WorldWideScience

Sample records for model organism malaria

  1. The prisoner as model organism: malaria research at Stateville Penitentiary.

    Science.gov (United States)

    Comfort, Nathaniel

    2009-09-01

    In a military-sponsored research project begun during the Second World War, inmates of the Stateville Penitentiary in Illinois were infected with malaria and treated with experimental drugs that sometimes had vicious side effects. They were made into reservoirs for the disease and they provided a food supply for the mosquito cultures. They acted as secretaries and technicians, recording data on one another, administering malarious mosquito bites and experimental drugs to one another, and helping decide who was admitted to the project and who became eligible for early parole as a result of his participation. Thus, the prisoners were not simply research subjects; they were deeply constitutive of the research project. Because a prisoner's time on the project was counted as part of his sentence, and because serving on the project could shorten one's sentence, the project must be seen as simultaneously serving the functions of research and punishment. Michel Foucault wrote about such 'mixed mechanisms' in his Discipline and punish. His shining example of such a 'transparent' and subtle style of punishment was the panopticon, Jeremy Bentham's architectural invention of prison cellblocks arrayed around a central guard tower. Stateville prison was designed on Bentham's model; Foucault featured it in his own discussion. This paper, then, explores the power relations in this highly idiosyncratic experimental system, in which the various roles of model organism, reagent, and technician are all occupied by sentient beings who move among them fluidly. This, I argue, created an environment in the Stateville hospital wing more panoptic than that in the cellblocks. Research and punishment were completely interpenetrating, and mutually reinforcing.

  2. An open source business model for malaria.

    Directory of Open Access Journals (Sweden)

    Christine Årdal

    Full Text Available Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, 'closed' publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more "open source" approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.' President's Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related

  3. An open source business model for malaria.

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, 'closed' publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more "open source" approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.' President's Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new malaria

  4. An Open Source Business Model for Malaria

    Science.gov (United States)

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, ‘closed’ publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more “open source” approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.’ President’s Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new

  5. An ecohydrological model of malaria outbreaks

    Science.gov (United States)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-08-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  6. Malaria vaccines: immunity, models and monoclonal antibodies

    DEFF Research Database (Denmark)

    Hviid, Lars; Barfod, Lea

    2008-01-01

    Although experts in the field have agreed on the malaria vaccine technology roadmap that should be followed (http://www.malariavaccineroadmap.net/), the path towards an effective malaria vaccine remains littered with intellectual and practical pot-holes. The animal models that are currently...

  7. Malaria.

    Science.gov (United States)

    Sogunro, R

    1993-01-01

    The World Health Organization (WHO) has coordinated and supported the eradication of malaria in various countries of the world since 1957. Unlike some countries in the temperate zone which have been successful in eradicating the disease, malaria remains endemic in tropical and subtropical countries. In 1969 WHO recommended that, although eradication should remain an ultimate goal, malaria control operations may form a transitional phase in countries where eradication does not appear feasible. Malaria control, however, remains an impossible goal in many countries where the disease is endemic. Plasmodium falciparum is the predominant malaria pathogen responsible for severe disease and death. It is estimated that 90% of all malaria cases worldwide occur in Africa, where the majority of people live in highly endemic or endemic prone areas. Only about 12% of the population lives in risk-free or low-risk areas. Between one-third and two-thirds of all cases of fever among children are associated with malaria, and in some parts of Africa the case-fatality rate is as high 31.9% for infants and 20.4% for children. The malaria situation in the African continent is rapidly changing due to variants of P. falciparum that are resistant to chloroquine; mosquitoes that are resistant to insecticides; movement of nonimmune individuals to endemic areas; increasing short-term travel patterns; and ecological reasons. Malaria is also appearing in previously free areas because of technological (agricultural) advances. Adult and pediatric dosages of antimalarial drugs are suggested for the treatment and prevention of P. falciparum malaria.

  8. Geostatistical modelling of household malaria in Malawi

    Science.gov (United States)

    Chirombo, J.; Lowe, R.; Kazembe, L.

    2012-04-01

    Malaria is one of the most important diseases in the world today, common in tropical and subtropical areas with sub-Saharan Africa being the region most burdened, including Malawi. This region has the right combination of biotic and abiotic components, including socioeconomic, climatic and environmental factors that sustain transmission of the disease. Differences in these conditions across the country consequently lead to spatial variation in risk of the disease. Analysis of nationwide survey data that takes into account this spatial variation is crucial in a resource constrained country like Malawi for targeted allocation of scare resources in the fight against malaria. Previous efforts to map malaria risk in Malawi have been based on limited data collected from small surveys. The Malaria Indicator Survey conducted in 2010 is the most comprehensive malaria survey carried out in Malawi and provides point referenced data for the study. The data has been shown to be spatially correlated. We use Bayesian logistic regression models with spatial correlation to model the relationship between malaria presence in children and covariates such as socioeconomic status of households and meteorological conditions. This spatial model is then used to assess how malaria varies spatially and a malaria risk map for Malawi is produced. By taking intervention measures into account, the developed model is used to assess whether they have an effect on the spatial distribution of the disease and Bayesian kriging is used to predict areas where malaria risk is more likely to increase. It is hoped that this study can help reveal areas that require more attention from the authorities in the continuing fight against malaria, particularly in children under the age of five.

  9. Transferring the Malaria Epidemic Prediction Model to Users in East ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Transferring the Malaria Epidemic Prediction Model to Users in East Africa. In the highlands of East Africa, epidemic malaria is an emerging climate-related hazard that urgently needs addressing. Malaria incidence increased by 337% during the 1987 epidemic in Rwanda. In Tanzania, Uganda and Kenya, malaria incidence ...

  10. Modelling challenges in context: Lessons from malaria, HIV, and tuberculosis

    Directory of Open Access Journals (Sweden)

    Lauren M. Childs

    2015-03-01

    Full Text Available Malaria, HIV, and tuberculosis (TB collectively account for several million deaths each year, with all three ranking among the top ten killers in low-income countries. Despite being caused by very different organisms, malaria, HIV, and TB present a suite of challenges for mathematical modellers that are particularly pronounced in these infections, but represent general problems in infectious disease modelling, and highlight many of the challenges described throughout this issue. Here, we describe some of the unifying challenges that arise in modelling malaria, HIV, and TB, including variation in dynamics within the host, diversity in the pathogen, and heterogeneity in human contact networks and behaviour. Through the lens of these three pathogens, we provide specific examples of the other challenges in this issue and discuss their implications for informing public health efforts.

  11. Whole organism blood stage vaccines against malaria.

    Science.gov (United States)

    Stanisic, Danielle I; Good, Michael F

    2015-12-22

    Despite a century of research focused on the development and implementation of effective control strategies, infection with the malaria parasite continues to result in significant morbidity and mortality worldwide. An effective malaria vaccine is considered by many to be the definitive solution. Yet, after decades of research, we are still without a vaccine that is capable of inducing robust, long lasting protection in naturally exposed individuals. Extensive sub-unit vaccine development focused on the blood stage of the malaria parasite has thus far yielded disappointing results. There is now a renewed focus on whole parasite vaccine strategies, particularly as they may overcome some of the inherent weaknesses deemed to be associated with the sub-unit approach. This review discusses the whole parasite vaccine strategy focusing on the blood stage of the malaria parasite, with an emphasis on recent advances and challenges in the development of killed and live attenuated vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Stochastic Model for Malaria Transmission Dynamics

    Directory of Open Access Journals (Sweden)

    Rachel Waema Mbogo

    2018-01-01

    Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

  13. Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite.

    Science.gov (United States)

    Friesen, Johannes; Matuschewski, Kai

    2011-09-16

    Despite major efforts over the past 50 years to develop a malaria vaccine, no product has been licensed yet. Irradiated sporozoites are the benchmark for an experimental live-attenuated malaria vaccine that induces potent protection against re-infection in humans and animal models. Lasting protection can also be elicited by parasite attenuation via tailored genetic modification or drug cover leading to renewed interest in whole-organism vaccination strategies. In this study, we systematically compared the protective efficacy of different whole-organism vaccination approaches in the Plasmodium berghei/C57bl/6 rodent malaria model. We applied blood stage parasitemia and quantitative RT-PCR of liver parasite loads as two complementary primary endpoints of a malaria challenge infection. We were able to demonstrate similar potency of genetic attenuation, i.e., uis3(-) and p36p(-) parasites, and prophylactic drug cover, i.e., azithromycin, pyrimethamine, primaquine and chloroquine, during sporozoite exposure in comparison to irradiated sporozoites. Importantly, when animals were covered with the antibiotic azithromycin during sporozoite exposure we observed superior protection. On the other end, immunizations with heat-killed and over-irradiated sporozoites failed to confer any detectable protection. Together, we show that systematic pre-clinical evaluation and quantification of vaccine efficacy is vital for identification of the most potent whole organism anti-malaria vaccine strategy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Modelling climate change and malaria transmission.

    Science.gov (United States)

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  15. Malaria

    Science.gov (United States)

    2011-06-01

    halofantrine, and quinine combined with tetra- cycline. When atovaquone-proguanil is used to treat vivax malaria , it should be followed by...1 Introduction Definition Malaria is an infectious disease caused by coccidian pro- tozoa of the genus Plasmodium, and transmitted by infected...female anopheline mosquitoes. Plasmodium sp infecting humans include Plasmodium vivax, Plasmodium falci- parum, Plasmodium malariae , and Plasmodium ovale

  16. Malaria

    Science.gov (United States)

    Malaria is a serious disease caused by a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of death worldwide, but ... at risk. There are four different types of malaria caused by four related parasites. The most deadly ...

  17. Malaria.

    Science.gov (United States)

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  18. An eco-hydrologic model of malaria outbreaks

    Science.gov (United States)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-03-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission and their consideration alongside climatic datasets. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear eco-hydrologic model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  19. Climate change and malaria risk: An integrated modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Martens, W.J.M.; Rotmans, J.; Niessen, L.W. (RIVM Global Modelling and Sustainable Development Group and Environmental Forecasting Bureau, Bilthoven (Netherlands))

    1994-05-01

    In order to assess the impact of an anthropogenic climate change on the transmission of malaria, an integrated assessment model has been developed. In the model the direct effects of a change in temperature and precipitation on the transmission potential of a mosquito population are assessed by means of the vectorial capacity (the number of potentially infected contacts inflicted by the mosquito population per infectious person per day) and the related critical mosquito density. The most important parameters of the vectorial capacity and critical mosquito density are: the longevity of the mosquito, the frequency of taking blood meals from humans and the duration of the development of the parasite inside the mosquito. The effect of a human-induced climate change on human health is evaluated by assessing the change in malaria prevalence and disease burden. A sustainable development index, which is an aggregate of an environmental pressure indicator, a health indicator and a socio-economic development indicator is introduced and discussed. Such an index can be used to determine whether future projections are sustainable. The simulation results indicate a worldwide increase of potential malaria risk and an extension of the areas conducive to malaria transmission. In the endemic malarious areas of the tropics and subtropics, malaria prevalence and consequently the number of years of healthy life lost due to malaria may increase. The rate of temperature change is also expected to exceed the recommended target level of 0.1[degree]C per decade. In non-malarious areas the risk of introduction of malaria associated with imported cases of malaria increases to some extent as a result of the increasing importance of modern transport systems (e.g. air travel) in introducing malaria into receptive areas. However, sound interpretation of the change in malaria risk as simulated must be performed within the framework of local conditions.

  20. Malaria

    Science.gov (United States)

    ... medicines sold to help prevent malaria may be fake or less effective than necessary. If you are ... Pregnancy and Childbirth Women Men Seniors In The News Your Health Resources Healthcare Management End-of-Life ...

  1. Modelling malaria control by introduction of larvivorous fish.

    Science.gov (United States)

    Lou, Yijun; Zhao, Xiao-Qiang

    2011-10-01

    Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.

  2. Geo-additive modelling of malaria in Burundi

    Directory of Open Access Journals (Sweden)

    Gebhardt Albrecht

    2011-08-01

    Full Text Available Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007. Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated and unstructured (uncorrelated components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified

  3. Using Structured Additive Regression Models to Estimate Risk Factors of Malaria: Analysis of 2010 Malawi Malaria Indicator Survey Data

    Science.gov (United States)

    Chirombo, James; Lowe, Rachel; Kazembe, Lawrence

    2014-01-01

    Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915

  4. Analysis of a Malaria Model with Mosquito-Dependent Transmission ...

    Indian Academy of Sciences (India)

    In this paper, we discuss an ordinary differential equation mathematical model for the spread of malaria in human and mosquito population. We suppose the human population to act as a reservoir. Both the species follow a logistic population model. The transmission coefficient or the interaction coefficient of humans is ...

  5. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study.

    Science.gov (United States)

    Griffin, Jamie T; Bhatt, Samir; Sinka, Marianne E; Gething, Peter W; Lynch, Michael; Patouillard, Edith; Shutes, Erin; Newman, Robert D; Alonso, Pedro; Cibulskis, Richard E; Ghani, Azra C

    2016-04-01

    Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011-13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006-08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19-29) and a reduction in mortality rates of 40% (27-61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community level was predicted to reduce case incidence by

  6. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model.

    Science.gov (United States)

    Hagenlocher, Michael; Castro, Marcia C

    2015-01-01

    Outbreaks of vector-borne diseases (VBDs) impose a heavy burden on vulnerable populations. Despite recent progress in eradication and control, malaria remains the most prevalent VBD. Integrative approaches that take into account environmental, socioeconomic, demographic, biological, cultural, and political factors contributing to malaria risk and vulnerability are needed to effectively reduce malaria burden. Although the focus on malaria risk has increasingly gained ground, little emphasis has been given to develop quantitative methods for assessing malaria risk including malaria vulnerability in a spatial explicit manner. Building on a conceptual risk and vulnerability framework, we propose a spatial explicit approach for modeling relative levels of malaria risk - as a function of hazard, exposure, and vulnerability - in the United Republic of Tanzania. A logistic regression model was employed to identify a final set of risk factors and their contribution to malaria endemicity based on multidisciplinary geospatial information. We utilized a Geographic Information System for the construction and visualization of a malaria vulnerability index and its integration into a spatially explicit malaria risk map. The spatial pattern of malaria risk was very heterogeneous across the country. Malaria risk was higher in Mainland areas than in Zanzibar, which is a result of differences in both malaria entomological inoculation rate and prevailing vulnerabilities. Areas of high malaria risk were identified in the southeastern part of the country, as well as in two distinct "hotspots" in the northwestern part of the country bordering Lake Victoria, while concentrations of high malaria vulnerability seem to occur in the northwestern, western, and southeastern parts of the mainland. Results were visualized using both 10×10 km(2) grids and subnational administrative units. The presented approach makes an important contribution toward a decision support tool. By decomposing malaria

  7. Spatial modelling of malaria risk factors in Ruhuha sector in the east ...

    African Journals Online (AJOL)

    The relationship between malaria prevalence and malaria risk factors was assessed using a logistic regression model. Results clearly indicate that malaria infection increases with the proximity to irrigated farmland. It also increases with household size. It was also proven that lower housing quality (mud houses; unburnt ...

  8. Behaviors and Numerical Simulations of Malaria Dynamic Models with Transgenic Mosquitoes

    Directory of Open Access Journals (Sweden)

    Xiongwei Liu

    2014-01-01

    Full Text Available The release of transgenic mosquitoes to interact with wild ones is a promising method for controlling malaria. How to effectively release transgenic mosquitoes to prevent malaria is always a concern for researchers. This paper investigates two methods of releasing transgenic mosquitoes and proposes two epidemic models involving malaria patients, anopheles, wild mosquitoes, and transgenic mosquitoes based on system of continuous differential equations. A basic reproduction number R0 is defined for the models and it serves as a threshold parameter that predicts whether malaria will spread. By theoretical analysis of the dynamic behaviors of the models and numerical simulations, it is verified that malaria can be effectively controlled by the opportune release of transgenic mosquitoes; that is, when R0≤1, malaria will disappear; when R0>1, malaria will become an endemic disease in the target field.

  9. High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk?

    Directory of Open Access Journals (Sweden)

    Manisha A Kulkarni

    Full Text Available BACKGROUND: Malaria transmission rates in Africa can vary dramatically over the space of a few kilometres. This spatial heterogeneity reflects variation in vector mosquito habitat and presents an important obstacle to the efficient allocation of malaria control resources. Malaria control is further complicated by combinations of vector species that respond differently to control interventions. Recent modelling innovations make it possible to predict vector distributions and extrapolate malaria risk continentally, but these risk mapping efforts have not yet bridged the spatial gap to guide on-the-ground control efforts. METHODOLOGY/PRINCIPAL FINDINGS: We used Maximum Entropy with purpose-built, high resolution land cover data and other environmental factors to model the spatial distributions of the three dominant malaria vector species in a 94,000 km(2 region of east Africa. Remotely sensed land cover was necessary in each vector's niche model. Seasonality of precipitation and maximum annual temperature also contributed to niche models for Anopheles arabiensis and An. funestus s.l. (AUC 0.989 and 0.991, respectively, but cold season precipitation and elevation were important for An. gambiae s.s. (AUC 0.997. Although these niche models appear highly accurate, the critical test is whether they improve predictions of malaria prevalence in human populations. Vector habitat within 1.5 km of community-based malaria prevalence measurements interacts with elevation to substantially improve predictions of Plasmodium falciparum prevalence in children. The inclusion of the mechanistic link between malaria prevalence and vector habitat greatly improves the precision and accuracy of prevalence predictions (r(2 = 0.83 including vector habitat, or r(2 = 0.50 without vector habitat. Predictions including vector habitat are unbiased (observations vs. model predictions of prevalence: slope = 1.02. Using this model, we generate a high resolution map of predicted

  10. Potential public health impact of RTS,S malaria candidate vaccine in sub-Saharan Africa: a modelling study.

    Science.gov (United States)

    Sauboin, Christophe J; Van Bellinghen, Laure-Anne; Van De Velde, Nicolas; Van Vlaenderen, Ilse

    2015-12-23

    Adding malaria vaccination to existing interventions could help to reduce the health burden due to malaria. This study modelled the potential public health impact of the RTS,S candidate malaria vaccine in 42 malaria-endemic countries in sub-Saharan Africa. An individual-based Markov cohort model was constructed with three categories of malaria transmission intensity and six successive malaria immunity levels. The cycle time was 5 days. Vaccination was assumed to reduce the risk of infection, with no other effects. Vaccine efficacy was assumed to wane exponentially over time. Malaria incidence and vaccine efficacy data were taken from a Phase III trial of the RTS,S vaccine with 18 months of follow-up (NCT00866619). The model was calibrated to reproduce the malaria incidence in the control arm of the trial in each transmission category and published age distribution data. Individual-level heterogeneity in malaria exposure and vaccine protection was accounted for. Parameter uncertainty and variability were captured by using stochastic model transitions. The model followed a cohort from birth to 10 years of age without malaria vaccination, or with RTS,S malaria vaccination administered at age 6, 10 and 14 weeks or at age 6, 7-and-a-half and 9 months. Median and 95% confidence intervals were calculated for the number of clinical malaria cases, severe cases, malaria hospitalizations and malaria deaths expected to be averted by each vaccination strategy. Univariate sensitivity analysis was conducted by varying the values of key input parameters. Vaccination assuming the coverage of diphtheria-tetanus-pertussis (DTP3) at age 6, 10 and 14 weeks is estimated to avert over five million clinical malaria cases, 119,000 severe malaria cases, 98,600 malaria hospitalizations and 31,000 malaria deaths in the 42 countries over the 10-year period. Vaccination at age 6, 7-and-a-half and 9 months with 75% of DTP3 coverage is estimated to avert almost 12.5 million clinical malaria cases

  11. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    Science.gov (United States)

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    Science.gov (United States)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  13. Spatially explicit burden estimates of malaria in Tanzania: bayesian geostatistical modeling of the malaria indicator survey data.

    Directory of Open Access Journals (Sweden)

    Laura Gosoniu

    Full Text Available A national HIV/AIDS and malaria parasitological survey was carried out in Tanzania in 2007-2008. In this study the parasitological data were analyzed: i to identify climatic/environmental, socio-economic and interventions factors associated with child malaria risk and ii to produce a contemporary, high spatial resolution parasitaemia risk map of the country. Bayesian geostatistical models were fitted to assess the association between parasitaemia risk and its determinants. bayesian kriging was employed to predict malaria risk at unsampled locations across Tanzania and to obtain the uncertainty associated with the predictions. Markov chain Monte Carlo (MCMC simulation methods were employed for model fit and prediction. Parasitaemia risk estimates were linked to population data and the number of infected children at province level was calculated. Model validation indicated a high predictive ability of the geostatistical model, with 60.00% of the test locations within the 95% credible interval. The results indicate that older children are significantly more likely to test positive for malaria compared with younger children and living in urban areas and better-off households reduces the risk of infection. However, none of the environmental and climatic proxies or the intervention measures were significantly associated with the risk of parasitaemia. Low levels of malaria prevalence were estimated for Zanzibar island. The population-adjusted prevalence ranges from 0.29% in Kaskazini province (Zanzibar island to 18.65% in Mtwara region. The pattern of predicted malaria risk is similar with the previous maps based on historical data, although the estimates are lower. The predicted maps could be used by decision-makers to allocate resources and target interventions in the regions with highest burden of malaria in order to reduce the disease transmission in the country.

  14. Spatially explicit burden estimates of malaria in Tanzania: bayesian geostatistical modeling of the malaria indicator survey data.

    Science.gov (United States)

    Gosoniu, Laura; Msengwa, Amina; Lengeler, Christian; Vounatsou, Penelope

    2012-01-01

    A national HIV/AIDS and malaria parasitological survey was carried out in Tanzania in 2007-2008. In this study the parasitological data were analyzed: i) to identify climatic/environmental, socio-economic and interventions factors associated with child malaria risk and ii) to produce a contemporary, high spatial resolution parasitaemia risk map of the country. Bayesian geostatistical models were fitted to assess the association between parasitaemia risk and its determinants. bayesian kriging was employed to predict malaria risk at unsampled locations across Tanzania and to obtain the uncertainty associated with the predictions. Markov chain Monte Carlo (MCMC) simulation methods were employed for model fit and prediction. Parasitaemia risk estimates were linked to population data and the number of infected children at province level was calculated. Model validation indicated a high predictive ability of the geostatistical model, with 60.00% of the test locations within the 95% credible interval. The results indicate that older children are significantly more likely to test positive for malaria compared with younger children and living in urban areas and better-off households reduces the risk of infection. However, none of the environmental and climatic proxies or the intervention measures were significantly associated with the risk of parasitaemia. Low levels of malaria prevalence were estimated for Zanzibar island. The population-adjusted prevalence ranges from 0.29% in Kaskazini province (Zanzibar island) to 18.65% in Mtwara region. The pattern of predicted malaria risk is similar with the previous maps based on historical data, although the estimates are lower. The predicted maps could be used by decision-makers to allocate resources and target interventions in the regions with highest burden of malaria in order to reduce the disease transmission in the country.

  15. Central venous catheter use in severe malaria: time to reconsider the World Health Organization guidelines?

    NARCIS (Netherlands)

    Hanson, J.; Lam, S.W.K.; Mohanty, S.; Alam, S.; Hasan, M.M.U.; Lee, S.J.; Schultz, M.J.; Charunwatthana, P.; Cohen, S.; Kabir, A.; Mishra, S.; Day, N.P.J.; White, N.J.; Dondorp, A.M.

    2011-01-01

    ABSTRACT: BACKGROUND: To optimize the fluid status of adult patients with severe malaria, World Health Organization (WHO) guidelines recommend the insertion of a central venous catheter (CVC) and a target central venous pressure (CVP) of 0-5 cmH2O. However there are few data from clinical trials to

  16. Central venous catheter use in severe malaria: time to reconsider the World Health Organization guidelines?

    NARCIS (Netherlands)

    Hanson, Josh; Lam, Sophia Wk; Mohanty, Sanjib; Alam, Shamshul; Hasan, Md Mahtab Uddin; Lee, Sue J.; Schultz, Marcus J.; Charunwatthana, Prakaykaew; Cohen, Sophie; Kabir, Ashraf; Mishra, Saroj; Day, Nicholas Pj; White, Nicholas J.; Dondorp, Arjen M.

    2011-01-01

    To optimize the fluid status of adult patients with severe malaria, World Health Organization (WHO) guidelines recommend the insertion of a central venous catheter (CVC) and a target central venous pressure (CVP) of 0-5 cmH2O. However there are few data from clinical trials to support this

  17. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers

    OpenAIRE

    Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru

    2013-01-01

    Background Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the ...

  18. Modelling malaria treatment practices in Bangladesh using spatial statistics

    Directory of Open Access Journals (Sweden)

    Haque Ubydul

    2012-03-01

    Full Text Available Abstract Background Malaria treatment-seeking practices vary worldwide and Bangladesh is no exception. Individuals from 88 villages in Rajasthali were asked about their treatment-seeking practices. A portion of these households preferred malaria treatment from the National Control Programme, but still a large number of households continued to use drug vendors and approximately one fourth of the individuals surveyed relied exclusively on non-control programme treatments. The risks of low-control programme usage include incomplete malaria treatment, possible misuse of anti-malarial drugs, and an increased potential for drug resistance. Methods The spatial patterns of treatment-seeking practices were first examined using hot-spot analysis (Local Getis-Ord Gi statistic and then modelled using regression. Ordinary least squares (OLS regression identified key factors explaining more than 80% of the variation in control programme and vendor treatment preferences. Geographically weighted regression (GWR was then used to assess where each factor was a strong predictor of treatment-seeking preferences. Results Several factors including tribal affiliation, housing materials, household densities, education levels, and proximity to the regional urban centre, were found to be effective predictors of malaria treatment-seeking preferences. The predictive strength of each of these factors, however, varied across the study area. While education, for example, was a strong predictor in some villages, it was less important for predicting treatment-seeking outcomes in other villages. Conclusion Understanding where each factor is a strong predictor of treatment-seeking outcomes may help in planning targeted interventions aimed at increasing control programme usage. Suggested strategies include providing additional training for the Building Resources across Communities (BRAC health workers, implementing educational programmes, and addressing economic factors.

  19. Spatio-seasonal modeling of the incidence rate of malaria in Mozambique

    Directory of Open Access Journals (Sweden)

    Nhalungo Delino

    2008-10-01

    Full Text Available Abstract Background The objective was to study the seasonal effect on the spatial distribution of the incidence of malaria in children under 10 years old living in the Manhiça district, Mozambique. Methods The data of the clinical malaria incidence were obtained from a study of two cohorts of children followed from December 1996 to July 1999. The cases were obtained by the active detection method. Hierarchical Bayesian models were used to model the incidence of malaria, including spatial correlation nested to climatic season. The models were compared with the deviance information criterion. The age and gender of the children were also taken into account. Results The incidence of malaria is associated with age, period and climate season. The incidence presents a clear spatial pattern, with a higher incidence in the neighbourhoods situated in the north and northeast of the Manhiça area. The transmission of malaria is highest during the wet season but the spatial pattern of malaria does not differ from that during the dry season. Conclusion The incidence of malaria in Manhiça presents a spatial pattern which is independent of the seasonal climatic conditions. The climate modifies the incidence of malaria in the entire region but does not change the spatial pattern of the incidence of this disease. These findings may be useful for the planning of malaria control activities. These activities can be performed taking account that the neighbourhoods with more incidence of malaria do not change over the annual climate seasons.

  20. Malaria model with periodic mosquito birth and death rates.

    Science.gov (United States)

    Dembele, Bassidy; Friedman, Avner; Yakubu, Abdul-Aziz

    2009-07-01

    In this paper, we introduce a model of malaria, a disease that involves a complex life cycle of parasites, requiring both human and mosquito hosts. The novelty of the model is the introduction of periodic coefficients into the system of one-dimensional equations, which account for the seasonal variations (wet and dry seasons) in the mosquito birth and death rates. We define a basic reproduction number R(0) that depends on the periodic coefficients and prove that if R(0)1 then the disease is endemic and may even be periodic.

  1. Predicting factors for malaria re-introduction: an applied model in an elimination setting to prevent malaria outbreaks.

    Science.gov (United States)

    Ranjbar, Mansour; Shoghli, Alireza; Kolifarhood, Goodarz; Tabatabaei, Seyed Mehdi; Amlashi, Morteza; Mohammadi, Mahdi

    2016-03-02

    Malaria re-introduction is a challenge in elimination settings. To prevent re-introduction, receptivity, vulnerability, and health system capacity of foci should be monitored using appropriate tools. This study aimed to design an applicable model to monitor predicting factors of re-introduction of malaria in highly prone areas. This exploratory, descriptive study was conducted in a pre-elimination setting with a high-risk of malaria transmission re-introduction. By using nominal group technique and literature review, a list of predicting indicators for malaria re-introduction and outbreak was defined. Accordingly, a checklist was developed and completed in the field for foci affected by re-introduction and for cleared-up foci as a control group, for a period of 12 weeks before re-introduction and for the same period in the previous year. Using field data and analytic hierarchical process (AHP), each variable and its sub-categories were weighted, and by calculating geometric means for each sub-category, score of corresponding cells of interaction matrices, lower and upper threshold of different risks strata, including low and mild risk of re-introduction and moderate and high risk of malaria outbreaks, were determined. The developed predictive model was calibrated through resampling with different sets of explanatory variables using R software. Sensitivity and specificity of the model were calculated based on new samples. Twenty explanatory predictive variables of malaria re-introduction were identified and a predictive model was developed. Unpermitted immigrants from endemic neighbouring countries were determined as a pivotal factor (AHP score: 0.181). Moreover, quality of population movement (0.114), following malaria transmission season (0.088), average daily minimum temperature in the previous 8 weeks (0.062), an outdoor resting shelter for vectors (0.045), and rainfall (0.042) were determined. Positive and negative predictive values of the model were 81.8 and

  2. Optimal control in a model of malaria with differential susceptibility

    Science.gov (United States)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.

  3. Behaviors and Numerical Simulations of Malaria Dynamic Models with Transgenic Mosquitoes

    OpenAIRE

    Liu, Xiongwei; Xu, Junjun; Wang, Xiao; Cheng, Lizhi

    2013-01-01

    The release of transgenic mosquitoes to interact with wild ones is a promising method for controlling malaria. How to effectively release transgenic mosquitoes to prevent malaria is always a concern for researchers. This paper investigates two methods of releasing transgenic mosquitoes and proposes two epidemic models involving malaria patients, anopheles, wild mosquitoes, and transgenic mosquitoes based on system of continuous differential equations. A basic reproduction number ${\\mathbf{R}}...

  4. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence.

    Science.gov (United States)

    Anwar, Mohammad Y; Lewnard, Joseph A; Parikh, Sunil; Pitzer, Virginia E

    2016-11-22

    Malaria remains endemic in Afghanistan. National control and prevention strategies would be greatly enhanced through a better ability to forecast future trends in disease incidence. It is, therefore, of interest to develop a predictive tool for malaria patterns based on the current passive and affordable surveillance system in this resource-limited region. This study employs data from Ministry of Public Health monthly reports from January 2005 to September 2015. Malaria incidence in Afghanistan was forecasted using autoregressive integrated moving average (ARIMA) models in order to build a predictive tool for malaria surveillance. Environmental and climate data were incorporated to assess whether they improve predictive power of models. Two models were identified, each appropriate for different time horizons. For near-term forecasts, malaria incidence can be predicted based on the number of cases in the four previous months and 12 months prior (Model 1); for longer-term prediction, malaria incidence can be predicted using the rates 1 and 12 months prior (Model 2). Next, climate and environmental variables were incorporated to assess whether the predictive power of proposed models could be improved. Enhanced vegetation index was found to have increased the predictive accuracy of longer-term forecasts. Results indicate ARIMA models can be applied to forecast malaria patterns in Afghanistan, complementing current surveillance systems. The models provide a means to better understand malaria dynamics in a resource-limited context with minimal data input, yielding forecasts that can be used for public health planning at the national level.

  5. [Study on meteorological factors-based neural network model of malaria].

    Science.gov (United States)

    Gao, Chun-yu; Xiong, Hong-yan; Yi, Dong; Chai, Guang-jun; Yang, Xiao-wei; Liu, Li

    2003-09-01

    In order to provide reliable data for strategies development on prevention, a meteorological factors-based predicating model for malaria forecast was studied. Data on malaria occurrence and climate changes from 1994 to 1999 in counties in Yunnan province was collected and analyzed with software packages of FoxPro 6.0 and Excel 5.0. The forecasting model for malaria occurrence was established, using the Neural Network Toolbox of Matlab 6.1 software package. In the studies of forecasting model, data of malaria and meteorological factors from 1994 to 1999 in Honghe state in Yunnan province was chosen. The meteorological factors included average monthly pressure, air temperature, relative humidity, monthly maximum air temperature, minimum air temperature, rainfall, rainday, evaporation and sunshine hours in the study. The established forecasting model was also tested and verified. The BP network model was established according to data of diseases and meteorological factors from Honghe state in Yunnan province. After training the neural network for 100 times, the error of performance decreased from 3.23608 to 0.035862. Verified by fact data of malaria, the efficiency of malaria forecasting was 84.85%. Neural network model was effective for forecasting malaria. It showed advantages as: strong ability for analysis, lower claim for data, convenient and easy to apply etc. Neural network model might be used as a new method for malaria forecasting.

  6. A mathematical model for malaria transmission relating global warming and local socioeconomic conditions

    Directory of Open Access Journals (Sweden)

    Hyun M Yang

    2001-06-01

    Full Text Available OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.

  7. Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine.

    Science.gov (United States)

    Dembele, Bassidy; Friedman, Avner; Yakubu, Abdul-Aziz

    2010-05-01

    In this paper, we introduce a deterministic malaria model for determining the drug administration protocol that leads to the smallest first malaria episodes during the wet season. To explore the effects of administering the malaria drug on different days during the wet season while minimizing the potential harmful effects of drug overdose, we define 40 drug administration protocols. Our results fit well with the clinical studies of Coulibaly et al. at a site in Mali. In addition, we provide protocols that lead to smaller number of first malaria episodes during the wet season than the protocol of Coulibaly et al.

  8. Experimental models in vaccine research: malaria and leishmaniasis.

    Science.gov (United States)

    Teixeira, C; Gomes, R

    2013-02-01

    Animal models have a long history of being useful tools, not only to test and select vaccines, but also to help understand the elaborate details of the immune response that follows infection. Different models have been extensively used to investigate putative immunological correlates of protection against parasitic diseases that are important to reach a successful vaccine. The greatest challenge has been the improvement and adaptation of these models to reflect the reality of human disease and the screening of vaccine candidates capable of overcoming the challenge of natural transmission. This review will discuss the advantages and challenges of using experimental animal models for vaccine development and how the knowledge achieved can be extrapolated to human disease by looking into two important parasitic diseases: malaria and leishmaniasis.

  9. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya

    NARCIS (Netherlands)

    Stuckey, E.M.; Stevenson, J.; Galactionova, K.; Baidjoe, A.Y.; Bousema, T.; Odongo, W.; Kariuki, S.; Drakeley, C.; Smith, T.A.; Cox, J.; Chitnis, N.

    2014-01-01

    INTRODUCTION: Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in

  10. Assessing the impact of model and climate uncertainty in malaria simulations for the Kenyan Highlands.

    Science.gov (United States)

    Tompkins, A. M.; Thomson, M. C.

    2017-12-01

    Simulations of the impact of climate variations on a vector-bornedisease such as malaria are subject to a number of sources ofuncertainty. These include the model structure and parameter settingsin addition to errors in the climate data and the neglect of theirspatial heterogeneity, especially over complex terrain. We use aconstrained genetic algorithm to confront these two sources ofuncertainty for malaria transmission in the highlands of Kenya. Thetechnique calibrates the parameter settings of a process-based,mathematical model of malaria transmission to vary within theirassessed level of uncertainty and also allows the calibration of thedriving climate data. The simulations show that in highland settingsclose to the threshold for sustained transmission, the uncertainty inclimate is more important to address than the malaria modeluncertainty. Applications of the coupled climate-malaria modelling system are briefly presented.

  11. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria?

    Directory of Open Access Journals (Sweden)

    Blandine Franke-Fayard

    Full Text Available The sequestration of Plasmodium falciparum-infected red blood cells (irbcs in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dissimilarities of P. berghei and P. falciparum sequestration.

  12. Malaria in pregnancy: the relevance of animal models for vaccine development.

    Science.gov (United States)

    Doritchamou, Justin; Teo, Andrew; Fried, Michal; Duffy, Patrick E

    2017-10-06

    Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide-treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population.

  13. Challenges for modelling spatio-temporal variations of malaria risk in Malawi

    Science.gov (United States)

    Lowe, R.; Chirombo, J.; Tompkins, A. M.

    2012-04-01

    Malaria is the leading cause of morbidity and mortality in Malawi with more than 6 million episodes reported each year. Malaria poses a huge economic burden to Malawi in terms of the direct cost of treating malaria patients and also indirect costs resulting from workdays lost in agriculture and industry and absenteeism from school. Malawi implements malaria control activities within the Roll Back Malaria framework, with the objective to provide those most at risk (i.e. children under five years, pregnant woman and individuals with suppressed immune systems) access to personal and community protective measures. However, at present there is no mechanism by which to target the most 'at risk' populations ahead of an impending epidemic. Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the mosquito and the availability of breeding sites, but also socio-economic conditions such as levels of urbanisation, poverty and education, which influence human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for modelling of malaria risk in space and time. Using an age-stratified spatio-temporal dataset of malaria cases at the district level from July 2004 - June 2011, we use a spatio-temporal modelling framework to model variations in malaria risk in Malawi. Climatic and topographic variations are accounted for using an interpolation method to relate gridded products to administrative districts. District level data is tested in the model to account for confounding factors, including the proportion of the population living in urban areas; residing in traditional housing; with no toilet facilities; who do not attend school, etc, the number of health facilities per population and yearly estimates of insecticide-treated mosquito net distribution. In order to account for

  14. Modelling malaria incidence by an autoregressive distributed lag model with spatial component.

    Science.gov (United States)

    Laguna, Francisco; Grillet, María Eugenia; León, José R; Ludeña, Carenne

    2017-08-01

    The influence of climatic variables on the dynamics of human malaria has been widely highlighted. Also, it is known that this mosquito-borne infection varies in space and time. However, when the data is spatially incomplete most popular spatio-temporal methods of analysis cannot be applied directly. In this paper, we develop a two step methodology to model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, and humidity as well as the regional sea surface temperatures (SST) in the northern coast of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our results show that the best model to account for the variations of malaria incidence from 2001 to 2008 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model that included the accumulated local precipitation in combination with the local maximum temperature of the preceding month as positive regressors. Additionally, we show that although malaria dynamics is highly heterogeneous in space, a detailed analysis of the estimated spatial parameters in our model yield important insights regarding the joint behavior of the disease incidence across the different counties in our study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modelling co-infection with malaria and lymphatic filariasis.

    Directory of Open Access Journals (Sweden)

    Hannah C Slater

    Full Text Available Malaria and lymphatic filariasis (LF continue to cause a considerable public health burden globally and are co-endemic in many regions of sub-Saharan Africa. These infections are transmitted by the same mosquito species which raises important questions about optimal vector control strategies in co-endemic regions, as well as the effect of the presence of each infection on endemicity of the other; there is currently little consensus on the latter. The need for comprehensive modelling studies to address such questions is therefore significant, yet very few have been undertaken to date despite the recognised explanatory power of reliable dynamic mathematical models. Here, we develop a malaria-LF co-infection modelling framework that accounts for two key interactions between these infections, namely the increase in vector mortality as LF mosquito prevalence increases and the antagonistic Th1/Th2 immune response that occurs in co-infected hosts. We consider the crucial interplay between these interactions on the resulting endemic prevalence when introducing each infection in regions where the other is already endemic (e.g. due to regional environmental change, and the associated timescale for such changes, as well as effects on the basic reproduction number R₀ of each disease. We also highlight potential perverse effects of vector controls on human infection prevalence in co-endemic regions, noting that understanding such effects is critical in designing optimal integrated control programmes. Hence, as well as highlighting where better data are required to more reliably address such questions, we provide an important framework that will form the basis of future scenario analysis tools used to plan and inform policy decisions on intervention measures in different transmission settings.

  16. Use of Poisson spatiotemporal regression models for the Brazilian Amazon Forest: malaria count data.

    Science.gov (United States)

    Achcar, Jorge Alberto; Martinez, Edson Zangiacomi; Souza, Aparecida Doniseti Pires de; Tachibana, Vilma Mayumi; Flores, Edilson Ferreira

    2011-01-01

    Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using bayesian spatiotemporal methods. We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the bayesian paradigm is a good strategy for modeling malaria counts.

  17. The Blantyre Integrated Malaria Initiative: a model for effective ...

    African Journals Online (AJOL)

    [Introduction]: The Blantyre Integrated Malaria Initiative (BIMI) is a district-wide malaria-control effort, supported jointly by the Government of Malawi and the United States Agency for International Development (USAID). BIMI was established in Blantyre District, Malawi in 1998 to promote sustainable and effective strategies to ...

  18. Modelling of Malaria Risk Areas in Ghana by using Environmental ...

    African Journals Online (AJOL)

    Michael

    2015-12-02

    Dec 2, 2015 ... areas (Snow et al., 2002; Anon., 2003a; Kiszewski et al., 2004b). Malaria is quite unstable and epidemic ... malaria risk maps for Africa (Snow et al., 1996;. Anon., 2008), since such maps can assist in ..... Control, Urban Environment Pollution and Application of GIS and Remote Sensing in Environmental ...

  19. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials.

    Science.gov (United States)

    Steel, Ryan Wj; Kappe, Stefan Hi; Sack, Brandon K

    2016-12-01

    Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.

  20. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  1. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana.

    Science.gov (United States)

    Krefis, Anne Caroline; Schwarz, Norbert Georg; Krüger, Andreas; Fobil, Julius; Nkrumah, Bernard; Acquah, Samuel; Loag, Wibke; Sarpong, Nimako; Adu-Sarkodie, Yaw; Ranft, Ulrich; May, Jürgen

    2011-02-01

    Climatic factors influence the incidence of vector-borne diseases such as malaria. They modify the abundance of mosquito populations, the length of the extrinsic parasite cycle in the mosquito, the malarial dynamics, and the emergence of epidemics in areas of low endemicity. The objective of this study was to investigate temporal associations between weekly malaria incidence in 1,993 children < 15 years of age and weekly rainfall. A time series analysis was conducted by using cross-correlation function and autoregressive modeling. The regression model showed that the level of rainfall predicted the malaria incidence after a time lag of 9 weeks (mean = 60 days) and after a time lag between one and two weeks. The analyses provide evidence that high-resolution precipitation data can directly predict malaria incidence in a highly endemic area. Such models might enable the development of early warning systems and support intervention measures.

  2. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis.

    Science.gov (United States)

    Ebhuoma, Osadolor; Gebreslasie, Michael; Magubane, Lethumusa

    The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w 0 =-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Geostatistical modelling of malaria indicator survey data to assess the effects of interventions on the geographical distribution of malaria prevalence in children less than 5 years in Uganda.

    Science.gov (United States)

    Ssempiira, Julius; Nambuusi, Betty; Kissa, John; Agaba, Bosco; Makumbi, Fredrick; Kasasa, Simon; Vounatsou, Penelope

    2017-01-01

    Malaria burden in Uganda has declined disproportionately among regions despite overall high intervention coverage across all regions. The Uganda Malaria Indicator Survey (MIS) 2014-15 was the second nationally representative survey conducted to provide estimates of malaria prevalence among children less than 5 years, and to track the progress of control interventions in the country. In this present study, 2014-15 MIS data were analysed to assess intervention effects on malaria prevalence in Uganda among children less than 5 years, assess intervention effects at regional level, and estimate geographical distribution of malaria prevalence in the country. Bayesian geostatistical models with spatially varying coefficients were used to determine the effect of interventions on malaria prevalence at national and regional levels. Spike-and-slab variable selection was used to identify the most important predictors and forms. Bayesian kriging was used to predict malaria prevalence at unsampled locations. Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITN) ownership had a significant but varying protective effect on malaria prevalence. However, no effect was observed for Artemisinin Combination-based Therapies (ACTs). Environmental factors, namely, land cover, rainfall, day and night land surface temperature, and area type were significantly associated with malaria prevalence. Malaria prevalence was higher in rural areas, increased with the child's age, and decreased with higher household socioeconomic status and higher level of mother's education. The highest prevalence of malaria in children less than 5 years was predicted for regions of East Central, North East and West Nile, whereas the lowest was predicted in Kampala and South Western regions, and in the mountainous areas in Mid-Western and Mid-Eastern regions. IRS and ITN ownership are important interventions against malaria prevalence in children less than 5 years in Uganda. The varying effects of the

  4. Geostatistical modelling of malaria indicator survey data to assess the effects of interventions on the geographical distribution of malaria prevalence in children less than 5 years in Uganda.

    Directory of Open Access Journals (Sweden)

    Julius Ssempiira

    Full Text Available Malaria burden in Uganda has declined disproportionately among regions despite overall high intervention coverage across all regions. The Uganda Malaria Indicator Survey (MIS 2014-15 was the second nationally representative survey conducted to provide estimates of malaria prevalence among children less than 5 years, and to track the progress of control interventions in the country. In this present study, 2014-15 MIS data were analysed to assess intervention effects on malaria prevalence in Uganda among children less than 5 years, assess intervention effects at regional level, and estimate geographical distribution of malaria prevalence in the country.Bayesian geostatistical models with spatially varying coefficients were used to determine the effect of interventions on malaria prevalence at national and regional levels. Spike-and-slab variable selection was used to identify the most important predictors and forms. Bayesian kriging was used to predict malaria prevalence at unsampled locations.Indoor Residual Spraying (IRS and Insecticide Treated Nets (ITN ownership had a significant but varying protective effect on malaria prevalence. However, no effect was observed for Artemisinin Combination-based Therapies (ACTs. Environmental factors, namely, land cover, rainfall, day and night land surface temperature, and area type were significantly associated with malaria prevalence. Malaria prevalence was higher in rural areas, increased with the child's age, and decreased with higher household socioeconomic status and higher level of mother's education. The highest prevalence of malaria in children less than 5 years was predicted for regions of East Central, North East and West Nile, whereas the lowest was predicted in Kampala and South Western regions, and in the mountainous areas in Mid-Western and Mid-Eastern regions.IRS and ITN ownership are important interventions against malaria prevalence in children less than 5 years in Uganda. The varying

  5. Mapping Risk of Malaria Transmission in Mainland Portugal Using a Mathematical Modelling Approach.

    Science.gov (United States)

    Gomes, Eduardo; Capinha, César; Rocha, Jorge; Sousa, Carla

    2016-01-01

    Malaria is currently one of the world´s major health problems. About a half-million deaths are recorded every year. In Portugal, malaria cases were significantly high until the end of the 1950s but the disease was considered eliminated in 1973. In the past few years, endemic malaria cases have been recorded in some European countries. With the increasing human mobility from countries with endemic malaria to Portugal, there is concern about the resurgence of this disease in the country. Here, we model and map the risk of malaria transmission for mainland Portugal, considering 3 different scenarios of existing imported infections. This risk assessment resulted from entomological studies on An. atroparvus, the only known mosquito capable of transmitting malaria in the study area. We used the malariogenic potential (determined by receptivity, infectivity and vulnerability) applied over geospatial data sets to estimate spatial variation in malaria risk. The results suggest that the risk exists, and the hotspots are concentrated in the northeast region of the country and in the upper and lower Alentejo regions.

  6. Mapping Risk of Malaria Transmission in Mainland Portugal Using a Mathematical Modelling Approach

    Science.gov (United States)

    Capinha, César; Rocha, Jorge; Sousa, Carla

    2016-01-01

    Malaria is currently one of the world´s major health problems. About a half-million deaths are recorded every year. In Portugal, malaria cases were significantly high until the end of the 1950s but the disease was considered eliminated in 1973. In the past few years, endemic malaria cases have been recorded in some European countries. With the increasing human mobility from countries with endemic malaria to Portugal, there is concern about the resurgence of this disease in the country. Here, we model and map the risk of malaria transmission for mainland Portugal, considering 3 different scenarios of existing imported infections. This risk assessment resulted from entomological studies on An. atroparvus, the only known mosquito capable of transmitting malaria in the study area. We used the malariogenic potential (determined by receptivity, infectivity and vulnerability) applied over geospatial data sets to estimate spatial variation in malaria risk. The results suggest that the risk exists, and the hotspots are concentrated in the northeast region of the country and in the upper and lower Alentejo regions. PMID:27814371

  7. Eradicating malaria.

    Science.gov (United States)

    Breman, Joel G

    2009-01-01

    The renewed interest in malaria research and control is based on the intolerable toll this disease takes on young children and pregnant women in Africa and other vulnerable populations; 150 to 300 children die each hour from malaria amounting to 1 to 2 million deaths yearly. Malaria-induced neurologic impairment, anemia, hypoglycemia, and low birth weight imperil normal development and survival. Resistance of Plasmodium falciparum to drugs and Anopheles mosquitoes to insecticides has stimulated discovery and development of artemisinin-based combination treatments (ACTs) and other drugs, long-lasting insecticide-treated bednets (with synthetic pyrethroids) and a search for non-toxic, long-lasting, affordable insecticides for indoor residual spraying (IRS). Malaria vaccine development and testing are progressing rapidly and a recombinant protein (RTS,S/AS02A) directed against the circumsporozoite protein is soon to be in Phase 3 trials. Support for malaria control, research, and advocacy through the Global Fund for HIV/AIDS, Tuberculosis and Malaria, the U.S. President's Malaria Initiative, the Bill & Melinda Gates Foundation, WHO and other organizations is resulting in decreasing morbidity and mortality in many malarious countries. Sustainability of effective programs through training and institution strengthening will be the key to malaria elimination coupled with improved surveillance and targeted research.

  8. Determination of the Processes Driving the Acquisition of Immunity to Malaria Using a Mathematical Transmission Model

    OpenAIRE

    Filipe, Jo?o A. N; Riley, Eleanor M; Drakeley, Christopher J; Sutherland, Colin J; Ghani, Azra C

    2007-01-01

    Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of protection. Using mathematical models, we seek to better understand the processes that determine observed epidemiological patterns. We have developed an age-s...

  9. Central venous catheter use in severe malaria: time to reconsider the World Health Organization guidelines?

    Directory of Open Access Journals (Sweden)

    Hanson Josh

    2011-11-01

    Full Text Available Abstract Background To optimize the fluid status of adult patients with severe malaria, World Health Organization (WHO guidelines recommend the insertion of a central venous catheter (CVC and a target central venous pressure (CVP of 0-5 cmH2O. However there are few data from clinical trials to support this recommendation. Methods Twenty-eight adult Indian and Bangladeshi patients admitted to the intensive care unit with severe falciparum malaria were enrolled in the study. All patients had a CVC inserted and had regular CVP measurements recorded. The CVP measurements were compared with markers of disease severity, clinical endpoints and volumetric measures derived from transpulmonary thermodilution. Results There was no correlation between the admission CVP and patient outcome (p = 0.67 or disease severity (p = 0.33. There was no correlation between the baseline CVP and the concomitant extravascular lung water (p = 0.62, global end diastolic volume (p = 0.88 or cardiac index (p = 0.44. There was no correlation between the baseline CVP and the likelihood of a patient being fluid responsive (p = 0.37. On the occasions when the CVP was in the WHO target range patients were usually hypovolaemic and often had pulmonary oedema by volumetric measures. Seven of 28 patients suffered a complication of the CVC insertion, although none were fatal. Conclusion The WHO recommendation for the routine insertion of a CVC, and the maintenance of a CVP of 0-5 cmH2O in adults with severe malaria, should be reconsidered.

  10. Climate and health: observation and modeling of malaria in the Ferlo (Senegal).

    Science.gov (United States)

    Diouf, Ibrahima; Deme, Abdoulaye; Ndione, Jacques-André; Gaye, Amadou Thierno; Rodríguez-Fonseca, Belén; Cissé, Moustapha

    2013-01-01

    The aim of this work, undertaken in the framework of QWeCI (Quantifying Weather and Climate Impacts on health in the developing countries) project, is to study how climate variability could influence malaria seasonal incidence. It will also assess the evolution of vector-borne diseases such as malaria by simulation analysis of climate models according to various climate scenarios for the next years. Climate variability seems to be determinant for the risk of malaria development (Freeman and Bradley, 1996 [1], Lindsay and Birley, 1996 [2], Kuhn et al., 2005 [3]). Climate can impact on the epidemiology of malaria by several mechanisms, directly, via the development rates and survival of both pathogens and vectors, and indirectly, through changes in vegetation and land surface characteristics such as the variability of breeding sites like ponds. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models.

    Science.gov (United States)

    Alegana, Victor A; Atkinson, Peter M; Wright, Jim A; Kamwi, Richard; Uusiku, Petrina; Katokele, Stark; Snow, Robert W; Noor, Abdisalan M

    2013-12-01

    As malaria transmission declines, it becomes increasingly important to monitor changes in malaria incidence rather than prevalence. Here, a spatio-temporal model was used to identify constituencies with high malaria incidence to guide malaria control. Malaria cases were assembled across all age groups along with several environmental covariates. A Bayesian conditional-autoregressive model was used to model the spatial and temporal variation of incidence after adjusting for test positivity rates and health facility utilisation. Of the 144,744 malaria cases recorded in Namibia in 2009, 134,851 were suspected and 9893 were parasitologically confirmed. The mean annual incidence based on the Bayesian model predictions was 13 cases per 1000 population with the highest incidence predicted for constituencies bordering Angola and Zambia. The smoothed maps of incidence highlight trends in disease incidence. For Namibia, the 2009 maps provide a baseline for monitoring the targets of pre-elimination. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria.

    NARCIS (Netherlands)

    Brussee, J.M.; Yeo, T.W.; Lampah, D.A.; Anstey, N.M.; Duffull, S.B.

    2016-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine,

  13. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  14. Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Sokhna Keita Alassane

    Full Text Available Cerebral malaria (CM is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173 infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM symptoms while the majority (55% of the remaining rats developed severe anemia and hyperparasitemia (NoECM. These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.

  15. Implementation of Malaria Dynamic Models in Municipality Level Early Warning Systems in Colombia. Part I: Description of Study Sites

    Science.gov (United States)

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.

    2014-01-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460

  16. Vaccine approaches to malaria control and elimination: Insights from mathematical models.

    Science.gov (United States)

    White, Michael T; Verity, Robert; Churcher, Thomas S; Ghani, Azra C

    2015-12-22

    A licensed malaria vaccine would provide a valuable new tool for malaria control and elimination efforts. Several candidate vaccines targeting different stages of the malaria parasite's lifecycle are currently under development, with one candidate, RTS,S/AS01 for the prevention of Plasmodium falciparum infection, having recently completed Phase III trials. Predicting the public health impact of a candidate malaria vaccine requires using clinical trial data to estimate the vaccine's efficacy profile--the initial efficacy following vaccination and the pattern of waning of efficacy over time. With an estimated vaccine efficacy profile, the effects of vaccination on malaria transmission can be simulated with the aid of mathematical models. Here, we provide an overview of methods for estimating the vaccine efficacy profiles of pre-erythrocytic vaccines and transmission-blocking vaccines from clinical trial data. In the case of RTS,S/AS01, model estimates from Phase II clinical trial data indicate a bi-phasic exponential profile of efficacy against infection, with efficacy waning rapidly in the first 6 months after vaccination followed by a slower rate of waning over the next 4 years. Transmission-blocking vaccines have yet to be tested in large-scale Phase II or Phase III clinical trials so we review ongoing work investigating how a clinical trial might be designed to ensure that vaccine efficacy can be estimated with sufficient statistical power. Finally, we demonstrate how parameters estimated from clinical trials can be used to predict the impact of vaccination campaigns on malaria using a mathematical model of malaria transmission. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Of mice and women: rodent models of placental malaria

    DEFF Research Database (Denmark)

    Hviid, Lars; Marinho, Claudio R F; Staalsoe, Trine

    2010-01-01

    Pregnant women are at increased malaria risk. The infections are characterized by placental accumulation of infected erythrocytes (IEs) with adverse consequences for mother and baby. Placental IE sequestration in the intervillous space is mediated by variant surface antigens (VSAs) selectively ex...

  18. Analysis of a malaria model with mosquito-dependent transmission ...

    Indian Academy of Sciences (India)

    Further, it is observed that as the immigration constant increases, it leads to a rise in infected humans, giving an endemic shape to the disease. Keywords. Transmission coefficient for humans; immigration; reservoir class of humans. 1. ...... [2] Bailey N T J, The biomathematics of malaria (1982) (London: Griffin) pp. 58–93.

  19. Efficacy and safety evaluation of a novel trioxaquine in the management of cerebral malaria in a mouse model.

    Science.gov (United States)

    Odhiambo, Onyango C; Wamakima, Hannah N; Magoma, Gabriel N; Kirira, Peter G; Malala, Bonface J; Kimani, Francis T; Muregi, Francis W

    2017-07-03

    The emergence of multidrug-resistant strains of Plasmodium falciparum poses a great threat of increased fatalities in cases of cerebral and other forms of severe malaria infections in which parenteral artesunate monotherapy is the current drug of choice. The study aimed to investigate in a mouse model of human cerebral malaria whether a trioxaquine chemically synthesized by covalent linking of a 4,7-dichloroquinoline pharmacophore to artesunate through a recent drug development approach termed 'covalent bitherapy' could improve the curative outcomes in cerebral malaria infections. Human cerebral malaria rodent model, the C57BL/6 male mice were infected intraperitoneally (ip) with Plasmodium berghei ANKA and intravenously (iv) treated with the trioxaquine from day 8 post-infection (pi) at 12.5 and 25 mg/kg, respectively, twice a day for 3 days. Treatments with the trioxaquine precursors (artesunate and 4,7-dichloroquine), and quinine were also included as controls. In vivo safety evaluation for the trioxaquine was done according to Organization for Economic Co-operation and Development (OECD) guidelines 423, where female Swiss albino mice were orally administered with either 300 or 2000 mg/kg of the trioxaquine and monitored for signs of severity, and or mortality for 14 days post-treatment. The trioxaquine showed a potent and a rapid antiplasmodial activity with 80% parasite clearance in the first 24 h for the two dosages used. Long-term parasitaemia monitoring showed a total parasite clearance as the treated mice survived beyond 60 days post-treatment, with no recrudescence observed. Artesunate treated mice showed recrudescence 8 days post-treatment, with all mice in this group succumbing to the infection. Also, 4,7-dichloroquinoline and quinine did not show any significant parasitaemia suppression in the first 24 h post-treatment, with the animals succumbing to the infection. Covalent bitherapy proves to be a viable source of urgently needed new anti

  20. Simplified Model for the Population Dynamics Involved in a Malaria Crisis

    International Nuclear Information System (INIS)

    Kenfack-Jiotsa, A.; Fotsa-Ngaffo, F.

    2009-12-01

    We adapt a simple model of predator-prey to the population involved in a crisis of malaria. The study is made only in the stream blood inside the human body except for the liver. Particularly we look at the dynamics of the malaria parasites 'merozoites' and their interaction with the blood components, more specifically the red blood cells (RBC) and the immune response grouped under the white blood cells (WBC). The stability analysis of the system reveals an important practical direction to investigate as regards the ratio WBC over RBC since it is a fundamental parameter that characterizes stable regions. The model numerically presents a wide range of possible features of the disease. Even with its simplified form, the model not only recovers well-known results but in addition predicts possible hidden phenomenon and an interesting clinical feature a malaria crisis. (author)

  1. A Weather-Based Prediction Model of Malaria Prevalence in Amenfi West District, Ghana

    Directory of Open Access Journals (Sweden)

    Esther Love Darkoh

    2017-01-01

    Full Text Available This study investigated the effects of climatic variables, particularly, rainfall and temperature, on malaria incidence using time series analysis. Our preliminary analysis revealed that malaria incidence in the study area decreased at about 0.35% annually. Also, the month of November recorded approximately 21% more malaria cases than the other months while September had a decreased effect of about 14%. The forecast model developed for this investigation indicated that mean minimum (P=0.01928 and maximum (P=0.00321 monthly temperatures lagged at three months were significant predictors of malaria incidence while rainfall was not. Diagnostic tests using Ljung-Box and ARCH-LM tests revealed that the model developed was adequate for forecasting. Forecast values for 2016 to 2020 generated by our model suggest a possible future decline in malaria incidence. This goes to suggest that intervention strategies put in place by some nongovernmental and governmental agencies to combat the disease are effective and thus should be encouraged and routinely monitored to yield more desirable outcomes.

  2. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos.

    Directory of Open Access Journals (Sweden)

    Marc Souris

    Full Text Available Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species' presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible.

  3. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos.

    Science.gov (United States)

    Souris, Marc; Marcombe, Sébastien; Laforet, Julie; Brey, Paul T; Corbel, Vincent; Overgaard, Hans J

    2017-01-01

    Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species' presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible.

  4. Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants.

    Directory of Open Access Journals (Sweden)

    Amanda Ross

    Full Text Available BACKGROUND: Trials of intermittent preventive treatment against malaria in infants (IPTi using sulphadoxine-pyrimethamine (SP have shown a positive, albeit variable, protective efficacy against clinical malaria episodes. The impact of IPTi in different epidemiological settings and over time is unknown and predictions are hampered by the lack of knowledge about how IPTi works. We investigated mechanisms proposed for the action of IPTi and made predictions of the likely impact on morbidity and mortality. METHODS/PRINCIPAL FINDINGS: We used a comprehensive, individual-based, stochastic model of malaria epidemiology to simulate recently published trials of IPTi using SP with site-specific characteristics as inputs. This baseline model was then modified to represent hypotheses concerning the duration of action of SP, the temporal pattern of fevers caused by individual infections, potential benefits of avoiding fevers on immunity and the effect of sub-therapeutic levels of SP on parasite dynamics. The baseline model reproduced the pattern of results reasonably well. None of the models based on alternative hypotheses improved the fit between the model predictions and observed data. Predictions suggest that IPTi would have a beneficial effect across a range of transmission intensities. IPTi was predicted to avert a greater number of episodes where IPTi coverage was higher, the health system treatment coverage lower, and for drugs which were more efficacious and had longer prophylactic periods. The predicted cumulative benefits were proportionately slightly greater for severe malaria episodes and malaria-attributable mortality than for acute episodes in the settings modelled. Modest increased susceptibility was predicted between doses and following the last dose, but these were outweighed by the cumulative benefits. The impact on transmission intensity was negligible. CONCLUSIONS: The pattern of trial results can be accounted for by differences between

  5. The US President's Malaria Initiative, Plasmodium falciparum transmission and mortality: A modelling study.

    Science.gov (United States)

    Winskill, Peter; Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Walker, Patrick G T

    2017-11-01

    Although significant progress has been made in reducing malaria transmission globally in recent years, a large number of people remain at risk and hence the gains made are fragile. Funding lags well behind amounts needed to protect all those at risk and ongoing contributions from major donors, such as the President's Malaria Initiative (PMI), are vital to maintain progress and pursue further reductions in burden. We use a mathematical modelling approach to estimate the impact of PMI investments to date in reducing malaria burden and to explore the potential negative impact on malaria burden should a proposed 44% reduction in PMI funding occur. We combined an established mathematical model of Plasmodium falciparum transmission dynamics with epidemiological, intervention, and PMI-financing data to estimate the contribution PMI has made to malaria control via funding for long-lasting insecticide treated nets (LLINs), indoor residual spraying (IRS), and artemisinin combination therapies (ACTs). We estimate that PMI has prevented 185 million (95% CrI: 138 million, 230 million) malaria cases and saved 940,049 (95% CrI: 545,228, 1.4 million) lives since 2005. If funding is maintained, PMI-funded interventions are estimated to avert a further 162 million (95% CrI: 116 million, 194 million) cases, saving a further 692,589 (95% CrI: 392,694, 955,653) lives between 2017 and 2020. With an estimate of US$94 (95% CrI: US$51, US$166) per Disability Adjusted Life Year (DALY) averted, PMI-funded interventions are highly cost-effective. We also demonstrate the further impact of this investment by reducing caseloads on health systems. If a 44% reduction in PMI funding were to occur, we predict that this loss of direct aid could result in an additional 67 million (95% CrI: 49 million, 82 million) cases and 290,649 (95% CrI: 167,208, 395,263) deaths between 2017 and 2020. We have not modelled indirect impacts of PMI funding (such as health systems strengthening) in this analysis. Our

  6. The US President's Malaria Initiative, Plasmodium falciparum transmission and mortality: A modelling study.

    Directory of Open Access Journals (Sweden)

    Peter Winskill

    2017-11-01

    Full Text Available Although significant progress has been made in reducing malaria transmission globally in recent years, a large number of people remain at risk and hence the gains made are fragile. Funding lags well behind amounts needed to protect all those at risk and ongoing contributions from major donors, such as the President's Malaria Initiative (PMI, are vital to maintain progress and pursue further reductions in burden. We use a mathematical modelling approach to estimate the impact of PMI investments to date in reducing malaria burden and to explore the potential negative impact on malaria burden should a proposed 44% reduction in PMI funding occur.We combined an established mathematical model of Plasmodium falciparum transmission dynamics with epidemiological, intervention, and PMI-financing data to estimate the contribution PMI has made to malaria control via funding for long-lasting insecticide treated nets (LLINs, indoor residual spraying (IRS, and artemisinin combination therapies (ACTs. We estimate that PMI has prevented 185 million (95% CrI: 138 million, 230 million malaria cases and saved 940,049 (95% CrI: 545,228, 1.4 million lives since 2005. If funding is maintained, PMI-funded interventions are estimated to avert a further 162 million (95% CrI: 116 million, 194 million cases, saving a further 692,589 (95% CrI: 392,694, 955,653 lives between 2017 and 2020. With an estimate of US$94 (95% CrI: US$51, US$166 per Disability Adjusted Life Year (DALY averted, PMI-funded interventions are highly cost-effective. We also demonstrate the further impact of this investment by reducing caseloads on health systems. If a 44% reduction in PMI funding were to occur, we predict that this loss of direct aid could result in an additional 67 million (95% CrI: 49 million, 82 million cases and 290,649 (95% CrI: 167,208, 395,263 deaths between 2017 and 2020. We have not modelled indirect impacts of PMI funding (such as health systems strengthening in this analysis

  7. Transfusion-transmitted malaria masquerading as sickle cell crisis with multisystem organ failure.

    Science.gov (United States)

    Maier, Cheryl L; Gross, Phillip J; Dean, Christina L; Chonat, Satheesh; Ip, Andrew; McLemore, Morgan; El Rassi, Fuad; Stowell, Sean R; Josephson, Cassandra D; Fasano, Ross M

    2018-03-09

    Fever accompanying vaso-occlusive crisis is a common presentation in patients with sickle cell disease (SCD) and carries a broad differential diagnosis. Here, we report a case of transfusion-transmitted malaria in a patient with SCD presenting with acute vaso-occlusive crisis and rapidly decompensating to multisystem organ failure (MSOF). An 18-year-old African American male with SCD was admitted after multiple days of fever and severe generalized body pain. He received monthly blood transfusions as stroke prophylaxis. A source of infection was not readily identified, but treatment was initiated with continuous intravenous fluids and empiric antibiotics. The patient developed acute renal failure, acute hypoxic respiratory failure, and shock. He underwent red blood cell (RBC) exchange transfusion followed by therapeutic plasma exchange and continuous veno-venous hemodialysis. A manual peripheral blood smear revealed intraerythrocytic inclusions suggestive of Plasmodium, and molecular studies confirmed Plasmodium falciparum infection. Intravenous artesunate was given daily for 1 week. A look-back investigation involving two hospitals, multiple blood suppliers, and state and federal public health departments identified the source of malaria as a unit of RBCs transfused 2 weeks prior to admission. Clinical suspicion for transfusion-related adverse events, including hemolytic transfusion reactions and transfusion-transmitted infections, should be high in typically and atypically immunocompromised patient populations (like SCD), especially those on chronic transfusion protocols. Manual blood smear review aids in the evaluation of patients with SCD presenting with severe vaso-occlusive crisis and MSOF and can alert clinicians to the need for initiating aggressive therapy like RBC exchange and artesunate therapy. © 2018 AABB.

  8. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions.

    Science.gov (United States)

    Collins, Katharine A; Wang, Claire Yt; Adams, Matthew; Mitchell, Hayley; Rampton, Melanie; Elliott, Suzanne; Reuling, Isaie J; Bousema, Teun; Sauerwein, Robert; Chalon, Stephan; Möhrle, Jörg J; McCarthy, James S

    2018-03-12

    Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here, we describe a new model for evaluating malaria transmission from humans to Anopheles mosquitoes using controlled human malaria infection (CHMI). Seventeen healthy malaria-naive volunteers underwent CHMI by intravenous inoculation of P. falciparum-infected erythrocytes to initiate blood-stage infection. Seven to eight days after inoculation, participants received piperaquine (480 mg) to attenuate asexual parasite replication while allowing gametocytes to develop and mature. Primary end points were development of gametocytemia, the transmissibility of gametocytes from humans to mosquitoes, and the safety and tolerability of the CHMI transmission model. To investigate in vivo gametocytocidal drug activity in this model, participants were either given an experimental antimalarial, artefenomel (500 mg), or a known gametocytocidal drug, primaquine (15 mg), or remained untreated during the period of gametocyte carriage. Male and female gametocytes were detected in all participants, and transmission to mosquitoes was achieved from 8 of 11 (73%) participants evaluated. Compared with results in untreated controls (n = 7), primaquine (15 mg, n = 5) significantly reduced gametocyte burden (P = 0.01), while artefenomel (500 mg, n = 4) had no effect. Adverse events (AEs) were mostly mild or moderate. Three AEs were assessed as severe - fatigue, elevated alanine aminotransferase, and elevated aspartate aminotransferase - and were attributed to malaria infection. Transaminase elevations were transient, asymptomatic, and resolved without intervention. We report the safe and reproducible induction of P. falciparum gametocytes in healthy malaria-naive volunteers at densities infectious to mosquitoes, thereby demonstrating the

  9. EFFECTS OF ECONOMIC BEHAVIOUR AND PEIPLE MIGRANTION ON THE EPIDEMIOLOGY OF MALARIA : A MODEL BASED STUDY

    Directory of Open Access Journals (Sweden)

    Sajal Bhattacharya

    2006-11-01

    Full Text Available The objective of the paper is to study the socio economic behaviour of migrant labourers in the context of the control of the diseases like malaria. The paper, therefore, makes a model and survey based study in the city of Kolkata, India to drive home the point that low income of people particularly of the migrant workers can be a major hurdle in the malaria control programme. The paper first looks at the economic behaviour pattern theoretically from neo-classical optimization exercise and the tries to test the theoetical result empirically from primary survey. The theoritical model gives the result that low income people is likely to take less rest and discontinue medical tratment. Since migrant workers of less developed counties are usually low-income people, pur model suggests that migrant workers will have incomplete treatment and their migration even before complete recovery may contribute to spread of the disease. We hage empirically tested the model econometrically by a logit model, and derived the result that migrat workers do take less rest and discontinue treatment becouse of economic compulsion. Thus the data support the result of the theoretical model and refeals a behafiour pattern, conducive to spread of malaria infection. The paper drives some policy prescriptions on the basis of these studies like infurance support, health survillance of migrant population as a part of integrated malaria control programme.

  10. Endectocide-treated cattle for malaria control: A coupled entomological-epidemiological model

    Directory of Open Access Journals (Sweden)

    Laith Yakob

    2016-03-01

    Full Text Available The malaria vector landscape is dynamic and dependence on indoor control tools has drastically affected both species compositions and local mosquito biting behaviours. In the advent of spreading behavioural resilience and physiological resistance to insecticidal nets and house spray, approaches to target more zoophilic, outdoor-biting vectors are being sought with increased urgency. Endectocides are insecticides applied to hosts which are taken up by the vectors during biting, and recent field assessments have demonstrated favourable results of cattle treated with ivermectin, diflubenzuron, eprinomectin and fipronil. Models were constructed to account for the modern, diverse vector feeding behaviours and assess their role in shaping malaria transmission and control with cattle-treated endectocides. Efficacy of this novel approach to malaria control is shown to be strongly dependent not only on intrinsic host preferences of the vector but also on how this preference is augmented by variation in the encounter rates with alternative blood-hosts. Ecological scenarios are presented whereby endectocides used on cattle yield equivalent, and in some cases improved, efficacy over nets and spray in controlling malaria transmission. Interactions between mosquito biting behaviours and relative availabilities of alternative blood-host species have largely been neglected in malaria programmatic strategy but will increasingly underlie sustaining the successes of vector control initiatives.

  11. Effects of Training on Knowledge, Attitude and Practices of Malaria Prevention and Control among Community Role Model Care Givers in South Western Nigeria.

    Science.gov (United States)

    Olalekan, Adebimpe W; Adebukola, Adebimpe M

    2015-10-01

    Malaria is endemic in Nigeria, with significant records of mortality and morbidity. Adequate community involvement is central to a successful implementation of malaria control programs. This study assessed the effects of a training programme on knowledge of malaria prevention and control among community role model care givers. A descriptive cross sectional study of a pre-and post-test design method was conducted among 400 eligible community members in Osun State. Training was given in the form of organized lectures, health education and practical demonstration sessions. Scores of pre-test and post-test conducted after four months interval were compared. Multistage sampling method was adopted in selecting study participants, while data was analyzed using the SPSS software version 17.0. Mean age was 43.8 (±1.4) years. Average knowledge score of cause, transmission, risk factors and consequences, awareness of common symptoms and preventive practices improved during post-training test when compared with pr-training test. The overall descriptive mean knowledge score in pre-test and post-test were 2.1 and 3.5 respectively out of an average maximum score of 5.0, giving an increment of 66.7%. Role model care givers with formal education were twice and three times more likely to know about disease 'transmission' (OR 1.9, 95%CI 0.11-0.19, p=0.002) and 'consequences' (OR 2.9, 95%CI 0.25-0.65, p=0.040) respectively compared to those without formal education. Training on malaria improved the knowledge of malaria prevention and control among role model community care givers towards a successful implementation of malaria control programmes.

  12. Using Rasch Modeling to Re-Evaluate Rapid Malaria Diagnosis Test Analyses

    Directory of Open Access Journals (Sweden)

    Dawit G. Ayele

    2014-06-01

    Full Text Available The objective of this study was to demonstrate the use of the Rasch model by assessing the appropriateness of the demographic, social-economic and geographic factors in providing a total score in malaria RDT in accordance with the model’s expectations. The baseline malaria indicator survey was conducted in Amhara, Oromiya and Southern Nation Nationalities and People (SNNP regions of Ethiopia by The Carter Center in 2007. The result shows high reliability and little disordering of thresholds with no evidence of differential item functioning.

  13. Generation of genetically attenuated blood-stage malaria parasites; characterizing growth and virulence in a rodent model of malaria

    NARCIS (Netherlands)

    Lin, Jingwen

    2013-01-01

    Despite intense efforts over the past 50 years to develop a vaccine, there is currently no licensed malaria vaccine available. The limited success in inducing sufficient protection against malaria with subunit-vaccines has renewed an interest in whole-parasite vaccination strategies. While

  14. Computational study of a magnetic design to improve the diagnosis of malaria: 2D model

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Siddharth, E-mail: svyas76@gmail.com [Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104 (United States); Department of Engineering Technology, Drexel University, Philadelphia, PA 19104 (United States); Genis, Vladimir [Department of Engineering Technology, Drexel University, Philadelphia, PA 19104 (United States); Friedman, Gary [Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2017-02-01

    This paper investigates the feasibility of a cost effective high gradient magnetic separation based device for the detection and identification of malaria parasites in a blood sample. The design utilizes magnetic properties of hemozoin present in malaria-infected red blood cells (mRBCs) in order to separate and concentrate them inside a microfluidic channel slide for easier examination under the microscope. The design consists of a rectangular microfluidic channel with multiple magnetic wires positioned on top of and underneath it along the length of the channel at a small angle with respect to the channel axis. Strong magnetic field gradients, produced by the wires, exert sufficient magnetic forces on the mRBCs in order to separate and concentrate them in a specific region small enough to fit within the microscope field of view at magnifications typically required to identify the malaria parasite type. The feasibility of the device is studied using a model where the trajectories of the mRBCs inside the channel are determined using first-order ordinary differential equations (ODEs) solved numerically using a multistep ODE solver available within MATLAB. The mRBCs trajectories reveal that it is possible to separate and concentrate the mRBCs in less than 5 min, even in cases of very low parasitemia (1–10 parasites/µL of blood) using blood sample volumes of around 3 µL employed today. - Highlights: • A simple and cost-effective design is presented to improve the diagnosis of malaria. • The design is studied using a computational model. • It is possible to concentrate malaria-infected cells in a small area. • This can improve slide-examination and the efficiency of microscopists. • This can improve diagnosis of low-parasitemia and asymptomatic malaria.

  15. The dynamics, transmission, and population impacts of avian malaria in native hawaiian birds: A modeling approach

    Science.gov (United States)

    Samuel, M.D.; Hobbelen, P.H.F.; Decastro, F.; Ahumada, J.A.; Lapointe, D.A.; Atkinson, C.T.; Woodworth, B.L.; Hart, P.J.; Duffy, D.C.

    2011-01-01

    We developed an epidemiological model of avian malaria (Plasmodium relictum) across an altitudinal gradient on the island of Hawaii that includes the dynamics of the host, vector, and parasite. This introduced mosquito-borne disease is hypothesized to have contributed to extinctions and major shifts in the altitudinal distribution of highly susceptible native forest birds. Our goal was to better understand how biotic and abiotic factors influence the intensity of malaria transmission and impact on susceptible populations of native Hawaiian forest birds. Our model illustrates key patterns in the malaria-forest bird system: high malaria transmission in low-elevation forests with minor seasonal or annual variation in infection;episodic transmission in mid-elevation forests with site-to-site, seasonal, and annual variation depending on mosquito dynamics;and disease refugia in high-elevation forests with only slight risk of infection during summer. These infection patterns are driven by temperature and rainfall effects on parasite incubation period and mosquito dynamics across an elevational gradient and the availability of larval habitat, especially in mid-elevation forests. The results from our model suggest that disease is likely a key factor in causing population decline or restricting the distribution of many susceptible Hawaiian species and preventing the recovery of other vulnerable species. The model also provides a framework for the evaluation of factors influencing disease transmission and alternative disease control programs, and to evaluate the impact of climate change on disease cycles and bird populations. ??2011 by the Ecological Society of America.

  16. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F

    2018-01-01

    Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  17. [Links and effects of globalization on social and economic organization and malaria prevalence in the Coastal Region of Livingston, Guatemala].

    Science.gov (United States)

    Nelson, Caro Méndez

    2007-01-01

    As a result of Guatemala's growing involvement in international markets and policies favoring industrial and export-oriented efforts, the population has experienced substantial changes in its economic and social organization, with consequences for the health and well-being of marginal groups. The article discusses various links between global processes, national policies and priorities, social and economic strategies, and malaria prevalence, with the Coastal Region of Livingston, Guatemala as the case study carried out between 2001 and 2003.

  18. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics.

    Science.gov (United States)

    Okuneye, Kamaldeen; Gumel, Abba B

    2017-05-01

    A new non-autonomous model is designed and used to assess the impact of variability in temperature and rainfall on the transmission dynamics of malaria in a population. In addition to adding age-structure in the host population and the dynamics of immature malaria mosquitoes, a notable feature of the new model is that recovered individuals do not revert to wholly-susceptible class (that is, recovered individuals enjoy reduced susceptibility to new malaria infection). In the absence of disease-induced mortality, the disease-free solution of the model is shown to be globally-asymptotically stable when the associated reproduction ratio is less than unity. The model has at least one positive periodic solution when the reproduction ratio exceeds unity (and the disease persists in the community in this case). Detailed uncertainty and sensitivity analysis, using mean monthly temperature and rainfall data from KwaZulu-Natal province of South Africa, shows that the top three parameters of the model that have the most influence on the disease transmission dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes and human recovery rate. Numerical simulations of the model show that, for the KwaZulu-Natal province, malaria burden increases with increasing mean monthly temperature and rainfall in the ranges ([17-25]°C and [32-110] mm), respectively (and decreases with decreasing mean monthly temperature and rainfall values). In particular, transmission is maximized for mean monthly temperature and rainfall in the ranges [21-25]°C and [95-125] mm. This occurs for a six-month period in KwaZulu-Natal (hence, this study suggests that anti-malaria control efforts should be intensified during this period). It is shown, for the fixed mean monthly temperature of KwaZulu-Natal, that malaria burden decreases whenever the amount of rainfall exceeds a certain threshold value. It is further shown (through sensitivity analysis and

  19. Malaria Disease Mapping in Malaysia based on Besag-York-Mollie (BYM) Model

    Science.gov (United States)

    Azah Samat, Nor; Mey, Liew Wan

    2017-09-01

    Disease mapping is the visual representation of the geographical distribution which give an overview info about the incidence of disease within a population through spatial epidemiology data. Based on the result of map, it helps in monitoring and planning resource needs at all levels of health care and designing appropriate interventions, tailored towards areas that deserve closer scrutiny or communities that lead to further investigations to identify important risk factors. Therefore, the choice of statistical model used for relative risk estimation is important because production of disease risk map relies on the model used. This paper proposes Besag-York-Mollie (BYM) model to estimate the relative risk for Malaria in Malaysia. The analysis involved using the number of Malaria cases that obtained from the Ministry of Health Malaysia. The outcomes of analysis are displayed through graph and map, including Malaria disease risk map that constructed according to the estimation of relative risk. The distribution of high and low risk areas of Malaria disease occurrences for all states in Malaysia can be identified in the risk map.

  20. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  1. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  2. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    Science.gov (United States)

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-06-14

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  3. Spatial-explicit modeling of social vulnerability to malaria in East Africa.

    Science.gov (United States)

    Kienberger, Stefan; Hagenlocher, Michael

    2014-08-15

    Despite efforts in eradication and control, malaria remains a global challenge, particularly affecting vulnerable groups. Despite the recession in malaria cases, previously malaria free areas are increasingly confronted with epidemics as a result of changing environmental and socioeconomic conditions. Next to modeling transmission intensities and probabilities, integrated spatial methods targeting the complex interplay of factors that contribute to social vulnerability are required to effectively reduce malaria burden. We propose an integrative method for mapping relative levels of social vulnerability in a spatially explicit manner to support the identification of intervention measures. Based on a literature review, a holistic risk and vulnerability framework has been developed to guide the assessment of social vulnerability to water-related vector-borne diseases (VBDs) in the context of changing environmental and societal conditions. Building on the framework, this paper applies spatially explicit modeling for delineating homogeneous regions of social vulnerability to malaria in eastern Africa, while taking into account expert knowledge for weighting the single vulnerability indicators. To assess the influence of the selected indicators on the final index a local sensitivity analysis is carried out. Results indicate that high levels of malaria vulnerability are concentrated in the highlands, where immunity within the population is currently low. Additionally, regions with a lack of access to education and health services aggravate vulnerability. Lower values can be found in regions with relatively low poverty, low population pressure, low conflict density and reduced contributions from the biological susceptibility domain. Overall, the factors characterizing vulnerability vary spatially in the region. The vulnerability index reveals a high level of robustness in regard to the final choice of input datasets, with the exception of the immunity indicator which has a

  4. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    Science.gov (United States)

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  5. Modeling the public health impact of malaria vaccines for developers and policymakers.

    Science.gov (United States)

    Nunes, Julia K; Cárdenas, Vicky; Loucq, Christian; Maire, Nicolas; Smith, Thomas; Shaffer, Craig; Måseide, Kårstein; Brooks, Alan

    2013-07-01

    Efforts to develop malaria vaccines show promise. Mathematical model-based estimates of the potential demand, public health impact, and cost and financing requirements can be used to inform investment and adoption decisions by vaccine developers and policymakers on the use of malaria vaccines as complements to existing interventions. However, the complexity of such models may make their outputs inaccessible to non-modeling specialists. This paper describes a Malaria Vaccine Model (MVM) developed to address the specific needs of developers and policymakers, who need to access sophisticated modeling results and to test various scenarios in a user-friendly interface. The model's functionality is demonstrated through a hypothetical vaccine. The MVM has three modules: supply and demand forecast; public health impact; and implementation cost and financing requirements. These modules include pre-entered reference data and also allow for user-defined inputs. The model includes an integrated sensitivity analysis function. Model functionality was demonstrated by estimating the public health impact of a hypothetical pre-erythrocytic malaria vaccine with 85% efficacy against uncomplicated disease and a vaccine efficacy decay rate of four years, based on internationally-established targets. Demand for this hypothetical vaccine was estimated based on historical vaccine implementation rates for routine infant immunization in 40 African countries over a 10-year period. Assumed purchase price was $5 per dose and injection equipment and delivery costs were $0.40 per dose. The model projects the number of doses needed, uncomplicated and severe cases averted, deaths and disability-adjusted life years (DALYs) averted, and cost to avert each. In the demonstration scenario, based on a projected demand of 532 million doses, the MVM estimated that 150 million uncomplicated cases of malaria and 1.1 million deaths would be averted over 10 years. This is equivalent to 943 uncomplicated cases

  6. Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model.

    Directory of Open Access Journals (Sweden)

    João A N Filipe

    2007-12-01

    Full Text Available Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of protection. Using mathematical models, we seek to better understand the processes that determine observed epidemiological patterns. We have developed an age-structured mathematical model of malaria transmission in which acquired immunity can act in three ways ("immunity functions": reducing the probability of clinical disease, speeding the clearance of parasites, and increasing tolerance to subpatent infections. Each immunity function was allowed to vary in efficacy depending on both age and malaria transmission intensity. The results were compared to age patterns of parasite prevalence and clinical disease in endemic settings in northeastern Tanzania and The Gambia. Two types of immune function were required to reproduce the epidemiological age-prevalence curves seen in the empirical data; a form of clinical immunity that reduces susceptibility to clinical disease and develops with age and exposure (with half-life of the order of five years or more and a form of anti-parasite immunity which results in more rapid clearance of parasitaemia, is acquired later in life and is longer lasting (half-life of >20 y. The development of anti-parasite immunity better reproduced observed epidemiological patterns if it was dominated by age-dependent physiological processes rather than by the magnitude of exposure (provided some exposure occurs. Tolerance to subpatent infections was not required to explain the empirical data. The model comprising immunity to clinical disease which develops early in life and is exposure-dependent, and anti-parasite immunity which develops later in life and is not dependent on the magnitude of

  7. Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model.

    Science.gov (United States)

    Filipe, João A N; Riley, Eleanor M; Drakeley, Christopher J; Sutherland, Colin J; Ghani, Azra C

    2007-12-01

    Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of protection. Using mathematical models, we seek to better understand the processes that determine observed epidemiological patterns. We have developed an age-structured mathematical model of malaria transmission in which acquired immunity can act in three ways ("immunity functions"): reducing the probability of clinical disease, speeding the clearance of parasites, and increasing tolerance to subpatent infections. Each immunity function was allowed to vary in efficacy depending on both age and malaria transmission intensity. The results were compared to age patterns of parasite prevalence and clinical disease in endemic settings in northeastern Tanzania and The Gambia. Two types of immune function were required to reproduce the epidemiological age-prevalence curves seen in the empirical data; a form of clinical immunity that reduces susceptibility to clinical disease and develops with age and exposure (with half-life of the order of five years or more) and a form of anti-parasite immunity which results in more rapid clearance of parasitaemia, is acquired later in life and is longer lasting (half-life of >20 y). The development of anti-parasite immunity better reproduced observed epidemiological patterns if it was dominated by age-dependent physiological processes rather than by the magnitude of exposure (provided some exposure occurs). Tolerance to subpatent infections was not required to explain the empirical data. The model comprising immunity to clinical disease which develops early in life and is exposure-dependent, and anti-parasite immunity which develops later in life and is not dependent on the magnitude of exposure, appears

  8. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  9. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  10. Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    Science.gov (United States)

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Background Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Methodology/Principal Findings Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Conclusions/Significance Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a

  11. Pathogenesis of Plasmodium berghei ANKA infection in the gerbil (Meriones unguiculatus as an experimental model for severe malaria

    Directory of Open Access Journals (Sweden)

    Junaid Quazim Olawale

    2017-01-01

    Full Text Available Background: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA infection in gerbils, as well as the underlying pathogenesis. Methods: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology. Results: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF and anti-inflammatory (IL-10 cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization. Conclusion: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

  12. Pharmacokinetics, pharmacodynamics, and allometric scaling of chloroquine in a murine malaria model.

    Science.gov (United States)

    Moore, Brioni R; Page-Sharp, Madhu; Stoney, Jillian R; Ilett, Kenneth F; Jago, Jeffrey D; Batty, Kevin T

    2011-08-01

    Chloroquine (CQ) is an important antimalarial drug for the treatment of special patient groups and as a comparator for preclinical testing of new drugs. Pharmacokinetic data for CQ in animal models are limited; thus, we conducted a three-part investigation, comprising (i) pharmacodynamic studies of CQ and CQ plus dihydroartemisinin (DHA) in Plasmodium berghei-infected mice, (ii) pharmacokinetic studies of CQ in healthy and malaria-infected mice, and (iii) interspecies allometric scaling for CQ from 6 animal and 12 human studies. The single-dose pharmacodynamic study (10 to 50 mg CQ/kg of body weight) showed dose-related reduction in parasitemia (5- to >500-fold) and a nadir 2 days after the dose. Multiple-dose regimens (total dose, 50 mg/kg CQ) demonstrated a lower nadir and longer survival time than did the same single dose. The CQ-DHA combination provided an additive effect compared to each drug alone. The elimination half-life (t(1/2)), clearance (CL), and volume of distribution (V) of CQ were 46.6 h, 9.9 liters/h/kg, and 667 liters/kg, respectively, in healthy mice and 99.3 h, 7.9 liters/h/kg, and 1,122 liters/kg, respectively, in malaria-infected mice. The allometric equations for CQ in healthy mammals (CL = 3.86 × W(0.56), V = 230 × W(0.94), and t(1/2) = 123 × W(0.2)) were similar to those for malaria-infected groups. CQ showed a delayed dose-response relationship in the murine malaria model and additive efficacy when combined with DHA. The biphasic pharmacokinetic profiles of CQ are similar across mammalian species, and scaling of specific parameters is plausible for preclinical investigations.

  13. Malaria and Agriculture in Kenya

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nancy Minogue

    die every day from malaria, conventional efforts to control the disease have not worked. Malaria parasites are .... and other animals. Mosquito nets. Provide insecticide-treated bednets to groups at high risk for malaria, namely young children and pregnant women, through partnerships with nongovernmental organizations ...

  14. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Thomas Smith

    2012-01-01

    Full Text Available BACKGROUND: The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered deployment via the World Health Organization's Expanded Programme on Immunization (EPI in areas of stable endemic transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider uncertainties in model structure. METHODS AND FINDINGS: An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment, via EPI (with or without catch-up vaccinations, supplementary vaccination of school-age children, or mass vaccination every 5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs of two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial catch-up phase averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose, even at modest coverage. CONCLUSIONS: In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants. The feasibility and economics of mass vaccination, and the

  15. Antiplasmodial activity of tick defensins in a mouse model of malaria.

    Science.gov (United States)

    Couto, Joana; Tonk, Miray; Ferrolho, Joana; Antunes, Sandra; Vilcinskas, Andreas; de la Fuente, José; Domingos, Ana; Cabezas-Cruz, Alejandro

    2018-03-15

    Malaria is a mosquito-borne disease affecting millions of people mainly in Sub-Saharan Africa, Asia and some South American countries. Drug resistance to first-line antimalarial drugs (e.g. chloroquine, sulfadoxine-pyrimethamine and artemisinin) is a major constrain in malaria control. Antimicrobial peptides (AMPs) have shown promising results in controlling Plasmodium spp. parasitemia in in vitro and in vivo models of infection. Defensins are AMPs that act primarily by disrupting the integrity of cell membranes of invasive microbes. We previously showed that defensins from the tick Ixodes ricinus inhibited significantly the growth of P. falciparum in vitro, a property that was conserved during evolution. Here, we tested the activity of three I. ricinus defensins against P. chabaudi in mice. A single dose of defensin (120 μl of 1 mg/ml solution) was administered intravenously to P. chabaudi-infected mice, and the parasitemia was followed for 24 h post-treatment. Defensin treatment inhibited significantly the replication (measured as increases in parasitemia) of P. chabaudi after 1 h and 12 h of treatment. Furthermore, defensin injection was not associated with toxicity. These results agreed with the previous report of antiplasmodial activity of tick defensins against P. falciparum in vitro and justify further studies for the use of tick defensins to control malaria. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model.

    Science.gov (United States)

    Bamunuarachchi, Gayan S; Ratnasooriya, Wanigasekara D; Premakumara, Sirimal; Udagama, Preethi V

    2013-12-01

    Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A. vulgaris ethanolic leaf extract (AVELE) in a P. berghei ANKA murine malaria model that elicits pathogenesis similar to falciparum malaria. A 4-day suppressive and the curative assays determined the antiparasitic activity of AVELE using four doses (250, 500, 750 and 1000 mg/kg), Coartem® as the positive control and 5% ethanol as the negative control in male ICR mice infected with P. berghei. The 500, 750 and 1000 mg/kg doses of AVELE significantly (p ≤ 0.01) inhibited parasitaemia by 79.3, 79.6 and 87.3% respectively, in the 4-day suppressive assay, but not in the curative assay. Chronic administration of the high dose of AVELE ruled out overt signs of toxicity and stress as well as hepatotoxicity, renotoxicity and haematotoxicity. The oral administration of a crude ethonolic leaf extract of A. vulgaris is non-toxic and possesses potent antimalarial properties in terms of antiparasitic activity.

  17. Computational study of a magnetic design to improve the diagnosis of malaria: 2D model

    Science.gov (United States)

    Vyas, Siddharth; Genis, Vladimir; Friedman, Gary

    2017-02-01

    This paper investigates the feasibility of a cost effective high gradient magnetic separation based device for the detection and identification of malaria parasites in a blood sample. The design utilizes magnetic properties of hemozoin present in malaria-infected red blood cells (mRBCs) in order to separate and concentrate them inside a microfluidic channel slide for easier examination under the microscope. The design consists of a rectangular microfluidic channel with multiple magnetic wires positioned on top of and underneath it along the length of the channel at a small angle with respect to the channel axis. Strong magnetic field gradients, produced by the wires, exert sufficient magnetic forces on the mRBCs in order to separate and concentrate them in a specific region small enough to fit within the microscope field of view at magnifications typically required to identify the malaria parasite type. The feasibility of the device is studied using a model where the trajectories of the mRBCs inside the channel are determined using first-order ordinary differential equations (ODEs) solved numerically using a multistep ODE solver available within MATLAB. The mRBCs trajectories reveal that it is possible to separate and concentrate the mRBCs in less than 5 min, even in cases of very low parasitemia (1-10 parasites/μL of blood) using blood sample volumes of around 3 μL employed today.

  18. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study.

    Science.gov (United States)

    Gerardin, Jaline; Bever, Caitlin A; Bridenbecker, Daniel; Hamainza, Busiku; Silumbe, Kafula; Miller, John M; Eisele, Thomas P; Eckhoff, Philip A; Wenger, Edward A

    2017-06-12

    Reactive case detection could be a powerful tool in malaria elimination, as it selectively targets transmission pockets. However, field operations have yet to demonstrate under which conditions, if any, reactive case detection is best poised to push a region to elimination. This study uses mathematical modelling to assess how baseline transmission intensity and local interconnectedness affect the impact of reactive activities in the context of other possible intervention packages. Communities in Southern Province, Zambia, where elimination operations are currently underway, were used as representatives of three archetypes of malaria transmission: low-transmission, high household density; high-transmission, low household density; and high-transmission, high household density. Transmission at the spatially-connected household level was simulated with a dynamical model of malaria transmission, and local variation in vectorial capacity and intervention coverage were parameterized according to data collected from the area. Various potential intervention packages were imposed on each of the archetypical settings and the resulting likelihoods of elimination by the end of 2020 were compared. Simulations predict that success of elimination campaigns in both low- and high-transmission areas is strongly dependent on stemming the flow of imported infections, underscoring the need for regional-scale strategies capable of reducing transmission concurrently across many connected areas. In historically low-transmission areas, treatment of clinical malaria should form the cornerstone of elimination operations, as most malaria infections in these areas are symptomatic and onward transmission would be mitigated through health system strengthening; reactive case detection has minimal impact in these settings. In historically high-transmission areas, vector control and case management are crucial for limiting outbreak size, and the asymptomatic reservoir must be addressed through

  19. Travel risk, malaria importation and malaria transmission in Zanzibar.

    Science.gov (United States)

    Le Menach, Arnaud; Tatem, Andrew J; Cohen, Justin M; Hay, Simon I; Randell, Heather; Patil, Anand P; Smith, David L

    2011-01-01

    The prevalence of Plasmodium falciparum malaria in Zanzibar has reached historic lows. Improving control requires quantifying malaria importation rates, identifying high-risk travelers, and assessing onwards transmission.Estimates of Zanzibar's importation rate were calculated through two independent methodologies. First, mobile phone usage data and ferry traffic between Zanzibar and mainland Tanzania were re-analyzed using a model of heterogeneous travel risk. Second, a dynamic mathematical model of importation and transmission rates was used.Zanzibar residents traveling to malaria endemic regions were estimated to contribute 1-15 times more imported cases than infected visitors. The malaria importation rate was estimated to be 1.6 incoming infections per 1,000 inhabitants per year. Local transmission was estimated too low to sustain transmission in most places.Malaria infections in Zanzibar largely result from imported malaria and subsequent transmission. Plasmodium falciparum malaria elimination appears feasible by implementing control measures based on detecting imported malaria cases and controlling onward transmission.

  20. Attacking the mosquito on multiple fronts: Insights from the Vector Control Optimization Model (VCOM for malaria elimination.

    Directory of Open Access Journals (Sweden)

    Samson S Kiware

    Full Text Available Despite great achievements by insecticide-treated nets (ITNs and indoor residual spraying (IRS in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions.We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus or 80% (An. arabiensis and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage may be sufficient to suppress all the three species to an extent required to achieve local malaria

  1. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    Directory of Open Access Journals (Sweden)

    Mabaso Musawenkosi LH

    2007-09-01

    Full Text Available Abstract Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have

  2. Mobile population dynamics and malaria vulnerability: a modelling study in the China-Myanmar border region of Yunnan Province, China.

    Science.gov (United States)

    Chen, Tian-Mu; Zhang, Shao-Sen; Feng, Jun; Xia, Zhi-Gui; Luo, Chun-Hai; Zeng, Xu-Can; Guo, Xiang-Rui; Lin, Zu-Rui; Zhou, Hong-Ning; Zhou, Shui-Sen

    2018-04-29

    The China-Myanmar border region presents a great challenge in malaria elimination in China, and it is essential to understand the relationship between malaria vulnerability and population mobility in this region. A community-based, cross-sectional survey was performed in five villages of Yingjiang county during September 2016. Finger-prick blood samples were obtained to identify asymptomatic infections, and imported cases were identified in each village (between January 2013 and September 2016). A stochastic simulation model (SSM) was used to test the relationship between population mobility and malaria vulnerability, according to the mechanisms of malaria importation. Thirty-two imported cases were identified in the five villages, with a 4-year average of 1 case/year (range: 0-5 cases/year). No parasites were detected in the 353 blood samples from 2016. The median density of malaria vulnerability was 0.012 (range: 0.000-0.033). The average proportion of mobile members of the study population was 32.56% (range: 28.38-71.95%). Most mobile individuals lived indoors at night with mosquito protection. The SSM model fit the investigated data (χ 2  = 0.487, P = 0.485). The average probability of infection in the members of the population that moved to Myanmar was 0.011 (range: 0.0048-0.1585). The values for simulated vulnerability increased with greater population mobility in each village. A high proportion of population mobility was associated with greater malaria vulnerability in the China-Myanmar border region. Mobile population-specific measures should be used to decrease the risk of malaria re-establishment in China.

  3. Transferring the Malaria Epidemic Prediction Model to Users in East ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will fine-tune the model, incorporate site-specific factors and transfer it to end users in Kenya, Tanzania and Uganda, and eventually other countries in East Africa. It will enhance the capacity of policymakers and health officials to provide early warning and intervene in an effective manner, and the capacity of ...

  4. Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector

    Directory of Open Access Journals (Sweden)

    Yang Hyun M

    2000-01-01

    Full Text Available OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.

  5. Aotus infulatus monkey is susceptible to Plasmodium falciparum infection and may constitute an alternative experimental model for malaria

    Directory of Open Access Journals (Sweden)

    Carvalho Leonardo JM

    2000-01-01

    Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.

  6. Fun with maths: exploring implications of mathematical models for malaria eradication.

    Science.gov (United States)

    Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A

    2014-12-11

    Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.

  7. Applications of Bayesian approach in modelling risk of malaria-related hospital mortality

    Directory of Open Access Journals (Sweden)

    Simbeye Jupiter S

    2008-02-01

    Full Text Available Abstract Background Malaria is a major public health problem in Malawi, however, quantifying its burden in a population is a challenge. Routine hospital data provide a proxy for measuring the incidence of severe malaria and for crudely estimating morbidity rates. Using such data, this paper proposes a method to describe trends, patterns and factors associated with in-hospital mortality attributed to the disease. Methods We develop semiparametric regression models which allow joint analysis of nonlinear effects of calendar time and continuous covariates, spatially structured variation, unstructured heterogeneity, and other fixed covariates. Modelling and inference use the fully Bayesian approach via Markov Chain Monte Carlo (MCMC simulation techniques. The methodology is applied to analyse data arising from paediatric wards in Zomba district, Malawi, between 2002 and 2003. Results and Conclusion We observe that the risk of dying in hospital is lower in the dry season, and for children who travel a distance of less than 5 kms to the hospital, but increases for those who are referred to the hospital. The results also indicate significant differences in both structured and unstructured spatial effects, and the health facility effects reveal considerable differences by type of facility or practice. More importantly, our approach shows non-linearities in the effect of metrical covariates on the probability of dying in hospital. The study emphasizes that the methodological framework used provides a useful tool for analysing the data at hand and of similar structure.

  8. Use of a mixture statistical model in studying malaria vectors density.

    Science.gov (United States)

    Boussari, Olayidé; Moiroux, Nicolas; Iwaz, Jean; Djènontin, Armel; Bio-Bangana, Sahabi; Corbel, Vincent; Fonton, Noël; Ecochard, René

    2012-01-01

    Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson model (NPMP) is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to December 2009 in 28 villages in Southern Benin. A NPMP regression model with "village" as random effect is used to test statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and overdispersed with important proportion of zeros (75%). The NPMP model had a good aptitude to predict the observed values and showed that: i) proximity to freshwater body, market gardening, and high levels of rain were associated with high vector density; ii) water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28 villages could then be ranked according to the mean vector number as estimated by the random part of the model after adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study area. The villages were ranked according to the mean vector density after taking into account the most important covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to each setting.

  9. Use of a mixture statistical model in studying malaria vectors density.

    Directory of Open Access Journals (Sweden)

    Olayidé Boussari

    Full Text Available Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson model (NPMP is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to December 2009 in 28 villages in Southern Benin. A NPMP regression model with "village" as random effect is used to test statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and overdispersed with important proportion of zeros (75%. The NPMP model had a good aptitude to predict the observed values and showed that: i proximity to freshwater body, market gardening, and high levels of rain were associated with high vector density; ii water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28 villages could then be ranked according to the mean vector number as estimated by the random part of the model after adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study area. The villages were ranked according to the mean vector density after taking into account the most important covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to each setting.

  10. Nonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Little Francesca

    2010-02-01

    Full Text Available Abstract Background Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection. Methods Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis. Results A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10, and an empirical patient category were the co-variates that were found to improve the model. Conclusions A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12, and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.

  11. A Mathematical Model of Malaria Transmission with Structured Vector Population and Seasonality

    Directory of Open Access Journals (Sweden)

    Bakary Traoré

    2017-01-01

    Full Text Available In this paper, we formulate a mathematical model of nonautonomous ordinary differential equations describing the dynamics of malaria transmission with age structure for the vector population. The biting rate of mosquitoes is considered as a positive periodic function which depends on climatic factors. The basic reproduction ratio of the model is obtained and we show that it is the threshold parameter between the extinction and the persistence of the disease. Thus, by applying the theorem of comparison and the theory of uniform persistence, we prove that if the basic reproduction ratio is less than 1, then the disease-free equilibrium is globally asymptotically stable and if it is greater than 1, then there exists at least one positive periodic solution. Finally, numerical simulations are carried out to illustrate our analytical results.

  12. Is outdoor vector control needed for malaria elimination? An individual-based modelling study.

    Science.gov (United States)

    Zhu, Lin; Müller, Günter C; Marshall, John M; Arheart, Kristopher L; Qualls, Whitney A; Hlaing, WayWay M; Schlein, Yosef; Traore, Sekou F; Doumbia, Seydou; Beier, John C

    2017-07-03

    Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the

  13. Reprint of "Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression".

    Science.gov (United States)

    Shimaponda-Mataa, Nzooma M; Tembo-Mwase, Enala; Gebreslasie, Michael; Achia, Thomas N O; Mukaratirwa, Samson

    2017-11-01

    Although malaria morbidity and mortality are greatly reduced globally owing to great control efforts, the disease remains the main contributor. In Zambia, all provinces are malaria endemic. However, the transmission intensities vary mainly depending on environmental factors as they interact with the vectors. Generally in Africa, possibly due to the varying perspectives and methods used, there is variation on the relative importance of malaria risk determinants. In Zambia, the role climatic factors play on malaria case rates has not been determined in combination of space and time using robust methods in modelling. This is critical considering the reversal in malaria reduction after the year 2010 and the variation by transmission zones. Using a geoadditive or structured additive semiparametric Poisson regression model, we determined the influence of climatic factors on malaria incidence in four endemic provinces of Zambia. We demonstrate a strong positive association between malaria incidence and precipitation as well as minimum temperature. The risk of malaria was 95% lower in Lusaka (ARR=0.05, 95% CI=0.04-0.06) and 68% lower in the Western Province (ARR=0.31, 95% CI=0.25-0.41) compared to Luapula Province. North-western Province did not vary from Luapula Province. The effects of geographical region are clearly demonstrated by the unique behaviour and effects of minimum and maximum temperatures in the four provinces. Environmental factors such as landscape in urbanised places may also be playing a role. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of the malaria management model to the analysis of costs and benefits of DDT versus non-DDT malaria control.

    Directory of Open Access Journals (Sweden)

    Matteo Pedercini

    Full Text Available INTRODUCTION: DDT is considered to be the most cost-effective insecticide for combating malaria. However, it is also the most environmentally persistent and can pose risks to human health when sprayed indoors. Therefore, the use of DDT for vector control remains controversial. METHODS: In this paper we develop a computer-based simulation model to assess some of the costs and benefits of the continued use of DDT for Indoor Residual Spraying (IRS versus its rapid phase out. We apply the prototype model to the aggregated sub Saharan African region. For putting the question about the continued use of DDT for IRS versus its rapid phase out into perspective we calculate the same costs and benefits for alternative combinations of integrated vector management interventions. RESULTS: Our simulation results confirm that the current mix of integrated vector management interventions with DDT as the main insecticide is cheaper than the same mix with alternative insecticides when only direct costs are considered. However, combinations with a stronger focus on insecticide-treated bed nets and environmental management show higher levels of cost-effectiveness than interventions with a focus on IRS. Thus, this focus would also allow phasing out DDT in a cost-effective manner. Although a rapid phase out of DDT for IRS is the most expensive of the tested intervention combinations it can have important economic benefits in addition to health and environmental impacts that are difficult to assess in monetary terms. Those economic benefits captured by the model include the avoided risk of losses in agricultural exports. CONCLUSIONS: The prototype simulation model illustrates how a computer-based scenario analysis tool can inform debates on malaria control policies in general and on the continued use of DDT for IRS versus its rapid phase out in specific. Simulation models create systematic mechanisms for analyzing alternative interventions and making informed trade

  15. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Science.gov (United States)

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  16. Model organisms and target discovery.

    Science.gov (United States)

    Muda, Marco; McKenna, Sean

    2004-09-01

    The wealth of information harvested from full genomic sequencing projects has not generated a parallel increase in the number of novel targets for therapeutic intervention. Several pharmaceutical companies have realized that novel drug targets can be identified and validated using simple model organisms. After decades of service in basic research laboratories, yeasts, worms, flies, fishes, and mice are now the cornerstones of modern drug discovery programs.: © 2004 Elsevier Ltd . All rights reserved.

  17. Using remote sensing and modeling techniques to investigate the annual parasite incidence of malaria in Loreto, Peru

    Science.gov (United States)

    Mousam, Aneela; Maggioni, Viviana; Delamater, Paul L.; Quispe, Antonio M.

    2017-10-01

    Between 2001 and 2010 significant progress was made towards reducing the number of malaria cases in Peru; however, the country saw an increase between 2011 and 2015. This work attempts to uncover the associations among various climatic and environmental variables and the annual malaria parasite incidence in the Peruvian region of Loreto. A Multilevel Mixed-effects Poisson Regression model is employed, focusing on the 2009-2013 period, when trends in malaria incidence shifted from decreasing to increasing. The results indicate that variations in elevation (β = 0.78; 95% confidence interval (CI), 0.75-0.81), soil moisture (β = 0.0021; 95% CI, 0.0019-0.0022), rainfall (β = 0.59; 95% CI, 0.56-0.61), and normalized difference vegetation index (β = 2.13; 95% CI, 1.83-2.43) is associated with higher annual parasite incidence, whereas an increase in temperature (β = -0.0043; 95% CI, - 0.0044- 0.0041) is associated with a lower annual parasite incidence. The results from this study are particularly useful for healthcare workers in Loreto and have the potential of being integrated within malaria elimination plans.

  18. A breeding site model for regional, dynamical malaria simulations evaluated using in situ temporary ponds observations

    Directory of Open Access Journals (Sweden)

    Ernest O. Asare

    2016-03-01

    Full Text Available Daily observations of potential mosquito developmental habitats in a suburb of Kumasi in central Ghana reveal a strong variability in their water persistence times, which ranged between 11 and 81 days. The persistence of the ponds was strongly tied with rainfall, location and size of the puddles. A simple power-law relationship is found to fit the relationship between the average pond depth and area well. A prognostic water balance model is derived that describes the temporal evolution of the pond area and depth, incorporating the power-law geometrical relation. Pond area increases in response to rainfall, while evaporation and infiltration act as sink terms. Based on a range of evaluation metrics, the prognostic model is judged to provide a good representation of the pond coverage evolution at most sites. Finally, we demonstrate that the prognostic equation can be generalised and equally applied to a grid-cell to derive a fractional pond coverage, and thus can be implemented in spatially distributed models for relevant vector- borne diseases such as malaria.

  19. A breeding site model for regional, dynamical malaria simulations evaluated using in situ temporary ponds observations.

    Science.gov (United States)

    Asare, Ernest O; Tompkins, Adrian M; Amekudzi, Leonard K; Ermert, Volker

    2016-03-31

    Daily observations of potential mosquito developmental habitats in a suburb of Kumasi in central Ghana reveal a strong variability in their water persistence times, which ranged between 11 and 81 days. The persistence of the ponds was strongly tied with rainfall, location and size of the puddles. A simple power-law relationship is found to fit the relationship between the average pond depth and area well. A prognostic water balance model is derived that describes the temporal evolution of the pond area and depth, incorporating the power-law geometrical relation. Pond area increases in response to rainfall, while evaporation and infiltration act as sink terms. Based on a range of evaluation metrics, the prognostic model is judged to provide a good representation of the pond coverage evolution at most sites. Finally, we demonstrate that the prognostic equation can be generalised and equally applied to a grid-cell to derive a fractional pond coverage, and thus can be implemented in spatially distributed models for relevant vector- borne diseases such as malaria.

  20. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study.

    Science.gov (United States)

    Brady, Oliver J; Slater, Hannah C; Pemberton-Ross, Peter; Wenger, Edward; Maude, Richard J; Ghani, Azra C; Penny, Melissa A; Gerardin, Jaline; White, Lisa J; Chitnis, Nakul; Aguas, Ricardo; Hay, Simon I; Smith, David L; Stuckey, Erin M; Okiro, Emelda A; Smith, Thomas A; Okell, Lucy C

    2017-07-01

    Mass drug administration for elimination of Plasmodium falciparum malaria is recommended by WHO in some settings. We used consensus modelling to understand how to optimise the effects of mass drug administration in areas with low malaria transmission. We collaborated with researchers doing field trials to establish a standard intervention scenario and standard transmission setting, and we input these parameters into four previously published models. We then varied the number of rounds of mass drug administration, coverage, duration, timing, importation of infection, and pre-administration transmission levels. The outcome of interest was the percentage reduction in annual mean prevalence of P falciparum parasite rate as measured by PCR in the third year after the final round of mass drug administration. The models predicted differing magnitude of the effects of mass drug administration, but consensus answers were reached for several factors. Mass drug administration was predicted to reduce transmission over a longer timescale than accounted for by the prophylactic effect alone. Percentage reduction in transmission was predicted to be higher and last longer at lower baseline transmission levels. Reduction in transmission resulting from mass drug administration was predicted to be temporary, and in the absence of scale-up of other interventions, such as vector control, transmission would return to pre-administration levels. The proportion of the population treated in a year was a key determinant of simulated effectiveness, irrespective of whether people are treated through high coverage in a single round or new individuals are reached by implementation of several rounds. Mass drug administration was predicted to be more effective if continued over 2 years rather than 1 year, and if done at the time of year when transmission is lowest. Mass drug administration has the potential to reduce transmission for a limited time, but is not an effective replacement for existing

  1. Malaria Genome Sequencing Project

    Science.gov (United States)

    2004-01-01

    proteins in plastid segregation mutants of Toxoplasma gandii. L. Biot. Parasito . Today 11, 1-4 (1995). Chem. 276, 28436-28442 (2001). 11. Su, X. et al... parasito - gene mapping studies have shown that regions of gene synteny exist phorous vacuole membrane29 . between species of rodent malaria9 and between...Carucci, D. J. Rodent models of malaria in the genomics era. Trends Parasito , 18, selection of karyotype mutants and non-gametocyte producer mutants

  2. Elimination of malaria due to Plasmodium vivax in central part of the People’s Republic of China: analysis and prediction based on modelling

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2014-11-01

    Full Text Available Five provinces in central People’s Republic of China (P.R. China have successfully reduced the burden of malaria due to Plasmodium vivax in the last 7 years. The results of the Action Plan of China Malaria Elimination (APCME that com- menced in 2010 are analysed against the background of the progress reached by the national malaria control programme (NMEP that was launched in 2006. We examined the epidemiological changes in the number of autochthonous cases over time and discuss the feasibility of achieving the goal of malaria elimination by 2020. There was a total decline of 34,320 malaria cases between 2006 and 2012 arriving at an average annual incidence of 0.04 per 10,000 people by 2012. At the same time, the number of counties reporting autochthonous cases declined from 290 to 19. Spatial autocorrelation and Bayesian modelling were used to evaluate the datasets and predict the spatio-temporal pattern in the near future. The former approach showed that spatial clusters of P. vivax malaria existed in the study region during the study period, while the risk prediction map generated by the Bayesian model indicates that only sporadic malaria cases will appear during in the future. The results suggest that the initial NMEP approach and the follow-up APCME strategy have played a key role in reducing the threat of malaria in central P.R. China. However, to achieve the goal of malaria elimination by the end of the current decade, interven- tion plans must be adjusted with attention paid to those endemic counties still at risk according to the prediction map.

  3. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling.

    Science.gov (United States)

    Moua, Yi; Roux, Emmanuel; Girod, Romain; Dusfour, Isabelle; de Thoisy, Benoit; Seyler, Frédérique; Briolant, Sébastien

    2017-05-01

    Malaria is an important health issue in French Guiana. Its principal mosquito vector in this region is Anopheles darlingi Root. Knowledge of the spatial distribution of this species is still very incomplete due to the extent of French Guiana and the difficulty to access most of the territory. Species distribution modeling based on the maximal entropy procedure was used to predict the spatial distribution of An. darlingi using 39 presence sites. The resulting model provided significantly high prediction performances (mean 10-fold cross-validated partial area under the curve and continuous Boyce index equal to, respectively, 1.11-with a level of omission error of 20%-and 0.42). The model also provided a habitat suitability map and environmental response curves in accordance with the known entomological situation. Several environmental characteristics that had a positive correlation with the presence of An. darlingi were highlighted: nonpermanent anthropogenic changes of the natural environment, the presence of roads and tracks, and opening of the forest. Some geomorphological landforms and high altitude landscapes appear to be unsuitable for An. darlingi. The species distribution modeling was able to reliably predict the distribution of suitable habitats for An. darlingi in French Guiana. Results allowed completion of the knowledge of the spatial distribution of the principal malaria vector in this Amazonian region, and identification of the main factors that favor its presence. They should contribute to the definition of a necessary targeted vector control strategy in a malaria pre-elimination stage, and allow extrapolation of the acquired knowledge to other Amazonian or malaria-endemic contexts. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Consistent Safety and Infectivity in Sporozoite Challenge Model of Plasmodium vivax in Malaria-Naive Human Volunteers

    Science.gov (United States)

    2011-02-01

    human volunteers with sporozoites. 6 A sporozoite challenge model has been available for P. falciparum for several decades and has led to...the reproduc- ibility of the infection. In those studies, sporozoites inoculated by < 5 mosquitoes led to an irregular infection in malaria-naive...particularly to Juana Vergara and Johanna Parra, for the vol- unteers’ recruitment and health assistance. We also thank Luz Amparo Martínez and all the

  5. Malaria and protective behaviours: is there a malaria trap?

    Science.gov (United States)

    Berthélemy, Jean-Claude; Thuilliez, Josselin; Doumbo, Ogobara; Gaudart, Jean

    2013-06-13

    In spite of massive efforts to generalize efficient prevention, such as insecticide-treated mosquito nets (ITN) or long-lasting insecticidal nets (LLINs), malaria remains prevalent in many countries and ITN/LLINs are still only used to a limited extent. This study proposes a new model for malaria economic analysis by combining economic epidemiology tools with the literature on poverty traps. A theoretical model of rational protective behaviour in response to malaria is designed, which includes endogenous externalities and disease characteristics. Survey data available for Uganda provide empirical support to the theory of prevalence-elastic protection behaviours, once endogeneity issues related to epidemiology and poverty are solved. Two important conclusions emerge from the model. First, agents increase their protective behaviour when malaria is more prevalent in a society. This is consistent with the literature on "prevalence-elastic behaviour". Second, a 'malaria trap' defined as the result of malaria reinforcing poverty while poverty reduces the ability to deal with malaria can theoretically exist and the conditions of existence of the malaria trap are identified. These results suggest the possible existence of malaria traps, which provides policy implications. Notably, providing ITN/LLINs at subsidized prices is not sufficient. To be efficient an ITN/LLINs dissemination campaigns should include incentive of the very poor for using ITN/LLINs.

  6. Dynamical Behavior of a Malaria Model with Discrete Delay and Optimal Insecticide Control

    Science.gov (United States)

    Kar, Tuhin Kumar; Jana, Soovoojeet

    In this paper we have proposed and analyzed a simple three-dimensional mathematical model related to malaria disease. We consider three state variables associated with susceptible human population, infected human population and infected mosquitoes, respectively. A discrete delay parameter has been incorporated to take account of the time of incubation period with infected mosquitoes. We consider the effect of insecticide control, which is applied to the mosquitoes. Basic reproduction number is figured out for the proposed model and it is shown that when this threshold is less than unity then the system moves to the disease-free state whereas for higher values other than unity, the system would tend to an endemic state. On the other hand if we consider the system with delay, then there may exist some cases where the endemic equilibrium would be unstable although the numerical value of basic reproduction number may be greater than one. We formulate and solve the optimal control problem by considering insecticide as the control variable. Optimal control problem assures to obtain better result than the noncontrol situation. Numerical illustrations are provided in support of the theoretical results.

  7. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria.

    Science.gov (United States)

    Barber, Bridget E; Rajahram, Giri S; Grigg, Matthew J; William, Timothy; Anstey, Nicholas M

    2017-03-31

    The 2016 World Health Organization (WHO) World Malaria Report documents substantial progress towards control and elimination of malaria. However, major challenges remain. In some regions of Southeast Asia, the simian parasite Plasmodium knowlesi has emerged as an important cause of human malaria, and the authors believe this species warrants regular inclusion in the World Malaria Report. Plasmodium knowlesi is the most common cause of malaria in Malaysia, and cases have also been reported in nearly all countries of Southeast Asia. Outside of Malaysia, P. knowlesi is frequently misdiagnosed by microscopy as Plasmodium falciparum or Plasmodium vivax. Thus, P. knowlesi may be underdiagnosed in affected regions and its true incidence underestimated. Acknowledgement in the World Malaria Report of the regional importance of P. knowlesi will facilitate efforts to improve surveillance of this emerging parasite. Furthermore, increased recognition will likely lead to improved delivery of effective treatment for this potentially fatal infection, as has occurred in Malaysia where P. knowlesi case-fatality rates have fallen despite rising incidence. In a number of knowlesi-endemic countries, substantial progress has been made towards the elimination of P. vivax and P. falciparum. However, efforts to eliminate these human-only species should not preclude efforts to reduce human malaria from P. knowlesi. The regional importance of knowlesi malaria was recognized by the WHO with its recent Evidence Review Group meeting on knowlesi malaria to address strategies for prevention and mitigation. The WHO World Malaria Report has an appropriate focus on falciparum and vivax malaria, the major causes of global mortality and morbidity. However, the authors hope that in future years this important publication will also incorporate data on the progress and challenges in reducing knowlesi malaria in regions where transmission occurs.

  8. Engaging the private sector in malaria surveillance: a review of strategies and recommendations for elimination settings.

    Science.gov (United States)

    Bennett, Adam; Avanceña, Anton L V; Wegbreit, Jennifer; Cotter, Chris; Roberts, Kathryn; Gosling, Roly

    2017-06-14

    In malaria elimination settings, all malaria cases must be identified, documented and investigated. To facilitate complete and timely reporting of all malaria cases and effective case management and follow-up, engagement with private providers is essential, particularly in settings where the private sector is a major source of healthcare. However, research on the role and performance of the private sector in malaria diagnosis, case management and reporting in malaria elimination settings is limited. Moreover, the most effective strategies for private sector engagement in malaria elimination settings remain unclear. Twenty-five experts in malaria elimination, disease surveillance and private sector engagement were purposively sampled and interviewed. An extensive review of grey and peer-reviewed literature on private sector testing, treatment, and reporting for malaria was performed. Additional in-depth literature review was conducted for six case studies on eliminating and neighbouring countries in Southeast Asia and Southern Africa. The private health sector can be categorized based on their commercial orientation or business model (for-profit versus nonprofit) and their regulation status within a country (formal vs informal). A number of potentially effective strategies exist for engaging the private sector. Conducting a baseline assessment of the private sector is critical to understanding its composition, size, geographical distribution and quality of services provided. Facilitating reporting, referral and training linkages between the public and private sectors and making malaria a notifiable disease are important strategies to improve private sector involvement in malaria surveillance. Financial incentives for uptake of rapid diagnostic tests and artemisinin-based combination therapy should be combined with training and community awareness campaigns for improving uptake. Private sector providers can also be organized and better engaged through social

  9. Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model.

    Science.gov (United States)

    Valle, Denis; Lima, Joanna M Tucker

    2014-11-20

    Most of the malaria burden in the Americas is concentrated in the Brazilian Amazon but a detailed spatial characterization of malaria risk has yet to be undertaken. Utilizing 2004-2008 malaria incidence data collected from six Brazilian Amazon states, large-scale spatial patterns of malaria risk were characterized with a novel Bayesian multi-pathogen geospatial model. Data included 2.4 million malaria cases spread across 3.6 million sq km. Remotely sensed variables (deforestation rate, forest cover, rainfall, dry season length, and proximity to large water bodies), socio-economic variables (rural population size, income, and literacy rate, mortality rate for children age under five, and migration patterns), and GIS variables (proximity to roads, hydro-electric dams and gold mining operations) were incorporated as covariates. Borrowing information across pathogens allowed for better spatial predictions of malaria caused by Plasmodium falciparum, as evidenced by a ten-fold cross-validation. Malaria incidence for both Plasmodium vivax and P. falciparum tended to be higher in areas with greater forest cover. Proximity to gold mining operations was another important risk factor, corroborated by a positive association between migration rates and malaria incidence. Finally, areas with a longer dry season and areas with higher average rural income tended to have higher malaria risk. Risk maps reveal striking spatial heterogeneity in malaria risk across the region, yet these mean disease risk surface maps can be misleading if uncertainty is ignored. By combining mean spatial predictions with their associated uncertainty, several sites were consistently classified as hotspots, suggesting their importance as priority areas for malaria prevention and control. This article provides several contributions. From a methodological perspective, the benefits of jointly modelling multiple pathogens for spatial predictions were illustrated. In addition, maps of mean disease risk were

  10. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  11. Controlling imported malaria cases in the United States of America.

    Science.gov (United States)

    Dembele, Bassidy; Yakubu, Abdul-Aziz

    2017-02-01

    We extend the mathematical malaria epidemic model framework of Dembele et al. and use it to ``capture" the 2013 Centers for Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the USA. Furthermore, we use our ``fitted" malaria models for the top 20 countries of malaria acquisition by USA residents to study the impact of protecting USA residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the CDC number of imported malaria cases in USA. To significantly reduce the number of imported malaria cases in USA, for each top 20 country of malaria acquisition by USA travelers, we compute the optimal proportion of USA international travelers that must be protected against malaria infection and the optimal proportion of mosquitoes that must be killed.

  12. Malaria vaccine research and development: the role of the WHO MALVAC committee

    Science.gov (United States)

    2013-01-01

    The WHO Malaria Vaccine Advisory Committee (MALVAC) provides advice to WHO on strategic priorities, activities and technical issues related to global efforts to develop vaccines against malaria. MALVAC convened a series of meetings to obtain expert, impartial consensus views on the priorities and best practice for vaccine-related research and development strategies. The technical areas covered during these consultations included: guidance on clinical trial design for candidate sporozoite and asexual blood stage vaccines; measures of efficacy of malaria vaccines in Phase IIb and Phase III trials; standardization of immunoassays; the challenges of developing assays and designing trials for interventions against malaria transmission; modelling impact of anti-malarial interventions; whole organism malaria vaccines, and Plasmodium vivax vaccine-related research and evaluation. These informed discussions and opinions are summarized here to provide guidance on harmonization of strategies to help ensure high standards of practice and comparability between centres and the outcome of vaccine trials. PMID:24112689

  13. Malaria Matters

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast gives an overview of malaria, including prevention and treatment, and what CDC is doing to help control and prevent malaria globally.  Created: 4/18/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 4/18/2008.

  14. Acute Pancreatitis in a Patient with Complicated Falciparum Malaria.

    Science.gov (United States)

    Barman, Bhupen; Bhattacharya, Prasanta Kumar; Lynrah, Kryshan G; Ete, Tony; Issar, Neel Kanth

    2016-01-01

    Malaria is one of the most common protozoan diseases, especially in tropical countries. The clinical manifestation of malaria, especially falciparum malaria varies from mild acute febrile illness to life threatening severe systemic complications involving one or more organ systems. We would like to report a case of complicated falciparum malaria involving cerebral, renal, hepatic system along with acute pancreatitis. The patient was successfully treated with anti malarial and other supportive treatment. To the best of our knowledge there are very few reports of acute pancreatitis due to malaria. Falciparum malaria therefore should be added to the list of infectious agents causing acute pancreatitis especially in areas where malaria is endemic.

  15. Taking a Bite out of Malaria: Controlled Human Malaria Infection by Needle and Syringe

    Science.gov (United States)

    2013-01-01

    Potentiation of the curative action of primaquine in vivax malaria by quinine and chloro- quine. J Lab Clin Med 46: 301–306. 9. Shapiro TA, Ranasinha CD...2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Taking a Bite out of Malaria : Controlled Human Malaria ...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Medical Research Center,U.S. Military Malaria Vaccine Program,503 Robert

  16. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    NARCIS (Netherlands)

    Smallegange, R.C.; Schmied, W.H.; Roey, van K.J.; Verhulst, N.O.; Spitzen, J.; Mukabana, W.R.; Takken, W.

    2010-01-01

    Background - Carbon dioxide (CO2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human

  17. Organization Development: Strategies and Models.

    Science.gov (United States)

    Beckhard, Richard

    This book, written for managers, specialists, and students of management, is based largely on the author's experience in helping organization leaders with planned-change efforts, and on related experience of colleagues in the field. Chapter 1 presents the background and causes for the increased concern with organization development and planned…

  18. The use of transgenic parasites in malaria vaccine research.

    Science.gov (United States)

    Othman, Ahmad Syibli; Marin-Mogollon, Catherin; Salman, Ahmed M; Franke-Fayard, Blandine M; Janse, Chris J; Khan, Shahid M

    2017-07-01

    Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.

  19. Rapid antigen detection tests for malaria diagnosis in severely ill Papua New Guinean children: a comparative study using Bayesian latent class models.

    Directory of Open Access Journals (Sweden)

    Laurens Manning

    Full Text Available BACKGROUND: Although rapid diagnostic tests (RDTs have practical advantages over light microscopy (LM and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold standards. We assessed whether, using Bayesian latent class models (LCMs which do not require a reference method, RDTs could safely direct initial anti-infective therapy in severe ill children from an area of hyperendemic transmission of both Plasmodium falciparum and P. vivax. METHODS AND FINDINGS: We studied 797 Papua New Guinean children hospitalized with well-characterized severe illness for whom LM, RDT and nested PCR (nPCR results were available. For any severe malaria, the estimated prevalence was 47.5% with RDTs exhibiting similar sensitivity and negative predictive value (NPV to nPCR (≥96.0%. LM was the least sensitive test (87.4% and had the lowest NPV (89.7%, but had the highest specificity (99.1% and positive predictive value (98.9%. For severe falciparum malaria (prevalence 42.9%, the findings were similar. For non-falciparum severe malaria (prevalence 6.9%, no test had the WHO-recommended sensitivity and specificity of >95% and >90%, respectively. RDTs were the least sensitive (69.6% and had the lowest NPV (96.7%. CONCLUSIONS: RDTs appear a valuable point-of-care test that is at least equivalent to LM in diagnosing severe falciparum malaria in this epidemiologic situation. None of the tests had the required sensitivity/specificity for severe non-falciparum malaria but the number of false-negative RDTs in this group was small.

  20. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Science.gov (United States)

    Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E

    2012-01-01

    Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  1. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Directory of Open Access Journals (Sweden)

    David Gurarie

    Full Text Available BACKGROUND: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. CONCLUSIONS/SIGNIFICANCE: Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  2. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    Science.gov (United States)

    Tompkins, Adrian M; Caporaso, Luca

    2016-03-31

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant.

  3. Roll back malaria update.

    Science.gov (United States)

    1999-10-01

    This article presents the activities under WHO's Roll Back Malaria (RBM) program in Asia, particularly in Nepal, Indonesia, India, Bangladesh, Sri Lanka and the Philippines. In India, the RBM program will start in 5 districts with a major malaria problem. A national committee has been formed by researchers, which will be able to provide operational and strategic support and research expertise in relation to malaria. In Bangladesh, the RBM program was initiated in the sparsely populated hill tract areas of Banderban and Chittagong where access to health care is very poor. At the district level, effective partnerships with private practitioners, politicians, community leaders, school teachers, the press and district Ministry of Health officials are operating to plan for rolling back malaria. In Myanmar, Cambodia, Lao People's Democratic Republic, Yunnan province of China, Vietnam, and Thailand, the focus of the RBM program was to move health care closer to the malaria-infected communities. WHO¿s Global Health Leadership Fellowship Programme, supported by the UN Foundation and Rockefeller Foundation, enables potential leaders to experience the work of UN agencies and contribute to the work of the organization for 2 years. Three out of four persons appointed to the RBM program received prestigious awards: Dr. Paola Marchesini of Brazil; Dr. Tieman Diarra of Mali; and Dr. Bob Taylor of the UK.

  4. Newer approaches to malaria control.

    Science.gov (United States)

    Damodaran, Se; Pradhan, Prita; Pradhan, Suresh Chandra

    2011-07-01

    Malaria is the third leading cause of death due to infectious diseases affecting around 243 million people, causing 863,000 deaths each year, and is a major public health problem. Most of the malarial deaths occur in children below 5 years and is a major contributor of under-five mortality. As a result of environmental and climatic changes, there is a change in vector population and distribution, leading to resurgence of malaria at numerous foci. Resistance to antimalarials is a major challenge to malaria control and there are new drug developments, new approaches to treatment strategies, combination therapy to overcome resistance and progress in vaccine development. Now, artemisinin-based combination therapy is the first-line therapy as the malarial parasite has developed resistance to other antimalarials. Reports of artemisinin resistance are appearing and identification of new drug targets gains utmost importance. As there is a shift from malaria control to malaria eradication, more research is focused on malaria vaccine development. A malaria vaccine, RTS,S, is in phase III of development and may become the first successful one. Due to resistance to insecticides and lack of environmental sanitation, the conventional methods of vector control are turning out to be futile. To overcome this, novel strategies like sterile insect technique and transgenic mosquitoes are pursued for effective vector control. As a result of the global organizations stepping up their efforts with continued research, eradication of malaria can turn out to be a reality.

  5. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review

    Directory of Open Access Journals (Sweden)

    Jones Anne E

    2011-02-01

    Full Text Available Abstract Background A warm and humid climate triggers several water-associated diseases such as malaria. Climate- or weather-driven malaria models, therefore, allow for a better understanding of malaria transmission dynamics. The Liverpool Malaria Model (LMM is a mathematical-biological model of malaria parasite dynamics using daily temperature and precipitation data. In this study, the parameter settings of the LMM are refined and a new mathematical formulation of key processes related to the growth and size of the vector population are developed. Methods One of the most comprehensive studies to date in terms of gathering entomological and parasitological information from the literature was undertaken for the development of a new version of an existing malaria model. The knowledge was needed to allow the justification of new settings of various model parameters and motivated changes of the mathematical formulation of the LMM. Results The first part of the present study developed an improved set of parameter settings and mathematical formulation of the LMM. Important modules of the original LMM version were enhanced in order to achieve a higher biological and physical accuracy. The oviposition as well as the survival of immature mosquitoes were adjusted to field conditions via the application of a fuzzy distribution model. Key model parameters, including the mature age of mosquitoes, the survival probability of adult mosquitoes, the human blood index, the mosquito-to-human (human-to-mosquito transmission efficiency, the human infectious age, the recovery rate, as well as the gametocyte prevalence, were reassessed by means of entomological and parasitological observations. This paper also revealed that various malaria variables lack information from field studies to be set properly in a malaria modelling approach. Conclusions Due to the multitude of model parameters and the uncertainty involved in the setting of parameters, an extensive

  6. Analytical Hierarchy Process modeling for malaria risk zones in Vadodara district, Gujarat

    Science.gov (United States)

    Bhatt, B.; Joshi, J. P.

    2014-11-01

    Malaria epidemic is one of the complex spatial problems around the world. According to WHO, an estimated 6, 27, 000 deaths occurred due to malaria in 2012. In many developing nations with diverse ecological regions, it is still a large cause of human mortality. Owing to the incompleteness of epidemiological data and their spatial origin, the quantification of disease incidence burdening basic public health planning is a major constrain especially in developing countries. The present study focuses on the integrated Geospatial and Multi-Criteria Evaluation (AHP) technique to determine malaria risk zones. The study is conducted in Vadodara district, including 12 Taluka among which 4 Taluka are predominantly tribal. The influence of climatic and physical environmental factors viz., rainfall, hydro geomorphology; drainage, elevation, and land cover are used to score their share in the evaluation of malariogenic condition. This was synthesized on the basis of preference over each factor and the total weights of each data and data layer were computed and visualized. The district was divided into three viz., high, moderate and low risk zones .It was observed that a geographical area of 1885.2sq.km comprising 30.3% fall in high risk zone. The risk zones identified on the basis of these parameters and assigned weights shows a close resemblance with ground condition. As the API distribution for 2011overlaid corresponds to the risk zones identified. The study demonstrates the significance and prospect of integrating Geospatial tools and Analytical Hierarchy Process for malaria risk zones and dynamics of malaria transmission.

  7. Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease

    Science.gov (United States)

    ... research organisms to explore the basic biology and chemistry of life. Scientists decide which organism to study ... and much is already known about their genetic makeup . For these and other reasons, studying model organisms ...

  8. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  9. Malaria Facts

    Science.gov (United States)

    ... 216 million clinical episodes, and 445,000 deaths. Biology, Pathology, Epidemiology Among the malaria species that infect ... Cinchona spp., South America, 17th century). Get Email Updates To receive email updates about this page, enter ...

  10. Malaria (image)

    Science.gov (United States)

    ... the bite of an infected Anopheles mosquito. The parasites migrate to the liver, mature and enter the bloodstream, where they rupture red blood cells. An infected pregnant woman can transmit malaria ...

  11. Vaccines against malaria.

    Science.gov (United States)

    Hill, Adrian V S

    2011-10-12

    There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.

  12. Slow and fast dynamics model of a Malaria with Sickle-Cell genetic disease with multi-stage infections of the mosquitoes population

    Science.gov (United States)

    Dewi Siawanta, Shanti; Adi-Kusumo, Fajar; Irwan Endrayanto, Aluicius

    2018-03-01

    Malaria, which is caused by Plasmodium, is a common disease in tropical areas. There are three types of Plasmodium i.e. Plasmodium Vivax, Plasmodium Malariae, and Plasmodium Falciparum. The most dangerous cases of the Malaria are mainly caused by the Plasmodium Falciparum. One of the important characteristics for the Plasmodium infection is due to the immunity of erythrocyte that contains HbS (Haemoglobin Sickle-cell) genes. The individuals who has the HbS gene has better immunity against the disease. In this paper, we consider a model that shows the spread of malaria involving the interaction between the mosquitos population, the human who has HbS genes population and the human with normal gene population. We do some analytical and numerical simulation to study the basic reproduction ratio and the slow-fast dynamics of the phase-portrait. The slow dynamics in our model represents the response of the human population with HbS gene to the Malaria disease while the fast dynamics show the response of the human population with the normal gene to the disease. The slow and fast dynamics phenomena are due to the fact that the population of the individuals who have HbS gene is much smaller than the individuals who has normal genes.

  13. Ranking Malaria Risk Factors to Guide Malaria Control Efforts in African Highlands

    OpenAIRE

    Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc

    2009-01-01

    Introduction: Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. Methods and Findings: A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through...

  14. A novel approach for modeling malaria incidence using complex categorical household data: The minimum message length (MML method applied to Indonesian data

    Directory of Open Access Journals (Sweden)

    Gerhard Visser

    2012-09-01

    Full Text Available We investigated the application of a Minimum Message Length (MML modeling approach to identify the simplest model that would explain two target malaria incidence variables: incidence in the short term and on the average longer term, in two areas in Indonesia, based on a range of ecological variables including environmental and socio-economic ones. The approach is suitable for dealing with a variety of problems such as complexity and where there are missing values in the data. It can detect weak relations, is resistant to overfittingand can show the way in which many variables, working together, contribute to explaining malaria incidence. This last point is a major strength of the method as it allows many variables to be analysed. Data were obtained at household level by questionnaire for villages in West Timor and Central Java. Data were collected on 26 variables in nine categories: stratum (a village-level variable based on the API/AMI categories, ecology, occupation, preventative measures taken, health care facilities, the immediate environment, household characteristics, socio-economic status and perception of malaria cause. Several models were used and the simplest (best model, that is the one with the minimum message length was selected for each area. The results showed that consistent predictors of malaria included combinations of ecology (coastal, preventative (clean backyard and environment (mosquito breeding place, garden and rice cultivation. The models also showed that most of the other variables were not good predictors and this is discussed in the paper. We conclude that the method has potential for identifying simple predictors of malaria and that it could be used to focus malaria management on combinations of variables rather than relying on single ones that may not be consistently reliable.

  15. Integrated HIV testing, malaria, and diarrhea prevention campaign in Kenya: modeled health impact and cost-effectiveness.

    Directory of Open Access Journals (Sweden)

    James G Kahn

    Full Text Available Efficiently delivered interventions to reduce HIV, malaria, and diarrhea are essential to accelerating global health efforts. A 2008 community integrated prevention campaign in Western Province, Kenya, reached 47,000 individuals over 7 days, providing HIV testing and counseling, water filters, insecticide-treated bed nets, condoms, and for HIV-infected individuals cotrimoxazole prophylaxis and referral for ongoing care. We modeled the potential cost-effectiveness of a scaled-up integrated prevention campaign.We estimated averted deaths and disability-adjusted life years (DALYs based on published data on baseline mortality and morbidity and on the protective effect of interventions, including antiretroviral therapy. We incorporate a previously estimated scaled-up campaign cost. We used published costs of medical care to estimate savings from averted illness (for all three diseases and the added costs of initiating treatment earlier in the course of HIV disease.Per 1000 participants, projected reductions in cases of diarrhea, malaria, and HIV infection avert an estimated 16.3 deaths, 359 DALYs and $85,113 in medical care costs. Earlier care for HIV-infected persons adds an estimated 82 DALYs averted (to a total of 442, at a cost of $37,097 (reducing total averted costs to $48,015. Accounting for the estimated campaign cost of $32,000, the campaign saves an estimated $16,015 per 1000 participants. In multivariate sensitivity analyses, 83% of simulations result in net savings, and 93% in a cost per DALY averted of less than $20.A mass, rapidly implemented campaign for HIV testing, safe water, and malaria control appears economically attractive.

  16. Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity.

    OpenAIRE

    Lucy C Okell; Chris J Drakeley; Teun Bousema; Christopher J M Whitty; Azra C Ghani

    2008-01-01

    Editors' Summary Background. Plasmodium falciparum, a mosquito-borne parasite that causes malaria, kills nearly one million people every year. When an infected mosquito bites a person, it injects a life stage of the parasite called sporozoites, which invade human liver cells where they initially develop. The liver cells then release merozoites (another life stage of the parasite). These invade red blood cells where they multiply before bursting out and infecting more red blood cells, which ca...

  17. Patterns of malaria-related hospital admissions and mortality among Malawian children: an example of spatial modelling of hospital register data

    Directory of Open Access Journals (Sweden)

    Kleinschmidt Immo

    2006-10-01

    Full Text Available Abstract Background Malaria is a leading cause of hospitalization and in-hospital mortality among children in Africa, yet, few studies have described the spatial distribution of the two outcomes. Here spatial regression models were applied, aimed at quantifying spatial variation and risk factors associated with malaria hospitalization and in-hospital mortality. Methods Paediatric ward register data from Zomba district, Malawi, between 2002 and 2003 were used, as a case study. Two spatial models were developed. The first was a Poisson model applied to analyse hospitalization and minimum mortality rates, with age and sex as covariates. The second was a logistic model applied to individual level data to analyse case-fatality rate, adjusting for individual covariates. Results and conclusion Rates of malaria hospitalization and in-hospital mortality decreased with age. Case fatality rate was associated with distance, age, wet season and increased if the patient was referred to the hospital. Furthermore, death rate was high on first day, followed by relatively low rate as length of hospital stay increased. Both outcomes showed substantial spatial heterogeneity, which may be attributed to the varying determinants of malaria risk, health services availability and accessibility, and health seeking behaviour. The increased risk of mortality of children referred from primary health facilities may imply inadequate care being available at the referring facility, or the referring facility are referring the more severe cases which are expected to have a higher case fatality rate. Improved prognosis as the length of hospital stay increased suggest that appropriate care when available can save lives. Reducing malaria burden may require integrated strategies encompassing availability of adequate care at primary facilities, introducing home or community case management as well as encouraging early referral, and reinforcing interventions to interrupt malaria

  18. Malaria control in South Sudan, 2006-2013: strategies, progress and challenges.

    Science.gov (United States)

    Pasquale, Harriet; Jarvese, Martina; Julla, Ahmed; Doggale, Constantino; Sebit, Bakhit; Lual, Mark Y; Baba, Samson P; Chanda, Emmanuel

    2013-10-27

    South Sudan has borne the brunt of years of chronic warfare and probably has the highest malaria burden in sub-Saharan Africa. However, effective malaria control in post-conflict settings is hampered by a multiplicity of challenges. This manuscript reports on the strategies, progress and challenges of malaria control in South Sudan and serves as an example epitome for programmes operating in similar environments and provides a window for leveraging resources. To evaluate progress and challenges of the national malaria control programme an in-depth appraisal was undertaken according to the World Health Organization standard procedures for malaria programme performance review. Methodical analysis of published and unpublished documents on malaria control in South Sudan was conducted. To ensure completeness, findings of internal thematic desk assessments were triangulated in the field and updated by external review teams. South Sudan has strived to make progress in implementing the WHO recommended malaria control interventions as set out in the 2006-2013 National Malaria Strategic Plan. The country has faced enormous programmatic constraints including infrastructure, human and financial resource and a weak health system compounded by an increasing number of refugees, returnees and internally displaced people. The findings present a platform on which to tailor an evidence-based 2014-2018 national malaria strategic plan for the country and a unique opportunity for providing a model for countries in a post-conflict situation. The prospects for effective malaria control and elimination are huge in South Sudan. Nevertheless, strengthened coordination, infrastructure and human resource capacity, monitoring and evaluation are required. To achieve all this, allocation of adequate local funding would be critical.

  19. Malaria control in South Sudan, 2006–2013: strategies, progress and challenges

    Science.gov (United States)

    2013-01-01

    Background South Sudan has borne the brunt of years of chronic warfare and probably has the highest malaria burden in sub-Saharan Africa. However, effective malaria control in post-conflict settings is hampered by a multiplicity of challenges. This manuscript reports on the strategies, progress and challenges of malaria control in South Sudan and serves as an example epitome for programmes operating in similar environments and provides a window for leveraging resources. Case description To evaluate progress and challenges of the national malaria control programme an in-depth appraisal was undertaken according to the World Health Organization standard procedures for malaria programme performance review. Methodical analysis of published and unpublished documents on malaria control in South Sudan was conducted. To ensure completeness, findings of internal thematic desk assessments were triangulated in the field and updated by external review teams. Discussion and evaluation South Sudan has strived to make progress in implementing the WHO recommended malaria control interventions as set out in the 2006–2013 National Malaria Strategic Plan. The country has faced enormous programmatic constraints including infrastructure, human and financial resource and a weak health system compounded by an increasing number of refugees, returnees and internally displaced people. The findings present a platform on which to tailor an evidence-based 2014–2018 national malaria strategic plan for the country and a unique opportunity for providing a model for countries in a post-conflict situation. Conclusions The prospects for effective malaria control and elimination are huge in South Sudan. Nevertheless, strengthened coordination, infrastructure and human resource capacity, monitoring and evaluation are required. To achieve all this, allocation of adequate local funding would be critical. PMID:24160336

  20. Systemic Modeling for the diagnosis of the interaction climate-malaria in Colombia, application during El Nino 1997-1998 and La Nina 1998-2000

    International Nuclear Information System (INIS)

    Ruiz, Daniel; Poveda, German; Quinonez, Martha Lucia; Velez Ivan, Dario; Rojas, William; Zuluaga, Juan Santiago

    2002-01-01

    A vector-borne disease model has been developed to represent the entomological, epidemiological and climatic interactions of malaria transmission conductive to disease outbreaks in Nuqui prone-region, Choco province, along the pacific Colombian coast. Considering breeding place availability model and several predator-prey-food models allow us to represent the vectorial densities fluctuations observed during the field's campaigns. The comprehensive model has been applied to represent malaria incidence during the period Nov/1997-Feb/2001 (1200 days simulation period), when both El Nino and la Nina events strongly affected the hydro-climatology of Colombia. The model has been run for observed climatic patterns such as mean daily temperatures, total daily precipitation records, and mean daily relative humidities gathered by a nearby climatological station. Diverse temperature scenarios have been considered to deepen the understanding of the entomological-climatic linkages conductive to malaria outbreaks. Sensitivity analysis and instabilities cases have been also studied during the experimentation-validation processes. Obtained results allow us to conclude that the model constitutes a promising tool to deepen the understanding of the ecological, entomological, and epidemiological linkages conductive to malaria outbreaks

  1. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  2. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin

    2009-01-01

    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  3. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  4. Modeling Virtual Organization Architecture with the Virtual Organization Breeding Methodology

    Science.gov (United States)

    Paszkiewicz, Zbigniew; Picard, Willy

    While Enterprise Architecture Modeling (EAM) methodologies become more and more popular, an EAM methodology tailored to the needs of virtual organizations (VO) is still to be developed. Among the most popular EAM methodologies, TOGAF has been chosen as the basis for a new EAM methodology taking into account characteristics of VOs presented in this paper. In this new methodology, referred as Virtual Organization Breeding Methodology (VOBM), concepts developed within the ECOLEAD project, e.g. the concept of Virtual Breeding Environment (VBE) or the VO creation schema, serve as fundamental elements for development of VOBM. VOBM is a generic methodology that should be adapted to a given VBE. VOBM defines the structure of VBE and VO architectures in a service-oriented environment, as well as an architecture development method for virtual organizations (ADM4VO). Finally, a preliminary set of tools and methods for VOBM is given in this paper.

  5. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  6. Spatial and Temporal Distribution of Plasmodium vivax Malaria in Korea Estimated with a Hierarchical Generalized Linear Model.

    Science.gov (United States)

    Noh, Maengseok; Lee, Youngjo; Oh, Seungyoung; Chu, Chaeshin; Gwack, Jin; Youn, Seung-Ki; Cho, Shin Hyeong; Lee, Won Ja; Huh, Sun

    2012-12-01

    The spatial and temporal correlations were estimated to determine Plasmodium vivax malarial transmission pattern in Korea from 2001-2011 with the hierarchical generalized linear model. Malaria cases reported to the Korea Centers for Disease Control and Prevention from 2001 to 2011 were analyzed with descriptive statistics and the incidence was estimated according to age, sex, and year by the hierarchical generalized linear model. Spatial and temporal correlation was estimated and the best model was selected from nine models. Results were presented as diseases map according to age and sex. The incidence according to age was highest in the 20-25-year-old group (244.52 infections/100,000). Mean ages of infected males and females were 31.0 years and 45.3 years with incidences 7.8 infections/100,000 and 7.1 infections/100,000 after estimation. The mean month for infection was mid-July with incidence 10.4 infections/100,000. The best-fit model showed that there was a spatial and temporal correlation in the malarial transmission. Incidence was very low or negligible in areas distant from the demilitarized zone between Republic of Korea and Democratic People's Republic of Korea (North Korea) if the 20-29-year-old male group was omitted in the diseases map. Malarial transmission in a region in Korea was influenced by the incidence in adjacent regions in recent years. Since malaria in Korea mainly originates from mosquitoes from North Korea, there will be continuous decrease if there is no further outbreak in North Korea.

  7. Community screening and treatment of asymptomatic carriers of Plasmodium falciparum with artemether-lumefantrine to reduce malaria disease burden: a modelling and simulation analysis

    Directory of Open Access Journals (Sweden)

    Ubben David

    2011-07-01

    Full Text Available Abstract Background Asymptomatic carriers of Plasmodium falciparum serve as a reservoir of parasites for malaria transmission. Identification and treatment of asymptomatic carriers within a region may reduce the parasite reservoir and influence malaria transmission in that area. Methods Using computer simulation, this analysis explored the impact of community screening campaigns (CSC followed by systematic treatment of P. falciparum asymptomatic carriers (AC with artemether-lumefantrine (AL on disease transmission. The model created by Okell et al (originally designed to explore the impact of the introduction of treatment with artemisinin-based combination therapy on malaria endemicity was modified to represent CSC and treatment of AC with AL, with the addition of malaria vector seasonality. The age grouping, relative distribution of age in a region, and degree of heterogeneity in disease transmission were maintained. The number and frequency of CSC and their relative timing were explored in terms of their effect on malaria incidence. A sensitivity analysis was conducted to determine the factors with the greatest impact on the model predictions. Results The simulation showed that the intervention that had the largest effect was performed in an area with high endemicity (entomological inoculation rate, EIR > 200; however, the rate of infection returned to its normal level in the subsequent year, unless the intervention was repeated. In areas with low disease burden (EIR Conclusions Community screening and treatment of asymptomatic carriers with AL may reduce malaria transmission significantly. The initial level of disease intensity has the greatest impact on the potential magnitude and duration of malaria reduction. When combined with other interventions (e.g. long-lasting insecticide-treated nets, rapid diagnostic tests, prompt diagnosis and treatment, and, where appropriate, indoor residual spraying the effect of this intervention can be

  8. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software

    Directory of Open Access Journals (Sweden)

    Crandall Ian

    2009-07-01

    Full Text Available Abstract Background Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. Methods The model incorporates two general principles: 1 collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2 commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. Results The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. Conclusion The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and

  9. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software.

    Science.gov (United States)

    Suhanic, West; Crandall, Ian; Pennefather, Peter

    2009-07-17

    Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. The model incorporates two general principles: 1) collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2) commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and groups in a distributed and collaborative fashion. The workstation

  10. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria

    DEFF Research Database (Denmark)

    Wiese, Lothar; Hempel, Casper; Penkowa, Milena

    2008-01-01

    BACKGROUND: Cerebral malaria (CM) is an acute encephalopathy with increased pro-inflammatory cytokines, sequestration of parasitized erythrocytes and localized ischaemia. In children CM induces cognitive impairment in about 10% of the survivors. Erythropoietin (Epo) has - besides of its well known...... with recombinant human Epo (rhEpo; 50-5000 U/kg/OD, i.p.) at different time points. The effect on survival was measured. Brain pathology was investigated by TUNEL (Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labelling), as a marker of apoptosis. Gene...

  11. Malaria Risk Assessment for the Republic of Korea Based on Models of Mosquito Distribution

    Science.gov (United States)

    2008-06-01

    Yam;lda All. kleilli Rueda All. belellme Rueda VPH 0.8 • 0.6• ~ ~ 0.’ 0.2 0 H P V VPH Figure I, Illustration of the concept of the mal-area as it...the percentage of the sampled area that these parameters cover. The value for VPH could be used as a simplified index of malaria risk to compare...combinations of the VPH variables. These statistics will consist of the percentage of cells that contain a certain value for the user defined area

  12. Malaria among the pastoral communities of the Ngorongoro Crater

    African Journals Online (AJOL)

    monitor any impending epidemic in future. Key words: malaria, pastoral community, epidemic, highlands, Tanzania. Introduction. Malaria is the primary cause of ill health in Africa. South of Sahara, causing an enormous health and economic burden. The World Health Organization. (WHO) has estimated that malaria causes ...

  13. Severe malaria in Parirenyatwa Hospital, Harare Intensive Care Unit ...

    African Journals Online (AJOL)

    Demographic data, clinical data, laboratory data and data on interventions in ICU were collected. Multiple Organ Dysfunction Score (MODS), Malaria Prediction Score (MPS) and Malaria Score for Adults (MSA) were applied for all patients. Results: Sixteen (16) malaria patients were included in the study and all were adults ...

  14. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Spitzen Jeroen

    2010-10-01

    Full Text Available Abstract Background Carbon dioxide (CO2 plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2. Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials

  15. Acute Pancreatitis in a Patient with Complicated Falciparum Malaria

    OpenAIRE

    Barman, Bhupen; Bhattacharya, Prasanta Kumar; Lynrah, Kryshan G; Ete, Tony; Issar, Neel Kanth

    2016-01-01

    Malaria is one of the most common protozoan diseases, especially in tropical countries. The clinical manifestation of malaria, especially falciparum malaria varies from mild acute febrile illness to life threatening severe systemic complications involving one or more organ systems. We would like to report a case of complicated falciparum malaria involving cerebral, renal, hepatic system along with acute pancreatitis. The patient was successfully treated with anti malarial and other supportive...

  16. 1H NMR metabonomics indicates continued metabolic changes and sexual dimorphism post-parasite clearance in self-limiting murine malaria model.

    Directory of Open Access Journals (Sweden)

    Arjun Sengupta

    Full Text Available Malaria, a mosquito-borne disease caused by Plasmodium spp. is considered to be a global threat, specifically for the developing countries. In human subjects considerable information exists regarding post-malarial physiology. However, most murine malarial models are lethal, and most studies deal with acute phases occurring as disease progresses. Much less is known regarding physiological status post-parasite clearance. We have assessed the physiological changes at the organ levels using (1H NMR based metabonomics in a non lethal self-clearing murine malarial model of P. chabaudi parasites and Balb/C, far beyond the parasite clearance point. The results showed distinct metabolic states between uninfected and infected mice at the peak parasitemia, as well as three weeks post-parasite clearance. Our data also suggests that the response at the peak infection as well as recovery exhibited distinct sexual dimorphism. Specifically, we observed accumulation of acetylcholine in the brain metabolic profile of both the sexes. This might have important implication in understanding the pathophysiology of the post malarial neurological syndromes. In addition, the female liver showed high levels of glucose, dimethylglycine, methylacetoacetate and histidine after three weeks post-parasite clearance, while the males showed accumulation of branched chain amino acids, lysine, glutamine and bile acids.

  17. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  18. Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin- Proteasome Pathway (UPP) Proteins.

    Science.gov (United States)

    Casañola-Martin, Gerardo M; Le-Thi-Thu, Huong; Pérez-Giménez, Facundo; Marrero-Ponce, Yovani; Merino-Sanjuán, Matilde; Abad, Concepción; González-Díaz, Humberto

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets.

  19. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Science.gov (United States)

    Apte, Simon H; Groves, Penny L; Skwarczynski, Mariusz; Fujita, Yoshio; Chang, Chenghung; Toth, Istvan; Doolan, Denise L

    2012-01-01

    Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+) and/or CD8(+) T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+) T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+) T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  20. The utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment

    Science.gov (United States)

    Goodman, Anna L.; Forbes, Emily K.; Williams, Andrew R.; Douglas, Alexander D.; de Cassan, Simone C.; Bauza, Karolis; Biswas, Sumi; Dicks, Matthew D. J.; Llewellyn, David; Moore, Anne C.; Janse, Chris J.; Franke-Fayard, Blandine M.; Gilbert, Sarah C.; Hill, Adrian V. S.; Pleass, Richard J.; Draper, Simon J.

    2013-01-01

    Rodent malaria species Plasmodium yoelii and P. chabaudi have been widely used to validate vaccine approaches targeting blood-stage merozoite antigens. However, increasing data suggest the P. berghei rodent malaria may be able to circumvent vaccine-induced anti-merozoite responses. Here we confirm a failure to protect against P. berghei, despite successful antibody induction against leading merozoite antigens using protein-in-adjuvant or viral vectored vaccine delivery. No subunit vaccine approach showed efficacy in mice following immunization and challenge with the wild-type P. berghei strains ANKA or NK65, or against a chimeric parasite line encoding a merozoite antigen from P. falciparum. Protection was not improved in knockout mice lacking the inhibitory Fc receptor CD32b, nor against a Δsmac P. berghei parasite line with a non-sequestering phenotype. An improved understanding of the mechanisms responsible for protection, or failure of protection, against P. berghei merozoites could guide the development of an efficacious vaccine against P. falciparum. PMID:23609325

  1. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control.

    Directory of Open Access Journals (Sweden)

    Laith Yakob

    Full Text Available Integrated vector management for malaria control has received a lot of recent interest. Attacking multiple points in the transmission cycle is hoped to act synergistically and improve upon current single-tool interventions based on the use of insecticide-treated bed nets (ITNs. In the present study, we theoretically examined the application of larval habitat source reduction with ITNs in reducing malaria transmission. We selected this type of environmental management to complement ITNs because of a potential secondary mode of action that both control strategies share. In addition to increasing vector mortality, ITNs reduce the rate at which female mosquitoes locate human hosts for blood feeding, thereby extending their gonotrophic cycle. Similarly, while reducing adult vector emergence and abundance, source reduction of larval habitats may prolong the cycle duration by extending delays in locating oviposition sites. We found, however, that source reduction of larval habitats only operates through this secondary mode of action when habitat density is below a critical threshold. Hence, we illustrate how this strategy becomes increasingly effective when larval habitats are limited. We also demonstrate that habitat source reduction is better suited to human populations of higher density and in the presence of insecticide resistance or when the insecticidal properties of ITNs are depleted.

  2. Kompliceret malaria

    DEFF Research Database (Denmark)

    Rønn, A M; Bygbjerg, Ib Christian; Jacobsen, E

    1989-01-01

    An increasing number of cases of malaria, imported to Denmark, are caused by Plasmodium falciparum and severe and complicated cases are more often seen. In the Department of Infectious Diseases, Rigshospitalet, 23 out of 32 cases, hospitalized from 1.1-30.6.1988, i.e. 72%, were caused by P...

  3. Malaria and Travelers

    Science.gov (United States)

    ... Malaria About Malaria FAQs Fast Facts Disease Biology Ecology Human Factors Sickle Cell Mosquitoes Parasites Where Malaria ... medications being taken (to assess potential drug-drug interactions), the cost of the medicines, and the potential ...

  4. Malaria (For Parents)

    Science.gov (United States)

    ... with malaria each year. Most cases are in sub-Saharan Africa. (Asia, Latin America, and parts of Europe are ... children who are malnourished . Can Malaria Be Prevented? Health authorities try to prevent malaria by using mosquito- ...

  5. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    Science.gov (United States)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  6. The conceptual model of organization social responsibility

    OpenAIRE

    LUO, Lan; WEI, Jingfu

    2014-01-01

    With the developing of the research of CSR, people more and more deeply noticethat the corporate should take responsibility. Whether other organizations besides corporatesshould not take responsibilities beyond their field? This paper puts forward theconcept of organization social responsibility on the basis of the concept of corporate socialresponsibility and other theories. And the conceptual models are built based on theconception, introducing the OSR from three angles: the types of organi...

  7. Indoor Residual Spraying Delivery Models to Prevent Malaria: Comparison of Community- and District-Based Approaches in Ethiopia

    Science.gov (United States)

    Johns, Benjamin; Yihdego, Yemane Yeebiyo; Kolyada, Lena; Dengela, Dereje; Chibsa, Sheleme; Dissanayake, Gunawardena; George, Kristen; Taffese, Hiwot Solomon; Lucas, Bradford

    2016-01-01

    ABSTRACT Background: Indoor residual spraying (IRS) for malaria prevention has traditionally been implemented in Ethiopia by the district health office with technical and operational inputs from regional, zonal, and central health offices. The United States President's Malaria Initiative (PMI) in collaboration with the Government of Ethiopia tested the effectiveness and efficiency of integrating IRS into the government-funded community-based rural health services program. Methods: Between 2012 and 2014, PMI conducted a mixed-methods study in 11 districts of Oromia region to compare district-based IRS (DB IRS) and community-based IRS (CB IRS) models. In the DB IRS model, each district included 2 centrally located operational sites where spray teams camped during the IRS campaign and from which they traveled to the villages to conduct spraying. In the CB IRS model, spray team members were hired from the communities in which they operated, thus eliminating the need for transport and camping facilities. The study team evaluated spray coverage, the quality of spraying, compliance with environmental and safety standards, and cost and performance efficiency. Results: The average number of eligible structures found and sprayed in the CB IRS districts increased by 19.6% and 20.3%, respectively, between 2012 (before CB IRS) and 2013 (during CB IRS). Between 2013 and 2014, the numbers increased by about 14%. In contrast, in the DB IRS districts the number of eligible structures found increased by only 8.1% between 2012 and 2013 and by 0.4% between 2013 and 2014. The quality of CB IRS operations was good and comparable to that in the DB IRS model, according to wall bioassay tests. Some compliance issues in the first year of CB IRS implementation were corrected in the second year, bringing compliance up to the level of the DB IRS model. The CB IRS model had, on average, higher amortized costs per district than the DB IRS model but lower unit costs per structure sprayed and per

  8. Modelling the Contributions of Malaria, HIV, Malnutrition and Rainfall to the Decline in Paediatric Invasive Non-typhoidal Salmonella Disease in Malawi.

    Directory of Open Access Journals (Sweden)

    Nicholas A Feasey

    Full Text Available Nontyphoidal Salmonellae (NTS are responsible for a huge burden of bloodstream infection in Sub-Saharan African children. Recent reports of a decline in invasive NTS (iNTS disease from Kenya and The Gambia have emphasised an association with malaria control. Following a similar decline in iNTS disease in Malawi, we have used 9 years of continuous longitudinal data to model the interrelationships between iNTS disease, malaria, HIV and malnutrition.Trends in monthly numbers of childhood iNTS disease presenting at Queen's Hospital, Blantyre, Malawi from 2002 to 2010 were reviewed in the context of longitudinal monthly data describing malaria slide-positivity among paediatric febrile admissions, paediatric HIV prevalence, nutritional rehabilitation unit admissions and monthly rainfall over the same 9 years, using structural equation models (SEM.Analysis of 3,105 iNTS episodes identified from 49,093 blood cultures, showed an 11.8% annual decline in iNTS (p < 0.001. SEM analysis produced a stable model with good fit, revealing direct and statistically significant seasonal effects of malaria and malnutrition on the prevalence of iNTS disease. When these data were smoothed to eliminate seasonal cyclic changes, these associations remained strong and there were additional significant effects of HIV prevalence.These data suggest that the overall decline in iNTS disease observed in Malawi is attributable to multiple public health interventions leading to reductions in malaria, HIV and acute malnutrition. Understanding the impacts of public health programmes on iNTS disease is essential to plan and evaluate interventions.

  9. A consultation on the optimization of controlled human malaria infection by mosquito bite for evaluation of candidate malaria vaccines.

    NARCIS (Netherlands)

    Laurens, M.B.; Duncan, C.J.; Epstein, J.E.; Hill, A.V.; Komisar, J.L.; Lyke, K.E.; Ockenhouse, C.F.; Richie, T.L.; Roestenberg, M.; Sauerwein, R.W.; Spring, M.D.; Talley, A.K.; Moorthy, V.S.

    2012-01-01

    Early clinical investigations of candidate malaria vaccines and antimalarial medications increasingly employ an established model of controlled human malaria infection (CHMI). Study results are used to guide further clinical development of vaccines and antimalarial medications as CHMI results to

  10. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  11. Effects of artesunate on parasite recrudescence and dormancy in the rodent malaria model Plasmodium vinckei.

    Directory of Open Access Journals (Sweden)

    Alexis N LaCrue

    Full Text Available Artemisinin (ART is the recommended first line therapy for treating uncomplicated and drug-resistant Plasmodium falciparum, the most pathogenic form of malaria. However, treatment failure following ART monotherapy is not uncommon and resistance to this rapidly acting drug has been reported in the Thai-Cambodian border. Recent in vitro studies have shown that following treatment with dihydroartemisinin (DHA, the development of ring-stage parasites is arrested for up to 20 days. These arrested (i.e. dormant rings could be responsible for the recrudescence of infection that is observed following ART monotherapy. To develop a better understanding of the stage-specific effects of ART and determine if dormancy occurs in vivo, the ART derivative artesunate (AS was used to treat mice infected with the synchronous rodent malaria parasites P. vinckei petteri (non-lethal and P. v. vinckei (lethal. Results show that in both the non-lethal and lethal strains, ring-stage parasites are the least susceptible to treatment with AS and that the day of treatment has more of an impact on recrudescence than the total dose administered. Additionally, 24 hrs post-treatment with AS, dormant forms similar in morphology to those seen in vitro were observed. Finally, rate of recrudescence studies suggest that there is a positive correlation between the number of dormant parasites present and when recrudescence occurs in the vertebrate host. Collectively, these data suggest that dormancy occurs in vivo and contributes to recrudescence that is observed following AS treatment. It is possible that this may represent a novel mechanism of parasite survival following treatment with AS.

  12. Atorvastatin treatment is effective when used in combination with mefloquine in an experimental cerebral malaria murine model

    Directory of Open Access Journals (Sweden)

    Souraud Jean-Baptiste

    2012-01-01

    Full Text Available Abstract Background One of the major complications of Plasmodium falciparum infection is cerebral malaria (CM, which causes one million deaths worldwide each year, results in long-term neurological sequelae and the treatment for which is only partially effective. Statins are recognized to have an immunomodulatory action, attenuate sepsis and have a neuroprotective effect. Atorvastatin (AVA has shown in vitro anti-malarial activity and has improved the activity of mefloquine (MQ and quinine. Methods The efficiency of 40 mg/kg intraperitoneal AVA, alone or in association with MQ, was assessed in an experimental Plasmodium berghei ANKA rodent parasite model of CM and performed according to different therapeutic schemes. The effects on experimental CM were assessed through the evaluation of brain histopathological changes and neuronal apoptosis by TUNEL staining. Results AVA alone in the therapeutic scheme show no effect on survival, but the prophylactic scheme employing AVA associated with MQ, rather than MQ alone, led to a significant delay in mouse death and had an effect on the onset of CM symptoms and on the level of parasitaemia. Histopathological findings show a correlation between brain lesions and CM onset. A neuronal anti-apoptotic effect of AVA in the AVA + MQ combination was not shown. Conclusions The combination of AVA and MQ therapy led to a significant delay in mouse mortality. There were differences in the incidence, time to cerebral malaria and the level of parasitaemia when the drug combination was administered to mice. When used in combination with MQ, AVA had a relevant effect on the in vivo growth inhibition and clinical outcome of P. berghei ANKA-infected mice.

  13. COMPUTER MODEL FOR ORGANIC FERTILIZER EVALUATION

    OpenAIRE

    Lončarić, Zdenko; Vukobratović, Marija; Ragaly, Peter; Filep, Tibor; Popović, Brigita; Karalić, Krunoslav; Vukobratović, Želimir

    2009-01-01

    Evaluation of manures, composts and growing media quality should include enough properties to enable an optimal use from productivity and environmental points of view. The aim of this paper is to describe basic structure of organic fertilizer (and growing media) evaluation model to present the model example by comparison of different manures as well as example of using plant growth experiment for calculating impact of pH and EC of growing media on lettuce plant growth. The basic structure of ...

  14. Predicting optimal transmission investment in malaria parasites.

    Science.gov (United States)

    Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N

    2016-07-01

    In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth-reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  15. Resveratrol and Lifespan in Model Organisms.

    Science.gov (United States)

    Pallauf, Kathrin; Rimbach, Gerald; Rupp, Petra Maria; Chin, Dawn; Wolf, Insa M A

    2016-01-01

    Resveratrol may possess life-prolonging and health-benefitting properties, some of which may resemble the effect of caloric restriction (CR). CR appears to prolong the lifespan of model organisms in some studies and may benefit human health. However, for humans, restricting food intake for an extended period of time seems impracticable and substances imitating the beneficial effects of CR without having to reduce food intake could improve health in an aging and overweight population. We have reviewed the literature studying the influence of resveratrol on the lifespan of model organisms including yeast, flies, worms, and rodents. We summarize the in vivo findings, describe modulations of molecular targets and gene expression observed in vivo and in vitro, and discuss how these changes may contribute to lifespan extension. Data from clinical studies are summarized to provide an insight about the potential of resveratrol supplementation in humans. Resveratrol supplementation has been shown to prolong lifespan in approximately 60% of the studies conducted in model organisms. However, current literature is contradictory, indicating that the lifespan effects of resveratrol vary strongly depending on the model organism. While worms and killifish seemed very responsive to resveratrol, resveratrol failed to affect lifespan in the majority of the studies conducted in flies and mice. Furthermore, factors such as dose, gender, genetic background and diet composition may contribute to the high variance in the observed effects. It remains inconclusive whether resveratrol is indeed a CR mimetic and possesses life-prolonging properties. The limited bioavailability of resveratrol may further impede its potential effects.

  16. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...

  17. A STRATEGIC MANAGEMENT MODEL FOR SERVICE ORGANIZATIONS

    OpenAIRE

    Andreea ZAMFIR

    2013-01-01

    This paper provides a knowledge-based strategic management of services model, with a view to emphasise an approach to gaining competitive advantage through knowledge, people and networking. The long-term evolution of the service organization is associated with the way in which the strategic management is practised.

  18. Modeling of Organic Effects on Aerosols Growth

    Science.gov (United States)

    Caboussat, A.; Amundson, N. R.; He, J.; Seinfeld, J. H.

    2006-05-01

    Over the last two decades, a series of modules has been developed in the atmospheric modeling community to predict the phase transition, multistage growth phenomena, crystallization and evaporation of inorganic aerosols. In the same time, the water interactions of particles containing organic constituents have been recognized as an important factor for aerosol activation and cloud formation. However, the research on hygroscopicity of organic-containing aerosols, motivated by the organic effect on aerosol growth and activation, has gathered much less attention. We present here a new model (UHAERO), that is both efficient and rigorously computes phase separation and liquid-liquid equilibrium for organic particles, as well as the dynamics partitioning between gas and particulate phases, with emphasis on the role of water vapor in the gas-liquid partitioning. The model does not rely on any a priori specification of the phases present in certain atmospheric conditions. The determination of the thermodynamic equilibrium is based on the minimization of the Gibbs free energy. The mass transfer between the particle and the bulk gas phase is dynamically driven by the difference between bulk gas pressure and the gas pressure at the surface of a particle. The multicomponent phase equilibrium for a closed organic aerosol system at constant temperature and pressure and for specified feeds is the solution to the liquid-liquid equilibrium problem arising from the constrained minimization of the Gibbs free energy. A geometrical concept of phase simplex (phase separation) is introduced to characterize the thermodynamic equilibrium. The computation of the mass fluxes is achieved by coupling the thermodynamics of the organic aerosol particle and the determination of the mass fluxes. Numerical results show the efficiency of the model, which make it suitable for insertion in global three- dimensional air quality models. The Gibbs free energy is modeled by the UNIFAC model to illustrate

  19. Hysteresis in simulations of malaria transmission

    Science.gov (United States)

    Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.

    2017-10-01

    Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.

  20. Emergent organization in a model market

    Science.gov (United States)

    Yadav, Avinash Chand; Manchanda, Kaustubh; Ramaswamy, Ramakrishna

    2017-09-01

    We study the collective behaviour of interacting agents in a simple model of market economics that was originally introduced by Nørrelykke and Bak. A general theoretical framework for interacting traders on an arbitrary network is presented, with the interaction consisting of buying (namely consumption) and selling (namely production) of commodities. Extremal dynamics is introduced by having the agent with least profit in the market readjust prices, causing the market to self-organize. In addition to examining this model market on regular lattices in two-dimensions, we also study the cases of random complex networks both with and without community structures. Fluctuations in an activity signal exhibit properties that are characteristic of avalanches observed in models of self-organized criticality, and these can be described by power-law distributions when the system is in the critical state.

  1. Biophysical Modeling of Respiratory Organ Motion

    Science.gov (United States)

    Werner, René

    Methods to estimate respiratory organ motion can be divided into two groups: biophysical modeling and image registration. In image registration, motion fields are directly extracted from 4D ({D}+{t}) image sequences, often without concerning knowledge about anatomy and physiology in detail. In contrast, biophysical approaches aim at identification of anatomical and physiological aspects of breathing dynamics that are to be modeled. In the context of radiation therapy, biophysical modeling of respiratory organ motion commonly refers to the framework of continuum mechanics and elasticity theory, respectively. Underlying ideas and corresponding boundary value problems of those approaches are described in this chapter, along with a brief comparison to image registration-based motion field estimation.

  2. EDITORIAL MALARIA DIAGNOSIS Malaria remains the most ...

    African Journals Online (AJOL)

    hi-tech

    2005-03-02

    Mar 2, 2005 ... Malaria remains the most significant parasitic disease affecting man. Prompt and accurate diagnosis of malaria is the key to cost effective management (1). Since the identification of Plasmodium parasites in human blood in 1880, the diagnosis of malaria has remained a hot bed of scientific discussion.

  3. How well are malaria maps used to design and finance malaria control in Africa?

    Directory of Open Access Journals (Sweden)

    Judy A Omumbo

    Full Text Available INTRODUCTION: Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. MATERIALS AND METHODS: An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. RESULTS: 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. CONCLUSION: The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes

  4. Assessment of climate-driven variations in malaria incidence in Swaziland: toward malaria elimination.

    Science.gov (United States)

    Chuang, Ting-Wu; Soble, Adam; Ntshalintshali, Nyasatu; Mkhonta, Nomcebo; Seyama, Eric; Mthethwa, Steven; Pindolia, Deepa; Kunene, Simon

    2017-06-01

    Swaziland aims to eliminate malaria by 2020. However, imported cases from neighbouring endemic countries continue to sustain local parasite reservoirs and initiate transmission. As certain weather and climatic conditions may trigger or intensify malaria outbreaks, identification of areas prone to these conditions may aid decision-makers in deploying targeted malaria interventions more effectively. Malaria case-surveillance data for Swaziland were provided by Swaziland's National Malaria Control Programme. Climate data were derived from local weather stations and remote sensing images. Climate parameters and malaria cases between 2001 and 2015 were then analysed using seasonal autoregressive integrated moving average models and distributed lag non-linear models (DLNM). The incidence of malaria in Swaziland increased between 2005 and 2010, especially in the Lubombo and Hhohho regions. A time-series analysis indicated that warmer temperatures and higher precipitation in the Lubombo and Hhohho administrative regions are conducive to malaria transmission. DLNM showed that the risk of malaria increased in Lubombo when the maximum temperature was above 30 °C or monthly precipitation was above 5 in. In Hhohho, the minimum temperature remaining above 15 °C or precipitation being greater than 10 in. might be associated with malaria transmission. This study provides a preliminary assessment of the impact of short-term climate variations on malaria transmission in Swaziland. The geographic separation of imported and locally acquired malaria, as well as population behaviour, highlight the varying modes of transmission, part of which may be relevant to climate conditions. Thus, the impact of changing climate conditions should be noted as Swaziland moves toward malaria elimination.

  5. How well are malaria maps used to design and finance malaria control in Africa?

    Science.gov (United States)

    Omumbo, Judy A; Noor, Abdisalan M; Fall, Ibrahima S; Snow, Robert W

    2013-01-01

    Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate financing for malaria

  6. President’s Malaria Initiative

    Science.gov (United States)

    2008-11-16

    the largest city, Blantyre . The under- Organization cone bioassays are the 5 mortality rate is 120/1000, or standard technique that the PMI uses to...that is staffed with very capable and at the Malaria Alert Center in Blantyre , hardworking individuals. PMI is Malawi, to provide material to carry

  7. Mapping malaria risk among children in Côte d’Ivoire using Bayesian geo-statistical models

    Directory of Open Access Journals (Sweden)

    Raso Giovanna

    2012-05-01

    Full Text Available Abstract Background In Côte d’Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged Methods Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d’Ivoire, focusing on children aged Plasmodium spp. infection risk for entire Côte d’Ivoire, including uncertainty. Results Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged Conclusion The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d’Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation.

  8. Myocardial Dysfunction: A Primary Cause of Death Due To Severe Malaria in A Plasmodium falciparum-Infected Humanized Mouse Model.

    Directory of Open Access Journals (Sweden)

    Odaro Stanley Imade

    2013-12-01

    Full Text Available Our study aimed at substantiating the recent claim of myocardial complications in severe malaria by experimentally inducing severe Plasmodium falciparum infection in a humanized mouse model employed as human surrogate.Twenty five humanized mice were inoculated with standard in vitro cultured P. falciparum and blood extracts collected from the inner cardiac muscles of infected mice that died were examined for the presence of the infectious cause of death. The therapeutic effect of quinine on 7 mice severely infected with P. falciparum was also evaluated.All the 25 humanized mice inoculated with the in vitro cultured P. falciparum revealed peripheral parasitemia with a total of 10 deaths recorded. Postmortem examination of the inner cardiac muscles of the dead mice also revealed massive sequestration of mature P. falciparum as well as significant infiltration of inflammatory cells such as lymphocytes and monocytes. Postmortem evaluation of the inner cardiac muscles of the P. falciparum-infected mice after quinine therapy showed significant decline in parasite density with no death of mice recorded.Data obtained from our study significantly corroborated the findings of myocardial dysfunction as the primary cause of death in recent case reports of humans infected with P. falciparum.

  9. Virtuous organization: A structural equation modeling approach

    Directory of Open Access Journals (Sweden)

    Majid Zamahani

    2013-02-01

    Full Text Available For years, the idea of virtue was unfavorable among researchers and virtues were traditionally considered as culture-specific, relativistic and they were supposed to be associated with social conservatism, religious or moral dogmatism, and scientific irrelevance. Virtue and virtuousness have been recently considered seriously among organizational researchers. The proposed study of this paper examines the relationships between leadership, organizational culture, human resource, structure and processes, care for community and virtuous organization. Structural equation modeling is employed to investigate the effects of each variable on other components. The data used in this study consists of questionnaire responses from employees in Payam e Noor University in Yazd province. A total of 250 questionnaires were sent out and a total of 211 valid responses were received. Our results have revealed that all the five variables have positive and significant impacts on virtuous organization. Among the five variables, organizational culture has the most direct impact (0.80 and human resource has the most total impact (0.844 on virtuous organization.

  10. Review Article: Morphological Changes in Malaria | Buhari | African ...

    African Journals Online (AJOL)

    Malaria remains a global health problem. Several organs of the body are affected by the Plasmodium species which parasitized erythrocytes. The small blood vessels of all the major organs of the body are usually filled with parasitized red cells and this represents the major morphological changes seen in malaria.

  11. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  12. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Science.gov (United States)

    Nie, Catherine Q; Bernard, Nicholas J; Norman, M Ursula; Amante, Fiona H; Lundie, Rachel J; Crabb, Brendan S; Heath, William R; Engwerda, Christian R; Hickey, Michael J; Schofield, Louis; Hansen, Diana S

    2009-04-01

    Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  13. Important advances in malaria vaccine research

    Directory of Open Access Journals (Sweden)

    Priyanka Jadhav

    2012-01-01

    Full Text Available Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually high cost of treatment in the resource-limited settings. In the current compilation, the details from the literature were collected by using PubMed and Medline as search engines and searched for terms such as malaria, vaccine, and malaria treatment. This review collates and provides glimpses of the information on the recent malaria vaccine development. The reader will be taken through the historical perspective followed by the approaches to the malaria vaccine development from pre-erythrocytic stage vaccines, asexual stage vaccines, transmission blocking vaccines, etc. Looking at the current scenario of the malaria and treatment strategies, it is an absolute need of an hour that an effective malaria vaccine should be developed. This would bring a revolutionary breakthrough in the treatment modalities especially when there is increasing emergence of resistance to existing drug therapy. It would be of great purpose to serve those living in malaria endemic region and also for travelers which are nonimmune and coming to malaria endemic region. As infection by P. vivax is more prevalent in India and other Asian subcontinent and is often prominent in areas where elimination is being attempted, special consideration is required of the role of vaccines in blocking transmission, regardless of the stages being targeted. Development of vaccines is feasible but with the support of private sector and government organization in terms of regulatory and most importantly

  14. A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model

    Science.gov (United States)

    Reuling, Isaie J; van de Schans, Lisanne A; Coffeng, Luc E; Lanke, Kjerstin; Meerstein-Kessel, Lisette; Graumans, Wouter; van Gemert, Geert-Jan; Teelen, Karina; Siebelink-Stoter, Rianne; van de Vegte-Bolmer, Marga; de Mast, Quirijn; van der Ven, André J; Ivinson, Karen; Hermsen, Cornelus C; de Vlas, Sake; Bradley, John; Collins, Katharine A; Ockenhouse, Christian F; McCarthy, James

    2018-01-01

    Background Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods In a single centre, open-label randomised trial, healthy malaria-naive participants (aged 18–35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes (ClinicalTrials.gov, NCT02836002). Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen upon recrudescence. Male and female gametocyte densities were determined by molecular assays. Findings Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes appeared 8.5–12 days after the first detection of asexual parasites. Peak gametocyte densities and gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days (95% CI 1.5–3.9) compared to 5.1 days (95% CI 4.1–6.1) for female gametocytes. Exploratory mosquito feeding assays showed successful sporadic mosquito infections. There were no serious adverse events or significant differences in the occurrence and severity of adverse events between study arms (p=0.49 and p=0.28). Conclusions The early appearance of gametocytes indicates gametocyte commitment during the first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-positive days. This model can be used to evaluate the

  15. Optimal control for Malaria disease through vaccination

    Science.gov (United States)

    Munzir, Said; Nasir, Muhammad; Ramli, Marwan

    2018-01-01

    Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.

  16. Malaria trends and challenges in the Greater Mekong Subregion.

    Science.gov (United States)

    Delacollette, Charles; D'Souza, Carol; Christophel, Eva; Thimasarn, Krongthong; Abdur, Rashid; Bell, David; Dai, Tran Cong; Gopinath, Deyer; Lu, Shaohong; Mendoza, Raymond; Ortega, Leonard; Rastogi, Rakesh; Tantinimitkul, Chawalit; Ehrenberg, John

    2009-07-01

    This report provides an overview of the epidemiological patterns of malaria in the Greater Mekong Subregion (GMS) from 1998 to 2007, and highlights critical challenges facing national malaria control programs and partners in effort to build on their successes as they move towards malaria pre-elimination and elimination as a programmatic goal. Epidemiological data provided by malaria programs show a drastic decline in malaria deaths and confirmed malaria positive cases over the last 10 years in the GMS. More than half of confirmed malaria cases and deaths recorded in the GMS occur in Myanmar, however, reporting methods and data management are not comparable between countries despite effort made by WHO to harmonize data collection, analysis and reporting among WHO Member States. Malaria is concentrated in forested/forest-fringe areas of the region mainly along international borders providing strong rationale to develop harmonized cross-border pre-elimination programs in conjunction with national efforts. Across the Mekong Region, the declining efficacy of recommended first-line antimalarials, eg artemisinin-based combination therapies (ACTs) against falciparum malaria on the Cambodia-Thailand border, the prevalence of counterfeit and substandard antimalarial drugs, the lack of health services in general and malaria services in particular in remote settings, and the lack of information and services targeting migrants and mobile population present important barriers to reach or maintain malaria pre-elimination programmatic goals. Strengthening networking between research institutions and non-government organizations will increase knowledge-based decision and action.

  17. Identificación y caracterización inmunológica preclínica de antígenos con potencial vacunal frente a la malaria en un modelo de malaria murina. Identification and preclinical immunological characterization of potential malaria vaccine antigens in a murine model of malaria

    OpenAIRE

    Kamai, Ali Naghi

    2013-01-01

    A pesar de los esfuerzos realizados durante más de un siglo en la investigación para suprimir la malaria, esta enfermedad sigue siendo una amenaza importante y creciente para la salud pública y el desarrollo económico de países en las regiones tropicales y subtropicales del mundo. La malaria humana está causada por la infección de parásitos intracelulares del género Plasmodium que se transmiten por mosquitos Anopheles. De las cinco especies de Plasmodium que infectan a seres humanos, las infe...

  18. UK malaria treatment guidelines 2016.

    Science.gov (United States)

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  19. Modeling global persistent organic chemicals in clouds

    Science.gov (United States)

    Mao, Xiaoxuan; Gao, Hong; Huang, Tao; Zhang, Lisheng; Ma, Jianmin

    2014-10-01

    A cloud model was implemented in a global atmospheric transport model to simulate cloud liquid water content and quantify the influence of clouds on gas/aqueous phase partitioning of persistent organic chemicals (POCs). Partitioning fractions of gas/aqueous and particle phases in clouds for three POCs α-hexachlorocyclohexane (α-HCH), polychlorinated biphenyl-28 (PCB-28), and PCB-138 in a cloudy atmosphere were estimated. Results show that the partition fraction of these selected chemicals depend on cloud liquid water content (LWC) and air temperature. We calculated global distribution of water droplet/ice particle-air partitioning coefficients of the three chemicals in clouds. The partition fractions at selected model grids in the Northern Hemisphere show that α-HCH, a hydrophilic chemical, is sorbed strongly onto cloud water droplets. The computed partition fractions at four selected model grids show that α-HCH tends to be sorbed onto clouds over land (source region) from summer to early fall, and over ocean from late spring to early fall. 20-60% of α-HCH is able to be sorbed to cloud waters over mid-latitude oceans during summer days. PCB-138, one of hydrophobic POCs, on the other hand, tends to be sorbed to particles in the atmosphere subject to air temperature. We also show that, on seasonal or annual average, 10-20% of averaged PCB-28 over the Northern Hemisphere could be sorbed onto clouds, leading to reduction of its gas-phase concentration in the atmosphere.

  20. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal.

    Science.gov (United States)

    Diouf, Ibrahima; Rodriguez-Fonseca, Belen; Deme, Abdoulaye; Caminade, Cyril; Morse, Andrew P; Cisse, Moustapha; Sy, Ibrahima; Dia, Ibrahima; Ermert, Volker; Ndione, Jacques-André; Gaye, Amadou Thierno

    2017-09-25

    The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal) and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be considered as a

  1. Malaria infection has spatial, temporal, and spatiotemporal heterogeneity in unstable malaria transmission areas in northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Kassahun Alemu

    Full Text Available BACKGROUND: Malaria elimination requires successful nationwide control efforts. Detecting the spatiotemporal distribution and mapping high-risk areas are useful to effectively target pockets of malaria endemic regions for interventions. OBJECTIVE: The aim of the study was to identify patterns of malaria distribution by space and time in unstable malaria transmission areas in northwest Ethiopia. METHODS: Data were retrieved from the monthly reports stored in the district malaria offices for the period between 2003 and 2012. Eighteen districts in the highland and fringe malaria areas were included and geo-coded for the purpose of this study. The spatial data were created in ArcGIS10 for each district. The Poisson model was used by applying Kulldorff methods using the SaTScan™ software to analyze the purely temporal, spatial and space-time clusters of malaria at a district levels. RESULTS: The study revealed that malaria case distribution has spatial, temporal, and spatiotemporal heterogeneity in unstable transmission areas. Most likely spatial malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR =197764.1, p<0.001. Significant spatiotemporal malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR=197764.1, p<0.001 between 2003/1/1 and 2012/12/31. A temporal scan statistics identified two high risk periods from 2009/1/1 to 2010/12/31 (LLR=72490.5, p<0.001 and from 2003/1/1 to 2005/12/31 (LLR=26988.7, p<0.001. CONCLUSION: In unstable malaria transmission areas, detecting and considering the spatiotemporal heterogeneity would be useful to strengthen malaria control efforts and ultimately achieve elimination.

  2. STATUS HEMATOLOGI PENDERITA MALARIA SEREBRAL

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2009-05-01

    Full Text Available AbstrakMalaria masih merupakan masalah kesehatan masyarakat dunia. Berdasarkan klasifikasi klinis, malaria dibedakan atas malaria berat dan malaria tanpa komplikasi. Malaria serebral merupakan komplikasi terberat dari malaria falsiparum.Telah dilakukan penelitian seksi silang terhadap penderita malaria falciparum yang dirawat inap di Bangsal Penyakit Dalam RS. Perjan. Dr. M. Djamil Padang dari bulan Juni 2002 sampai Juni 2006. Pada penelitian ini didapatkan jumlah sampel sebanyak 60 orang, terdiri dari 16 orang penderita malaria serebral dan 44 orang penderita malaria tanpa komplikasi.Data penelitian menunjukan terdapat perbedaan bermakna nilai hematokrit (p<0,05 dan jumlah leukosit (p<0,05 antara penderita malaria serebral dengan penderita malaria tanpa komplikasi. Dan terdapat korelasi positif antara nilai hemoglobin dengan hematokrit (r=0,864; p<0,05 pada penderita malaria falsiparum.Kata kunci: malaria serebral, malaria tanpa komplikasi, malaria falsiparumAbstract Malaria is still a problem of health of world society. Based on the clinical classification, are distinguished on severe malaria and uncomplicated malaria. Cerebral malaria is the worst complication of falciparum malaria. Cross section of the research done at the Hospital Dr. M. Djamil Padang againts medical record of malaria patients who are hospitalized in the Internal Medicine from June 2002 until June 2004. In this study, a total sample of 60 people, consisting of 16 cerebral malaria and 44 uncomplicated malaria. Data showed there were significant differences for hematocrit values (p <0.05 and total leukocytes values (p <0.05 between cerebral malaria and uncomplicated malaria patients. There is a positive correlation between hemoglobin with hematocrit values (r = 0.864; p <0.05 of falciparum malaria patients. Keywords: cerebral malaria, uncomplicated malaria, falciparum malaria

  3. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study

    NARCIS (Netherlands)

    Walker, Patrick G. T.; ter Kuile, Feiko O.; Garske, Tini; Menendez, Clara; Ghani, Azra C.

    2014-01-01

    Plasmodium falciparum infection during pregnancy leads to adverse outcomes including low birthweight; however, contemporary estimates of the potential burden of malaria in pregnancy in Africa (in the absence of interventions) are poor. We aimed to estimate the need to protect pregnant women from

  4. Spatio-temporal surveillance of water based infectious disease (malaria) in Rawalpindi, Pakistan using geostatistical modeling techniques.

    Science.gov (United States)

    Ahmad, Sheikh Saeed; Aziz, Neelam; Butt, Amna; Shabbir, Rabia; Erum, Summra

    2015-09-01

    One of the features of medical geography that has made it so useful in health research is statistical spatial analysis, which enables the quantification and qualification of health events. The main objective of this research was to study the spatial distribution patterns of malaria in Rawalpindi district using spatial statistical techniques to identify the hot spots and the possible risk factor. Spatial statistical analyses were done in ArcGIS, and satellite images for land use classification were processed in ERDAS Imagine. Four hundred and fifty water samples were also collected from the study area to identify the presence or absence of any microbial contamination. The results of this study indicated that malaria incidence varied according to geographical location, with eco-climatic condition and showing significant positive spatial autocorrelation. Hotspots or location of clusters were identified using Getis-Ord Gi* statistic. Significant clustering of malaria incidence occurred in rural central part of the study area including Gujar Khan, Kaller Syedan, and some part of Kahuta and Rawalpindi Tehsil. Ordinary least square (OLS) regression analysis was conducted to analyze the relationship of risk factors with the disease cases. Relationship of different land cover with the disease cases indicated that malaria was more related with agriculture, low vegetation, and water class. Temporal variation of malaria cases showed significant positive association with the meteorological variables including average monthly rainfall and temperature. The results of the study further suggested that water supply and sewage system and solid waste collection system needs a serious attention to prevent any outbreak in the study area.

  5. Forecasting Malaria in the Western Amazon

    Science.gov (United States)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  6. COMPUTER MODEL FOR ORGANIC FERTILIZER EVALUATION

    Directory of Open Access Journals (Sweden)

    Zdenko Lončarić

    2009-12-01

    Full Text Available Evaluation of manures, composts and growing media quality should include enough properties to enable an optimal use from productivity and environmental points of view. The aim of this paper is to describe basic structure of organic fertilizer (and growing media evaluation model to present the model example by comparison of different manures as well as example of using plant growth experiment for calculating impact of pH and EC of growing media on lettuce plant growth. The basic structure of the model includes selection of quality indicators, interpretations of indicators value, and integration of interpreted values into new indexes. The first step includes data input and selection of available data as a basic or additional indicators depending on possible use as fertilizer or growing media. The second part of the model uses inputs for calculation of derived quality indicators. The third step integrates values into three new indexes: fertilizer, growing media, and environmental index. All three indexes are calculated on the basis of three different groups of indicators: basic value indicators, additional value indicators and limiting factors. The possible range of indexes values is 0-10, where range 0-3 means low, 3-7 medium and 7-10 high quality. Comparing fresh and composted manures, higher fertilizer and environmental indexes were determined for composted manures, and the highest fertilizer index was determined for composted pig manure (9.6 whereas the lowest for fresh cattle manure (3.2. Composted manures had high environmental index (6.0-10 for conventional agriculture, but some had no value (environmental index = 0 for organic agriculture because of too high zinc, copper or cadmium concentrations. Growing media indexes were determined according to their impact on lettuce growth. Growing media with different pH and EC resulted in very significant impacts on height, dry matter mass and leaf area of lettuce seedlings. The highest lettuce

  7. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models.

    Science.gov (United States)

    Penny, Melissa A; Verity, Robert; Bever, Caitlin A; Sauboin, Christophe; Galactionova, Katya; Flasche, Stefan; White, Michael T; Wenger, Edward A; Van de Velde, Nicolas; Pemberton-Ross, Peter; Griffin, Jamie T; Smith, Thomas A; Eckhoff, Philip A; Muhib, Farzana; Jit, Mark; Ghani, Azra C

    2016-01-23

    The phase 3 trial of the RTS,S/AS01 malaria vaccine candidate showed modest efficacy of the vaccine against Plasmodium falciparum malaria, but was not powered to assess mortality endpoints. Impact projections and cost-effectiveness estimates for longer timeframes than the trial follow-up and across a range of settings are needed to inform policy recommendations. We aimed to assess the public health impact and cost-effectiveness of routine use of the RTS,S/AS01 vaccine in African settings. We compared four malaria transmission models and their predictions to assess vaccine cost-effectiveness and impact. We used trial data for follow-up of 32 months or longer to parameterise vaccine protection in the group aged 5-17 months. Estimates of cases, deaths, and disability-adjusted life-years (DALYs) averted were calculated over a 15 year time horizon for a range of levels of Plasmodium falciparum parasite prevalence in 2-10 year olds (PfPR2-10; range 3-65%). We considered two vaccine schedules: three doses at ages 6, 7·5, and 9 months (three-dose schedule, 90% coverage) and including a fourth dose at age 27 months (four-dose schedule, 72% coverage). We estimated cost-effectiveness in the presence of existing malaria interventions for vaccine prices of US$2-10 per dose. In regions with a PfPR2-10 of 10-65%, RTS,S/AS01 is predicted to avert a median of 93,940 (range 20,490-126,540) clinical cases and 394 (127-708) deaths for the three-dose schedule, or 116,480 (31,450-160,410) clinical cases and 484 (189-859) deaths for the four-dose schedule, per 100,000 fully vaccinated children. A positive impact is also predicted at a PfPR2-10 of 5-10%, but there is little impact at a prevalence of lower than 3%. At $5 per dose and a PfPR2-10 of 10-65%, we estimated a median incremental cost-effectiveness ratio compared with current interventions of $30 (range 18-211) per clinical case averted and $80 (44-279) per DALY averted for the three-dose schedule, and of $25 (16-222) and $87 (48

  8. Malaria in Children.

    Science.gov (United States)

    Cohee, Lauren M; Laufer, Miriam K

    2017-08-01

    Malaria is a leading cause of morbidity and mortality in endemic areas, leading to an estimated 438,000 deaths in 2015. Malaria is also an important health threat to travelers to endemic countries and should be considered in evaluation of any traveler returning from a malaria-endemic area who develops fever. Considering the diagnosis of malaria in patients with potential exposure is critical. Prompt provision of effective treatment limits the complications of malaria and can be life-saving. Understanding Plasmodium species variation, epidemiology, and drug-resistance patterns in the geographic area where infection was acquired is important for determining treatment choices. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Organic production in a dynamic CGE model

    DEFF Research Database (Denmark)

    Jacobsen, Lars Bo

    2004-01-01

    Concerns about the impact of modern agriculture on the environment have in recent years led to an interest in supporting the development of organic farming. In addition to environmental benefits, the aim is to encourage the provision of other “multifunctional” properties of organic farming...... agricultural sector and each secondary food industry has been split into two separate industries: one producing organic products, the other producing conventional products. The substitution nests in private consumption have also been altered to emphasise the pair wise substitution between organic...... and conventional products. One of the most important regulations regarding organic production concerns the conversion period, that is the period where the farmer starts to use organic production methods until the farmland and the production are considered organic. Currently organic production methods have...

  10. Murine Model for Preclinical Studies of Var2CSA-Mediated Pathology Associated with Malaria in Pregnancy

    Science.gov (United States)

    Dechavanne, Sebastien; Sousa, Patrícia M.; Barateiro, André; Cunha, Sónia F.; Nunes-Silva, Sofia; Lima, Flávia A.; Murillo, Oscar; Marinho, Claudio R. F.; Gangnard, Stephane; Srivastava, Anand; Braks, Joanna A.; Janse, Chris J.; Gamain, Benoit; Penha-Gonçalves, Carlos

    2016-01-01

    Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 104 P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei. At doses of 105 and 106 IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6–EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA. PMID:27045035

  11. Malaria og graviditet

    DEFF Research Database (Denmark)

    Hoffmann, A L; Rønn, A M; Langhoff-Roos, J

    1992-01-01

    In regions where malaria is endemism, the disease is a recognised cause of complications of pregnancy such as spontaneous abortion, premature delivery, intrauterine growth retardation and foetal death. Malaria is seldom seen in pregnant women in Denmark but, during the past two years, the authors...... the patients but also their practitioners were unaware that malaria can occur several years after exposure. Three out of the four patients had employed malaria prophylaxis. As resistance to malarial prophylactics in current use is increasing steadily, chemoprophylaxis should be supplemented by mechanical...... protection against malaria and insect repellents. As a rule, malaria is treated with chloroquine. In cases of Falciparum malaria in whom chloroquine resistance is suspected, treatment with mefloquine may be employed although this should only be employed in cases of dire necessity in pregnant patients during...

  12. Steady progress toward a malaria vaccine.

    Science.gov (United States)

    Lyke, Kirsten E

    2017-10-01

    Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.

  13. A breeding site model for regional, dynamical malaria simulations evaluated using in situ temporary ponds observations

    OpenAIRE

    Ernest O. Asare; Adrian M. Tompkins; Leonard K. Amekudzi; Volker Ermert

    2016-01-01

    Daily observations of potential mosquito developmental habitats in a suburb of Kumasi in central Ghana reveal a strong variability in their water persistence times, which ranged between 11 and 81 days. The persistence of the ponds was strongly tied with rainfall, location and size of the puddles. A simple power-law relationship is found to fit the relationship between the average pond depth and area well. A prognostic water balance model is derived that describes the temporal evolution of the...

  14. PEMERIKSAAN MIKROSKOP DAN TES DIAGNOSTIK CEPAT DALAM MENEGAKKAN DIAGNOSIS MALARIA

    Directory of Open Access Journals (Sweden)

    Wijaya Kusuma

    2014-02-01

    Full Text Available Malaria is an infection disease caused by plasmodium parasite that transmitted to humanbody by female anopheles mosquito bites. World Health Organization (WHO predictedthat 3,3 billion people around the world were at risk to infected by malaria in 2006 andalmost 1 million died because of this disease. Diagnosis of malaria according to clinicalmanifestation only is not specific; therefore it is less reliable and should be s upported bylaboratory examination result. Microscopic examination of blood smear and rapiddiagnostic test are most often used to diagnose malaria. Both of this test gave big chance tomake accurate diagnostic but still have their own limitations.

  15. The Time Is Right to Focus on Model Organism Metabolomes.

    Science.gov (United States)

    Edison, Arthur S; Hall, Robert D; Junot, Christophe; Karp, Peter D; Kurland, Irwin J; Mistrik, Robert; Reed, Laura K; Saito, Kazuki; Salek, Reza M; Steinbeck, Christoph; Sumner, Lloyd W; Viant, Mark R

    2016-02-15

    Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  16. The Time Is Right to Focus on Model Organism Metabolomes

    Directory of Open Access Journals (Sweden)

    Arthur S. Edison

    2016-02-01

    Full Text Available Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  17. Imported Malaria in Children in Industrialized Countries, 1992–2002

    Science.gov (United States)

    Stäger, Katrin; Legros, Fabrice; Krause, Gérard; Low, Nicola; Bradley, David; Desai, Meghna; Graf, Simone; D’Amato, Stefania; Mizuno, Yasutaka; Janzon, Ragnhild; Petersen, Eskild; Kester, John; Steffen, Robert

    2009-01-01

    Children account for an appreciable proportion of total imported malaria cases, yet few studies have quantified these cases, identified trends, or suggested evidence-based prevention strategies for this group of travelers. We therefore sought to identify numbers of cases and deaths, Plasmodium species, place of malaria acquisition, preventive measures used, and national origin of malaria in children. We analyzed retrospective data from Australia, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, the United Kingdom, and the United States and data provided by the United Nations World Tourism Organization. During 1992–2002, >17,000 cases of imported malaria in children were reported in 11 countries where malaria is not endemic; most (>70%) had been acquired in Africa. Returning to country of origin to visit friends and relatives was a risk factor. Malaria prevention for children should be a responsibility of healthcare providers and should be subsidized for low-income travelers to high-risk areas. PMID:19193261

  18. Imported malaria in children in industrialized countries, 1992-2002.

    Science.gov (United States)

    Stäger, Katrin; Legros, Fabrice; Krause, Gérard; Low, Nicola; Bradley, David; Desai, Meghna; Graf, Simone; D'Amato, Stefania; Mizuno, Yasutaka; Janzon, Ragnhild; Petersen, Eskild; Kester, John; Steffen, Robert; Schlagenhauf, Patricia

    2009-02-01

    Children account for an appreciable proportion of total imported malaria cases, yet few studies have quantified these cases, identified trends, or suggested evidence-based prevention strategies for this group of travelers. We therefore sought to identify numbers of cases and deaths, Plasmodium species, place of malaria acquisition, preventive measures used, and national origin of malaria in children. We analyzed retrospective data from Australia, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, the United Kingdom, and the United States and data provided by the United Nations World Tourism Organization. During 1992-2002, >17,000 cases of imported malaria in children were reported in 11 countries where malaria is not endemic; most (>70%) had been acquired in Africa. Returning to country of origin to visit friends and relatives was a risk factor. Malaria prevention for children should be a responsibility of healthcare providers and should be subsidized for low-income travelers to high-risk areas.

  19. Malaria Control and Elimination,1 Venezuela, 1800s–1970s

    Science.gov (United States)

    Villegas, Leopoldo; Udhayakumar, Venkatachalam

    2014-01-01

    Venezuela had the highest number of human malaria cases in Latin American before 1936. During 1891–1920, malaria was endemic to >600,000 km2 of this country; malaria death rates led to major population decreases during 1891–1920. No pathogen, including the influenza virus that caused the 1918 pandemic, caused more deaths than malaria during 1905–1945. Early reports of malaria eradication in Venezuela helped spark the world’s interest in global eradication. We describe early approaches to malaria epidemiology in Venezuela and how this country developed an efficient control program and an approach to eradication. Arnoldo Gabaldón was a key policy maker during this development process. He directed malaria control in Venezuela from the late 1930s to the end of the 1970s and contributed to malaria program planning of the World Health Organization. We discuss how his efforts helped reduce the incidence of malaria in Venezuela and how his approach diverged from World Health Organization guidelines.

  20. Malaria control and elimination, Venezuela, 1800s –1970s.

    Science.gov (United States)

    Griffing, Sean M; Villegas, Leopoldo; Udhayakumar, Venkatachalam

    2014-10-01

    Venezuela had the highest number of human malaria cases in Latin American before 1936. During 1891–1920,malaria was endemic to >600,000 km2 of this country; malaria death rates led to major population decreases during 1891–1920. No pathogen, including the influenza virus that caused the 1918 pandemic, caused more deaths than malaria during 1905–1945. Early reports of malaria eradication in Venezuela helped spark the world's interest in global eradication. We describe early approaches to malaria epidemiology in Venezuela and how this country developed an efficient control program and an approach to eradication.Arnoldo Gabaldón was a key policy maker during this development process. He directed malaria control in Venezuela from the late 1930s to the end of the 1970s and contributed to malaria program planning of the World Health Organization.We discuss how his efforts helped reduce the incidence of malaria in Venezuela and how his approach diverged from World Health Organization guidelines.

  1. A Competing-Risk Approach to Modelling Length of Stay in Severe Malaria Patients in South-East Asia and the Implications for Planning of Hospital Services.

    Science.gov (United States)

    Keene, Claire M; Dondorp, Arjen; Crawley, Jane; Ohuma, Eric O; Mukaka, Mavuto

    2018-03-19

    Malaria burdens global health systems, and management with limited resources requires robust treatment guidelines and comprehensive planning. Expected length of stay (LOS) is useful in health-system planning, and factors influencing it can be targeted to reduce admission time and optimise service delivery. A secondary survival analysis of 1217 adult severe malaria patients from the South-East Asia Quinine Artesunate Malaria Trial, using a competing-risk approach. Median LOS was five days and time to discharge six days. 80% of patients were discharged, 70.2% within a week. 95.4% of deaths occurred within seven days. Compared to quinine, artesunate increased discharge incidence (subdistribution-hazard ratio 1.24 (1.09-1.40) p=0.001) and decreased incidence of death (0.60 (0.46-0.80) p<0.001). Cumulative incidence of discharge was decreased, and death increased, by low Glasgow coma scale (discharge: 1.08 (1.06-1.11) p<0.001, death: 0.85 (0.82-0.89) p<0.001), high blood urea-nitrogen (discharge: 0.99 (0.99-0.995) p<0.001, death: 1.00 (1.00-1.01) p=0.012), acidotic base-excess (discharge: 1.05 (1.03-1.06) p<0.001, death: 0.90 (0.88-0.93) p<0.001), and development of shock (discharge: 0.25 (0.13-0.47) p<0.001, death: 2.14 (1.46-3.12) p<0.001) or coma (discharge: 0.46 ( 0.32-0.65) p<0.001, death: 2.30 (1.58-3.36) p<0.001). Conventional Kaplan-Meier survival analysis overestimated cumulative incidence compared to competing-risk models. Clinical factors on admission and during hospitalisation influence LOS in severe malaria, offering targets to improve health and service efficiency. Artesunate has the potential to increase LOS, which should be accounted for in service-planning. Death in-hospital is a competing risk for discharge, and should be considered in LOS models to reduce overestimation of risk and misrepresentation of associations.

  2. Malaria control in Malawi: are the poor being served? | Mathanga ...

    African Journals Online (AJOL)

    Background: In Africa, national governments and international organizations are focusing on rapidly “scaling up” malaria control interventions to at least 60 percent of vulnerable populations. The potential health and economic benefits of “scaling up” will depend on the equitable access to malaria control measures by the ...

  3. Review Of Clinical Features Of Malaria | Onyenekwe | Orient Journal ...

    African Journals Online (AJOL)

    DDT, (dichlorodiphenyl –trichloroethane ) with residual insecticidal action was discovered in Switzerland in late 1940 raising great hopes for the prospect of global malaria eradication. In 1957 the world health organization launched the Global Malaria Eradication Campaign. The programming went on for the next 15 year ...

  4. Organization model and formalized description of nuclear enterprise information system

    International Nuclear Information System (INIS)

    Yuan Feng; Song Yafeng; Li Xudong

    2012-01-01

    Organization model is one of the most important models of Nuclear Enterprise Information System (NEIS). Scientific and reasonable organization model is the prerequisite that NEIS has robustness and extendibility, and is also the foundation of the integration of heterogeneous system. Firstly, the paper describes the conceptual model of the NEIS on ontology chart, which provides a consistent semantic framework of organization. Then it discusses the relations between the concepts in detail. Finally, it gives the formalized description of the organization model of NEIS based on six-tuple array. (authors)

  5. Preparedness for severe malaria.

    Science.gov (United States)

    Heggheim, Åsmund; Blomberg, Bjørn; Mørch, Kristine

    2015-03-24

    About 60 patients with malaria are admitted to Norwegian hospitals every year. The prescription figures for malaria medication may suggest that Norwegians are increasingly exposed to malaria infection. All Norwegian hospitals with a department of internal medicine were sent an electronic questionnaire for reporting the available methods for diagnosing and treating malaria. There was a 100% response (48/48). Microscopy for malaria diagnosis was available at 92% (44/48) and a rapid test for detecting malaria antigen at 67% (32/48), while 6% (3/48) had no malaria detection test available. Artesunate and quinine for intravenous treatment were both available at 6% (3/48), only artesunate at 27% (13/48) and only quinine at 27% (13/48) of the hospitals. Drugs for intravenous treatment of severe malaria were not available at 40% (19/48) of the hospitals. More than a third of Norwegian hospitals lack preparedness for treating severe malaria, and some hospitals lack diagnostic procedures. Severe malaria is a condition that may rapidly become life-threatening and is treated with artesunate or quinine intravenously. All Norwegian hospitals should have procedures for emergency treatment of the disease.

  6. Sri Lanka Malaria Maps

    Directory of Open Access Journals (Sweden)

    van der Hoek Wim

    2003-07-01

    Full Text Available Abstract Background Despite a relatively good national case reporting system in Sri Lanka, detailed maps of malaria distribution have not been publicly available. Methods In this study, monthly records over the period 1995 – 2000 of microscopically confirmed malaria parasite positive blood film readings, at sub-district spatial resolution, were used to produce maps of malaria distribution across the island. Also, annual malaria trends at district resolution were displayed for the period 1995 – 2002. Results The maps show that Plasmodium vivax malaria incidence has a marked variation in distribution over the island. The incidence of Plasmodium falciparum malaria follows a similar spatial pattern but is generally much lower than that of P. vivax. In the north, malaria shows one seasonal peak in the beginning of the year, whereas towards the south a second peak around June is more pronounced. Conclusion This paper provides the first publicly available maps of both P. vivax and P. falciparum malaria incidence distribution on the island of Sri Lanka at sub-district resolution, which may be useful to health professionals, travellers and travel medicine professionals in their assessment of malaria risk in Sri Lanka. As incidence of malaria changes over time, regular updates of these maps are necessary.

  7. Protective efficacy of malaria case management and intermittent preventive treatment for preventing malaria mortality in children: a systematic review for the Lives Saved Tool

    Directory of Open Access Journals (Sweden)

    Steketee Richard W

    2011-04-01

    Full Text Available Abstract Background The Lives Saved Tool (LiST model was developed to estimate the impact of the scale-up of child survival interventions on child mortality. New advances in antimalarials have improved their efficacy of treating uncomplicated and severe malaria. Artemisinin-based combination therapies (ACTs for uncomplicated Plasmodium falciparum malaria and parenteral or rectal artemisinin or quinine for severe malaria syndromes have been shown to be very effective for the treatment of malaria in children. These interventions are now being considered for inclusion in the LiST model. However, for obvious ethical reasons, their protective efficacy (PE compared to placebo is unknown and their impact on reducing malaria-attributable mortality has not been quantified. Methods We performed systematic literature reviews of published studies in P. falciparum endemic settings to determine the protective efficacy (PE of ACT treatment against malaria deaths among children with uncomplicated malaria, as well as the PE of effective case management including parenteral quinine against malaria deaths among all hospitalized children. As no randomized placebo-controlled trials of malaria treatment have been conducted, we used multiple data sources to ascertain estimates of PE, including a previously performed Delphi estimate for treatment of uncomplicated malaria. Results Based on multiple data sources, we estimate the PE of ACT treatment of uncomplicated P. falciparum malaria on reducing malaria mortality in children 1–23 months to be 99% (range: 94-100%, and in children 24-59 months to be 97% (range: 86-99%. We estimate the PE of treatment of severe P. falciparum malaria with effective case management including intravenous quinine on reducing malaria mortality in children 1-59 months to be 82% (range: 63-94% compared to no treatment. Conclusions This systematic review quantifies the PE of ACT used for treating uncomplicated malaria and effective case

  8. Characterization of the infectious reservoir of malaria with an agent-based model calibrated to age-stratified parasite densities and infectiousness.

    Science.gov (United States)

    Gerardin, Jaline; Ouédraogo, André Lin; McCarthy, Kevin A; Eckhoff, Philip A; Wenger, Edward A

    2015-06-03

    Elimination of malaria can only be achieved through removal of all vectors or complete depletion of the infectious reservoir in humans. Mechanistic models can be built to synthesize diverse observations from the field collected under a variety of conditions and subsequently used to query the infectious reservoir in great detail. The EMOD model of malaria transmission was calibrated to prevalence, incidence, asexual parasite density, gametocyte density, infection duration, and infectiousness data from nine study sites. The infectious reservoir was characterized by age and parasite detectability with diagnostics of varying sensitivity over a range of transmission intensities with and without case management and vector control. Mass screen-and-treat drug campaigns were tested for likelihood of achieving elimination. The composition of the infectious reservoir is similar over a range of transmission intensities, and higher intensity settings are biased towards infections in children. Recent ramp-ups in case management and use of insecticide-treated bed nets (ITNs) reduce the infectious reservoir and shift the composition towards sub-microscopic infections. Mass campaigns with anti-malarial drugs are highly effective at interrupting transmission if deployed shortly after ITN campaigns. Low-density infections comprise a substantial portion of the infectious reservoir. Proper timing of vector control, seasonal variation in transmission intensity and mass drug campaigns allows lingering population immunity to help drive a region towards elimination.

  9. Artemether for severe malaria.

    Science.gov (United States)

    Esu, Ekpereonne; Effa, Emmanuel E; Opie, Oko N; Uwaoma, Amirahobu; Meremikwu, Martin M

    2014-09-11

    In 2011 the World Health Organization (WHO) recommended parenteral artesunate in preference to quinine as first-line treatment for people with severe malaria. Prior to this recommendation, many countries, particularly in Africa, had begun to use artemether, an alternative artemisinin derivative. This review evaluates intramuscular artemether compared with both quinine and artesunate. To assess the efficacy and safety of intramuscular artemether versus any other parenteral medication in treating severe malaria in adults and children. We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library), MEDLINE, EMBASE and LILACS, ISI Web of Science, conference proceedings and reference lists of articles. We also searched the WHO clinical trial registry platform, ClinicalTrials.gov and the metaRegister of Controlled Trials (mRCT) for ongoing trials up to 9 April 2014. Randomized controlled trials (RCTs) comparing intramuscular artemether with intravenous or intramuscular antimalarial for treating severe malaria. The primary outcome was all-cause death.Two authors independently assessed trial eligibility, risk of bias and extracted data. We summarized dichotomous outcomes using risk ratios (RR) and continuous outcomes using mean differences (MD), and presented both measures with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses and assessed the quality of the evidence using the GRADE approach. We included 18 RCTs, enrolling 2662 adults and children with severe malaria, carried out in Africa (11) and in Asia (7). Artemether versus quinine For children in Africa, there is probably little or no difference in the risk of death between intramuscular artemether and quinine (RR 0.96, 95% CI 0.76 to 1.20; 12 trials, 1447 participants, moderate quality evidence). Coma recovery may be about five hours shorter with artemether (MD -5.45, 95% CI -7.90 to -3.00; six trials, 358 participants, low quality evidence

  10. Comparison of Plasmodium berghei challenge models for the evaluation of pre-erythrocytic malaria vaccines and their effect on perceived vaccine efficacy.

    Science.gov (United States)

    Leitner, Wolfgang W; Bergmann-Leitner, Elke S; Angov, Evelina

    2010-05-27

    The immunological mechanisms responsible for protection against malaria infection vary among Plasmodium species, host species and the developmental stage of parasite, and are poorly understood. A challenge with live parasites is the most relevant approach to testing the efficacy of experimental malaria vaccines. Nevertheless, in the mouse models of Plasmodium berghei and Plasmodium yoelii, parasites are usually delivered by intravenous injection. This route is highly artificial and particularly in the P. berghei model produces inconsistent challenge results. The initial objective of this study was to compare an optimized intravenous (IV) delivery challenge model with an optimized single infectious mosquito bite challenge model. Finding shortcomings of both approaches, an alternative approach was explored, i.e., the subcutaneous challenge. Mice were infected with P. berghei sporozoites by intravenous (tail vein) injection, single mosquito bite, or subcutaneous injection of isolated parasites into the subcutaneous pouch at the base of the hind leg. Infection was determined in blood smears 7 and 14 days later. To determine the usefulness of challenge models for vaccine testing, mice were immunized with circumsporozoite-based DNA vaccines by gene gun. Despite modifications that allowed infection with a much smaller than reported number of parasites, the IV challenge remained insufficiently reliable and reproducible. Variations in the virulence of the inoculum, if not properly monitored by the rigorous inclusion of sporozoite titration curves in each experiment, can lead to unacceptable variations in reported vaccine efficacies. In contrast, mice with different genetic backgrounds were consistently infected by a single mosquito bite, without overwhelming vaccine-induced protective immune responses. Because of the logistical challenges associated with the mosquito bite model, the subcutaneous challenge route was optimized. This approach, too, yields reliable challenge

  11. Congenital malaria in China.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Tao

    2014-03-01

    Full Text Available BACKGROUND: Congenital malaria, in which infants are directly infected with malaria parasites from their mother prior to or during birth, is a potentially life-threatening condition that occurs at relatively low rates in malaria-endemic regions. It is recognized as a serious problem in Plasmodium falciparum-endemic sub-Saharan Africa, where recent data suggests that it is more common than previously believed. In such regions where malaria transmission is high, neonates may be protected from disease caused by congenital malaria through the transfer of maternal antibodies against the parasite. However, in low P. vivax-endemic regions, immunity to vivax malaria is low; thus, there is the likelihood that congenital vivax malaria poses a more significant threat to newborn health. Malaria had previously been a major parasitic disease in China, and congenital malaria case reports in Chinese offer valuable information for understanding the risks posed by congenital malaria to neonatal health. As most of the literature documenting congenital malaria cases in China are written in Chinese and therefore are not easily accessible to the global malaria research community, we have undertaken an extensive review of the Chinese literature on this subject. METHODS/PRINCIPAL FINDINGS: Here, we reviewed congenital malaria cases from three major searchable Chinese journal databases, concentrating on data from 1915 through 2011. Following extensive screening, a total of 104 cases of congenital malaria were identified. These cases were distributed mainly in the eastern, central, and southern regions of China, as well as in the low-lying region of southwest China. The dominant species was P. vivax (92.50%, reflecting the malaria parasite species distribution in China. The leading clinical presentation was fever, and other clinical presentations were anaemia, jaundice, paleness, diarrhoea, vomiting, and general weakness. With the exception of two cases, all patients

  12. Malaria-related anaemia: a Latin American perspective.

    Science.gov (United States)

    Quintero, Juan Pablo; Siqueira, André Machado; Tobón, Alberto; Blair, Silvia; Moreno, Alberto; Arévalo-Herrera, Myriam; Lacerda, Marcus Vinícius Guimarães; Valencia, Sócrates Herrera

    2011-08-01

    Malaria is the most important parasitic disease worldwide, responsible for an estimated 225 million clinical cases each year. It mainly affects children, pregnant women and non-immune adults who frequently die victims of cerebral manifestations and anaemia. Although the contribution of the American continent to the global malaria burden is only around 1.2 million clinical cases annually, there are 170 million inhabitants living at risk of malaria transmission in this region. On the African continent, where Plasmodium falciparum is the most prevalent human malaria parasite, anaemia is responsible for about half of the malaria-related deaths. Conversely, in Latin America (LA), malaria-related anaemia appears to be uncommon, though there is a limited knowledge about its real prevalence. This may be partially explained by several factors, including that the overall malaria burden in LA is significantly lower than that of Africa, that Plasmodium vivax, the predominant Plasmodium species in the region, appears to display a different clinical spectrus and most likely because better health services in LA prevent the development of severe malaria cases. With the aim of contributing to the understanding of the real importance of malaria-related anaemia in LA, we discuss here a revision of the available literature on the subject and the usefulness of experimental animal models, including New World monkeys, particularly for the study of the mechanisms involved in the pathogenesis of malaria.

  13. Designing malaria vaccines to circumvent antigen variability✩

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E.; Dutta, Sheetij; Remarque, Edmond J.; Beeson, James G.; Plowe, Christopher V.

    2016-01-01

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  14. Designing malaria vaccines to circumvent antigen variability.

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. Copyright © 2015. Published by Elsevier Ltd.

  15. The Global Fund to Fight AIDS, Tuberculosis and Malaria's investments in harm reduction through the rounds-based funding model (2002-2014)

    DEFF Research Database (Denmark)

    Bridge, Jamie; Hunter, Benjamin M; Albers, Eliot

    2016-01-01

    carefully monitor its new funding model and ensure that investments in harm reduction are maintained or scaled-up. There are widespread concerns regarding the withdrawal from middle-income countries where harm reduction remains essential and unfunded through other sources: for example, 15% of the identified......Background: Harm reduction is an evidence-based, effective response to HIV transmission and other harms faced by people who inject drugs, and is explicitly supported by the Global Fund to Fight AIDS, Tuberculosis and Malaria. In spite of this, people who inject drugs continue to have poor...... and inequitable access to these services and face widespread stigma and discrimination. In 2013, the Global Fund launched a new funding model-signalling the end of the previous rounds-based model that had operated since its founding in 2002. This study updates previous analyses to assess Global Fund investments...

  16. Automated haematology analysis to diagnose malaria

    Directory of Open Access Journals (Sweden)

    Grobusch Martin P

    2010-11-01

    Full Text Available Abstract For more than a decade, flow cytometry-based automated haematology analysers have been studied for malaria diagnosis. Although current haematology analysers are not specifically designed to detect malaria-related abnormalities, most studies have found sensitivities that comply with WHO malaria-diagnostic guidelines, i.e. ≥ 95% in samples with > 100 parasites/μl. Establishing a correct and early malaria diagnosis is a prerequisite for an adequate treatment and to minimizing adverse outcomes. Expert light microscopy remains the 'gold standard' for malaria diagnosis in most clinical settings. However, it requires an explicit request from clinicians and has variable accuracy. Malaria diagnosis with flow cytometry-based haematology analysers could become an important adjuvant diagnostic tool in the routine laboratory work-up of febrile patients in or returning from malaria-endemic regions. Haematology analysers so far studied for malaria diagnosis are the Cell-Dyn®, Coulter® GEN·S and LH 750, and the Sysmex XE-2100® analysers. For Cell-Dyn analysers, abnormal depolarization events mainly in the lobularity/granularity and other scatter-plots, and various reticulocyte abnormalities have shown overall sensitivities and specificities of 49% to 97% and 61% to 100%, respectively. For the Coulter analysers, a 'malaria factor' using the monocyte and lymphocyte size standard deviations obtained by impedance detection has shown overall sensitivities and specificities of 82% to 98% and 72% to 94%, respectively. For the XE-2100, abnormal patterns in the DIFF, WBC/BASO, and RET-EXT scatter-plots, and pseudoeosinophilia and other abnormal haematological variables have been described, and multivariate diagnostic models have been designed with overall sensitivities and specificities of 86% to 97% and 81% to 98%, respectively. The accuracy for malaria diagnosis may vary according to species, parasite load, immunity and clinical context where the

  17. Malaria and Tropical Travel

    Centers for Disease Control (CDC) Podcasts

    2008-05-15

    Malaria is a serious mosquito-borne disease that can lead to death. This podcast discusses malaria risk when traveling to tropical areas, as well as how to protect yourself and your family from malaria infection.  Created: 5/15/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/29/2008.

  18. Vaccines against malaria.

    Science.gov (United States)

    Ouattara, Amed; Laurens, Matthew B

    2015-03-15

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. MODELING OF MANAGEMENT PROCESSES IN AN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Stefan Iovan

    2016-05-01

    Full Text Available When driving any major change within an organization, strategy and execution are intrinsic to a project’s success. Nevertheless, closing the gap between strategy and execution remains a challenge for many organizations [1]. Companies tend to focus more on execution than strategy for quick results, instead of taking the time needed to understand the parts that make up the whole, so the right execution plan can be put in place to deliver the best outcomes. A large part of this understands that business operations don’t fit neatly within the traditional organizational hierarchy. Business processes are often messy, collaborative efforts that cross teams, departments and systems, making them difficult to manage within a hierarchical structure [2]. Business process management (BPM fills this gap by redefining an organization according to its end-to-end processes, so opportunities for improvement can be identified and processes streamlined for growth, revenue and transformation. This white paper provides guidelines on what to consider when using business process applications to solve your BPM initiatives, and the unique capabilities software systems provides that can help ensure both your project’s success and the success of your organization as a whole. majority of medium and small businesses, big companies and even some guvermental organizations [2].

  20. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  1. Deforestation and malaria in Mâncio Lima County, Brazil.

    Science.gov (United States)

    Olson, Sarah H; Gangnon, Ronald; Silveira, Guilherme Abbad; Patz, Jonathan A

    2010-07-01

    Malaria is the most prevalent vector-borne disease in the Amazon. We used malaria reports for health districts collected in 2006 by the Programa Nacional de Controle da Malaria to determine whether deforestation is associated with malaria incidence in the county (municipio) of Mancio Lima, Acre State, Brazil. Cumulative percent deforestation was calculated for the spatial catchment area of each health district by using 60 x 60-meter, resolution-classified imagery. Statistical associations were identified with univariate and multivariate general additive negative binomial models adjusted for spatial effects. Our cross-sectional study shows malaria incidence across health districts in 2006 is positively associated with greater changes in percentage of cumulative deforestation within respective health districts. After adjusting for access to care, health district size, and spatial trends, we show that a 4.2%, or 1 SD, change in deforestation from August 1997 through August 2001 is associated with a 48% increase of malaria incidence.

  2. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa

    Science.gov (United States)

    Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis

    2018-02-01

    Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting

  3. The initiative on Model Organism Proteomes (iMOP) Session

    DEFF Research Database (Denmark)

    Schrimpf, Sabine P; Mering, Christian von; Bendixen, Emøke

    2012-01-01

    iMOP – the Initiative on Model Organism Proteomes – was accepted as a new HUPO initiative at the Ninth HUPO meeting in Sydney in 2010. A goal of iMOP is to integrate research groups working on a great diversity of species into a model organism community. At the Tenth HUPO meeting in Geneva...

  4. Competency modeling targeted on promotion of organizations towards VO involvement

    NARCIS (Netherlands)

    Ermilova, E.; Afsarmanesh, H.

    2008-01-01

    During the last decades, a number of models is introduced in research, addressing different perspectives of the organizations’ competencies in collaborative networks. This paper introduces the "4C-model", developed to address competencies of organizations, involved in Virtual organizations Breeding

  5. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  6. Households' incidence on malaria and expenditures to treat malaria ...

    African Journals Online (AJOL)

    People living in the rural areas spend more to have access to malaria control tools. Location of respondent has a positive effect on expenditures and use of malaria control tools. The National Malaria Administration (NMA) and (SMA) State Malaria Administration should continually determine the access that the poorest and ...

  7. using stereochemistry models in teaching organic compounds

    African Journals Online (AJOL)

    Preferred Customer

    (Stereochemistry Model); the treatment had significant effect: students taught using. Stereochemistry Models ... ISSN 2227-5835. 93. Apart from the heavy conceptual demand on the memory capacity required of the ..... colors and sizes compared with the sketches on the chart that appear to be mock forms of the compounds.

  8. Towards a Predictive Analytics-Based Intelligent Malaria Outbreak Warning System

    Directory of Open Access Journals (Sweden)

    Babagana Modu

    2017-08-01

    Full Text Available Malaria, as one of the most serious infectious diseases causing public health problems in the world, affects about two-thirds of the world population, with estimated resultant deaths close to a million annually. The effects of this disease are much more profound in third world countries, which have very limited medical resources. When an intense outbreak occurs, most of these countries cannot cope with the high number of patients due to the lack of medicine, equipment and hospital facilities. The prevention or reduction of the risk factor of this disease is very challenging, especially in third world countries, due to poverty and economic insatiability. Technology can offer alternative solutions by providing early detection mechanisms that help to control the spread of the disease and allow the management of treatment facilities in advance to ensure a more timely health service, which can save thousands of lives. In this study, we have deployed an intelligent malaria outbreak early warning system, which is a mobile application that predicts malaria outbreak based on climatic factors using machine learning algorithms. The system will help hospitals, healthcare providers, and health organizations take precautions in time and utilize their resources in case of emergency. To our best knowledge, the system developed in this paper is the first publicly available application. Since confounding effects of climatic factors have a greater influence on the incidence of malaria, we have also conducted extensive research on exploring a new ecosystem model for the assessment of hidden ecological factors and identified three confounding factors that significantly influence the malaria incidence. Additionally, we deploy a smart healthcare application; this paper also makes a significant contribution by identifying hidden ecological factors of malaria.

  9. Changing the Malaria Environment

    African Journals Online (AJOL)

    tega

    available tools and weapons in the arsenal. Yes, we must support research into vaccine development, and genetic engineering approaches against the mosquito vector, but the immediate vision of malaria control is within reach – on all continents, especially in Africa. 1 Karen Iley. 2006. Malaria Deaths are the Hardest to ...

  10. Bioinformatics approaches to malaria

    DEFF Research Database (Denmark)

    Hansen, Daniel Aaen

    Malaria is a life threatening disease found in tropical and subtropical regions of the world. Each year it kills 781 000 individuals; most of them are children under the age of five in sub-Saharan Africa. The most severe form of malaria in humans is caused by the parasite Plasmodium falciparum...

  11. Malaria at Johannesburg Hospital

    African Journals Online (AJOL)

    Oinical Pharmacology, University of the Witwa~ersrand. REFERENCES. 1. Olarunde A. Chloroquine-resistant Plasmodium falciparum and malaria in. Africa. Trans R Sac Trup Med Hyg 1977; 71: 80-81. 2. Fogh S, Jepsen S, Efferset>e P. Chloroquine-resistant Plasmodium falciparum malaria in Kenya. Trans R Sac Trup Med ...

  12. Malaria prevention and treatment

    African Journals Online (AJOL)

    mask the disease and make diagnosis difficult. Should malaria then develop, it is allegedly an easy matter to ... Wear garments that fully cover arms and legs when outdoors between sunset and sunrise. • Light cotton ..... 2004; 329(7476) : 1212. 10. Nosten F, Brasseur P. Combination ther- apy for malaria: the way forward?

  13. Saccharomyces cerevisiae as a model organism: a comparative study.

    Directory of Open Access Journals (Sweden)

    Hiren Karathia

    Full Text Available BACKGROUND: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

  14. A New Classification System for the Actions of IRS Chemicals Traditionally Used for Malaria Control

    Science.gov (United States)

    2007-08-08

    model system. Although Ae. aegypti does not transmit malaria, it is responsible for transmitting dengue and yellow fever viruses in urban environments... Aedes albopictus . J Am. Mosq Control Assoc 5: 247–250. 6. WHO [World Health Organization] (1998) Testing procedures for insecticide resistance monitoring...this research was to quantify and accurately describe chemical actions and mosquito responses to those actions using Aedes aegypti mosquitoes as a

  15. MODEL OF LEARNING ORGANIZATION IN BROADCASTING ORGANIZATION OF ISLAMIC REPUBLIC OF IRAN

    Directory of Open Access Journals (Sweden)

    Reza Najafbagy

    2010-11-01

    Full Text Available This article tries to present a model of learning organization for Iran Broadcasting Organization which is under the management of the spiritual leader of Iran. The study is based on characteristics of Peter Senge’s original learning organization namely, personal stery, mental models, shared vision, team learning and systems thinking. The methodology was a survey research employed questionnaire among sample employees and managers of the Organization.Findings showed that the Organization is fairly far from an ffective learning organization.Moreover, it seems that employees’ performance in team learning and changes in mental models are more satisfactory than managers. Regarding other characteristics of learning organizations, there are similarities in learning attempts by employees and managers. The rganization lacks organizational vision, and consequently there is no shared vision in the Organization. It also is in need of organizational culture. As a kind of state-owned organization, there s no need of financial support which affect the need for learning organization. It also does not face the threat of sustainabilitybecause there is no competitive organization.Findings also show that IBO need a fundamental change in its rganizational learning process. In this context, the general idea is to unfreeze the mindset of leadership of IBO and creating a visionand organizational culture based on learning and staff development. Then gradually through incremental effective change and continual organizational learning process in dividual, team and organization levels engage in development and reinforcement of skills of personal mastery, mental models, shared vision, team learning and systems thinking, should lead IBO to learning organization.

  16. Malaria, malnutrition, and birthweight

    DEFF Research Database (Denmark)

    Cates, Jordan E.; Unger, Holger W.; Briand, Valerie

    2017-01-01

    were identified by the Maternal Malaria and Malnutrition (M3) initiative using a convenience sampling approach and were eligible for pooling given adequate ethical approval and availability of essential variables. Study-specific adjusted effect estimates were calculated using inverse probability...... be multiplicative interaction between malaria infection at enrollment and low MUAC within studies conducted in Africa; however, this finding was not consistent on the additive scale, when accounting for multiple comparisons, or when using other definitions of malaria and malnutrition. The major limitations...... of the study included availability of only 2 cross-sectional measurements of malaria and the limited availability of ultrasound-based pregnancy dating to assess impacts on preterm birth and fetal growth in all studies.  Conclusions : Pregnant women with malnutrition and malaria infection are at increased risk...

  17. Severe malaria in Europe

    DEFF Research Database (Denmark)

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu

    2017-01-01

    BACKGROUND: Malaria remains one of the most serious infections for travellers to tropical countries. Due to the lack of harmonized guidelines a large variety of treatment regimens is used in Europe to treat severe malaria. METHODS: The European Network for Tropical Medicine and Travel Health (Trop......Net) conducted an 8-year, multicentre, observational study to analyse epidemiology, treatment practices and outcomes of severe malaria in its member sites across Europe. Physicians at participating TropNet centres were asked to report pseudonymized retrospective data from all patients treated at their centre...... for microscopically confirmed severe Plasmodium falciparum malaria according to the 2006 WHO criteria. RESULTS: From 2006 to 2014 a total of 185 patients with severe malaria treated in 12 European countries were included. Three patients died, resulting in a 28-day survival rate of 98.4%. The majority of infections...

  18. Prevalence and risk factors of malaria in Ethiopia

    Directory of Open Access Journals (Sweden)

    Ayele Dawit G

    2012-06-01

    Full Text Available Abstract Background More than 75% of the total area of Ethiopia is malarious, making malaria the leading public health problem in Ethiopia. The aim of this study was to investigate the prevalence rate and the associated socio-economic, geographic and demographic factors of malaria based on the rapid diagnosis test (RDT survey results. Methods From December 2006 to January 2007, a baseline malaria indicator survey in Amhara, Oromiya and Southern Nation Nationalities and People (SNNP regions of Ethiopia was conducted by The Carter Center. This study uses this data. The method of generalized linear model was used to analyse the data and the response variable was the presence or absence of malaria using the rapid diagnosis test (RDT. Results The analyses show that the RDT result was significantly associated with age and gender. Other significant covariates confounding variables are source of water, trip to obtain water, toilet facility, total number of rooms, material used for walls, and material used for roofing. The prevalence of malaria for households with clean water found to be less. Malaria rapid diagnosis found to be higher for thatch and stick/mud roof and earth/local dung plaster floor. Moreover, spraying anti-malaria to the house was found to be one means of reducing the risk of malaria. Furthermore, the housing condition, source of water and its distance, gender, and ages in the households were identified in order to have two-way interaction effects. Conclusion Individuals with poor socio-economic conditions are positively associated with malaria infection. Improving the housing condition of the household is one of the means of reducing the risk of malaria. Children and female household members are the most vulnerable to the risk of malaria. Such information is essential to design improved strategic intervention for the reduction of malaria epidemic in Ethiopia.

  19. Impacts of Climate Change on Malaria Transmission in Africa

    Science.gov (United States)

    Eltahir, E. A. B.; Endo, N.; Yamana, T. K.

    2017-12-01

    Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.

  20. Spatial synchrony of malaria outbreaks in a highland region of Ethiopia.

    Science.gov (United States)

    Wimberly, Michael C; Midekisa, Alemayehu; Semuniguse, Paulos; Teka, Hiwot; Henebry, Geoffrey M; Chuang, Ting-Wu; Senay, Gabriel B

    2012-10-01

    To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts. © 2012 Blackwell Publishing Ltd.

  1. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  2. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of seventh biannual meeting (March 2015).

    Science.gov (United States)

    2015-08-05

    The Malaria Policy Advisory Committee to the World Health Organization held its seventh meeting in Geneva, Switzerland from 5 to 7 March 2015. This article provides a summary of the discussions, conclusions and meeting recommendations. Meeting sessions included: an update on the Greater Mekong Subregion elimination strategy; an update on the RTS,S vaccine; G6PD testing to support the safe use of anti-relapse therapy for Plasmodium vivax; update from the Vector Control Advisory Group; newly proposed evidence reviews or consultations on malaria terminology, malaria in pregnancy, and the feasibility of eradication; as well as updates from the World Health Organization Global Malaria Programme regarding their strategy update and policy setting processes. Policy statements, position statements, and guidelines that arise from the Malaria Policy Advisory Committee meeting conclusions and recommendations will be formally issued and disseminated to World Health Organization Member States by the World Health Organization Global Malaria Programme.

  3. Will malaria return to Europe under the greenhouse effect?

    NARCIS (Netherlands)

    Takken, W.; Wege, van de J.; Jetten, T.H.

    1995-01-01

    Malaria risk is determined by environmental and socio-economic factors. The predicted climate change under the greenhouse effect is likely to affect the epidemic potential of malaria due to a change in vector mosquito phenology and distribution. This effect was simulated using a computer model

  4. Malaria in India: Challenges and opportunities

    Indian Academy of Sciences (India)

    Prakash

    by the World Health Organization i.e. 118.94 million out of global estimates of 515 million cases (Snow et al 2005). In addition to this, the burden of P. vivax malaria in the world has been calculated at 71-80 million cases of which South. East Asia and Western pacific countries contributed 42 million cases (Alilio et al 2004).

  5. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  6. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  7. Personality organization, five-factor model, and mental health.

    Science.gov (United States)

    Laverdière, Olivier; Gamache, Dominick; Diguer, Louis; Hébert, Etienne; Larochelle, Sébastien; Descôteaux, Jean

    2007-10-01

    Otto Kernberg has developed a model of personality and psychological functioning centered on the concept of personality organization. The purpose of this study is to empirically examine the relationships between this model, the five-factor model, and mental health. The Personality Organization Diagnostic Form (Diguer et al., The Personality Organization Diagnostic Form-II (PODF-II), 2001), the NEO Five-Factor Inventory (Costa and McCrae, Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Professional Manual. 1992a), and the Health-Sickness Rating Scale (Luborsky, Arch Gen Psychiatry. 1962;7:407-417) were used to assess these constructs. Results show that personality organization and personality factors are distinct but interrelated constructs and that both contribute in similar proportion to mental health. Results also suggest that the integration of personality organization and factors can provide clinicians and researchers with an enriched understanding of psychological functioning.

  8. Malaria in Children, Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Rezai

    2013-01-01

    Full Text Available Malaria is still the number one killer especially among the young children and is responsible for one death per minute in the world. Overall, between 250-500 million cases of the disease occur worldwide causing more than one million deaths annually about 90% of which in children under five years of age. Although the spread of the disease is worldwide but it is seen mostly in tropical and subtropical regions of all continents and is more so in sub-Saharan Africa. Five parasite species transmitted by more than 70 potent Anopheles mosquito vectors are responsible for the occurrence of the disease and its spread. There have beenseveral approaches for malaria diagnosis, management and prevention as a whole and in children (as the most vulnerable group in particular with various degrees of success. In this context works undertaken by international organizations such as Roll Back Malaria, Global Fund, UNICEF, as well as None for Profit international agencies and also at the national levels are promising in malaria control. However, drug and insecticide resistance, constraints in access to health care, poverty and the like are among the main challenges ahead. In this review paper the situation of malaria and its management measures with especial reference to children are discussed

  9. EPIDEMIOLOGY OF MALARIA IN ENDEMIC AREAS

    Directory of Open Access Journals (Sweden)

    Beatrice Autino

    2012-10-01

    Full Text Available Malaria infection is still to be considered a major public health problem in those 106 countries where the risk of contracting the infection with one or more of the Plasmodium species exists. According to estimates from the World Health Organization, over 200 million cases and about 655.000 deaths have occurred in 2010. Estimating the real health and social burden of the disease is a difficult task, because many of the malaria endemic countries have limited diagnostic resources, especially in rural settings where conditions with similar clinical picture may coexist in the same geographical areas. Moreover, asymptomatic parasitaemia may occur in high transmission areas after childhood, when anti-malaria semi-immunity occurs. Malaria endemicity and control activities are very complex issues, that are influenced by factors related to the host, to the parasite, to the vector, to the environment and to the health system capacity to fully implement available anti-malaria weapons such as rapid diagnostic tests, artemisinin-based combination treatment, impregnated bed-nets and insecticide residual spraying while waiting for an effective vaccine to be made available.

  10. EPIDEMIOLOGY OF MALARIA IN ENDEMIC AREAS

    Directory of Open Access Journals (Sweden)

    Beatrice Autino

    2012-01-01

    Full Text Available

    Malaria infection is still to be considered a major public health problem in those 106 countries where the risk of contracting the infection with one or more of the Plasmodium species exists. According to estimates from the World Health Organization, over 200 million cases and about 655.000 deaths have occurred in 2010. Estimating the real health and social burden of the disease is a difficult task, because many of the malaria endemic countries have limited diagnostic resources, especially in rural settings where conditions with similar clinical picture may coexist in the same geographical areas. Moreover, asymptomatic parasitaemia may occur in high transmission areas after childhood, when anti-malaria semi-immunity occurs. Malaria endemicity and control activities are very complex issues, that are influenced by factors related to the host, to the parasite, to the vector, to the environment and to the health system capacity to fully implement available anti-malaria weapons such as rapid diagnostic tests, artemisinin-based combination treatment, impregnated bed-nets and insecticide residual spraying while waiting for an effective vaccine to be made available.

  11. Designing a Composite Service Organization (Through Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Prof. Dr. A. Z. Memon

    2006-01-01

    Full Text Available Suppose we have a class of similar service organizations each of which is characterized by the same numerically measurable input/output characteristics. Even if the amount of any input does not differ in them, one or more organizations can be expected to outperform the others in one or more production aspects. Our interest lies in comparing the output efficiency levels of all service organizations. For it we use mathematical modeling, mainly linear programming to design a composite organization with new input measures which relative to a specific organization should have a higher level of efficiency with regard to all output measures. The other purpose of this paper is to evaluate the output characteristics of this proposed service organization. The paper also touches some other highly important planning features of this organization.

  12. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  13. Frequently Asked Questions (FAQs) about Malaria

    Science.gov (United States)

    ... Global Activities Sub-Saharan Africa President’s Malaria Initiative (PMI) Kenya Malawi Tanzania Malaria in Pregnancy in Latin ... planning and implementation of the President’s Malaria Initiative (PMI), a $3 billion initiative to rapidly increase malaria ...

  14. Spatiotemporal Bayesian networks for malaria prediction.

    Science.gov (United States)

    Haddawy, Peter; Hasan, A H M Imrul; Kasantikul, Rangwan; Lawpoolsri, Saranath; Sa-Angchai, Patiwat; Kaewkungwal, Jaranit; Singhasivanon, Pratap

    2018-01-01

    Targeted intervention and resource allocation are essential for effective malaria control, particularly in remote areas, with predictive models providing important information for decision making. While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating village level models with weekly temporal resolution for Tha Song Yang district in northern Thailand. The networks are learned using data on cases and environmental covariates. Three types of networks are explored: networks for numeric prediction, networks for outbreak prediction, and networks that incorporate spatial autocorrelation. Evaluation of the numeric prediction network shows that the Bayes net has prediction accuracy in terms of mean absolute error of about 1.4 cases for 1 week prediction and 1.7 cases for 6 week prediction. The network for outbreak prediction has an ROC AUC above 0.9 for all prediction horizons. Comparison of prediction accuracy of both Bayes nets against several traditional modeling approaches shows the Bayes nets to outperform the other models for longer time horizon prediction of high incidence transmission. To model spread of malaria over space, we elaborate the models with links between the village networks. This results in some very large models which would be far too laborious to build by hand. So we represent the models as collections of probability logic rules and automatically generate the networks. Evaluation of the models shows that the autocorrelation links significantly improve prediction accuracy for some villages in regions of high incidence. We conclude that spatiotemporal Bayesian networks are a highly promising modeling alternative for prediction

  15. Self-organizing map models of language acquisition

    Science.gov (United States)

    Li, Ping; Zhao, Xiaowei

    2013-01-01

    Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic parallel distributed processing architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper, we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development. We suggest future directions in which these models can be extended, to better connect with behavioral and neural data, and to make clear predictions in testing relevant psycholinguistic theories. PMID:24312061

  16. Social organization in the Minority Game model

    Science.gov (United States)

    Slanina, František

    2000-10-01

    We study the role of imitation within the Minority Game model of market. The players can exchange information locally, which leads to formation of groups which act as if they were single players. Coherent spatial areas of rich and poor agents result. We found that the global effectivity is optimized at certain value of the imitation probability, which decreases with increasing memory length. The social tensions are suppressed for large imitation probability, but generally the requirements of high global effectivity and low social tensions are in conflict.

  17. Modelling the self-organization and collapse of complex networks

    Indian Academy of Sciences (India)

    Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.

  18. How valuable are model organisms for transposable element studies?

    Science.gov (United States)

    Kidwell, M G; Evgen'ev, M B

    1999-01-01

    Model organisms have proved to be highly informative for many types of genetic studies involving 'conventional' genes. The results have often been successfully generalized to other closely related organisms and also, perhaps surprisingly frequently, to more distantly related organisms. Because of the wealth of previous knowledge and their availability and convenience, model organisms were often the species of choice for many of the earlier studies of transposable elements. The question arises whether the results of genetic studies of transposable elements in model organisms can be extrapolated in the same ways as those of conventional genes? A number of observations suggest that special care needs to be taken in generalizing the results from model organisms to other species. A hallmark of many transposable elements is their ability to amplify rapidly in species genomes. Rapid spread of a newly invaded element throughout a species range has also been demonstrated. The types and genomic copy numbers of transposable elements have been shown to differ greatly between some closely related species. Horizontal transfer of transposable elements appears to be more frequent than for nonmobile genes. Furthermore, the population structure of some model organisms has been subject to drastic recent changes that may have some bearing on their transposable element genomic complements. In order to initiate discussion of this question, several case studies of transposable elements in well-studied Drosophila species are presented.

  19. Mapping the distribution of malaria: current approaches and future directions

    Science.gov (United States)

    Johnson, Leah R.; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    Mapping the distribution of malaria has received substantial attention because the disease is a major source of illness and mortality in humans, especially in developing countries. It also has a defined temporal and spatial distribution. The distribution of malaria is most influenced by its mosquito vector, which is sensitive to extrinsic environmental factors such as rainfall and temperature. Temperature also affects the development rate of the malaria parasite in the mosquito. Here, we review the range of approaches used to model the distribution of malaria, from spatially explicit to implicit, mechanistic to correlative. Although current methods have significantly improved our understanding of the factors influencing malaria transmission, significant gaps remain, particularly in incorporating nonlinear responses to temperature and temperature variability. We highlight new methods to tackle these gaps and to integrate new data with models.

  20. Optimal price subsidies for appropriate malaria testing and treatment behaviour

    DEFF Research Database (Denmark)

    Hansen, Kristian Schultz; Lesner, Tine Hjernø; Østerdal, Lars Peter

    2016-01-01

    , ACT medicines, and cheap, less effective anti-malarials are sold. Assuming that the individual has certain beliefs of the accuracy of the RDT and the probability that the fever is malaria, the model predicts the diagnosis-treatment behaviour of the individual. Subsidies on RDTs and ACT are introduced...... to incentivize appropriate behaviour: choose an RDT before treatment and purchase ACT only if the test is positive. RESULTS: Solving the model numerically suggests that a combined subsidy on both RDT and ACT is cost minimizing and improves diagnosis-treatment behaviour of individuals. For certain beliefs......BACKGROUND: Malaria continues to be a serious public health problem particularly in Africa. Many people infected with malaria do not access effective treatment due to high price. At the same time many individuals receiving malaria drugs do not suffer from malaria because of the common practice...

  1. Chemotherapy of Rodent Malaria.

    Science.gov (United States)

    1985-07-01

    resistant strains. Rodent malaria strains resistant to Halofantrine and to quinine nave been deve’oped and these will be inclided in future bcod...of rodent malaria continues to expand with the inclusion of strains resistant to Halofantrine, quinine and artemisinin. In addition, we are producing...report, st :Jies cve ’t~P-ntrhe ’ crrs.’.on 9f resistano r c I ris 2 ro - lJ ln Il ll lh- - malaria to two compounds, halofantrine and quinine , using our

  2. Severe malaria in Europe

    DEFF Research Database (Denmark)

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu

    2017-01-01

    BACKGROUND: Malaria remains one of the most serious infections for travellers to tropical countries. Due to the lack of harmonized guidelines a large variety of treatment regimens is used in Europe to treat severe malaria. METHODS: The European Network for Tropical Medicine and Travel Health (Trop......Net) conducted an 8-year, multicentre, observational study to analyse epidemiology, treatment practices and outcomes of severe malaria in its member sites across Europe. Physicians at participating TropNet centres were asked to report pseudonymized retrospective data from all patients treated at their centre...

  3. Malaria and Vascular Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Aristóteles Comte Filho de, E-mail: aristoteles.caf@gmail.com [Universidade Federal do Amazonas, Manaus, AM (Brazil); Lacerda, Marcus Vinícius Guimarães de [Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM (Brazil); Okoshi, Katashi; Okoshi, Marina Politi [Faculdade de Medicina de Botucatu (Unesp), Botucatu, SP (Brazil)

    2014-08-15

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease.

  4. Labour Quality Model for Organic Farming Food Chains

    OpenAIRE

    Gassner, B.; Freyer, B.; Leitner, H.

    2008-01-01

    The debate on labour quality in science is controversial as well as in the organic agriculture community. Therefore, we reviewed literature on different labour quality models and definitions, and had key informant interviews on labour quality issues with stakeholders in a regional oriented organic agriculture bread food chain. We developed a labour quality model with nine quality categories and discussed linkages to labour satisfaction, ethical values and IFOAM principles.

  5. Business Model Innovation in Incumbent Organizations: : Challenges and Success Routes

    OpenAIRE

    Salama, Ahmad; Parvez, Khawar

    2015-01-01

    In this thesis major challenges of creating business models at incumbents within mature industries are identified along with a mitigation plan. Pressure is upon incumbent organizations in order to keep up with the latest rapid technological advancements, the launching of startups that almost cover every field of business and the continuous change in customers’ tastes and needs. That along with various factors either forced organizations to continually reevaluate their current business models ...

  6. Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths

    Science.gov (United States)

    2006-04-01

    key species found in the fermentation broth: ethanol, butanol, acetic acid, oxalic acid, lactic acid, and butyric acid. Correlations of the rejection...AFRL-ML-TY-TP-2007-4545 POSTPRINT REVERSE OSMOSIS PROCESSING OF ORGANIC MODEL COMPOUNDS AND FERMENTATION BROTHS Robert Diltz...TELEPHONE NUMBER (Include area code) Bioresource Technology 98 (2007) 686–695Reverse osmosis processing of organic model compounds and fermentation broths

  7. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    Science.gov (United States)

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  8. NEW MODEL FOR QUANTIFICATION OF ICT DEPENDABLE ORGANIZATIONS RESILIENCE

    Directory of Open Access Journals (Sweden)

    Zora Arsovski

    2011-03-01

    Full Text Available Business environment today demands high reliable organizations in every segment to be competitive on the global market. Beside that, ICT sector is becoming irreplaceable in many fields of business, from the communication to the complex systems for process control and production. To fulfill those requirements and to develop further, many organizations worldwide are implementing business paradigm called - organizations resilience. Although resilience is well known term in many science fields, it is not well studied due to its complex nature. This paper is dealing with developing the new model for assessment and quantification of ICT dependable organizations resilience.

  9. Knowledge Loss: A Defensive Model In Nuclear Research Organization Memory

    International Nuclear Information System (INIS)

    Mohamad Safuan Bin Sulaiman; Muhd Noor Muhd Yunus

    2013-01-01

    Knowledge is an essential part of research based organization. It should be properly managed to ensure that any pitfalls of knowledge retention due to knowledge loss of both tacit and explicit is mitigated. Audit of the knowledge entities exist in the organization is important to identify the size of critical knowledge. It is very much related to how much know-what, know-how and know-why experts exist in the organization. This study conceptually proposed a defensive model for Nuclear Malaysia's organization memory and application of Knowledge Loss Risk Assessment (KLRA) as an important tool for critical knowledge identification. (author)

  10. Case Report: Severe and Complicated Cynomolgi Malaria in a Rhesus Macaque Resulted in Similar Histopathological Changes as Those Seen in Human Malaria.

    Science.gov (United States)

    J Joyner, Chester; Consortium, The MaHPIC; Wood, Jennifer S; Moreno, Alberto; Garcia, Anapatricia; Galinski, Mary R

    2017-08-01

    Histopathological data collected from patients with severe malaria have been instrumental for studying malaria pathogenesis. Animal models of malaria are critical to complement such studies. Here, the histopathological changes observed in a rhesus macaque with severe and complicated Plasmodium cynomolgi malaria are reported. The animal presented with thrombocytopenia, severe anemia, and hyperparasitemia during the acute infection. The macaque was given subcurative antimalarial treatment, fluid support, and a blood transfusion to treat the clinical complications, but at the time of transfusion, kidney function was compromised. These interventions did not restore kidney function, and the animal was euthanized due to irreversible renal failure. Gross pathological and histological examinations revealed that the lungs, kidneys, liver, spleen, and bone marrow exhibited abnormalities similar to those described in patients with malaria. Overall, this case report illustrates the similarities in the pathophysiological complications that can occur in human malaria and cynomolgi malaria in rhesus macaques.

  11. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2012 meeting

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Abstract The Malaria Policy Advisory Committee to the World Health Organization met in Geneva, Switzerland from 11 to 13 September, 2012. This article provides a summary of the discussions, conclusions and recommendations from that meeting. Meeting sessions included: updated policy recommendations on the use of sulphadoxine-pyrimethamine for Intermittent Preventive Treatment of malaria in pregnancy, as well as the use of single dose primaquine as a Plasmodium falciparum gametocytocide; the need to develop a Global Technical Strategy for Malaria Control and Elimination 2016– 2025 and a global strategy for control of Plasmodium vivax; the Affordable Medicines Facility for malaria independent evaluation and promoting malaria case management in the private sector; updates from the Technical Expert Group on drug resistance and containment and the Evidence Review Group on malaria burden estimation; update on the RTS,S/AS01 malaria vaccine; progress on the policy setting process for malaria vector control; and the process for updating the WHO Guidelines for the Treatment of Malaria. Policy statements, position statements, and guidelines that arise from the MPAC meeting conclusions and recommendations will be formally issued and disseminated to World Health Organization Member States by the World Health Organization Global Malaria Programme.

  12. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of March 2013 meeting

    Science.gov (United States)

    2013-01-01

    The Malaria Policy Advisory Committee to the World Health Organization met in Geneva, Switzerland from 13 to 15 March, 2013. This article provides a summary of the discussions, conclusions and recommendations from that meeting. Meeting sessions included: a review of the efficacy of artemisinin-based combination therapy in Guyana and Suriname; the outcomes from a consultation on non-malaria febrile illness; the outcomes from the second meeting of the Evidence Review Group on malaria burden estimation; an update on the review of the WHO Guidelines for the Treatment of Malaria; an update regarding progress on the constitution of the vector control Technical Expert Group; updates on the RTS, S/AS01 vaccine and the malaria vaccine technology roadmap; financing and resource allocation for malaria control; malaria surveillance and the need for a surveillance, monitoring and evaluation Technical Expert Group; criteria and classification related to malaria elimination; the next meeting of the Evidence Review Group on Intermittent Preventive Treatment in pregnancy; an update on the soon-to-be launched Elimination Scenario Planning Tool; and an update on the process for the Global Technical Strategy for Malaria Control and Elimination (2016–2025). Policy statements, position statements, and guidelines that arise from the MPAC meeting conclusions and recommendations will be formally issued and disseminated to World Health Organization Member States by the World Health Organization Global Malaria Programme. PMID:23787092

  13. Malaria risk factors in north-east Tanzania

    Directory of Open Access Journals (Sweden)

    Mtove George

    2011-04-01

    Full Text Available Abstract Background Understanding the factors which determine a household's or individual's risk of malaria infection is important for targeting control interventions at all intensities of transmission. Malaria ecology in Tanzania appears to have reduced over recent years. This study investigated potential risk factors and clustering in face of changing infection dynamics. Methods Household survey data were collected in villages of rural Muheza district. Children aged between six months and thirteen years were tested for presence of malaria parasites using microscopy. A multivariable logistic regression model was constructed to identify significant risk factors for children. Geographical information systems combined with global positioning data and spatial scan statistic analysis were used to identify clusters of malaria. Results Using an insecticide-treated mosquito net of any type proved to be highly protective against malaria (OR 0.75, 95% CI 0.59-0.96. Children aged five to thirteen years were at higher risk of having malaria than those aged under five years (OR 1.71, 95% CI 1.01-2.91. The odds of malaria were less for females when compared to males (OR 0.62, 95% CI 0.39-0.98. Two spatial clusters of significantly increased malaria risk were identified in two out of five villages. Conclusions This study provides evidence that recent declines in malaria transmission and prevalence may shift the age groups at risk of malaria infection to older children. Risk factor analysis provides support for universal coverage and targeting of long-lasting insecticide-treated nets (LLINs to all age groups. Clustering of cases indicates heterogeneity of risk. Improved targeting of LLINs or additional supplementary control interventions to high risk clusters may improve outcomes and efficiency as malaria transmission continues to fall under intensified control.

  14. Human movement data for malaria control and elimination strategic planning.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  15. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    Science.gov (United States)

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  16. Malaria elimination in Sri Lanka: what it would take to reach the goal.

    Science.gov (United States)

    Premaratne, Risintha; Ortega, Leonard; Janakan, Navaratnasingam; Mendis, Kamini N

    2014-01-01

    Fifty years after narrowly missing the opportunity to eliminate malaria from Sri Lanka in the 1960s, the country has now interrupted malaria transmission and sustained this interruption for more than 12 months - no indigenous malaria cases have been reported since October 2012. This was achieved through a period overlapping with a 30-year separatist war in areas that were endemic for malaria. The challenge now, of sustaining a malaria-free country and preventing the reintroduction of malaria to Sri Lanka, is examined here in the context of rapid postwar developments in the country. Increased travel to and from the country to expand development projects, businesses and a booming tourist industry, and the influx of labour and refugees from neighbouring malarious countries combine with the continued presence of malaria vectors in formerly endemic areas, to make the country both receptive and vulnerable to the reintroduction of malaria. The absence of indigenous malaria has led to a loss of awareness among the medical profession, resulting in delayed diagnosis of malaria despite the availability of an extensive malaria diagnosis service. Highly prevalent vector-borne diseases such as dengue are competing for health-service resources. Interventions that are necessary at this critical time include sustaining a state-of-the-art surveillance and response system for malaria, and advocacy to maintain awareness among the medical profession and at high levels of government, sustained funding for the Anti-Malaria Campaign and for implementation research and technical guidance on elimination. The malaria-elimination effort should be supported by rigorous analyses to demonstrate the clear economic and health benefits of eliminating malaria, which exceed the cost of a surveillance and response system. An annual World Health Organization review of the programme may also be required.

  17. Pulmonary manifestations of malaria

    Energy Technology Data Exchange (ETDEWEB)

    Rauber, K.; Enkerlin, H.L.; Riemann, H.; Schoeppe, W.

    1987-05-01

    We report on the two different types of pulmonary manifestations in acute plasmodium falciparum malaria. The more severe variant shows long standing interstitial pulmonary infiltrates, whereas in the more benign courses only short-term pulmonary edemas are visible.

  18. Malaria Treatment (United States)

    Science.gov (United States)

    ... 1088) or fax (1-800-FDA-0178) The advantage to having your health care provider file the ... Parasitic Diseases and Malaria Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs Funding ...

  19. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  20. Drosophila melanogaster as a model organism to study nanotoxicity.

    Science.gov (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  1. Investigating ecological speciation in non-model organisms

    DEFF Research Database (Denmark)

    Foote, Andrew David

    2012-01-01

    on killer whale evolutionary ecology in search of any difficulty in demonstrating causal links between variation in phenotype, ecology, and reproductive isolation in this non-model organism. Results: At present, we do not have enough evidence to conclude that adaptive phenotype traits linked to ecological...... speciation in non-model organisms that lead to this bias? What alternative approaches might redress the balance? Organism: Genetically differentiated types of the killer whale (Orcinus orca) exhibiting differences in prey preference, habitat use, morphology, and behaviour. Methods: Review of the literature...... variation underlie reproductive isolation between sympatric killer whale types. Perhaps ecological speciation has occurred, but it is hard to prove. We will probably face this outcome whenever we wish to address non-model organisms – species in which it is not easy to apply experimental approaches...

  2. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...

  3. Treatment of Malaria

    Science.gov (United States)

    1986-04-01

    the doses of pyrimethamine used for treatment of malaria (Weniger, 1979b). It may be used for treatment of malaria in pregnancy. The question of...derivatives are still being determined. A number of formulations have been shown to be effective, but in China only three peparations , qinghaosu suppositories...Clinical Pharmacology 15: 471-479. Gustafsson LL. Rombo L, Alvan Get al (1983b) On the question of dose-dependent chloro- quine elimination of a single

  4. Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model.

    Directory of Open Access Journals (Sweden)

    Samson S Kiware

    Full Text Available Large-cage experiments indicate pyriproxifen (PPF can be transferred from resting sites to aquatic habitats by Anopheles arabiensis--malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1 partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2 even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events.Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats [Formula: see text] that persist or retain PPF activity (Ux for only one week [Formula: see text], where Ux = 7 days. To achieve >99% contamination coverage of these habitats will necessitate values for the

  5. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  6. Organism-level models: When mechanisms and statistics fail us

    Science.gov (United States)

    Phillips, M. H.; Meyer, J.; Smith, W. P.; Rockhill, J. K.

    2014-03-01

    Purpose: To describe the unique characteristics of models that represent the entire course of radiation therapy at the organism level and to highlight the uses to which such models can be put. Methods: At the level of an organism, traditional model-building runs into severe difficulties. We do not have sufficient knowledge to devise a complete biochemistry-based model. Statistical model-building fails due to the vast number of variables and the inability to control many of them in any meaningful way. Finally, building surrogate models, such as animal-based models, can result in excluding some of the most critical variables. Bayesian probabilistic models (Bayesian networks) provide a useful alternative that have the advantages of being mathematically rigorous, incorporating the knowledge that we do have, and being practical. Results: Bayesian networks representing radiation therapy pathways for prostate cancer and head & neck cancer were used to highlight the important aspects of such models and some techniques of model-building. A more specific model representing the treatment of occult lymph nodes in head & neck cancer were provided as an example of how such a model can inform clinical decisions. A model of the possible role of PET imaging in brain cancer was used to illustrate the means by which clinical trials can be modelled in order to come up with a trial design that will have meaningful outcomes. Conclusions: Probabilistic models are currently the most useful approach to representing the entire therapy outcome process.

  7. Laboratory diagnostics of malaria

    Science.gov (United States)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  8. The epidemiology of febrile malaria episodes in an area of unstable and seasonal transmission

    DEFF Research Database (Denmark)

    Giha, H A; Rosthoj, S; Dodoo, D

    2000-01-01

    This study investigated the epidemiology of uncomplicated falciparum malaria in an area of unstable and seasonal transmission in eastern Sudan. About 90% of malaria morbidity in this region occurs in the months of September to November, and very few malaria cases occur during the intensely arid...... hazard model for recurrent events stratified by family, we have calculated the relative hazard for clinical malaria episodes by age, sex, haemoglobin genotype, blood type and infection in the previous season. The malaria risk was significantly lower in individuals aged 20-88 years than in the 5-19 years...

  9. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    Science.gov (United States)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  10. A Framework for Formal Modeling and Analysis of Organizations

    NARCIS (Netherlands)

    Jonker, C.M.; Sharpanskykh, O.; Treur, J.; P., Yolum

    2007-01-01

    A new, formal, role-based, framework for modeling and analyzing both real world and artificial organizations is introduced. It exploits static and dynamic properties of the organizational model and includes the (frequently ignored) environment. The transition is described from a generic framework of

  11. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  12. Watch out for malaria: still a leading cause of child death worldwide

    Directory of Open Access Journals (Sweden)

    Buonsenso Danilo

    2010-09-01

    Full Text Available Abstract Background Due to the efforts in malaria control promoted by the World Health Organization (WHO, the reported malaria burden is being reduced throughout the world. Nevertheless, malaria remains a leading cause of child death worldwide. Aims purpose of the paper is to summarize the main historical steps in fighting malaria, from the first descriptions to the last ones. Results a case of probable autochthonous malaria has been recently described in Italy, raising concern over the possibility of resurgence of malaria in countries previously interested by this disease. Moreover, both the constant threat of the parasite and vector mosquito developing resistance to medicines and insecticides, and the on-going climate change make the challenge of eradicating malaria really difficult. Therefore, malaria is still an actual disease, requiring adequate programs of surveillance, stronger health systems in poor countries, and efforts in order to develop new and effective tools in malaria control. WHO has definitely demonstrated the effects of "social determinants" on health. So, eradication strategies cannot be based only on a scientific background, because culture, politics, power, resources and wars have a profound impact on health and disease. These elements should be introduced in all the programs of malaria control. Conclusions malaria is still an actual disease with great public health implications, and the approaches for control and prevention should have the appropriate social and political context in addition to the science involved in order to save lives of children at risk.

  13. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia.

    Science.gov (United States)

    Kerkhof, Karen; Sluydts, Vincent; Heng, Somony; Kim, Saorin; Pareyn, Myrthe; Willen, Laura; Canier, Lydie; Sovannaroth, Siv; Ménard, Didier; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2016-10-19

    Malaria transmission is highly heterogeneous, especially in low endemic countries, such as Cambodia. This results in geographical clusters of residual transmission in the dry, low transmission season, which can fuel the transmission to wider areas or populations during the wet season. A better understanding of spatial clustering of malaria can lead to a more efficient, targeted strategy to reduce malaria transmission. This study aims to evaluate the potential of the use of serological markers to define spatial patterns in malaria exposure. Blood samples collected in a community-based randomized trial performed in 98 high endemic communities in Ratanakiri province, north-eastern Cambodia, were screened with a multiplex serological assay for five serological markers (three Plasmodium falciparum and two Plasmodium vivax). The antibody half-lives range from approximately six months until more than two years. Geographical heterogeneity in malaria transmission was examined using a spatial scan statistic on serology, PCR prevalence and malaria incidence rate data. Furthermore, to identify behavioural patterns or intrinsic factors associated with malaria exposure (antibody levels), risk factor analyses were performed by using multivariable random effect logistic regression models. The serological outcomes were then compared to PCR prevalence and malaria incidence data. A total of 6502 samples from two surveys were screened in an area where the average parasite prevalence estimated by PCR among the selected villages is 3.4 %. High-risk malaria pockets were observed adjacent to the 'Tonle San River' and neighbouring Vietnam for all three sets of data (serology, PCR prevalence and malaria incidence rates). The main risk factors for all P. falciparum antigens and P. vivax MSP1.19 are age, ethnicity and staying overnight at the plot hut. It is possible to identify similar malaria pockets of higher malaria transmission together with the potential risk factors by using serology

  14. Xanthusbase: adapting wikipedia principles to a model organism database.

    Science.gov (United States)

    Arshinoff, Bradley I; Suen, Garret; Just, Eric M; Merchant, Sohel M; Kibbe, Warren A; Chisholm, Rex L; Welch, Roy D

    2007-01-01

    xanthusBase (http://www.xanthusbase.org) is the official model organism database (MOD) for the social bacterium Myxococcus xanthus. In many respects, M.xanthus represents the pioneer model organism (MO) for studying the genetic, biochemical, and mechanistic basis of prokaryotic multicellularity, a topic that has garnered considerable attention due to the significance of biofilms in both basic and applied microbiology research. To facilitate its utility, the design of xanthusBase incorporates open-source software, leveraging the cumulative experience made available through the Generic Model Organism Database (GMOD) project, MediaWiki (http://www.mediawiki.org), and dictyBase (http://www.dictybase.org), to create a MOD that is both highly useful and easily navigable. In addition, we have incorporated a unique Wikipedia-style curation model which exploits the internet's inherent interactivity, thus enabling M.xanthus and other myxobacterial researchers to contribute directly toward the ongoing genome annotation.

  15. Investigating ecological speciation in non-model organisms

    DEFF Research Database (Denmark)

    Foote, Andrew David

    2012-01-01

    Background: Studies of ecological speciation tend to focus on a few model biological systems. In contrast, few studies on non-model organisms have been able to infer ecological speciation as the underlying mechanism of evolutionary divergence. Questions: What are the pitfalls in studying ecological...... on killer whale evolutionary ecology in search of any difficulty in demonstrating causal links between variation in phenotype, ecology, and reproductive isolation in this non-model organism. Results: At present, we do not have enough evidence to conclude that adaptive phenotype traits linked to ecological...... variation underlie reproductive isolation between sympatric killer whale types. Perhaps ecological speciation has occurred, but it is hard to prove. We will probably face this outcome whenever we wish to address non-model organisms – species in which it is not easy to apply experimental approaches...

  16. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  17. The global crisis of malaria: report on a Yale conference.

    Science.gov (United States)

    Snowden, Frank M

    2009-03-01

    An international conference, "The Global Crisis of Malaria: Lessons of the Past and Future Prospects," met at Yale University, November 7-9, 2008. The symposium was organized by Professor Frank Snowden and sponsored by the Provost's office, the MacMillan Center, the Program in the History of Science and History of Medicine, and the Section of the History of Medicine at the Yale School of Medicine. It brought together experts on malaria from a variety of disciplines, countries, and experiences--physicians, research scientists, historians of medicine, public health officials, and representatives of several non-governmental organizations (NGOs). An underlying theme was that much could be gained from a big-picture examination across disciplinary frontiers of the contemporary public health problem caused by malaria. Particular features of the conference were its intense scrutiny of historical successes and failures in malaria control and its demonstration of the relevance of history to policy discussions in the field.

  18. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission

    Science.gov (United States)

    Zhu, Lin; Qualls, Whitney A.; Marshall, John M; Arheart, Kris L.; DeAngelis, Don; McManus, John W.; Traore, Sekou F.; Doumbia, Seydou; Schlein, Yosef; Muller, Gunter C.; Beier, John C.

    2015-01-01

    BackgroundAgent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour.MethodsA spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared.ResultsWhen the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P malaria parasite transmission.

  19. Early detection and monitoring of Malaria

    Science.gov (United States)

    Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Miller, Howard; Rosy, Dilara A.

    2015-05-01

    Global Earth Observation Systems of Systems (GEOSS) are bringing vital societal benefits to people around the globe. In this research article, we engage undergraduate students in the exciting area of space exploration to improve the health of millions of people globally. The goal of the proposed research is to place students in a learning environment where they will develop their problem solving skills in the context of a world crisis (e.g., malaria). Malaria remains one of the greatest threats to public health, particularly in developing countries. The World Health Organization has estimated that over one million die of Malaria each year, with more than 80% of these found in Sub-Saharan Africa. The mosquitoes transmit malaria. They breed in the areas of shallow surface water that are suitable to the mosquito and parasite development. These environmental factors can be detected with satellite imagery, which provide high spatial and temporal coverage of the earth's surface. We investigate on moisture, thermal and vegetation stress indicators developed from NOAA operational environmental satellite data. Using these indicators and collected epidemiological data, it is possible to produce a forecast system that can predict the risk of malaria for a particular geographical area with up to four months lead time. This valuable lead time information provides an opportunity for decision makers to deploy the necessary preventive measures (spraying, treated net distribution, storing medications and etc) in threatened areas with maximum effectiveness. The main objective of the proposed research is to study the effect of ecology on human health and application of NOAA satellite data for early detection of malaria.

  20. A self-organized criticality model for plasma transport

    International Nuclear Information System (INIS)

    Carreras, B.A.; Newman, D.; Lynch, V.E.

    1996-01-01

    Many models of natural phenomena manifest the basic hypothesis of self-organized criticality (SOC). The SOC concept brings together the self-similarity on space and time scales that is common to many of these phenomena. The application of the SOC modelling concept to the plasma dynamics near marginal stability opens new possibilities of understanding issues such as Bohm scaling, profile consistency, broad band fluctuation spectra with universal characteristics and fast time scales. A model realization of self-organized criticality for plasma transport in a magnetic confinement device is presented. The model is based on subcritical resistive pressure-gradient-driven turbulence. Three-dimensional nonlinear calculations based on this model show the existence of transport under subcritical conditions. This model that includes fluctuation dynamics leads to results very similar to the running sandpile paradigm

  1. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  2. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal

    Directory of Open Access Journals (Sweden)

    Ibrahima Diouf

    2017-09-01

    Full Text Available The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM, driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be

  3. The role of private drug vendors as malaria treatment providers in selected malaria endemic areas of Sri Lanka

    DEFF Research Database (Denmark)

    Rajakaruna, R S; Weerasinghe, M; Alifrangis, M

    2006-01-01

    BACKGROUND AND OBJECTIVES: The involvement of private drug vendors in malaria treatment is particularly high in developing countries and understanding their practices and knowledge about antimalarials and malaria treatment will aid in devising strategies to increase the correct use of antimalarials...... and improve adherence to the government's malaria drug policy. Results of a study on the knowledge and practices of the private drug vendors conducted in seven districts in Sri Lanka, mostly in malarious areas are presented. METHODS: Data on awareness of government's malaria drug policy, practice of issuing...... antimalarials, knowledge about malaria and antimalarial drugs were collected from the drug vendors using pre-tested questionnaire in vernacular language. Data were statistically analysed using Stata 8.2. Chi-square test was carried out for individual explanatory variables and a logistic regression model...

  4. Regional Persistent Organic Pollutants' Environmental Impact Assessment and Control Model

    Directory of Open Access Journals (Sweden)

    Jurgis Staniskis

    2008-10-01

    Full Text Available The sources of formation, environmental distribution and fate of persistent organic pollutants (POPs are increasingly seen as topics to be addressed and solved at the global scale. Therefore, there are already two international agreements concerning persistent organic pollutants: the Protocol of 1998 to the 1979 Convention on the Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (Aarhus Protocol; and the Stockholm Convention on Persistent Organic Pollutants. For the assessment of environmental pollution of POPs, for the risk assessment, for the evaluation of new pollutants as potential candidates to be included in the POPs list of the Stokholmo or/and Aarhus Protocol, a set of different models are developed or under development. Multimedia models help describe and understand environmental processes leading to global contamination through POPs and actual risk to the environment and human health. However, there is a lack of the tools based on a systematic and integrated approach to POPs management difficulties in the region.

  5. Making Organisms Model Human Behavior: Situated Models in North-American Alcohol Research, 1950-onwards

    Science.gov (United States)

    Leonelli, Sabina; Ankeny, Rachel A.; Nelson, Nicole C.; Ramsden, Edmund

    2014-01-01

    Argument We examine the criteria used to validate the use of nonhuman organisms in North-American alcohol addiction research from the 1950s to the present day. We argue that this field, where the similarities between behaviors in humans and non-humans are particularly difficult to assess, has addressed questions of model validity by transforming the situatedness of non-human organisms into an experimental tool. We demonstrate that model validity does not hinge on the standardization of one type of organism in isolation, as often the case with genetic model organisms. Rather, organisms are viewed as necessarily situated: they cannot be understood as a model for human behavior in isolation from their environmental conditions. Hence the environment itself is standardized as part of the modeling process; and model validity is assessed with reference to the environmental conditions under which organisms are studied. PMID:25233743

  6. Making organisms model human behavior: situated models in North-American alcohol research, since 1950.

    Science.gov (United States)

    Ankeny, Rachel A; Leonelli, Sabina; Nelson, Nicole C; Ramsden, Edmund

    2014-09-01

    We examine the criteria used to validate the use of nonhuman organisms in North-American alcohol addiction research from the 1950s to the present day. We argue that this field, where the similarities between behaviors in humans and non-humans are particularly difficult to assess, has addressed questions of model validity by transforming the situatedness of non-human organisms into an experimental tool. We demonstrate that model validity does not hinge on the standardization of one type of organism in isolation, as often the case with genetic model organisms. Rather, organisms are viewed as necessarily situated: they cannot be understood as a model for human behavior in isolation from their environmental conditions. Hence the environment itself is standardized as part of the modeling process; and model validity is assessed with reference to the environmental conditions under which organisms are studied.

  7. MODELLING CONSUMERS' DEMAND FOR ORGANIC FOOD PRODUCTS: THE SWEDISH EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Manuchehr Irandoust

    2016-07-01

    Full Text Available This paper attempts to examine a few factors characterizing consumer preferences and behavior towards organic food products in the south of Sweden using a proportional odds model which captures the natural ordering of dependent variables and any inherent nonlinearities. The findings show that consumer's choice for organic food depends on perceived benefits of organic food (environment, health, and quality and consumer's perception and attitudes towards labelling system, message framing, and local origin. In addition, high willingness to pay and income level will increase the probability to buy organic food, while the cultural differences and socio-demographic characteristics have no effect on consumer behaviour and attitudes towards organic food products. Policy implications are offered.

  8. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  9. Knowledge of malaria and practice of home management of malaria ...

    African Journals Online (AJOL)

    Background: Malaria is a preventable and treatable disease associated with high morbidity and mortality. It is the 3rd leading cause of death for children under five years worldwide. Home-based management of malaria may go a long way in reducing the attending morbidity and mortality associated with malaria in this group ...

  10. Malaria parasitemia among asymptomatic infants seen in a malaria ...

    African Journals Online (AJOL)

    Background: Sustainable Development Goal number three call for complete reversal in the incidence of malaria by 2030. Malaria however remains a health priority in sub-Saharan Africa, with children under five experiencing the highest morbidity and mortality. In clinical settings, management of malaria cases has primarily ...

  11. Dilbert-Peter model of organization effectiveness: computer simulations

    OpenAIRE

    Sobkowicz, Pawel

    2010-01-01

    We describe a computer model of general effectiveness of a hierarchical organization depending on two main aspects: effects of promotion to managerial levels and efforts to self-promote of individual employees, reducing their actual productivity. The combination of judgment by appearance in the promotion to higher levels of hierarchy and the Peter Principle (which states that people are promoted to their level of incompetence) results in fast declines in effectiveness of the organization. The...

  12. Modeling nanostructure-enhanced light trapping in organic solar cells

    DEFF Research Database (Denmark)

    Adam, Jost

    A promising approach for improving the power conversion efficiencies of organic solar cells (OSCs) is by incorporating nanostructures in their thin film architecture to improve the light absorption in the device’s active polymer layers. Here, we present a modelling framework for the prediction....... Diffraction by fractal metallic supergratings. Optics Express, 15(24), 15628–15636 (2007) [3] Goszczak, A. J. et al. Nanoscale Aluminum dimples for light trapping in organic thin films (submitted)...

  13. PERANAN TROMBOSIT DALAM PATOGENESIS MALARIA

    Directory of Open Access Journals (Sweden)

    Diana Natalia

    2014-12-01

    Full Text Available AbstrakMalaria merupakan penyakit endemik di Indonesia dan mempengaruhi hampir seluruh komponen darah. Anemia dan trombositopenia merupakan komplikasi malaria terkait hematologi yang paling sering, dan mendapat banyak perhatian pada literatur ilmiah karena berhubungan dengan mortalitas. Penurunan jumlah trombosit berkaitan dengan berbagai penyebab diantaranya lisis dimediasi imun, sekuestrasi pada limpa, gangguan pada sumsum tulang dan fagositosis oleh makrofag. Infeksi malaria menyebabkan abnormalitas pada struktur dan fungsi trombosit. Kejadian trombositopenia dapat dijadikan petunjuk penting malaria akut.AbstractMalaria are endemic infection in Indonesia and are commonly associated with hematological abnormalities. Anemia and thrombocytopenia are the most common complication of malaria, and has been reported because its mortality. Thrombocytopenia is caused by immune lysis mechanism, spleen’s sequestration, defect in bone marrow and macrophage phagocytosis. Malaria infection causes the abnormality in the structure and function of platelets. The presence of thrombocytopenia is important as an indicator of acute malaria.

  14. Joint spatial time-series epidemiological analysis of malaria and cutaneous leishmaniasis infection.

    Science.gov (United States)

    Adegboye, O A; Al-Saghir, M; Leung, D H Y

    2017-03-01

    Malaria and leishmaniasis are among the two most important health problems of many developing countries especially in the Middle East and North Africa. It is common for vector-borne infectious diseases to have similar hotspots which may be attributed to the overlapping ecological distribution of the vector. Hotspot analyses were conducted to simultaneously detect the location of local hotspots and test their statistical significance. Spatial scan statistics were used to detect and test hotspots of malaria and cutaneous leishmaniasis (CL) in Afghanistan in 2009. A multivariate negative binomial model was used to simultaneously assess the effects of environmental variables on malaria and CL. In addition to the dependency between malaria and CL disease counts, spatial and temporal information were also incorporated in the model. Results indicated that malaria and CL incidence peaked at the same periods. Two hotspots were detected for malaria and three for CL. The findings in the current study show an association between the incidence of malaria and CL in the studied areas of Afghanistan. The incidence of CL disease in a given month is linked with the incidence of malaria in the previous month. Co-existence of malaria and CL within the same geographical area was supported by this study, highlighting the presence and effects of environmental variables such as temperature and precipitation. People living in areas with malaria are at increased risk for leishmaniasis infection. Local healthcare authorities should consider the co-infection problem by recommending systematic malaria screening for all CL patients.

  15. Ectocarpus: a model organism for the brown algae.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As a consequence of this history, brown algae have evolved many novel features, for example in terms of their cell biology and metabolic pathways. They are also one of only a small number of eukaryotic groups to have independently evolved complex multicellularity. Despite these interesting features, the brown algae have remained a relatively poorly studied group. This situation has started to change over the last few years, however, with the emergence of the filamentous brown alga Ectocarpus as a model system that is amenable to the genomic and genetic approaches that have proved to be so powerful in more classical model organisms such as Drosophila and Arabidopsis.

  16. Control of Plasmodium knowlesi malaria

    Science.gov (United States)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-10-01

    The most significant and efficient measures against Plasmodium knowlesi outbreaks are efficient anti malaria drug, biological control in form of predatory mosquitoes and culling control strategies. In this paper optimal control theory is applied to a system of ordinary differential equation. It describes the disease transmission and Pontryagin's Maximum Principle is applied for analysis of the control. To this end, three control strategies representing biological control, culling and treatment were incorporated into the disease transmission model. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for disease transmission.

  17. Costs of eliminating malaria and the impact of the global fund in 34 countries.

    Directory of Open Access Journals (Sweden)

    Brittany Zelman

    Full Text Available International financing for malaria increased more than 18-fold between 2000 and 2011; the largest source came from The Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund. Countries have made substantial progress, but achieving elimination requires sustained finances to interrupt transmission and prevent reintroduction. Since 2011, global financing for malaria has declined, fueling concerns that further progress will be impeded, especially for current malaria-eliminating countries that may face resurgent malaria if programs are disrupted.This study aims to 1 assess past total and Global Fund funding to the 34 current malaria-eliminating countries, and 2 estimate their future funding needs to achieve malaria elimination and prevent reintroduction through 2030.Historical funding is assessed against trends in country-level malaria annual parasite incidences (APIs and income per capita. Following Kizewski et al. (2007, program costs to eliminate malaria and prevent reintroduction through 2030 are estimated using a deterministic model. The cost parameters are tailored to a package of interventions aimed at malaria elimination and prevention of reintroduction.The majority of Global Fund-supported countries experiencing increases in total funding from 2005 to 2010 coincided with reductions in malaria APIs and also overall GNI per capita average annual growth. The total amount of projected funding needed for the current malaria-eliminating countries to achieve elimination and prevent reintroduction through 2030 is approximately US$8.5 billion, or about $1.84 per person at risk per year (PPY (ranging from $2.51 PPY in 2014 to $1.43 PPY in 2030.Although external donor funding, particularly from the Global Fund, has been key for many malaria-eliminating countries, sustained and sufficient financing is critical for furthering global malaria elimination. Projected cost estimates for elimination provide policymakers with an indication of the

  18. Costs of Eliminating Malaria and the Impact of the Global Fund in 34 Countries

    Science.gov (United States)

    Zelman, Brittany; Kiszewski, Anthony; Cotter, Chris; Liu, Jenny

    2014-01-01

    Background International financing for malaria increased more than 18-fold between 2000 and 2011; the largest source came from The Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund). Countries have made substantial progress, but achieving elimination requires sustained finances to interrupt transmission and prevent reintroduction. Since 2011, global financing for malaria has declined, fueling concerns that further progress will be impeded, especially for current malaria-eliminating countries that may face resurgent malaria if programs are disrupted. Objectives This study aims to 1) assess past total and Global Fund funding to the 34 current malaria-eliminating countries, and 2) estimate their future funding needs to achieve malaria elimination and prevent reintroduction through 2030. Methods Historical funding is assessed against trends in country-level malaria annual parasite incidences (APIs) and income per capita. Following Kizewski et al. (2007), program costs to eliminate malaria and prevent reintroduction through 2030 are estimated using a deterministic model. The cost parameters are tailored to a package of interventions aimed at malaria elimination and prevention of reintroduction. Results The majority of Global Fund-supported countries experiencing increases in total funding from 2005 to 2010 coincided with reductions in malaria APIs and also overall GNI per capita average annual growth. The total amount of projected funding needed for the current malaria-eliminating countries to achieve elimination and prevent reintroduction through 2030 is approximately US$8.5 billion, or about $1.84 per person at risk per year (PPY) (ranging from $2.51 PPY in 2014 to $1.43 PPY in 2030). Conclusions Although external donor funding, particularly from the Global Fund, has been key for many malaria-eliminating countries, sustained and sufficient financing is critical for furthering global malaria elimination. Projected cost estimates for elimination provide

  19. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...... substance inherent properties to calculate MP fate but differ in their ability to represent the small physical scale and high temporal variability of stormwater treatment systems. Therefore the three models generate different results. A Global Sensitivity Analysis (GSA) highlighted that settling...

  20. The path of malaria vaccine development: challenges and perspectives.

    Science.gov (United States)

    Arama, C; Troye-Blomberg, M

    2014-05-01

    Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  1. Status of vaccine research and development of vaccines for malaria.

    Science.gov (United States)

    Birkett, Ashley J

    2016-06-03

    Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  2. A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria.

    Science.gov (United States)

    Giddam, Ashwini Kumar; Reiman, Jennifer M; Zaman, Mehfuz; Skwarczynski, Mariusz; Toth, Istvan; Good, Michael F

    2016-10-15

    Although attenuated malaria parasitized red blood cells (pRBCs) are promising vaccine candidates, their application in humans may be restricted for ethical and regulatory reasons. Therefore, we developed an organic microparticle-based delivery platform as a whole parasite malaria-antigen carrier to mimic pRBCs. Killed blood stage parasites were encapsulated within liposomes that are targeted to antigen presenting cells (APCs). Mannosylated lipid core peptides (MLCPs) were used as targeting ligands for the liposome-encapsulated parasite antigens. MLCP-liposomes, but not unmannosylated liposomes, were taken-up efficiently by APCs which then significantly upregulated expression of MHC-ll and costimulatory molecules, CD80 and CD86. Two such vaccines using rodent model systems were constructed - one with Plasmodium chabaudi and the other with P. yoelii. MLCP-liposome vaccines were able to control the parasite burden and extended the survival of mice. Thus, we have demonstrated an alternative delivery system to attenuated pRBCs with similar vaccine efficacy and added clinical advantages. Such liposomes are promising candidates for a human malaria vaccine. Attenuated whole parasite-based vaccines, by incorporating all parasite antigens, are very promising candidates, but issues relating to production, storage and safety concerns are significantly slowing their development. We therefore developed a semi-synthetic whole parasite malaria vaccine that is easily manufactured and stored. Two such prototype vaccines (a P. chabaudi and a P. yoelii vaccine) have been constructed. They are non-infectious, highly immunogenic and give good protection profiles. This semi-synthetic delivery platform is an exciting strategy to accelerate the development of a licensed malaria vaccine. Moreover, this strategy can be potentially applied to a wide range of pathogens. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. The Cambodia Research Consortium: expediting research for malaria elimination with the emergency response to artemisinin resistance framework.

    Science.gov (United States)

    Canavati, Sara E; Lawford, Harriet L S; Fatunmbi, Bayo S; Lek, Dysoley; Leang, Rithea; Top Samphor, Narann; Dondorp, Arjen M; Huy, Rekol; Kazadi, Walter M

    2016-01-04

    This commentary offers insight into how to best address barriers that may hinder the translation of malaria research findings into policy. It also proposes viable methods of implementing these policies in Cambodia. Currently, a wide range of malaria research is being conducted by in-country stakeholders, including Cambodia's National Programme for Parasitology, Entomology and Malaria Control's (CNM), non-governmental organizations, and academic institutions. Coordinating research amongst these partners, as well as within the Ministry of Health, is a challenge. Results are rarely disseminated widely and seldom inform programme and policy decisions. CNM and its research partners have severely limited access to each other's databases. This lack of accessibility, timeliness, engagement and cooperation between CNM and its partners greatly impacts overall research efficiency in this field, and is stifling innovation both within and beyond CNM. Cambodia has set a goal to eradicate all forms of malaria by 2030. As countries approach the elimination phase, there is a greater need for sharing research-generated evidence amongst partners, in order to ensure that appropriate and impactful activities are conducted. The Cambodian Research Consortium was established to serve as a framework for partners, stakeholders and researchers to share research projects, information and results, and to promote the goals of CNM. The sharing of malaria research results will help to inform prevention, control and elimination activities in the country. It will also determine and address the country's operational research needs, and could potentially become a framework model to be used in other countries aiming to transition from malaria control to elimination.

  4. Towards A Malaria Vaccine?

    Directory of Open Access Journals (Sweden)

    B S GARG

    1990-12-01

    Full Text Available The last few years have seen a marked change in the understanding of malaria mmunology.We have very little knowledge on immunity of Malaria based on experiments in humanbeings due to ethical reasons. Whatsoever our knowledge exists at present is based onexperimentas in mice and monkey. However it is clear that it is sporzoite or merozoitewhich is directly exposed to our immune system in the life cycle of Malaria parasite. On thebasis of human experiments we can draw inference that immunity to malaria is species.specific (on cross immunity, stage specific and strain specific as well acquired in the response to surface antigen and relapsed antigen although the parasite also demonstrates escape machanism to immune system.So the host system kills or elimi nate the parasite by means of (a Antbody to extracell~ular form of parasite with the help of mechanism of Block invasion, Agglutination or opsonization and/or (b Cellular machanism-either by phago-cytosis of parasite or by antibody dependent cellular cytotoxicity ABCC (? or by effects of mediators like tumor necrosis fJ.ctor (TNF in cerebaral malaria or crisis forming factor as found in sudan or by possible role of lysis mechanism.However, inspite of all these theories the parasite has been able to invade the immunesystem by virtue of its intracellular development stage specificity, sequestration in capillaries and also by its unusual characteristics of antigenic diversity and antigenic variation.

  5. "We have become doctors for ourselves" : motives for malaria self-care among adults in southeastern Tanzania

    NARCIS (Netherlands)

    Metta, Emmy; Haisma, Hinke; Kessy, Flora; Hutter, Inge; Bailey, Ajay

    2014-01-01

    Background: Prompt and appropriate treatment of malaria with effective medicines remains necessary if malaria control goals are to be achieved. The theoretical concepts from self-care and the health belief model were used to examine the motivations for malaria self-care among the adult population.

  6. Towards model evaluation and identification using Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    M. Herbst

    2008-04-01

    Full Text Available The reduction of information contained in model time series through the use of aggregating statistical performance measures is very high compared to the amount of information that one would like to draw from it for model identification and calibration purposes. It has been readily shown that this loss imposes important limitations on model identification and -diagnostics and thus constitutes an element of the overall model uncertainty. In this contribution we present an approach using a Self-Organizing Map (SOM to circumvent the identifiability problem induced by the low discriminatory power of aggregating performance measures. Instead, a Self-Organizing Map is used to differentiate the spectrum of model realizations, obtained from Monte-Carlo simulations with a distributed conceptual watershed model, based on the recognition of different patterns in time series. Further, the SOM is used instead of a classical optimization algorithm to identify those model realizations among the Monte-Carlo simulation results that most closely approximate the pattern of the measured discharge time series. The results are analyzed and compared with the manually calibrated model as well as with the results of the Shuffled Complex Evolution algorithm (SCE-UA. In our study the latter slightly outperformed the SOM results. The SOM method, however, yields a set of equivalent model parameterizations and therefore also allows for confining the parameter space to a region that closely represents a measured data set. This particular feature renders the SOM potentially useful for future model identification applications.

  7. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    Full Text Available BACKGROUND: The role of intracellular radical oxygen species (ROS in pathogenesis of cerebral malaria (CM remains incompletely understood. METHODS AND FINDINGS: We undertook testing Tempol--a superoxide dismutase (SOD mimetic and pleiotropic intracellular antioxidant--in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs stimulated by lipopolysaccharide (LPS. This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1 production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants-such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap, MnTe-2-PyP and MnTBAP (Mn-phorphyrin, Mitoquinone (MitoQ and Mitotempo (mitochondrial antioxidants, M30 (an iron chelator, and epigallocatechin gallate (EGCG; polyphenol from green tea did not improve survival. By contrast, these compounds (except PBN inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH oxidase (gp91(phox-/- or mice treated with

  8. Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria.

    Science.gov (United States)

    Francischetti, Ivo M B; Gordon, Emile; Bizzarro, Bruna; Gera, Nidhi; Andrade, Bruno B; Oliveira, Fabiano; Ma, Dongying; Assumpção, Teresa C F; Ribeiro, José M C; Pena, Mirna; Qi, Chen-Feng; Diouf, Ababacar; Moretz, Samuel E; Long, Carole A; Ackerman, Hans C; Pierce, Susan K; Sá-Nunes, Anderson; Waisberg, Michael

    2014-01-01

    The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. We undertook testing Tempol--a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant--in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants-such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91(phox-/-)) or mice treated with inhibitors of SOD (diethyldithiocarbamate

  9. Eleven years of malaria surveillance in a Sudanese village highlights unexpected variation in individual disease susceptibility and outbreak severity

    DEFF Research Database (Denmark)

    Creasey, A; Giha, H; Hamad, A A

    2004-01-01

    as in more holo-endemic areas and malaria remained a problem in all age groups throughout the study. However, this population, who are of Fulani origin, showed a distinctly variable level of disease susceptibility. Thirty-two percent of the village never reported malaria symptoms or required malaria...... an interesting question for malaria modelling in this, and in other low transmission zones, such as the burgeoning urban areas of modern Africa....

  10. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

    Science.gov (United States)

    Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole

    2015-07-14

    Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.

  11. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  12. Association between climatic variables and malaria incidence: a study in Kokrajhar district of Assam, India.

    Science.gov (United States)

    Nath, Dilip C; Mwchahary, Dimacha Dwibrang

    2012-11-11

    A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with forest malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall plays a

  13. Optimal temperature for malaria transmission is dramaticallylower than previously predicted

    Science.gov (United States)

    Mordecai, Eerin A.; Paaijmans, Krijin P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  14. There Is No Simple Model of the Plasma Membrane Organization

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  15. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  16. Financial incentives: alternatives to the altruistic model of organ donation.

    Science.gov (United States)

    Siminoff, L A; Leonard, M D

    1999-12-01

    Improvements in transplantation techniques have resulted in a demand for transplantable organs that far outpaces supply. Present efforts to secure organs use an altruistic system designed to appeal to a public that will donate organs because they are needed. Efforts to secure organs under this system have not been as successful as hoped. Many refinements to the altruistic model have been or are currently being proposed, such as "required request," "mandated choice," "routine notification," and "presumed consent." Recent calls for market approaches to organ procurement reflect growing doubts about the efficacy of these refinements. Market approaches generally use a "futures market," with benefits payable either periodically or when or if organs are procured. Lump-sum arrangements could include donations to surviving family or contributions to charities or to funeral costs. Possibilities for a periodic system of payments include reduced premiums for health or life insurance, or a reciprocity system whereby individuals who periodically reaffirm their willingness to donate are given preference if they require a transplant. Market approaches do raise serious ethical issues, including potential exploitation of the poor. Such approaches may also be effectively proscribed by the 1984 National Organ Transplant Act.

  17. Potential impact of global climate change on malaria risk

    Energy Technology Data Exchange (ETDEWEB)

    Martens, W.J.M.; Rotmans, J. [National Institute of Public Health and Environmental Protection, Bilthoven (Netherlands)]|[Univ. of Limburg, Maastricht (Netherlands); Niessen, L.W. [National Institute of Public Health and Environmental Protection, Bilthoven (Netherlands); Jetten, T.H. [Wageningen Agricultural Univ. (Netherlands); McMichael, A.J. [London School of Hygiene and Tropical Medicine (United Kingdom)

    1995-05-01

    The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due to expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.

  18. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    Science.gov (United States)

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  19. Oral iron supplements for children in malaria-endemic areas

    Science.gov (United States)

    Neuberger, Ami; Okebe, Joseph; Yahav, Dafna; Paul, Mical

    2016-01-01

    Background Iron-deficiency anaemia is common during childhood. Iron administration has been claimed to increase the risk of malaria. Objectives To evaluate the effects and safety of iron supplementation, with or without folic acid, in children living in areas with hyperendemic or holoendemic malaria transmission. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library, MEDLINE (up to August 2015) and LILACS (up to February 2015). We also checked the metaRegister of Controlled Trials (mRCT) and World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) up to February 2015. We contacted the primary investigators of all included trials, ongoing trials, and those awaiting assessment to ask for unpublished data and further trials. We scanned references of included trials, pertinent reviews, and previous meta-analyses for additional references. Selection criteria We included individually randomized controlled trials (RCTs) and cluster RCTs conducted in hyperendemic and holoendemic malaria regions or that reported on any malaria-related outcomes that included children younger than 18 years of age. We included trials that compared orally administered iron, iron with folic acid, and iron with antimalarial treatment versus placebo or no treatment. We included trials of iron supplementation or fortification interventions if they provided at least 80% of the Recommended Dietary Allowance (RDA) for prevention of anaemia by age. Antihelminthics could be administered to either group, and micronutrients had to be administered equally to both groups. Data collection and analysis The primary outcomes were clinical malaria, severe malaria, and death from any cause. We assessed the risk of bias in included trials with domain-based evaluation and assessed the quality of the evidence using the Grading of Recommendations Assessment

  20. Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China.

    Science.gov (United States)

    Wardrop, Nicola A; Barnett, Adrian G; Atkinson, Jo-An; Clements, Archie Ca

    2013-12-18

    Transmission of Plasmodium vivax malaria is dependent on vector availability, biting rates and parasite development. In turn, each of these is influenced by climatic conditions. Correlations have previously been detected between seasonal rainfall, temperature and malaria incidence patterns in various settings. An understanding of seasonal patterns of malaria, and their weather drivers, can provide vital information for control and elimination activities. This research aimed to describe temporal patterns in malaria, rainfall and temperature, and to examine the relationships between these variables within four counties of Yunnan Province, China. Plasmodium vivax malaria surveillance data (1991-2006), and average monthly temperature and rainfall were acquired. Seasonal trend decomposition was used to examine secular trends and seasonal patterns in malaria. Distributed lag non-linear models were used to estimate the weather drivers of malaria seasonality, including the lag periods between weather conditions and malaria incidence. There was a declining trend in malaria incidence in all four counties. Increasing temperature resulted in increased malaria risk in all four areas and increasing rainfall resulted in increased malaria risk in one area and decreased malaria risk in one area. The lag times for these associations varied between areas. The differences detected between the four counties highlight the need for local understanding of seasonal patterns of malaria and its climatic drivers.

  1. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data.

    Science.gov (United States)

    Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J; Alegana, Victor A; Caughlin, T Trevor; Zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W; Smith, David L

    2016-04-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.

  2. Acidosis and acute kidney injury in severe malaria.

    Science.gov (United States)

    Sriboonvorakul, Natthida; Ghose, Aniruddha; Hassan, M Mahtab Uddin; Hossain, Md Amir; Faiz, M Abul; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Sukthana, Yaowalark; Leopold, Stije J; Plewes, Katherine; Day, Nicholas P J; White, Nicholas J; Tarning, Joel; Dondorp, Arjen M

    2018-03-23

    In severe falciparum malaria metabolic acidosis and acute kidney injury (AKI) are independent predictors of a fatal outcome in all age groups. The relationship between plasma acids, urine acids and renal function was investigated in adult patients with acute falciparum malaria. Plasma and urinary acids which previously showed increased concentrations in proportion to disease severity in patients with severe falciparum malaria were quantified. Patients with uncomplicated malaria, sepsis and healthy volunteers served as comparator groups. Multiple regression and multivariate analysis were used to assess the relationship between organic acid concentrations and clinical syndromes, in particular AKI. Patients with severe malaria (n = 90), uncomplicated malaria (n = 94), non-malaria sepsis (n = 19), and healthy volunteers (n = 61) were included. Univariate analysis showed that both plasma and creatinine-adjusted urine concentrations of p-hydroxyphenyllactic acid (pHPLA) were higher in severe malaria patients with AKI (p < 0.001). Multiple regression analysis, including plasma or creatinine-adjusted urinary acids, and PfHRP2 as parasite biomass marker as independent variables, showed that pHPLA was independently associated with plasma creatinine (β = 0.827) and urine creatinine (β = 0.226). Principal component analysis, including four plasma acids and seven urinary acids separated a group of patients with AKI, which was mainly driven by pHPLA concentrations. Both plasma and urine concentrations of pHPLA closely correlate with AKI in patients with severe falciparum malaria. Further studies will need to assess the potential nephrotoxic properties of pHPLA.

  3. Modeling of the transient mobility in disordered organic semiconductors

    NARCIS (Netherlands)

    Germs, W.C.; Van der Holst, J.M.M.; Van Mensfoort, S.L.M.; Bobbert, P.A.; Coehoorn, R.

    2011-01-01

    In non-steady-state experiments, the electrical response of devicesbased on disordered organic semiconductors often shows a large transient contribution due to relaxation of the out-of-equilibrium charge-carrier distribution. We have developed a model describing this process, based only on the

  4. There Is No Simple Model of the Plasma Membrane Organization

    Czech Academy of Sciences Publication Activity Database

    de la serna, J. B.; Schütz, G.; Eggeling, Ch.; Cebecauer, Marek

    2016-01-01

    Roč. 4, SEP 2016 (2016), 106 ISSN 2296-634X R&D Projects: GA ČR GA15-06989S Institutional support: RVO:61388955 Keywords : plasma membrane * membrane organization models * heterogeneous distribution Subject RIV: CF - Physical ; Theoretical Chemistry

  5. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    Science.gov (United States)

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  6. Editorial: Plant organ abscission: from models to crops

    Science.gov (United States)

    The shedding of plant organs is a highly coordinated process essential for both vegetative and reproductive development (Addicott, 1982; Sexton and Roberts, 1982; Roberts et al., 2002; Leslie et al., 2007; Roberts and Gonzalez-Carranza, 2007; Estornell et al., 2013). Research with model plants, name...

  7. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified.

  8. A model of virtual organization for corporate visibility and ...

    African Journals Online (AJOL)

    This paper considers the existing numerous research in business, Information and Communication Technology (ICT), examines a theoretical framework for value creation in a virtual world. Following a proposed model, a new strategic paradigm is created for corporate value; and virtual organization (VO) apply the use of ...

  9. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  10. Promoting Representational Competence with Molecular Models in Organic Chemistry

    Science.gov (United States)

    Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary

    2016-01-01

    Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…

  11. [Study on malaria vectors in malaria endemic areas of Tibet autonomous region].

    Science.gov (United States)

    Wu, Song; Huang, Fang; Zhou, Shui-Sen; Tang, Lin-Hua

    2012-12-01

    The malaria situation in Tibet has been in an active status and the malaria incidence reached the second in China in 2010. Malaria vector prevention and control is one of the important methods for malaria control, while the malaria vectors are still unknown in Tibet. The author summarized the past researches on malaria vectors in Tibet, so as to provide the evidence for improving malaria control investigation in malaria endemic areas of Tibet, with hopes to provide useful vector message for other researcher.

  12. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of sixth biannual meeting (September 2014).

    Science.gov (United States)

    2015-03-10

    The Malaria Policy Advisory Committee to the World Health Organization held its sixth meeting in Geneva, Switzerland from 10 to 12 September 2014. This article provides a summary of the discussions, conclusions and recommendations from that meeting.Meeting sessions covered the following: an update on drug resistance and containment including an assessment on the feasibility of elimination of Plasmodium falciparum malaria in the Greater Mekong Subregion; guidance on the control of residual malaria transmission by behaviourally resistant vectors; progress on the implementation of the Global Plan for Insecticide Resistance Management; updates on the Global Technical Strategy, Global Malaria Action Plan and the Plasmodium vivax technical brief; gaps in current World Health Organization Global Malaria Programme guidance for acceleration to elimination; surveillance, monitoring and evaluation; the updated World Health Organization Guidelines for the Prevention and Treatment of Malaria; Round 5 product testing for rapid diagnostic tests; and Intermittent Preventive Treatment for infants.Policy statements, position statements, and guidelines that arise from the Malaria Policy Advisory Committee meeting conclusions and recommendations will be formally issued and disseminated to World Health Organization Member States by the World Health Organization Global Malaria Programme.

  13. Modeling secondary organic aerosol formation through cloud processing of organic compounds

    Directory of Open Access Journals (Sweden)

    J. Chen

    2007-10-01

    Full Text Available Interest in the potential formation of secondary organic aerosol (SOA through reactions of organic compounds in condensed aqueous phases is growing. In this study, the potential formation of SOA from irreversible aqueous-phase reactions of organic species in clouds was investigated. A new proposed aqueous-phase chemistry mechanism (AqChem is coupled with the existing gas-phase Caltech Atmospheric Chemistry Mechanism (CACM and the Model to Predict the Multiphase Partitioning of Organics (MPMPO that simulate SOA formation. AqChem treats irreversible organic reactions that lead mainly to the formation of carboxylic acids, which are usually less volatile than the corresponding aldehydic compounds. Zero-dimensional model simulations were performed for tropospheric conditions with clouds present for three consecutive hours per day. Zero-dimensional model simulations show that 48-h average SOA formation is increased by 27% for a rural scenario with strong monoterpene emissions and 7% for an urban scenario with strong emissions of aromatic compounds, respectively, when irreversible organic reactions in clouds are considered. AqChem was also incorporated into the Community Multiscale Air Quality Model (CMAQ version 4.4 with CACM/MPMPO and applied to a previously studied photochemical episode (3–4 August 2004 focusing on the eastern United States. The CMAQ study indicates that the maximum contribution of SOA formation from irreversible reactions of organics in clouds is 0.28 μg m−3 for 24-h average concentrations and 0.60 μg m−3 for one-hour average concentrations at certain locations. On average, domain-wide surface SOA predictions for the episode are increased by 9% when irreversible, in-cloud processing of organics is considered. Because aldehydes of carbon number greater than four are assumed to convert fully to the corresponding carboxylic acids upon reaction with OH in cloud droplets and this assumption may overestimate

  14. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission

    DEFF Research Database (Denmark)

    Lusingu, John P A; Vestergaard, Lasse S; Alifrangis, Michael

    2005-01-01

    BACKGROUND: Several studies conducted in areas of medium or low malaria transmission intensity have found associations between malaria immunity and plasma antibody levels to glutamate rich protein (GLURP). This study was conducted to analyse if a similar relationship could be documented in an area...... of intense malaria transmission. METHODS: A six month longitudinal study was conducted in an area of holoendemic malaria transmission in north-eastern Tanzania, where the incidence of febrile malaria decreased sharply by the age of three years, and anaemia constituted a significant part of the malaria...... disease burden. Plasma antibodies to glutamate rich protein (GLURP) were analysed and related with protection against malaria morbidity in models correcting for the effect of age. RESULTS: The risk of febrile malaria episodes was reduced significantly in children with measurable anti-GLURP IgG1 antibodies...

  15. Vacuna contra la malaria

    OpenAIRE

    Patarroyo, Manuel Elkin

    2017-01-01

    La malaria es una enfermedad parasitaria producida por la picadura de un mosquito; una afección que en el año 2015 registró 212 millones de casos y 429.000 muertes. Cada dos minutos, la malaria provocó la muerte de un niño menor de cinco años en todo el mundo. Diferentes científicos a lo largo de todo el mundo han hecho múltiples intentos para combatir esta enfermedad con una vacuna efectiva que pueda erradicarla de raíz.

  16. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  17. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    Science.gov (United States)

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-07

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  18. On the influence of the exposure model on organ doses

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1988-01-01

    Based on the design characteristics of the MIRD-V phantom, two sex-specific adult phantoms, ADAM and EVA were introduced especially for the calculation of organ doses resulting from external irradiation. Although the body characteristics of all the phantoms are in good agreement with those of the reference man and woman, they have some disadvantages related to the location and shape of organs and the form of the whole body. To overcome these disadvantages related to the location and shape of organs and form of the whole body. To overcome these disadvantages related to the location and shape of organs and the form of the whole body. To overcome these disadvantages and to obtain more realistic phantoms, a technique based on computer tomographic data (voxel-phantom) was developed. This technique allows any physical phantom or real body to be converted into computer files. The improvements are of special importance with regard to the skeleton, because a better modeling of the bone surfaces and separation of hard bone and bone marrow can be achieved. For photon irradiation, the sensitivity of the model on organ doses or the effective dose equivalent is important for operational radiation protection

  19. Sustainable Organic Farming For Environmental Health A Social Development Model

    Directory of Open Access Journals (Sweden)

    Ijun Rijwan Susanto

    2015-05-01

    Full Text Available ABSTRACT In this study the researcher attempted 1 to understand the basic features of organic farming in The Paguyuban Pasundans Cianjur 2 to describe and understand how the stakeholders were are able to internalize the challenges of organic farming on their lived experiences in the community 3 to describe and understand how the stakeholders were are able to internalize and applied the values of benefits of organic farming in support of environmental health on their lived experiences in the community 4 The purpose was to describe and understand how the stakeholders who are able to articulate their ideas regarding the model of sustainable organic farming 5 The Policy Recommendation for Organic Farming. The researcher employed triangulation thorough finding that provides breadth and depth to an investigation offering researchers a more accurate picture of the phenomenon. In the implementation of triangulation researchers conducted several interviews to get saturation. After completion of the interview results are written compiled and shown to the participants to check every statement by every participant. In addition researchers also checked the relevant documents and direct observation in the field The participants of this study were the stakeholders namely 1 The leader of Paguyuban Pasundans Organic Farmer Cianjur PPOFC 2 Members of Paguyuban Pasundans Organic FarmersCianjur 3 Leader of NGO 4 Government officials of agriculture 5 Business of organic food 6 and Consumer of organic food. Generally the findings of the study revealed the following 1 PPOFC began to see the reality as the impact of modern agriculture showed in fertility problems due to contaminated soil by residues of agricultural chemicals such as chemical fertilizers and chemical pesticides. So he wants to restore the soil fertility through environmentally friendly of farming practices 2 the challenges of organic farming on their lived experiences in the community farmers did not

  20. Malaria resistance | Iyabo | Nigerian Medical Practitioner

    African Journals Online (AJOL)

    Age and puberty have been found to contribute to malaria resistance. It is expected that knowledge of natural resistance to malaria may aid in developing Vaccines against this deadly disease. Keywords: malaria resistance, puberty, malaria economy, malaria vaccine. Nigerian Medical Practitioner Vol. 49(5) 2006: 133-142 ...

  1. Role of information and communication networks in malaria survival

    Directory of Open Access Journals (Sweden)

    Marathe Achla

    2007-10-01

    Full Text Available Abstract Background Quite often symptoms of malaria go unrecognized or untreated. According to the Multilateral Initiative on Malaria, 70% of the malaria cases that are treated at home are mismanaged. Up to 82% of all malaria episodes in sub-Saharan Africa are treated outside the formal health sector. Fast and appropriate diagnosis and treatment of malaria is extremely important in reducing morbidity and mortality. Method Data from 70 different countries is pooled together to construct a panel dataset of health and socio-economic variables for a time span of (1960–2004. The generalized two-stage least squares and panel data models are used to investigate the impact of information and communication network (ICN variables on malaria death probability. The intensity of ICN is represented by the number of telephone main lines per 1,000 people and the number of television sets per 1,000 people. Results The major finding is that the intensity of ICN is associated with reduced probability of deaths of people that are clinically identified as malaria infected. The results are robust for both indicators i.e. interpersonal and mass communication networks and for all model specifications examined. Conclusion The results suggest that information and communication networks can substantially scale up the effectiveness of the existing resources for malaria prevention. Resources spent in preventing malaria are far less than needed. Expanded information and communication networks will widen the avenues for community based "participatory development", that encourages the use of local information, knowledge and decision making. Timely information, immediate care and collective knowledge based treatment can be extremely important in reducing child mortality and achieving the millennium development goal.

  2. Branching and self-organization in marine modular colonial organisms: a model.

    Science.gov (United States)

    Sánchez, Juan Armando; Lasker, Howard R; Nepomuceno, Erivelton G; Sánchez, J Dario; Woldenberg, Michael J

    2004-03-01

    Despite the universality of branching patterns in marine modular colonial organisms, there is neither a clear explanation about the growth of their branching forms nor an understanding of how these organisms conserve their shape during development. This study develops a model of branching and colony growth using parameters and variables related to actual modular structures (e.g., branches) in Caribbean gorgonian corals (Cnidaria). Gorgonians exhibiting treelike networks branch subapically, creating hierarchical mother-daughter relationships among branches. We modeled both the intrinsic subapical branching along with an ecological-physiological limit to growth or maximum number of mother branches (k). Shape is preserved by maintaining a constant ratio (c) between the total number of branches and the mother branches. The size frequency distribution of mother branches follows a scaling power law suggesting self-organized criticality. Differences in branching among species with the same k values are determined by r (branching rate) and c. Species with rr/2 or c>r>0). Ecological/physiological constraints limit growth without altering colony form or the interaction between r and c. The model described the branching dynamics giving the form to colonies and how colony growth declines over time without altering the branching pattern. This model provides a theoretical basis to study branching as a simple function of the number of branches independently of ordering- and bifurcation-based schemes.

  3. Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa

    Directory of Open Access Journals (Sweden)

    Ximing Wu

    2011-03-01

    Full Text Available A semi-parametric econometric model is used to study the relationship between malaria cases and climatic factors in 25 African countries. Results show that a marginal change in temperature and precipitation levels would lead to a significant change in the number of malaria cases for most countries by the end of the century. Consistent with the existing biophysical malaria model results, the projected effects of climate change are mixed. Our model projects that some countries will see an increase in malaria cases but others will see a decrease. We estimate projected malaria inpatient and outpatient treatment costs as a proportion of annual 2000 health expenditures per 1,000 people. We found that even under minimal climate change scenario, some countries may see their inpatient treatment cost of malaria increase more than 20%.

  4. Finite-element model of the active organ of Corti

    Science.gov (United States)

    Elliott, Stephen J.; Baumgart, Johannes

    2016-01-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  5. Malaria incidence trends and their association with climatic variables in rural Gwanda, Zimbabwe, 2005-2015.

    Science.gov (United States)

    Gunda, Resign; Chimbari, Moses John; Shamu, Shepherd; Sartorius, Benn; Mukaratirwa, Samson

    2017-09-30

    Malaria is a public health problem in Zimbabwe. Although many studies have indicated that climate change may influence the distribution of malaria, there is paucity of information on its trends and association with climatic variables in Zimbabwe. To address this shortfall, the trends of malaria incidence and its interaction with climatic variables in rural Gwanda, Zimbabwe for the period January 2005 to April 2015 was assessed. Retrospective data analysis of reported cases of malaria in three selected Gwanda district rural wards (Buvuma, Ntalale and Selonga) was carried out. Data on malaria cases was collected from the district health information system and ward clinics while data on precipitation and temperature were obtained from the climate hazards group infrared precipitation with station data (CHIRPS) database and the moderate resolution imaging spectro-radiometer (MODIS) satellite data, respectively. Distributed lag non-linear models (DLNLM) were used to determine the temporal lagged association between monthly malaria incidence and monthly climatic variables. There were 246 confirmed malaria cases in the three wards with a mean incidence of 0.16/1000 population/month. The majority of malaria cases (95%) occurred in the > 5 years age category. The results showed no correlation between trends of clinical malaria (unconfirmed) and confirmed malaria cases in all the three study wards. There was a significant association between malaria incidence and the climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly associated with incidence at specific lag periods (p climatic conditions in the 1-4 month period prior. As the period of high malaria risk is associated with precipitation and temperature at 1-4 month prior in a seasonal cycle, intensifying malaria control activities over this period will likely contribute to lowering

  6. Malaria mortality in Africa and Asia: evidence from INDEPTH health and demographic surveillance system sites

    Directory of Open Access Journals (Sweden)

    P. Kim Streatfield

    2014-10-01

    Full Text Available Background: Malaria continues to be a major cause of infectious disease mortality in tropical regions. However, deaths from malaria are most often not individually documented, and as a result overall understanding of malaria epidemiology is inadequate. INDEPTH Network members maintain population surveillance in Health and Demographic Surveillance System sites across Africa and Asia, in which individual deaths are followed up with verbal autopsies. Objective: To present patterns of malaria mortality determined by verbal autopsy from INDEPTH sites across Africa and Asia, comparing these findings with other relevant information on malaria in the same regions. Design: From a database covering 111,910 deaths over 12,204,043 person-years in 22 sites, in which verbal autopsy data were handled according to the WHO 2012 standard and processed using the InterVA-4 model, over 6,000 deaths were attributed to malaria. The overall period covered was 1992–2012, but two-thirds of the observations related to 2006–2012. These deaths were analysed by site, time period, age group and sex to investigate epidemiological differences in malaria mortality. Results: Rates of malaria mortality varied by 1:10,000 across the sites, with generally low rates in Asia (one site recording no malaria deaths over 0.5 million person-years and some of the highest rates in West Africa (Nouna, Burkina Faso: 2.47 per 1,000 person-years. Childhood malaria mortality rates were strongly correlated with Malaria Atlas Project estimates of Plasmodium falciparum parasite rates for the same locations. Adult malaria mortality rates, while lower than corresponding childhood rates, were strongly correlated with childhood rates at the site level. Conclusions: The wide variations observed in malaria mortality, which were nevertheless consistent with various other estimates, suggest that population-based registration of deaths using verbal autopsy is a useful approach to understanding the

  7. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of fifth biannual meeting (March 2014).

    Science.gov (United States)

    2014-07-03

    The Malaria Policy Advisory Committee to the World Health Organization (WHO) held its fifth meeting in Geneva, Switzerland from 12 to 14 March 2014. This article provides a summary of the discussions, conclusions and recommendations from that meeting.Meeting sessions covered: maintaining universal coverage of long-lasting insecticidal nets; combining indoor residual spraying with long-lasting insecticidal nets; the sound management of old long-lasting insecticidal nets; malaria diagnosis in low transmission settings; the Global Technical Strategy for Malaria (2016 -2025); and Technical Expert Group updates on vector control, the RTS,S vaccine, the Malaria Treatment Guidelines, anti-malarial drug resistance and containment, and surveillance, monitoring and evaluation.Policy statements, position statements, and guidelines that arise from the Malaria Policy Advisory Committee meeting conclusions and recommendations will be formally issued and disseminated to WHO Member States by the WHO Global Malaria Programme.

  8. Invertebrates as model organisms for research on aging biology.

    Science.gov (United States)

    Murthy, Mahadev; Ram, Jeffrey L

    2015-01-30

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an 'NIA-NIH symposium on aging in invertebrate model systems' at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more 'basal' organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri , the tunicate Ciona , and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity.

  9. Malaria Ecology, Disease Burden and Global Climate Change

    Science.gov (United States)

    Mccord, G. C.

    2014-12-01

    Malaria has afflicted human society for over 2 million years, and remains one of the great killer diseases today. The disease is the fourth leading cause of death for children under five in low income countries (after neonatal disorders, diarrhea, and pneumonia) and is responsible for at least one in every five child deaths in sub-Saharan Africa. It kills up to 3 million people a year, though in recent years scale up of anti-malaria efforts in Africa may have brought deaths to below 1 million. Malaria is highly conditioned by ecology, because of which climate change is likely to change the local dynamics of the disease through changes in ambient temperature and precipitation. To assess the potential implications of climate change for the malaria burden, this paper employs a Malaria Ecology Index from the epidemiology literature, relates it to malaria incidence and mortality using global country-level data , and then draws implications for 2100 by extrapolating the index using several general circulation model (GCM) predictions of temperature and precipitation. The results highlight the climate change driven increase in the basic reproduction number of the disease and the resulting complications for further gains in elimination. For illustrative purposes, I report the change in malaria incidence and mortality if climate change were to happen immediately under current technology and public health efforts.

  10. Organizing the space and behavior of semantic models.

    Science.gov (United States)

    Rubin, Timothy N; Kievit-Kylar, Brent; Willits, Jon A; Jones, Michael N

    Semantic models play an important role in cognitive science. These models use statistical learning to model word meanings from co-occurrences in text corpora. A wide variety of semantic models have been proposed, and the literature has typically emphasized situations in which one model outperforms another. However, because these models often vary with respect to multiple sub-processes (e.g., their normalization or dimensionality-reduction methods), it can be difficult to delineate which of these processes are responsible for observed performance differences. Furthermore, the fact that any two models may vary along multiple dimensions makes it difficult to understand where these models fall within the space of possible psychological theories. In this paper, we propose a general framework for organizing the space of semantic models. We then illustrate how this framework can be used to understand model comparisons in terms of individual manipulations along sub-processes. Using several artificial datasets we show how both representational structure and dimensionality-reduction influence a model's ability to pick up on different types of word relationships.

  11. IT Business Value Model for Information Intensive Organizations

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Gastaud Maçada

    2012-01-01

    Full Text Available Many studies have highlighted the capacity Information Technology (IT has for generating value for organizations. Investments in IT made by organizations have increased each year. Therefore, the purpose of the present study is to analyze the IT Business Value for Information Intensive Organizations (IIO - e.g. banks, insurance companies and securities brokers. The research method consisted of a survey that used and combined the models from Weill and Broadbent (1998 and Gregor, Martin, Fernandez, Stern and Vitale (2006. Data was gathered using an adapted instrument containing 5 dimensions (Strategic, Informational, Transactional, Transformational and Infra-structure with 27 items. The instrument was refined by employing statistical techniques such as Exploratory and Confirmatory Factorial Analysis through Structural Equations (first and second order Model Measurement. The final model is composed of four factors related to IT Business Value: Strategic, Informational, Transactional and Transformational, arranged in 15 items. The dimension Infra-structure was excluded during the model refinement process because it was discovered during interviews that managers were unable to perceive it as a distinct dimension of IT Business Value.

  12. Fighting malaria without DDT

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nancy Minogue

    and the local environment in which the parasites persist. As a result of this integrated approach, Mexico was able to abandon DDT ahead of schedule. 9. Case study. Health. AN ECOSYSTEM APPROACH. IDRC: Peter Bennett. Treatment is delayed when malaria is diagnosed through laboratory analysis of blood samples, ...

  13. Malaria symposium - opening address

    African Journals Online (AJOL)

    1974-05-25

    May 25, 1974 ... In contrast with our present tragically drought-stricken state, we all longingly recall the previous season when nature gave of her abundance with that memorably high rainfall. We also, however, recall the very real scare of malaria which then arose, particularly in this area; a scare which had medical and ...

  14. Plasmodium falciparum malaria

    African Journals Online (AJOL)

    resistance has developed.' Extensive research now supports the implementation of artemisinin-based combination therapies to improve cure rates, decrease malaria transmission and delay resistance.8'9 To determine whether current levels of SP resistance remain adequate to support its use in combination.

  15. 2. Malaria paper

    African Journals Online (AJOL)

    artemisinin combination therapy (ACT). Resistance to artemisinin is associated with a S769N point ... replaced former mono-therapy options in management of uncomplicated malaria as. 1 recommended by ..... Microbiol 2004; 42: 636-638. 13. Rodulfo H, De Donato M, Mora R, Gonzalez L,. Contreras CE Comparison of the ...

  16. {IATED MALARIA IN GHANA

    African Journals Online (AJOL)

    The arte- iincompiicated Plasmodium fkilciparum malaria in mether derivative has good solubility in lipids as adults attending outpatient clinic at the Navrongo. War Memorial Hospital. A total of US patients Weii as aqueous media Wiiii duiei fest Onset Oi' ...

  17. Test for Malaria

    African Journals Online (AJOL)

    Malaria continues to be one of the main public health problems in the world, ... may not be available. These tests are based on the detection of antigen(s) released from. 6 parasitized red blood cells . In the case of. Plasmodium falciparum, these new methods are ..... increases the chances of spending more on unnecessary ...

  18. Pain in Malaria

    African Journals Online (AJOL)

    Dr Olaleye

    20 (May, 2017); 111- 119. Full Length Research Paper ... They were evaluated for the presence, quality, intensity and effects of pain using validated instruments incorporating the category ... malaria with higher risk in children, males, persons with hematocrit <30% and those not using artemisinin-based combination therapy.

  19. Clinical malaria vaccine development.

    NARCIS (Netherlands)

    Sauerwein, R.W.

    2009-01-01

    Malaria is a major economic and public health problem in mainly sub-Saharan Africa. Globally 300-500 million new infections occur each year with 1-3 million fatal cases in particular young children. The most effective way to reduce disease and death from infectious diseases is to vaccinate

  20. Mobility dependent recombination models for organic solar cells

    Science.gov (United States)

    Wagenpfahl, Alexander

    2017-09-01

    Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited

  1. A taxonomy of nursing care organization models in hospitals.

    Science.gov (United States)

    Dubois, Carl-Ardy; D'Amour, Danielle; Tchouaket, Eric; Rivard, Michèle; Clarke, Sean; Blais, Régis

    2012-08-28

    Over the last decades, converging forces in hospital care, including cost-containment policies, rising healthcare demands and nursing shortages, have driven the search for new operational models of nursing care delivery that maximize the use of available nursing resources while ensuring safe, high-quality care. Little is known, however, about the distinctive features of these emergent nursing care models. This article contributes to filling this gap by presenting a theoretically and empirically grounded taxonomy of nursing care organization models in the context of acute care units in Quebec and comparing their distinctive features. This study was based on a survey of 22 medical units in 11 acute care facilities in Quebec. Data collection methods included questionnaire, interviews, focus groups and administrative data census. The analytical procedures consisted of first generating unit profiles based on qualitative and quantitative data collected at the unit level, then applying hierarchical cluster analysis to the units' profile data. The study identified four models of nursing care organization: two professional models that draw mainly on registered nurses as professionals to deliver nursing services and reflect stronger support to nurses' professional practice, and two functional models that draw more significantly on licensed practical nurses (LPNs) and assistive staff (orderlies) to deliver nursing services and are characterized by registered nurses' perceptions that the practice environment is less supportive of their professional work. This study showed that medical units in acute care hospitals exhibit diverse staff mixes, patterns of skill use, work environment design, and support for innovation. The four models reflect not only distinct approaches to dealing with the numerous constraints in the nursing care environment, but also different degrees of approximations to an "ideal" nursing professional practice model described by some leaders in the

  2. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    Science.gov (United States)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  3. Lean construction as an effective organization model in Arctic

    Directory of Open Access Journals (Sweden)

    Balashova Elena S.

    2017-01-01

    Full Text Available In recent time, due to the sharp climatic changes, the Arctic attracts an increased interest of the world powers as a strategically important object. In 2013, the development strategy of the Arctic zone of the Russian Federation and national security for the period up to 2020 was approved by the President. In this strategy, the socio-economic development of the region in terms of improving the quality of life, expressed in the implementation of housing and civil engineering is very important. The goal of the study is to identify effective organization model of construction in the Arctic zone of the Russian Federation. Lean construction as a dynamically developing methodology abroad is analyzed. Characteristics of this organization model of construction meet the necessary requirements for the construction of various infrastructure objects in the Arctic. Therefore, the concept of lean construction can be an effective strategy of development of the Arctic regions of Russia as well as other Arctic countries.

  4. Spatiotemporal epidemic characteristics and risk factor analysis of malaria in Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Dongyang Yang

    2017-01-01

    Full Text Available Abstract Background Malaria remains an important public health concern in China and is particularly serious in Yunnan, a China’s provincial region of high malaria burden with an incidence of 1.79/105 in 2012. This study aims to examine the epidemiologic profile and spatiotemporal aspects of epidemics of malaria, and to examine risk factors which may influence malaria epidemics in Yunnan Province. Methods The data of malaria cases in 2012 in 125 counties of Yunnan Province was used in this research. The epidemical characteristics of cases were revealed, and time and space clusters of malaria were detected by applying scan statistics method. In addition, we applied the geographically weighted regression (GWR model in identifying underlying risk factors. Results There was a total of 821 cases of malaria, and male patients accounted for 83.9% (689 of the total cases. The incidence in the group aged 20–30 years was the highest, at 3.00/105. The majority (84.1% of malaria cases occurred in farmers and migrant workers, according to occupation statistics. On a space-time basis, epidemics of malaria of varying severity occurred in the summer and autumn months, and the high risk regions were mainly distributed in the southwest counties. Annual average temperature, annual cumulative rainfall, rice yield per square kilometer and proportion of rural employees mainly showed a positive association with the malaria incidence rate, according to the GWR model. Conclusions Malaria continues to be one of serious public health issues in Yunnan Province, especially in border counties in southwestern Yunnan. Temperature, precipitation, rice cultivation and proportion of rural employees were positively associated with malaria incidence. Individuals, and disease prevention and control departments, should implement more stringent preventative strategies in locations with hot and humid environmental conditions to control malaria.

  5. Use of integrated malaria management reduces malaria in Kenya.

    Directory of Open Access Journals (Sweden)

    Bernard A Okech

    Full Text Available BACKGROUND: During an entomological survey in preparation for malaria control interventions in Mwea division, the number of malaria cases at the Kimbimbi sub-district hospital was in a steady decline. The underlying factors for this reduction were unknown and needed to be identified before any malaria intervention tools were deployed in the area. We therefore set out to investigate the potential factors that could have contributed to the decline of malaria cases in the hospital by analyzing the malaria control knowledge, attitudes and practices (KAP that the residents in Mwea applied in an integrated fashion, also known as integrated malaria management (IMM. METHODS: Integrated Malaria Management was assessed among community members of Mwea division, central Kenya using KAP survey. The KAP study evaluated community members' malaria disease management practices at the home and hospitals, personal protection measures used at the household level and malaria transmission prevention methods relating to vector control. Concurrently, we also passively examined the prevalence of malaria parasite infection via outpatient admission records at the major referral hospital in the area. In addition we studied the mosquito vector population dynamics, the malaria sporozoite infection status and entomological inoculation rates (EIR over an 8 month period in 6 villages to determine the risk of malaria transmission in the entire division. RESULTS: A total of 389 households in Mwea division were interviewed in the KAP study while 90 houses were surveyed in the entomological study. Ninety eight percent of the households knew about malaria disease while approximately 70% of households knew its symptoms and methods to manage it. Ninety seven percent of the interviewed households went to a health center for malaria diagnosis and treatment. Similarly a higher proportion (81% used anti-malarial medicines bought from local pharmacies. Almost 90% of households reported

  6. Use of integrated malaria management reduces malaria in Kenya.

    Science.gov (United States)

    Okech, Bernard A; Mwobobia, Isaac K; Kamau, Anthony; Muiruri, Samuel; Mutiso, Noah; Nyambura, Joyce; Mwatele, Cassian; Amano, Teruaki; Mwandawiro, Charles S

    2008-01-01

    During an entomological survey in preparation for malaria control interventions in Mwea division, the number of malaria cases at the Kimbimbi sub-district hospital was in a steady decline. The underlying factors for this reduction were unknown and needed to be identified before any malaria intervention tools were deployed in the area. We therefore set out to investigate the potential factors that could have contributed to the decline of malaria cases in the hospital by analyzing the malaria control knowledge, attitudes and practices (KAP) that the residents in Mwea applied in an integrated fashion, also known as integrated malaria management (IMM). Integrated Malaria Management was assessed among community members of Mwea division, central Kenya using KAP survey. The KAP study evaluated community members' malaria disease management practices at the home and hospitals, personal protection measures used at the household level and malaria transmission prevention methods relating to vector control. Concurrently, we also passively examined the prevalence of malaria parasite infection via outpatient admission records at the major referral hospital in the area. In addition we studied the mosquito vector population dynamics, the malaria sporozoite infection status and entomological inoculation rates (EIR) over an 8 month period in 6 villages to determine the risk of malaria transmission in the entire division. A total of 389 households in Mwea division were interviewed in the KAP study while 90 houses were surveyed in the entomological study. Ninety eight percent of the households knew about malaria disease while approximately 70% of households knew its symptoms and methods to manage it. Ninety seven percent of the interviewed households went to a health center for malaria diagnosis and treatment. Similarly a higher proportion (81%) used anti-malarial medicines bought from local pharmacies. Almost 90% of households reported owning and using an insecticide treated bed net

  7. Artemisone effective against murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Waknine-Grinberg Judith H

    2010-08-01

    Full Text Available Abstract Background Artemisinins are the newest class of drug approved for malaria treatment. Due to their unique mechanism of action, rapid effect on Plasmodium, and high efficacy in vivo, artemisinins have become essential components of malaria treatment. Administration of artemisinin derivatives in combination with other anti-plasmodials has become the first-line treatment for uncomplicated falciparum malaria. However, their efficiency in cases of cerebral malaria (CM remains to be determined. Methods The efficacy of several artemisinin derivatives for treatment of experimental CM was evaluated in ICR or C57BL/6 mice infected by Plasmodium berghei ANKA. Both mouse strains serve as murine models for CM. Results Artemisone was the most efficient drug tested, and could prevent death even when administered at relatively late stages of cerebral pathogenesis. No parasite resistance to artemisone was detected in recrudescence. Co-administration of artemisone together with chloroquine was more effective than monotherapy with either drug, and led to complete cure. Artemiside was even more effective than artemisone, but this substance has yet to be submitted to preclinical toxicological evaluation. Conclusions Altogether, the results support the use of artemisone for combined therapy of CM.

  8. Choosing a Drug to Prevent Malaria

    Science.gov (United States)

    ... Malaria About Malaria FAQs Fast Facts Disease Biology Ecology Human Factors Sickle Cell Mosquitoes Parasites Where Malaria ... medicines, also consider the possibility of drug-drug interactions with other medicines that the person might be ...

  9. Tutorials for Africa - Malaria: MedlinePlus

    Science.gov (United States)

    Tutorials for Africa: Malaria In Uganda, the burden of malaria outranks that of all other diseases. This tutorial includes information about how malaria spreads, the importance of treatment and techniques for ...

  10. Investigating the Important Correlates of Maternal Education and Childhood Malaria Infections

    Science.gov (United States)

    Njau, Joseph D.; Stephenson, Rob; Menon, Manoj P.; Kachur, S. Patrick; McFarland, Deborah A.

    2014-01-01

    The relationship between maternal education and child health has intrigued researchers for decades. This study explored the interaction between maternal education and childhood malaria infection. Cross-sectional survey data from three African countries were used. Descriptive analysis and multivariate logistic regression models were completed in line with identified correlates. Marginal effects and Oaxaca decomposition analysis on maternal education and childhood malaria infection were also estimated. Children with mothers whose education level was beyond primary school were 4.7% less likely to be malaria-positive (P malaria infection for educated and uneducated mothers. Over 60% of the gap was explained by differences in household wealth (26%), household place of domicile (21%), malaria transmission intensities (14%), and media exposure (12%). All other correlates accounted for only 27%. The full adjusted model showed a robust and significant relationship between maternal education and childhood malaria infection. PMID:25002302

  11. Understanding rare disease pathogenesis: a grand challenge for model organisms.

    Science.gov (United States)

    Hieter, Philip; Boycott, Kym M

    2014-10-01

    In this commentary, Philip Hieter and Kym Boycott discuss the importance of model organisms for understanding pathogenesis of rare human genetic diseases, and highlight the work of Brooks et al., "Dysfunction of 60S ribosomal protein L10 (RPL10) disrupts neurodevelopment and causes X-linked microcephaly in humans," published in this issue of GENETICS. Copyright © 2014 by the Genetics Society of America.

  12. Quasi-dynamic model for an organic Rankine cycle

    International Nuclear Information System (INIS)

    Bamgbopa, Musbaudeen O.; Uzgoren, Eray

    2013-01-01

    Highlights: • Study presents a simplified transient modeling approach for an ORC under variable heat input. • The ORC model is presented as a synthesis of its models of its sub-components. • The model is compared to benchmark numerical simulations and experimental data at different stages. - Abstract: When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response

  13. Turbulence and Self-Organization Modeling Astrophysical Objects

    CERN Document Server

    Marov, Mikhail Ya

    2013-01-01

    This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.

  14. AGRICULTURAL COOPERATION IN RUSSIA: THE PROBLEM OF ORGANIZATION MODEL CHOICE

    Directory of Open Access Journals (Sweden)

    J. Nilsson

    2008-09-01

    Full Text Available In today's Russia many agricultural co-operatives are established from the top downwards. The national project "Development of Agroindustrial Complex" and other governmental programs initiate the formation of cooperative societies. These cooperatives are organized in accordance with the traditional cooperative model. Many of them do, however, not have any real business activities. The aim of this paper to investigate if traditional cooperatives (following principles such as collective ownership, one member one vote, equal treatment, and solidarity, etc. constitute the best organizational model for cooperatives societies under the present conditions in the Russian agriculture.

  15. Mapping model behaviour using Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    M. Herbst

    2009-03-01

    Full Text Available Hydrological model evaluation and identification essentially involves extracting and processing information from model time series. However, the type of information extracted by statistical measures has only very limited meaning because it does not relate to the hydrological context of the data. To overcome this inadequacy we exploit the diagnostic evaluation concept of Signature Indices, in which model performance is measured using theoretically relevant characteristics of system behaviour. In our study, a Self-Organizing Map (SOM is used to process the Signatures extracted from Monte-Carlo simulations generated by the distributed conceptual watershed model NASIM. The SOM creates a hydrologically interpretable mapping of overall model behaviour, which immediately reveals deficits and trade-offs in the ability of the model to represent the different functional behaviours of the watershed. Further, it facilitates interpretation of the hydrological functions of the model parameters and provides preliminary information regarding their sensitivities. Most notably, we use this mapping to identify the set of model realizations (among the Monte-Carlo data that most closely approximate the observed discharge time series in terms of the hydrologically relevant characteristics, and to confine the parameter space accordingly. Our results suggest that Signature Index based SOMs could potentially serve as tools for decision makers inasmuch as model realizations with specific Signature properties can be selected according to the purpose of the model application. Moreover, given that the approach helps to represent and analyze multi-dimensional distributions, it could be used to form the basis of an optimization framework that uses SOMs to characterize the model performance response surface. As such it provides a powerful and useful way to conduct model identification and model uncertainty analyses.

  16. Fruit tree model for uptake of organic compounds from soil

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rasmussen, D.; Samsoe-Petersen, L.

    2003-01-01

    rences: 20 [ view related records ] Citation Map Abstract: Apples and other fruits are frequently cultivated in gardens and are part of our daily diet. Uptake of pollutants into apples may therefore contribute to the human daily intake of toxic substances. In current risk assessment of polluted...... soils, regressions or models are in use, which were not intended to be used for tree fruits. A simple model for uptake of neutral organic contaminants into fruits is developed. It considers xylem and phloem transport to fruits through the stem. The mass balance is solved for the steady......-state, and an example calculation is given. The Fruit Tree Model is compared to the empirical equation of Travis and Arms (T&A), and to results from fruits, collected in contaminated areas. For polar compounds, both T&A and the Fruit Tree Model predict bioconcentration factors fruit to soil (BCF, wet weight based...

  17. The Global Fund to Fight AIDS, Tuberculosis and Malaria's investments in harm reduction through the rounds-based funding model (2002-2014).

    Science.gov (United States)

    Bridge, Jamie; Hunter, Benjamin M; Albers, Eliot; Cook, Catherine; Guarinieri, Mauro; Lazarus, Jeffrey V; MacAllister, Jack; McLean, Susie; Wolfe, Daniel

    2016-01-01

    Harm reduction is an evidence-based, effective response to HIV transmission and other harms faced by people who inject drugs, and is explicitly supported by the Global Fund to Fight AIDS, Tuberculosis and Malaria. In spite of this, people who inject drugs continue to have poor and inequitable access to these services and face widespread stigma and discrimination. In 2013, the Global Fund launched a new funding model-signalling the end of the previous rounds-based model that had operated since its founding in 2002. This study updates previous analyses to assess Global Fund investments in harm reduction interventions for the duration of the rounds-based model, from 2002 to 2014. Global Fund HIV and TB/HIV grant documents from 2002 to 2014 were reviewed to identify grants that contained activities for people who inject drugs. Data were collected from detailed grant budgets, and relevant budget lines were recorded and analysed to determine the resources allocated to different interventions that were specifically targeted at people who inject drugs. 151 grants for 58 countries, plus one regional proposal, contained activities targeting people who inject drugs-for a total investment of US$ 620 million. Two-thirds of this budgeted amount was for interventions in the "comprehensive package" defined by the United Nations. 91% of the identified amount was for Eastern Europe and Asia. This study represents an updated, comprehensive assessment of Global Fund investments in harm reduction from its founding (2002) until the start of the new funding model (2014). It also highlights the overall shortfall of harm reduction funding, with the estimated global need being US$ 2.3 billion for harm reduction in 2015 alone. Using this baseline, the Global Fund must carefully monitor its new funding model and ensure that investments in harm reduction are maintained or scaled-up. There are widespread concerns regarding the withdrawal from middle-income countries where harm reduction remains

  18. "The Impact of Malaria Eradication on Fertility"

    OpenAIRE

    Adrienne M. Lucas

    2011-01-01

    The malaria eradication campaign that started in Sri Lanka in the late 1940s virtually eliminated malaria transmission on the island. I use the pre-eradication differences in malaria endemicity within Sri Lanka to identify the effect of malaria eradication on fertility and child survival. Malaria eradication increased the number of live births through increasing age specific fertility and causing an earlier first birth. The effect of malaria on the transition time to higher order births is in...

  19. A Literature Review of the Effect of Malaria on Stunting.

    Science.gov (United States)

    Jackson, Bianca D; Black, Robert E

    2017-11-01

    Background: The current version of the Lives Saved Tool (LiST) maternal and child health impact modeling software does not include an effect of malaria on stunting. Objective: This literature review was undertaken to determine whether such a causal link should be included in the LiST model. Methods: The PubMed, Embase, and Scopus databases were searched by using broad search terms. The searches returned a total of 4281 documents. Twelve studies from among the retrieved documents were included in the review according to the inclusion and exclusion criteria. Results: There was mixed evidence for an effect of malaria on stunting among longitudinal observational studies, and none of the randomized controlled trials of malaria interventions found an effect of the interventions on stunting. Conclusions: There is insufficient evidence to include malaria as a determinant of stunting or an effect of malaria interventions on stunting in the LiST model. The paucity and heterogeneity of the available literature were a major limitation. In addition, the studies included in the review consistently fulfilled their ethical responsibility to treat children under observation for malaria, which may have interfered with the natural history of the disease and prevented any observable effect on stunting or linear growth. © 2017 American Society for Nutrition.

  20. Modelling erosion and its interaction with soil organic carbon.

    Science.gov (United States)

    Oyesiku-Blakemore, Joseph; Verrot, Lucile; Geris, Josie; Zhang, Ganlin; Peng, Xinhua; Hallett, Paul; Smith, Jo

    2017-04-01

    Water driven soil erosion removes and relocates a significant quantity of soil organic carbon. In China the quantity of carbon removed from the soil through water erosion has been reported to be 180+/-80 Mt y-1 (Yue et al., 2011). Being able to effectively model the movement of such a large quantity of carbon is important for the assessment of soil quality and carbon storage in the region and further afield. A large selection of erosion models are available and much work has been done on evaluating the performance of these in developed countries (Merritt et al., 2006). Fewer studies have evaluated the application of these models on soils in developing countries. Here we evaluate and compare the performance of two of these models, WEPP (Laflen et al., 1997) and RUSLE (Renard et al., 1991), for simulations of soil erosion and deposition at the slope scale on a Chinese Red Soil under cultivation using measurements taken at the site. We also describe work to dynamically couple the movement of carbon presented in WEPP to a model of soil organic matter and nutrient turnover, ECOSSE (Smith et al., 2010). This aims to improve simulations of both erosion and carbon cycling by using the simulated rates of erosion to alter the distribution of soil carbon, the depth of soil and the clay content across the slopes, changing the simulated rate of carbon turnover. This, in turn, affects the soil carbon available to be eroded in the next timestep, so improving estimates of carbon erosion. We compare the simulations of this coupled modelling approach with those of the unaltered ECOSSE and WEPP models to determine the importance of coupling erosion and turnover models on the simulation of carbon losses at catchment scale.

  1. Differentiating between dengue fever and malaria using hematological parameters in endemic areas of Thailand.

    Science.gov (United States)

    Kotepui, Manas; PhunPhuech, Bhukdee; Phiwklam, Nuoil; Uthaisar, Kwuntida

    2017-03-02

    Dengue fever (DF) and malaria are the two major public health concerns in tropical countries such as Thailand. Early differentiation between dengue and malaria could help clinicians to identify patients who should be closely monitored for signs of dengue hemorrhagic fever or severe malaria. This study aims to build knowledge on diagnostic markers that are used to discriminate between the infections, which frequently occur in malaria-endemic areas, such as the ones in Thailand. A retrospective study was conducted in Phop Phra Hospital, a hospital located in the Thailand-Burma border area, a malaria-endemic area, between 2013 and 2015. In brief, data on 336 patients infected with malaria were compared to data on 347 patients infected with DF. White blood cells, neutrophil, monocyte, eosinophil, neutrophil-lymphocyte ratio, and monocyte-lymphocyte ratio were significantly lower in patients with DF compared to patients with malaria (P dengue and malaria infection. This study concluded that several hematological parameters were different for diagnosing DF and malaria. A decision tree model revealed that using neutrophils, lymphocyte, MCHC, and gender was guided to discriminate patients with dengue and malaria infection. In addition, using these markers will thus lead to early detection, diagnosis, and prompt treatment of these tropical diseases.

  2. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    Science.gov (United States)

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-07

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach.

    Science.gov (United States)

    Khan, K; Roy, K

    2017-07-01

    In this study, externally validated quantitative structure-toxicity relationship (QSTR) models were developed for toxicity of cosmetic ingredients on three different ecotoxicologically relevant organisms, namely Pseudokirchneriella subcapitata, Daphnia magna and Pimephales promelas following the OECD guidelines. The final models were developed by partial least squares (PLS) regression technique, which is more robust than multiple linear regression. The obtained model for P. subcapitata shows that molecular size and complexity have significant impacts on the toxicity of cosmetics. In case of P. promelas and D. magna, we found that the largest contribution to the toxicity was shown by hydrophobicity and van der Waals surface area, respectively. All models were validated using both internal and test compounds employing multiple strategies. For each QSTR model, applicability domain studies were also performed using the "Distance to Model in X-space" method. A comparison was made with the ECOSAR predictions in order to prove the good predictive performances of our developed models. Finally, individual models were applied to predict toxicity for an external set of 596 personal care products having no experimental data for at least one of the endpoints, and the compounds were ranked based on a decreasing order of toxicity using a scaling approach.

  4. Cytokine expression in malaria-infected non-human primate placentas

    OpenAIRE

    Barasa, M.; Ng'ang'a, Z. W.; Sowayi, G. A.; Okoth, J. M.; Barasa, M. B. O.; Namulanda, F. B. M.; Kagasi, E. A.; Gicheru, M. M.; Ozwara, S. H.

    2012-01-01

    Malaria parasites are known to mediate the induction of inflammatory immune responses at the maternal-foetal interface during placental malaria (PM) leading to adverse consequences like pre-term deliveries and abortions. Immunological events that take place within the malaria-infected placental micro-environment leading to retarded foetal growth and disruption of pregnancies are among the critical parameters that are still in need of further elucidation. The establishment of more animal model...

  5. An Instructional Development Model for Global Organizations: The GOaL Model.

    Science.gov (United States)

    Hara, Noriko; Schwen, Thomas M.

    1999-01-01

    Presents an instructional development model, GOaL (Global Organization Localization), for use by global organizations. Topics include gaps in language, culture, and needs; decentralized processes; collaborative efforts; predetermined content; multiple perspectives; needs negotiation; learning within context; just-in-time training; and bilingual…

  6. MMV: New Medicines for Malaria Venture.

    Science.gov (United States)

    1999-02-01

    New Medicines for Malaria Venture (MMV) is a public/private, nonprofit initiative to develop 1 new drug against malaria every 5 years. It will operate under the umbrella of Roll Back Malaria, a new project launched by World Health Organization (WHO) Director General, Dr. Gro Harlem Brundtland. The UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases (TDR) helped establish the MMV through its product R&D unit, and there has been considerable industrial input. The World Bank and the Global Forum for Health Research are other international agencies involved in the initiative, while several philanthropic organizations such as the Rockefeller Foundation and the Wellcome Trust have also played major roles. MMV will create a fund and operate by financing and resourcing a limited number of projects in a manner compatible with industrial procedures. The fund is mainly supported financially by the public sector, while a funding commitment of US$15 million/year rising to US$30 million a year is being sought. Companies are providing mainly in-kind support.

  7. Plasmodium vivax Malaria in Cambodia.

    Science.gov (United States)

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-12-28

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. © The American Society of Tropical Medicine and Hygiene.

  8. Plasmodium vivax Malaria in Cambodia

    Science.gov (United States)

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  9. Mefloquine for preventing malaria in pregnant women

    Science.gov (United States)

    González, Raquel; Pons-Duran, Clara; Piqueras, Mireia; Aponte, John J; ter Kuile, Feiko O; Menéndez, Clara

    2018-01-01

    Background The World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine for malaria for all women who live in moderate to high malaria transmission areas in Africa. However, parasite resistance to sulfadoxine-pyrimethamine has been increasing steadily in some areas of the region. Moreover, HIV-infected women on cotrimoxazole prophylaxis cannot receive sulfadoxine-pyrimethamine because of potential drug interactions. Thus, there is an urgent need to identify alternative drugs for prevention of malaria in pregnancy. One such candidate is mefloquine. Objectives To assess the effects of mefloquine for preventing malaria in pregnant women, specifically, to evaluate: the efficacy, safety, and tolerability of mefloquine for preventing malaria in pregnant women; and the impact of HIV status, gravidity, and use of insecticide-treated nets on the effects of mefloquine. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE, Embase, Latin American Caribbean Health Sciences Literature (LILACS), the Malaria in Pregnancy Library, and two trial registers up to 31 January 2018. In addition, we checked references and contacted study authors to identify additional studies, unpublished data, confidential reports, and raw data from published trials. Selection criteria Randomized and quasi-randomized controlled trials comparing mefloquine IPT or mefloquine prophylaxis against placebo, no treatment, or an alternative drug regimen. Data collection and analysis Two review authors independently screened all records identified by the search strategy, applied inclusion criteria, assessed risk of bias, and extracted data. We contacted trial authors to ask for additional information when required. Dichotomous outcomes were compared using risk ratios (RRs), count outcomes as incidence rate ratios (IRRs

  10. Progress and challenges towards the development of malaria vaccines.

    Science.gov (United States)

    Tetteh, Kevin K A; Polley, Spencer D

    2007-01-01

    The promise afforded by attenuated sporozoite vaccines in the 1970s led many researchers to believe that an efficacious malaria vaccine was an attainable medium-term goal. Over 30 years later, no licensed vaccine is currently available for public health intervention. This is despite global expenditure on research and development for malaria vaccines that is estimated to have increased from $US42 million in 1999 to $US84 million in 2004. Serious questions must therefore be asked: is this a good investment of research and public health funds, and are we really any nearer to producing a viable product for global use?Proponents of a malaria vaccine promote this technology as a viable way to combat both the current economic and humanitarian burden of malaria and the decreasing efficacy of many front-line antimalaria drug therapies. The recent successful phase IIb trial of the RTS,S/AS02A vaccine showed that the production of a subunit vaccine with significant efficacy is technically possible. The combined efforts and financial commitment of researchers, pharmaceutical companies, and not-for-profit organizations, including the Malaria Vaccines Initiative, have resulted in a significant scaling up in the number of products suitable for testing in humans. In addition, new technologies, such as genetically attenuated vaccines and the exploitation of malaria genomes, offer exciting possibilities for vaccine development. There is now a real possibility of producing a malaria vaccine licensed for public health. However, this positive outlook must be tempered with the challenges facing vaccine development and distribution. The efficacy levels seen with RTS,S/AS02A are well below those of all vaccines currently in use for public health. Furthermore, poor preclinical and clinical predictors of efficacy, allele-specific immunity, and an imperfect understanding of natural and induced immunity to malaria may yet delay (or even prevent) the development of a vaccine suitable for

  11. Effects of blood-feeding on olfactory sensitivity of the malaria mosquito Anopheles gambiae: application of mixed linear models to account for repeated measurements

    NARCIS (Netherlands)

    Qiu, Y.T.; Gort, G.; Torricelli, A.; Takken, W.; Loon, van J.J.A.

    2013-01-01

    Olfaction plays an important role in the host-seeking behavior of the malaria mosquito Anopheles gambiae. After a complete blood meal, female mosquitoes will not engage in host-seeking behavior until oviposition has occurred. We investigated if peripheral olfactory sensitivity changed after a blood

  12. Foetal haemoglobin and the dynamics of paediatric malaria

    Directory of Open Access Journals (Sweden)

    Billig Erica MW

    2012-11-01

    Full Text Available Abstract Background Although 80% of malaria occurs in children under five years of age, infants under six months of age are known to have low rates of infection and disease. It is not clear why this youngest age group is protected; possible factors include maternal antibodies, unique nutrition (breast milk, and the presence of foetal haemoglobin (HbF. This work aims to gain insight into possible mechanisms of protection, and suggest pathways for focused empirical work, by modelling a range of possible effects of foetal haemoglobin and other red blood cell (RBC developmental changes on parasite dynamics in infants. Methods A set of ordinary differential equations was created to investigate the leading hypotheses about the possible protective mechanisms of HbF-containing red blood cells, in particular whether HbF suppresses parasite population growth because parasite multiplication in individual RBCs is lower, slower or absent. The model also incorporated the intrinsic changes in blood volume and haematocrit that occur with age, and the possibility of parasite affinities for HbF-containing RBCs or reticulocytes. Results The model identified several sets of conditions in which the infant remained protected, or displayed a much slower growth of parasitaemia in the first few months of life, without any intervening immune response. The most protective of the hypothesized mechanisms would be the inhibition of schizont division in foetal RBCs so that fewer merozoites are produced. The model showed that a parasite preference for HbF-containing RBCs increases protective effects for the host, while a preference for reticulocytes has little effect. Conclusions The results from this simple model of haematological changes in infants and their effects on Plasmodium falciparum infection dynamics emphasize the likely importance of HbF and RBC number as an explanatory factor in paediatric malaria, and suggest a framework for organizing related empirical research.

  13. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis.

    Science.gov (United States)

    Adeola, Abiodun M; Botai, Joel O; Rautenbach, Hannes; Adisa, Omolola M; Ncongwane, Katlego P; Botai, Christina M; Adebayo-Ojo, Temitope C

    2017-11-08

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature ( R ² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in

  14. Erythropoiesis in Malaria Infections and Factors Modifying the Erythropoietic Response

    Directory of Open Access Journals (Sweden)

    Vrushali A. Pathak

    2016-01-01

    Full Text Available Anemia is the primary clinical manifestation of malarial infections and is responsible for the substantial rate of morbidity. The pathophysiology discussed till now catalogued several causes for malarial anemia among which ineffective erythropoiesis being remarkable one occurs silently in the bone marrow. A systematic literature search was performed and summarized information on erythropoietic response upon malaria infection and the factors responsible for the same. This review summarizes the clinical and experimental studies on patients, mouse models, and in vitro cell cultures reporting erythropoietic changes upon malaria infection as well as factors accountable for the same. Inadequate erythropoietic response during malaria infection may be the collective effect of various mediators generated by host immune response as well as parasite metabolites. The interplay between various modulators causing the pathophysiology needs to be explored further. Globin gene expression profiling upon malaria infection should also be looked into as abnormal production of globin chains could be a possible contributor to ineffective erythropoiesis.

  15. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    Science.gov (United States)

    Simonsen, Adam Cohen

    All cells of living organisms are separated from their surroundings and organized internally by means of flexible lipid membranes. In fact, there is consensus that the minimal requirements for self-replicating life processes include the following three features: (1) information carriers (DNA, RNA), (2) a metabolic system, and (3) encapsulation in a container structure [1]. Therefore, encapsulation can be regarded as an essential part of life itself. In nature, membranes are highly diverse interfacial structures that compartmentalize cells [2]. While prokaryotic cells only have an outer plasma membrane and a less-well-developed internal membrane structure, eukaryotic cells have a number of internal membranes associated with the organelles and the nucleus. Many of these membrane structures, including the plasma membrane, are complex layered systems, but with the basic structure of a lipid bilayer. Biomembranes contain hundreds of different lipid species in addition to embedded or peripherally associated membrane proteins and connections to scaffolds such as the cytoskeleton. In vitro, lipid bilayers are spontaneously self-organized structures formed by a large group of amphiphilic lipid molecules in aqueous suspensions. Bilayer formation is driven by the entropic properties of the hydrogen bond network in water in combination with the amphiphilic nature of the lipids. The molecular shapes of the lipid constituents play a crucial role in bilayer formation, and only lipids with approximately cylindrical shapes are able to form extended bilayers. The bilayer structure of biomembranes was discovered by Gorter and Grendel in 1925 [3] using monolayer studies of lipid extracts from red blood cells. Later, a number of conceptual models were developed to rationalize the organization of lipids and proteins in biological membranes. One of the most celebrated is the fluid-mosaic model by Singer and Nicolson (1972) [4]. According to this model, the lipid bilayer component of

  16. A description of malaria sentinel surveillance: a case study in Oromia Regional State, Ethiopia.

    Science.gov (United States)

    Yukich, Joshua O; Butts, Jessica; Miles, Melody; Berhane, Yemane; Nahusenay, Honelgn; Malone, Joseph L; Dissanayake, Gunawardena; Reithinger, Richard; Keating, Joseph

    2014-03-11

    In the context of the massive scale up of malaria interventions, there is increasing recognition that the current capacity of routine malaria surveillance conducted in most African countries through integrated health management information systems is inadequate. The timeliness of reporting to higher levels of the health system through health management information systems is often too slow for rapid action on focal infectious diseases such as malaria. The purpose of this paper is to: 1) describe the implementation of a malaria sentinel surveillance system in Ethiopia to help fill this gap; 2) describe data use for epidemic detection and response as well as programmatic decision making; and 3) discuss lessons learned in the context of creating and running this system. As part of a comprehensive strategy to monitor malaria trends in Oromia Regional State, Ethiopia, a system of ten malaria sentinel sites was established to collect data on key malaria morbidity and mortality indicators. To ensure the sentinel surveillance system provides timely, actionable data, the sentinel facilities send aggregate data weekly through short message service (SMS) to a central database server. Bland-Altman plots and Poisson regression models were used to investigate concordance of malaria indicator reports and malaria trends over time, respectively. This paper describes three implementation challenges that impacted system performance in terms of: 1) ensuring a timely and accurate data reporting process; 2) capturing complete and accurate patient-level data; and 3) expanding the usefulness and generalizability of the system's data to monitor progress towards the national malaria control goals of reducing malaria deaths and eventual elimination of transmission. The use of SMS for reporting surveillance data was identified as a promising practice for accurately tracking malaria trends in Oromia. The rapid spread of this technology across Africa offers promising opportunities to collect

  17. Effect of malaria on placental volume measured using three-dimensional ultrasound: a pilot study

    Directory of Open Access Journals (Sweden)

    Rijken Marcus J

    2012-01-01

    Full Text Available Abstract Background The presence of malaria parasites and histopathological changes in the placenta are associated with a reduction in birth weight, principally due to intrauterine growth restriction. The aim of this study was to examine the feasibility of studying early pregnancy placental volumes using three-dimensional (3D ultrasound in a malaria endemic area, as a small volume in the second trimester may be an indicator of intra-uterine growth restriction and placental insufficiency. Methods Placenta volumes were acquired using a portable ultrasound machine and a 3D ultrasound transducer and estimated using the Virtual Organ Computer-aided AnaLysis (VOCAL image analysis software package. Intra-observer reliability and limits of agreement of the placenta volume measurements were calculated. Polynomial regression models for the mean and standard deviation as a function of gestational age for the placental volumes of uninfected women were created and tested. Based on these equations each measurement was converted into a z -score. The z-scores of the placental volumes of malaria infected and uninfected women were then compared. Results Eighty-four women (uninfected = 65; infected = 19 with a posterior placenta delivered congenitally normal, live born, single babies. The mean placental volumes in the uninfected women were modeled to fit 5th, 10th, 50th, 90th and 95th centiles for 14-24 weeks' gestation. Most placenta volumes in the infected women were below the 50th centile for gestational age; most of those with Plasmodium falciparum were below the 10th centile. The 95% intra-observer limits of agreement for first and second measurements were ± 37.0 mL and ± 25.4 mL at 30 degrees and 15 degrees rotation respectively. Conclusion The new technique of 3D ultrasound volumetry of the placenta may be useful to improve our understanding of the pathophysiological constraints on foetal growth caused by malaria infection in early pregnancy.

  18. An assessment of national surveillance systems for malaria elimination in the Asia Pacific.

    Science.gov (United States)

    Mercado, Chris Erwin G; Ekapirat, Nattwut; Dondorp, Arjen M; Maude, Richard J

    2017-03-21

    Heads of Government from Asia and the Pacific have committed to a malaria-free region by 2030. In 2015, the total number of confirmed cases reported to the World Health Organization by 22 Asia Pacific countries was 2,461,025. However, this was likely a gross underestimate due in part to incidence data not being available from the wide variety of known sources. There is a recognized need for an accurate picture of malaria over time and space to support the goal of elimination. A survey was conducted to gain a deeper understanding of the collection of malaria incidence data for surveillance by National Malaria Control Programmes in 22 countries identified by the Asia Pacific Leaders Malaria Alliance. In 2015-2016, a short questionnaire on malaria surveillance was distributed to 22 country National Malaria Control Programmes (NMCP) in the Asia Pacific. It collected country-specific information about the extent of inclusion of the range of possible sources of malaria incidence data and the role of the private sector in malaria treatment. The findings were used to produce recommendations for the regional heads of government on improving malaria surveillance to inform regional efforts towards malaria elimination. A survey response was received from all 22 target countries. Most of the malaria incidence data collected by NMCPs originated from government health facilities, while many did not collect comprehensive data from mobile and migrant populations, the private sector or the military. All data from village health workers were included by 10/20 countries and some by 5/20. Other sources of data included by some countries were plantations, police and other security forces, sentinel surveillance sites, research or academic institutions, private laboratories and other government ministries. Malaria was treated in private health facilities in 19/21 countries, while anti-malarials were available in private pharmacies in 16/21 and private shops in 6/21. Most countries use

  19. OBJECT ORIENTED MODELLING, A MODELLING METHOD OF AN ECONOMIC ORGANIZATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    TĂNĂSESCU ANA

    2014-05-01

    Full Text Available Now, most economic organizations use different information systems types in order to facilitate their activity. There are different methodologies, methods and techniques that can be used to design information systems. In this paper, I propose to present the advantages of using the object oriented modelling at the information system design of an economic organization. Thus, I have modelled the activity of a photo studio, using Visual Paradigm for UML as a modelling tool. For this purpose, I have identified the use cases for the analyzed system and I have presented the use case diagram. I have, also, realized the system static and dynamic modelling, through the most known UML diagrams.

  20. World Malaria Day 2016 in the Kingdom of Cambodia: high-level governmental support embodies the WHO call for "political will to end malaria"