis methods often focus on a binary question of whether a student answers a question correctly or not. This greatly limits the capacity of using the standardized multiple-choice tests in assessing students’ alternative knowledge. In addition, the context dependence issue, which suggests that a student may apply the correct knowledge in some situations and revert to use alternative types of knowledge in others, is often treated as random noise in current analyses. In this paper, we present a model analysis, which applies qualitative research to establish a quantitative representation framework. With this method, students’ alternative knowledge and the probabilities for students to use such knowledge in a range of equivalent contexts can be quantitatively assessed. This provides a way to analyze research-based multiple choice questions, which can generate much richer information than what is available from score-based analysis.

  5. Modeling and Representing National Climate Assessment Information using Linked Data

    Science.gov (United States)

    Zheng, J.; Tilmes, C.; Smith, A.; Zednik, S.; Fox, P. A.

    2012-12-01

    Every four years, earth scientists work together on a National Climate Assessment (NCA) report which integrates, evaluates, and interprets the findings of climate change and impacts on affected industries such as agriculture, natural environment, energy production and use, etc. Given the amount of information presented in each report, and the wide range of information sources and topics, it can be difficult for users to find and identify desired information. To ease the user effort of information discovery, well-structured metadata is needed that describes the report's key statements and conclusions and provide for traceable provenance of data sources used. We present an assessment ontology developed to describe terms, concepts and relations required for the NCA metadata. Wherever possible, the assessment ontology reuses terms from well-known ontologies such as Semantic Web for Earth and Environmental Terminology (SWEET) ontology, Dublin Core (DC) vocabulary. We have generated sample National Climate Assessment metadata conforming to our assessment ontology and publicly exposed via a SPARQL-endpoint and website. We have also modeled provenance information for the NCA writing activities using the W3C recommendation-candidate PROV-O ontology. Using this provenance the user will be able to trace the sources of information used in the assessment and therefore make trust decisions. In the future, we are planning to implement a faceted browser over the metadata to enhance metadata traversal and information discovery.

  6. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad

    2016-09-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  7. Model organisms and target discovery.

    Science.gov (United States)

    Muda, Marco; McKenna, Sean

    2004-09-01

    The wealth of information harvested from full genomic sequencing projects has not generated a parallel increase in the number of novel targets for therapeutic intervention. Several pharmaceutical companies have realized that novel drug targets can be identified and validated using simple model organisms. After decades of service in basic research laboratories, yeasts, worms, flies, fishes, and mice are now the cornerstones of modern drug discovery programs.: © 2004 Elsevier Ltd . All rights reserved.

  8. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  9. [Acceptance of post-mortem organ donation in Germany : Representative cross-sectional study].

    Science.gov (United States)

    Tackmann, E; Dettmer, S

    2018-02-01

    The German post-mortem organ donation rate has dropped by one third since 2010. Furthermore, 958 patients died in 2015 in Germany while waiting for an organ. To decrease organ shortage, an amendment of the transplantation law was established in 2012. An information package including an organ donor card is sent to all German citizens via the postal service. A voluntary national transplantation register was introduced in 2016 to improve transparency in the organ donation process. The influence of several transplantation scandals starting in 2012 on organ donation rates is in question. Therefore, the objective of this article is to discuss approval and objections to post-mortem organ donation among the next of kin of potential donors and the general public in Germany. Binary logistic regression of data from the 2014 survey by the Federal Centre for Health Education on attitudes towards organ and tissue donation in Germany was conducted, aiming to identify influencing factors on the likelihood of organ donor card possession. Additionally, data of the German Organ Transplantation Foundation on post-mortem organ donations in Germany in 2014 were studied to highlight reasons for approval and objections by next of kin of potential and explanted post-mortem organ donors. Methods of documentation of the deceased's will according to data of the German Organ Transplantation Foundation were analyzed. Male gender and lack of knowledge about organ donation decrease the likelihood of having an organ donor card. Of the respondents in the survey of the Federal Centre for Health Education 71.0% would donate their own organs, whereas only one third possess an organ donor card. Health insurances and physicians are the most important providers of organ donor cards in Germany. An increase in the percentage of organ donor card possession following the amendment of the transplantation law could not be observed by 2016. Fear of organ trade and unjust organ allocation are the main reasons

  10. Learning Organizations, Employee Development and Learning Representative Schemes in the UK and New Zealand

    Science.gov (United States)

    Lee, Bill; Cassell, Catherine

    2009-01-01

    Purpose: Disparities in learning opportunities endure. This paper aims to investigate whether the learning representative schemes in the UK and New Zealand (NZ) may redress disparate opportunities for learning. Design/methodology/approach: An interview study of UK trade unions' educational officers and an interview study of representatives of…

  11. Representative benthic bioindicator organisms for use in radiation effects research: Culture of Neanthes arenaceodentata (Polychaeta)

    International Nuclear Information System (INIS)

    Harrison, F.L.; Knezovich, J.P.; Martinelli, R.E.

    1992-09-01

    The purpose of this document is to present a comprehensive synthesis of information pertaining to the selection and maintenance of bioindicator organisms for use in radiation-effects research. The focus of this report is on the benthic polychaete, Neanthes arenaceodentata, a species that has been used successfully at the Lawrence Livermore National Laboratory (LLNL) and other institutions to define the impacts of radiation and chemical toxicants on aquatic organisms. In this document, the authors provide a rationale for the selection of this organism, a description of its reproductive biology, and a description of the conditions that are required for the maintenance and rearing of the organism for use in toxicological research

  12. 19 CFR 148.87 - Officers and employees of, and representatives to public international organizations.

    Science.gov (United States)

    2010-04-01

    ... (ESRO)) 12766 June 18, 1991. Food and Agriculture Organization 9698 Feb. 19, 1946. Great Lakes Fishery... Center 11977 Mar. 14, 1977. International Finance Corporation 10680 Oct. 2, 1956. International Food... 12956 Mar. 13, 1995. Korean Peninsula Energy Development Organization 12997 Apr. 1, 1996. Multilateral...

  13. Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa.

    Science.gov (United States)

    d'Errico, Francesco; Backwell, Lucinda; Villa, Paola; Degano, Ilaria; Lucejko, Jeannette J; Bamford, Marion K; Higham, Thomas F G; Colombini, Maria Perla; Beaumont, Peter B

    2012-08-14

    Recent archaeological discoveries have revealed that pigment use, beads, engravings, and sophisticated stone and bone tools were already present in southern Africa 75,000 y ago. Many of these artifacts disappeared by 60,000 y ago, suggesting that modern behavior appeared in the past and was subsequently lost before becoming firmly established. Most archaeologists think that San hunter-gatherer cultural adaptation emerged 20,000 y ago. However, reanalysis of organic artifacts from Border Cave, South Africa, shows that the Early Later Stone Age inhabitants of this cave used notched bones for notational purposes, wooden digging sticks, bone awls, and bone points similar to those used by San as arrowheads. A point is decorated with a spiral groove filled with red ochre, which closely parallels similar marks that San make to identify their arrowheads when hunting. A mixture of beeswax, Euphorbia resin, and possibly egg, wrapped in vegetal fibers, dated to ∼40,000 BP, may have been used for hafting. Ornaments include marine shell beads and ostrich eggshell beads, directly dated to ∼42,000 BP. A digging stick, dated to ∼39,000 BP, is made of Flueggea virosa. A wooden poison applicator, dated to ∼24,000 BP, retains residues with ricinoleic acid, derived from poisonous castor beans. Reappraisal of radiocarbon age estimates through bayesian modeling, and the identification of key elements of San material culture at Border Cave, places the emergence of modern hunter-gatherer adaptation, as we know it, to ∼44,000 y ago.

  14. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Science.gov (United States)

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  15. Dynamics of sugar content in vegetative organs of Syringa Genus representatives introduced into Steppe Zone

    Directory of Open Access Journals (Sweden)

    L. G. Dolgova

    2005-12-01

    Full Text Available Quantitative and qualitative contents of sugars in phases of growth and development in overground organs of species of Syringa L. genus were determined. It is shown a cryoprotective role of sugars in plants. Conclusions on resistance of plants under conditions of a steppe zone are made.

  16. Organism-level models: When mechanisms and statistics fail us

    Science.gov (United States)

    Phillips, M. H.; Meyer, J.; Smith, W. P.; Rockhill, J. K.

    2014-03-01

    Purpose: To describe the unique characteristics of models that represent the entire course of radiation therapy at the organism level and to highlight the uses to which such models can be put. Methods: At the level of an organism, traditional model-building runs into severe difficulties. We do not have sufficient knowledge to devise a complete biochemistry-based model. Statistical model-building fails due to the vast number of variables and the inability to control many of them in any meaningful way. Finally, building surrogate models, such as animal-based models, can result in excluding some of the most critical variables. Bayesian probabilistic models (Bayesian networks) provide a useful alternative that have the advantages of being mathematically rigorous, incorporating the knowledge that we do have, and being practical. Results: Bayesian networks representing radiation therapy pathways for prostate cancer and head & neck cancer were used to highlight the important aspects of such models and some techniques of model-building. A more specific model representing the treatment of occult lymph nodes in head & neck cancer were provided as an example of how such a model can inform clinical decisions. A model of the possible role of PET imaging in brain cancer was used to illustrate the means by which clinical trials can be modelled in order to come up with a trial design that will have meaningful outcomes. Conclusions: Probabilistic models are currently the most useful approach to representing the entire therapy outcome process.

  17. Representing humans in system security models: An actor-network approach

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    System models to assess the vulnerability of information systems to security threats typically represent a physical infrastructure (buildings) and a digital infrastructure (computers and networks), in combination with an attacker traversing the system while acquiring credentials. Other humans are

  18. Representing virus-host interactions and other multi-organism processes in the Gene Ontology.

    Science.gov (United States)

    Foulger, R E; Osumi-Sutherland, D; McIntosh, B K; Hulo, C; Masson, P; Poux, S; Le Mercier, P; Lomax, J

    2015-07-28

    The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.

  19. Saccharomyces cerevisiae as a model organism: a comparative study.

    Directory of Open Access Journals (Sweden)

    Hiren Karathia

    Full Text Available BACKGROUND: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

  20. Climate Process Team "Representing calving and iceberg dynamics in global climate models"

    Science.gov (United States)

    Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.

    2016-12-01

    Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL

  1. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    International Nuclear Information System (INIS)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.

    1981-07-01

    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters

  2. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.; Klopfer, D.C.; Skalski, J.R.

    1981-07-01

    Because the eventual development of fusion power reactors could increase the mining, use and disposal of lithium five-fold by the year 2000, potential effects from unusual amounts of lithium in aquatic environments were investigated. Freshwater oganisms representing a Pacific Northwest salmonid habitat were exposed to elevated conentrations of lithium. Nine parameters were used to determine the incipient toxicity of lithium to rainbow trout (Salmo gairdneri), insect larvae (Chironomus sp.), and Columbia River periphyton. All three groups of biota were incipiently sensitive to lithium at concentrations ranging between 0.1 and 1 mg/L. These results correspond with the incipient toxicity of beryllium, a chemically similar component of fusion reactor cores. A maximum lithium concentration of 0.01 mg/L occurs naturally in most freshwater environments (beryllium is rarer). Therefore, a concentration range of 0.01 to 0.1 mg/L may be regarded as approaching toxic concentrations when assessing the hazards of lithium in freshwaters.

  3. Representing Canadian Muslims: Media, Muslim Advocacy Organizations, and Gender in the Ontario Shari’ah Debate

    Directory of Open Access Journals (Sweden)

    Meena Sharify-Funk

    2009-01-01

    Full Text Available This paper analyzes a highly public conflict between two Muslim non-profit organizations, the Canadian Islamic Congress (CIC and the Muslim Canadian Congress (MCC, as it played out on the pages of Canadian newspapers and Internet websites. Sparked by profoundly divergent convictions about gender norms and fuelled by contradictory blueprints for “being Muslim in Canada”, this incendiary conflict was fanned by Canadian media coverage. Focusing especially, but not exclusively, on the 2003-2005 debate over Shari’ah-based alternative dispute resolution in Ontario, I will argue that the media have played a role in constructing internal Muslim debates and identity negotiations concerning what it means to be genuinely Canadian and authentically Muslim through controversy-driven journalism that has highlighted opposing ends of a liberal/progressive versus conservative/traditional axis in a search for “point/counter-point” views. Through short stories and commentaries on controversial topicsthat juxtapose two increasingly antagonistic organizational voices, the media have not merely reflected Muslim realities, but also helped to shape them and, more often than not, reinforce polarization between a “majority Muslim” culture seeking to secure space for itself within Canadian society and a “dissident Muslim” culture that seeks to consolidate external support for internal change.

  4. Organization Development: Strategies and Models.

    Science.gov (United States)

    Beckhard, Richard

    This book, written for managers, specialists, and students of management, is based largely on the author's experience in helping organization leaders with planned-change efforts, and on related experience of colleagues in the field. Chapter 1 presents the background and causes for the increased concern with organization development and planned…

  5. Argentine´s representatives and representations in the International Labor Organization on the 1920´s

    Directory of Open Access Journals (Sweden)

    Andres Stagnaro

    2017-07-01

    Full Text Available The article approach the relations between the Argentine and the International Labor Organization (ILO through the different argentine ´s representatives on the ILO´s annual conferences during the formative process on the 1920´s. The representative´s reports –in the case of the government´s representatives those reports were raised to the authorities, in the case of the workers and employers delegates the reports were published in different publications– allowed us to analyze those delegates expectations while they interact with a an organizations with their own objectives. In many cases the ILO was just another stage in the dispute between the state, the workers and the employers, in others we will be able to see the uniformity of criteria in some topics, such as the spot of argentine´s labor legislation. At the same time, Argentine´s participation on the ILO´s conferences demands the adequacy of the relations system between the State and the workers unions. In the absence of this kind of mechanism the workers representative elections depends on the moment of local labor unrest.

  6. Towards representing human behavior and decision making in Earth system models - an overview of techniques and approaches

    Science.gov (United States)

    Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst

    2017-11-01

    Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.

  7. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  8. COMBINING 3D VOLUME AND MESH MODELS FOR REPRESENTING COMPLICATED HERITAGE BUILDINGS

    Directory of Open Access Journals (Sweden)

    F. Tsai

    2017-08-01

    Full Text Available This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A “bare-bones” model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  9. Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease

    Science.gov (United States)

    ... research organisms to explore the basic biology and chemistry of life. Scientists decide which organism to study ... and much is already known about their genetic makeup . For these and other reasons, studying model organisms ...

  10. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  11. Do climate simulations from models forced by averaged sea surface temperatures represent actual dynamics?

    Directory of Open Access Journals (Sweden)

    P. J. Roebber

    1997-01-01

    Full Text Available Recently atmospheric general circulation models (AGCMs forced by observed sea surface temperatures (SSTs have offered the possibility of studying climate variability over periods ranging from years to decades. Such models represent and alternative to fully coupled asynchronous atmosphere ocean models whose long term integration remains problematic. Here, the degree of the approximation represented by this approach is investigated from a conceptual point of view by comparing the dynamical properties of a low order coupled atmosphere-ocean model to those of the atmospheric component of the same model when forced with monthly values of SST derived from the fully coupled simulation. The low order modelling approach is undertaken with the expectation that it may reveal general principles concerning the dynamical behaviour of the forced versus coupled systems; it is not expected that such an approach will determine the details of these differences, for which higher order modelling studies will be required. We discover that even though attractor (global averages may be similar, local dynamics and the resultant variability and predictability characteristics differ substantially. These results suggest that conclusions concerning regional climatic variability (in time as well as space drawn from forced modelling approaches may be contaminated by an inherently unquantifiable error. It is therefore recommended that this possibility be carefully investigated using state-of-the-art coupled AGCMs.

  12. Towards an integrated model of floodplain hydrology representing feedbacks and anthropogenic effects

    Science.gov (United States)

    Andreadis, K.; Schumann, G.; Voisin, N.; O'Loughlin, F.; Tesfa, T. K.; Bates, P.

    2017-12-01

    The exchange of water between hillslopes, river channels and floodplain can be quite complex and the difficulty in capturing the mechanisms behind it is exacerbated by the impact of human activities such as irrigation and reservoir operations. Although there has been a vast body of work on modeling hydrological processes, most of the resulting models have been limited with regards to aspects of the coupled human-natural system. For example, hydrologic models that represent processes such as evapotranspiration, infiltration, interception and groundwater dynamics often neglect anthropogenic effects or do not adequately represent the inherently two-dimensional floodplain flow. We present an integrated modeling framework that is comprised of the Variable Infiltration Capacity (VIC) hydrology model, the LISFLOOD-FP hydrodynamic model, and the Water resources Management (WM) model. The VIC model solves the energy and water balance over a gridded domain and simulates a number of hydrologic features such as snow, frozen soils, lakes and wetlands, while also representing irrigation demand from cropland areas. LISFLOOD-FP solves an approximation of the Saint-Venant equations to efficiently simulate flow in river channels and the floodplain. The implementation of WM accommodates a variety of operating rules in reservoirs and withdrawals due to consumptive demands, allowing the successful simulation of regulated flow. The models are coupled so as to allow feedbacks between their corresponding processes, therefore providing the ability to test different hypotheses about the floodplain hydrology of large-scale basins. We test this integrated framework over the Zambezi River basin by simulating its hydrology from 2000-2010, and evaluate the results against remotely sensed observations. Finally, we examine the sensitivity of streamflow and water inundation to changes in reservoir operations, precipitation and temperature.

  13. Feasibility of Representing Data from Published Nursing Research Using the OMOP Common Data Model.

    Science.gov (United States)

    Kim, Hyeoneui; Choi, Jeeyae; Jang, Imho; Quach, Jimmy; Ohno-Machado, Lucila

    2016-01-01

    We explored the feasibility of representing nursing research data with the Observational Medical Outcomes Partners (OMOP) Common Data Model (CDM) to understand the challenges and opportunities in representing various types of health data not limited to diseases and drug treatments. We collected 1,431 unique data items from 256 nursing articles and mapped them to the OMOP CDM. A deeper level of mapping was explored by simulating 10 data search use cases. Although the majority of the data could be represented in the OMOP CDM, potential information loss was identified in contents related to patient reported outcomes, socio-economic information, and locally developed nursing intervention protocols. These areas will be further investigated in a follow up study. We will use lessons learned in this study to inform the metadata development efforts for data discovery.

  14. Representing macropore flow at the catchment scale: a comparative modeling study

    Science.gov (United States)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  15. Xanthusbase: adapting wikipedia principles to a model organism database.

    Science.gov (United States)

    Arshinoff, Bradley I; Suen, Garret; Just, Eric M; Merchant, Sohel M; Kibbe, Warren A; Chisholm, Rex L; Welch, Roy D

    2007-01-01

    xanthusBase (http://www.xanthusbase.org) is the official model organism database (MOD) for the social bacterium Myxococcus xanthus. In many respects, M.xanthus represents the pioneer model organism (MO) for studying the genetic, biochemical, and mechanistic basis of prokaryotic multicellularity, a topic that has garnered considerable attention due to the significance of biofilms in both basic and applied microbiology research. To facilitate its utility, the design of xanthusBase incorporates open-source software, leveraging the cumulative experience made available through the Generic Model Organism Database (GMOD) project, MediaWiki (http://www.mediawiki.org), and dictyBase (http://www.dictybase.org), to create a MOD that is both highly useful and easily navigable. In addition, we have incorporated a unique Wikipedia-style curation model which exploits the internet's inherent interactivity, thus enabling M.xanthus and other myxobacterial researchers to contribute directly toward the ongoing genome annotation.

  16. Qualitative and quantitative examination of the performance of regional air quality models representing different modeling approaches

    International Nuclear Information System (INIS)

    Bhumralkar, C.M.; Ludwig, F.L.; Shannon, J.D.; McNaughton, D.

    1985-04-01

    The calculations of three different air quality models were compared with the best available observations. The comparisons were made without calibrating the models to improve agreement with the observations. Model performance was poor for short averaging times (less than 24 hours). Some of the poor performance can be traced to errors in the input meteorological fields, but error exist on all levels. It should be noted that these models were not originally designed for treating short-term episodes. For short-term episodes, much of the variance in the data can arise from small spatial scale features that tend to be averaged out over longer periods. These small spatial scale features cannot be resolved with the coarse grids that are used for the meteorological and emissions inputs. Thus, it is not surprising that the models performed for the longer averaging times. The models compared were RTM-II, ENAMAP-2 and ACID. (17 refs., 5 figs., 4 tabs

  17. REPRESENTATIVE MODEL OF THE LEARNING PROCESS IN VIRTUAL SPACES SUPPORTED BY ICT

    Directory of Open Access Journals (Sweden)

    José CAPACHO

    2014-10-01

    Full Text Available This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning. The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating virtual learning by Badrul H. Khan, and the Cybernetic model for evaluating virtual learning environments. The e-Learning model is systemic and of feedback by nature. The model integrates the society, Institution of Education, virtual training platform, virtual teacher and students, and finally the assessment of student learning in virtual learning spaces supported by ICT. The model consists of fourteen processes. Processes are defined taking into account the following dimensions: identification, academic, pedagogical, educational, formative, evaluative, assessment of virtual learning and technological. The model is fundamental to the management of e-learning supported by ICT, justified by the fact that it is an operative model of the teaching-learning process in virtual spaces. The importance of having an operative model in virtual education is to project the management and decision in virtual education. Then the operational, administrative and decision phases will allow the creation of a set of indicators. These indicators will assess the process of virtual education not only in students but also in the virtual institution.

  18. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Directory of Open Access Journals (Sweden)

    José CAPACHO

    2015-01-01

    Full Text Available This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning. The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating virtual learning by Badrul H. Khan, and the Cybernetic model for evaluating virtual learning environments. The e-Learning model is systemic and of feedback by nature. The model integrates the society, Institution of Education, virtual training platform, virtual teacher and students, and finally the assessment of student learning in virtual learning spaces supported by ICT. The model consists of fourteen processes. Processes are defined taking into account the following dimensions: identification, academic, pedagogical, educational, formative, evaluative, assessment of virtual learning and technological. The model is fundamental to the management of e-learning supported by ICT, justified by the fact that it is an operative model of the teaching-learning process in virtual spaces. The importance of having an operative model in virtual education is to project the management and decision in virtual education. Then the operational, administrative and decision phases will allow the creation of a set of indicators. These indicators will assess the process of virtual education not only in students but also in the virtual institution.

  19. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin

    2009-01-01

    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  20. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  1. Modeling Virtual Organization Architecture with the Virtual Organization Breeding Methodology

    Science.gov (United States)

    Paszkiewicz, Zbigniew; Picard, Willy

    While Enterprise Architecture Modeling (EAM) methodologies become more and more popular, an EAM methodology tailored to the needs of virtual organizations (VO) is still to be developed. Among the most popular EAM methodologies, TOGAF has been chosen as the basis for a new EAM methodology taking into account characteristics of VOs presented in this paper. In this new methodology, referred as Virtual Organization Breeding Methodology (VOBM), concepts developed within the ECOLEAD project, e.g. the concept of Virtual Breeding Environment (VBE) or the VO creation schema, serve as fundamental elements for development of VOBM. VOBM is a generic methodology that should be adapted to a given VBE. VOBM defines the structure of VBE and VO architectures in a service-oriented environment, as well as an architecture development method for virtual organizations (ADM4VO). Finally, a preliminary set of tools and methods for VOBM is given in this paper.

  2. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  3. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...... substance inherent properties to calculate MP fate but differ in their ability to represent the small physical scale and high temporal variability of stormwater treatment systems. Therefore the three models generate different results. A Global Sensitivity Analysis (GSA) highlighted that settling...

  4. A model-driven approach for representing clinical archetypes for Semantic Web environments.

    Science.gov (United States)

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto

    2009-02-01

    The life-long clinical information of any person supported by electronic means configures his Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. There are currently different standards for representing and exchanging EHR information among different systems. In advanced EHR approaches, clinical information is represented by means of archetypes. Most of these approaches use the Archetype Definition Language (ADL) to specify archetypes. However, ADL has some drawbacks when attempting to perform semantic activities in Semantic Web environments. In this work, Semantic Web technologies are used to specify clinical archetypes for advanced EHR architectures. The advantages of using the Ontology Web Language (OWL) instead of ADL are described and discussed in this work. Moreover, a solution combining Semantic Web and Model-driven Engineering technologies is proposed to transform ADL into OWL for the CEN EN13606 EHR architecture.

  5. Data Structure Analysis to Represent Basic Models of Finite State Automation

    Directory of Open Access Journals (Sweden)

    V. V. Gurenko

    2015-01-01

    Full Text Available Complex system engineering based on the automaton models requires a reasoned data structure selection to implement them. The problem of automaton representation and data structure selection to be used in it has been understudied. Arbitrary data structure selection for automaton model software implementation leads to unnecessary computational burden and reduces the developed system efficiency. This article proposes an approach to the reasoned selection of data structures to represent finite algoristic automaton basic models and gives practical considerations based on it.Static and dynamic data structures are proposed for three main ways to assign Mealy and Moore automatons: a transition table, a matrix of coupling and a transition graph. A thirddimensional array, a rectangular matrix and a matrix of lists are the static structures. Dynamic structures are list-oriented structures: two-level and three-level Ayliff vectors and a multi-linked list. These structures allow us to store all required information about finite state automaton model components - characteristic set cardinalities and data of transition and output functions.A criterion system is proposed for data structure comparative evaluation in virtue of algorithmic features of automata theory problems. The criteria focused on capacitive and time computational complexity of operations performed in tasks such as equivalent automaton conversions, proving of automaton equivalence and isomorphism, and automaton minimization.A data structure comparative analysis based on the criterion system has done for both static and dynamic type. The analysis showed advantages of the third-dimensional array, matrix and two-level Ayliff vector. These are structures that assign automaton by transition table. For these structures an experiment was done to measure the execution time of automation operations included in criterion system.The analysis of experiment results showed that a dynamic structure - two

  6. Ageing well? A cross-country analysis of the way older people are visually represented on websites of organizations for older people

    Directory of Open Access Journals (Sweden)

    Eugène Loos

    2017-12-01

    Full Text Available The ‘aging well’ discourse advances the idea of making older people responsible for their capability to stay healthy and active. In the context of an increased ageing population, which poses several challenges to countries’ government, this discourse has become dominant in Europe. We explore the way older people are visually represented on websites of organizations for older people in seven European countries (Finland, UK, the Netherlands, Spain, Italy, Poland and Romania, using an analytical approached based on visual content analysis, inspired by the dimensional model of national cultural differences from the Hofstede model (1991; 2001; 2011. We used two out of the five Hofstede dimensions: Individualism/Collectivism (IDV and Masculinity/Femininity (MAS. The results demonstrated that in all seven countries older people are mostly visually represented as healthy/active, which reflects a dominant ‘ageing well’ discourse in Europe. The results also demonstrated that in most cases older people tend to be represented together with others, which is not consonant with the dominant ‘ageing well’ discourse in Europe. A last finding was that the visual representation of older people is in about half of the cases in line with these Hofstede dimensions. We discuss the implications of these findings claiming that the ‘ageing well’ discourse might lead to ‘visual ageism’. Organizations could keep this in mind while using pictures for their website or in other media and consider to use various kind of pictures, or to avoid using pictures of older people that stigmatize, marginalize or injure. They could look into the cultural situatedness and intersectional character of age relations and consider alternative strategies of both visibility and invisibility to talk with and about our ageing societies.

  7. Democrtic participation: the dialogue between Mouffe's agonistic model and Urbinati's representative model

    Directory of Open Access Journals (Sweden)

    Vera Fátima Gasparetto

    2017-12-01

    Full Text Available The proposal of this article is a theoretical reflections as a result of debates about two categories: democracy and politics, levered by the work of two contemporary authors: Nadia Urbinati and her update on the debate about representation and advocacy; and Chantal Mouffe and her reflection-manifesto about the Agonistic Model of Democracy. The objective is to verify the possibilities that these authors bring to debate democracy, placed as the big question of contemporary politics. The introduction briefly contextualize the theme historically with the contribution of some classic theorists of political theory. In the second topic the thoughts of each one of the authors are apresented, trying to describe their theoretical differences, as well as the analytical convergences. In the conclusion the authors concepts are used to reflect on the participatory democratical model in Brazil, foreseen in the 1988 constitution and it’s perspectives to the advance of citizenship and it’s presence on the public sphere nowadays.

  8. Finite element models to represent seismic activity of the Indian plate

    Directory of Open Access Journals (Sweden)

    S. Jayalakshmi

    2017-01-01

    Full Text Available Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.

  9. The conceptual model of organization social responsibility

    OpenAIRE

    LUO, Lan; WEI, Jingfu

    2014-01-01

    With the developing of the research of CSR, people more and more deeply noticethat the corporate should take responsibility. Whether other organizations besides corporatesshould not take responsibilities beyond their field? This paper puts forward theconcept of organization social responsibility on the basis of the concept of corporate socialresponsibility and other theories. And the conceptual models are built based on theconception, introducing the OSR from three angles: the types of organi...

  10. Gaussian-input Gaussian mixture model for representing density maps and atomic models.

    Science.gov (United States)

    Kawabata, Takeshi

    2018-03-06

    A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis

    International Nuclear Information System (INIS)

    Lazaro, M.

    1989-06-01

    The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs

  12. Is the mental wellbeing of young Australians best represented by a single, multidimensional or bifactor model?

    Science.gov (United States)

    Hides, Leanne; Quinn, Catherine; Stoyanov, Stoyan; Cockshaw, Wendell; Mitchell, Tegan; Kavanagh, David J

    2016-07-30

    Internationally there is a growing interest in the mental wellbeing of young people. However, it is unclear whether mental wellbeing is best conceptualized as a general wellbeing factor or a multidimensional construct. This paper investigated whether mental wellbeing, measured by the Mental Health Continuum-Short Form (MHC-SF), is best represented by: (1) a single-factor general model; (2) a three-factor multidimensional model or (3) a combination of both (bifactor model). 2220 young Australians aged between 16 and 25 years completed an online survey including the MHC-SF and a range of other wellbeing and mental ill-health measures. Exploratory factor analysis supported a bifactor solution, comprised of a general wellbeing factor, and specific group factors of psychological, social and emotional wellbeing. Confirmatory factor analysis indicated that the bifactor model had a better fit than competing single and three-factor models. The MHC-SF total score was more strongly associated with other wellbeing and mental ill-health measures than the social, emotional or psychological subscale scores. Findings indicate that the mental wellbeing of young people is best conceptualized as an overarching latent construct (general wellbeing) to which emotional, social and psychological domains contribute. The MHC-SF total score is a valid and reliable measure of this general wellbeing factor. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Representing winter wheat in the Community Land Model (version 4.5)

    Science.gov (United States)

    Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.

    2017-05-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.

  14. Using ecosystem services to represent the environment in hydro-economic models

    Science.gov (United States)

    Momblanch, Andrea; Connor, Jeffery D.; Crossman, Neville D.; Paredes-Arquiola, Javier; Andreu, Joaquín

    2016-07-01

    Demand for water is expected to grow in line with global human population growth, but opportunities to augment supply are limited in many places due to resource limits and expected impacts of climate change. Hydro-economic models are often used to evaluate water resources management options, commonly with a goal of understanding how to maximise water use value and reduce conflicts among competing uses. The environment is now an important factor in decision making, which has resulted in its inclusion in hydro-economic models. We reviewed 95 studies applying hydro-economic models, and documented how the environment is represented in them and the methods they use to value environmental costs and benefits. We also sought out key gaps and inconsistencies in the treatment of the environment in hydro-economic models. We found that representation of environmental values of water is patchy in most applications, and there should be systematic consideration of the scope of environmental values to include and how they should be valued. We argue that the ecosystem services framework offers a systematic approach to identify the full range of environmental costs and benefits. The main challenges to more holistic representation of the environment in hydro-economic models are the current limits to understanding of ecological functions which relate physical, ecological and economic values and critical environmental thresholds; and the treatment of uncertainty.

  15. On the methodology and scientific fundamentals of organizing, representing and analysing data, information and knowledge in biomedicine and health care.

    Science.gov (United States)

    Haux, R

    2011-01-01

    This issue of Methods of Information in Medicine celebrates the journal's first 50 years. As the oldest journal in biomedical and health informatics and, being broader in its scope, as the journal dealing with the methodology and scientific fundamentals of organizing, representing and analysing data, information and knowledge in biomedicine and health care, the journal publications during the last five decades also reflect the formation of a scientific field that deals with information in biomedicine and health care. Five papers that arose from a scientific symposium on "biomedical informatics: confluence of multiple disciplines" held in Heidelberg, Germany, in June 2011 are included in this volume. The papers reflect not only the broad interdisciplinary scope of the journal, but also the broad and evolving scope of the field itself. We can also recognise that there is an ongoing need for original and relevant research. As a discipline that has an impact on many other fields and is also influenced by them, scientific exchange and collaborative research continues to be needed.

  16. 27 October 2014 - H.E. Mr Ney Samol Ambassador Permanent Representative of the Kingdom of Cambodia to the United Nations Office and other international organizations in Geneva

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    His Excellency Mr Ney Samol Ambassador Permanent Representative of the Kingdom of Cambodia to the United Nations Office and other international organizations in Geneva signing the Guest Book with Deputy Head of International Relations E. Tsesmelis

  17. The Importance of Representing Certain Key Vegetation Canopy Processes Explicitly in a Land Surface Model

    Science.gov (United States)

    Napoly, A.; Boone, A. A.; Martin, E.; Samuelsson, P.

    2015-12-01

    Land surface models are moving to more detailed vegetation canopy descriptions in order to better represent certain key processes, such as Carbon dynamics and snowpack evolution. Since such models are usually applied within coupled numerical weather prediction or spatially distributed hydrological models, these improvements must strike a balance between computational cost and complexity. The consequences of simplified or composite canopy approaches can be manifested in terms of increased errors with respect to soil temperatures, estimates of the diurnal cycle of the turbulent fluxes or snow canopy interception and melt. Vegetated areas and particularly forests are modeled in a quite simplified manner in the ISBA land surface model. However, continuous developments of surface processes now require a more accurate description of the canopy. A new version of the the model now includes a multi energy balance (MEB) option to explicitly represent the canopy and the forest floor. It will be shown that certain newly included processes such as the shading effect of the vegetation, the explicit heat capacity of the canopy, and the insulating effect of the forest floor turn out to be essential. A detailed study has been done for four French forested sites. It was found that the MEB option significantly improves the ground heat flux (RMSE decrease from 50W/m2 to 10W/m2 on average) and soil temperatures when compared against measurements. Also the sensible heat flux calculation was improved primarily owing to a better phasing with the solar insulation owing to a lower vegetation heat capacity. However, the total latent heat flux is less modified compared to the classical ISBA simulation since it is more related to water uptake and the formulation of the stomatal resistance (which are unchanged). Next, a benchmark over 40 Fluxnet sites (116 cumulated years) was performed and compared with results from the default composite soil-vegetation version of ISBA. The results show

  18. Representing the healthcare organization in a post-Sarbanes-Oxley world: new rules, new paradigms, new perils.

    Science.gov (United States)

    Horton, William W

    2004-01-01

    The Sarbanes-Oxley Act (Act) significantly changed the expected corporate behavior of public companies. The Act governs the relationship between corporate organizations and their in-house or outside counsel. Under Section 307 of the Act, the Securities and Exchange Commission initially proposed expansive rules regarding counsel's duties. After comments and criticism from much of the bar, a final, narrower, version of rules under Section 307 (Final Rule) was adopted. The Final Rule contains alternative reporting procedures, attorney responsibilities, and sanctions for violations. In addition to the Act, the American Bar Association's (ABA) Task Force on Corporate Responsibility(Task Force), which was itself a reaction to Enron, reported on the importance of counsel's role in a corporate setting (Cheek Report). The ABA adopted amendments to its Model Rules of Professional Conduct (Model Rules) 1.6 and 1.13 as proposed in the Cheek Report. The Final Rule and amended Model Rules together suggest that attorneys may owe duties beyond those owed to their clients.

  19. COMPUTER MODEL FOR ORGANIC FERTILIZER EVALUATION

    OpenAIRE

    Lončarić, Zdenko; Vukobratović, Marija; Ragaly, Peter; Filep, Tibor; Popović, Brigita; Karalić, Krunoslav; Vukobratović, Želimir

    2009-01-01

    Evaluation of manures, composts and growing media quality should include enough properties to enable an optimal use from productivity and environmental points of view. The aim of this paper is to describe basic structure of organic fertilizer (and growing media) evaluation model to present the model example by comparison of different manures as well as example of using plant growth experiment for calculating impact of pH and EC of growing media on lettuce plant growth. The basic structure of ...

  20. Patient-Derived Gastric Carcinoma Xenograft Mouse Models Faithfully Represent Human Tumor Molecular Diversity.

    Directory of Open Access Journals (Sweden)

    Tianwei Zhang

    Full Text Available Patient-derived cancer xenografts (PDCX generally represent more reliable models of human disease in which to evaluate a potential drugs preclinical efficacy. However to date, only a few patient-derived gastric cancer xenograft (PDGCX models have been reported. In this study, we aimed to establish additional PDGCX models and to evaluate whether these models accurately reflected the histological and genetic diversities of the corresponding patient tumors. By engrafting fresh patient gastric cancer (GC tissues into immune-compromised mice (SCID and/or nude mice, thirty two PDGCX models were established. Histological features were assessed by a qualified pathologist based on H&E staining. Genomic comparison was performed for several biomarkers including ERBB1, ERBB2, ERBB3, FGFR2, MET and PTEN. These biomarkers were profiled to assess gene copy number by fluorescent in situ hybridization (FISH and/or protein expression by immunohistochemistry (IHC. All 32 PDGCX models retained the histological features of the corresponding human tumors. Furthermore, among the 32 models, 78% (25/32 highly expressed ERBB1 (EGFR, 22% (7/32 were ERBB2 (HER2 positive, 78% (25/32 showed ERBB3 (HER3 high expression, 66% (21/32 lost PTEN expression, 3% (1/32 harbored FGFR2 amplification, 41% (13/32 were positive for MET expression and 16% (5/32 were MET gene amplified. Between the PDGCX models and their parental tumors, a high degree of similarity was observed for FGFR2 and MET gene amplification, and also for ERBB2 status (agreement rate = 94~100%; kappa value = 0.81~1. Protein expression of PTEN and MET also showed moderate agreement (agreement rate = 78%; kappa value = 0.46~0.56, while ERBB1 and ERBB3 expression showed slight agreement (agreement rate = 59~75%; kappa value = 0.18~0.19. ERBB2 positivity, FGFR2 or MET gene amplification was all maintained until passage 12 in mice. The stability of the molecular profiles observed across subsequent passages within the

  1. Resveratrol and Lifespan in Model Organisms.

    Science.gov (United States)

    Pallauf, Kathrin; Rimbach, Gerald; Rupp, Petra Maria; Chin, Dawn; Wolf, Insa M A

    2016-01-01

    Resveratrol may possess life-prolonging and health-benefitting properties, some of which may resemble the effect of caloric restriction (CR). CR appears to prolong the lifespan of model organisms in some studies and may benefit human health. However, for humans, restricting food intake for an extended period of time seems impracticable and substances imitating the beneficial effects of CR without having to reduce food intake could improve health in an aging and overweight population. We have reviewed the literature studying the influence of resveratrol on the lifespan of model organisms including yeast, flies, worms, and rodents. We summarize the in vivo findings, describe modulations of molecular targets and gene expression observed in vivo and in vitro, and discuss how these changes may contribute to lifespan extension. Data from clinical studies are summarized to provide an insight about the potential of resveratrol supplementation in humans. Resveratrol supplementation has been shown to prolong lifespan in approximately 60% of the studies conducted in model organisms. However, current literature is contradictory, indicating that the lifespan effects of resveratrol vary strongly depending on the model organism. While worms and killifish seemed very responsive to resveratrol, resveratrol failed to affect lifespan in the majority of the studies conducted in flies and mice. Furthermore, factors such as dose, gender, genetic background and diet composition may contribute to the high variance in the observed effects. It remains inconclusive whether resveratrol is indeed a CR mimetic and possesses life-prolonging properties. The limited bioavailability of resveratrol may further impede its potential effects.

  2. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...

  3. A STRATEGIC MANAGEMENT MODEL FOR SERVICE ORGANIZATIONS

    OpenAIRE

    Andreea ZAMFIR

    2013-01-01

    This paper provides a knowledge-based strategic management of services model, with a view to emphasise an approach to gaining competitive advantage through knowledge, people and networking. The long-term evolution of the service organization is associated with the way in which the strategic management is practised.

  4. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    Energy Technology Data Exchange (ETDEWEB)

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of

  5. Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model

    Science.gov (United States)

    Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.

    2018-05-01

    Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.

  6. Modeling of Organic Effects on Aerosols Growth

    Science.gov (United States)

    Caboussat, A.; Amundson, N. R.; He, J.; Seinfeld, J. H.

    2006-05-01

    Over the last two decades, a series of modules has been developed in the atmospheric modeling community to predict the phase transition, multistage growth phenomena, crystallization and evaporation of inorganic aerosols. In the same time, the water interactions of particles containing organic constituents have been recognized as an important factor for aerosol activation and cloud formation. However, the research on hygroscopicity of organic-containing aerosols, motivated by the organic effect on aerosol growth and activation, has gathered much less attention. We present here a new model (UHAERO), that is both efficient and rigorously computes phase separation and liquid-liquid equilibrium for organic particles, as well as the dynamics partitioning between gas and particulate phases, with emphasis on the role of water vapor in the gas-liquid partitioning. The model does not rely on any a priori specification of the phases present in certain atmospheric conditions. The determination of the thermodynamic equilibrium is based on the minimization of the Gibbs free energy. The mass transfer between the particle and the bulk gas phase is dynamically driven by the difference between bulk gas pressure and the gas pressure at the surface of a particle. The multicomponent phase equilibrium for a closed organic aerosol system at constant temperature and pressure and for specified feeds is the solution to the liquid-liquid equilibrium problem arising from the constrained minimization of the Gibbs free energy. A geometrical concept of phase simplex (phase separation) is introduced to characterize the thermodynamic equilibrium. The computation of the mass fluxes is achieved by coupling the thermodynamics of the organic aerosol particle and the determination of the mass fluxes. Numerical results show the efficiency of the model, which make it suitable for insertion in global three- dimensional air quality models. The Gibbs free energy is modeled by the UNIFAC model to illustrate

  7. A class representative model for Pure Parsimony Haplotyping under uncertain data.

    Directory of Open Access Journals (Sweden)

    Daniele Catanzaro

    Full Text Available The Pure Parsimony Haplotyping (PPH problem is a NP-hard combinatorial optimization problem that consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. PPH has attracted more and more attention in recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from mapping complex disease genes to inferring population histories, passing through designing drugs, functional genomics and pharmacogenetics. In this article we investigate, for the first time, a recent version of PPH called the Pure Parsimony Haplotype problem under Uncertain Data (PPH-UD. This version mainly arises when the input genotypes are not accurate, i.e., when some single nucleotide polymorphisms are missing or affected by errors. We propose an exact approach to solution of PPH-UD based on an extended version of Catanzaro et al.[1] class representative model for PPH, currently the state-of-the-art integer programming model for PPH. The model is efficient, accurate, compact, polynomial-sized, easy to implement, solvable with any solver for mixed integer programming, and usable in all those cases for which the parsimony criterion is well suited for haplotype estimation.

  8. Fault detection in processes represented by PLS models using an EWMA control scheme

    KAUST Repository

    Harrou, Fouzi

    2016-10-20

    Fault detection is important for effective and safe process operation. Partial least squares (PLS) has been used successfully in fault detection for multivariate processes with highly correlated variables. However, the conventional PLS-based detection metrics, such as the Hotelling\\'s T and the Q statistics are not well suited to detect small faults because they only use information about the process in the most recent observation. Exponentially weighed moving average (EWMA), however, has been shown to be more sensitive to small shifts in the mean of process variables. In this paper, a PLS-based EWMA fault detection method is proposed for monitoring processes represented by PLS models. The performance of the proposed method is compared with that of the traditional PLS-based fault detection method through a simulated example involving various fault scenarios that could be encountered in real processes. The simulation results clearly show the effectiveness of the proposed method over the conventional PLS method.

  9. Towards model evaluation and identification using Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    M. Herbst

    2008-04-01

    Full Text Available The reduction of information contained in model time series through the use of aggregating statistical performance measures is very high compared to the amount of information that one would like to draw from it for model identification and calibration purposes. It has been readily shown that this loss imposes important limitations on model identification and -diagnostics and thus constitutes an element of the overall model uncertainty. In this contribution we present an approach using a Self-Organizing Map (SOM to circumvent the identifiability problem induced by the low discriminatory power of aggregating performance measures. Instead, a Self-Organizing Map is used to differentiate the spectrum of model realizations, obtained from Monte-Carlo simulations with a distributed conceptual watershed model, based on the recognition of different patterns in time series. Further, the SOM is used instead of a classical optimization algorithm to identify those model realizations among the Monte-Carlo simulation results that most closely approximate the pattern of the measured discharge time series. The results are analyzed and compared with the manually calibrated model as well as with the results of the Shuffled Complex Evolution algorithm (SCE-UA. In our study the latter slightly outperformed the SOM results. The SOM method, however, yields a set of equivalent model parameterizations and therefore also allows for confining the parameter space to a region that closely represents a measured data set. This particular feature renders the SOM potentially useful for future model identification applications.

  10. Representing agriculture in Earth System Models: Approaches and priorities for development

    Science.gov (United States)

    McDermid, S. S.; Mearns, L. O.; Ruane, A. C.

    2017-09-01

    Earth System Model (ESM) advances now enable improved representations of spatially and temporally varying anthropogenic climate forcings. One critical forcing is global agriculture, which is now extensive in land-use and intensive in management, owing to 20th century development trends. Agriculture and food systems now contribute nearly 30% of global greenhouse gas emissions and require copious inputs and resources, such as fertilizer, water, and land. Much uncertainty remains in quantifying important agriculture-climate interactions, including surface moisture and energy balances and biogeochemical cycling. Despite these externalities and uncertainties, agriculture is increasingly being leveraged to function as a net sink of anthropogenic carbon, and there is much emphasis on future sustainable intensification. Given its significance as a major environmental and climate forcing, there now exist a variety of approaches to represent agriculture in ESMs. These approaches are reviewed herein, and range from idealized representations of agricultural extent to the development of coupled climate-crop models that capture dynamic feedbacks. We highlight the robust agriculture-climate interactions and responses identified by these modeling efforts, as well as existing uncertainties and model limitations. To this end, coordinated and benchmarking assessments of land-use-climate feedbacks can be leveraged for further improvements in ESM's agricultural representations. We suggest key areas for continued model development, including incorporating irrigation and biogeochemical cycling in particular. Last, we pose several critical research questions to guide future work. Our review focuses on ESM representations of climate-surface interactions over managed agricultural lands, rather than on ESMs as an estimation tool for crop yields and productivity.

  11. Emergent organization in a model market

    Science.gov (United States)

    Yadav, Avinash Chand; Manchanda, Kaustubh; Ramaswamy, Ramakrishna

    2017-09-01

    We study the collective behaviour of interacting agents in a simple model of market economics that was originally introduced by Nørrelykke and Bak. A general theoretical framework for interacting traders on an arbitrary network is presented, with the interaction consisting of buying (namely consumption) and selling (namely production) of commodities. Extremal dynamics is introduced by having the agent with least profit in the market readjust prices, causing the market to self-organize. In addition to examining this model market on regular lattices in two-dimensions, we also study the cases of random complex networks both with and without community structures. Fluctuations in an activity signal exhibit properties that are characteristic of avalanches observed in models of self-organized criticality, and these can be described by power-law distributions when the system is in the critical state.

  12. Biophysical Modeling of Respiratory Organ Motion

    Science.gov (United States)

    Werner, René

    Methods to estimate respiratory organ motion can be divided into two groups: biophysical modeling and image registration. In image registration, motion fields are directly extracted from 4D ({D}+{t}) image sequences, often without concerning knowledge about anatomy and physiology in detail. In contrast, biophysical approaches aim at identification of anatomical and physiological aspects of breathing dynamics that are to be modeled. In the context of radiation therapy, biophysical modeling of respiratory organ motion commonly refers to the framework of continuum mechanics and elasticity theory, respectively. Underlying ideas and corresponding boundary value problems of those approaches are described in this chapter, along with a brief comparison to image registration-based motion field estimation.

  13. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Satoru Koda

    2017-11-01

    Full Text Available We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX model with a group smoothly clipped absolute deviation (SCAD method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  14. Tropical Diabatic Heating and the Role of Convective Processes as Represented in Several Contemporary Climate Models

    Science.gov (United States)

    Robertson, Franklin R.; Roads, John; Oglesby, Robert; Marshall, Susan

    2004-01-01

    One of the most fundamental properties of the global heat balance is the net heat input into the tropical atmosphere that helps drive the planetary atmospheric circulation. Although broadly understood in terms of its gross structure and balance of source / sink terms, incorporation of the relevant processes in predictive models is still rather poor. The work reported here examines the tropical radiative and water cycle behavior as produced by four contemporary climate models. Among these are the NSIPP-2 (NASA Seasonal to Interannual Prediction Project) which uses the RAS convective parameterization; the FVCCM, a code using finite volume numerics and the CCM3.6 physics; FVCCM-MCRAS again having the finite volume numerics, but MCRAS convective parameterization and a different radiation treatment; and, finally, the NCEP GSM which uses the RAS. Using multi-decadal integrations with specified SSTs we examine the statistics of radiative / convective processes and associated energy transports, and then estimate model energy flux sensitivities to SST changes. In particular the behavior of the convective parameterizations is investigated. Additional model integrations are performed specifically to assess the importance representing convective inhibition in regulating convective cloud-top structure and moisture detrainment as well as controlling surface energy fluxes. To evaluate the results of these experiments, a number of satellite retrievals are used: TRMM retrievals of vertical reflectivity structure, rainfall rate, and inferred diabatic heating are analyzed to show both seasonal and interannual variations in vertical structure of latent heat release. Top-of-atmosphere radiative fluxes from ERBS and CERES are used to examine shortwave and longwave cloud forcing and to deduce required seasonal energy transports. Retrievals of cloud properties from ISCCP and water vapor variations from SSM/T-2 are also used to understand behavior of the humidity fields. These observations

  15. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling inBrachypodium distachyon.

    Science.gov (United States)

    Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi

    2017-01-01

    We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  16. Representing human-water interactions in an integrated regional earth system modeling framework

    Science.gov (United States)

    Li, H.; Huang, M.; Wigmosta, M. S.; Ke, Y.; Coleman, A. M.; Leung, L.

    2010-12-01

    The hydrologic cycle has been under the influence of human activities, active (modification) or passive (adaptation), since the beginning of civilization. In recent years, the topic of the interactions between human activities and the water cycle in the context of climate change has emerged with critical importance within the hydrologic and climate science communities. However, such interactions have not been sufficiently represented in most hydrologic and land surface models. In this study, we aim to develop and evaluate two critical components relevant to human-water interactions in an integrated regional earth system modeling (iRESM) framework under development. They are (1) an irrigation module to be integrated into the land component of iRESM for managed ecosystems; and (2) a generic water management module to allocate water to different sectors, e.g., irrigation and energy production, which are competing against each other for limited water. We will evaluate these components against in-situ and remotely sensed observations in selected sites and watersheds in the western United States, where irrigation and water management activities are pronounced.

  17. Extension of the Representativeness of the Traumatic Brain Injury Model Systems National Database: 2001 to 2010

    Science.gov (United States)

    Cuthbert, Jeffrey P; Corrigan, John D.; Whiteneck, Gale G.; Harrison-Felix, Cynthia; Graham, James E.; Bell, Jeneita M.; Coronado, Victor G.

    2017-01-01

    Objective To extend the representativeness of the Traumatic Brain Injury Model Systems National Database (TBIMS-NDB) for individuals aged 16 years and older admitted for acute, inpatient rehabilitation in the United States with a primary diagnosis of traumatic brain injury (TBI) analyses completed by Corrigan and colleagues,3 by comparing this dataset to national data for patients admitted to inpatient rehabilitation with identical inclusion criteria that included 3 additional years of data and 2 new demographic variables. Design Secondary analysis of existing datasets; extension of previously published analyses. Setting Acute inpatient rehabilitation facilities. Participants Patients 16 years of age and older with a primary rehabilitation diagnosis of TBI; US TBI Rehabilitation population n = 156,447; TBIMS-NDB population n = 7373. Interventions None. Main Outcome Measure demographics, functional status and hospital length of stay. Results The TBIMS-NDB was largely representative of patients 16 years and older admitted for rehabilitation in the U.S. with a primary diagnosis of TBI on or after October 1, 2001 and discharged as of December 31, 2010. The results of the extended analyses were similar to those reported by Corrigan and colleagues. Age accounted for the largest difference between the samples, with the TBIMS-NDB including a smaller proportion of patients aged 65 and older as compared to all those admitted for rehabilitation with a primary diagnosis of TBI in the United States. After partitioning each dataset at age 65, most distributional differences found between samples were markedly reduced; however, differences on the Pre-injury vocational status of employed and rehabilitation lengths of stay between 1 and 9 days remained robust. The subsamples of patients aged 64 and younger was found to differ only slightly on all remaining variables, while those aged 65 and older were found to have meaningful differences on insurance type and age distribution

  18. Representing Farmer Irrigation Decisions in Northern India: Model Development from the Bottom Up.

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2017-12-01

    The plains of northern India are among the most intensely populated and irrigated regions of the world. Sustaining water demand has been made possible by exploiting the vast and hugely productive aquifers underlying the Indo-Gangetic basin. However, an increasing demand from a growing population and highly variable socio-economic and environmental variables mean present resources may not be sustainable, resulting in water security becoming one of India's biggest challenges. Unless solutions which take into consideration the regions evolving anthropogenic and environmental conditions are found, the sustainability of India's water resources looks bleak. Understanding water user decisions and their potential outcome is important for development of suitable water resource management options. Computational models are commonly used to assist water use decision making, typically representing natural processes well. The inclusion of human decision making however, one of the dominant drivers of change, has lagged behind. Improved representation of irrigation water user behaviour within models provides more accurate, relevant information for irrigation management. This research conceptualizes and proceduralizes observed farmer irrigation practices, highlighting feedbacks between the environment and livelihood. It is developed using a bottom up approach, informed through field experience and stakeholder interaction in Uttar Pradesh, northern India. Real world insights are incorporated through collected information creating a realistic representation of field conditions, providing a useful tool for policy analysis and water management. The modelling framework is applied to four districts. Results suggest predicted future climate will have little direct impact on water resources, crop yields or farmer income. In addition, increased abstraction may be sustainable in some areas under carefully managed conditions. By simulating dynamic decision making, feedbacks and interactions

  19. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mai, Trieu T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss common modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges

  20. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  1. Comparing efficient data structures to represent geometric models for three-dimensional virtual medical training.

    Science.gov (United States)

    Bíscaro, Helton H; Nunes, Fátima L S; Dos Santos Oliveira, Jéssica; Pereira, Gustavo R

    2016-10-01

    Data structures have been explored for several domains of computer applications in order to ensure efficiency in the data store and retrieval. However, data structures can present different behavior depending on applications that they are being used. Three-dimensional interactive environments offered by techniques of Virtual Reality require operations of loading and manipulating objects in real time, where realism and response time are two important requirements. Efficient representation of geometrical models plays an important part so that the simulation may become real. In this paper, we present the implementation and the comparison of two topologically efficient data structures - Compact Half-Edge and Mate-Face - for the representation of objects for three-dimensional interactive environments. The structures have been tested at different conditions of processors and RAM memories. The results show that both these structures can be used in an efficient manner. Mate-Face structure has shown itself to be more efficient for the manipulation of neighborhood relationships and the Compact Half-Edge was more efficient for loading of the geometric models. We also evaluated the data structures embedded in applications of biopsy simulation using virtual reality, considering a deformation simulation method applied in virtual human organs. The results showed that their use allows the building of applications considering objects with high resolutions (number of vertices), without significant impact in the time spent in the simulation. Therefore, their use contributes for the construction of more realistic simulators. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mapping model behaviour using Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    M. Herbst

    2009-03-01

    Full Text Available Hydrological model evaluation and identification essentially involves extracting and processing information from model time series. However, the type of information extracted by statistical measures has only very limited meaning because it does not relate to the hydrological context of the data. To overcome this inadequacy we exploit the diagnostic evaluation concept of Signature Indices, in which model performance is measured using theoretically relevant characteristics of system behaviour. In our study, a Self-Organizing Map (SOM is used to process the Signatures extracted from Monte-Carlo simulations generated by the distributed conceptual watershed model NASIM. The SOM creates a hydrologically interpretable mapping of overall model behaviour, which immediately reveals deficits and trade-offs in the ability of the model to represent the different functional behaviours of the watershed. Further, it facilitates interpretation of the hydrological functions of the model parameters and provides preliminary information regarding their sensitivities. Most notably, we use this mapping to identify the set of model realizations (among the Monte-Carlo data that most closely approximate the observed discharge time series in terms of the hydrologically relevant characteristics, and to confine the parameter space accordingly. Our results suggest that Signature Index based SOMs could potentially serve as tools for decision makers inasmuch as model realizations with specific Signature properties can be selected according to the purpose of the model application. Moreover, given that the approach helps to represent and analyze multi-dimensional distributions, it could be used to form the basis of an optimization framework that uses SOMs to characterize the model performance response surface. As such it provides a powerful and useful way to conduct model identification and model uncertainty analyses.

  3. Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface

    Directory of Open Access Journals (Sweden)

    Marc Mac Giolla Eain

    2017-02-01

    Full Text Available Host-microbe interactions at the gastrointestinal interface have emerged as a key component in the governance of human health and disease. Advances in micro-physiological systems are providing researchers with unprecedented access and insights into this complex relationship. These systems combine the benefits of microengineering, microfluidics, and cell culture in a bid to recreate the environmental conditions prevalent in the human gut. Here we present the human-microbial cross talk (HuMiX platform, one such system that leverages this multidisciplinary approach to provide a representative in vitro model of the human gastrointestinal interface. HuMiX presents a novel and robust means to study the molecular interactions at the host-microbe interface. We summarize our proof-of-concept results obtained using the platform and highlight its potential to greatly enhance our understanding of host-microbe interactions with a potential to greatly impact the pharmaceutical, food, nutrition, and healthcare industries in the future. A number of key questions and challenges facing these technologies are also discussed.

  4. The representative model of teamwork adapted administrative management theory where leadership is owned exclusively by physician

    OpenAIRE

    Valentina Zaharia; I. Donciu; M.Dogaru; V.Perianu

    2015-01-01

    H.Fayol the organization as a complex organism that divides it into several parts, each part by executing specific operations, such as: technical (production), trade (supply, sale, exchange), financial records (accounting, statistics), security, insurance (Protection of property and persons) and administrative (foresight, organization, coordination, command and control).

  5. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2017-10-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  6. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  7. Mathematical human body models representing a mid size male and a small female for frontal, lateral and rearward impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Lange, R. de; Bours, R.; Ridella, S.; Nayef, A.; Hoof, J. van

    2000-01-01

    A human body model representing a mid size male has been presented at the 1998 STAPP conference. A combination of modeling techniques was applied using rigid bodies for most segments, but describing the thorax as a deformable structure. In this paper, this modeling strategy was employed to also

  8. Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change

    Directory of Open Access Journals (Sweden)

    M. I. Stutter

    2011-12-01

    Full Text Available Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC. Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993–2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively, declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1 considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2 freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport controls may, at present, be governing the more ubiquitous rises in

  9. BIB-SEM of representative area clay structures paving towards an alternative model of porosity

    Science.gov (United States)

    Desbois, G.; Urai, J. L.; Houben, M.; Hemes, S.; Klaver, J.

    2012-04-01

    A major contribution to understanding the sealing capacity, coupled flow, capillary processes and associated deformation in clay-rich geomaterials is based on detailed investigation of the rock microstructures. However, the direct characterization of pores in representative elementary area (REA) and below µm-scale resolution remains challenging. To investigate directly the mm- to nm-scale porosity, SEM is certainly the most direct approach, but it is limited by the poor quality of the investigated surfaces. The recent development of ion milling tools (BIB and FIB; Desbois et al, 2009, 2011; Heath et al., 2011; Keller et al., 2011) and cryo-SEM allows respectively producing exceptional high quality polished cross-sections suitable for high resolution porosity SEM-imaging at nm-scale and investigating samples under wet conditions by cryogenic stabilization. This contribution focuses mainly on the SEM description of pore microstructures in 2D BIB-polished cross-sections of Boom (Mol site, Belgium) and Opalinus (Mont Terri, Switzerland) clays down to the SEM resolution. Pores detected in images are statistically analyzed to perform porosity quantification in REA. On the one hand, BIB-SEM results allow retrieving MIP measurements obtained from larger sample volumes. On the other hand, the BIB-SEM approach allows characterizing porosity-homogeneous and -predictable islands, which form the elementary components of an alternative concept of porosity/permeability model based on pore microstructures. Desbois G., Urai J.L. and Kukla P.A. (2009) Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. E-Earth, 4, 15-22. Desbois G., Urai J.L., Kukla P.A., Konstanty J. and Baerle C. (2011). High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: a new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging . Journal of Petroleum Science

  10. Under-Represented College Students and Extracurricular Involvement: The Effects of Various Student Organizations on Academic Performance

    Science.gov (United States)

    Baker, Christina N.

    2008-01-01

    Several studies indicate that students who are involved in extracurricular activities during college are more academically successful than are those who are not; however, most studies do not distinguish between different types of activities nor do they adequately consider the unique experiences of under-represented college students. Drawing on…

  11. Virtuous organization: A structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Majid Zamahani

    2013-02-01

    Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.

  12. A representative study of pediatric panoramic and cephalometric radiation exposure to organs of the head and neck

    Directory of Open Access Journals (Sweden)

    Peikidis E

    2016-12-01

    Full Text Available The purpose of this study was to measure juvenile patient radiation dose to organs of the head and neck during digital panoramic and cephalometric radiography using anthropomorphic CIRS phantoms at 5 and 10-years-old with nanoDot optically stimulated luminescent dosimeters (OSLDs. OSLDs were placed at 21 head and neck organ sites of the phantom heads. Phantom heads were subjected to panoramic and cephalometric imaging protocols using manufacturers’ predefined exposure settings. Radiation dose fractions to various organ sites were determined using reference values from the ICRP-89 document. Organ equivalent doses and overall effective doses were based on ICRP-103 tissue weighting factors. Overall measured organ doses were higher for the 5-year-old than for the 10-year-old for both the panoramic and the cephalometric imaging protocols. The highest doses seen were in the salivary glands, extrathoracic airway, and the oral mucosa. The organ equivalent dose in microsieverts (µSv also yielded similar results. The effective dose for the 5-year-old was 27.8 µSv for the panoramic and 6.5 µSv for the cephalometric, while the 10-year-old results were 26.3 µSv for the panoramic and 3.8 µSv for the cephalometric. The effective doses estimated for this study for the 5-year-old and 10-year-old during cephalometric procedures are lower than the US natural background reading of 8.5 µSv per day and lower than the US average exposure per day of 17 µSv. The effective doses estimated in this study for the panoramic procedure for both phantoms were above the natural background and above the national average per day. These data support the notion that child-appropriate technique factors and geometry factors should be used for panoramic and cephalometric imaging protocols.

  13. Modeling global persistent organic chemicals in clouds

    Science.gov (United States)

    Mao, Xiaoxuan; Gao, Hong; Huang, Tao; Zhang, Lisheng; Ma, Jianmin

    2014-10-01

    A cloud model was implemented in a global atmospheric transport model to simulate cloud liquid water content and quantify the influence of clouds on gas/aqueous phase partitioning of persistent organic chemicals (POCs). Partitioning fractions of gas/aqueous and particle phases in clouds for three POCs α-hexachlorocyclohexane (α-HCH), polychlorinated biphenyl-28 (PCB-28), and PCB-138 in a cloudy atmosphere were estimated. Results show that the partition fraction of these selected chemicals depend on cloud liquid water content (LWC) and air temperature. We calculated global distribution of water droplet/ice particle-air partitioning coefficients of the three chemicals in clouds. The partition fractions at selected model grids in the Northern Hemisphere show that α-HCH, a hydrophilic chemical, is sorbed strongly onto cloud water droplets. The computed partition fractions at four selected model grids show that α-HCH tends to be sorbed onto clouds over land (source region) from summer to early fall, and over ocean from late spring to early fall. 20-60% of α-HCH is able to be sorbed to cloud waters over mid-latitude oceans during summer days. PCB-138, one of hydrophobic POCs, on the other hand, tends to be sorbed to particles in the atmosphere subject to air temperature. We also show that, on seasonal or annual average, 10-20% of averaged PCB-28 over the Northern Hemisphere could be sorbed onto clouds, leading to reduction of its gas-phase concentration in the atmosphere.

  14. A computational fluid dynamic modelling approach to assess the representativeness of urban monitoring stations.

    Science.gov (United States)

    Santiago, Jose Luis; Martín, Fernando; Martilli, Alberto

    2013-06-01

    Air quality measurements of urban monitoring stations have a limited spatial representativeness due to the complexity of urban meteorology and emissions distribution. In this work, a methodology based on a set of computational fluid dynamics simulations based on Reynolds-Averaged Navier-Stokes equations (RANS-CFD) for different meteorological conditions covering several months is developed in order to analyse the spatial representativeness of urban monitoring stations and to complement their measured concentrations. The methodology has been applied to two urban areas nearby air quality traffic-oriented stations in Pamplona and Madrid (Spain) to analyse nitrogen oxides concentrations. The computed maps of pollutant concentrations around each station show strong spatial variability being very difficult to comply with the European legislation concerning the spatial representativeness of traffic-oriented air quality stations. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Relative effects of educational level and occupational social class on body concentrations of persistent organic pollutants in a representative sample of the general population of Catalonia, Spain.

    Science.gov (United States)

    Gasull, Magda; Pumarega, José; Rovira, Gemma; López, Tomàs; Alguacil, Juan; Porta, Miquel

    2013-10-01

    Scant evidence is available worldwide on the relative influence of occupational social class and educational level on body concentrations of persistent organic pollutants (POPs) in the general population. The objective was to analyse such influence in a representative sample of the general population of Catalonia, Spain. Participants in the Catalan Health Interview Survey aged 18-74 were interviewed face-to-face, gave blood, and underwent a physical exam. The role of age, body mass index (BMI), and parity was analysed with General Linear Models, and adjusted geometric means (GMs) were obtained. Crude (unadjusted) concentrations were higher in women and men with lower education, and in women, but not men, in the less affluent social class. After adjusting for age, in women there were no associations between POP levels and social class or education. After adjusting for age and BMI, men in the less affluent class had higher p,p'-DDE concentrations than men in class I (p-value=0.016), while men in class IV had lower HCB than men in the upper class (p-valuefood webs. Decreasing historical trends would also partly explain crude socioeconomic differences apparently due to birth cohort effects. © 2013 Elsevier Ltd. All rights reserved.

  16. Representing and estimating interactions between activities in a need-based model of activity generation

    NARCIS (Netherlands)

    Nijland, L.; Arentze, T.; Timmermans, H.

    2013-01-01

    Although several activity-based models made the transition to practice in recent years, modeling dynamic activity generation and especially, the mechanisms underlying activity generation are not well incorporated in the current activity-based models. For instance, current models assume that

  17. Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC

    Science.gov (United States)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2009-04-01

    Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid

  18. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  19. A bio-mathematical model for parallel organs and its use in ranking radiation treatment plans.

    Science.gov (United States)

    Wang, Li; Li, Wenhui; Bai, Han; Chang, Li; Qin, Jiyong; Hou, Yu

    2012-12-01

    To develop a new bio-mathematical model, named LQ-based parallel-organ model, that can overcome the limitation of interpreting the simple dose-volume information so as to rank the radio- toxicity of parallel organs in the same patient. A parallel organ consists of Function Subunits (FSUs), with each FSU being equal and representative in functional status. Based on the Linear-Quadratic model (LQ model), we had derived a bio-mathematical model to calculate the survival cell number for radiation dose response. We then compared the cell survival number for the ranking of treatment plans for the same patient. Ninety 3D plans from forty-five randomly selected lung cancer patients were generated using the ELEKTA precise 2.12 treatment planning system. The LQ-based parallel-organ model was tested against the widely used Lyman-Kutcher-Burman model (LKB model). There was no distinct statistical difference in plan ranking between using the LQ-based parallel-organ model and the LKB model (P = 0.475). Ranking plans by the V(x), Mean Lung Dose (MLD) and the LQ-based parallel-organ model shows that there was no distinct statistical difference between V(5), V(10), V(20), MLD and the LQ-based parallel-organ model, respectively (all Ps > 0.05). The proposed LQ-based parallel-organ model was found to be efficient and reliable for ranking treatment plans for the same patient.

  20. Representing of Information Attacks in the Conditions of a Reference Model OSE/RM

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2013-02-01

    Full Text Available Graphic representation of attacks to open systems within the conceptual OSE/RM model is considered in the paper. Attacks are classified according to level of their action in the 7th level OSI model.

  1. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  2. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  3. A Hidden Markov Model Representing the Spatial and Temporal Correlation of Multiple Wind Farms

    DEFF Research Database (Denmark)

    Fang, Jiakun; Su, Chi; Hu, Weihao

    2015-01-01

    To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps...

  4. Detailed clinical models: representing knowledge, data and semantics in healthcare information technology.

    Science.gov (United States)

    Goossen, William T F

    2014-07-01

    This paper will present an overview of the developmental effort in harmonizing clinical knowledge modeling using the Detailed Clinical Models (DCMs), and will explain how it can contribute to the preservation of Electronic Health Records (EHR) data. Clinical knowledge modeling is vital for the management and preservation of EHR and data. Such modeling provides common data elements and terminology binding with the intention of capturing and managing clinical information over time and location independent from technology. Any EHR data exchange without an agreed clinical knowledge modeling will potentially result in loss of information. Many attempts exist from the past to model clinical knowledge for the benefits of semantic interoperability using standardized data representation and common terminologies. The objective of each project is similar with respect to consistent representation of clinical data, using standardized terminologies, and an overall logical approach. However, the conceptual, logical, and the technical expressions are quite different in one clinical knowledge modeling approach versus another. There currently are synergies under the Clinical Information Modeling Initiative (CIMI) in order to create a harmonized reference model for clinical knowledge models. The goal for the CIMI is to create a reference model and formalisms based on for instance the DCM (ISO/TS 13972), among other work. A global repository of DCMs may potentially be established in the future.

  5. Evaluating Different Model Structures for Representing Watershed Functions through the use of Signature Measures

    Science.gov (United States)

    Mendoza, P. A.; Clark, M. P.; Rajagopalan, B.

    2012-12-01

    The increasing availability of hydrometeorological data and computational resources has allowed the evolution of hydrological models from lumped, conceptual to fully distributed. However, principal catchment behavioral functions are poorly understood, mainly because model evaluation has been typically based on the comparison of simulated and observed time series of model outputs (e.g., streamflow), ignoring the possibility that we may be getting the right results because of a compensation of errors in model structure, parameters and data. In recent years the hydrological community has redirected its efforts to look for a better understanding of hydrological models from a functional point of view (e.g. water balance, vertical redistribution of soil moisture and redistribution of runoff in time, among others). In this research, we evaluate the ability of three hydrological models (PRMS, VIC and Noah-MP) to skillfully reproduce relevant watershed processes in the Animas River basin, which is a sub-basin of the Colorado River Basin. A suite of signature measures that have diagnostic power of model behaviors is developed and analyzed in order to diagnose the model deficiency. All model simulations were run with the same spatial discretization and forcing data to enable fair comparison of model structures

  6. Representing energy technologies in top-down economic models using bottom-up information

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, J.R. [M.I.T., Cambridge, MA (United States). Technology and Policy Program; Reilly, J.M. [M.I.T., Cambridge, MA (United States). Joint Program on the Science and Policy of Global Change; Herzog, H.J. [M.I.T., Cambridge, MA (United States). Laboratory for Energy and the Environment

    2004-07-01

    The rate and magnitude of technological change is a critical component in estimating future anthropogenic carbon emissions. We present a methodology for modeling low-carbon emitting technologies within the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium (CGE) model of the world economy. The methodology translates bottom-up engineering information for two carbon capture and sequestration (CCS) technologies in the electric power sector into the EPPA model and discusses issues that arise in assuring an accurate representation and realistic market penetration. We find that coal-based technologies with sequestration penetrate, despite their higher cost today, because of projected rising natural gas prices. (author)

  7. Reproducing tailing in breakthrough curves: Are statistical models equally representative and predictive?

    Science.gov (United States)

    Pedretti, Daniele; Bianchi, Marco

    2018-03-01

    Breakthrough curves (BTCs) observed during tracer tests in highly heterogeneous aquifers display strong tailing. Power laws are popular models for both the empirical fitting of these curves, and the prediction of transport using upscaling models based on best-fitted estimated parameters (e.g. the power law slope or exponent). The predictive capacity of power law based upscaling models can be however questioned due to the difficulties to link model parameters with the aquifers' physical properties. This work analyzes two aspects that can limit the use of power laws as effective predictive tools: (a) the implication of statistical subsampling, which often renders power laws undistinguishable from other heavily tailed distributions, such as the logarithmic (LOG); (b) the difficulties to reconcile fitting parameters obtained from models with different formulations, such as the presence of a late-time cutoff in the power law model. Two rigorous and systematic stochastic analyses, one based on benchmark distributions and the other on BTCs obtained from transport simulations, are considered. It is found that a power law model without cutoff (PL) results in best-fitted exponents (αPL) falling in the range of typical experimental values reported in the literature (1.5 constant αCO ≈ 1. In the PLCO model, the cutoff rate (λ) is the parameter that fully reproduces the persistence of the tailing and is shown to be inversely correlated to the LOG scale parameter (i.e. with the skewness of the distribution). The theoretical results are consistent with the fitting analysis of a tracer test performed during the MADE-5 experiment. It is shown that a simple mechanistic upscaling model based on the PLCO formulation is able to predict the ensemble of BTCs from the stochastic transport simulations without the need of any fitted parameters. The model embeds the constant αCO = 1 and relies on a stratified description of the transport mechanisms to estimate λ. The PL fails to

  8. COMPUTER MODEL FOR ORGANIC FERTILIZER EVALUATION

    Directory of Open Access Journals (Sweden)

    Zdenko Lončarić

    2009-12-01

    Full Text Available Evaluation of manures, composts and growing media quality should include enough properties to enable an optimal use from productivity and environmental points of view. The aim of this paper is to describe basic structure of organic fertilizer (and growing media evaluation model to present the model example by comparison of different manures as well as example of using plant growth experiment for calculating impact of pH and EC of growing media on lettuce plant growth. The basic structure of the model includes selection of quality indicators, interpretations of indicators value, and integration of interpreted values into new indexes. The first step includes data input and selection of available data as a basic or additional indicators depending on possible use as fertilizer or growing media. The second part of the model uses inputs for calculation of derived quality indicators. The third step integrates values into three new indexes: fertilizer, growing media, and environmental index. All three indexes are calculated on the basis of three different groups of indicators: basic value indicators, additional value indicators and limiting factors. The possible range of indexes values is 0-10, where range 0-3 means low, 3-7 medium and 7-10 high quality. Comparing fresh and composted manures, higher fertilizer and environmental indexes were determined for composted manures, and the highest fertilizer index was determined for composted pig manure (9.6 whereas the lowest for fresh cattle manure (3.2. Composted manures had high environmental index (6.0-10 for conventional agriculture, but some had no value (environmental index = 0 for organic agriculture because of too high zinc, copper or cadmium concentrations. Growing media indexes were determined according to their impact on lettuce growth. Growing media with different pH and EC resulted in very significant impacts on height, dry matter mass and leaf area of lettuce seedlings. The highest lettuce

  9. Alternative approaches for modeling gas-particle partitioning of semivolatile organic chemicals: model development and comparison.

    Science.gov (United States)

    Götz, Christian W; Scheringer, Martin; MacLeod, Matthew; Roth, Christine M; Hungerbühler, Konrad

    2007-02-15

    We present a novel model of gas-particle partitioning based on polyparameter linear free energy relationships (ppLFERs) that is capable of representing a broad range of aerosol properties. We apply the model to semivolatile organic chemicals including PCBs, DDT, and polar pesticides, and compare it to a widely adopted model based on the octanol-air partition coefficient (K(OA)). For nonpolar chemicals and cases where sorption to aerosols is dominated by absorption into organic matter, the two models are highly correlated and both are appropriate. Significant differences between the models are found for (a) polar chemicals and (b) aerosols with low organic matter content. The explicit description of polar interactions in the ppLFER approach implies stronger interactions between chemicals and aerosols than the K(OA)-based model, which describes polar interactions only implicitly and to a limited extent. Practical application of the ppLFER-based model to a wide range of chemicals is currently limited by data gaps in measured Abraham solvation parameters and uncertainties in estimation methods.

  10. Organic production in a dynamic CGE model

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo

    2004-01-01

    Concerns about the impact of modern agriculture on the environment have in recent years led to an interest in supporting the development of organic farming. In addition to environmental benefits, the aim is to encourage the provision of other “multifunctional” properties of organic farming...... agricultural sector and each secondary food industry has been split into two separate industries: one producing organic products, the other producing conventional products. The substitution nests in private consumption have also been altered to emphasise the pair wise substitution between organic...... and conventional products. One of the most important regulations regarding organic production concerns the conversion period, that is the period where the farmer starts to use organic production methods until the farmland and the production are considered organic. Currently organic production methods have...

  11. The Demand Side in Economic Models of Energy Markets: The Challenge of Representing Consumer Behavior

    International Nuclear Information System (INIS)

    Krysiak, Frank C.; Weigt, Hannes

    2015-01-01

    Energy models play an increasing role in the ongoing energy transition processes either as tools for forecasting potential developments or for assessments of policy and market design options. In recent years, these models have increased in scope and scale and provide a reasonable representation of the energy supply side, technological aspects and general macroeconomic interactions. However, the representation of the demand side and consumer behavior has remained rather simplistic. The objective of this paper is twofold. First, we review existing large-scale energy model approaches, namely bottom-up and top-down models, with respect to their demand-side representation. Second, we identify gaps in existing approaches and draft potential pathways to account for a more detailed demand-side and behavior representation in energy modeling.

  12. Predictive Multiple Model Switching Control with the Self-Organizing Map

    Science.gov (United States)

    Motter, Mark A.

    2000-01-01

    A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.

  13. Reading a population code: a multi-scale neural model for representing binocular disparity.

    Science.gov (United States)

    Tsai, Jeffrey J; Victor, Jonathan D

    2003-02-01

    Although binocular neurons in the primary visual cortex are sensitive to retinal disparity, their activity does not constitute an unambiguous disparity signal. A multi-spatial-scale neural model for disparity computation is developed to examine how population activity might be interpreted to overcome ambiguities at the single neuron level. The model incorporates a front end that encodes disparity by a family of complex cell-like energy units and a second stage that reads the population activity. Disparity is recovered by matching the population response to a set of canonical templates, derived from the mean response to white noise stimuli at a range of disparities. Model predictions are qualitatively consistent with a variety of psychophysical results in the literature, including the effects of spatial frequency on stereoacuity and bias in perceived depths, and the effect of standing disparity on increment thresholds. Model predictions are also consistent with data on qualitative appearance of complex stimuli, including depth averaging, transparency, and corrugation. The model also accounts for the non-linear interaction of disparities in compound grating stimuli. These results show that a template-match approach reduces ambiguities in individual and pooled neuronal responses, and allows for a broader range of percepts, consistent with psychophysics, than other models. Thus, the pattern of neural population activity across spatial scales is a better candidate for the neural correlate of depth perception than the activity of single neurons or the pooled activity of multiple neurons.

  14. Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design

    NARCIS (Netherlands)

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2006-01-01

    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education:

  15. Peculiarities of inflorescences morphogenesis in model representatives of the Celastraceae R.Br. in context of molecular phylogenetic data

    OpenAIRE

    Savinov I.; Ryabchenko A.

    2014-01-01

    Peculiarities of laying and forming of inflorescences for model representatives of the Celastraceae are studied. Specific characters in rhythm development of generative elements for different taxa are determined. Morphological markers, which are coincided completely with molecular characters, are determined. They are evidenced on closely relation between next taxa: Celastrus and Tripterygium, Salacia and Sarawakodendron, Salacia and Brexia.

  16. Peculiarities of inflorescences morphogenesis in model representatives of the Celastraceae R.Br. in context of molecular phylogenetic data

    Directory of Open Access Journals (Sweden)

    Ivan A. Savinov

    2014-04-01

    Full Text Available Peculiarities of laying and forming of inflorescences for model representatives of the Celastraceae are studied. Specific characters in rhythm development of generative elements for different taxa are determined. Morphological markers, which are coincided completely with molecular characters, are determined. They are evidenced on closely relation between next taxa: Celastrus and Tripterygium, Salacia and Sarawakodendron, Salacia and Brexia.

  17. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Gobrogge, Eric [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Fu, Li [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Link, Katie [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Elliott, Scott M. [Climate, Ocean, and Sea Ice Modelling Group, Los Alamos National Laboratory, Los Alamos New Mexico USA; Wang, Hongfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Walker, Rob [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA

    2016-08-10

    Here we show that the addition of chemical interactions of soluble polysaccharides with a surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the fraction of hydroxyl functional groups in modeled sea spray organic matter is increased, improving agreement with FTIR observations of marine aerosol composition. The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5 – 0.7 for submicron sea spray particles over highly active phytoplankton blooms. We show results from Sum Frequency Generation (SFG) experiments that support the modeling approach, by demonstrating that soluble polysaccharides can strongly adsorb to a lipid monolayer via columbic interactions under appropriate conditions.

  18. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-03

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve load over many years or decades. CEMs can be computationally complex and are often forced to estimate key parameters using simplified methods to achieve acceptable solve times or for other reasons. In this paper, we discuss one of these parameters -- capacity value (CV). We first provide a high-level motivation for and overview of CV. We next describe existing modeling simplifications and an alternate approach for estimating CV that utilizes hourly '8760' data of load and VG resources. We then apply this 8760 method to an established CEM, the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be easily implemented in other power sector models when data is available, more accurately captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a flexible modeling framework from which other 8760-based system elements (e.g., demand response, storage, and transmission) can be added to further capture important dynamic interactions, such as curtailment.

  19. The Time Is Right to Focus on Model Organism Metabolomes.

    Science.gov (United States)

    Edison, Arthur S; Hall, Robert D; Junot, Christophe; Karp, Peter D; Kurland, Irwin J; Mistrik, Robert; Reed, Laura K; Saito, Kazuki; Salek, Reza M; Steinbeck, Christoph; Sumner, Lloyd W; Viant, Mark R

    2016-02-15

    Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  20. The Time Is Right to Focus on Model Organism Metabolomes

    Directory of Open Access Journals (Sweden)

    Arthur S. Edison

    2016-02-01

    Full Text Available Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  1. A model for representing the Italian energy system. The NEEDS-TIMES experience

    Energy Technology Data Exchange (ETDEWEB)

    Cosmi, C.; Pietrapertosa, F.; Salvia, M. [National Research Council, Institute of Methodologies for Environmental Analysis, C.da S. Loja, I-85050 Tito Scalo (PZ) (Italy)]|[Federico II University, Department of Physical Sciences, Via Cintia, I-80126 Naples (Italy); Di Leo, S. [National Research Council, National Institute for the Physics of Matter, Via Cintia, I-80126 Naples (Italy)]|[University of Basilicata, Department of Environmental Engineering and Physics, C.da Macchia Romana, I-85100 Potenza (Italy); Loperte, S.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis, C.da S. Loja, I-85050 Tito Scalo (PZ) (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cintia, I-80126 Naples (Italy)]|[National Research Council, National Institute for the Physics of Matter, Via Cintia, I-80126 Naples (Italy)

    2009-05-15

    Sustainability of energy systems has a strategic role in the current energy-environmental policies as it involves key issues such as security of energy supply, mitigation of environmental impact (with special regard to air quality improvement) and energy affordability. In this framework modelling activities are more than ever a strategic issue in order to manage the large complexity of energy systems as well as to support the decision-making process at different stages and spatial scales (regional, national, Pan-European, etc.). The aim of this article is to present a new model for the Italian energy system implemented with a common effort in the framework of an integrated project under the Sixth Framework Programme. In particular, the main features of the common methodology are briefly recalled and the modelling structure, the main data and assumptions, sector by sector, are presented. Moreover the main results obtained for the baseline (BAU) scenario are fully described. (author)

  2. Genome sequencing and population genomics in non-model organisms.

    Science.gov (United States)

    Ellegren, Hans

    2014-01-01

    High-throughput sequencing technologies are revolutionizing the life sciences. The past 12 months have seen a burst of genome sequences from non-model organisms, in each case representing a fundamental source of data of significant importance to biological research. This has bearing on several aspects of evolutionary biology, and we are now beginning to see patterns emerging from these studies. These include significant heterogeneity in the rate of recombination that affects adaptive evolution and base composition, the role of population size in adaptive evolution, and the importance of expansion of gene families in lineage-specific adaptation. Moreover, resequencing of population samples (population genomics) has enabled the identification of the genetic basis of critical phenotypes and cast light on the landscape of genomic divergence during speciation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay

    2014-01-01

    situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal...

  4. Representing northern peatland microtopography and hydrology within the Community Land Model

    Science.gov (United States)

    X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht

    2015-01-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...

  5. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    Science.gov (United States)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  6. Use of CFD modeling for estimating spatial representativeness of urban air pollution monitoring sites and suitability of their locations

    International Nuclear Information System (INIS)

    Santiago, J. L.; Martin, F.

    2015-01-01

    A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO 2 dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January -May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO 2 concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)

  7. Use of CFD modeling for estimating spatial representativeness of urban air pollution monitoring sites and suitability of their locations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F.

    2015-07-01

    A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO2 dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January–May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO2 concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)

  8. Use of CFD modeling for estimating spatial representativeness of urban air pollution monitoring sites and suitability of their locations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J. L.; Martin, F.

    2015-07-01

    A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO{sub 2} dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January -May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO{sub 2} concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)

  9. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  10. Model proposal for representing a deep coal mine spatial and functional structure

    Directory of Open Access Journals (Sweden)

    Sebastian Iwaszenko

    2017-01-01

    Full Text Available Underground coal mining usually requires the development of a set of underground corridors (workings. The workings fulfill many different functions. They are used for transportation, ventilation, dewatering and even escape pathways. The proposition of a formal representation of a working's structure for deep coal mining has been presented. The model was developed as a basis for the software system, support management and operational activities for longwall deep mine. The proposed solution is based on graph formalism along with its matrix representation. However, the idea of matrix representation is enhanced. Not only are the topological properties of workings structure considered, but also information about their functions and spatial characteristic. The object model was designed and implemented based upon the matrix idea.

  11. Ca2+ alternans in a cardiac myocyte model that uses moment equations to represent heterogeneous junctional SR Ca2+.

    Science.gov (United States)

    Huertas, Marco A; Smith, Gregory D; Györke, Sándor

    2010-07-21

    Multiscale whole-cell models that accurately represent local control of Ca2+-induced Ca2+ release in cardiac myocytes can reproduce high-gain Ca2+ release that is graded with changes in membrane potential. Using a recently introduced formalism that represents heterogeneous local Ca2+ using moment equations, we present a model of cardiac myocyte Ca2+ cycling that exhibits alternating sarcoplasmic reticulum (SR) Ca2+ release when periodically stimulated by depolarizing voltage pulses. The model predicts that the distribution of junctional SR [Ca2+] across a large population of Ca2+ release units is distinct on alternating cycles. Load-release and release-uptake functions computed from this model give insight into how Ca2+ fluxes and stimulation frequency combine to determine the presence or absence of Ca2+ alternans. Our results show that the conditions for the onset of Ca2+ alternans cannot be explained solely by the steepness of the load-release function, but that changes in the release-uptake process also play an important role. We analyze the effect of the junctional SR refilling time constant on Ca2+ alternans and conclude that physiologically realistic models of defective Ca2+ cycling must represent the dynamics of heterogeneous junctional SR [Ca2+] without assuming rapid equilibration of junctional and network SR [Ca2+]. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Representative Structural Element - A New Paradigm for Multi-Scale Structural Modeling

    Science.gov (United States)

    2016-07-05

    1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...conditions using either ABAQUS or ANSYS. The results are documented in [14] and presented in 2015 Annual Technical Meeting of the American Society of...Composites. All the data generating the report are hosted in a live database at https://cdmhub.org/members/project/mmsimulationchalleng. Modeling of

  13. A phenomenological model to represent the kinetics of growth by Corynebacterium glutamicum for lysine production.

    Science.gov (United States)

    Gayen, Kalyan; Venkatesh, K V

    2007-05-01

    Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.

  14. Organization model and formalized description of nuclear enterprise information system

    International Nuclear Information System (INIS)

    Yuan Feng; Song Yafeng; Li Xudong

    2012-01-01

    Organization model is one of the most important models of Nuclear Enterprise Information System (NEIS). Scientific and reasonable organization model is the prerequisite that NEIS has robustness and extendibility, and is also the foundation of the integration of heterogeneous system. Firstly, the paper describes the conceptual model of the NEIS on ontology chart, which provides a consistent semantic framework of organization. Then it discusses the relations between the concepts in detail. Finally, it gives the formalized description of the organization model of NEIS based on six-tuple array. (authors)

  15. Representing Curriculum

    Science.gov (United States)

    Gaztambide-Fernandez, Ruben

    2009-01-01

    Handbooks denote representative authority, which gives their content normative value and through which editors and authors can emphasize certain views and orientations within a field. The representative authority of a handbook is reinforced in various ways, both obvious and subtle. The "SAGE Handbook of Curriculum and Instruction" is no exception…

  16. Modelling representative and coherent Danish farm types based on farm accountancy data for use in enviromental assessments

    DEFF Research Database (Denmark)

    Dalgaard, Randi; Halberg, Niels; Kristensen, Ib S.

    2006-01-01

    is established in order to report Danish agro-economical data to the ‘Farm Accountancy Data Network’ (FADN), and to produce ‘The annual Danish account statistics for agriculture’. The farm accounts are selected and weighted to be representative for the Danish agricultural sector, and similar samples of farm......, homegrown feed, manure production, fertilizer use and crop production. The set of farm types was scaled up to national level thus representing the whole Danish agricultural sector and the resulting production, resource use and land use was checked against the national statistics. Nutrient balance....... The methane emission was higher from dairy farm types compared with all other farm types. In general the conventional dairy farms emitted more nitrate, ammonia, and nitrous oxi de, compared with organic dairy farms....

  17. RIPH: A Model for Representing the Reality in the Global and Local Television

    Directory of Open Access Journals (Sweden)

    Saket Hosseynov

    2013-03-01

    Full Text Available The world is witnessing great changes, and these changes are comprehensible in the realm of performance of "identity", "boundary", "geographic concept” (place and "time". Identities are now segmented, boundaries passed over, and places and time compressed. Television is one of the effective factors in making this happen. However, it seems like television, which itself is one of the evidences of globalization, has now acquired new characteristics. With a little care while reading texts related to globalization and media, we realize the four words "reality", "identity", "power" and "hyper-reality" are constantly repeated in these texts, and very few people doubt the close relationship between television and these topics. Facing such a situation, and to understand the characteristics of the global television, this article plans to start on the basis of a theoretic called "RIPH Model". Based on the presumption that the role and place of television in forming the cultural shapes must not be exaggerated, it tries to present an outlook of the activities of the local and global televisions in the age of globalization and share the outcomes with 20 Iranian experts through interviews. RIPH is the short form which stands for the four words "reality", "identity", "power" and "hyper-reality". These are the concepts with new definitions that have changed our views about life on the Planet Earth, and this article studies the factors related to global and local televisions in the frame of an innovative model suggested by the researcher called "The Lozenge of the Performance of the Global and Local Televisions (RIPH Model", by investigating the relations between television and the above-mentioned concepts.

  18. Representing Misalignments of the STAR Geometry Model using AgML

    Science.gov (United States)

    Webb, Jason C.; Lauret, Jérôme; Perevotchikov, Victor; Smirnov, Dmitri; Van Buren, Gene

    2017-10-01

    The STAR Heavy Flavor Tracker (HFT) was designed to provide high-precision tracking for the identification of charmed hadron decays in heavy-ion collisions at RHIC. It consists of three independently mounted subsystems, providing four precision measurements along the track trajectory, with the goal of pointing decay daughters back to vertices displaced by less than 100 microns from the primary event vertex. The ultimate efficiency and resolution of the physics analysis will be driven by the quality of the simulation and reconstruction of events in heavy-ion collisions. In particular, it is important that the geometry model properly accounts for the relative misalignments of the HFT subsystems, along with the alignment of the HFT relative to STARs primary tracking detector, the Time Projection Chamber (TPC). The Abstract Geometry Modeling Language (AgML) provides a single description of the STAR geometry, generating both our simulation (GEANT 3) and reconstruction geometries (ROOT). AgML implements an ideal detector model, while misalignments are stored separately in database tables. These have historically been applied at the hit level. Simulated detector hits are projected from their ideal position along the track’s trajectory, until they intersect the misaligned detector volume, where the struck detector element is calculated for hit digitization. This scheme has worked well as hit errors have been negligible compared with the size of sensitive volumes. The precision and complexity of the HFT detector require us to apply misalignments to the detector volumes themselves. In this paper we summarize the extension of the AgML language and support libraries to enable the static misalignment of our reconstruction and simulation geometries, discussing the design goals, limitations and path to full misalignment support in ROOT/VMC-based simulation.

  19. Representing biophysical landscape interactions in soil models by bridging disciplines and scales.

    Science.gov (United States)

    van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.

    2017-12-01

    The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques

  20. A comparison of methods for representing random taste heterogeneity in discrete choice models

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Hess, Stephane

    2009-01-01

    This paper reports the findings of a systematic study using Monte Carlo experiments and a real dataset aimed at comparing the performance of various ways of specifying random taste heterogeneity in a discrete choice model. Specifically, the analysis compares the performance of two recent advanced...... distributions. Both approaches allow the researcher to increase the number of parameters as desired. The paper provides a range of evidence on the ability of the various approaches to recover various distributions from data. The two advanced approaches are comparable in terms of the likelihoods achieved...

  1. A General Model for Representing Arbitrary Unsymmetries in Various Types of Network Analysis

    DEFF Research Database (Denmark)

    Rønne-Hansen, Jan

    1997-01-01

    When dealing with unsymmetric faults various proposals have been put forward. In general they have been characterized by specific treatment of the single fault in accordance with the structure and impedances involved. The model presented is based on node equations and was originally developed...... for transient stability studies in order to allow for an arbitrary fault representation as seen from the positive sequence network. The method results in impedances -or admittances-combining the negative sequence and zero sequence representation for the symmetrical network with the structure and electrical...

  2. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  3. Representing Glaciations and Subglacial Processes in Hydrogeological Models: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Arnaud Sterckx

    2017-01-01

    Full Text Available The specific impact of glacial processes on groundwater flow and solute transport under ice-sheets was determined by means of numerical simulations. Groundwater flow and the transport of δ18O, TDS, and groundwater age were simulated in a generic sedimentary basin during a single glacial event followed by a postglacial period. Results show that simulating subglacial recharge with a fixed flux boundary condition is relevant only for small fluxes, which could be the case under partially wet-based ice-sheets. Glacial loading decreases overpressures, which appear only in thick and low hydraulic diffusivity layers. If subglacial recharge is low, glacial loading can lead to underpressures after the retreat of the ice-sheet. Isostasy reduces considerably the infiltration of meltwater and the groundwater flow rates. Below permafrost, groundwater flow is reduced under the ice-sheet but is enhanced beyond the ice-sheet front. Accounting for salinity-dependent density reduces the infiltration of meltwater at depth. This study shows that each glacial process is potentially relevant in models of subglacial groundwater flow and solute transport. It provides a good basis for building and interpreting such models in the future.

  4. An analysis of three dimensional diffusion in a representative arterial wall mass transport model.

    Science.gov (United States)

    Denny, William J; O'Connell, Barry M; Milroy, John; Walsh, Michael T

    2013-05-01

    The development and use of drug eluting stents has brought about significant improvements in reducing in-stent restenosis, however, their long term presence in the artery is still under examination due to restenosis reoccurring. Current studies focus mainly on stent design, coatings and deployment techniques but few studies address the issue of the physics of three dimensional mass transport in the artery wall. There is a dearth of adequate validated numerical mass transport models that simulate the physics of diffusion dominated drug transport in the artery wall whilst under compression. A novel experimental setup used in a previous study was adapted and an expansion of that research was carried out to validate the physics of three dimensional diffusive mass transport into a compressed porous media. This study developed a more sensitive method for measuring the concentration of the species of interest. It revalidated mass transport in the radial direction and presented results which highlight the need for an evaluation of the governing equation for transient diffusive mass transport in a porous media, in its current form, to be carried out.

  5. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    Science.gov (United States)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  6. MODELING OF MANAGEMENT PROCESSES IN AN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Stefan Iovan

    2016-05-01

    Full Text Available When driving any major change within an organization, strategy and execution are intrinsic to a project’s success. Nevertheless, closing the gap between strategy and execution remains a challenge for many organizations [1]. Companies tend to focus more on execution than strategy for quick results, instead of taking the time needed to understand the parts that make up the whole, so the right execution plan can be put in place to deliver the best outcomes. A large part of this understands that business operations don’t fit neatly within the traditional organizational hierarchy. Business processes are often messy, collaborative efforts that cross teams, departments and systems, making them difficult to manage within a hierarchical structure [2]. Business process management (BPM fills this gap by redefining an organization according to its end-to-end processes, so opportunities for improvement can be identified and processes streamlined for growth, revenue and transformation. This white paper provides guidelines on what to consider when using business process applications to solve your BPM initiatives, and the unique capabilities software systems provides that can help ensure both your project’s success and the success of your organization as a whole. majority of medium and small businesses, big companies and even some guvermental organizations [2].

  7. Treatment of Events Representing System Success in Accident Sequences in PSA Models with ET/FT Linking

    International Nuclear Information System (INIS)

    Vrbanic, I.; Spiler, J.; Mikulicic, V.; Simic, Z.

    2002-01-01

    Treatment of events that represent systems' successes in accident sequences is well known issue associated primarily with those PSA models that employ event tree / fault tree (ET / FT) linking technique. Even theoretically clear, practical implementation and usage creates for certain PSA models a number of difficulties regarding result correctness. Strict treatment of success-events would require consistent applying of de Morgan laws. However, there are several problems related to it. First, Boolean resolution of the overall model, such as the one representing occurrence of reactor core damage, becomes very challenging task if De Morgan rules are applied consistently at all levels. Even PSA tools of the newest generation have some problems with performing such a task in a reasonable time frame. The second potential issue is related to the presence of negated basic events in minimal cutsets. If all the basic events that result from strict applying of De Morgan rules are retained in presentation of minimal cutsets, their readability and interpretability may be impaired severely. It is also worth noting that the concept of a minimal cutset is tied to equipment failures, rather than to successes. For reasons like these, various simplifications are employed in PSA models and tools, when it comes to the treatment of success-events in the sequences. This paper provides a discussion of major concerns associated with the treatment of success-events in accident sequences of a typical PSA model. (author)

  8. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  9. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.

  10. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  11. The initiative on Model Organism Proteomes (iMOP) Session

    DEFF Research Database (Denmark)

    Schrimpf, Sabine P; Mering, Christian von; Bendixen, Emøke

    2012-01-01

    iMOP – the Initiative on Model Organism Proteomes – was accepted as a new HUPO initiative at the Ninth HUPO meeting in Sydney in 2010. A goal of iMOP is to integrate research groups working on a great diversity of species into a model organism community. At the Tenth HUPO meeting in Geneva...

  12. Competency modeling targeted on promotion of organizations towards VO involvement

    NARCIS (Netherlands)

    Ermilova, E.; Afsarmanesh, H.

    2008-01-01

    During the last decades, a number of models is introduced in research, addressing different perspectives of the organizations’ competencies in collaborative networks. This paper introduces the "4C-model", developed to address competencies of organizations, involved in Virtual organizations Breeding

  13. A 27-Intersection Model for Representing Detailed Topological Relations between Spatial Objects in Two-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Jingwei Shen

    2017-02-01

    Full Text Available Determining the spatial relations between objects is a primary function of a geographic information system (GIS. One important aspect of spatial relations is topological relations, which remain constant under topological transformations. Describing the geometry of a spatial object using the OpenGIS Simple Features Specification requires only simple features: the interior, boundary and exterior of a spatial object are defined. This paper proposes a comprehensive model, the 27-intersection model (27IM, which considers both the dimensions and the number of intersections. Some propositions are presented to exclude relations that the 27IM cannot implement. The 27IM describes six groups of topological relations: point/point, point/line, point/region, line/line, line/region and region/region. The formalism of the 27IM and the corresponding geometric interpretations between spatial objects are illustrated and then compared to the topological relations represented by the existing models, the nine-intersection model (9IM, the dimensionally-extended nine-intersection matrix (DE-9IM and the separation number extended nine-intersection matrix (SNE-9IM. The results show that (1 the 27IM can represent the topological relations between two-dimensional spatial objects, (2 the 27IM can distinguish more topological relations than can the 9IM, DE-9IM or the SNE-9IM and that (3 the interoperability of the 27IM with the 9IM, DE-9IM and SNE-9IM is good.

  14. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  15. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin.

    Science.gov (United States)

    Moronkeji, K; Todd, S; Dawidowska, I; Barrett, S D; Akhtar, R

    2017-11-10

    There has been growing interest in the mechanical behaviour of skin due to the rapid development of microneedle devices for drug delivery applications into skin. However, most in vitro experimentation studies that are used to evaluate microneedle performance do not consider the biomechanical properties of skin or that of the subcutaneous layers. In this study, a representative experimental model of skin was developed which was comprised of subcutaneous and muscle mimics. Neonatal porcine skin from the abdominal and back regions was used, with gelatine gels of differing water content (67, 80, 88 and 96%) to represent the subcutaneous tissue, and a type of ballistic gelatine, Perma-Gel®, as a muscle mimic. Dynamic nanoindentation was used to characterize the mechanical properties of each of these layers. A custom-developed impact test rig was used to apply dense polymethylmethacrylate (PMMA) microneedles to the skin models in a controlled and repeatable way with quantification of the insertion force and velocity. Image analysis methods were used to measure penetration depth and area of the breach caused by microneedle penetration following staining and optical imaging. The nanoindentation tests demonstrated that the tissue mimics matched expected values for subcutaneous and muscle tissue, and that the compliance of the subcutaneous mimics increased linearly with water content. The abdominal skin was thinner and less stiff as compared to back skin. The maximum force decreased with gel water content in the abdominal skin but not in the back skin. Overall, larger and deeper perforations were found in the skin models with increasing water content. These data demonstrate the importance of subcutaneous tissue on microneedle performance and the need for representative skin models in microneedle technology development. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Application of morphological and physiological parameters representative of a Brazilian population sample in the respiratory tract model

    International Nuclear Information System (INIS)

    Dos Reis, A. A.; Cardoso, J. C. S.; Lourenco, M. C.

    2007-01-01

    The human respiratory tract model (HRTM) adopted by ICRP in its Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These characteristics are important to determine the fractional deposition. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population wherever such information is available. The main purpose of this study is to verify the influence of using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66 model. (authors)

  17. using stereochemistry models in teaching organic compounds

    African Journals Online (AJOL)

    Preferred Customer

    (Stereochemistry Model); the treatment had significant effect: students taught using. Stereochemistry Models ... ISSN 2227-5835. 93. Apart from the heavy conceptual demand on the memory capacity required of the ..... colors and sizes compared with the sketches on the chart that appear to be mock forms of the compounds.

  18. Representing time

    Directory of Open Access Journals (Sweden)

    Luca Poncellini

    2010-06-01

    Full Text Available The analysis of natural phenomena applied to architectural planning and design is facing the most fascinating and elusive of the four dimensions through which man attempts to define life within the universe: time. We all know what time is, said St. Augustine, but nobody knows how to describe it. Within architectural projects and representations, time rarely appears in explicit form. This paper presents the results of a research conducted by students of NABA and of the Polytechnic of Milan with the purpose of representing time considered as a key element within architectural projects. Student investigated new approaches and methodologies to represent time using the two-dimensional support of a sheet of paper.

  19. Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

    International Nuclear Information System (INIS)

    C. B. Davis

    2007-01-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps

  20. MODEL OF LEARNING ORGANIZATION IN BROADCASTING ORGANIZATION OF ISLAMIC REPUBLIC OF IRAN

    Directory of Open Access Journals (Sweden)

    Reza Najafbagy

    2010-11-01

    Full Text Available This article tries to present a model of learning organization for Iran Broadcasting Organization which is under the management of the spiritual leader of Iran. The study is based on characteristics of Peter Senge’s original learning organization namely, personal stery, mental models, shared vision, team learning and systems thinking. The methodology was a survey research employed questionnaire among sample employees and managers of the Organization.Findings showed that the Organization is fairly far from an ffective learning organization.Moreover, it seems that employees’ performance in team learning and changes in mental models are more satisfactory than managers. Regarding other characteristics of learning organizations, there are similarities in learning attempts by employees and managers. The rganization lacks organizational vision, and consequently there is no shared vision in the Organization. It also is in need of organizational culture. As a kind of state-owned organization, there s no need of financial support which affect the need for learning organization. It also does not face the threat of sustainabilitybecause there is no competitive organization.Findings also show that IBO need a fundamental change in its rganizational learning process. In this context, the general idea is to unfreeze the mindset of leadership of IBO and creating a visionand organizational culture based on learning and staff development. Then gradually through incremental effective change and continual organizational learning process in dividual, team and organization levels engage in development and reinforcement of skills of personal mastery, mental models, shared vision, team learning and systems thinking, should lead IBO to learning organization.

  1. Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes

    Science.gov (United States)

    Driscoll, Charles T.; Lehtinen, Michael D.; Sullivan, Timothy J.

    1994-02-01

    Data from the large and diverse Adirondack Lake Survey were used to calibrate four simple organic acid analog models in an effort to quantify the influence of naturally occurring organic acids on lake water pH and acid-neutralizing capacity (ANC). The organic acid analog models were calibrated to observations of pH, dissolved organic carbon (DOC), and organic anion (An-) concentrations from a reduced data set representing 1128 individual lake samples, expressed as 41 observations of mean pH, in intervals of 0.1 pH units from pH 3.9 to 7.0. Of the four organic analog approaches examined, including the Oliver et al. (1983) model, as well as monoprotic, diprotic, and triprotic representations, the triprotic analog model yielded the best fit (r2 = 0.92) to the observed data. Moreover, the triprotic model was qualitatively consistent with observed patterns of change in organic solute charge density as a function of pH. A low calibrated value for the first H+ dissociation constant (pKal = 2.62) and the observation that organic anion concentrations were significant even at very low pH (acidic functional groups. Inclusion of organic acidity in model calculations resulted in good agreement between measured and predicted values of lake water pH and ANC. Assessments to project the response of surface waters to future changes in atmospheric deposition, through the use of acidification models, will need to include representations of organic acids in model structure to make accurate predictions of pH and ANC.

  2. A three-dimensional model for quantification of the representative elementary volume of tortuosity in granular porous media

    Science.gov (United States)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun; Hu, Bill X.

    2018-02-01

    For most of aquifers with abundant groundwater resource, quantifications of tortuosity and corresponding representative elementary volume (REV) are very essential to improve the understanding of groundwater and contaminant transfers in porous media. In this study, a mathematical model of tortuosity based on the three dimensional (3D) microstructure of regular tetrahedron (RTM) is proposed to quantify tortuosity and corresponding REV of granular porous media. The calculated tortuosity using the new 3D RTM model agrees well with the measured tortuosity in experiment, indicating that the new 3D microstructure model is more appropriate to precisely delineate the tortuosity of granular porous media. Afterward, the new model is utilized to quantify the tortuosity of heterogeneous translucent silica. Moreover, corresponding REV is estimated using a criterion of relative gradient error (εgi). Results suggest minimum τ-REV sizes most distribute in 0.0-5.0 mm and the bound of cumulative frequency above 80% is larger than 3.00 mm. The REV scale of tortuosity has its own rationality and superiority over that estimated by two-dimensional (2D) tortuosity model, implying the proposed 3D tortuosity model of RTM is helpful for understanding the tortuosity of flow paths in granular porous media and corresponding REV estimation of tortuosity.

  3. Dynamic viscosity modeling of methane plus n-decane and methane plus toluene mixtures: Comparative study of some representative models

    DEFF Research Database (Denmark)

    Baylaucq, A.; Boned, C.; Canet, X.

    2005-01-01

    Viscosity measurements of well-defined mixtures are useful in order to evaluate existing viscosity models. Recently, an extensive experimental study of the viscosity at pressures up to 140 MPa has been carried out for the binary systems methane + n-decane and methane toluene, between 293.15 and 373.......15 and for several methane compositions. Although very far from real petroleum fluids, these mixtures are interesting in order to study the potential of extending various models to the simulation of complex fluids with asymmetrical components (light/heavy hydrocarbon). These data (575 data points) have been...

  4. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  5. A study of the surfacing bubbles speed in a physical model representing a layer of liquid coal pitch

    Energy Technology Data Exchange (ETDEWEB)

    Begunov, A.I.; Yakovleva, A.A. [Irkutsk State Technical Univ. (Russian Federation)

    1996-10-01

    The authors investigated the motion characteristics of the gas bubbles originating in the baked part of Soderberg anodes and barbotating through the liquid layer of the anodic paste. This study was conducted sing a physical model with paraffin representing the column of anodic paste. The column height of the model liquid was changed from 0.2 to 0.5 m, which corresponds to the liquid layer heights in a real anode. The dependence of the vertical gas bubble speed on the liquid layer height above the level on which the bubble was formed was studied and an empirical equation was found to describe this dependence in terms of mathematical powers. The numerical values of the hydrodynamic resistance coefficients for surfacing bubbles were determined, which vary from 1 {center_dot} 10{sup {minus}5} to 6 {center_dot} 10{sup {minus}5}.

  6. NewsPaperBox - Online News Space: a visual model for representing the social space of a website

    Directory of Open Access Journals (Sweden)

    Selçuk Artut

    2010-02-01

    Full Text Available NewsPaperBox * propounds an alternative visual model utilizing the treemap algorithm to represent the collective use of a website that evolves in response to user interaction. While the technology currently exists to track various user behaviors such as number of clicks, duration of stay on a given web site, these statistics are not yet employed to influence the visual representation of that site's design in real time. In that sense, this project propounds an alternative modeling of a representational outlook of a website that is developed by collaborations and competitions of its global users. This paper proposes the experience of cyberspace as a generative process driven by its effective user participation.

  7. Pharmacodynamic modelling of in vitro activity of tetracycline against a representative, naturally occurring population of porcine Escherichia coli

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2015-01-01

    of Escherichia coli representative of those found in the Danish pig population, we compared the growth of 50 randomly selected strains. The observed net growth rates were used to describe the in vitro pharmacodynamic relationship between drug concentration and net growth rate based on E max model with three...... parameters: maximum net growth rate (α max ); concentration for a half-maximal response (E max ); and the Hill coefficient (γ). The net growth rate in the absence of antibiotic did not differ between susceptible and resistant isolates (P = 0.97). The net growth rate decreased with increasing tetracycline...... text] between susceptible and resistant strains in the absence of a drug was not different. EC 50 increased linearly with MIC on a log-log scale, and γ was different between susceptible and resistant strains. The in vitro model parameters described the inhibition effect of tetracycline on E. coli when...

  8. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  9. Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids.

    Science.gov (United States)

    José, Marco V; Morgado, Eberto R; Guimarães, Romeu Cardoso; Zamudio, Gabriel S; de Farías, Sávio Torres; Bobadilla, Juan R; Sosa, Daniela

    2014-08-11

    Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state.

  10. Representing Development

    DEFF Research Database (Denmark)

    Representing Development presents the different social representations that have formed the idea of development in Western thinking over the past three centuries. Offering an acute perspective on the current state of developmental science and providing constructive insights into future pathways...... and development, addressing their contemporary enactments and reflecting on future theoretical and empirical directions. The first section of the book provides an historical account of early representations of development that, having come from life science, has shaped the way in which developmental science has...... approached development. Section two focuses upon the contemporary issues of developmental psychology, neuroscience and developmental science at large. The final section offers a series of commentaries pointing to the questions opened by the previous chapters, looking to outline the future lines...

  11. Personality organization, five-factor model, and mental health.

    Science.gov (United States)

    Laverdière, Olivier; Gamache, Dominick; Diguer, Louis; Hébert, Etienne; Larochelle, Sébastien; Descôteaux, Jean

    2007-10-01

    Otto Kernberg has developed a model of personality and psychological functioning centered on the concept of personality organization. The purpose of this study is to empirically examine the relationships between this model, the five-factor model, and mental health. The Personality Organization Diagnostic Form (Diguer et al., The Personality Organization Diagnostic Form-II (PODF-II), 2001), the NEO Five-Factor Inventory (Costa and McCrae, Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Professional Manual. 1992a), and the Health-Sickness Rating Scale (Luborsky, Arch Gen Psychiatry. 1962;7:407-417) were used to assess these constructs. Results show that personality organization and personality factors are distinct but interrelated constructs and that both contribute in similar proportion to mental health. Results also suggest that the integration of personality organization and factors can provide clinicians and researchers with an enriched understanding of psychological functioning.

  12. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  13. Designing a Composite Service Organization (Through Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Prof. Dr. A. Z. Memon

    2006-01-01

    Full Text Available Suppose we have a class of similar service organizations each of which is characterized by the same numerically measurable input/output characteristics. Even if the amount of any input does not differ in them, one or more organizations can be expected to outperform the others in one or more production aspects. Our interest lies in comparing the output efficiency levels of all service organizations. For it we use mathematical modeling, mainly linear programming to design a composite organization with new input measures which relative to a specific organization should have a higher level of efficiency with regard to all output measures. The other purpose of this paper is to evaluate the output characteristics of this proposed service organization. The paper also touches some other highly important planning features of this organization.

  14. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  15. Self-organizing map models of language acquisition

    Science.gov (United States)

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  16. Social organization in the Minority Game model

    Science.gov (United States)

    Slanina, František

    2000-10-01

    We study the role of imitation within the Minority Game model of market. The players can exchange information locally, which leads to formation of groups which act as if they were single players. Coherent spatial areas of rich and poor agents result. We found that the global effectivity is optimized at certain value of the imitation probability, which decreases with increasing memory length. The social tensions are suppressed for large imitation probability, but generally the requirements of high global effectivity and low social tensions are in conflict.

  17. Modelling the self-organization and collapse of complex networks

    Indian Academy of Sciences (India)

    Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.

  18. A model to incorporate organ deformation in the evaluation of dose/volume relationship

    International Nuclear Information System (INIS)

    Yan, D.; Jaffray, D.; Wong, J.; Brabbins, D.; Martinez, A. A.

    1997-01-01

    Purpose: Measurements of internal organ motion have demonstrated that daily organ deformation exists during the course of radiation treatment. However, a model to evaluate the resultant dose delivered to a daily deformed organ remains a difficult challenge. Current methods which model such organ deformation as rigid body motion in the dose calculation for treatment planning evaluation are incorrect and misleading. In this study, a new model for treatment planning evaluation is introduced which incorporates patient specific information of daily organ deformation and setup variation. The model was also used to retrospectively analyze the actual treatment data measured using daily CT scans for 5 patients with prostate treatment. Methods and Materials: The model assumes that for each patient, the organ of interest can be measured during the first few treatment days. First, the volume of each organ is delineated from each of the daily measurements and cumulated in a 3D bit-map. A tissue occupancy distribution is then constructed with the 50% isodensity representing the mean, or effective, organ volume. During the course of treatment, each voxel in the effective organ volume is assumed to move inside a local 3D neighborhood with a specific distribution function. The neighborhood and the distribution function are deduced from the positions and shapes of the organ in the first few measurements using the biomechanics model of viscoelastic body. For each voxel, the local distribution function is then convolved with the spatial dose distribution. The latter includes also the variation in dose due to daily setup error. As a result, the cumulative dose to the voxel incorporates the effects of daily setup variation and organ deformation. A ''variation adjusted'' dose volume histogram, aDVH, for the effective organ volume can then be constructed for the purpose of treatment evaluation and optimization. Up to 20 daily CT scans and daily portal images for 5 patients with prostate

  19. How valuable are model organisms for transposable element studies?

    Science.gov (United States)

    Kidwell, M G; Evgen'ev, M B

    1999-01-01

    Model organisms have proved to be highly informative for many types of genetic studies involving 'conventional' genes. The results have often been successfully generalized to other closely related organisms and also, perhaps surprisingly frequently, to more distantly related organisms. Because of the wealth of previous knowledge and their availability and convenience, model organisms were often the species of choice for many of the earlier studies of transposable elements. The question arises whether the results of genetic studies of transposable elements in model organisms can be extrapolated in the same ways as those of conventional genes? A number of observations suggest that special care needs to be taken in generalizing the results from model organisms to other species. A hallmark of many transposable elements is their ability to amplify rapidly in species genomes. Rapid spread of a newly invaded element throughout a species range has also been demonstrated. The types and genomic copy numbers of transposable elements have been shown to differ greatly between some closely related species. Horizontal transfer of transposable elements appears to be more frequent than for nonmobile genes. Furthermore, the population structure of some model organisms has been subject to drastic recent changes that may have some bearing on their transposable element genomic complements. In order to initiate discussion of this question, several case studies of transposable elements in well-studied Drosophila species are presented.

  20. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    Science.gov (United States)

    Sibly, Richard M.; Grimm, Volker; Martin, Benjamin T.; Johnston, Alice S.A.; Kulakowska, Katarzyna; Topping, Christopher J.; Calow, Peter; Nabe-Nielsen, Jacob; Thorbek, Pernille; DeAngelis, Donald L.

    2013-01-01

    1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.

  1. Labour Quality Model for Organic Farming Food Chains

    OpenAIRE

    Gassner, B.; Freyer, B.; Leitner, H.

    2008-01-01

    The debate on labour quality in science is controversial as well as in the organic agriculture community. Therefore, we reviewed literature on different labour quality models and definitions, and had key informant interviews on labour quality issues with stakeholders in a regional oriented organic agriculture bread food chain. We developed a labour quality model with nine quality categories and discussed linkages to labour satisfaction, ethical values and IFOAM principles.

  2. Business Model Innovation in Incumbent Organizations: : Challenges and Success Routes

    OpenAIRE

    Salama, Ahmad; Parvez, Khawar

    2015-01-01

    In this thesis major challenges of creating business models at incumbents within mature industries are identified along with a mitigation plan. Pressure is upon incumbent organizations in order to keep up with the latest rapid technological advancements, the launching of startups that almost cover every field of business and the continuous change in customers’ tastes and needs. That along with various factors either forced organizations to continually reevaluate their current business models ...

  3. Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths

    Science.gov (United States)

    2006-04-01

    key species found in the fermentation broth: ethanol, butanol, acetic acid, oxalic acid, lactic acid, and butyric acid. Correlations of the rejection...AFRL-ML-TY-TP-2007-4545 POSTPRINT REVERSE OSMOSIS PROCESSING OF ORGANIC MODEL COMPOUNDS AND FERMENTATION BROTHS Robert Diltz...TELEPHONE NUMBER (Include area code) Bioresource Technology 98 (2007) 686–695Reverse osmosis processing of organic model compounds and fermentation broths

  4. Nonlinearities and transit times in soil organic matter models: new developments in the SoilR package

    Science.gov (United States)

    Sierra, Carlos; Müller, Markus

    2016-04-01

    SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.

  5. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. NEW MODEL FOR QUANTIFICATION OF ICT DEPENDABLE ORGANIZATIONS RESILIENCE

    Directory of Open Access Journals (Sweden)

    Zora Arsovski

    2011-03-01

    Full Text Available Business environment today demands high reliable organizations in every segment to be competitive on the global market. Beside that, ICT sector is becoming irreplaceable in many fields of business, from the communication to the complex systems for process control and production. To fulfill those requirements and to develop further, many organizations worldwide are implementing business paradigm called - organizations resilience. Although resilience is well known term in many science fields, it is not well studied due to its complex nature. This paper is dealing with developing the new model for assessment and quantification of ICT dependable organizations resilience.

  7. Knowledge Loss: A Defensive Model In Nuclear Research Organization Memory

    International Nuclear Information System (INIS)

    Mohamad Safuan Bin Sulaiman; Muhd Noor Muhd Yunus

    2013-01-01

    Knowledge is an essential part of research based organization. It should be properly managed to ensure that any pitfalls of knowledge retention due to knowledge loss of both tacit and explicit is mitigated. Audit of the knowledge entities exist in the organization is important to identify the size of critical knowledge. It is very much related to how much know-what, know-how and know-why experts exist in the organization. This study conceptually proposed a defensive model for Nuclear Malaysia's organization memory and application of Knowledge Loss Risk Assessment (KLRA) as an important tool for critical knowledge identification. (author)

  8. Modeling Fluid’s Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks

    Directory of Open Access Journals (Sweden)

    Andrei Khrennikov

    2016-07-01

    Full Text Available We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be represented mathematically as ultrametric spaces and the dynamics of fluids by ultrametric diffusion. The images of p-adic fields, extracted from the real multiscale rock samples and from some reference images, are depicted. In this model the porous background is treated as the environment contributing to the coefficients of evolutionary equations. For the simplest trees, these equations are essentially less complicated than those with fractional differential operators which are commonly applied in geological studies looking for some fractional analogs to conventional Euclidean space but with anomalous scaling and diffusion properties. It is possible to solve the former equation analytically and, in particular, to find stationary solutions. The main aim of this paper is to attract the attention of researchers working on modeling of geological processes to the novel utrametric approach and to show some examples from the petroleum reservoir static and dynamic characterization, able to integrate the p-adic approach with multifractals, thermodynamics and scaling. We also present a non-mathematician friendly review of trees and ultrametric spaces and pseudo-differential operators on such spaces.

  9. Dynamic neuronal ensembles: Issues in representing structure change in object-oriented, biologically-based brain models

    Energy Technology Data Exchange (ETDEWEB)

    Vahie, S.; Zeigler, B.P.; Cho, H. [Univ. of Arizona, Tucson, AZ (United States)

    1996-12-31

    This paper describes the structure of dynamic neuronal ensembles (DNEs). DNEs represent a new paradigm for learning, based on biological neural networks that use variable structures. We present a computational neural element that demonstrates biological neuron functionality such as neurotransmitter feedback absolute refractory period and multiple output potentials. More specifically, we will develop a network of neural elements that have the ability to dynamically strengthen, weaken, add and remove interconnections. We demonstrate that the DNE is capable of performing dynamic modifications to neuron connections and exhibiting biological neuron functionality. In addition to its applications for learning, DNEs provide an excellent environment for testing and analysis of biological neural systems. An example of habituation and hyper-sensitization in biological systems, using a neural circuit from a snail is presented and discussed. This paper provides an insight into the DNE paradigm using models developed and simulated in DEVS.

  10. Application of morphological and physiological parameters representative of a sample Brazilian population in the human respiratory tract model

    International Nuclear Information System (INIS)

    Reis, A.A.; Cardoso, J.C.S.; Lourenco, M.C.

    2005-01-01

    Full text: The Human Respiratory Tract Model (HRTM) proposed in ICRP Publication 66 account for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These changing characteristics can influence the rates and the sites of deposition. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The HRTM model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. lt is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends for a reliable evaluation of the regional deposition the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined in ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The respiratory values at different levels of activity for ages varying from

  11. Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

  12. Linear Theory of Soil Organic Carbon Dynamics: Implications in Modeling Soil Respiration and Carbon Sequestration

    Science.gov (United States)

    Porporato, A.; Manzoni, S.; Katul, G.

    2008-12-01

    The long-term, large-scale soil organic carbon dynamics are typically described by mathematical models based on networks of linear reservoirs. Properties of these networks can be diagnosed from linear system theory (i.e. impulse-response transformations), which is seldom used in soil biogeochemistry, although it can be used to compare and test different models in the context of long-term carbon sequestration in soils. In this work, the general theory of linear impulse-response systems is briefly reviewed and linked to the theory of stochastic point processes. Two characteristic times are considered, the residence time (i.e., the time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system). Both are represented through their probability density functions, which are computed explicitly as a function of model structure. Different cases are analyzed and compared, ranging from a simple individual-pool model, to feedback models involving loops (as in models of soil organic carbon-microbial interactions and physical adsorption-desorption), and to more complex networks often used to simulate in the details the soil organic carbon processes. As examples for these complex networks, the compartmental model CENTURY (Parton et al., 1987), and the continuum-quality Q-model (Agren and Bosatta, 1996) are considered. We assess the relative importance of model structural characteristics to determine the organic carbon residence time and age distributions.

  13. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    Science.gov (United States)

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  14. Drosophila melanogaster as a model organism to study nanotoxicity.

    Science.gov (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  15. Investigating ecological speciation in non-model organisms

    DEFF Research Database (Denmark)

    Foote, Andrew David

    2012-01-01

    on killer whale evolutionary ecology in search of any difficulty in demonstrating causal links between variation in phenotype, ecology, and reproductive isolation in this non-model organism. Results: At present, we do not have enough evidence to conclude that adaptive phenotype traits linked to ecological...... speciation in non-model organisms that lead to this bias? What alternative approaches might redress the balance? Organism: Genetically differentiated types of the killer whale (Orcinus orca) exhibiting differences in prey preference, habitat use, morphology, and behaviour. Methods: Review of the literature...... variation underlie reproductive isolation between sympatric killer whale types. Perhaps ecological speciation has occurred, but it is hard to prove. We will probably face this outcome whenever we wish to address non-model organisms – species in which it is not easy to apply experimental approaches...

  16. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...

  17. Transfection of RNA from organ samples of infected animals represents a highly sensitive method for virus detection and recovery of classical swine fever virus.

    Science.gov (United States)

    Meyer, Denise; Schmeiser, Stefanie; Postel, Alexander; Becher, Paul

    2015-01-01

    Translation and replication of positive stranded RNA viruses are directly initiated in the cellular cytoplasm after uncoating of the viral genome. Accordingly, infectious virus can be generated by transfection of RNA genomes into susceptible cells. In the present study, efficiency of conventional virus isolation after inoculation of cells with infectious sample material was compared to virus recovery after transfection of total RNA derived from organ samples of pigs infected with Classical swine fever virus (CSFV). Compared to the conventional method of virus isolation applied in three different porcine cell lines used in routine diagnosis of CSF, RNA transfection showed a similar efficiency for virus rescue. For two samples, recovery of infectious virus was only possible by RNA transfection, but not by the classical approach of virus isolation. Therefore, RNA transfection represents a valuable alternative to conventional virus isolation in particular when virus isolation is not possible, sample material is not suitable for virus isolation or when infectious material is not available. To estimate the potential risk of RNA prepared from sample material for infection of pigs, five domestic pigs were oronasally inoculated with RNA that was tested positive for virus rescue after RNA transfection. This exposure did not result in viral infection or clinical disease of the animals. In consequence, shipment of CSFV RNA can be regarded as a safe alternative to transportation of infectious virus and thereby facilitates the exchange of virus isolates among authorized laboratories with appropriate containment facilities.

  18. His Excellency Mr Alexandros Alexandris Ambassador, Permanent Representative of Greece to the United Nations Office at Geneva and other international organizations in Switzerland and Officials from the East Macedonia and Thrace Region Greece

    CERN Document Server

    Jean-Claude Gadmer

    2013-01-01

    His Excellency Mr Alexandros Alexandris Ambassador, Permanent Representative of Greece to the United Nations Office at Geneva and other international organizations in Switzerland and Officials from the East Macedonia and Thrace Region Greece

  19. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    Science.gov (United States)

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  20. A Framework for Formal Modeling and Analysis of Organizations

    NARCIS (Netherlands)

    Jonker, C.M.; Sharpanskykh, O.; Treur, J.; P., Yolum

    2007-01-01

    A new, formal, role-based, framework for modeling and analyzing both real world and artificial organizations is introduced. It exploits static and dynamic properties of the organizational model and includes the (frequently ignored) environment. The transition is described from a generic framework of

  1. Representing Strategies

    Directory of Open Access Journals (Sweden)

    Hein Duijf

    2016-07-01

    Full Text Available Quite some work in the ATL-tradition uses the differences between various types of strategies (positional, uniform, perfect recall to give alternative semantics to the same logical language. This paper contributes to another perspective on strategy types, one where we characterise the differences between them on the syntactic (object language level. This is important for a more traditional knowledge representation view on strategic content. Leaving differences between strategy types implicit in the semantics is a sensible idea if the goal is to use the strategic formalism for model checking. But, for traditional knowledge representation in terms of object language level formulas, we need to extent the language. This paper introduces a strategic STIT syntax with explicit operators for knowledge that allows us to charaterise strategy types. This more expressive strategic language is interpreted on standard ATL-type concurrent epistemic game structures. We introduce rule-based strategies in our language and fruitfully apply them to the representation and characterisation of positional and uniform strategies. Our representations highlight crucial conditions to be met for strategy types. We demonstrate the usefulness of our work by showing that it leads to a critical reexamination of coalitional uniform strategies.

  2. Exploration of the seasonal variation of organic aerosol composition using an explicit modeling approach

    Science.gov (United States)

    Ouzebidour, Farida; Camredon, Marie; Stéphanie La, Yuyi; Madronich, Sasha; Taylor, Julia Lee; Hodzic, Alma; Beekmann, Matthias; Siour, Guillaume; Aumont, Bernard

    2014-05-01

    Organic compounds account for a major fraction of fine aerosols in the atmosphere. This organic fraction is dominated by secondary organic aerosol (SOA). Processes leading to SOA formation are however still uncertain and SOA composition is far from being fully characterized. The goals of this study are to evaluate our current understanding of SOA formation and explore its composition. For this purpose, a box-model that describes explicitly processes involved in SOA formation has been developed. This model includes the emission of 183 gaseous and particulate organic compounds. The oxidation of these emitted organic compounds is described using the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Gas/particle partitioning has been implemented considering an ideal homogeneous condensed phase. The generated chemical scheme contains 500,000 species and the gas/particle partitioning is performed for 90,000 of them. Simulations have been performed for summer and winter scenarios representative of continental and urban conditions. NOx and ozone simulated concentrations reproduce the expected winter and summer diurnal evolutions. The predicted organic aerosol composition is a mixture of primary and secondary organic aerosols during the winter and is largely dominated by SOA during the summer.

  3. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  4. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    Science.gov (United States)

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor

    2017-04-01

    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent

  5. Investigating ecological speciation in non-model organisms

    DEFF Research Database (Denmark)

    Foote, Andrew David

    2012-01-01

    Background: Studies of ecological speciation tend to focus on a few model biological systems. In contrast, few studies on non-model organisms have been able to infer ecological speciation as the underlying mechanism of evolutionary divergence. Questions: What are the pitfalls in studying ecological...... on killer whale evolutionary ecology in search of any difficulty in demonstrating causal links between variation in phenotype, ecology, and reproductive isolation in this non-model organism. Results: At present, we do not have enough evidence to conclude that adaptive phenotype traits linked to ecological...... variation underlie reproductive isolation between sympatric killer whale types. Perhaps ecological speciation has occurred, but it is hard to prove. We will probably face this outcome whenever we wish to address non-model organisms – species in which it is not easy to apply experimental approaches...

  6. Web-based survey to assess the perceptions of managed care organization representatives on use of copay subsidy coupons for prescription drugs.

    Science.gov (United States)

    Nemlekar, Poorva; Shepherd, Marvin; Lawson, Kenneth; Rush, Sharon

    2013-10-01

    Promotion of prescription drug coupons and vouchers by pharmaceutical manufacturers has increased in recent years. These coupons and vouchers usually subsidize patients' cost-sharing obligations. In other words, drug companies pay for a patient's portion of the drug cost, and the remaining cost is paid by the patient and the patient's health plan. This practice is normally used for brand name drugs but can and has been used for generic drugs. Copayments (also known as copays), and especially high copays for higher cost drugs, are used by managed care organizations (MCOs) to place a higher financial burden on patients and also provide an appreciation of the medication cost. At the same time, tiered copay plans offer incentives, in the form of lower copays, to use available equivalent generic alternatives or lower cost brand name drugs, instead of high cost brand name drugs. With higher tiered copays for brand name drugs being offset by coupons, little is known about MCO representatives' perceptions about the use of copay subsidy coupons for brand name prescription drugs. To assess health plan managers' and pharmacy benefit managers' (PBMs) perceptions about the use of prescription drug copay subsidy coupons. A 28-item online survey instrument was used to collect data from health plan and PBM representatives. A sample of 834 MCO representatives was selected from the Academy of Managed Care Pharmacy membership directory. Pharmacists, managers, directors, and executive officers working in pharmacy, formulary, and clinical pharmacy operations were selected for the survey. Respondents from non-MCO settings and government-sponsored health plans were excluded from the survey. A total of 122 surveys were returned after 3 emails (i.e., an invitation and 2 reminder emails) of which 105 were usable surveys, giving a response rate of 13.7%. A 5-point, 11-item Likert scale (1 = Strongly Disagree and 5 = Strongly Agree) was used to measure respondents' perceptions toward

  7. Home outdoor models for traffic-related air pollutants do not represent personal exposure measurements in Southern California

    International Nuclear Information System (INIS)

    Ducret-Stich, R; Gemperli, A; Ineichen, A; Phuleria, H C; Delfino, R J; Tjoa, T; Wu, J; Liu, L-J S

    2009-01-01

    Recent studies have used measurements or estimates of traffic-related air pollutants at home or school locations to link associations between exposure and health. However, little is known about the validity of these outdoor concentrations as an estimate for personal exposure to traffic. This paper compares modelled outdoor concentrations at home with personal exposure to traffic air pollution of 63 children in two areas in Los Angeles in 2003/2004. Exposure monitoring consisted of sixteen 10-day monitoring runs, with each run monitoring 4 subjects concurrently with the active personal DataRAM for particulate matter 25 ), elemental carbon (EC) and organic carbon (OC). One child per run had concurrent indoor/outdoor home monitoring. Measurements at central sites (24-hr PM 25 , EC, OC) were taken daily and concentrations of PM 25 , EC, and OC from traffic sources were calculated using the CALINE4 model for individual residences. We modelled outdoor concentrations of PM 2 5 , EC and OC with multilinear regression including GIS and meteorological parameters and adjusted for auto-correlation between repeated measurements. The model fit (R 2 ) for home outdoor estimates was 0.94, 0.74 and 0.80 for PM 25 , EC and OC, respectively. Comparisons between these outdoor estimates and the personal measurements showed a good agreement for PM 25 (R 2 =0.65-0.70) with a mean bias of -0.7±11.8|ag for the smog receptor area, and 18.9±16.2|ag for the traffic impacted area. However the outdoor estimates were not related to personal exposure for EC (R 2 =0.01-0.29) and OC (R 2 =0.03- 0.14). Conclusions: Predictions of outdoor concentrations can be used as approximations of personal exposure to PM 25 . However, they are not appropriate for estimating personal exposure to traffic-related air pollutants including EC and OC in studies of acute exposure-response relationships.

  8. Minimal levels of ultraviolet light enhance the toxicity of TiO2 nanoparticles to two representative organisms of aquatic systems

    Science.gov (United States)

    Clemente, Z.; Castro, V. L.; Jonsson, C. M.; Fraceto, L. F.

    2014-08-01

    A number of studies have been published concerning the potential ecotoxicological risks of titanium dioxide nanoparticles (nano-TiO2), but the results still remain inconclusive. The characteristics of the diverse types of nano-TiO2 must be considered in order to establish experimental models to study their toxicity. TiO2 has important photocatalytic properties, and its photoactivation occurs in the ultraviolet (UV) range. The aim of this study was to investigate the toxicity of nano-TiO2 to indicators organisms of freshwater and saline aquatic systems, under different illumination conditions (visible light, with or without UV light). Daphnia similis and Artemia salina were co-exposed to a sublethal dose of UV light and different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM). Both products were considered practically non-toxic under visible light to D. similis and A. salina (EC5048h > 100 mg/L). Exposure to nano-TiO2 under visible and UV light enhanced the toxicity of both products. In the case of D. similis, TM was more toxic than TA, showing values of EC5048h = 60.16 and 750.55 mg/L, respectively. A. salina was more sensitive than D. similis, with EC5048h = 4 mg/L for both products. Measurements were made of the growth rates of exposed organisms, together with biomarkers of oxidative stress and metabolism. The results showed that the effects of nano-TiO2 depended on the organism, exposure time, crystal phase, and illumination conditions, and emphasized the need for a full characterization of nanoparticles and their behavior when studying nanotoxicity.

  9. A self-organized criticality model for plasma transport

    International Nuclear Information System (INIS)

    Carreras, B.A.; Newman, D.; Lynch, V.E.

    1996-01-01

    Many models of natural phenomena manifest the basic hypothesis of self-organized criticality (SOC). The SOC concept brings together the self-similarity on space and time scales that is common to many of these phenomena. The application of the SOC modelling concept to the plasma dynamics near marginal stability opens new possibilities of understanding issues such as Bohm scaling, profile consistency, broad band fluctuation spectra with universal characteristics and fast time scales. A model realization of self-organized criticality for plasma transport in a magnetic confinement device is presented. The model is based on subcritical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based on this model show the existence of transport under subcritical conditions. This model that includes fluctuation dynamics leads to results very similar to the running sandpile paradigm

  10. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  11. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  12. Making Organisms Model Human Behavior: Situated Models in North-American Alcohol Research, 1950-onwards

    Science.gov (United States)

    Leonelli, Sabina; Ankeny, Rachel A.; Nelson, Nicole C.; Ramsden, Edmund

    2014-01-01

    Argument We examine the criteria used to validate the use of nonhuman organisms in North-American alcohol addiction research from the 1950s to the present day. We argue that this field, where the similarities between behaviors in humans and non-humans are particularly difficult to assess, has addressed questions of model validity by transforming the situatedness of non-human organisms into an experimental tool. We demonstrate that model validity does not hinge on the standardization of one type of organism in isolation, as often the case with genetic model organisms. Rather, organisms are viewed as necessarily situated: they cannot be understood as a model for human behavior in isolation from their environmental conditions. Hence the environment itself is standardized as part of the modeling process; and model validity is assessed with reference to the environmental conditions under which organisms are studied. PMID:25233743

  13. Making organisms model human behavior: situated models in North-American alcohol research, since 1950.

    Science.gov (United States)

    Ankeny, Rachel A; Leonelli, Sabina; Nelson, Nicole C; Ramsden, Edmund

    2014-09-01

    We examine the criteria used to validate the use of nonhuman organisms in North-American alcohol addiction research from the 1950s to the present day. We argue that this field, where the similarities between behaviors in humans and non-humans are particularly difficult to assess, has addressed questions of model validity by transforming the situatedness of non-human organisms into an experimental tool. We demonstrate that model validity does not hinge on the standardization of one type of organism in isolation, as often the case with genetic model organisms. Rather, organisms are viewed as necessarily situated: they cannot be understood as a model for human behavior in isolation from their environmental conditions. Hence the environment itself is standardized as part of the modeling process; and model validity is assessed with reference to the environmental conditions under which organisms are studied.

  14. MODELLING CONSUMERS' DEMAND FOR ORGANIC FOOD PRODUCTS: THE SWEDISH EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Manuchehr Irandoust

    2016-07-01

    Full Text Available This paper attempts to examine a few factors characterizing consumer preferences and behavior towards organic food products in the south of Sweden using a proportional odds model which captures the natural ordering of dependent variables and any inherent nonlinearities. The findings show that consumer's choice for organic food depends on perceived benefits of organic food (environment, health, and quality and consumer's perception and attitudes towards labelling system, message framing, and local origin. In addition, high willingness to pay and income level will increase the probability to buy organic food, while the cultural differences and socio-demographic characteristics have no effect on consumer behaviour and attitudes towards organic food products. Policy implications are offered.

  15. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  16. Dilbert-Peter model of organization effectiveness: computer simulations

    OpenAIRE

    Sobkowicz, Pawel

    2010-01-01

    We describe a computer model of general effectiveness of a hierarchical organization depending on two main aspects: effects of promotion to managerial levels and efforts to self-promote of individual employees, reducing their actual productivity. The combination of judgment by appearance in the promotion to higher levels of hierarchy and the Peter Principle (which states that people are promoted to their level of incompetence) results in fast declines in effectiveness of the organization. The...

  17. Modeling nanostructure-enhanced light trapping in organic solar cells

    DEFF Research Database (Denmark)

    Adam, Jost

    A promising approach for improving the power conversion efficiencies of organic solar cells (OSCs) is by incorporating nanostructures in their thin film architecture to improve the light absorption in the device’s active polymer layers. Here, we present a modelling framework for the prediction....... Diffraction by fractal metallic supergratings. Optics Express, 15(24), 15628–15636 (2007) [3] Goszczak, A. J. et al. Nanoscale Aluminum dimples for light trapping in organic thin films (submitted)...

  18. Particle image velocimetry measurements in a representative gas-cooled prismatic reactor core model for the estimation of bypass flow

    Science.gov (United States)

    Conder, Thomas E.

    Core bypass flow is considered one of the largest contributors to uncertainty in fuel temperature within the Modular High Temperature Gas-cooled Reactor (MHTGR). It refers to the coolant that navigates through the interstitial regions between the graphite fuel blocks instead of traveling through the designated coolant channels. These flows are of concern because they reduce the desired flow rates in the coolant channels, and thereby have significant influence on the maximum fuel element and coolant exit temperatures. Thus, accurate prediction of the bypass flow is important because it directly impacts core temperature, influencing the life and efficiency of the reactor. An experiment was conducted at Idaho National Laboratory to quantify the flow in the coolant channels in relation to the interstitial gaps between fuel blocks in a representative MHTGR core. Particle Image Velocimetry (PIV) was used to measure the flow fields within a simplified model, which comprised of a stacked junction of six partial fuel blocks with nine coolant tubes, separated by a 6mm gap width. The model had three sections: The upper plenum, upper block, and lower block. Model components were fabricated from clear, fused quartz where optical access was needed for the PIV measurements. Measurements were taken in three streamwise locations: in the upper plenum and in the midsection of the large and small fuel blocks. A laser light sheet was oriented parallel to the flow, while velocity fields were measured at millimeter intervals across the width of the model, totaling 3,276 PIV measurement locations. Inlet conditions were varied to incorporate laminar, transition, and turbulent flows in the coolant channels---all which produced laminar flow in the gap and non-uniform, turbulent flow in the upper plenum. The images were analyzed to create vector maps, and the data was exported for processing and compilation. The bypass flow was estimated by calculating the flow rates through the coolant

  19. Ectocarpus: a model organism for the brown algae.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As a consequence of this history, brown algae have evolved many novel features, for example in terms of their cell biology and metabolic pathways. They are also one of only a small number of eukaryotic groups to have independently evolved complex multicellularity. Despite these interesting features, the brown algae have remained a relatively poorly studied group. This situation has started to change over the last few years, however, with the emergence of the filamentous brown alga Ectocarpus as a model system that is amenable to the genomic and genetic approaches that have proved to be so powerful in more classical model organisms such as Drosophila and Arabidopsis.

  20. Modelling of the Annual Mean Urban Heat Island Pattern for Planning of Representative Urban Climate Station Network

    Directory of Open Access Journals (Sweden)

    János Unger

    2011-01-01

    Full Text Available The spatial distribution of the annual mean urban heat island (UHI intensity pattern was analysed for the medium-sized city Novi Sad, Serbia, located on the low and flat Great Hungarian Plain. The UHI pattern was determined by an empirical modelling method developed by (Balázs et al. 2009. This method was based on datasets from urban areas of Szeged and Debrecen (Hungary. The urban study area in Novi Sad (60 km2 was established as a grid network of 240 cells (0.5 km ×0.5 km. A Landsat satellite image (from June 2006 was used in order to evaluate normalized difference vegetation index and built-up ratio by cells. The pattern of the obtained UHI intensity values show concentric-like shapes when drawn as isotherms, mostly increase from the suburbs towards the inner urban areas. Results of this thermal pattern and determination of one of the local climate classification systems were used for recommending 10 locations for representative stations of an urban climate network in Novi Sad.

  1. The Three Estates Model: Represented and Satirised in Chaucer’s General Prologue to the Canterbury Tales

    Directory of Open Access Journals (Sweden)

    Sadenur Doğan

    2013-07-01

    Full Text Available This paper presents an investigation of the ‘Three Estates Model’ of the English medieval society in Chaucer’s General Prologue to the Canterbury Tales. Based upon the descriptions and illustrations of the characters, it aims to explore the hierarchal structure of the medieval society which is divided into three main groups or ‘estates’: the ones who pray, the ones who rule and govern, and the ones who work. In the General Prologue, Chaucer gives a series of sketches of the characters that are the representatives of the three estates, and through these depictions he investigates the social characteristics and roles of the medieval people who are expected to speak and behave in accordance with what their social group requires. While presenting Three Estates Model, he employs the tradition of ‘estates satire’ by criticising the social vices resulting from the corruption in this model. Through the characteristics and virtues of the ‘Knight’, the ‘Parson’, and the ‘Plowman’, he demonstrates the perfect integration of the people who belong to chivalry, clergy and the commoners in the medieval English society. Also, by offering contrasting views to these positive traits in the portrayal of almost all of the other characters, as illustrated in the portrayal of the ‘Monk’, the ‘Reeve’, and the ‘Wife of Bathe’ in this paper, he criticises the vices and sins (that are mainly resulted from the religious, financial and moral corruption of the people belonging to the social classes of the Middle Ages.

  2. Assessment of vapor pressure estimation methods for secondary organic aerosol modeling

    Science.gov (United States)

    Camredon, Marie; Aumont, Bernard

    Vapor pressure ( Pvap) is a fundamental property controlling the gas-particle partitioning of organic species. Therefore this pure substance property is a critical parameter for modeling the formation of secondary organic aerosols (SOA). Structure-property relationships are needed to estimate Pvap because (i) very few experimental data for Pvap are available for semi-volatile organics and (ii) the number of contributors to SOA is extremely large. The Lee and Kesler method, a modified form of the Mackay equation, the Myrdal and Yalkowsky method and the UNIFAC- pLo method are commonly used to estimate Pvap in gas-particle partitioning models. The objectives of this study are (i) to assess the accuracy of these four methods on a large experimental database selected to be representative of SOA contributors and (ii) to compare the estimates provided by the various methods for compounds detected in the aerosol phase.

  3. Modeling Secondary Organic Aerosol Formation in a 3-Dimensional Regional Air Quality Model

    Science.gov (United States)

    Michelangeli, D.; Xia, A.; Makar, P.

    2006-12-01

    An adaptation of the secondary organic aerosol (SOA) yield method of Odum et al. [1996] has been used as a framework for the SOA formation, with extrapolation to low NOx/hydrocarbon ratios conditions, and including a parameterization for oligomer formation. The modified methodology includes: (1) extrapolation of the parameters used for the SOA formation from the oxidation of toluene to low NOx/HC ratio—resembling ambient atmospheric conditions; (2) a simplified parameterization scheme for the formation of the oligomers, which comprise half of the total SOA mass in the test conditions examined, (3) temperature dependencies inherent in vaporization enthalpy; (4) interactions with primary organic aerosols (POA) and (5) compound interaction through the application of a modified UNIFAC method, including water uptake due to the existence of the SOA. In comparison with previous work, the oligomers-formation scheme helps improve the predicted SOA mass concentrations compared to observations. The SOA module is implemented into a regional air quality model (MC2AQ) in the domain of Northeastern United States and Southern Ontario and Quebec during the month of July 1999. The model results are then evaluated against observational data from the IMPROVE network. Generally, the predicted POA are reasonably described at different monitoring sites. Moreover, the concentrations of the SOA and total organic aerosol (TOA) at the rural areas are close to the observed data; however, the SOA concentrations are underpredicted at a selected urban site, which leads to the underprediction of the TOA at the urban site. This is partly due to the lumping of the chemical mechanism for the SOA formation in the urban atmosphere. Moreover, the overall gas/particle partitioning is analyzed during the study period at two representative sites. The results showed that temperature has a stronger effect on SOA formation than the presence of POA, and low temperature is favored to the formation of the SOA

  4. Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways

    Science.gov (United States)

    Aghakhani Afshar, A.; Hasanzadeh, Y.; Besalatpour, A. A.; Pourreza-Bilondi, M.

    2017-07-01

    Hydrology cycle of river basins and available water resources in arid and semi-arid regions are highly affected by climate changes. In recent years, the increment of temperature due to excessive increased emission of greenhouse gases has led to an abnormality in the climate system of the earth. The main objective of this study is to survey the future climate changes in one of the biggest mountainous watersheds in northeast of Iran (i.e., Kashafrood). In this research, by considering the precipitation and temperature as two important climatic parameters in watersheds, 14 models evolved in the general circulation models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. For the historical period of 1992-2005, four evaluation criteria including Nash-Sutcliffe (NS), percent of bias (PBIAS), coefficient of determination ( R 2) and the ratio of the root-mean-square-error to the standard deviation of measured data (RSR) were used to compare the simulated observed data for assessing goodness-of-fit of the models. In the primary results, four climate models namely GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M were selected among the abovementioned 14 models due to their more prediction accuracies to the investigated evaluation criteria. Thereafter, climate changes of the future periods (near-century, 2006-2037; mid-century, 2037-2070; and late-century, 2070-2100) were investigated and compared by four representative concentration pathways (RCPs) of new emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In order to assess the trend of annual and seasonal changes of climatic components, Mann-Kendall non-parametric test (MK) was also employed. The results of Mann-Kendall test revealed that the precipitation has significant variable trends of both positive and negative alterations. Furthermore, the mean, maximum, and minimum temperature values had

  5. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  6. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: On the Accuracy of the TIP4P-D Water Model and the Representativeness of Protein Disorder Models.

    Science.gov (United States)

    Henriques, João; Skepö, Marie

    2016-07-12

    Here, we first present a follow-up to a previous work by our group on the problematic of molecular dynamics simulations of intrinsically disordered proteins (IDPs) [ Henriques et al. J. Chem. Theory Comput. 2015 , 11 , 3420 - 3431 ], using the recently developed TIP4P-D water model. When used in conjunction with the standard AMBER ff99SB-ILDN force field and applied to the simulation of Histatin 5, our IDP model, we obtain results which are in excellent agreement with the best performing IDP-suitable force field from the earlier study and with experiment. We then assess the representativeness of the IDP models used in these and similar studies, finding that most are too short in comparison to the average IDP and contain a bias toward hydrophilic amino acid residues. Moreover, several key order- and disorder-promoting residues are also found to be misrepresented. It seems appropriate for future studies to address these issues.

  7. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

    Science.gov (United States)

    Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole

    2015-07-14

    Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.

  8. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  9. There Is No Simple Model of the Plasma Membrane Organization

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  10. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  11. Financial incentives: alternatives to the altruistic model of organ donation.

    Science.gov (United States)

    Siminoff, L A; Leonard, M D

    1999-12-01

    Improvements in transplantation techniques have resulted in a demand for transplantable organs that far outpaces supply. Present efforts to secure organs use an altruistic system designed to appeal to a public that will donate organs because they are needed. Efforts to secure organs under this system have not been as successful as hoped. Many refinements to the altruistic model have been or are currently being proposed, such as "required request," "mandated choice," "routine notification," and "presumed consent." Recent calls for market approaches to organ procurement reflect growing doubts about the efficacy of these refinements. Market approaches generally use a "futures market," with benefits payable either periodically or when or if organs are procured. Lump-sum arrangements could include donations to surviving family or contributions to charities or to funeral costs. Possibilities for a periodic system of payments include reduced premiums for health or life insurance, or a reciprocity system whereby individuals who periodically reaffirm their willingness to donate are given preference if they require a transplant. Market approaches do raise serious ethical issues, including potential exploitation of the poor. Such approaches may also be effectively proscribed by the 1984 National Organ Transplant Act.

  12. Estimating organ doses from tube current modulated CT examinations using a generalized linear model.

    Science.gov (United States)

    Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F

    2017-04-01

    Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter

  13. Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling.

    Science.gov (United States)

    Amabile, Celia; Choisne, Julie; Nérot, Agathe; Pillet, Hélène; Skalli, Wafa

    2016-05-03

    Body segment parameters (BSP) for each body׳s segment are needed for biomechanical analysis. To provide population-specific BSP, precise estimation of body׳s segments volume and density are needed. Widely used uniform densities, provided by cadavers׳ studies, did not consider the air present in the lungs when determining the thorax density. The purpose of this study was to propose a new uniform thorax density representative of the living population from 3D external body shape modeling. Bi-planar X-ray radiographies were acquired on 58 participants allowing 3D reconstructions of the spine, rib cage and human body shape. Three methods of computing the thorax mass were compared for 48 subjects: (1) the Dempster Uniform Density Method, currently in use for BSPs calculation, using Dempster density data, (2) the Personalized Method using full-description of the thorax based on 3D reconstruction of the rib cage and spine and (3) the Improved Uniform Density Method using a uniform thorax density resulting from the Personalized Method. For 10 participants, comparison was made between the body mass obtained from a force-plate and the body mass computed with each of the three methods. The Dempster Uniform Density Method presented a mean error of 4.8% in the total body mass compared to the force-plate vs 0.2% for the Personalized Method and 0.4% for the Improved Uniform Density Method. The adjusted thorax density found from the 3D reconstruction was 0.74g/cm(3) for men and 0.73g/cm(3) for women instead of the one provided by Dempster (0.92g/cm(3)), leading to a better estimate of the thorax mass and body mass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Modeling of the transient mobility in disordered organic semiconductors

    NARCIS (Netherlands)

    Germs, W.C.; Van der Holst, J.M.M.; Van Mensfoort, S.L.M.; Bobbert, P.A.; Coehoorn, R.

    2011-01-01

    In non-steady-state experiments, the electrical response of devicesbased on disordered organic semiconductors often shows a large transient contribution due to relaxation of the out-of-equilibrium charge-carrier distribution. We have developed a model describing this process, based only on the

  15. There Is No Simple Model of the Plasma Membrane Organization

    Czech Academy of Sciences Publication Activity Database

    de la serna, J. B.; Schütz, G.; Eggeling, Ch.; Cebecauer, Marek

    2016-01-01

    Roč. 4, SEP 2016 (2016), 106 ISSN 2296-634X R&D Projects: GA ČR GA15-06989S Institutional support: RVO:61388955 Keywords : plasma membrane * membrane organization models * heterogeneous distribution Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    Science.gov (United States)

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  17. Editorial: Plant organ abscission: from models to crops

    Science.gov (United States)

    The shedding of plant organs is a highly coordinated process essential for both vegetative and reproductive development (Addicott, 1982; Sexton and Roberts, 1982; Roberts et al., 2002; Leslie et al., 2007; Roberts and Gonzalez-Carranza, 2007; Estornell et al., 2013). Research with model plants, name...

  18. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified.

  19. A model of virtual organization for corporate visibility and ...

    African Journals Online (AJOL)

    This paper considers the existing numerous research in business, Information and Communication Technology (ICT), examines a theoretical framework for value creation in a virtual world. Following a proposed model, a new strategic paradigm is created for corporate value; and virtual organization (VO) apply the use of ...

  20. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  1. Promoting Representational Competence with Molecular Models in Organic Chemistry

    Science.gov (United States)

    Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary

    2016-01-01

    Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…

  2. Modeling secondary organic aerosol formation through cloud processing of organic compounds

    Directory of Open Access Journals (Sweden)

    J. Chen

    2007-10-01

    Full Text Available Interest in the potential formation of secondary organic aerosol (SOA through reactions of organic compounds in condensed aqueous phases is growing. In this study, the potential formation of SOA from irreversible aqueous-phase reactions of organic species in clouds was investigated. A new proposed aqueous-phase chemistry mechanism (AqChem is coupled with the existing gas-phase Caltech Atmospheric Chemistry Mechanism (CACM and the Model to Predict the Multiphase Partitioning of Organics (MPMPO that simulate SOA formation. AqChem treats irreversible organic reactions that lead mainly to the formation of carboxylic acids, which are usually less volatile than the corresponding aldehydic compounds. Zero-dimensional model simulations were performed for tropospheric conditions with clouds present for three consecutive hours per day. Zero-dimensional model simulations show that 48-h average SOA formation is increased by 27% for a rural scenario with strong monoterpene emissions and 7% for an urban scenario with strong emissions of aromatic compounds, respectively, when irreversible organic reactions in clouds are considered. AqChem was also incorporated into the Community Multiscale Air Quality Model (CMAQ version 4.4 with CACM/MPMPO and applied to a previously studied photochemical episode (3–4 August 2004 focusing on the eastern United States. The CMAQ study indicates that the maximum contribution of SOA formation from irreversible reactions of organics in clouds is 0.28 μg m−3 for 24-h average concentrations and 0.60 μg m−3 for one-hour average concentrations at certain locations. On average, domain-wide surface SOA predictions for the episode are increased by 9% when irreversible, in-cloud processing of organics is considered. Because aldehydes of carbon number greater than four are assumed to convert fully to the corresponding carboxylic acids upon reaction with OH in cloud droplets and this assumption may overestimate

  3. Predicting Complex Organic Mixture Atmospheric Chemistry Using Computer-Generated Reaction Models

    Science.gov (United States)

    Klein, M. T.; Broadbelt, L. J.; Mazurek, M. A.

    2001-12-01

    New measurement and chemical characterization technologies now offer unprecedented capabilities for detecting and describing atmospheric organic matter at the molecular level. As a result, very detailed and extensive chemical inventories are produced routinely in atmospheric field measurements of organic compounds found in the vapor and condensed phases (particles, cloud and fog droplets). Hundreds of organic compounds can constitute the complex chemical mixtures observed for these types of samples, exhibiting a wide spectrum of physical properties such as molecular weight, polarity, pH, and chemical reactivity. The central challenge is describing chemically the complex organic aerosol mixture in a useable fashion that can be linked to predictive models. However, the great compositional complexity of organic aerosols engenders a need for the modeling of the reaction chemistry of these compounds in atmospheric chemical models. On a mechanistic level, atmospheric reactions of organic compounds can involve a network of a very large number of chemical species and reactions. Deriving such large molecular kinetic models by hand is a tedious and time-consuming process. However, such models are usually built upon a few basic chemical principles tempered with the model builder's observations, experience, and intuition that can be summarized as a set of rules. This suggests that given an algorithmic framework, computers (information technology) may be used to apply these chemical principles and rules, thereby building a kinetic model. The framework for this model building process has been developed by means of graph theory. A molecule, which is a set of atoms connected by bonds, may be conceptualized as a set of vertices connected by edges, or to be more precise, a graph. The bond breaking and forming for a reaction can be represented compactly in the form of a matrix operator formally called the "reaction matrix". The addition of the reaction matrix operator to the reduced

  4. The method for determination of parameters of the phenomenological continual model of soil organic matter transformation

    Directory of Open Access Journals (Sweden)

    S. I. Bartsev

    2015-06-01

    Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in first­order partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.

  5. On the influence of the exposure model on organ doses

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1988-01-01

    Based on the design characteristics of the MIRD-V phantom, two sex-specific adult phantoms, ADAM and EVA were introduced especially for the calculation of organ doses resulting from external irradiation. Although the body characteristics of all the phantoms are in good agreement with those of the reference man and woman, they have some disadvantages related to the location and shape of organs and the form of the whole body. To overcome these disadvantages related to the location and shape of organs and form of the whole body. To overcome these disadvantages related to the location and shape of organs and the form of the whole body. To overcome these disadvantages and to obtain more realistic phantoms, a technique based on computer tomographic data (voxel-phantom) was developed. This technique allows any physical phantom or real body to be converted into computer files. The improvements are of special importance with regard to the skeleton, because a better modeling of the bone surfaces and separation of hard bone and bone marrow can be achieved. For photon irradiation, the sensitivity of the model on organ doses or the effective dose equivalent is important for operational radiation protection

  6. Can government be self-organized? A mathematical model of the collective social organization of ancient Teotihuacan, central Mexico.

    Science.gov (United States)

    Froese, Tom; Gershenson, Carlos; Manzanilla, Linda R

    2014-01-01

    Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city's origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city's hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city's eventual disintegration.

  7. Can government be self-organized? A mathematical model of the collective social organization of ancient Teotihuacan, central Mexico.

    Directory of Open Access Journals (Sweden)

    Tom Froese

    Full Text Available Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city's origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city's hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city's eventual disintegration.

  8. Sustainable Organic Farming For Environmental Health A Social Development Model

    Directory of Open Access Journals (Sweden)

    Ijun Rijwan Susanto

    2015-05-01

    Full Text Available ABSTRACT In this study the researcher attempted 1 to understand the basic features of organic farming in The Paguyuban Pasundans Cianjur 2 to describe and understand how the stakeholders were are able to internalize the challenges of organic farming on their lived experiences in the community 3 to describe and understand how the stakeholders were are able to internalize and applied the values of benefits of organic farming in support of environmental health on their lived experiences in the community 4 The purpose was to describe and understand how the stakeholders who are able to articulate their ideas regarding the model of sustainable organic farming 5 The Policy Recommendation for Organic Farming. The researcher employed triangulation thorough finding that provides breadth and depth to an investigation offering researchers a more accurate picture of the phenomenon. In the implementation of triangulation researchers conducted several interviews to get saturation. After completion of the interview results are written compiled and shown to the participants to check every statement by every participant. In addition researchers also checked the relevant documents and direct observation in the field The participants of this study were the stakeholders namely 1 The leader of Paguyuban Pasundans Organic Farmer Cianjur PPOFC 2 Members of Paguyuban Pasundans Organic FarmersCianjur 3 Leader of NGO 4 Government officials of agriculture 5 Business of organic food 6 and Consumer of organic food. Generally the findings of the study revealed the following 1 PPOFC began to see the reality as the impact of modern agriculture showed in fertility problems due to contaminated soil by residues of agricultural chemicals such as chemical fertilizers and chemical pesticides. So he wants to restore the soil fertility through environmentally friendly of farming practices 2 the challenges of organic farming on their lived experiences in the community farmers did not

  9. Branching and self-organization in marine modular colonial organisms: a model.

    Science.gov (United States)

    Sánchez, Juan Armando; Lasker, Howard R; Nepomuceno, Erivelton G; Sánchez, J Dario; Woldenberg, Michael J

    2004-03-01

    Despite the universality of branching patterns in marine modular colonial organisms, there is neither a clear explanation about the growth of their branching forms nor an understanding of how these organisms conserve their shape during development. This study develops a model of branching and colony growth using parameters and variables related to actual modular structures (e.g., branches) in Caribbean gorgonian corals (Cnidaria). Gorgonians exhibiting treelike networks branch subapically, creating hierarchical mother-daughter relationships among branches. We modeled both the intrinsic subapical branching along with an ecological-physiological limit to growth or maximum number of mother branches (k). Shape is preserved by maintaining a constant ratio (c) between the total number of branches and the mother branches. The size frequency distribution of mother branches follows a scaling power law suggesting self-organized criticality. Differences in branching among species with the same k values are determined by r (branching rate) and c. Species with rr/2 or c>r>0). Ecological/physiological constraints limit growth without altering colony form or the interaction between r and c. The model described the branching dynamics giving the form to colonies and how colony growth declines over time without altering the branching pattern. This model provides a theoretical basis to study branching as a simple function of the number of branches independently of ordering- and bifurcation-based schemes.

  10. Finite-element model of the active organ of Corti

    Science.gov (United States)

    Elliott, Stephen J.; Baumgart, Johannes

    2016-01-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  11. Invertebrates as model organisms for research on aging biology.

    Science.gov (United States)

    Murthy, Mahadev; Ram, Jeffrey L

    2015-01-30

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an 'NIA-NIH symposium on aging in invertebrate model systems' at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more 'basal' organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri , the tunicate Ciona , and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity.

  12. Organizing the space and behavior of semantic models.

    Science.gov (United States)

    Rubin, Timothy N; Kievit-Kylar, Brent; Willits, Jon A; Jones, Michael N

    Semantic models play an important role in cognitive science. These models use statistical learning to model word meanings from co-occurrences in text corpora. A wide variety of semantic models have been proposed, and the literature has typically emphasized situations in which one model outperforms another. However, because these models often vary with respect to multiple sub-processes (e.g., their normalization or dimensionality-reduction methods), it can be difficult to delineate which of these processes are responsible for observed performance differences. Furthermore, the fact that any two models may vary along multiple dimensions makes it difficult to understand where these models fall within the space of possible psychological theories. In this paper, we propose a general framework for organizing the space of semantic models. We then illustrate how this framework can be used to understand model comparisons in terms of individual manipulations along sub-processes. Using several artificial datasets we show how both representational structure and dimensionality-reduction influence a model's ability to pick up on different types of word relationships.

  13. IT Business Value Model for Information Intensive Organizations

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Gastaud Maçada

    2012-01-01

    Full Text Available Many studies have highlighted the capacity Information Technology (IT has for generating value for organizations. Investments in IT made by organizations have increased each year. Therefore, the purpose of the present study is to analyze the IT Business Value for Information Intensive Organizations (IIO - e.g. banks, insurance companies and securities brokers. The research method consisted of a survey that used and combined the models from Weill and Broadbent (1998 and Gregor, Martin, Fernandez, Stern and Vitale (2006. Data was gathered using an adapted instrument containing 5 dimensions (Strategic, Informational, Transactional, Transformational and Infra-structure with 27 items. The instrument was refined by employing statistical techniques such as Exploratory and Confirmatory Factorial Analysis through Structural Equations (first and second order Model Measurement. The final model is composed of four factors related to IT Business Value: Strategic, Informational, Transactional and Transformational, arranged in 15 items. The dimension Infra-structure was excluded during the model refinement process because it was discovered during interviews that managers were unable to perceive it as a distinct dimension of IT Business Value.

  14. Mobility dependent recombination models for organic solar cells

    Science.gov (United States)

    Wagenpfahl, Alexander

    2017-09-01

    Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited

  15. Impacts of trait variation through observed trait-climate relationships on performance of a representative Earth System Model: a conceptual analysis.

    NARCIS (Netherlands)

    Verheijen, L.M.; Brovkin, V.; Aerts, R.; Bonish, G.; Cornelissen, J.H.C.; Kattge, J.; Reich, P.B.; Wright, I.J.; van Bodegom, P.M.

    2013-01-01

    In many current dynamic global vegetation models (DGVMs), including those incorporated into Earth system models (ESMs), terrestrial vegetation is represented by a small number of plant functional types (PFTs), each with fixed properties irrespective of their predicted occurrence. This contrasts with

  16. Assessing the fit of the Dysphoric Arousal model across two nationally representative epidemiological surveys: The Australian NSMHWB and the United States NESARC.

    Science.gov (United States)

    Armour, Cherie; Carragher, Natacha; Elhai, Jon D

    2013-01-01

    Since the initial inclusion of PTSD in the DSM nomenclature, PTSD symptomatology has been distributed across three symptom clusters. However, a wealth of empirical research has concluded that PTSD's latent structure is best represented by one of two four-factor models: Numbing or Dysphoria. Recently, a newly proposed five-factor Dysphoric Arousal model, which separates the DSM-IV's Arousal cluster into two factors of Anxious Arousal and Dysphoric Arousal, has gathered support across a variety of trauma samples. To date, the Dysphoric Arousal model has not been assessed using nationally representative epidemiological data. We employed confirmatory factor analysis to examine PTSD's latent structure in two independent population based surveys from American (NESARC) and Australia (NSWHWB). We specified and estimated the Numbing model, the Dysphoria model, and the Dysphoric Arousal model in both samples. Results revealed that the Dysphoric Arousal model provided superior fit to the data compared to the alternative models. In conclusion, these findings suggest that items D1-D3 (sleeping difficulties; irritability; concentration difficulties) represent a separate, fifth factor within PTSD's latent structure using nationally representative epidemiological data in addition to single trauma specific samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A taxonomy of nursing care organization models in hospitals.

    Science.gov (United States)

    Dubois, Carl-Ardy; D'Amour, Danielle; Tchouaket, Eric; Rivard, Michèle; Clarke, Sean; Blais, Régis

    2012-08-28

    Over the last decades, converging forces in hospital care, including cost-containment policies, rising healthcare demands and nursing shortages, have driven the search for new operational models of nursing care delivery that maximize the use of available nursing resources while ensuring safe, high-quality care. Little is known, however, about the distinctive features of these emergent nursing care models. This article contributes to filling this gap by presenting a theoretically and empirically grounded taxonomy of nursing care organization models in the context of acute care units in Quebec and comparing their distinctive features. This study was based on a survey of 22 medical units in 11 acute care facilities in Quebec. Data collection methods included questionnaire, interviews, focus groups and administrative data census. The analytical procedures consisted of first generating unit profiles based on qualitative and quantitative data collected at the unit level, then applying hierarchical cluster analysis to the units' profile data. The study identified four models of nursing care organization: two professional models that draw mainly on registered nurses as professionals to deliver nursing services and reflect stronger support to nurses' professional practice, and two functional models that draw more significantly on licensed practical nurses (LPNs) and assistive staff (orderlies) to deliver nursing services and are characterized by registered nurses' perceptions that the practice environment is less supportive of their professional work. This study showed that medical units in acute care hospitals exhibit diverse staff mixes, patterns of skill use, work environment design, and support for innovation. The four models reflect not only distinct approaches to dealing with the numerous constraints in the nursing care environment, but also different degrees of approximations to an "ideal" nursing professional practice model described by some leaders in the

  18. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    Science.gov (United States)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  19. Lean construction as an effective organization model in Arctic

    Directory of Open Access Journals (Sweden)

    Balashova Elena S.

    2017-01-01

    Full Text Available In recent time, due to the sharp climatic changes, the Arctic attracts an increased interest of the world powers as a strategically important object. In 2013, the development strategy of the Arctic zone of the Russian Federation and national security for the period up to 2020 was approved by the President. In this strategy, the socio-economic development of the region in terms of improving the quality of life, expressed in the implementation of housing and civil engineering is very important. The goal of the study is to identify effective organization model of construction in the Arctic zone of the Russian Federation. Lean construction as a dynamically developing methodology abroad is analyzed. Characteristics of this organization model of construction meet the necessary requirements for the construction of various infrastructure objects in the Arctic. Therefore, the concept of lean construction can be an effective strategy of development of the Arctic regions of Russia as well as other Arctic countries.

  20. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data.

    Science.gov (United States)

    Sweetman, Andrew J; Valle, Matteo Dalla; Prevedouros, Konstantinos; Jones, Kevin C

    2005-08-01

    Soil is an important global reservoir for persistent organic pollutants (POPs). The interaction between air (which often receives the majority of emissions) and soil plays a key role in the long term environmental cycling and fate of these chemicals. Soil surveys have been carried out to try and estimate regional and global distribution/inventory of POPs. A correlation between soil POPs concentration and soil organic carbon (SOC) has been observed in background soils [Meijer et al., 2003. Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ. Sci. Technol., 37, 667], provoking discussion about whether POPs will approach steady-state (or equilibrium) between air and SOC, on a global scale. This manuscript investigates this relationship and in particular how soil concentrations can be influenced by factors such as temperature, SOC content and physicochemical properties. A simple two box model designed to investigate parameters that are likely to affect air-soil exchange revealed that more volatile chemicals such as HCB are likely to achieve steady-state conditions between air and soil relatively quickly whilst relatively involatile chemicals, such as heavy PCBs, may take considerably longer and other compounds (e.g. OCDD) may never achieve it. These model calculations provide an insight into which fate processes (e.g. volatilisation or degradation) may control a chemicals fate in the terrestrial environment. A different modelling exercise was used to explore the complex interaction of environmental parameters, representative of 'real world' conditions to study their potential influence on POPs cycling at the European scale. Results from the model suggested that compound degradation rates in soil (linked to SOC content), temperature, vegetation cover and ecosystem C turnover are all likely to significantly influence POP air-soil exchange and fate.

  1. Understanding rare disease pathogenesis: a grand challenge for model organisms.

    Science.gov (United States)

    Hieter, Philip; Boycott, Kym M

    2014-10-01

    In this commentary, Philip Hieter and Kym Boycott discuss the importance of model organisms for understanding pathogenesis of rare human genetic diseases, and highlight the work of Brooks et al., "Dysfunction of 60S ribosomal protein L10 (RPL10) disrupts neurodevelopment and causes X-linked microcephaly in humans," published in this issue of GENETICS. Copyright © 2014 by the Genetics Society of America.

  2. Optimization of molecular representativeness.

    Science.gov (United States)

    Yosipof, Abraham; Senderowitz, Hanoch

    2014-06-23

    Representative subsets selected from within larger data sets are useful in many chemoinformatics applications including the design of information-rich compound libraries, the selection of compounds for biological evaluation, and the development of reliable quantitative structure-activity relationship (QSAR) models. Such subsets can overcome many of the problems typical of diverse subsets, most notably the tendency of the latter to focus on outliers. Yet only a few algorithms for the selection of representative subsets have been reported in the literature. Here we report on the development of two algorithms for the selection of representative subsets from within parent data sets based on the optimization of a newly devised representativeness function either alone or simultaneously with the MaxMin function. The performances of the new algorithms were evaluated using several measures representing their ability to produce (1) subsets which are, on average, close to data set compounds; (2) subsets which, on average, span the same space as spanned by the entire data set; (3) subsets mirroring the distribution of biological indications in a parent data set; and (4) test sets which are well predicted by qualitative QSAR models built on data set compounds. We demonstrate that for three data sets (containing biological indication data, logBBB permeation data, and Plasmodium falciparum inhibition data), subsets obtained using the new algorithms are more representative than subsets obtained by hierarchical clustering, k-means clustering, or the MaxMin optimization at least in three of these measures.

  3. Quasi-dynamic model for an organic Rankine cycle

    International Nuclear Information System (INIS)

    Bamgbopa, Musbaudeen O.; Uzgoren, Eray

    2013-01-01

    Highlights: • Study presents a simplified transient modeling approach for an ORC under variable heat input. • The ORC model is presented as a synthesis of its models of its sub-components. • The model is compared to benchmark numerical simulations and experimental data at different stages. - Abstract: When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response

  4. Turbulence and Self-Organization Modeling Astrophysical Objects

    CERN Document Server

    Marov, Mikhail Ya

    2013-01-01

    This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.

  5. AGRICULTURAL COOPERATION IN RUSSIA: THE PROBLEM OF ORGANIZATION MODEL CHOICE

    Directory of Open Access Journals (Sweden)

    J. Nilsson

    2008-09-01

    Full Text Available In today's Russia many agricultural co-operatives are established from the top downwards. The national project "Development of Agroindustrial Complex" and other governmental programs initiate the formation of cooperative societies. These cooperatives are organized in accordance with the traditional cooperative model. Many of them do, however, not have any real business activities. The aim of this paper to investigate if traditional cooperatives (following principles such as collective ownership, one member one vote, equal treatment, and solidarity, etc. constitute the best organizational model for cooperatives societies under the present conditions in the Russian agriculture.

  6. Is the cluster risk model of parental adversities better than the cumulative risk model as an indicator of childhood physical abuse?: findings from two representative community surveys.

    Science.gov (United States)

    Fuller-Thomson, E; Sawyer, J-L

    2014-01-01

    Screening strategies for childhood physical abuse (CPA) need to be improved in order to identify those most at risk. This study uses two regionally representative community samples to examine whether a cluster or cumulative model of risk indicators (i.e. parental divorce, parental unemployment, and parental addictions) explains a larger proportion of the variation in CPA. Data were drawn from Statistics Canada's National Population Health Survey (1994-1995) and Canadian Community Health Survey 3.1 (2005). Response rates were greater than 80% in both samples. Each survey had approximately 13,000 respondents aged 18 and over who answered questions about the above adverse childhood experiences. A gradient was shown with similar outcomes in each data set. Only 3.4% of adults who experienced none of the three risk indicators reported they had been physically abused during childhood or adolescence. The prevalence of CPA was greater among those who experienced parental divorce alone (8.3%-10.7%), parental unemployment alone (8.9%-9.7%) or parental addictions alone (18.0%-19.5%). When all three risk indicators were present, the prevalence of CPA ranged from 36.0%-41.0% and the age-sex-race adjusted odds were greater than 15 times that of individuals with none of the three risk indicators. The cluster model explained a statistically significantly larger proportion of the variation than the cumulative model although the difference between the two models was modest. For the purposes of parsimony, the cumulative model may be the better alternative. Adults who were exposed to two or more childhood risk indicators were much more likely to report that they were physically abused during their childhood than those with only one or no risk factors. Medical professionals may use this information on cumulative risk factors to more effectively target screening for potential CPA. Future research should include prospective studies. © 2012 John Wiley & Sons Ltd.

  7. Fruit tree model for uptake of organic compounds from soil

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rasmussen, D.; Samsoe-Petersen, L.

    2003-01-01

    rences: 20 [ view related records ] Citation Map Abstract: Apples and other fruits are frequently cultivated in gardens and are part of our daily diet. Uptake of pollutants into apples may therefore contribute to the human daily intake of toxic substances. In current risk assessment of polluted...... soils, regressions or models are in use, which were not intended to be used for tree fruits. A simple model for uptake of neutral organic contaminants into fruits is developed. It considers xylem and phloem transport to fruits through the stem. The mass balance is solved for the steady......-state, and an example calculation is given. The Fruit Tree Model is compared to the empirical equation of Travis and Arms (T&A), and to results from fruits, collected in contaminated areas. For polar compounds, both T&A and the Fruit Tree Model predict bioconcentration factors fruit to soil (BCF, wet weight based...

  8. A curved multi-component aerosol hygroscopicity model framework: Part 2 – Including organic compounds

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2005-01-01

    Full Text Available This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5–6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly

  9. A curved multi-component aerosol hygroscopicity model framework: Part 2 Including organic compounds

    Science.gov (United States)

    Topping, D. O.; McFiggans, G. B.; Coe, H.

    2005-05-01

    This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5-6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water

  10. Modelling erosion and its interaction with soil organic carbon.

    Science.gov (United States)

    Oyesiku-Blakemore, Joseph; Verrot, Lucile; Geris, Josie; Zhang, Ganlin; Peng, Xinhua; Hallett, Paul; Smith, Jo

    2017-04-01

    Water driven soil erosion removes and relocates a significant quantity of soil organic carbon. In China the quantity of carbon removed from the soil through water erosion has been reported to be 180+/-80 Mt y-1 (Yue et al., 2011). Being able to effectively model the movement of such a large quantity of carbon is important for the assessment of soil quality and carbon storage in the region and further afield. A large selection of erosion models are available and much work has been done on evaluating the performance of these in developed countries (Merritt et al., 2006). Fewer studies have evaluated the application of these models on soils in developing countries. Here we evaluate and compare the performance of two of these models, WEPP (Laflen et al., 1997) and RUSLE (Renard et al., 1991), for simulations of soil erosion and deposition at the slope scale on a Chinese Red Soil under cultivation using measurements taken at the site. We also describe work to dynamically couple the movement of carbon presented in WEPP to a model of soil organic matter and nutrient turnover, ECOSSE (Smith et al., 2010). This aims to improve simulations of both erosion and carbon cycling by using the simulated rates of erosion to alter the distribution of soil carbon, the depth of soil and the clay content across the slopes, changing the simulated rate of carbon turnover. This, in turn, affects the soil carbon available to be eroded in the next timestep, so improving estimates of carbon erosion. We compare the simulations of this coupled modelling approach with those of the unaltered ECOSSE and WEPP models to determine the importance of coupling erosion and turnover models on the simulation of carbon losses at catchment scale.

  11. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach.

    Science.gov (United States)

    Khan, K; Roy, K

    2017-07-01

    In this study, externally validated quantitative structure-toxicity relationship (QSTR) models were developed for toxicity of cosmetic ingredients on three different ecotoxicologically relevant organisms, namely Pseudokirchneriella subcapitata, Daphnia magna and Pimephales promelas following the OECD guidelines. The final models were developed by partial least squares (PLS) regression technique, which is more robust than multiple linear regression. The obtained model for P. subcapitata shows that molecular size and complexity have significant impacts on the toxicity of cosmetics. In case of P. promelas and D. magna, we found that the largest contribution to the toxicity was shown by hydrophobicity and van der Waals surface area, respectively. All models were validated using both internal and test compounds employing multiple strategies. For each QSTR model, applicability domain studies were also performed using the "Distance to Model in X-space" method. A comparison was made with the ECOSAR predictions in order to prove the good predictive performances of our developed models. Finally, individual models were applied to predict toxicity for an external set of 596 personal care products having no experimental data for at least one of the endpoints, and the compounds were ranked based on a decreasing order of toxicity using a scaling approach.

  12. An Instructional Development Model for Global Organizations: The GOaL Model.

    Science.gov (United States)

    Hara, Noriko; Schwen, Thomas M.

    1999-01-01

    Presents an instructional development model, GOaL (Global Organization Localization), for use by global organizations. Topics include gaps in language, culture, and needs; decentralized processes; collaborative efforts; predetermined content; multiple perspectives; needs negotiation; learning within context; just-in-time training; and bilingual…

  13. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    Science.gov (United States)

    Simonsen, Adam Cohen

    All cells of living organisms are separated from their surroundings and organized internally by means of flexible lipid membranes. In fact, there is consensus that the minimal requirements for self-replicating life processes include the following three features: (1) information carriers (DNA, RNA), (2) a metabolic system, and (3) encapsulation in a container structure [1]. Therefore, encapsulation can be regarded as an essential part of life itself. In nature, membranes are highly diverse interfacial structures that compartmentalize cells [2]. While prokaryotic cells only have an outer plasma membrane and a less-well-developed internal membrane structure, eukaryotic cells have a number of internal membranes associated with the organelles and the nucleus. Many of these membrane structures, including the plasma membrane, are complex layered systems, but with the basic structure of a lipid bilayer. Biomembranes contain hundreds of different lipid species in addition to embedded or peripherally associated membrane proteins and connections to scaffolds such as the cytoskeleton. In vitro, lipid bilayers are spontaneously self-organized structures formed by a large group of amphiphilic lipid molecules in aqueous suspensions. Bilayer formation is driven by the entropic properties of the hydrogen bond network in water in combination with the amphiphilic nature of the lipids. The molecular shapes of the lipid constituents play a crucial role in bilayer formation, and only lipids with approximately cylindrical shapes are able to form extended bilayers. The bilayer structure of biomembranes was discovered by Gorter and Grendel in 1925 [3] using monolayer studies of lipid extracts from red blood cells. Later, a number of conceptual models were developed to rationalize the organization of lipids and proteins in biological membranes. One of the most celebrated is the fluid-mosaic model by Singer and Nicolson (1972) [4]. According to this model, the lipid bilayer component of

  14. Statistical properties of fluctuations of time series representing appearances of words in nationwide blog data and their applications: An example of modeling fluctuation scalings of nonstationary time series

    Science.gov (United States)

    Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako

    2016-11-01

    To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3 ×109 Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.

  15. Elaboration of technology organizational models of constructing high-rise buildings in plans of construction organization

    Science.gov (United States)

    Osipenkova, Irina; Simankina, Tatyana; Syrygina, Taisiia; Lukinov, Vitaliy

    2018-03-01

    This article represents features of the elaboration of technology organizational models of high-rise building construction in technology organizational documentation on the example of the plan of construction organization. Some examples of enhancing the effectiveness of high-rise building construction based on developments of several options of the organizational and technological plan are examined. Qualitative technology organizational documentation allows to increase the competitiveness of construction companies and provides prime cost of construction and assembly works reductions. Emphasis is placed on the necessity to comply with the principle of comprehensiveness of engineering, scientific and research works, development activities and scientific and technical support.

  16. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models.

    Science.gov (United States)

    Medeiros, Brian; Nuijens, Louise

    2016-05-31

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.

  17. Robust Multiscale Modelling Of Two-Phase Steels On Heterogeneous Hardware Infrastructures By Using Statistically Similar Representative Volume Element

    Directory of Open Access Journals (Sweden)

    Rauch Ł.

    2015-09-01

    Full Text Available The coupled finite element multiscale simulations (FE2 require costly numerical procedures in both macro and micro scales. Attempts to improve numerical efficiency are focused mainly on two areas of development, i.e. parallelization/distribution of numerical procedures and simplification of virtual material representation. One of the representatives of both mentioned areas is the idea of Statistically Similar Representative Volume Element (SSRVE. It aims at the reduction of the number of finite elements in micro scale as well as at parallelization of the calculations in micro scale which can be performed without barriers. The simplification of computational domain is realized by transformation of sophisticated images of material microstructure into artificially created simple objects being characterized by similar features as their original equivalents. In existing solutions for two-phase steels SSRVE is created on the basis of the analysis of shape coefficients of hard phase in real microstructure and searching for a representative simple structure with similar shape coefficients. Optimization techniques were used to solve this task. In the present paper local strains and stresses are added to the cost function in optimization. Various forms of the objective function composed of different elements were investigated and used in the optimization procedure for the creation of the final SSRVE. The results are compared as far as the efficiency of the procedure and uniqueness of the solution are considered. The best objective function composed of shape coefficients, as well as of strains and stresses, was proposed. Examples of SSRVEs determined for the investigated two-phase steel using that objective function are demonstrated in the paper. Each step of SSRVE creation is investigated from computational efficiency point of view. The proposition of implementation of the whole computational procedure on modern High Performance Computing (HPC

  18. OBJECT ORIENTED MODELLING, A MODELLING METHOD OF AN ECONOMIC ORGANIZATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    TĂNĂSESCU ANA

    2014-05-01

    Full Text Available Now, most economic organizations use different information systems types in order to facilitate their activity. There are different methodologies, methods and techniques that can be used to design information systems. In this paper, I propose to present the advantages of using the object oriented modelling at the information system design of an economic organization. Thus, I have modelled the activity of a photo studio, using Visual Paradigm for UML as a modelling tool. For this purpose, I have identified the use cases for the analyzed system and I have presented the use case diagram. I have, also, realized the system static and dynamic modelling, through the most known UML diagrams.

  19. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  20. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  1. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    Science.gov (United States)

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  2. Zebrafish as a Model Organism for the Development of Drugs for Skin Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Bootorabi

    2017-07-01

    Full Text Available Skin cancer, which includes melanoma and squamous cell carcinoma, represents the most common type of cutaneous malignancy worldwide, and its incidence is expected to rise in the near future. This condition derives from acquired genetic dysregulation of signaling pathways involved in the proliferation and apoptosis of skin cells. The development of animal models has allowed a better understanding of these pathomechanisms, with the possibility of carrying out toxicological screening and drug development. In particular, the zebrafish (Danio rerio has been established as one of the most important model organisms for cancer research. This model is particularly suitable for live cell imaging and high-throughput drug screening in a large-scale fashion. Thanks to the recent advances in genome editing, such as the clustered regularly-interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9 methodologies, the mechanisms associated with cancer development and progression, as well as drug resistance can be investigated and comprehended. With these unique tools, the zebrafish represents a powerful platform for skin cancer research in the development of target therapies. Here, we will review the advantages of using the zebrafish model for drug discovery and toxicological and phenotypical screening. We will focus in detail on the most recent progress in the field of zebrafish model generation for the study of melanoma and squamous cell carcinoma (SCC, including cancer cell injection and transgenic animal development. Moreover, we will report the latest compounds and small molecules under investigation in melanoma zebrafish models.

  3. Secondary organic aerosol in the global aerosol - chemical transport model Oslo CTM2

    Science.gov (United States)

    Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A.

    2007-11-01

    The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr-1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA) values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA) is the dominant OA component) than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%-60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes. Reducing the yield

  4. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  5. Genome Editing and Its Applications in Model Organisms

    Directory of Open Access Journals (Sweden)

    Dongyuan Ma

    2015-12-01

    Full Text Available Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and the clustered regularly-interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas, has revolutionized genome editing. These approaches can be used to develop potential therapeutic strategies to effectively treat heritable diseases. In the last few years, substantial progress has been made in CRISPR/Cas technology, including technical improvements and wide application in many model systems. This review describes recent advancements in genome editing with a particular focus on CRISPR/Cas, covering the underlying principles, technological optimization, and its application in zebrafish and other model organisms, disease modeling, and gene therapy used for personalized medicine.

  6. Genome Editing and Its Applications in Model Organisms.

    Science.gov (United States)

    Ma, Dongyuan; Liu, Feng

    2015-12-01

    Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas), has revolutionized genome editing. These approaches can be used to develop potential therapeutic strategies to effectively treat heritable diseases. In the last few years, substantial progress has been made in CRISPR/Cas technology, including technical improvements and wide application in many model systems. This review describes recent advancements in genome editing with a particular focus on CRISPR/Cas, covering the underlying principles, technological optimization, and its application in zebrafish and other model organisms, disease modeling, and gene therapy used for personalized medicine. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  7. Developing an Enzyme Mediated Soil Organic Carbon Decomposition Model

    Science.gov (United States)

    Mayes, M. A.; Post, W. M.; Wang, G.; Jagadamma, S.; Steinweg, J. M.; Schadt, C. W.

    2012-12-01

    We developed the Microbial-ENzyme-mediated Decomposition (MEND) model in order to mechanistically model the decomposition of soil organic carbon (C). This presentation is an overview of the concept and development of the model and of the design of complementary lab-scale experiments. The model divides soil C into five pools of particulate, mineral-associated, dissolved, microbial, and enzyme organic C (Wang et al. 2012). There are three input types - cellulose, lignin, and dissolved C. Decomposition is mediated via microbial extracellular enzymes using the Michaelis-Menten equation, resulting in the production of a common pool of dissolved organic C. Parameters for the Michaelis-Menten equation are obtained through a literature review (Wang and Post, 2012a). The dissolved C is taken up by microbial biomass and proportioned according to microbial maintenance and growth, which were recalculated according to Wang and Post (2012b). The model allows dissolved C to undergo adsorption and desorption reactions with the mineral-associated C, which was also parameterized based upon a literature review and complementary laboratory experiments. In the lab, four 14C-labeled substrates (cellulose, fatty acid, glucose, and lignin-like) were incubated with either the particulate C pool, the mineral-associated C pool, or to bulk soils. The rate of decomposition was measured via the production of 14CO2 over time, along with incorporation into microbial biomass, production of dissolved C, and estimation of sorbed C. We performed steady-state and dynamic simulations and sensitivity analyses under temperature increases of 1-5°C for a period of 100 y. Simulations indicated an initial decrease in soil organic C consisting of both cellulose and lignin pools. Over longer time intervals (> 6 y), however, a shrinking microbial population, a concomitant decrease in enzyme production, and a decrease in microbial carbon use efficiency together decreased CO2 production and resulted in greater

  8. Application of the mathematical modelling and human phantoms for calculation of the organ doses

    International Nuclear Information System (INIS)

    Kluson, J.; Cechak, T.

    2005-01-01

    Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)

  9. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels.

    Science.gov (United States)

    Karlsson, Jenny; Ytreberg, Erik; Eklund, Britta

    2010-03-01

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per thousand artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    DEFF Research Database (Denmark)

    Sibly, RS; Grimm, Volker; Johnston, Alice S.A.

    2013-01-01

    Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge...... of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction....... If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical...

  11. Development of the Croatian model of organ donation and transplantation

    Science.gov (United States)

    Živčić-Ćosić, Stela; Bušić, Mirela; Župan, Željko; Pelčić, Gordana; Anušić Juričić, Martina; Jurčić, Željka; Ivanovski, Mladen; Rački, Sanjin

    2013-01-01

    During the past ten years, the efforts to improve and organize the national transplantation system in Croatia have resulted in a steadily growing donor rate, which reached its highest level in 2011, with 33.6 utilized donors per million population (p.m.p.). Nowadays, Croatia is one of the leading countries in the world according to deceased donation and transplantation rates. Between 2008 and 2011, the waiting list for kidney transplantation decreased by 37.2% (from 430 to 270 persons waiting for a transplant) and the median waiting time decreased from 46 to 24 months. The Croatian model has been internationally recognized as successful and there are plans for its implementation in other countries. We analyzed the key factors that contributed to the development of this successful model for organ donation and transplantation. These are primarily the appointment of hospital and national transplant coordinators, implementation of a new financial model with donor hospital reimbursement, public awareness campaign, international cooperation, adoption of new legislation, and implementation of a donor quality assurance program. The selection of key factors is based on the authors' opinions; we are open for further discussion and propose systematic research into the issue. PMID:23444248

  12. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    Science.gov (United States)

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of

  13. Assessing the fit of the Dysphoric Arousal model across two nationally representative epidemiological surveys: The Australian NSMHWB and the United States NESARC

    DEFF Research Database (Denmark)

    Armour, C.; Carragher, N.; Elhai, J. D.

    2013-01-01

    Since the initial inclusion of PTSD in the DSM nomenclature, PTSD symptomatology has been distributed across three symptom clusters. However, a wealth of empirical research has concluded that PTSD's latent structure is best represented by one of two four-factor models: Numbing or Dysphoria. Recen...

  14. Modeling of Electronic Properties in Organic Semiconductor Device Structures

    Science.gov (United States)

    Chang, Hsiu-Chuang

    Organic semiconductors (OSCs) have recently become viable for a wide range of electronic devices, some of which have already been commercialized. With the mechanical flexibility of organic materials and promising performance of organic field effect transistors (OFETs) and organic bulk heterojunction devices, OSCs have been demonstrated in applications such as radio frequency identification tags, flexible displays, and photovoltaic cells. Transient phenomena play decisive roles in the performance of electronic devices and OFETs in particular. The dynamics of the establishment and depletion of the conducting channel in OFETs are investigated theoretically. The device structures explored resemble typical organic thin-film transistors with one of the channel contacts removed. By calculating the displacement current associated with charging and discharging of the channel in these capacitors, transient effects on the carrier transport in OSCs may be studied. In terms of the relevant models it is shown that the non-linearity of the process plays a key role. The non-linearity arises in the simplest case from the fact that channel resistance varies during the charging and discharging phases. Traps can be introduced into the models and their effects examined in some detail. When carriers are injected into the device, a conducting channel is established with traps that are initially empty. Gradual filling of the traps then modifies the transport characteristics of the injected charge carriers. In contrast, dc measurements as they are typically performed to characterize the transport properties of organic semiconductor channels investigate a steady state with traps partially filled. Numerical and approximate analytical models of the formation of the conducting channel and the resulting displacement currents are presented. For the process of transient carrier extraction, it is shown that if the channel capacitance is partially or completely discharged through the channel

  15. What observations of atmospheric CO2 are needed to constrain processes represented in terrestrial carbon cycle models?

    Science.gov (United States)

    Collatz, G. J.; Kawa, S. R.; Liu, Y.; Ivanoff, A.

    2012-12-01

    Terrestrial net carbon fluxes play a dominant role in the seasonality, interannual variability and long term accumulation of CO2 in the atmosphere. The expansion of atmospheric CO2 measurements, including those from satellite based observations, should provide strong constraints on process models that attempt to explain these observed variabilities. Here we evaluate the ability of the current surface co2 observation network to distinguish between different model formulations and we identify the locations and timing of CO2 observations needed to resolve important carbon cycle processes. The standard CASA-GFEDv3 terrestrial carbon flux model is driven by NDVI and MERRA meteorology, and CO2 is distributed in the atmosphere using transport from MERRA. The standard model is then modified to include lags in the seasonal cycle of gross fluxes, different magnitudes of gross fluxes, imposition of a global 2 PgC/yr carbon sink, and the absence of fire emissions. Comparisons of the predicted CO2 mixing ratios with observations show that the standard model does a good job at capturing the daily variability and seasonal cycles but not the observed interannual variability. Lagged gross fluxes and increased magnitude of the gross fluxes have large impacts on the CO2 seasonal cycle while the imposed net carbon sink is difficult to discern. Global fires are not detectible in the current surface observations network. Maps of modeled surface and column CO2 mixing ratio differences help to identify where, when, and at what precision and accuracy observations need to be made in order to constrain modeled processes.

  16. A metasystem of framework model organisms to study emergence of new host-microbe adaptations.

    Science.gov (United States)

    Gopalan, Suresh; Ausubel, Frederick M

    2008-01-01

    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such "maladaptations". The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment.

  17. Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence

    Science.gov (United States)

    Biswal, Debasmita; Kusalik, Peter G.

    2017-07-01

    Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.

  18. Organic aerosol spatial/temporal patterns: perspectives of measurements and model.

    Science.gov (United States)

    Pun, Betty K; Seigneur, Christian

    2008-10-01

    Ambient measurements from SEARCH and model results from CMAQ-MADRID are analyzed side by side for the southeastern United States to understand the strengths and weaknesses of an air quality model in reproducing key spatial and temporal patterns related to organic aerosol (OA), with inferences regarding secondary organic aerosol (SOA). The model predicts a larger difference in OA concentrations between an urban (JST) and a rural site (YRK) than indicated by measurements. Modeled OA concentrations at JST and YRK are more strongly correlated than measurements. On average, models may understate urban OA emissions, while overstating urban SOA production; measurements indicate that SOA production takes place on the regional scale. Modeled diurnal fluctuations for OA are stronger than measured, due partially to overestimations of the temperature dependence parameters (deltaH(vap)) for SOA in the model. Urban-rural differences in the composition of SOA, inferred from the variations of estimated deltaH(vap), are not properly captured by the model, which does not represent multiple generations of SOA or varied reaction pathways as a function of chemical regimes. Model results are hampered by day-of-the-week and diurnal allocation issues related to EC and OA emissions. Top quintile (20%) afternoon OA concentrations are observed in both warm and cold seasons at the urban site. The frequency of high OA in the cold season is overstated in the model. The model predicts the warm vs cold season frequency of elevated OA episodes better at YRK than at JST, suggesting that regional emissions, chemistry, and transport are better simulated than urban processes.

  19. A Revised Iranian Model of Organ Donation as an Answer to the Current Organ Shortage Crisis.

    Science.gov (United States)

    Hamidian Jahromi, Alireza; Fry-Revere, Sigrid; Bastani, Bahar

    2015-09-01

    Kidney transplantation has become the treatment of choice for patients with end-stage renal disease. Six decades of success in the field of transplantation have made it possible to save thousands of lives every year. Unfortunately, in recent years success has been overshadowed by an ever-growing shortage of organs. In the United States, there are currently more than 100 000 patients waiting for kidneys. However, the supply of kidneys (combined cadaveric and live donations) has stagnated around 17 000 per year. The ever-widening gap between demand and supply has resulted in an illegal black market and unethical transplant tourism of global proportions. While we believe there is much room to improve the Iranian model of regulated incentivized live kidney donation, with some significant revisions, the Iranian Model could serve as an example for how other countries could make significant strides to lessening their own organ shortage crises.

  20. Applying Physically Representative Watershed Modelling to Assess Peak and Low Flow Response to Timber Harvest: Application for Watershed Assessments

    Science.gov (United States)

    MacDonald, R. J.; Anderson, A.; Silins, U.; Craig, J. R.

    2014-12-01

    Forest harvesting, insects, disease, wildfire, and other disturbances can combine with climate change to cause unknown changes to the amount and timing of streamflow from critical forested watersheds. Southern Alberta forest and alpine areas provide downstream water supply for agriculture and water utilities that supply approximately two thirds of the Alberta population. This project uses datasets from intensely monitored study watersheds and hydrological model platforms to extend our understanding of how disturbances and climate change may impact various aspects of the streamflow regime that are of importance to downstream users. The objectives are 1) to use the model output of watershed response to disturbances to inform assessments of forested watersheds in the region, and 2) to investigate the use of a new flexible modelling platform as a tool for detailed watershed assessments and hypothesis testing. Here we applied the RAVEN hydrological modelling framework to quantify changes in key hydrological processes driving peak and low flows in a headwater catchment along the eastern slopes of the Canadian Rocky Mountains. The model was applied to simulate the period from 2006 to 2011 using data from the Star Creek watershed in southwestern Alberta. The representation of relevant hydrological processes was verified using snow survey, meteorological, and vegetation data collected through the Southern Rockies Watershed Project. Timber harvest scenarios were developed to estimate the effects of cut levels ranging from 20 to 100% over a range of elevations, slopes, and aspects. We quantified changes in the timing and magnitude of low flow and high flow events during the 2006 to 2011 period. Future work will assess changes in the probability of low and high flow events using a long-term meteorological record. This modelling framework enables relevant processes at the watershed scale to be accounted in a physically robust and computational efficient manner. Hydrologic

  1. Modeling the adsorption of weak organic acids on goethite : the ligand and charge distribution model

    NARCIS (Netherlands)

    Filius, J.D.

    2001-01-01

    A detailed study is presented in which the CD-MUSIC modeling approach is used in a new modeling approach that can describe the binding of large organic molecules by metal (hydr)oxides taking the full speciation of the adsorbed molecule into account. Batch equilibration experiments were

  2. Organic polyaromatic hydrocarbons as sensitizing model dyes for semiconductor nanoparticles.

    Science.gov (United States)

    Zhang, Yongyi; Galoppini, Elena

    2010-04-26

    The study of interfacial charge-transfer processes (sensitization) of a dye bound to large-bandgap nanostructured metal oxide semiconductors, including TiO(2), ZnO, and SnO(2), is continuing to attract interest in various areas of renewable energy, especially for the development of dye-sensitized solar cells (DSSCs). The scope of this Review is to describe how selected model sensitizers prepared from organic polyaromatic hydrocarbons have been used over the past 15 years to elucidate, through a variety of techniques, fundamental aspects of heterogeneous charge transfer at the surface of a semiconductor. This Review does not focus on the most recent or efficient dyes, but rather on how model dyes prepared from aromatic hydrocarbons have been used, over time, in key fundamental studies of heterogeneous charge transfer. In particular, we describe model chromophores prepared from anthracene, pyrene, perylene, and azulene. As the level of complexity of the model dye-bridge-anchor group compounds has increased, the understanding of some aspects of very complex charge transfer events has improved. The knowledge acquired from the study of the described model dyes is of importance not only for DSSC development but also to other fields of science for which electronic processes at the molecule/semiconductor interface are relevant.

  3. LSOT: A Lightweight Self-Organized Trust Model in VANETs

    Directory of Open Access Journals (Sweden)

    Zhiquan Liu

    2016-01-01

    Full Text Available With the advances in automobile industry and wireless communication technology, Vehicular Ad hoc Networks (VANETs have attracted the attention of a large number of researchers. Trust management plays an important role in VANETs. However, it is still at the preliminary stage and the existing trust models cannot entirely conform to the characteristics of VANETs. This work proposes a novel Lightweight Self-Organized Trust (LSOT model which contains trust certificate-based and recommendation-based trust evaluations. Both the supernodes and trusted third parties are not needed in our model. In addition, we comprehensively consider three factor weights to ease the collusion attack in trust certificate-based trust evaluation, and we utilize the testing interaction method to build and maintain the trust network and propose a maximum local trust (MLT algorithm to identify trustworthy recommenders in recommendation-based trust evaluation. Furthermore, a fully distributed VANET scenario is deployed based on the famous Advogato dataset and a series of simulations and analysis are conducted. The results illustrate that our LSOT model significantly outperforms the excellent experience-based trust (EBT and Lightweight Cross-domain Trust (LCT models in terms of evaluation performance and robustness against the collusion attack.

  4. Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener in a representative sample of health plan members

    OpenAIRE

    Kessler, Ronald C.; Adler, Lenard; Gruber, Michael J.; Sarawate, Chaitanya A.; Spencer, Thomas; Van Brunt, David L.

    2007-01-01

    The validity of the 6-question World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener was assessed in a sample of subscribers to a large health plan in the US. A convenience sub-sample of 668 subscribers was administered the ASRS Screener twice to assess test-retest reliability and then a third time in conjunction with a clinical interviewer for DSM-IV adult ADHD. The data were weighted to adjust for discrepancies between the sample and the population on socio-demographics and...

  5. Minimal agent based model for financial markets I. Origin and self-organization of stylized facts

    Science.gov (United States)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We introduce a minimal agent based model for financial markets to understand the nature and self-organization of the stylized facts. The model is minimal in the sense that we try to identify the essential ingredients to reproduce the most important deviations of price time series from a random walk behavior. We focus on four essential ingredients: fundamentalist agents which tend to stabilize the market; chartist agents which induce destabilization; analysis of price behavior for the two strategies; herding behavior which governs the possibility of changing strategy. Bubbles and crashes correspond to situations dominated by chartists, while fundamentalists provide a long time stability (on average). The stylized facts are shown to correspond to an intermittent behavior which occurs only for a finite value of the number of agents N. Therefore they correspond to finite size effects which, however, can occur at different time scales. We propose a new mechanism for the self-organization of this state which is linked to the existence of a threshold for the agents to be active or not active. The feedback between price fluctuations and number of active agents represents a crucial element for this state of self-organized intermittency. The model can be easily generalized to consider more realistic variants.

  6. Model investigation of NO3 secondary organic aerosol (SOA) source and heterogeneous organic aerosol (OA) sink in the western United States

    Science.gov (United States)

    Fry, J. L.; Sackinger, K.

    2012-09-01

    The relative importance of NO3-initiated source and heterogeneous sink of organic aerosol in the western United States is investigated using the WRF/Chem regional weather and chemistry model. The model is run for the four individual months, representing the four seasons, of January, May, August, and October, to produce hourly spatial maps of surface concentrations of NO3, organic aerosol (OA), and reactive organic gases (ROG, a sum of alkene species tracked in the lumped chemical mechanism employed). These "baseline" simulations are used in conjunction with literature data on secondary organic aerosol (SOA) mass yields, average organic aerosol composition, and reactive uptake coefficients for NO3 on organic surfaces to predict SOA source and OA heterogeneous loss rates due to reactions initiated by NO3. We find both source and sink rates maximized downwind of urban centers, therefore with a varying location that depends on wind direction. Both source and sink terms are maximum in summer, and SOA source dominates over OA loss by approximately three orders of magnitude, with large day-to-day variability. The NO3 source of SOA (peak production rates of 0.4-3.0 μg kg-1 h-1) is found to be significantly larger than the heterogeneous sink of OA via NO3 surface reactions (peak loss rates of 0.5-8 × 10-4 μg kg-1 h-1).

  7. Model investigation of NO3 secondary organic aerosol (SOA source and heterogeneous organic aerosol (OA sink in the western United States

    Directory of Open Access Journals (Sweden)

    K. Sackinger

    2012-09-01

    Full Text Available The relative importance of NO3-initiated source and heterogeneous sink of organic aerosol in the western United States is investigated using the WRF/Chem regional weather and chemistry model. The model is run for the four individual months, representing the four seasons, of January, May, August, and October, to produce hourly spatial maps of surface concentrations of NO3, organic aerosol (OA, and reactive organic gases (ROG, a sum of alkene species tracked in the lumped chemical mechanism employed. These "baseline" simulations are used in conjunction with literature data on secondary organic aerosol (SOA mass yields, average organic aerosol composition, and reactive uptake coefficients for NO3 on organic surfaces to predict SOA source and OA heterogeneous loss rates due to reactions initiated by NO3. We find both source and sink rates maximized downwind of urban centers, therefore with a varying location that depends on wind direction. Both source and sink terms are maximum in summer, and SOA source dominates over OA loss by approximately three orders of magnitude, with large day-to-day variability. The NO3 source of SOA (peak production rates of 0.4–3.0 μg kg−1 h−1 is found to be significantly larger than the heterogeneous sink of OA via NO3 surface reactions (peak loss rates of 0.5–8 × 10−4 μg kg−1 h−1.

  8. Modeling financial markets by self-organized criticality

    Science.gov (United States)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea

    2015-10-01

    We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process. We introduce in the community also a variable number of random traders in order to study their possible beneficial role in stabilizing the market, as found in other studies. Finally, we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of a partial reduction of information.

  9. Models of charge pair generation in organic solar cells.

    Science.gov (United States)

    Few, Sheridan; Frost, Jarvist M; Nelson, Jenny

    2015-01-28

    Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency.

  10. Self-Organized Criticality Theory Model of Thermal Sandpile

    International Nuclear Information System (INIS)

    Peng Xiao-Dong; Qu Hong-Peng; Xu Jian-Qiang; Han Zui-Jiao

    2015-01-01

    A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics. (paper)

  11. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  12. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels

    International Nuclear Information System (INIS)

    Karlsson, Jenny; Ytreberg, Erik; Eklund, Britta

    2010-01-01

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per mille artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. - Leachate from a biocide-free anti-fouling paint for leisure boat use was more toxic than leachates from ship paints.

  13. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  14. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.

    2004-01-01

    , it is possible to highlight some dynamic effects and experimentally simulate the structural behavior of a windmill in two dimensions (2D-model). Only lateral displacement of the rotor in the horizontal direction is taken into account. Gyroscopic effect due to rotor angular vibrations is eliminated in the test......This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig...... linear, non-linear and time-depending terms in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher blade mode shapes are considered in the analysis, the equations of motion of the rotor-blades system are still general enough for the purpose of the work...

  15. Developing An Extended Theory Of Planned Behavior Model To Investigate Consumers Consumption Behavior Toward Organic Food A Case Study In Thailand

    Directory of Open Access Journals (Sweden)

    Kamonthip Maichum

    2017-01-01

    Full Text Available Organic foods are gaining popularity around the world and consumers of organic foods are on the rise. However information on the consumer behavior towards purchasing organic foods in developing countries such as Thailand is lacking. In this study we develop an extended theory of planned behavior TPB research model that incorporates organic knowledge to investigate consumers consumption intention and behavior towards organic food. We derived and examined the model through structural equation modeling SEM on a sample of 412 respondents in Thailand representing 82.40 of the samples that were investigated. Our findings indicated that consumer attitude and perceived behavioral control significantly predicts consumption intention whereas subjective norm does not. Hence consumption intention has a positive influence on organic food consumption behavior. Furthermore our results suggest that TPB model mediates the relationship between organic knowledge and consumption behavior.

  16. Short communication: Genetic lag represents commercial herd genetic merit more accurately than the 4-path selection model.

    Science.gov (United States)

    Dechow, C D; Rogers, G W

    2018-05-01

    Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease

    Directory of Open Access Journals (Sweden)

    Layla T. Ghaffari

    2018-02-01

    Full Text Available Neurological diseases, including dementias such as Alzheimer's disease (AD and fronto-temporal dementia (FTD and degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS, are responsible for an increasing fraction of worldwide fatalities. Researching these heterogeneous diseases requires models that endogenously express the full array of genetic and epigenetic factors which may influence disease development in both familial and sporadic patients. Here, we discuss the two primary methods of developing patient-derived neurons and glia to model neurodegenerative disease: reprogramming somatic cells into induced pluripotent stem cells (iPSCs, which are differentiated into neurons or glial cells, or directly converting (DC somatic cells into neurons (iNeurons or glial cells. Distinct differentiation techniques for both models result in a variety of neuronal and glial cell types, which have been successful in displaying unique hallmarks of a variety of neurological diseases. Yield, length of differentiation, ease of genetic manipulation, expression of cell-specific markers, and recapitulation of disease pathogenesis are presented as determining factors in how these methods may be used separately or together to ascertain mechanisms of disease and identify therapeutics for distinct patient populations or for specific individuals in personalized medicine projects.

  18. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    Science.gov (United States)

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  19. Constraining Genome-Scale Models to Represent the Bow Tie Structure of Metabolism for 13C Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Tyler W. H. Backman

    2018-01-01

    Full Text Available Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13 C Metabolic Flux Analysis ( 13 C MFA and Two-Scale 13 C Metabolic Flux Analysis (2S- 13 C MFA are two techniques used to determine such fluxes. Both operate on the simplifying approximation that metabolic flux from peripheral metabolism into central “core” carbon metabolism is minimal, and can be omitted when modeling isotopic labeling in core metabolism. The validity of this “two-scale” or “bow tie” approximation is supported both by the ability to accurately model experimental isotopic labeling data, and by experimentally verified metabolic engineering predictions using these methods. However, the boundaries of core metabolism that satisfy this approximation can vary across species, and across cell culture conditions. Here, we present a set of algorithms that (1 systematically calculate flux bounds for any specified “core” of a genome-scale model so as to satisfy the bow tie approximation and (2 automatically identify an updated set of core reactions that can satisfy this approximation more efficiently. First, we leverage linear programming to simultaneously identify the lowest fluxes from peripheral metabolism into core metabolism compatible with the observed growth rate and extracellular metabolite exchange fluxes. Second, we use Simulated Annealing to identify an updated set of core reactions that allow for a minimum of fluxes into core metabolism to satisfy these experimental constraints. Together, these methods accelerate and automate the identification of a biologically reasonable set of core reactions for use with 13 C MFA or 2S- 13 C MFA, as well as provide for a substantially lower set of flux bounds for fluxes into the core as compared with previous methods. We provide an open source Python implementation of these algorithms at https://github.com/JBEI/limitfluxtocore.

  20. Modelling of the Annual Mean Urban Heat Island Pattern for Planning of Representative Urban Climate Station Network

    OpenAIRE

    Unger, János; Savić, Stevan; Gál, Tamás

    2011-01-01

    The spatial distribution of the annual mean urban heat island (UHI) intensity pattern was analysed for the medium-sized city Novi Sad, Serbia, located on the low and flat Great Hungarian Plain. The UHI pattern was determined by an empirical modelling method developed by (Balázs et al. 2009). This method was based on datasets from urban areas of Szeged and Debrecen (Hungary). The urban study area in Novi Sad (60 km2) was established as a grid network of 240 cells (0.5 km ×0.5 km). A Landsat sa...

  1. Advanced Mechanistic 3D Spatial Modeling and Analysis Methods to Accurately Represent Nuclear Facility External Event Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Sezen, Halil [The Ohio State Univ., Columbus, OH (United States). Dept. of Civil, Environmental and Geodetic Engineering; Aldemir, Tunc [The Ohio State Univ., Columbus, OH (United States). College of Engineering, Nuclear Engineering Program, Dept. of Mechanical and Aerospace Engineering; Denning, R. [The Ohio State Univ., Columbus, OH (United States); Vaidya, N. [Rizzo Associates, Pittsburgh, PA (United States)

    2017-12-29

    Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.

  2. The structure of the first representative of Pfam family PF09836 reveals a two-domain organization and suggests involvement in transcriptional regulation

    International Nuclear Information System (INIS)

    Das, Debanu; Grishin, Nick V.; Kumar, Abhinav; Carlton, Dennis; Bakolitsa, Constantina; Miller, Mitchell D.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Burra, Prasad; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grzechnik, Anna; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of the NGO1945 gene product from N. gonorrhoeae (UniProt Q5F5IO) reveals that the N-terminal domain assigned as a domain of unknown function (DUF2063) is likely to bind DNA and that the protein may be involved in transcriptional regulation. Proteins with the DUF2063 domain constitute a new Pfam family, PF09836. The crystal structure of a member of this family, NGO1945 from Neisseria gonorrhoeae, has been determined and reveals that the N-terminal DUF2063 domain is likely to be a DNA-binding domain. In conjunction with the rest of the protein, NGO1945 is likely to be involved in transcriptional regulation, which is consistent with genomic neighborhood analysis. Of the 216 currently known proteins that contain a DUF2063 domain, the most significant sequence homologs of NGO1945 (∼40–99% sequence identity) are from various Neisseria and Haemophilus species. As these are important human pathogens, NGO1945 represents an interesting candidate for further exploration via biochemical studies and possible therapeutic intervention

  3. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    Science.gov (United States)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2015-01-01

    comparison to the previous model version, when both versions are compared to our database of experimentally determined activity coefficients and related thermodynamic data. When comparing the previous and new AIOMFAC model parameterisations to the subsets of experimental data with all temperatures below 274 K or all temperatures above 322 K (i.e. outside a 25 K margin of the reference temperature of 298 K), applying the new parameterisation leads to 37% improvement in each of the two temperature ranges considered. The new parameterisation of AIOMFAC agrees well with a large number of experimental data sets. Larger model-measurement discrepancies were found particularly for some of the systems containing multi-functional organic compounds. The affected systems were typically also poorly represented at room temperature and further improvements will be necessary to achieve better performance of AIOMFAC in these cases (assuming the experimental data are reliable). The performance of the AIOMFAC parameterisation is typically better for systems containing relatively small organic compounds and larger deviations may occur in mixtures where molecules of high structural complexity such as highly oxygenated compounds or molecules of high molecular mass (e.g. oligomers) prevail. Nevertheless, the new parameterisation enables the calculation of activity coefficients for a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere.

  4. Modeling Soil Organic Carbon Variation Along Climatic and Topographic Trajectories in the Central Andes

    Science.gov (United States)

    Gavilan, C.; Grunwald, S.; Quiroz, R.; Zhu, L.

    2015-12-01

    The Andes represent the largest and highest mountain range in the tropics. Geological and climatic differentiation favored landscape and soil diversity, resulting in ecosystems adapted to very different climatic patterns. Although several studies support the fact that the Andes are a vast sink of soil organic carbon (SOC) only few have quantified this variable in situ. Estimating the spatial distribution of SOC stocks in data-poor and/or poorly accessible areas, like the Andean region, is challenging due to the lack of recent soil data at high spatial resolution and the wide range of coexistent ecosystems. Thus, the sampling strategy is vital in order to ensure the whole range of environmental covariates (EC) controlling SOC dynamics is represented. This approach allows grasping the variability of the area, which leads to more efficient statistical estimates and improves the modeling process. The objectives of this study were to i) characterize and model the spatial distribution of SOC stocks in the Central Andean region using soil-landscape modeling techniques, and to ii) validate and evaluate the model for predicting SOC content in the area. For that purpose, three representative study areas were identified and a suite of variables including elevation, mean annual temperature, annual precipitation and Normalized Difference Vegetation Index (NDVI), among others, was selected as EC. A stratified random sampling (namely conditioned Latin Hypercube) was implemented and a total of 400 sampling locations were identified. At all sites, four composite topsoil samples (0-30 cm) were collected within a 2 m radius. SOC content was measured using dry combustion and SOC stocks were estimated using bulk density measurements. Regression Kriging was used to map the spatial variation of SOC stocks. The accuracy, fit and bias of SOC models was assessed using a rigorous validation assessment. This study produced the first comprehensive, geospatial SOC stock assessment in this

  5. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    Science.gov (United States)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  6. Activity-specific pathways among duration of organized activity involvement, social support, and adolescent well-being: Findings from a nationally representative sample.

    Science.gov (United States)

    Oosterhoff, Benjamin; Kaplow, Julie B; Wray-Lake, Laura; Gallagher, Katherine

    2017-10-01

    Using data from N = 10,148 American youth (M age  = 15.18) who participated in the National Comorbidity Survey Adolescent Supplement, we tested whether duration of involvement in specific organized activities was associated with different sources of social support, and whether these links explained the health-related benefits affiliated with participation. Duration of involvement in certain activities was differentially associated with support from peers, teachers, and other adults, and many of these links partially mediated associations between involvement and well-being. Specifically, greater duration of sports involvement was indirectly associated with higher self-esteem and greater physical activity through greater adult support. Greater duration of club involvement was indirectly associated with greater physical activity through higher adult support and greater duration of music involvement was indirectly associated with lower substance use and greater self-esteem through greater teacher support. Prolonged engagement in specific activities may cultivate certain types of supportive relationships, which may promote adolescent well-being. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  7. Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener in a representative sample of health plan members.

    Science.gov (United States)

    Kessler, Ronald C; Adler, Lenard A; Gruber, Michael J; Sarawate, Chaitanya A; Spencer, Thomas; Van Brunt, David L

    2007-01-01

    The validity of the six-question World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener was assessed in a sample of subscribers to a large health plan in the US. A convenience subsample of 668 subscribers was administered the ASRS Screener twice to assess test-retest reliability and then a third time in conjunction with a clinical interviewer for DSM-IV adult ADHD. The data were weighted to adjust for discrepancies between the sample and the population on socio-demographics and past medical claims. Internal consistency reliability of the continuous ASRS Screener was in the range 0.63-0.72 and test-retest reliability (Pearson correlations) in the range 0.58-0.77. A four-category version The ASRS Screener had strong concordance with clinician diagnoses, with an area under the receiver operating characteristic curve (AUC) of 0.90. The brevity and ability to discriminate DSM-IV cases from non-cases make the six-question ASRS Screener attractive for use both in community epidemiological surveys and in clinical outreach and case-finding initiatives. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors.

    Directory of Open Access Journals (Sweden)

    Andrea Sottoriva

    2011-05-01

    Full Text Available The cancer stem cell (CSC concept is a highly debated topic in cancer research. While experimental evidence in favor of the cancer stem cell theory is apparently abundant, the results are often criticized as being difficult to interpret. An important reason for this is that most experimental data that support this model rely on transplantation studies. In this study we use a novel cellular Potts model to elucidate the dynamics of established malignancies that are driven by a small subset of CSCs. Our results demonstrate that epigenetic mutations that occur during mitosis display highly altered dynamics in CSC-driven malignancies compared to a classical, non-hierarchical model of growth. In particular, the heterogeneity observed in CSC-driven tumors is considerably higher. We speculate that this feature could be used in combination with epigenetic (methylation sequencing studies of human malignancies to prove or refute the CSC hypothesis in established tumors without the need for transplantation. Moreover our tumor growth simulations indicate that CSC-driven tumors display evolutionary features that can be considered beneficial during tumor progression. Besides an increased heterogeneity they also exhibit properties that allow the escape of clones from local fitness peaks. This leads to more aggressive phenotypes in the long run and makes the neoplasm more adaptable to stringent selective forces such as cancer treatment. Indeed when therapy is applied the clone landscape of the regrown tumor is more aggressive with respect to the primary tumor, whereas the classical model demonstrated similar patterns before and after therapy. Understanding these often counter-intuitive fundamental properties of (non-hierarchically organized malignancies is a crucial step in validating the CSC concept as well as providing insight into the therapeutical consequences of this model.

  9. Nephrology around Europe: organization models and management strategies: Spain.

    Science.gov (United States)

    de Francisco, Angel L M; Piñera, Celestino

    2011-01-01

    The main aim of this report is to present a picture of the current organization of nephrology in Spain. The Spanish health system offers almost universal coverage, a wide variety of services and a high-quality network of hospitals and primary care centers. Spain has a specialized health care training system that is highly developed, highly regulated, with the capacity to provide high-quality training in 54 different specialties. Nephrology is basically a hospital-based specialty. There are no private dialysis patients in Spain. Hemodialysis centers are 40% public, 15% private and 45% run by companies. The National Health System covers 95% of the population, and there is no cost to patients for treatment of renal disease (dialysis and transplant). We observed a clear decrease of nephrology in residents' election rankings, with position 29 out of 47 specialties in 2007. Some of the reasons for this are the complexity of the subject, no clear information at the university, reduction of professional posts and a very good public service with minimal private practice. In Spain, a model of organization for transplantation was adopted based on a decentralized transplant coordinating network. For cadaveric donors, it compares favorably with rates in other Western countries. Living donor transplantation is very low in Spain--just 10% of total renal transplantation activity. New programs due to financial constraints need to include reduced dialysis costs, greater cost-effectiveness of prescriptions, better handling of ethical issues related to the need for using a clinical score of chronic kidney disease patients to make decisions about conservative or renal replacement therapy and an action plan for improvement of organ donation and transplantation. Recovery of skills (acute kidney injury, biopsies, vascular access, etc.), research and advances in autonomous activities (imaging, surgical and medical vascular training, etc.) are some of the future educational paths needed in

  10. A geometrical model for DNA organization in bacteria.

    Directory of Open Access Journals (Sweden)

    Mathias Buenemann

    Full Text Available Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus together with the action of DNA compaction proteins (that organize the chromosome into topological domains are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details. The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.

  11. Modeling cooperating micro-organisms in antibiotic environment.

    Science.gov (United States)

    Book, Gilad; Ingham, Colin; Ariel, Gil

    2017-01-01

    Recent experiments with the bacteria Paenibacillus vortex reveal a remarkable strategy enabling it to cope with antibiotics by cooperating with a different bacterium-Escherichia coli. While P. vortex is a highly effective swarmer, it is sensitive to the antibiotic ampicillin. On the other hand, E. coli can degrade ampicillin but is non-motile when grown on high agar percentages. The two bacterial species form a shared colony in which E. coli is transported by P. vortex and E. coli detoxifies the ampicillin. The paper presents a simplified model, consisting of coupled reaction-diffusion equations, describing the development of ring patterns in the shared colony. Our results demonstrate some of the possible cooperative movement strategies bacteria utilize in order to survive harsh conditions. In addition, we explore the behavior of mixed colonies under new conditions such as antibiotic gradients, synchronization between colonies and possible dynamics of a 3-species system including P. vortex, E. coli and a carbon producing algae that provides nutrients under illuminated, nutrient poor conditions. The derived model was able to simulate an asymmetric relationship between two or three micro-organisms where cooperation is required for survival. Computationally, in order to avoid numerical artifacts due to symmetries within the discretizing grid, the model was solved using a second order Vectorizable Random Lattices method, which is developed as a finite volume scheme on a random grid.

  12. Spectrophotometry and organic matter on Iapetus. 1: Composition models

    Science.gov (United States)

    Wilson, Peter D.; Sagan, Carl

    1995-01-01

    Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.

  13. Self-Organized Criticality in an Anisotropic Earthquake Model

    Science.gov (United States)

    Li, Bin-Quan; Wang, Sheng-Jun

    2018-03-01

    We have made an extensive numerical study of a modified model proposed by Olami, Feder, and Christensen to describe earthquake behavior. Two situations were considered in this paper. One situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero. The other situation is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself instead of reset to zero. Different boundary conditions were considered as well. By analyzing the distribution of earthquake sizes, we found that self-organized criticality can be excited only in the conservative case or the approximate conservative case in the above situations. Some evidence indicated that the critical exponent of both above situations and the original OFC model tend to the same result in the conservative case. The only difference is that the avalanche size in the original model is bigger. This result may be closer to the real world, after all, every crust plate size is different. Supported by National Natural Science Foundation of China under Grant Nos. 11675096 and 11305098, the Fundamental Research Funds for the Central Universities under Grant No. GK201702001, FPALAB-SNNU under Grant No. 16QNGG007, and Interdisciplinary Incubation Project of SNU under Grant No. 5

  14. In Vivo RNAi-Based Screens: Studies in Model Organisms

    Directory of Open Access Journals (Sweden)

    Miki Yamamoto-Hino

    2013-11-01

    Full Text Available RNA interference (RNAi is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.

  15. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Corporate Social Responsibility And Islamic Business Organizations: A Proposed Model

    Directory of Open Access Journals (Sweden)

    Rusnah Muhamad

    2008-01-01

    Full Text Available The issue of corporate social responsibility (CSR has been of growing concern among business communities in recent years. Various corporate leaders maintain that business is considered to contribute fully to the society if it is effi cient, profi table and socially responsible. Islam is considered as addin (a way of life, thus, providing comprehensive guidelines in every aspects of the believers’ life. It is the aim of this paper to propose an Islamic model of corporate social responsibility based on human relationships with the God (hablun min’Allah; with other fellow human being (hablun min’an-nas and with the environment.Keywords : Corporate Social Responsibility, Islamic Business Organization

  17. Transgenesis in non-model organisms: the case of Parhyale.

    Science.gov (United States)

    Kontarakis, Zacharias; Pavlopoulos, Anastasios

    2014-01-01

    One of the most striking manifestations of Hox gene activity is the morphological and functional diversity of arthropod body plans, segments, and associated appendages. Among arthropod models, the amphipod crustacean Parhyale hawaiensis satisfies a number of appealing biological and technical requirements to study the Hox control of tissue and organ morphogenesis. Parhyale embryos undergo direct development from fertilized eggs into miniature adults within 10 days and are amenable to all sorts of embryological and functional genetic manipulations. Furthermore, each embryo develops a series of specialized appendages along the anterior-posterior body axis, offering exceptional material to probe the genetic basis of appendage patterning, growth, and differentiation. Here, we describe the methodologies and techniques required for transgenesis-based gain-of-function studies of Hox genes in Parhyale embryos. First, we introduce a protocol for efficient microinjection of early-stage Parhyale embryos. Second, we describe the application of fast and reliable assays to test the activity of the Minos DNA transposon in embryos. Third, we present the use of Minos-based transgenesis vectors to generate stable and transient transgenic Parhyale. Finally, we describe the development and application of a conditional heat-inducible misexpression system to study the role of the Hox gene Ultrabithorax in Parhyale appendage specialization. Beyond providing a useful resource for Parhyalists, this chapter also aims to provide a road map for researchers working on other emerging model organisms. Acknowledging the time and effort that need to be invested in developing transgenic approaches in new species, it is all worth it considering the wide scope of experimentation that opens up once transgenesis is established.

  18. Tissue mechanics, animal models, and pelvic organ prolapse: a review.

    Science.gov (United States)

    Abramowitch, Steven D; Feola, Andrew; Jallah, Zegbeh; Moalli, Pamela A

    2009-05-01

    Pelvic floor disorders such as pelvic organ prolapse, urinary incontinence, and fecal incontinence affect a large number of women each year. The pelvic floor can be thought of as a biomechanical structure due to the complex interaction between the vagina and its supportive structures that are designed to withstand the downward descent of the pelvic organs in response to increases in abdominal pressure. Although previous work has highlighted the biochemical changes that are associated with specific risk factors (i.e. parity, menopause, and genetics), little work has been done to understand the biomechanical changes that occur within the vagina and its supportive structures to prevent the onset of these pelvic floor disorders. Human studies are often limited due to the challenges of obtaining large tissue samples and ethical concerns. Therefore, it is necessary to investigate the use of animal models and their importance in understanding how different risk factors affect the biomechanical properties of the vagina and its supportive structures. In this review paper, we will discuss the different animal models that have been previously used to characterize the biomechanical properties of the vagina: including non-human primates, rodents, rabbits, and sheep. The anatomy and preliminary biomechanical findings are discussed along with the importance of considering experimental conditions, tissue anisotropy, and viscoelasticity when characterizing the biomechanical properties of vaginal tissue. Although there is not a lot of biomechanics research related to the vagina and pelvic floor, the future is exciting due to the significant potential for scientific findings that will improve our understanding of these conditions and hopefully lead to improvements in the prevention and treatment of pelvic disorders.

  19. Mapping soil organic carbon stocks by robust geostatistical and boosted regression models

    Science.gov (United States)

    Nussbaum, Madlene; Papritz, Andreas; Baltensweiler, Andri; Walthert, Lorenz

    2013-04-01

    Carbon (C) sequestration in forests offsets greenhouse gas emissions. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for greenhouse gas reporting according to the Kyoto protocol. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the aboveground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because the variables needed to quantify stocks vary strongly in space and precise quantification of some of them is very costly. Based on data from 1'033 plots we modeled SOC stocks of the organic layer and the mineral soil to depths of 30 cm and 100 cm for the Swiss forested area. For the statistical modeling a broad range of covariates were available: Climate data (e. g. precipitation, temperature), two elevation models (resolutions 25 and 2 m) with respective terrain attributes and spectral reflectance data representing vegetation. Furthermore, the main mapping units of an overview soil map and a coarse scale geological map were used to coarsely represent the parent material of the soils. The selection of important covariates for SOC stocks modeling out of a large set was a major challenge for the statistical modeling. We used two approaches to deal with this problem: 1) A robust restricted maximum likelihood method to fit linear regression model with spatially correlated errors. The large number of covariates was first reduced by LASSO (Least Absolute Shrinkage and Selection Operator) and then further narrowed down to a parsimonious set of important covariates by cross-validation of the robustly fitted model. To account for nonlinear dependencies of the response on the covariates interaction terms of the latter were included in model if this improved the fit. 2) A boosted structured regression model with componentwise linear least squares or componentwise smoothing splines as base procedures. The selection of important covariates was done by the

  20. Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstration using a Bayesian method

    Science.gov (United States)

    Liu, Yaoze; Engel, Bernard A.; Flanagan, Dennis C.; Gitau, Margaret W.; McMillan, Sara K.; Chaubey, Indrajeet; Singh, Shweta

    2018-05-01

    Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water quality models, a high level and forward-looking modeling framework was developed. The components in the framework consist of establishment period efficiency, starting efficiency, efficiency for each storm event, efficiency between maintenance, and efficiency over the life cycle. Combined, they represent long-term efficiency for a specific type of practice and specific environmental concern (runoff/pollutant). An approach for possible implementation of the framework was discussed. The long-term impacts of grass buffer strips (agricultural BMP) and bioretention systems (urban BMP) in reducing total phosphorus were simulated to demonstrate the framework. Data gaps were captured in estimating the long-term performance of the BMPs. A Bayesian method was used to match the simulated distribution of long-term BMP efficiencies with the observed distribution with the assumption that the observed data represented long-term BMP efficiencies. The simulated distribution matched the observed distribution well with only small total predictive uncertainties. With additional data, the same method can be used to further improve the simulation results. The modeling framework and results of this study, which can be adopted in hydrologic/water quality models to better represent long-term BMP effectiveness, can help improve decision support systems for creating long-term stormwater management strategies for watershed management projects.

  1. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    C. S. Hassler

    2009-10-01

    Full Text Available Iron (Fe is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  2. A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2014-12-01

    Full Text Available The presence of a large fraction of organic matter in primary sea spray aerosol (SSA can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely sensed chlorophyll a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC, a polysaccharide-like mixture associated primarily with semilabile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecules. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll a and organic fraction are similar to existing empirical

  3. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    Science.gov (United States)

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  5. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  6. Selection of a Representative Subset of Global Climate Models that Captures the Profile of Regional Changes for Integrated Climate Impacts Assessment

    Science.gov (United States)

    Ruane, Alex C.; Mcdermid, Sonali P.

    2017-01-01

    We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  7. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment

    Directory of Open Access Journals (Sweden)

    Alex C. Ruane

    2017-03-01

    Full Text Available Abstract We present the Representative Temperature and Precipitation (T&P GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP to select a practical subset of global climate models (GCMs for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  8. Development of a statistical shape model of multi-organ and its performance evaluation

    International Nuclear Information System (INIS)

    Nakada, Misaki; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

    2010-01-01

    Existing statistical shape modeling methods for an organ can not take into account the correlation between neighboring organs. This study focuses on a level set distribution model and proposes two modeling methods for multiple organs that can take into account the correlation between neighboring organs. The first method combines level set functions of multiple organs into a vector. Subsequently it analyses the distribution of the vectors of a training dataset by a principal component analysis and builds a multiple statistical shape model. Second method constructs a statistical shape model for each organ independently and assembles component scores of different organs in a training dataset so as to generate a vector. It analyses the distribution of the vectors of to build a statistical shape model of multiple organs. This paper shows results of applying the proposed methods trained by 15 abdominal CT volumes to unknown 8 CT volumes. (author)

  9. Secondary organic aerosol in the global aerosol - chemistry transport model Oslo CTM2

    Science.gov (United States)

    Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A.

    2007-06-01

    The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 76 Tg yr-1 by allowing semi-volatile species to condense on ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated, raising the possibility of an unaccounted for SOA source. Allowing SOA to form on ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to almost 9% of the total production. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%-60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas. This study underscores the need for SOA to be represented in a more realistic way in global aerosol models in order to better reproduce observations of organic aerosol burdens in industrialised and biomass burning regions.

  10. KICS: A Model of Motivational Leadership in Organizations

    Directory of Open Access Journals (Sweden)

    John N. N. Ugoani

    2015-09-01

    Full Text Available This pure research gave birth to a Model of Motivational Leadership – KICS: which embraces knowledge, intelligence, collaboration and synergy. It is a synergistic  proposition based on the theory of emotional intelligence as the index of competencies needed for effective leadership. It opened with a general discussion on traditional models of leadership, then the roles of knowledge, intelligence, collaboration and synergy as they relate to motivational leadership. Issues of emotional intelligence clusters and synthesis of the model’s elements were discussed, emphasizing how KICS-based motivational leadership skills can be developed and sustained. Motivational leadership entails exciting people’s imaginations and inspiring them to move in a desired direction. It takes more than simple power to motivate and lead in organizations. Realizing that unity and cohesiveness are built from personal bonds, the best leaders ensure to deepen their rapport with employees and colleagues which enhances organizational performance. This pure research argues that the synergy of related emotional intelligence competencies can lead to motivational leadership behaviour. Knowledge is critical to leadership because there are different types of leadership and different situations require different kinds of knowledge, and the person possessing the knowledge demanded by a certain situation in most cases, tends to become the best leader. A knowledgeable person is one who is trained to consider his actions to undertake them deliberately, in a disciplined manner. Added to this ability is the intelligence to endure in a chosen course in the face of distraction, confusion and difficulty, all combined in producing a motivational leader. Knowledge tends to be procedural in nature and to operate outside of focal awareness. It also reflects the structure of the situation more closely than it does in the structure of formal disciplinary knowledge. The survey research design

  11. Elimination kinetic model for organic chemicals in earthworms.

    NARCIS (Netherlands)

    Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.

    2010-01-01

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of

  12. Organic salmon

    DEFF Research Database (Denmark)

    Ankamah Yeboah, Isaac; Nielsen, Max; Nielsen, Rasmus

    The year 2016 is groundbreaking for organic aquaculture producers in EU, as it represents the deadline for implementing a full organic life cycle in the aquaculture production. Such a shift induces production costs for farmers and if it should be profitable, they must receive higher prices....... This study identifies the price premium on organic salmon in the Danish retail sale sector using consumer panel scanner data for households by applying the hedonic price model while permitting unobserved heterogeneity between households. A premium of 20% for organic salmon is found. Since this premium...

  13. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  14. A modeling study of secondary organic aerosol formation from sesquiterpenes using the STOCHEM global chemistry and transport model

    Science.gov (United States)

    Khan, M. A. H.; Jenkin, M. E.; Foulds, A.; Derwent, R. G.; Percival, C. J.; Shallcross, D. E.

    2017-04-01

    Sesquiterpenes are one of the precursors of secondary organic aerosol (SOA) which can be an important global sources of organic aerosol (OA). Updating the chemistry scheme in the global chemistry transport model by incorporating an oxidation mechanism for β-caryophyllene (representing all sesquiterpenes), adding global sesquiterpene emissions of 29 Tg/yr, and revising global monoterpene emissions up to 162 Tg/yr [Guenther et al., 2012] led to an increase of SOA burden by 95% and SOA production rate by 106% relative to the base case described in Utembe et al. [2011]. Including the emissions of sesquiterpenes resulted in increase of SOA burden of 0.11 Tg and SOA production rate of 12.9 Tg/yr relative to the base case. The highest concentrations of sesquiterpene-derived SOA (by up to 1.2 μg/m3) were found over central Africa and South America, the regions having high levels of biogenic emissions with significant biomass burning. In the updated model simulation, the multigeneration oxidation products from sesquiterpenes and monoterpenes transported above the boundary layer and condensed to the aerosol phase at higher altitude led to an increase of OA by up to 30% over the tropics and northern midlatitude to higher altitude. The model evaluation showed an underestimation of model OA mostly for the campaigns dominated by regional anthropogenic pollution. The increase of SOA production from sesquiterpenes reduced the discrepancies between modeled and observed OA concentrations over the remote and rural areas. The increase of SOA concentrations by up to 200% from preindustrial to present scenarios was found over the tropical oceans.

  15. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  16. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM

    Directory of Open Access Journals (Sweden)

    M. Nakhavali

    2018-02-01

    Full Text Available Current global models of the carbon (C cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC processes in the Joint UK Land Environment Simulator (JULES-DOCM that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.

  17. Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM)

    Science.gov (United States)

    Nakhavali, Mahdi; Friedlingstein, Pierre; Lauerwald, Ronny; Tang, Jing; Chadburn, Sarah; Camino-Serrano, Marta; Guenet, Bertrand; Harper, Anna; Walmsley, David; Peichl, Matthias; Gielen, Bert

    2018-02-01

    Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.

  18. A Study of Some Leading Organ Transplant Models in Health Care Systems

    Directory of Open Access Journals (Sweden)

    Yasin Uzuntarla

    2016-04-01

    Full Text Available The most effective treatment method for patients with organ failure is an organ transplant. Although numerous patients are waiting to get organ transplants, the inadequacy in the supply of organs has become a chronic health problem around the whole world. Countries have made various regulations in their health systems that increase the supply of organs and, as a result, various organ transplantation models have been established. Organ transplantation models applied in Spain, the USA, the European Union, Iran, and Turkey have been examined in this study.

  19. Modelling organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013 in the western Mediterranean region

    Directory of Open Access Journals (Sweden)

    M. Chrit

    2017-10-01

    Full Text Available In the framework of the Chemistry-Aerosol Mediterranean Experiment, a measurement site was set up at a remote site (Ersa on Corsica Island in the northwestern Mediterranean Sea. Measurement campaigns performed during the summers of 2012 and 2013 showed high organic aerosol concentrations, mostly from biogenic origin. This work aims to represent the organic aerosol concentrations and properties (oxidation state and hydrophilicity using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA formation. Biogenic precursors are isoprene, monoterpenes and sesquiterpenes. In this work, the following model oxidation products of monoterpenes are added: (i a carboxylic acid (MBTCA to represent multi-generation oxidation products in the low-NOx regime, (ii organic nitrate chemistry and (iii extremely low-volatility organic compounds (ELVOCs formed by ozonolysis. The model shows good agreement of measurements of organic concentrations for both 2012 and 2013 summer campaigns. The modelled oxidation property and hydrophilic organic carbon properties of the organic aerosols also agree reasonably well with the measurements. The influence of the different chemical processes added to the model on the oxidation level of organics is studied. Measured and simulated water-soluble organic carbon (WSOC concentrations show that even at a remote site next to the sea, about 64 % of the organic carbon is soluble. The concentrations of WSOC vary with the origins of the air masses and the composition of organic aerosols. The marine organic emissions only contribute to a few percent of the organic mass in PM1, with maxima above the sea.

  20. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  1. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  2. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    Katz’s theory of cellular track structure (1) is an amorphous analytical model which applies a set of four cellular parameters representing survival of a given cell line after ion irradiation. Usually the values of these parameters are best fitted to a full set of experimentally measured survival...... carbon irradiation. 1. Katz, R., Track structure in radiobiology and in radiation detection. Nuclear Track Detection 2: 1-28 (1978). 2. Furusawa Y. et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne beams. Radiat Res. 2012 Jan; 177...... curves available for a variety of ions. Once fitted, using these parameter values and the analytical formulae of the model calculations, cellular survival curves and RBE may be predicted for that cell line after irradiation by any ion, including mixed ion fields. While it is known that the Katz model...

  3. The prisoner as model organism: malaria research at Stateville Penitentiary.

    Science.gov (United States)

    Comfort, Nathaniel

    2009-09-01

    In a military-sponsored research project begun during the Second World War, inmates of the Stateville Penitentiary in Illinois were infected with malaria and treated with experimental drugs that sometimes had vicious side effects. They were made into reservoirs for the disease and they provided a food supply for the mosquito cultures. They acted as secretaries and technicians, recording data on one another, administering malarious mosquito bites and experimental drugs to one another, and helping decide who was admitted to the project and who became eligible for early parole as a result of his participation. Thus, the prisoners were not simply research subjects; they were deeply constitutive of the research project. Because a prisoner's time on the project was counted as part of his sentence, and because serving on the project could shorten one's sentence, the project must be seen as simultaneously serving the functions of research and punishment. Michel Foucault wrote about such 'mixed mechanisms' in his Discipline and punish. His shining example of such a 'transparent' and subtle style of punishment was the panopticon, Jeremy Bentham's architectural invention of prison cellblocks arrayed around a central guard tower. Stateville prison was designed on Bentham's model; Foucault featured it in his own discussion. This paper, then, explores the power relations in this highly idiosyncratic experimental system, in which the various roles of model organism, reagent, and technician are all occupied by sentient beings who move among them fluidly. This, I argue, created an environment in the Stateville hospital wing more panoptic than that in the cellblocks. Research and punishment were completely interpenetrating, and mutually reinforcing.

  4. Modeling adsorption and reactions of organic molecules at metal surfaces.

    Science.gov (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  5. On agent cooperation : The relevance of cognitive plausibility for multiagent simulation models of organizations

    NARCIS (Netherlands)

    Broek, J. van den

    2001-01-01

    Human organizations and computational multiagent systems both are social systems because they are both made up of a large number of interacting parts. Since human organizations are arrangements of distributed real intelligence, any DAI model is in some sense a model of an organization. This

  6. On agent cooperation : the relevance of cognitive plausibility for multiagent simulation models of organizations

    NARCIS (Netherlands)

    van den Broek, J.

    2001-01-01

    Human organizations and computational multiagent systems both are social systems because they are both made up of a large number of interacting parts. Since human organizations are arrangements of distributed real intelligence, any DAI model is in some sense a model of an organization. This

  7. Modelling and Optimization of Organization of Workplaces in a Foundry

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-09-01

    Full Text Available The paper presents a practical example of improvement of foundry production systems in terms of post-finishing of nodular iron castings produced in the conditions of bulk production for automotive industry. The attention was paid to high labour-intensive efforts, which are difficult to be subjected to mechanization and automation. The times of actions related to grinding processing of castings in three grinding positions connected with a belt conveyor were estimated with the use of a time study method. A bottleneck as well as limiting factors were specified in a system. A number of improvements were proposed, aimed at improving work organization on the castings post-finishing line. An analysis of work ergonomics at the workplace was made in order to eliminate unnecessary and onerous for the employee actions. A model of production system using the Arena software, on which a simulation experiment was conducted, was drawn up in order to visualize the analysed phenomena. The effects of the project were shown on graphs comparing times, costs, work ergonomics and overall efficiency of production equipment indicator.

  8. US International Environmental Policy. Hearings before the Subcommittee on Human Rights and International Organizations of the Committee on Foreign Affairs, House of Representatives, Ninety-Eighth Congress, Second Session, June 14 and September 12, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Nine witnesses spoke at a two-day hearing on global environmental concerns, which are interrelated to problems of poverty and political instability. At issue was US foreign assistance and the role of natural resources and environmental protection in foreign policy decisions. The Committee reviewed both bilateral and multilateral aid programs, treaties, and conventions, as well as current policy toward multilateral involvement. The witnesses represented the Department of State, the Agency for International Development, Office of Technology Assessment, companies concerned with industrial ecology, and several private organizations concerned with world resources. Material submitted for the record and 11 appendices with correspondence, statements, and recommendations follow the testimony.

  9. Testing Theory of Planned Behavior and Neo-Socioanalytic Theory models of trait activity, industriousness, exercise social cognitions, exercise intentions, and physical activity in a representative U.S. sample.

    Science.gov (United States)

    Vo, Phuong T; Bogg, Tim

    2015-01-01

    Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks - the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model - termed the Disposition-Belief-Motivation model- is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement.

  10. Testing Theory of Planned Behavior and Neo-Socioanalytic Theory models of trait activity, industriousness, exercise social cognitions, exercise intentions, and physical activity in a representative U.S. sample

    Directory of Open Access Journals (Sweden)

    Phuong Thi Vo

    2015-08-01

    Full Text Available Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957, the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions, Social Cognitive Theory (self-efficacy, outcome expectancies, and the Transtheoretical Model (behavioral processes of change, and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks – the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model – termed the Disposition-Belief-Motivation model – is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement.

  11. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  12. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    Science.gov (United States)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2018-03-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  13. A Computational Model Based on Multi-Regional Calcium Imaging Represents the Spatio-Temporal Dynamics in a Caenorhabditis elegans Sensory Neuron.

    Directory of Open Access Journals (Sweden)

    Masahiro Kuramochi

    Full Text Available Due to the huge number of neuronal cells in the brain and their complex circuit formation, computer simulation of neuronal activity is indispensable to understanding whole brain dynamics. Recently, various computational models have been developed based on whole-brain calcium imaging data. However, these analyses monitor only the activity of neuronal cell bodies and treat the cells as point unit. This point-neuron model is inexpensive in computational costs, but the model is unrealistically simplistic at representing intact neural activities in the brain. Here, we describe a novel three-unit Ordinary Differential Equation (ODE model based on the neuronal responses derived from a Caenorhabditis elegans salt-sensing neuron. We recorded calcium responses in three regions of the ASER neuron using a simple downstep of NaCl concentration. Our simple ODE model generated from a single recording can adequately reproduce and predict the temporal responses of each part of the neuron to various types of NaCl concentration changes. Our strategy which combines a simple recording data and an ODE mathematical model may be extended to realistically understand whole brain dynamics by computational simulation.

  14. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    Science.gov (United States)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2017-12-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  15. SU-F-T-276: Source Modeling and VMAT Quality Assurance Referring to the TrueBeam Representative Beam Data for Eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q [Beijing Hospital, Beijing (China)

    2016-06-15

    Purpose: To study quality assurance (QA) of volumetric modulated arc therapy (VMAT) after the 6MV and 10MV photon beam source modeling, referring to the Varian TrueBeam representative beam data for Eclipse. Methods: The source model needs specific measured beam data, such as PDDs and profiles, diagonal profile, output factors (OFs), and MLC transmission factor (TF) and dosimetric leaf gap (DLG), et al. We downloaded the representative data from myVarian website, which includes TrueBeam 4MV-15MV photon beam data and 6MeV-22MeV electron beam data in w2CAD file format for use with Eclipse and in Excel spreadsheet format for use in data comparison. The beam data in W2CAD format can be imported into the Eclipse system and calibrated for use, as appropriate. We used PTW MP3 water tank to measure the beam data in some typical field sizes, and compared the measured data with the representative data. We found that the PDDs, profiles and OFs are similar. However according to some papers and our measurements, we decided that our MLC TF and DLG are 1.58 and 1.33 (6MV), 1.79 and 1.57 (10MV), respectively. After we had configured the anisotropic analytical algorithm (AAA) with the representative data in Eclipse, we also have done dosimetric verification for 88 VMAT plans. Results: The end-to-end test procedures of VMAT were performed for 6MV and 10MV energy modes. The NE Farmer ion chamber mean measurements showed 1.2% (6MV, 38 cases) and 1.2% (10MV, 50 cases) between measurement and calculation; the Sun Nuclear ArcCheck mean measurements demonstrated gamma pass rates are as followings: 98.9%, 93.2%, 61.0% for 6MV, and 98.9%, 91.9%, 59.5% for 10MV, using 3%/3mm, 2%/2mm, 1%/1mm, 10% threshold criteria, respectively. Conclusion: The representative data is applicable to our TrueBeam for the VMAT plan, though our MLC factors are a little different, and its patientspecific QA is good.

  16. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    Directory of Open Access Journals (Sweden)

    Y. S. La

    2016-02-01

    Full Text Available Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  17. Testing Theory of Planned Behavior and Neo-Socioanalytic Theory models of trait activity, industriousness, exercise social cognitions, exercise intentions, and physical activity in a representative U.S. sample

    Science.gov (United States)

    Vo, Phuong T.; Bogg, Tim

    2015-01-01

    Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks – the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model – termed the Disposition-Belief-Motivation model– is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement. PMID:26300811

  18. Sourcing organization and management model in spare parts business : Case study

    OpenAIRE

    Kilpeläinen, Kimmo

    2017-01-01

    The aim of this study was to find the best sourcing organization and management model in the spare parts business, co-operating with global sourcing in division-structured organization. The first phase of the research was done using quantitative research methods. The organization models A, B, and C were built based on the findings from literature review and an internal survey in the global spare parts organization. The internal survey covered answers from 14 countries inside case study co...

  19. Mature and emerging organic markets: Modelling consumer attitude and behaviour with Partial Least Square Approach

    OpenAIRE

    Meyer-Höfer, Marie von; Jaik, Evelyn Olea; Bravo, Carlos Padilla; Spiller, Achim

    2013-01-01

    Although the organic food sector has been the subject of research for around 20 years, little is known about consumer behaviour when comparing developed and emerging organic food markets using causal research models. Thus, by developing a behavioural model based on the Theory of Planned Behaviour (TPB), the aim of this research article is to investigate the main determinants of organic food consumption in a mature (Germany) and an emerging (Chile) organic market. Subjects aged 18 or above wer...

  20. Modelling the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Storm, Jesper; Kilpinen, Ole

    1998-01-01

    In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates...

  1. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  2. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  3. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  4. Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2

    Science.gov (United States)

    Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi

    2018-01-01

    Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and

  5. Antecedents and Consequences of Sales Representatives' Relationship Termination Competence

    DEFF Research Database (Denmark)

    Geersbro, Jens; Ritter, Thomas

    2013-01-01

    's customer portfolio, managers must not only provide a clear definition of the types of customers the organization does not want to serve, but must also implement termination routines within the organization. Managers also need to establish incentives for sales representatives to terminate relationships......Purpose: Most firms have a number of unprofitable customer relationships that drain the firms' resources. However, firms in general and sales representatives in particular hesitate to address this problem and, ultimately, to terminate business relationships. This paper therefore aims to investigate...... the antecedents and consequences of sales representatives' relationship termination competence. Design/methodology/approach: A model of antecedents of sales representatives' relationship termination competence is developed and tested using a cross-sectional survey of more than 800 sales representatives...

  6. Integrative modeling reveals the principles of multi-scale chromatin boundary formation in human nuclear organization.

    Science.gov (United States)

    Moore, Benjamin L; Aitken, Stuart; Semple, Colin A

    2015-05-27

    Interphase chromosomes adopt a hierarchical structure, and recent data have characterized their chromatin organization at very different scales, from sub-genic regions associated with DNA-binding proteins at the order of tens or hundreds of bases, through larger regions with active or repressed chromatin states, up to multi-megabase-scale domains associated with nuclear positioning, replication timing and other qualities. However, we have lacked detailed, quantitative models to understand the interactions between these different strata. Here we collate large collections of matched locus-level chromatin features and Hi-C interaction data, representing higher-order organization, across three human cell types. We use quantitative modeling approaches to assess whether locus-level features are sufficient to explain higher-order structure, and identify the most influential underlying features. We identify structurally variable domains between cell types and examine the underlying features to discover a general association with cell-type-specific enhancer activity. We also identify the most prominent features marking the boundaries of two types of higher-order domains at different scales: topologically associating domains and nuclear compartments. We find parallel enrichments of particular chromatin features for both types, including features associated with active promoters and the architectural proteins CTCF and YY1. We show that integrative modeling of large chromatin dataset collections using random forests can generate useful insights into chromosome structure. The models produced recapitulate known biological features of the cell types involved, allow exploration of the antecedents of higher-order structures and generate testable hypotheses for further experimental studies.

  7. Stage-structured matrix models for organisms with non-geometric development times

    Science.gov (United States)

    Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin

    2009-01-01

    Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...

  8. Representative composition of the Murray Formation, Gale Crater, Mars, as refined through modeling utilizing Alpha Particle X-ray Spectrometer observations

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Berger, Jeff; Desouza, Elstan; O'Connell-Cooper, Catherine; Thompson, Lucy; Boyd, Nicholas

    2017-04-01

    The Murray formation[1] in Gale Crater is distinctly characterized by depleted MgO and CaO, an elevated Fe/Mn ratio, and enrichments in SiO2, K2O, and Ge, compared to average Mars. Supported by observations with Curiosity's Alpha Particle X-ray Spectrometer[2], this pattern is consistent over several kilometers. However, intermixed dust, Ca-, and Mg-sulfates introduce chemical heterogeneities into the APXS field of view. Better constraints on the composition of what is characteristic of the Murray formation is achieved by applying a least-squares deconvolution[3] to a selection of APXS Murray targets. We subtract the composition of known additions (dust[4], MgSO4, CaSO4) to derive a more-representative Murray composition. Slight variations within Murray are then probed by modeling each target as a mixture of dust, sulfates and the derived representative Murray. The derived composition for what is representative of Murray has several key deviations from the straightforward average of Murray targets. The subtraction of known dust, Mg-, and Ca-sulfate additions suggests further depletion in MgO and CaO in Murray and also suggests a significant decrease in SO3 concentration compared to the average of Murray targets. While veins and concretions are contaminants when considering the composition of the bulk rock, the subtraction of Mg- or Ca-sulfate is independent of sulfate form. Sulfates within the bulk rock (detrital or cements) have been observed in the Murray formation. These sulfates are important and discussed further in [5]. Modeling APXS Murray targets as a mixture of dust, MgSO4, CaSO4, and representative Murray, provides insight into potential subtle variations within the surprisingly consistent Murray formation. For example, the high SiO2 in Buckskin, (sol 1057-1091) is not simply a mixture of representative Murray with sulfates and dust. The elevated Ni (and MgSO4) of Morrison (sol ˜775), the elevated Al2O3 of Mojave (sol ˜800-900), and the gradually

  9. Participatory plant breeding and organic agriculture: A synergistic model for organic variety development in the United States

    Directory of Open Access Journals (Sweden)

    Adrienne C. Shelton

    2016-12-01

    Full Text Available Abstract Organic farmers require improved varieties that have been adapted to their unique soils, nutrient inputs, management practices, and pest pressures. One way to develop adapted varieties is to situate breeding programs in the environment of intended use, such as directly on organic farms, and in collaboration with organic farmers. This model is a form of participatory plant breeding, and was originally created in order to meet the needs of under-served, small-scale farmers in developing countries. A robust body of literature supports the quantitative genetic selection theory of participatory plant breeding, and helps to explain its increasing prevalence among organic breeding projects in the United States. The history of the organic farming movement in the United States highlights the cultural relevance of engaging organic farmers in the breeding process, complementing the biological rationale for participatory plant breeding. In addition, limited private investment in organic plant breeding encourages the involvement of plant breeders at public institutions. This paper synthesizes the biological, cultural, and economic justifications for utilizing participatory plant breeding as an appropriate methodology for organic cultivar development.

  10. Modelling decomposition, intermolecular protection and physical aggregation based on organic matter quality assessed by 13C-CPMAS-NMR

    Science.gov (United States)

    Incerti, Guido; Bonanomi, Giuliano; Sarker, Tushar Chandra; Giannino, Francesco; Cartenì, Fabrizio; Peressotti, Alessandro; Spaccini, Riccardo; Piccolo, Alessandro; Mazzoleni, Stefano

    2017-04-01

    Modelling organic matter decomposition is fundamental to predict biogeochemical cycling in terrestrial ecosystems. Current models use C/N or Lignin/N ratios to describe susceptibility to decomposition, or implement separate C pools decaying with different rates, disregarding biomolecular transformations and interactions and their effect on decomposition dynamics. We present a new process-based model of decomposition that includes a description of biomolecular dynamics obtained by 13C-CPMAS NMR spectroscopy. Baseline decay rates for relevant molecular classes and intermolecular protection were calibrated by best fitting of experimental data from leaves of 20 plant species decomposing for 180 days in controlled optimal conditions. The model was validated against field data from leaves of 32 plant species decomposing for 1-year at four sites in Mediterranean ecosystems. Our innovative approach accurately predicted decomposition of a wide range of litters across different climates. Simulations correctly reproduced mass loss data and variations of selected molecular classes both in controlled conditions and in the field, across different plant molecular compositions and environmental conditions. Prediction accuracy emerged from the species-specific partitioning of molecular types and from the representation of intermolecular interactions. The ongoing model implementation and calibration are oriented at representing organic matter dynamics in soil, including processes of interaction between mineral and organic soil fractions as a function of soil texture, physical aggregation of soil organic particles, and physical protection of soil organic matter as a function of aggregate size and abundance. Prospectively, our model shall satisfactorily reproduce C sequestration as resulting from experimental data of soil amended with a range of organic materials with different biomolecular quality, ranging from biochar to crop residues. Further application is also planned based on

  11. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  12. PROCESS DOCUMENTATION: A MODEL FOR KNOWLEDGE MANAGEMENT IN ORGANIZATIONS.

    Science.gov (United States)

    Haddadpoor, Asefeh; Taheri, Behjat; Nasri, Mehran; Heydari, Kamal; Bahrami, Gholamreza

    2015-10-01

    Continuous and interconnected processes are a chain of activities that turn the inputs of an organization to its outputs and help achieve partial and overall goals of the organization. These activates are carried out by two types of knowledge in the organization called explicit and implicit knowledge. Among these, implicit knowledge is the knowledge that controls a major part of the activities of an organization, controls these activities internally and will not be transferred to the process owners unless they are present during the organization's work. Therefore the goal of this study is identification of implicit knowledge and its integration with explicit knowledge in order to improve human resources management, physical resource management, information resource management, training of new employees and other activities of Isfahan University of Medical Science. The project for documentation of activities in department of health of Isfahan University of Medical Science was carried out in several stages. First the main processes and related sub processes were identified and categorized with the help of planning expert. The categorization was carried out from smaller processes to larger ones. In this stage the experts of each process wrote down all their daily activities and organized them into general categories based on logical and physical relations between different activities. Then each activity was assigned a specific code. The computer software was designed after understanding the different parts of the processes, including main and sup processes, and categorization, which will be explained in the following sections. The findings of this study showed that documentation of activities can help expose implicit knowledge because all of inputs and outputs of a process along with the length, location, tools and different stages of the process, exchanged information, storage location of the information and information flow can be identified using proper

  13. Dual chamber stent prevents organ malperfusion in a model of donation after cardiac death.

    Science.gov (United States)

    Tillman, Bryan W; Chun, Youngjae; Cho, Sung Kwon; Chen, Yanfei; Liang, Nathan; Maul, Timothy; Demetris, Anthony; Gu, Xinzhu; Wagner, William R; Tevar, Amit D

    2016-10-01

    The paradigm for donation after cardiac death subjects donor organs to ischemic injury. A dual-chamber organ perfusion stent would maintain organ perfusion without affecting natural cardiac death. A center lumen allows uninterrupted cardiac blood flow, while an external chamber delivers oxygenated blood to the visceral vessels. A prototype organ perfusion stent was constructed from commercial stents. In a porcine model, the organ perfusion stent was deployed, followed by a simulated agonal period. Oxygenated blood perfused the external stent chamber. Organ perfusion was compared between controls (n = 3) and organ perfusion stent (n = 6). Finally, a custom, nitinol, dual chamber organ perfusion stent was fabricated using a retrievable "petal and stem" design. Endovascular organ perfusion stent deployment achieved visceral isolation without adverse impact on cardiac parameters. Visceral oxygen delivery was 4.8-fold greater compared with controls. During the agonal period, organs in organ perfusion stent-treated animals appeared well perfused in contrast with the malperfused controls. A custom nitinol and polyurethane organ perfusion stent was recaptured easily with simple sheath advancement. An organ perfusion stent maintained organ perfusion during the agonal phase in a porcine model of donation after cardiac death organ donation without adversely affecting cardiac function. Ultimately, the custom retrievable design of this study may help resolve the critical shortage of donor organs for transplant. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A process-based emission model of volatile organic compounds from silage sources on farms

    Science.gov (United States)

    Bonifacio, H. F.; Rotz, C. A.; Hafner, S. D.; Montes, F.; Cohen, M.; Mitloehner, F. M.

    2017-03-01

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources such as those from dairy farms. A process-based model for predicting VOC emissions from silage was developed and incorporated into the Integrated Farm System Model (IFSM, v. 4.3), a whole-farm simulation of crop, dairy, and beef production systems. The performance of the IFSM silage VOC emission model was evaluated using ethanol and methanol emissions measured from conventional silage piles (CSP), silage bags (SB), total mixed rations (TMR), and loose corn silage (LCS) at a commercial dairy farm in central California. With transport coefficients for ethanol refined using experimental data from our previous studies, the model performed well in simulating ethanol emission from CSP, TMR, and LCS; its lower performance for SB could be attributed to possible changes in face conditions of SB after silage removal that are not represented in the current model. For methanol emission, lack of experimental data for refinement likely caused the underprediction for CSP and SB whereas the overprediction observed for TMR can be explained as uncertainty in measurements. Despite these limitations, the model is a valuable tool for comparing silage management options and evaluating their relative effects on the overall performance, economics, and environmental impacts of farm production. As a component of IFSM, the silage VOC emission model was used to simulate a representative dairy farm in central California. The simulation showed most silage VOC emissions were from feed lying in feed lanes and not from the exposed face of silage storages. This suggests that mitigation efforts, particularly in areas prone to ozone non-attainment status, should focus on reducing emissions during feeding. For

  15. Modelling and mapping the topsoil organic carbon content for Tanzania

    Science.gov (United States)

    Kempen, Bas; Kaaya, Abel; Ngonyani Mhaiki, Consolatha; Kiluvia, Shani; Ruiperez-Gonzalez, Maria; Batjes, Niels; Dalsgaard, Soren

    2014-05-01

    Soil organic carbon (SOC), held in soil organic matter, is a key indicator of soil health and plays an important role in the global carbon cycle. The soil can act as a net source or sink of carbon depending on land use and management. Deforestation and forest degradation lead to the release of vast amounts of carbon from the soil in the form of greenhouse gasses, especially in tropical countries. Tanzania has a high deforestation rate: it is estimated that the country loses 1.1% of its total forested area annually. During 2010-2013 Tanzania has been a pilot country under the UN-REDD programme. This programme has supported Tanzania in its initial efforts towards reducing greenhouse gas emission from forest degradation and deforestation and towards preserving soil carbon stocks. Formulation and implementation of the national REDD strategy requires detailed information on the five carbon pools among these the SOC pool. The spatial distribution of SOC contents and stocks was not available for Tanzania. The initial aim of this research, was therefore to develop high-resolution maps of the SOC content for the country. The mapping exercise was carried out in a collaborative effort with four Tanzanian institutes and data from the Africa Soil Information Service initiative (AfSIS). The mapping exercise was provided with over 3200 field observations on SOC from four sources; this is the most comprehensive soil dataset collected in Tanzania so far. The main source of soil samples was the National Forest Monitoring and Assessment (NAFORMA). The carbon maps were generated by means of digital soil mapping using regression-kriging. Maps at 250 m spatial resolution were developed for four depth layers: 0-10 cm, 10-20 cm, 20-30 cm, and 0-30 cm. A total of 37 environmental GIS data layers were prepared for use as covariates in the regression model. These included vegetation indices, terrain parameters, surface temperature, spectral reflectances, a land cover map and a small

  16. A phase model of intergenerational learning in organizations

    NARCIS (Netherlands)

    Gerpott, F.H.; Lehmann-Willenbrock, N.; Voelpel, S.C.

    Demographic changes challenge organizations to qualify employees across all career stages and to ensure the transfer of company-specific knowledge between experienced and young workers. Human resource development programs for employees from different generations may help address these challenges.

  17. Bruton's tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care.

    Directory of Open Access Journals (Sweden)

    Kathleen M Gillooly

    Full Text Available Bruton's tyrosine kinase (BTK regulates critical signal transduction pathways involved in the pathobiology of rheumatoid arthritis (RA and other autoimmune disorders. BMS-986142 is a potent and highly selective reversible small molecule inhibitor of BTK currently being investigated in clinical trials for the treatment of both RA and primary Sjögren's syndrome. In the present report, we detail the in vitro and in vivo pharmacology of BMS-986142 and show this agent provides potent and selective inhibition of BTK (IC50 = 0.5 nM, blocks antigen receptor-dependent signaling and functional endpoints (cytokine production, co-stimulatory molecule expression, and proliferation in human B cells (IC50 ≤ 5 nM, inhibits Fcγ receptor-dependent cytokine production from peripheral blood mononuclear cells, and blocks RANK-L-induced osteoclastogenesis. Through the benefits of impacting these important drivers of autoimmunity, BMS-986142 demonstrated robust efficacy in murine models of rheumatoid arthritis (RA, including collagen-induced arthritis (CIA and collagen antibody-induced arthritis (CAIA. In both models, robust efficacy was observed without continuous, complete inhibition of BTK. When a suboptimal dose of BMS-986142 was combined with other agents representing the current standard of care for RA (e.g., methotrexate, the TNFα antagonist etanercept, or the murine form of CTLA4-Ig in the CIA model, improved efficacy compared to either agent alone was observed. The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.

  18. Modeling the Structure and Effectiveness of Intelligence Organizations: Dynamic Information Flow Simulation

    National Research Council Canada - National Science Library

    Behrman, Robert; Carley, Kathleen

    2003-01-01

    This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...

  19. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  20. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from......Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  1. Public attitudes to financial incentive models for organs

    DEFF Research Database (Denmark)

    Hoeyer, Klaus; Schicktanz, Silke; Deleuran, Ida

    2013-01-01

    Waiting lists for organs have stimulated interest in the use of financial incentives for organ donation (FIs), but the literature does not contain an adequate overview of studies of public attitudes toward this mode of procurement. We conducted a literature review of international peer-reviewed r......Waiting lists for organs have stimulated interest in the use of financial incentives for organ donation (FIs), but the literature does not contain an adequate overview of studies of public attitudes toward this mode of procurement. We conducted a literature review of international peer......-reviewed research published between 2002 and 2012 on how members of the public position themselves toward FIs. We identified and analyzed 23 studies using MEDLINE, PsycINFO, Sociological Abstracts and cross-reference search. The search included whole organs, donation, quantitative and empirical qualitative social...... scientific studies on, public attitudes (excluding professionals and medical students). The review reveals a broad divergence of public opinions on financial incentives. However, quantitative studies showed a low overall level of acceptance of payment for organs in living donation (LD); only a slightly...

  2. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  3. Organism and population-level ecological models for ...

    Science.gov (United States)

    Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquatic and terrestrial invertebrates, fish, amphibians, and birds, and employ a wide range of methods, from matrix-based projection models to mechanistic bioenergetics models and spatially explicit population models. not applicable

  4. 9 May 2008 - Signature of the Protocol to the co-operation agreement dated 21 January 2006 between King Abdulaziz City for Science and Technology (KACST) on behalf of the Government of the Kingdom of Saudi Arabia, represented by M. I. Al-Suwaiyel and the European Organization for Nuclear Research (CERN), represented by R. Aymar, concerning the further development of scientific and technical co-operation in high-energy physics

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    9 May 2008 - Signature of the Protocol to the co-operation agreement dated 21 January 2006 between King Abdulaziz City for Science and Technology (KACST) on behalf of the Government of the Kingdom of Saudi Arabia, represented by M. I. Al-Suwaiyel and the European Organization for Nuclear Research (CERN), represented by R. Aymar, concerning the further development of scientific and technical co-operation in high-energy physics

  5. SYSTEM MODELLING OF ECONOMICAL ANALYSIS AND MANAGEMENT OF DESIGN ORGANIZATION IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    R.Kh. Bakhitova

    2007-12-01

    Full Text Available The problem of effectivization of design organization in oil and gas industry is being investigated in terms of system modeling. A method of forming production functions of design organization is considered and used for substantiation of cost, expenses, budget of design organization, as well as the mechanism of transparent interaction, cooperation, coordination and control of field development.

  6. Comparison of activity coefficient models for atmospheric aerosols containing mixtures of electrolytes, organics, and water

    Science.gov (United States)

    Tong, Chinghang; Clegg, Simon L.; Seinfeld, John H.

    Atmospheric aerosols generally comprise a mixture of electrolytes, organic compounds, and water. Determining the gas-particle distribution of volatile compounds, including water, requires equilibrium or mass transfer calculations, at the heart of which are models for the activity coefficients of the particle-phase components. We evaluate here the performance of four recent activity coefficient models developed for electrolyte/organic/water mixtures typical of atmospheric aerosols. Two of the models, the CSB model [Clegg, S.L., Seinfeld, J.H., Brimblecombe, P., 2001. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. Journal of Aerosol Science 32, 713-738] and the aerosol diameter dependent equilibrium model (ADDEM) [Topping, D.O., McFiggans, G.B., Coe, H., 2005. A curved multi-component aerosol hygroscopicity model framework: part 2—including organic compounds. Atmospheric Chemistry and Physics 5, 1223-1242] treat ion-water and organic-water interactions but do not include ion-organic interactions; these can be referred to as "decoupled" models. The other two models, reparameterized Ming and Russell model 2005 [Raatikainen, T., Laaksonen, A., 2005. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest. Atmospheric Chemistry and Physics 5, 2475-2495] and X-UNIFAC.3 [Erdakos, G.B., Change, E.I., Pandow, J.F., Seinfeld, J.H., 2006. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 3: Organic compounds, water, and ionic constituents by consideration of short-, mid-, and long-range effects using X-UNIFAC.3. Atmospheric Environment 40, 6437-6452], include ion-organic interactions; these are referred to as "coupled" models. We address the question—Does the inclusion of a treatment of ion-organic interactions substantially improve the performance of the coupled models over

  7. Application of qualitative reasoning with functional knowledge represented by Multilevel Flow Modeling to diagnosis of accidental situation in nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Tanabe, Fumiya; Kawase, Katumi.

    1996-01-01

    It has been proposed to use the Multilevel Flow Modeling (MFM) by M. Lind as a framework for functional knowledge representation for qualitative reasoning in a complex process system such as nuclear power plant. To build a knowledge base with MFM framework makes it possible to represent functional characteristics in different levels of abstraction and aggregation. A pilot inference system based on the qualitative reasoning with MFM has been developed to diagnose a cause of abnormal events in a typical PWR power plant. Some single failure events has been diagnosed with this system to verify the proposed method. In the verification study, some investigation has been also performed to clarify the effects of this knowledge representation in efficiency of reasoning and ambiguity of qualitative reasoning. (author)

  8. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to

  9. Modeling and Computation of Thermodynamic Equilibrium for Mixtures of Inorganic and Organic Species

    Science.gov (United States)

    Caboussat, A.; Amundson, N. R.; He, J.; Martynenko, A. V.; Seinfeld, J. H.

    2007-05-01

    A series of modules has been developed in the atmospheric modeling community to predict the phase transition, crystallization and evaporation of inorganic aerosols. Modules for the computation of the thermodynamics of pure organic-containing aerosols have been developed more recently; however, the modeling of aerosols containing mixtures of inorganic and organic compounds has gathered less attention. We present here a model (UHAERO), that is flexible, efficient and rigorously computes the thermodynamic equilibrium of atmospheric particles containing inorganic and organic compounds. It is applied first to mixtures of inorganic electrolytes and dicarboxylic acids, and then to thermodynamic equilibria including crystallization and liquid-liquid phase separation. The model does not rely on any a priori specification of the phases present in certain atmospheric conditions. The multicomponent phase equilibrium for a closed organic aerosol system at constant temperature and pressure and for specified feeds is the solution to the equilibrium problem arising from the constrained minimization of the Gibbs free energy. For mixtures of inorganic electrolytes and dissociated organics, organic salts appear at equilibrium in the aqueous phase. In the general case, liquid-liquid phase separations happen and electrolytes dissociate in both aqueous and organic liquid phases. The Gibbs free energy is modeled by the UNIFAC model for the organic compounds, the PSC model for the inorganic constituents and a Pitzer model for interactions. The difficulty comes from the accurate estimation of interactions in the modeling of the activity coefficients. An accurate and efficient method for the computation of the minimum of energy is used to compute phase diagrams for mixtures of inorganic and organic species. Numerical results show the efficiency of the model for mixtures of inorganic electrolytes and organic acids, which make it suitable for insertion in global three-dimensional air quality

  10. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces...

  11. Financial Organization Information Security System Development using Modeling, IT assets and Accounts Classification Processes

    Directory of Open Access Journals (Sweden)

    Anton Sergeevich Zaytsev

    2013-12-01

    Full Text Available This article deals with processes of modeling, IT assets and account classification. Key principles of these processes configuration are pointed up. Also a model of Russian Federation banking system organization is developed.

  12. Sensitivity analysis of six soil organic matter models applied to the decomposition of animal manures and crop residues

    Directory of Open Access Journals (Sweden)

    Daniele Cavalli

    2016-09-01

    Full Text Available Two features distinguishing soil organic matter simulation models are the type of kinetics used to calculate pool decomposition rates, and the algorithm used to handle the effects of nitrogen (N shortage on carbon (C decomposition. Compared to widely used first-order kinetics, Monod kinetics more realistically represent organic matter decomposition, because they relate decomposition to both substrate and decomposer size. Most models impose a fixed C to N ratio for microbial biomass. When N required by microbial biomass to decompose a given amount of substrate-C is larger than soil available N, carbon decomposition rates are limited proportionally to N deficit (N inhibition hypothesis. Alternatively, C-overflow was proposed as a way of getting rid of excess C, by allocating it to a storage pool of polysaccharides. We built six models to compare the combinations of three decomposition kinetics (first-order, Monod, and reverse Monod, and two ways to simulate the effect of N shortage on C decomposition (N inhibition and C-overflow. We conducted sensitivity analysis to identify model parameters that mostly affected CO2 emissions and soil mineral N during a simulated 189-day laboratory incubation assuming constant water content and temperature. We evaluated model outputs sensitivity at different stages of organic matter decomposition in a soil amended with three inputs of increasing C to N ratio: liquid manure, solid manure, and low-N crop residue. Only few model parameters and their interactions were responsible for consistent variations of CO2 and soil mineral N. These parameters were mostly related to microbial biomass and to the partitioning of applied C among input pools, as well as their decomposition constants. In addition, in models with Monod kinetics, CO2 was also sensitive to a variation of the half-saturation constants. C-overflow enhanced pool decomposition compared to N inhibition hypothesis when N shortage occurred. Accumulated C in the

  13. Computer kinetic modelling of radionuclide accumulation in Marine organisms

    International Nuclear Information System (INIS)

    Quintella, H.M.; Santimateo, D.; Paschoa, A.S.

    1977-01-01

    Continuous System Modelling Program (CSMP) is used to simulate the first step of the kinetic of a radionuclide in a food chain by using the exponential model of accumulation from water-to-algae based on data found in the literature. The use of computer modelling as a tool for environmental studies is discussed as far as economical advantages and future applications are concerned

  14. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland

    Science.gov (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima

    2017-04-01

    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  15. Study of a bio-mechanical model of the movements and deformations of the pelvic organs and integration in the process of radiotherapy treatment for prostate cancer

    International Nuclear Information System (INIS)

    Azad, M.

    2011-01-01

    One of the goals of optimizing treatment planning of prostate cancer radiation therapy is to maintain the margins added to the clinical target volume (CTV) as small as possible to reduce the volumes of normal tissue irradiated. Several methods have been proposed to define these margins: 1) Methods based on the observation of movements obtained by different imaging systems, 2) The predictive methods of the movement of organs, from a model representing the motions of pelvis organs, a calculation of a margin can be made. We have developed and optimized a finite element bio-mechanical model of the prostate, bladder and rectum. This model describes the movement and deformation of the pelvic organs during the filling of certain organs such as the bladder and rectum. An evaluation of this model to predict the movement of the prostate during the various sessions of radiotherapy is shown using a series of CBCT images (Cone Beam Computerized Tomography). (author)

  16. Model to the evolution of the organic matter in the pampa's soil. Relation with cultivation systems

    International Nuclear Information System (INIS)

    Andriulo, Adrian; Mary, Bruno; Guerif, Jerome; Balesdent, Jerome

    1996-08-01

    The objective of the work is to present a model to describe the evolution of the organic matter in soils of the Argentine's pampa. This model can be utilised to evaluate the evolution of the soil's fertility in the agricultural production at this moment. Three kinds of assay were done. The determination of organic carbon made possible to prove the Henin-Dupuis model and a derived model

  17. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    Science.gov (United States)

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  18. Enhancement of organic acids production from model kitchen waste ...

    African Journals Online (AJOL)

    The aim of this study was to obtain the optimal conditions for organic acids production from anaerobic digestion of kitchen waste using response surface methodology (RSM). Fermentation was carried out using 250 ml shake flask which was incubated using an orbital shaker set at 200 rpm. Fermented kitchen wastes were ...

  19. The Learning Organization: A Model for Educational Change.

    Science.gov (United States)

    Brown, Rexford

    1997-01-01

    Analyzes public school bureaucracy and ways to reform institutions into learning communities that value shared knowledge and learning experiences. Describes how a bureaucratic organizational structure impairs learning. Proposes the "learning organization" in which adults learn alongside students, planning is decentralized, families are…

  20. A Model System of Bibliographic Organization for Library Science Literature.

    Science.gov (United States)

    Corrigan, Philip R. D.

    The first section establishes a working definition of library science and outlines the existing publications patterns of library science information. The existing system of bibliographic organization is examined in detail and services provided in the U.S.S.R. are described as an example of a systematic attempt at world coverage. In late 1967,…

  1. Model-based remote sensing algorithms for particulate organic carbon

    Indian Academy of Sciences (India)

    Hydrographic data, including particulate organic carbon (POC) from the Northeastern Gulf of. Mexico (NEGOM) ... along the Gulf Coast. The Northeastern Gulf of. Mexico (NEGOM), Louisiana–Texas Shelf Physi- cal Oceanography Program (LATEX), and hypoxia ..... shelf based on 32 months of moored current meter data;.

  2. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  3. Is there a global model of learning organizations? An empirical, cross-nation study

    NARCIS (Netherlands)

    Shipton, H.; Zhou, Q.; Mooi, E.A.

    2013-01-01

    This paper develops and tests a learning organization model derived from HRM and dynamic capability literatures in order to ascertain the model's applicability across divergent global contexts. We define a learning organization as one capable of achieving on-going strategic renewal, arguing based on

  4. The Family FIRO Model: A Modest Proposal for Organizing Family Treatment.

    Science.gov (United States)

    Doherty, William J.; Colangelo, Nicholas

    1984-01-01

    Presents a model for organizing family issues and family treatment. Schutz's Fundamental Interpersonal Relations Orientation (FIRO) model is offered as a framework for organizing family issues into inclusion, control, and affection categories, constituting a logical hierarchy of core issues to be dealt with in treating multiproblem families. (JAC)

  5. Peningkatan Keterampilan Pengambilan Keputusan Dan Penguasaan Konsep IPA Melalui Model Pembelajaran Advance Organizer Di Sekolah Dasar

    OpenAIRE

    Badarudin

    2017-01-01

    Peningkatan Keterampilan Pengambilan Keputusan dan Penguasaan Konsep IPA melalui Model Pembelajaran Advance Organizer di Sekolah Dasar. Penelitian ini bertujuan untuk mengetahui perbedaan peningkatan keterampilan pengambilan keputusan dan pemahaman konsep IPA siswa sebagai dampak dari implementasi model Advance Organizer. Penelitian ini menggunakan metode kuasi eksperimen dengan desain Non equivalent (Pre-Test and Post- Test) Control Groups Design. Subyek penelitian adalah siswa kelas V pada ...

  6. Democracy versus dictatorship in self-organized models of financial markets

    Science.gov (United States)

    D'Hulst, R.; Rodgers, G. J.

    2000-06-01

    Models to mimic the transmission of information in financial markets are introduced. As an attempt to generate the demand process, we distinguish between dictatorship associations, where groups of agents rely on one of them to make decision, and democratic associations, where each agent takes part in the group decision. In the dictatorship model, agents segregate into two distinct populations, while the democratic model is driven towards a critical state where groups of agents of all sizes exist. Hence, both models display a level of organization, but only the democratic model is self-organized. We show that the dictatorship model generates less-volatile markets than the democratic model.

  7. Modeling soil organic matter reallocation in soil enhanced by fungal growth

    Science.gov (United States)

    Battaïa, G.; Falconer, R. E.; Otten, W.

    2012-04-01

    Soil, as a huge carbon reservoir having a large interface with the atmosphere, has a major role in understanding global carbon cycle. Yet, its structure gives rise to an extremely complex ecosystem in which chemical fluxes are difficult to describe. Amongst microbial organisms that inhabit soil, fungi represent an entire kingdom of life that has developed its own strategy to adapt its environment. They are thus known to have a particular importance for the reallocation of carbon (and other elements) as they are able to build a mycelium structure that can spread over several meters and through which nutrients can be translocated. This study, based on simulations, is dedicated to enlighten the role of fungal colonization to generate an ecosystem in which coexists disperse biological hotspots. The simulation environment is reconstructed from thresholded computed tomography images of soil samples. Soil organic matter acting as a resource for fungi is assumed to occur first in a particulate solid state (POM). It is degraded into dissolved organic carbon (DOC) through enzymatic activity of fungi. Fungal uptake converts DOC into an internal resource that diffuses through the mycelium and helps it for further colonization. The fungal model is an adaptation of a previously developed model. In addition to internal resource, it accounts for two states of biomass: non-insulated and insulated. One is converted into the other by insulation which is the analog of an ageing process. Being insulated, the interaction rates of the biomass with the environment (degradation and uptake) become slower and the ability to diffuse in the pore space is lost. This aims at producing a more stable state of the mycelium when all resource has been consumed. Spatially simulations reveal a transient state in POM-fungi interaction characterized by a large spread of DOC in the pore space. It is then followed by an enhanced fungal growth toward these areas. Finally a steady state occurs in which DOC

  8. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

    Directory of Open Access Journals (Sweden)

    Speranza Rubattu

    2016-01-01

    Full Text Available Mechanisms underlying hypertensive target organ damage (TOD are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2 involved in OXPHOS complex I assembly and activity and the second one (UCP2 involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension.

  9. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  10. Carbon and prospective: international colloquium jointly organized by the prospective modeling chair and ETSAP

    International Nuclear Information System (INIS)

    Maizi, N.; Hourcade, J.Ch.; Selosse, S.

    2009-01-01

    The inauguration of the prospective modeling chair in favour of sustainable development is the result of the joint effort of several schools, organizations and companies, in particular: Mines ParisTech, Ponts ParisTech, Agro ParisTech, the higher education and research pole of ParisTech, the Ecole des Ponts foundation, the mineral, mining and metallurgic industries foundation (FI3M), with the partnership of Ademe, EdF, Renault, Schneider Electric and Total. The main goal of this chair is to perpetuate modeling tools with sustainable development stakes. The scientific program and the expertise of this chair are based on the joint and complementary experience of its two co-founder research teams in the domain of long-term prospective of energy, economy and environment-related questions: the applied mathematics centre (CMA - Mines ParisTech) and the international centre of environment and sustainable development research (CIRED). An inaugural colloquium was organized at the occasion of the launching of this chair. During round tables, representatives of the different intervening parties explained the stakes of this huge project and their expectations, in particular from the scientific, economical and societal point of view. A workshop on the topic 'carbon and prospective' followed the round tables. Six presentations were given about the following topics: energy policy scenarios for 2050 (Moncomble, J.E.), the shadow price of carbon (Chambolle T.), mitigation targets and carbon values: insights from TIMES-FR (Assoumou E.), climate protection and infrastructures (Sassi O.), China's energy and carbon options (Wenying C.), EU 20-20 policy implications on the energy system of Germany - an analysis with TIMES PanEU (Blesl M.). This book gathers the proceedings of both parts of this colloquium, the debates during the round tables (in French) and the presentations given during the workshop (in English). (J.S.)

  11. Organisms modeling: The question of radial basis function networks

    Directory of Open Access Journals (Sweden)

    Muzy Alexandre

    2014-01-01

    Full Text Available There exists usually a gap between bio-inspired computational techniques and what biologists can do with these techniques in their current researches. Although biology is the root of system-theory and artifical neural networks, computer scientists are tempted to build their own systems independently of biological issues. This publication is a first-step re-evalution of an usual machine learning technique (radial basis funtion(RBF networks in the context of systems and biological reactive organisms.

  12. Models for governing relationships in healthcare organizations: Some empirical evidence.

    Science.gov (United States)

    Romiti, Anna; Del Vecchio, Mario; Grazzini, Maddalena

    2018-01-01

    Recently, most European countries have undergone integration processes through mergers and strategic alliances between healthcare organizations. The present paper examined three cases within the Italian National Health Service in order to determine how different organizations, within differing institutional contexts, govern an healthcare integration process. Furthermore, we explored the possibility that the governance mode, usually seen as alternatives (i.e., merger or alliance), could be considered as a separate step in the development of a more suitable integration process. Multiple case studies were used to compare different integration approaches. Specifically, three cases were considered, of which two were characterized by collaborative processes and the other by a merger. Semi-structured interviews were conducted with managers involved in the processes. Each case presents different governing modes, structures, and mechanisms for achieving integration. The role played by the institutional context also led to different results with unique advantages and disadvantages. Three main conclusions are discussed: (a) Alliances and mergers can be interpreted as different steps in a path leading to a better integration; (b) The alignment between institutional/political time horizon and the time needed for the organizations to achieve an integration process lead to a better integration; (c) Trust plays an important role in integration process operating at different levels that of institutional and organizational level and that built between people.

  13. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Directory of Open Access Journals (Sweden)

    Tim D Williams

    2011-08-01

    Full Text Available The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  14. Dynamic root uptake model for neutral lipophilic organics

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2002-01-01

    and output to stem with the transpiration stream plus first-order metabolism and dilution by exponential growth. For chemicals with low or intermediate lipophilicity (log Kow , 2), there was no relevant difference between dynamic model and equilibrium approach. For lipophilic compounds, the dynamic model...

  15. Drosophila melanogaster as a Model Organism of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Werner Paulus

    2009-02-01

    Full Text Available Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches.

  16. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    Science.gov (United States)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  17. EQA School Representative's Handbook.

    Science.gov (United States)

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Planning and Evaluation.

    Step-by-step instructions for the school representative responsible for Educational Quality Assessment in Pennsylvania are provided. The representative, who is expected to attend Quality Assessment Workshops, is given information about how to schedule the administration of the questionnaire, how to collect district and school data, and how to…

  18. Knowledge environments representing molecular entities for the virtual physiological human.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  19. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.

    2002-01-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  20. Modeling and Simulating Moral Emotions in Organizations: exploring its impact on collaboration

    OpenAIRE

    Teran Villegas, Oswaldo Ramon; Sibertin-Blanc, Christophe; Gaudou, Benoit

    2014-01-01

    International audience; The paper presents how moral sensitivity and emotions are modeled in organizational setting by using the SocLab formal framework. Additionally simulation results, including an interesting tendency for a Free Rider model, will be given. SocLab is a platform for the modeling, simulation and analysis of cooperation relationships within social organizations - and more generally Sys-tems of Organized Action. Taking into account the fact that decision-making processes are no...

  1. Subsurface flow and transport of organic chemicals: an assessment of current modeling capability and priority directions for future research (1987-1995)

    Energy Technology Data Exchange (ETDEWEB)

    Streile, G.P.; Simmons, C.S.

    1986-09-01

    Theoretical and computer modeling capability for assessing the subsurface movement and fate of organic contaminants in groundwater was examined. Hence, this study is particularly concerned with energy-related, organic compounds that could enter a subsurface environment and move as components of a liquid phase separate from groundwater. The migration of organic chemicals that exist in an aqueous dissolved state is certainly a part of this more general scenario. However, modeling of the transport of chemicals in aqueous solution has already been the subject of several reviews. Hence, this study emphasizes the multiphase scenario. This study was initiated to focus on the important physicochemical processes that control the behavior of organic substances in groundwater systems, to evaluate the theory describing these processes, and to search for and evaluate computer codes that implement models that correctly conceptualize the problem situation. This study is not a code inventory, and no effort was made to identify every available code capable of representing a particular process.

  2. Development of a mechanistic model to represent the dynamics of liquid flow out of the rumen and to predict the rate of passage of liquid in dairy cattle.

    Science.gov (United States)

    Seo, S; Lanzas, C; Tedeschi, L O; Fox, D G

    2007-02-01

    A mechanistic and dynamic model was developed to represent the physiological aspects of liquid dynamics in the rumen and to quantitatively predict liquid flow out of the reticulorumen (RR). The model is composed of 2 inflows (water consumption and salivary secretion), one outflow (liquid flow through the reticulo-omasal orifice (ROO), and one in-and-out flow (liquid flux through the rumen wall). We assumed that liquid flow through the ROO was coordinated with the primary reticular contraction, which is characterized by its frequency, duration, and amplitude during eating, ruminating, and resting. A database was developed to predict each component of the model. A random coefficients model was used with studies as a random variable to identify significant variables. Parameters were estimated using the same procedure only if a random study effect was significant. The input variables for the model were dry matter intake, body weight, dietary dry matter, concentrate content in the diet, time spent eating, and time spent ruminating. Total water consumption (kg/d) was estimated as 4.893 x dry matter intake (kg/d), and 20% of the water consumed by drinking was assumed to bypass the RR. The salivary secretion rate was estimated to be 210 g/min during chewing. During ruminating, however, the salivation rate was assumed to be adjusted for the proportion of liquid in the rumen. Resting salivation was exponentially related to dry matter intake. Liquid efflux through the rumen wall was assumed to be the mean value in the database (4.6 kg/h). The liquid outflow rate (kg/h) was assumed to be a product of the frequency of the ROO opening, its duration per opening, and the amount of liquid passed per opening. Simulations of our model suggest that the ROO may open longer for each contraction cycle than had been previously reported (about 3 s) and that it is affected by dry matter intake, body weight, and total digesta in the rumen. When compared with 28 observations in 7 experiments

  3. Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways

    Science.gov (United States)

    Betts, R. A.; Golding, N.; Gonzalez, P.; Gornall, J.; Kahana, R.; Kay, G.; Mitchell, L.; Wiltshire, A.

    2015-03-01

    A new generation of an Earth system model now includes a number of land-surface processes directly relevant to analyzing potential impacts of climate change. This model, HadGEM2-ES, allows us to assess the impacts of climate change, multiple interactions, and feedbacks as the model is run. This paper discusses the results of century-scale HadGEM2-ES simulations from an impacts perspective - specifically, terrestrial ecosystems and water resources - for four different scenarios following the representative concentration pathways (RCPs), used in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013, 2014). Over the 21st century, simulated changes in global and continental-scale terrestrial ecosystems due to climate change appear to be very similar in all 4 RCPs, even though the level of global warming by the end of the 21st century ranges from 2 °C in the lowest scenario to 5.5° in the highest. A warming climate generally favours broadleaf trees over needleleaf, needleleaf trees over shrubs, and shrubs over herbaceous vegetation, resulting in a poleward shift of temperate and boreal forests and woody tundra in all scenarios. Although climate related changes are slightly larger in scenarios of greater warming, the largest differences between scenarios arise at regional scales as a consequence of different patterns of anthropogenic land cover change. In the model, the scenario with the lowest global warming results in the most extensive decline in tropical forest cover due to a large expansion of agriculture. Under all four RCPs, fire potential could increase across extensive land areas, particularly tropical and sub-tropical latitudes. River outflows are simulated to increase with higher levels of CO2 and global warming in all projections, with outflow increasing with mean temperature at the end of the 21st century at the global scale and in North America, Asia, and Africa. In South America, Europe, and Australia, the relationship

  4. Coping with perceived weight discrimination: testing a theoretical model for examining the relationship between perceived weight discrimination and depressive symptoms in a representative sample of individuals with obesity.

    Science.gov (United States)

    Spahlholz, J; Pabst, A; Riedel-Heller, S G; Luck-Sikorski, C

    2016-12-01

    The association between obesity and perceived weight discrimination has been investigated in several studies. Although there is evidence that perceived weight discrimination is associated with negative outcomes on psychological well-being, there is a lack of research examining possible buffering effects of coping strategies in dealing with experiences of weight discrimination. The present study aims to fill that gap. We examined the relationship between perceived weight discrimination and depressive symptoms and tested whether problem-solving strategies and/or avoidant coping strategies mediated this effect. Using structural equation modeling, we analyzed representative cross-sectional data of n=484 German-speaking individuals with obesity (BMI⩾30 kg m -2 ), aged 18 years and older. Results revealed a direct effect of perceived weight discrimination on depressive symptoms. Further, the data supported a mediational linkage for avoidant coping strategies, not for problem-solving strategies. Higher scores of perceived weight discrimination experiences were associated with both coping strategies, but only avoidant coping strategies were positively linked to more symptoms of depression. Perceived weight discrimination was associated with increased depressive symptoms both directly and indirectly through situational coping strategies. Avoidant coping has the potential to exacerbate depressive symptoms, whereas problem-solving strategies were ineffective in dealing with experiences of weight discrimination. We emphasize the importance of coping str