Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
LED-based Photometric Stereo: Modeling, Calibration and Numerical Solutions
DEFF Research Database (Denmark)
Quéau, Yvain; Durix, Bastien; Wu, Tao
2018-01-01
We conduct a thorough study of photometric stereo under nearby point light source illumination, from modeling to numerical solution, through calibration. In the classical formulation of photometric stereo, the luminous fluxes are assumed to be directional, which is very difficult to achieve in pr...
Numerical solution of a model for a superconductor field problem
International Nuclear Information System (INIS)
Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.
1979-01-01
A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances
Numerical solution of High-kappa model of superconductivity
Energy Technology Data Exchange (ETDEWEB)
Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)
1996-12-31
We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.
Gómez-Aguilar, J. F.
2018-03-01
In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.
Karkar , Sami; Vergez , Christophe; Cochelin , Bruno
2012-01-01
International audience; We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solution...
Improved numerical solutions for chaotic-cancer-model
Directory of Open Access Journals (Sweden)
Muhammad Yasir
2017-01-01
Full Text Available In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Improved numerical solutions for chaotic-cancer-model
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Malakpoor, K.; Kaasschieter, E.F.; Huyghe, J.M.R.J.
2007-01-01
The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci. 35 (1997) 793-802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues.
Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package
El-Sayed, Amr A.
2006-01-01
A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...
Directory of Open Access Journals (Sweden)
Petráš Ivo
2011-01-01
Full Text Available This paper deals with the fractional-order linear and nonlinear models used in bioengineering applications and an effective method for their numerical solution. The proposed method is based on the power series expansion of a generating function. Numerical solution is in the form of the difference equation, which can be simply applied in the Matlab/Simulink to simulate the dynamics of system. Several illustrative examples are presented, which can be widely used in bioengineering as well as in the other disciplines, where the fractional calculus is often used.
Directory of Open Access Journals (Sweden)
Henrique Silva Furtado
2009-09-01
Full Text Available Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ of 8 nanometers reproduced the solute (Cu equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007] was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.
International Nuclear Information System (INIS)
Garratt, T.J.
1989-05-01
Compartment models for the transport of radionuclides in the biosphere are conventionally solved using a numerical time-stepping procedure. This report examines an alternative method based on the numerical inversion of Laplace transforms, which is potentially more efficient and accurate for some classes of problem. The central problem considered is the most efficient and robust technique for solving the Laplace-transformed rate equations. The conclusion is that Gaussian elimination is the most efficient and robust solution method. A general compartment model has been implemented on a personal computer and used to solve a realistic case including radionuclide decay chains. (author)
Directory of Open Access Journals (Sweden)
Roman Cherniha
2016-06-01
Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.
Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model
Directory of Open Access Journals (Sweden)
Nikola V. Georgiev
2003-01-01
Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.
Numerical Modeling Tools for the Prediction of Solution Migration Applicable to Mining Site
International Nuclear Information System (INIS)
Martell, M.; Vaughn, P.
1999-01-01
Mining has always had an important influence on cultures and traditions of communities around the globe and throughout history. Today, because mining legislation places heavy emphasis on environmental protection, there is great interest in having a comprehensive understanding of ancient mining and mining sites. Multi-disciplinary approaches (i.e., Pb isotopes as tracers) are being used to explore the distribution of metals in natural environments. Another successful approach is to model solution migration numerically. A proven method to simulate solution migration in natural rock salt has been applied to project through time for 10,000 years the system performance and solution concentrations surrounding a proposed nuclear waste repository. This capability is readily adaptable to simulate solution migration around mining
International Nuclear Information System (INIS)
Milioli, F.E.
1985-01-01
In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
Numerical modeling of solute transport in deformable unsaturated layered soil
Directory of Open Access Journals (Sweden)
Sheng Wu
2017-07-01
Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.
Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock
International Nuclear Information System (INIS)
Chan, T.; Reid, J.A.K.
1987-01-01
This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions
Underestimation of nuclear fuel burnup – theory, demonstration and solution in numerical models
Directory of Open Access Journals (Sweden)
Gajda Paweł
2016-01-01
Full Text Available Monte Carlo methodology provides reference statistical solution of neutron transport criticality problems of nuclear systems. Estimated reaction rates can be applied as an input to Bateman equations that govern isotopic evolution of reactor materials. Because statistical solution of Boltzmann equation is computationally expensive, it is in practice applied to time steps of limited length. In this paper we show that simple staircase step model leads to underprediction of numerical fuel burnup (Fissions per Initial Metal Atom – FIMA. Theoretical considerations indicates that this error is inversely proportional to the length of the time step and origins from the variation of heating per source neutron. The bias can be diminished by application of predictor-corrector step model. A set of burnup simulations with various step length and coupling schemes has been performed. SERPENT code version 1.17 has been applied to the model of a typical fuel assembly from Pressurized Water Reactor. In reference case FIMA reaches 6.24% that is equivalent to about 60 GWD/tHM of industrial burnup. The discrepancies up to 1% have been observed depending on time step model and theoretical predictions are consistent with numerical results. Conclusions presented in this paper are important for research and development concerning nuclear fuel cycle also in the context of Gen4 systems.
Turchi, Patrice E. A.; Fattebert, Jean-Luc; Dorr, Milo R.; Wickett, Michael E.; Belak, James F.
2011-03-01
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in alloys using physical parameters from thermodynamic (CALPHAD) and kinetic databases. The coupled system of PFM equations includes a local order parameter, a quaternion representation of local crystal orientation and a species composition parameter. Time evolution of microstructures and alloy composition is obtained using an implicit time integration of the system. Physical parameters in databases can be obtained either through experiment or first-principles calculations. Application to coring studies and microstructure evolution of Au-Ni will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method
Directory of Open Access Journals (Sweden)
De-Gang Wang
2012-01-01
Full Text Available A novel algorithm, called variable weight fuzzy marginal linearization (VWFML method, is proposed. This method can supply approximate analytic and numerical solutions to Lane-Emden equations. And it is easy to be implemented and extended for solving other nonlinear differential equations. Numerical examples are included to demonstrate the validity and applicability of the developed technique.
International Nuclear Information System (INIS)
Kovac, D.; Otto, G.; Hobler, G.
2005-01-01
In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature
Baehr, Arthur L.; Corapcioglu, M. Yavuz
1987-01-01
In this paper we develop a numerical solution to equations developed in part 1 (M. Y. Corapcioglu and A. L. Baehr, this issue) to predict the fate of an immiscible organic contaminant such as gasoline in the unsaturated zone subsequent to plume establishment. This solution, obtained by using a finite difference scheme and a method of forward projection to evaluate nonlinear coefficients, provides estimates of the flux of solubilized hydrocarbon constituents to groundwater from the portion of a spill which remains trapped in a soil after routine remedial efforts to recover the product have ceased. The procedure was used to solve the one-dimensional (vertical) form of the system of nonlinear partial differential equations defining the transport for each constituent of the product. Additionally, a homogeneous, isothermal soil with constant water content was assumed. An equilibrium assumption partitions the constituents between air, water, adsorbed, and immiscible phases. Free oxygen transport in the soil was also simulated to provide an upper bound estimate of aerobic biodgradation rates. Results are presented for a hypothetical gasoline consisting of eight groups of hydrocarbon constituents. Rates at which hydrocarbon mass is removed from the soil, entering either the atmosphere or groundwater, or is biodegraded are presented. A significant sensitivity to model parameters, particularly the parameters characterizing diffusive vapor transport, was discovered. We conclude that hydrocarbon solute composition in groundwater beneath a gasoline contaminated soil would be heavily weighted toward aromatic constituents like benzene, toluene, and xylene.
Spurious Numerical Solutions Of Differential Equations
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Numerical solution of Boltzmann's equation
International Nuclear Information System (INIS)
Sod, G.A.
1976-04-01
The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K
2017-09-15
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
An efficient numerical target strength prediction model: Validation against analysis solutions
Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de
2014-01-01
A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and
On the formation, growth, and shapes of solution pipes - insights from numerical modeling
Szymczak, Piotr; Tredak, Hanna; Upadhyay, Virat; Kondratiuk, Paweł; Ladd, Anthony J. C.
2015-04-01
Cylindrical, vertical structures called solution pipes are a characteristic feature of epikarst, encountered in different parts of the world, both in relatively cold areas such as England and Poland (where their formation is linked to glacial processes) [1] and in coastal areas in tropical or subtropical climate (Bermuda, Australia, South Africa, Caribbean, Mediterranean) [2,3]. They are invariably associated with weakly cemented, porous limestones and relatively high groundwater fluxes. Many of them develop under the colluvial sandy cover and contain the fill of clayey silt. Although it is widely accepted that they are solutional in origin, the exact mechanism by which the flow becomes focused is still under debate. The hypotheses include the concentration of acidified water around stems and roots of plants, or the presence of pre-existing fractures or steeply dipping bedding planes, which would determine the points of entry for the focused groundwater flows. However, there are field sites where neither of this mechanisms was apparently at play and yet the pipes are formed in large quantities [1]. In this communication we show that the systems of solution pipes can develop spontaneously in nearly uniform matrix due to the reactive-infiltration instability: a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This leads to the formation of a system of solution pipes which then advance into the matrix. We study this process numerically, by a combination of 2d- and 3d-simulations, solving the coupled flow and transport equations at the Darcy scale. The relative simplicity of this system (pipes developing in a uniform porous matrix, without any pre-existing structure) makes it very attractive from the modeling standpoint. We quantify the factors which control the pipe diameters and the
International Nuclear Information System (INIS)
Gustafsson, Lars-Goeran; Sassner, Mona; Bosson, Emma
2008-12-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest
Energy Technology Data Exchange (ETDEWEB)
Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))
2008-12-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest
DEFF Research Database (Denmark)
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.
2018-01-01
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and conc...
A comparison of numerical methods for the solution of continuous-time DSGE models
DEFF Research Database (Denmark)
Parra-Alvarez, Juan Carlos
This paper evaluates the accuracy of a set of techniques that approximate the solution of continuous-time DSGE models. Using the neoclassical growth model I compare linear-quadratic, perturbation and projection methods. All techniques are applied to the HJB equation and the optimality conditions...... parameters of the model and suggest the use of projection methods when a high degree of accuracy is required....
Numerical solution of continuous-time DSGE models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We...... classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very...
Li, Y.; Ma, X.; Su, N.
2013-12-01
The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.
International Nuclear Information System (INIS)
Koeppel, T.; Harvey, M.
1984-06-01
A new numerical method is applied to solving the equations of motion of the Friedberg-Lee Soliton model for both ground and spherically symmetric excited states. General results have been obtained over a wide range of parameters. Critical coupling constants and critical particle numbers have been determined below which soliton solutions cease to exist. The static properties of the proton are considered to show that as presently formulated the model fails to fit all experimental data for any set of parameters
Numerical Solution of Fractional Neutron Point Kinetics Model in Nuclear Reactor
Directory of Open Access Journals (Sweden)
Nowak Tomasz Karol
2014-06-01
Full Text Available This paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme in the FOMCON Toolbox in MATLAB environment. Third is the method proposed by Edwards. The impact of selected parameters on the model’s response was examined. The results for typical input were discussed and compared.
Czech Academy of Sciences Publication Activity Database
Pokorný, Vladislav; Žonda, M.; Kauch, Anna; Janiš, Václav
2017-01-01
Roč. 131, č. 4 (2017), s. 1042-1044 ISSN 0587-4246 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : And erson model * parquet equations * numerical renormalization group Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016
A numerical solution model of the rewetting of a nuclear fuel rod
International Nuclear Information System (INIS)
Braz Filho, F.A.
1984-01-01
The study of thermal behaviour of a nuclear reactor fuel rod during the reflooding phase of the loss-of-coolant accident (LOCA) is presented. A mathematical model and a numerical scheme were proposed in order to solve the bidimensional heat conduction equation in cylindrical coordinates. The phenomenon of reflooding is not completely understood. One of the main difficulties is to estimate the heat transfer coefficient (h). For this reason two different models were elaborated: in the first three regions are considered and in each region h is considered constant; in the second the h profile is adjusted according to the boiling curve. The three region model yields satisfactory results at high and low mass flows while the 'boiling curve' model yields reasonable at low flows. (Author) [pt
International Nuclear Information System (INIS)
Velloso, P.A.; Galeao, A.C.
1989-05-01
This paper deals with nonlinear vibrations of pipes subjected to non-conservative loads. Periodic solutions of these problems are determined using a variational approach based on Hamilton's Principle combined with a Fourier series expansion to describe the displacement field time dependence. A finite element model which utilizes Hemite's cubic interpolation for both axial and transversal displacement amplitudes is used. This model is applied to the problem of a pipe subjected to a tangential and a normal follower force. The numerical results obtained with this model are compared with the corespondent solutions determined using a total lagrangian description for the Principle of Virtual Work, coupled with Newmark's step-by-step integration procedure. It is shown that for small to moderate displacement amplitudes the one-term Fourier series approximation compares fairly well with the predicted solution. For large displacements as least a two-term approximation should be utilized [pt
Numerical solution of the model problem of CCRF-discharge at atmospheric pressure
Directory of Open Access Journals (Sweden)
Zheltukhin Viktor
2017-01-01
Full Text Available This work describes a 1D mathematical model of capacitive coupled RF discharge between symmetrical electrodes in argon at atmospheric pressure in a local approximation. Electrons, atomic and molecular ions, metastable atoms and argon dimmers as well as ground-state atoms are considered. A simplified diagram of argon excited states when two metastable and two resonance states are replaced with the uniform level. Such diagram is frequently used to simulate argon plasma due to efficient mixing of these layers at electron impacts. Velocity factors of electron impact processes were calculated using Boltzmann equation with a glance to electron-electron collisions. This work describes numerical algorithm of mathematical model implementation, which is based on finite-dimensional approximation of the problem using difference schemes together with iteration process. The software was developed to implement iterative processes using MatLab. Characteristics of atmospheric pressure capacitive coupled RF discharge at interelectrod distance 20 mm are calculated.
Automatic validation of numerical solutions
DEFF Research Database (Denmark)
Stauning, Ole
1997-01-01
This thesis is concerned with ``Automatic Validation of Numerical Solutions''. The basic theory of interval analysis and self-validating methods is introduced. The mean value enclosure is applied to discrete mappings for obtaining narrow enclosures of the iterates when applying these mappings...... differential equations, but in this thesis, we describe how to use the methods for enclosing iterates of discrete mappings, and then later use them for discretizing solutions of ordinary differential equations. The theory of automatic differentiation is introduced, and three methods for obtaining derivatives...... are described: The forward, the backward, and the Taylor expansion methods. The three methods have been implemented in the C++ program packages FADBAD/TADIFF. Some examples showing how to use the three metho ds are presented. A feature of FADBAD/TADIFF not present in other automatic differentiation packages...
Directory of Open Access Journals (Sweden)
Basuki Widodo
2012-02-01
Full Text Available Corrosion process is a natural case that happened at the various metals, where the corrosion process in electrochemical can be explained by using galvanic cell. The iron corrosion process is based on the acidity degree (pH of a condensation, iron concentration and condensation temperature of electrolyte. Those are applied at electrochemistry cell. The iron corrosion process at this electrochemical cell also able to generate electrical potential and electric current during the process takes place. This paper considers how to build a mathematical model of iron corrosion, electrical potential and electric current. The mathematical model further is solved using the finite element method. This iron corrosion model is built based on the iron concentration, condensation temperature, and iteration time applied. In the electric current density model, the current based on electric current that is happened at cathode and anode pole and the iteration time applied. Whereas on the potential electric model, it is based on the beginning of electric potential and the iteration time applied. The numerical results show that the part of iron metal, that is gristle caused by corrosion, is the part of metal that has function as anode and it has some influences, such as time depth difference, iron concentration and condensation temperature on the iron corrosion process and the sum of reduced mass during corrosion process. Moreover, difference influence of time and beginning electric potential has an effect on the electric potential, which emerges during corrosion process at the electrochemical cell. Whereas, at the electrical current is also influenced by difference of depth time and condensation temperature applied.Keywords: Iron Corrosion, Concentration of iron, Electrochemical Cell and Finite Element Method
An Efficient and Robust Numerical Solution of the Full-Order Multiscale Model of Lithium-Ion Battery
Directory of Open Access Journals (Sweden)
Michal Beneš
2018-01-01
Full Text Available We propose a novel and efficient numerical approach for solving the pseudo two-dimensional multiscale model of the Li-ion cell dynamics based on first principles, describing the ion diffusion through the electrolyte and the porous electrodes, electric potential distribution, and Butler-Volmer kinetics. The numerical solution is obtained by the finite difference discretization of the diffusion equations combined with an original iterative scheme for solving the integral formulation of the laws of electrochemical interactions. We demonstrate that our implementation is fast and stable over the expected lifetime of the cell. In contrast to some simplified models, it provides physically consistent results for a wide range of applied currents including high loads. The algorithm forms a solid basis for simulations of cells and battery packs in hybrid electric vehicles, with possible straightforward extensions by aging and heat effects.
minatti, L.
2013-12-01
A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during
Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.
2018-03-01
Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.
International Nuclear Information System (INIS)
Molinero, J.; Samper, J.
2003-01-01
Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding
Numerical Solution of Diffusion Models in Biomedical Imaging on Multicore Processors
Directory of Open Access Journals (Sweden)
Luisa D'Amore
2011-01-01
Full Text Available In this paper, we consider nonlinear partial differential equations (PDEs of diffusion/advection type underlying most problems in image analysis. As case study, we address the segmentation of medical structures. We perform a comparative study of numerical algorithms arising from using the semi-implicit and the fully implicit discretization schemes. Comparison criteria take into account both the accuracy and the efficiency of the algorithms. As measure of accuracy, we consider the Hausdorff distance and the residuals of numerical solvers, while as measure of efficiency we consider convergence history, execution time, speedup, and parallel efficiency. This analysis is carried out in a multicore-based parallel computing environment.
A mathematical model and numerical solution of interface problems for steady state heat conduction
Directory of Open Access Journals (Sweden)
Z. Muradoglu Seyidmamedov
2006-01-01
(isolation Ωδ tends to zero. For each case, the local truncation errors of the used conservative finite difference scheme are estimated on the nonuniform grid. A fast direct solver has been applied for the interface problems with piecewise constant but discontinuous coefficient k=k(x. The presented numerical results illustrate high accuracy and show applicability of the given approach.
Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II
Zhang, Burt X.; Karr, Gerald R.
1991-01-01
Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.
Directory of Open Access Journals (Sweden)
Jintao Song
2015-01-01
Full Text Available The foundation boundaries of numerical simulation models of hydraulic structures dominated by a vertical load are investigated. The method used is based on the stress formula for fundamental solutions to semi-infinite space body elastic mechanics under a vertical concentrated force. The limit method is introduced into the original formula, which is then partitioned and analyzed according to the direction of the depth extension of the foundation. The point load will be changed to a linear load with a length of 2a. Inverse proportion function assumptions are proposed at parameter a and depth l of the calculation points to solve the singularity questions of elastic stress in a semi-infinite space near the ground. Compared with the original formula, changing the point load to a linear load with a length of 2a is more reasonable. Finally, the boundary depth criterion of a hydraulic numerical simulation model is derived and applied to determine the depth boundary formula for gravity dam numerical simulations.
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2012-10-01
A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.
Numerical solution of multiband k.p model for tunnelling in type-II heterostructures
Directory of Open Access Journals (Sweden)
A.E. Botha
2010-01-01
Full Text Available A new and very general method was developed for calculating the charge and spin-resolved electron tunnelling in type-II heterojunctions. Starting from a multiband k.p description of the bulk energy-band structure, a multiband k.p Riccati equation was derived. The reflection and transmission coefficients were obtained for each channel by integrating the Riccati equation over the entire heterostructure. Numerical instability was reduced through this method, in which the multichannel log-derivative of the envelope function matrix, rather than the envelope function itself, was propagated. As an example, a six-band k.p Hamiltonian was used to calculate the current-voltage characteristics of a 10-nm wide InAs/ GaSb/InAs single quantum well device which exhibited negative differential resistance at room temperature. The calculated current as a function of applied (bias voltage was found to be in semiquantitative agreement with the experiment, a result which indicated that inelastic transport mechanisms do not contribute significantly to the valley currents measured in this particular device.
International Nuclear Information System (INIS)
Yudov, Y.V.
2001-01-01
The functional part of the KORSAR computer code is based on the computational unit for the reactor system thermal-hydraulics and other thermal power systems with water cooling. The two-phase flow dynamics of the thermal-hydraulic network is modelled by KORSAR in one-dimensional two-fluid (non-equilibrium and nonhomogeneous) approximation with the same pressure of both phases. Each phase is characterized by parameters averaged over the channel sections, and described by the conservation equations for mass, energy and momentum. The KORSAR computer code relies upon a novel approach to mathematical modelling of two-phase dispersed-annular flows. This approach allows a two-fluid model to differentiate the effects of the liquid film and droplets in the gas core on the flow characteristics. A semi-implicit numerical scheme has been chosen for deriving discrete analogs the conservation equations in KORSAR. In the semi-implicit numerical scheme, solution of finite-difference equations is reduced to the problem of determining the pressure field at a new time level. For the one-channel case, the pressure field is found from the solution of a system of linear algebraic equations by using the tri-diagonal matrix method. In the branched network calculation, the matrix of coefficients in the equations describing the pressure field is no longer tri-diagonal but has a sparseness structure. In this case, the system of linear equations for the pressure field can be solved with any of the known classical methods. Such an approach is implemented in the existing best-estimate thermal-hydraulic computer codes (TRAC, RELAP5, etc.) For the KORSAR computer code, we have developed a new non-iterative method for calculating the pressure field in the network of any topology. This method is based on the tri-diagonal matrix method and performs well when solving the thermal-hydraulic network problems. (author)
Modeling of gravity-imbibition and gravity-drainage processes: Analytic and numerical solutions
DEFF Research Database (Denmark)
Bech, N.; Jensen, O.K.; Nielsen, B.
1991-01-01
A matrix/fracture exchange model for a fractured reservoir simulator is described. Oil/water imbibition is obtained from a diffusion equation with water saturation as the dependent variable. Gas/oil gravity drainage and imbibition are calculated by taking into account the vertical saturation...... distribution in the matrix blocks....
Energy Technology Data Exchange (ETDEWEB)
Brown, L.F.; Ebinger, M.H.
1996-08-01
Four simple precipitation problems are solved to examine the use of numerical equilibrium codes. The study emphasizes concentrated solutions, assumes both ideal and nonideal solutions, and employs different databases and different activity-coefficient relationships. The study uses the EQ3/6 numerical speciation codes. The results show satisfactory material balances and agreement between solubility products calculated from free-energy relationships and those calculated from concentrations and activity coefficients. Precipitates show slightly higher solubilities when the solutions are regarded as nonideal than when considered ideal, agreeing with theory. When a substance may precipitate from a solution dilute in the precipitating substance, a code may or may not predict precipitation, depending on the database or activity-coefficient relationship used. In a problem involving a two-component precipitation, there are only small differences in the precipitate mass and composition between the ideal and nonideal solution calculations. Analysis of this result indicates that this may be a frequent occurrence. An analytical approach is derived for judging whether this phenomenon will occur in any real or postulated precipitation situation. The discussion looks at applications of this approach. In the solutes remaining after the precipitations, there seems to be little consistency in the calculated concentrations and activity coefficients. They do not appear to depend in any coherent manner on the database or activity-coefficient relationship used. These results reinforce warnings in the literature about perfunctory or mechanical use of numerical speciation codes.
International Nuclear Information System (INIS)
Bodvarsson, G.S.; Lippmann, M.J.
1980-01-01
The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented
Energy Technology Data Exchange (ETDEWEB)
Prinja, A.K.
1998-09-01
In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are
International Nuclear Information System (INIS)
Prinja, A.K.
1998-01-01
In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton's method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria ε is set to be 10 -9 based on the fact that lower value of ε does not alter the solution significantly. Correspondingly, the number of Newton's iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton's method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are relatively smooth as a
Numerical solution of the polymer system
Energy Technology Data Exchange (ETDEWEB)
Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.
1999-05-01
The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.
Directory of Open Access Journals (Sweden)
Mojtaba Rasouli Gandomani
2016-06-01
Full Text Available In this paper, the model of HIV infection of CD4+ T cells is considered as a system of fractional differential equations. Then, a numerical method by using collocation method based on the Müntz-Legendre polynomials to approximate solution of the model is presented. The application of the proposed numerical method causes fractional differential equations system to convert into the algebraic equations system. The new system can be solved by one of the existing methods. Finally, we compare the result of this numerical method with the result of the methods have already been presented in the literature.
A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis
Energy Technology Data Exchange (ETDEWEB)
Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-08-01
A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.
A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis
International Nuclear Information System (INIS)
Kadioglu, Samet Y.; Berry, Ray; Martineau, Richard
2016-01-01
A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)'s thermal-fluids code) built on top of an other INL's product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.
Exact solutions, numerical relativity and gravitational radiation
International Nuclear Information System (INIS)
Winicour, J.
1986-01-01
In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful
Hozman, J.; Tichý, T.
2017-12-01
Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.
Numerically satisfactory solutions of Kummer recurrence relations
J. Segura (Javier); N.M. Temme (Nico)
2008-01-01
textabstractPairs of numerically satisfactory solutions as $n\\rightarrow \\infty$ for the three-term recurrence relations satisfied by the families of functions $_1\\mbox{F}_1(a+\\epsilon_1 n; b +\\epsilon_2 n;z)$, $\\epsilon_i \\in {\\mathbb Z}$, are given. It is proved that minimal solutions always
Analysis of numerical solutions for Bateman equations
International Nuclear Information System (INIS)
Loch, Guilherme G.; Bevilacqua, Joyce S.
2013-01-01
The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)
International Nuclear Information System (INIS)
Kimura, Y.; Tokuyama, M.
2016-01-01
The full numerical solutions of the time-convolutionless modecoupling theory (TMCT) equation recently proposed by Tokuyama are compared with those of the ideal mode-coupling theory (MCT) equation based on the Percus- Yevick static structure factor for hard spheres qualitatively and quantitatively. The ergodic to non-ergodic transition at the critical volume fraction φ_c predicted by MCT is also shown to occur even for TMCT. Thus, φ_c of TMCT is shown to be much higher than that of MCT. The dynamics of coherent-intermediate scattering functions and their two-step relaxation process in a β stage are also discussed.
International Nuclear Information System (INIS)
Cunha Furtado, F. da; Galeao, A.C.N.R.
1984-01-01
A numerical procedure for the integration of the incompressible Navier-Stokes equations, when expressed in terms of a stream function equation and a vorticity transport equation, is presented. This procedure comprises: the variational formulation of the equations, the construction of the approximation spaces by the finite element method and the discretization via the Galerkin method. For the stationary problems, the system of non-linear algebraic equations resulting from the discretization is solved by the Newton-Raphson algorithm. Finally, for the transient problems, the solution of the non-linear ordinary differential equations resulting from the spatial discretization is accomplished through a Crank-Nicolson scheme. (Author) [pt
Dynamics of the east India coastal current. 2. Numerical solutions
Digital Repository Service at National Institute of Oceanography (India)
McCreary, J.P.; Han, W.; Shankar, D.; Shetye, S.R.
A linear, continuously stratified model is used to investigate the dynamics of the East India Coastal Current (EICC). Solutions are found numerically in a basin that resembles the Indian Ocean basin north of 29 degrees S, and they are forced...
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
International Nuclear Information System (INIS)
Baptista Filho, Benedito Dias
1979-01-01
A numerical model has been developed to calculate the flow, pressure and temperature distribution of steady-state |for the tube and shell-side fluids in a shell-and-U-tubes heat exchanger with segmental baffles. It was based on the Subchannel Analysis Method- The model, checked with experimental results from one heat exchanger, predicted with good accuracy outlet temperatures for both fluids. The method, implemented ' in a computer program of low cost and easy application, can be used in the design and performance evaluation of commercial units.(author)
Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.
2017-12-01
Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley
Numerical solution of large sparse linear systems
International Nuclear Information System (INIS)
Meurant, Gerard; Golub, Gene.
1982-02-01
This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr
He, Qiaolin
2011-06-01
In this article we discuss the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line separating two immiscible incompressible viscous fluids near a solid wall. The method we employ combines a finite element space approximation with a time discretization by operator-splitting. To solve the Cahn-Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property under certain conditions. Our numerical experiments indicate that the method discussed here is accurate, stable and efficient. © 2011 Elsevier Inc.
Exact and numerical solutions of generalized Drinfeld-Sokolov equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com
2008-04-14
In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)
Exact and numerical solutions of generalized Drinfeld-Sokolov equations
International Nuclear Information System (INIS)
Ugurlu, Yavuz; Kaya, Dogan
2008-01-01
In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)
DEFF Research Database (Denmark)
Henriquez, Vicente Cutanda
This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....
Directory of Open Access Journals (Sweden)
2015-12-01
Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
International Nuclear Information System (INIS)
Lauber, Philipp
2013-01-01
of the plasma modes that are responsible for the transport of energetic particles. Furthermore, the fast particle distribution function itself can also be measured with much greater confidence. Therefore, the new physics accessible due to a more comprehensive model and numerical implementation can be directly verified and validated with experimental data
On the numerical solution of fault trees
International Nuclear Information System (INIS)
Demichela, M.; Piccinini, N.; Ciarambino, I.; Contini, S.
2003-01-01
In this paper an account will be given of the numerical solution of the logic trees directly extracted from the Recursive Operability Analysis. Particular attention will be devoted to the use of the NOT and INH logic gates for correct logical representation of Fault Trees prior to their quantitative resolution. The NOT gate is needed for correct logical representation of events when both non-intervention and correct intervention of a protective system may lead to a Top Event. The INH gate must be used to correctly represent the time link between two events that are both necessary, but must occur in sequence. Some numerical examples will be employed to show both the correct identification of the events entering the INH gates and how use of the AND gate instead of the INH gate leads to overestimation of the probability of occurrence of a Top Event
Numerical solutions of the Vlasov equation
International Nuclear Information System (INIS)
Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi
1985-01-01
A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)
Numerical double layer solutions with ionization
International Nuclear Information System (INIS)
Andersson, D.; Soerensen, J.
1982-08-01
Maxwell's equation div D = ro in one dimension is solved numerically, taking ionization into account. Time independent anode sheath and double layer solutions are obtained. By varying voltage, neutral gas pressure, temperature of the trapped ions on the cathode side and density and temperature of the trapped electrones on the anode side, diagrams are constructed that show permissible combinations of these parameters. Results from a recent experiment form a subset. Distribution functions, the Langmuir condition, some scaling laws and a possible application to the lower ionosphere are discussed. (Authors)
Numerical solutions of diffusive logistic equation
International Nuclear Information System (INIS)
Afrouzi, G.A.; Khademloo, S.
2007-01-01
In this paper we investigate numerically positive solutions of a superlinear Elliptic equation on bounded domains. The study of Diffusive logistic equation continues to be an active field of research. The subject has important applications to population migration as well as many other branches of science and engineering. In this paper the 'finite difference scheme' will be developed and compared for solving the one- and three-dimensional Diffusive logistic equation. The basis of the analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from many authors these years
Numerical solution of the radionuclide transport equation
International Nuclear Information System (INIS)
Hadermann, J.; Roesel, F.
1983-11-01
A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)
Numerical models for differential problems
Quarteroni, Alfio
2017-01-01
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...
Sensitivity analysis of numerical solutions for environmental fluid problems
International Nuclear Information System (INIS)
Tanaka, Nobuatsu; Motoyama, Yasunori
2003-01-01
In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)
Introduction to the numerical solutions of Markov chains
Stewart, Williams J
1994-01-01
A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse - and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here, Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing metho...
Kavka, P.; Jeřábek, J.; Strouhal, L.
2016-12-01
The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for
Numerical solution for heave of expansive soils
International Nuclear Information System (INIS)
Sadrnezhad, S. A.
1999-01-01
A numerical solution for heave prediction is developed within the context theories for both saturated and unsaturated soil behaviors. Basically, lowering the potential level of compressing on a saturated layer will cause heaving due to water absorption. This water absorption is in an opposite way, similar to water dissipation as what happens during unloading in consolidation process. However, in unsaturated layers any change of the stability of potential energy level will cause the tendency of change in particle interconnection forces. So, any change by either distressing or the variation of moisture ratio will lead to soil heave. In this paper a finite element solution is employed for predicting the heave in saturated soil similar to unloading in consolidation. Also, in the case of unsaturated soil, equivalent soil suction as negative pore water pressures in applied to soil elements as equivalent nodal forces. To show the potential of this method, test results were com pated with those obtained from computations. These comparisons show that the presented method is capable of predicting the heave phenomenon quite well
Performance analysis of numeric solutions applied to biokinetics of radionuclides
International Nuclear Information System (INIS)
Mingatos, Danielle dos Santos; Bevilacqua, Joyce da Silva
2013-01-01
Biokinetics models for radionuclides applied to dosimetry problems are constantly reviewed by ICRP. The radionuclide trajectory could be represented by compartmental models, assuming constant transfer rates between compartments. A better understanding of physiological or biochemical phenomena, improve the comprehension of radionuclide behavior in the human body and, in general, more complex compartmental models are proposed, increasing the difficulty of obtaining the analytical solution for the system of first order differential equations. Even with constant transfer rates numerical solutions must be carefully implemented because of almost singular characteristic of the matrix of coefficients. In this work we compare numerical methods with different strategies for ICRP-78 models for Thorium-228 and Uranium-234. The impact of uncertainty in the parameters of the equations is also estimated for local and global truncation errors. (author)
Energy Technology Data Exchange (ETDEWEB)
Molinero Huguet, J
2001-07-01
This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)
International Nuclear Information System (INIS)
Molinero Huguet, J.
2001-06-01
This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)
Directory of Open Access Journals (Sweden)
OLAOSEBIKAN ABIDOYE OLAFADEHAN
2010-06-01
Full Text Available A detailed computational procedure for evaluating lactose hydrolysis with immobilized enzyme in a packed bed tubular reactor under dispersion flow conditions is presented. The dispersion flow model for lactose hydrolysis using different kinetics, taking cognizance of external mass transfer resistances, was solved by the method of orthogonal collocation. The reliability of model simulations was tested using experimental data from a laboratory packed bed column, where the -galactosidase of Kluyveromyces fragilis was immobilized on spherical chitosan beads. Comparison of the simulated results with experimental exit conversion shows that the dispersion flow model and using Michaelis-Menten kinetics with competitive product (galactose inhibition are appropriate to interpret the experimental results and simulate the process of lactose hydrolysis in a fixed bed.
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Numerical modeling of foam flows
International Nuclear Information System (INIS)
Cheddadi, Ibrahim
2010-01-01
Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)
Numerical solution of a reaction-diffusion equation
International Nuclear Information System (INIS)
Moyano, Edgardo A.; Scarpettini, Alberto F.
2000-01-01
The purpose of the present work to continue the observations and the numerical experiences on a reaction-diffusion model, that is a simplified form of the neutronic flux equation. The model is parabolic, nonlinear, with Dirichlet boundary conditions. The purpose is to approximate non trivial solutions, asymptotically stables for t → ∞, that is solutions that tend to the elliptic problem, in the Lyapunov sense. It belongs to the so-called reaction-diffusion equations of semi linear kind, that is, linear equations in the heat operator and they have a nonlinear reaction function, in this case f (u, a, b) = u (a - b u), being u concentration, a and b parameters. The study of the incidence of these parameters take an interest to the neutronic flux physics. So that we search non trivial, positive and bounded solutions. The used algorithm is based on the concept of monotone and ordered sequences, and on the existence theorem of Amann and Sattinger. (author)
Numerical benchmarking of SPEEDUP trademark against point kinetics solutions
International Nuclear Information System (INIS)
Gregory, M.V.
1993-02-01
SPEEDUP trademark is a state-of-the-art, dynamic, chemical process modeling package offered by Aspen Technology. In anticipation of new customers' needs for new analytical tools to support the site's waste management activities, SRTC has secured a multiple-user license to SPEEDUP trademark. In order to verify both the installation and mathematical correctness of the algorithms in SPEEDUP trademark, we have performed several numerical benchmarking calculations. These calculations are the first steps in establishing an on-site quality assurance pedigree for SPEEDUP trademark. The benchmark calculations consisted of SPEEDUP trademark Version 5.3L representations of five neutron kinetics benchmarks (each a mathematically stiff system of seven coupled ordinary differential equations), whose exact solutions are documented in the open literature. In all cases, SPEEDUP trademark solutions to be in excellent agreement with the reference solutions. A minor peculiarity in dealing with a non-existent discontinuity in the OPERATION section of the model made itself evident
On the Hughes model and numerical aspects
Gomes, Diogo A.
2017-01-05
We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solutions. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two examples.
International Nuclear Information System (INIS)
Caremoli, C.; Erhard, P.
1996-01-01
Computerized simulation uses calculation codes whose validation is reliable. Reactor simulators should take greater advantage of latest computer technology impact, in particular in the field of parallel processing. Instead of creating more global simulation codes whose validation might be a problem, connecting several existing codes should be a promising solution. (D.L.). 3 figs
Numerical solution of ordinary differential equations
Fox, L
1987-01-01
Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...
Numerical solution of plasma fluid equations using locally refined grids
International Nuclear Information System (INIS)
Colella, P.
1997-01-01
This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results
Rosatti, Giorgio; Zugliani, Daniel
2015-03-01
In a two-phase free-surface flow, the transition from a mobile-bed condition to a fixed-bed one (and vice versa) occurs at a sharp interface across which the relevant system of partial differential equations changes abruptly. This leads to the possibility of conceiving a new type of Riemann Problem (RP), which we have called Composite Riemann Problem (CRP), where not only the initial constant values of the variables but also the system of equations change from left to right of a discontinuity. In this paper, we present a strategy for solving a CRP by reducing it to a standard RP of a single, composite system of equations. This can be obtained by combining the two original systems by means of a suitable weighting function, namely the erodibility variable, and the introduction of an appropriate differential equation for this quantity. In this way, the CRP problem can be analyzed theoretically with standard methods, and the features of the solutions can be clearly identified. In particular, a stationary contact wave is able to correctly describe the sharp transition between mobile- and fixed-bed conditions. A finite volume scheme based on the Multiple Averages Generalized Roe approach (Rosatti and Begnudelli (2013) [22]) was used to numerically solve the fixed-mobile CRP. Several test cases demonstrate the effectiveness, exact well balanceness and high accuracy of the scheme when applied to problems that fall within the physical range of applicability of the relevant mathematical model.
Mathematical and Numerical Modeling in Maritime Geomechanics
Directory of Open Access Journals (Sweden)
Miguel Martín Stickle
2012-04-01
Full Text Available A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,... combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the overning equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism.
Rotationally symmetric numerical solutions to the sine-Gordon equation
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1981-01-01
We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves. Expanding ring waves either exhibit a return effect or expand towards...
Numerical solution of the multichannel scattering problem
International Nuclear Information System (INIS)
Korobov, V.I.
1992-01-01
A numerical algorithm for solving the multichannel elastic and inelastic scattering problem is proposed. The starting point is the system of radial Schroedinger equations with linear boundary conditions imposed at some point R=R m placed somewhere in asymptotic region. It is discussed how the obtained linear equation can be splitted into a zero-order operator and its pertturbative part. It is shown that Lentini - Pereyra variable order finite-difference method appears to be very suitable for solving that kind of problems. The derived procedure is applied to dμ+t→tμ+d inelastic scattering in the framework of the adiabatic multichannel approach. 19 refs.; 1 fig.; 1 tab
Numerical modelling of mine workings.
CSIR Research Space (South Africa)
Lightfoot, N
1999-03-01
Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...
Numerical modeling of economic uncertainty
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2007-01-01
Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...... are made between alternative modeling methods, and characteristics of the methods are discussed....
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Numerical solution of ordinary differential equations
Lapidus, Leon
1971-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
On numerical solution of Burgers' equation by homotopy analysis method
International Nuclear Information System (INIS)
Inc, Mustafa
2008-01-01
In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions
Solution of Milne problem by Laplace transformation with numerical inversion
International Nuclear Information System (INIS)
Campos Velho, H.F. de.
1987-12-01
The Milne problem for monoenergetic neutrons, by Laplace Transform of the neutron transport integral equation with numerical inversion of the transformed solution by gaussian quadrature, using the fatorization of the dispersion function. The resulted is solved compared its analitical solution. (author) [pt
Numerical solution of electrostatic problems of the accelerator project VICKSI
International Nuclear Information System (INIS)
Janetzki, U.
1975-03-01
In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de
Numerical Modeling of Shoreline Undulations
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg
model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... of the feature and under predicts the migration speeds of the features. On the second shoreline, the shoreline model predicts undulations lengths which are longer than the observed undulations. Lastly the thesis considers field measurements of undulations of the bottom bathymetry along an otherwise straight...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...
Numerical solution of non-linear diffusion problems
International Nuclear Information System (INIS)
Carmen, A. del; Ferreri, J.C.
1998-01-01
This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs
On the numerical solution of the neutron fractional diffusion equation
International Nuclear Information System (INIS)
Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto
2014-01-01
Highlights: • The new version of neutron diffusion equation which established on the fractional derivatives is presented. • The Neutron Fractional Diffusion Equation (NFDE) is solved in the finite differences frame. • NFDE is solved using shifted Grünwald-Letnikov definition of fractional operators. • The results show that “K eff ” strongly depends on the order of fractional derivative. - Abstract: In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation (NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary exponent of differential operators. In this work a numerical solution of the NFDE is presented using shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is validated with some numerical experiments where different orders of fractional derivative are considered (e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (K eff ) depends strongly on the order of fractional derivative
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
Directory of Open Access Journals (Sweden)
Hamidreza Rezazadeh
2014-05-01
Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.
Numerical modelling in material physics
International Nuclear Information System (INIS)
Proville, L.
2004-12-01
The author first briefly presents his past research activities: investigation of a dislocation sliding in solid solution by molecular dynamics, modelling of metal film growth by phase field and Monte Carlo kinetics, phase field model for surface self-organisation, phase field model for the Al 3 Zr alloy, calculation of anharmonic photons, mobility of bipolarons in superconductors. Then, he more precisely reports the mesoscopic modelling in phase field, and some atomistic modelling (dislocation sliding, Monte Carlo simulation of metal surface growth, anharmonic network optical spectrum modelling)
Constructing exact symmetric informationally complete measurements from numerical solutions
Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne
2018-04-01
Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.
Case studies in the numerical solution of oscillatory integrals
International Nuclear Information System (INIS)
Adam, G.
1992-06-01
A numerical solution of a number of 53,249 test integrals belonging to nine parametric classes was attempted by two computer codes: EAQWOM (Adam and Nobile, IMA Journ. Numer. Anal. (1991) 11, 271-296) and DO1ANF (Mark 13, 1988) from the NAG library software. For the considered test integrals, EAQWOM was found to be superior to DO1ANF as it concerns robustness, reliability, and friendly user information in case of failure. (author). 9 refs, 3 tabs
Numerical simulation of Higgs models
International Nuclear Information System (INIS)
Jaster, A.
1995-10-01
The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)
Mathematical modelling and numerical simulation of casting processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri
1998-01-01
The control volume method applied to numerical modelling of castning. Analytical solutions based on the error function.Riemann-temperature. Modelling of release of latent heat with the enthalpy method....
Efficient numerical solution to vacuum decay with many fields
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali; Olum, Ken D.; Shlaer, Benjamin, E-mail: ali@cosmos.phy.tufts.edu, E-mail: kdo@cosmos.phy.tufts.edu, E-mail: shlaer@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2017-01-01
Finding numerical solutions describing bubble nucleation is notoriously difficult in more than one field space dimension. Traditional shooting methods fail because of the extreme non-linearity of field evolution over a macroscopic distance as a function of initial conditions. Minimization methods tend to become either slow or imprecise for larger numbers of fields due to their dependence on the high dimensionality of discretized function spaces. We present a new method for finding solutions which is both very efficient and able to cope with the non-linearities. Our method directly integrates the equations of motion except at a small number of junction points, so we do not need to introduce a discrete domain for our functions. The method, based on multiple shooting, typically finds solutions involving three fields in around a minute, and can find solutions for eight fields in about an hour. We include a numerical package for Mathematica which implements the method described here.
Numerical solution of distributed order fractional differential equations
Katsikadelis, John T.
2014-02-01
In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.
New numerical method for solving the solute transport equation
International Nuclear Information System (INIS)
Ross, B.; Koplik, C.M.
1978-01-01
The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste
Numerical solution of the resistive magnetohydrodynamic boundary-layer equations
International Nuclear Information System (INIS)
Glasser, A.H.; Jardin, S.C.; Tesauro, G.
1983-10-01
Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability
Numerical models of planetary dynamos
International Nuclear Information System (INIS)
Glatzmaier, G.A.; Roberts, P.H.
1992-01-01
We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields
Comparing numerical methods for the solutions of the Chen system
International Nuclear Information System (INIS)
Noorani, M.S.M.; Hashim, I.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.
2007-01-01
In this paper, the Adomian decomposition method (ADM) is applied to the Chen system which is a three-dimensional system of ODEs with quadratic nonlinearities. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the classical fourth-order Runge-Kutta (RK4) numerical solutions are made. In particular we look at the accuracy of the ADM as the Chen system changes from a non-chaotic system to a chaotic one. To highlight some computational difficulties due to a high Lyapunov exponent, a comparison with the Lorenz system is given
On mesh refinement and accuracy of numerical solutions
Zhou, Hong; Peters, Maria; van Oosterom, Adriaan
1993-01-01
This paper investigates mesh refinement and its relation with the accuracy of the boundary element method (BEM) and the finite element method (FEM). TO this end an isotropic homogeneous spherical volume conductor, for which the analytical solution is available, wag used. The numerical results
The Numerical Solution of an Abelian Ordinary Differential Equation ...
African Journals Online (AJOL)
In this paper we present a relatively new technique call theNew Hybrid of Adomian decomposition method (ADM) for solution of an Abelian Differential equation. The numerical results of the equation have been obtained in terms of convergent series with easily computable component. These methods are applied to solve ...
Numerical Solution of Differential Algebraic Equations and Applications
DEFF Research Database (Denmark)
Thomsen, Per Grove
2005-01-01
These lecture notes have been written as part of a special course on the numerical solution of Differential Algebraic Equations and applications . The course was held at IMM in the spring of 2005. The authors of the different chapters have all taken part in the course and the chapters are written...
Numerical solution of field theories using random walks
International Nuclear Information System (INIS)
Barnes, T.; Daniell, G.J.
1985-01-01
We show how random walks in function space can be employed to evaluate field theoretic vacuum expectation values numerically. Specific applications which we study are the two-point function, mass gap, magnetization and classical solutions. This technique offers the promise of faster calculations using less computer memory than current methods. (orig.)
Plasma modelling and numerical simulation
International Nuclear Information System (INIS)
Van Dijk, J; Kroesen, G M W; Bogaerts, A
2009-01-01
Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)
Numerical Solution of Stochastic Nonlinear Fractional Differential Equations
El-Beltagy, Mohamed A.; Al-Juhani, Amnah
2015-01-01
Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.
Numerical Solution of Stochastic Nonlinear Fractional Differential Equations
El-Beltagy, Mohamed A.
2015-01-07
Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.
Energy Technology Data Exchange (ETDEWEB)
Nourtier-Mazauric, E.
2003-03-15
This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)
Kheyfets, Vitaly O; Kieweg, Sarah L
2013-06-01
HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery.
Numerical modelling of steel arc welding
International Nuclear Information System (INIS)
Hamide, M.
2008-07-01
Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)
Numerical model of thyroid counter
Directory of Open Access Journals (Sweden)
Szuchta Maciej
2016-03-01
Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Comprehensive numerical modelling of tokamaks
International Nuclear Information System (INIS)
Cohen, R.H.; Cohen, B.I.; Dubois, P.F.
1991-01-01
We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell
Numerical solution of a flow inside a labyrinth seal
Directory of Open Access Journals (Sweden)
Šimák Jan
2012-04-01
Full Text Available The aim of this study is a behaviour of a ﬂow inside a labyrinth seal on a rotating shaft. The labyrinth seal is a type of a non-contact seal where a leakage of a ﬂuid is prevented by a rather complicated path, which the ﬂuid has to overcome. In the presented case the sealed medium is the air and the seal is made by a system of 20 teeth on a rotating shaft situated against a smooth static surface. Centrifugal forces present due to the rotation of the shaft create vortices in each chamber and thus dissipate the axial velocity of the escaping air.The structure of the ﬂow ﬁeld inside the seal is studied through the use of numerical methods. Three-dimensional solution of the Navier-Stokes equations for turbulent ﬂow is very time consuming. In order to reduce the computational time we can simplify our problem and solve it as an axisymmetric problem in a two-dimensional meridian plane. For this case we use a transformation of the Navier-Stokes equations and of the standard k-omega turbulence model into a cylindrical coordinate system. A ﬁnite volume method is used for the solution of the resulting problem. A one-side modiﬁcation of the Riemann problem for boundary conditions is used at the inlet and at the outlet of the axisymmetric channel. The total pressure and total density (temperature are to be used preferably at the inlet whereas the static pressure is used at the outlet for the compatibility. This idea yields physically relevant boundary conditions. The important characteristics such as a mass ﬂow rate and a power loss, depending on a pressure ratio (1.1 - 4 and an angular velocity (1000 - 15000 rpm are evaluated.
Spurious solutions in few-body equations. II. Numerical investigations
International Nuclear Information System (INIS)
Adhikari, S.K.
1979-01-01
A recent analytic study of spurious solutions in few-body equations by Adhikari and Gloeckle is here complemented by numerical investigations. As proposed by Adhikari and Gloeckle we study numerically the spurious solutions in the three-body Weinberg type equations and draw some general conclusions about the existence of spurious solutions in three-body equations with the Weinberg kernel and in other few-body formulations. In particular we conclude that for most of the potentials we encounter in problems of nuclear physics the three-body Weinberg type equation will not have a spurious solution which may interfere with the bound state or scattering calculation. Hence, if proven convenient, the three-body Weinberg type equation can be used in practical calculations. The same conclusion is true for the three-body channel coupling array scheme of Kouri, Levin, and Tobocman. In the case of the set of six coupled four-body equations proposed by Rosenberg et al. and the set of the Bencze-Redish-Sloan equations a careful study of the possible spurious solutions is needed before using these equations in practical calculations
Numerical Modeling of Microelectrochemical Systems
DEFF Research Database (Denmark)
Adesokan, Bolaji James
incorporates the finite size of ionic species in the transport equation. The model presents a more appropriate boundary conditions which describe the modified Butler-Volmer reaction kinetics and account for the surface capacitance of the thin electric double layer. We also have found analytical solution...... at the electrode in a microelectrochemical system. In our analysis, we account for the finite size properties of ions in the mass and the charge transport of ionic species in an electrochemical system. This term characterizes the saturation of the ionic species close to the electrode surface. We then analyse......The PhD dissertation is concerned with mathematical modeling and simulation of electrochemical systems. The first three chapters of the thesis consist of the introductory part, the model development chapter and the chapter on the summary of the main results. The remaining three chapters report...
Numerical Modeling of Ocean Circulation
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Energy Technology Data Exchange (ETDEWEB)
Molinero, J.; Samper, J.
2003-07-01
Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding
Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil
Directory of Open Access Journals (Sweden)
Slouka Martin
2016-01-01
Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.
Numerical Modelling Of Pumpkin Balloon Instability
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Numerical modelling of fuel sprays
Energy Technology Data Exchange (ETDEWEB)
Bergstroem, C.
1999-06-01
The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs
A numerical guide to the solution of the bidomain equations of cardiac electrophysiology
Pathmanathan, Pras
2010-06-01
Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.
A numerical guide to the solution of the bidomain equations of cardiac electrophysiology
Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Garny, Alan; Pitt-Francis, Joe M.; Whiteley, Jonathan P.; Gavaghan, David J.
2010-01-01
Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.
Numerical solution for identification of feedback coefficients in nuclear reactors
International Nuclear Information System (INIS)
Ebizuka, Yoshie; Sakai, Hideo
1975-01-01
Quasilinearization technique was studied to determine the Kinetic parameters of nuclear reactors. The method of solution was generalized to the determination of the parameters contained in a nonlinear system with nonlinear boundary conditions. A computer program, SNR-3, was developed to solve the resulting nonlinear two-point boundary value equations with generalized boundary conditions. In this paper, the problem formulation and the method of solution are explained for a general type of time dependent problem. A flow chart shows the procedure of numerical solution. The method was then applied to the determination of the critical factor and the reactivity feedback coefficients of reactors to investigate the accuracy and the applicability of the present method. The results showed that the present method was considerably successful, but that the random observation error effected the results of the identification. (Aoki, K.)
Some Numerical Aspects on Crowd Motion - The Hughes Model
Gomes, Diogo A.
2016-01-06
Here, we study a crowd model proposed by R. Hughes in [5] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solution. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two numerical examples.
2nd International Workshop on the Numerical Solution of Markov Chains
1995-01-01
Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.
Random ordinary differential equations and their numerical solution
Han, Xiaoying
2017-01-01
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor ...
The numerical solution of ICRF fields in axisymmetric mirrors
International Nuclear Information System (INIS)
Phillips, M.W.; Todd, A.M.M.
1986-01-01
The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)
A Numerical Model for Trickle Bed Reactors
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
CSR Fields: Direct Numerical Solution of the Maxwell's Equation
International Nuclear Information System (INIS)
Novokhatski, Alexander
2011-01-01
We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).
Numerical solution of modified differential equations based on symmetry preservation.
Ozbenli, Ersin; Vedula, Prakash
2017-12-01
In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.
Numerical solution of the Schroedinger equation with a polynomial potential
International Nuclear Information System (INIS)
Campoy, G.; Palma, A.
1986-01-01
A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables
A note on numerical solution to the problem of criticality
International Nuclear Information System (INIS)
Kyncl, J.
2002-01-01
The contribution deals with numerical solution to the problem of criticality for neutron transport equation by the external source iteration method. Especially, the speed of convergence is examined. It is shown that if neutron absorption in the medium considered is high and if the space region occupied by the medium is large then a slow convergence of the iterations can be expected. This expectation is confirmed by results to CB4 benchmark obtained by MCNP code. Besides the results presented some questions concerning applications of them to criticality calculations are pointed out (Author)
Numerical solutions of differential equations of an ionization chamber
International Nuclear Information System (INIS)
Novkovic, D.; Tomasevic, M.; Subotic, K.; Manic, S.
1998-01-01
A system of reduced differential equations generally valid for plane-parallel, cylindrical, and spherical ionization chambers filled with air, which is appropriate for numerical solution, has been derived. The system has been solved for all three geometries. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO 2 were also in good agreement with the experimental data of Moriuchi et al (author)
Soil remediation by heat injection: Experiments and numerical modelling
Energy Technology Data Exchange (ETDEWEB)
Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others
1995-03-01
In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
Directory of Open Access Journals (Sweden)
Valášek J.
2016-01-01
Full Text Available The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE is used. The whole problem is solved by the finite element method (FEM based solver. Results of numerical experiments with different boundary conditions are presented.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Conceptual and Numerical Models for UZ Flow and Transport
International Nuclear Information System (INIS)
Liu, H.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models
Numerical solution of singularity-perturbed two-point boundary-value problems
International Nuclear Information System (INIS)
Masenge, R.W.P.
1993-07-01
Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab
Numerical solution of kinetics equation for point defects accumulation in metals under irradiation
International Nuclear Information System (INIS)
Aldzhambekova, G.T.; Iskakov, B.M.
1999-01-01
In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out
Keslerová, Radka; Trdlička, David
2015-09-01
This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.
Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations
Park, Chan-Hee; Aral, Mustafa M.
2007-06-01
In this paper the Elder problem is studied with the purpose of evaluating the inherent instabilities associated with the numerical solution of this problem. Our focus is first on the question of the existence of a unique numerical solution for this problem, and second on the grid density and fluid density requirements necessary for a unique numerical solution. In particular we have investigated the instability issues associated with the numerical solution of the Elder problem from the following perspectives: (i) physical instability issues associated with density differences; (ii) sensitivity of the numerical solution to idealization irregularities; and, (iii) the importance of a precise velocity field calculation and the association of this process with the grid density levels that is necessary to solve the Elder problem accurately. In the study discussed here we have used a finite element Galerkin model we have developed for solving density-dependent flow and transport problems, which will be identified as TechFlow. In our study, the numerical results of Frolkovič and de Schepper [Frolkovič, P. and H. de Schepper, 2001. Numerical modeling of convection dominated transport coupled with density-driven flow in porous media, Adv. Water Resour., 24, 63-72.] were replicated using the grid density employed in their work. We were also successful in duplicating the same result with a less dense grid but with more computational effort based on a global velocity estimation process we have adopted. Our results indicate that the global velocity estimation approach recommended by Yeh [Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in finite element modelling of groundwater flow, Water Resour. Res., 17(5), 1529-1534.] allows the use of less dense grids while obtaining the same accuracy that can be achieved with denser grids. We have also observed that the regularity of the elements in the discretization of the solution domain does make a difference
Criteria for the reliability of numerical approximations to the solution of fluid flow problems
International Nuclear Information System (INIS)
Foias, C.
1986-01-01
The numerical approximation of the solutions of fluid flows models is a difficult problem in many cases of energy research. In all numerical methods implementable on digital computers, a basic question is if the number N of elements (Galerkin modes, finite-difference cells, finite-elements, etc.) is sufficient to describe the long time behavior of the exact solutions. It was shown using several approaches that some of the estimates based on physical intuition of N are rigorously valid under very general conditions and follow directly from the mathematical theory of the Navier-Stokes equations. Among the mathematical approaches to these estimates, the most promising (which can be and was already applied to many other dissipative partial differential systems) consists in giving upper estimates to the fractal dimension of the attractor associated to one (or all) solution(s) of the respective partial differential equations. 56 refs
Numerical modeling of slow shocks
International Nuclear Information System (INIS)
Winske, D.
1987-01-01
This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs
Numerical modeling capabilities to predict repository performance
International Nuclear Information System (INIS)
1979-09-01
This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used
Directory of Open Access Journals (Sweden)
Andrea Lani
2006-01-01
Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.
Six-dimensional localized black holes: Numerical solutions
International Nuclear Information System (INIS)
Kudoh, Hideaki
2004-01-01
To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
Numerical Modelling of Electrical Discharges
International Nuclear Information System (INIS)
Durán-Olivencia, F J; Pontiga, F; Castellanos, A
2014-01-01
The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way
Multiresolution strategies for the numerical solution of optimal control problems
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
Numerical and analytical solutions for problems relevant for quantum computers
International Nuclear Information System (INIS)
Spoerl, Andreas
2008-01-01
Quantum computers are one of the next technological steps in modern computer science. Some of the relevant questions that arise when it comes to the implementation of quantum operations (as building blocks in a quantum algorithm) or the simulation of quantum systems are studied. Numerical results are gathered for variety of systems, e.g. NMR systems, Josephson junctions and others. To study quantum operations (e.g. the quantum fourier transform, swap operations or multiply-controlled NOT operations) on systems containing many qubits, a parallel C++ code was developed and optimised. In addition to performing high quality operations, a closer look was given to the minimal times required to implement certain quantum operations. These times represent an interesting quantity for the experimenter as well as for the mathematician. The former tries to fight dissipative effects with fast implementations, while the latter draws conclusions in the form of analytical solutions. Dissipative effects can even be included in the optimisation. The resulting solutions are relaxation and time optimised. For systems containing 3 linearly coupled spin (1)/(2) qubits, analytical solutions are known for several problems, e.g. indirect Ising couplings and trilinear operations. A further study was made to investigate whether there exists a sufficient set of criteria to identify systems with dynamics which are invertible under local operations. Finally, a full quantum algorithm to distinguish between two knots was implemented on a spin(1)/(2) system. All operations for this experiment were calculated analytically. The experimental results coincide with the theoretical expectations. (orig.)
International Nuclear Information System (INIS)
Kaya, Dogan; El-Sayed, Salah M.
2003-01-01
In this Letter we present an Adomian's decomposition method (shortly ADM) for obtaining the numerical soliton-like solutions of the potential Kadomtsev-Petviashvili (shortly PKP) equation. We will prove the convergence of the ADM. We obtain the exact and numerical solitary-wave solutions of the PKP equation for certain initial conditions. Then ADM yields the analytic approximate solution with fast convergence rate and high accuracy through previous works. The numerical solutions are compared with the known analytical solutions
Numerical treatment of compartment models
International Nuclear Information System (INIS)
Einarsson, B.
1984-11-01
This report describes and interactive program RADIO (Radioactive Decay Information Online) for studying the radioactive decay process, with applications to many ecological problems, but not necessarily involving radioactive processes. Starting with the compartment coefficients and initial values of the various compartments the problem is solved as a system of linear ordinary differential equations. The method of solution is the direct use of matrix exponentials or the backward differences method. A program INVERS is also available for the solution of the inverse problem, that is parameter estimation in a system of linear ordinary differential equations when the solution is available pointwise. The output can be printed on a line printer either from a result file or from the plot file, which of course also can be used to produce graphic output. The plot file is processed by the plotting program VISION or by the auxiliary printing program RADAR. Another file can be used for a later restart from the point of time where the previous computation was aborted or from an arbitrary point of time if the relevant starting information is available. This is useful in order to avoid the manual input of a compartment matrix if it is similar to one used before. When the program RADIO is run the user answers to the question asked by the program. The programs are written in Fortran 77 for the Digital Equipment VAX 11 with graphical presentation on a Tektronix 4010, and are available from the author. (Author)
Directory of Open Access Journals (Sweden)
Marina Popolizio
2018-01-01
Full Text Available Multiterm fractional differential equations (MTFDEs nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.
Numerical modelling approach for mine backfill
Indian Academy of Sciences (India)
Muhammad Zaka Emad
2017-07-24
Jul 24, 2017 ... conditions. This paper discusses a numerical modelling strategy for modelling mine backfill material. The .... placed in an ore pass that leads the ore to the ore bin and crusher, from ... 1 year, depending on the mine plan.
International Nuclear Information System (INIS)
Colombant, Denis; Manheimer, Wallace
2010-01-01
Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.
New Numerical Solution of von Karman Equation of Lengthwise Rolling
Directory of Open Access Journals (Sweden)
Rudolf Pernis
2015-01-01
Full Text Available The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a by polygonal curve and (b by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.
Numerical solutions of ICRF fields in axisymmetric mirrors
International Nuclear Information System (INIS)
Phillips, M.W.
1985-01-01
The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown
Numerical modelling of reflood processes
International Nuclear Information System (INIS)
Glynn, D.R.; Rhodes, N.; Tatchell, D.G.
1983-01-01
The use of a detailed computer model to investigate the effects of grid size and the choice of wall-to-fluid heat-transfer correlations on the predictions obtained for reflooding of a vertical heated channel is described. The model employs equations for the momentum and enthalpy of vapour and liquid and hence accounts for both thermal non-equilibrium and slip between the phases. Empirical correlations are used to calculate interphase and wall-to-fluid friction and heat-transfer as functions of flow regime and local conditions. The empirical formulae have remained fixed with the exception of the wall-to-fluid heat-transfer correlations. These have been varied according to the practices adopted in other computer codes used to model reflood, namely REFLUX, RELAP and TRAC. Calculations have been performed to predict the CSNI standard problem number 7, and the results are compared with experiment. It is shown that the results are substantially grid-independent, and that the choice of correlation has a significant influence on the general flow behaviour, the rate of quenching and on the maximum cladding temperature predicted by the model. It is concluded that good predictions of reflooding rates can be obtained with particular correlation sets. (author)
Directory of Open Access Journals (Sweden)
Lin Li
2014-01-01
Full Text Available A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution was shown. The conditions under which the model admits a periodic solution and the conditions under which the zero solution is globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of snails for the control of schistosomiasis.
Milne, a routine for the numerical solution of Milne's problem
Rawat, Ajay; Mohankumar, N.
2010-11-01
The routine Milne provides accurate numerical values for the classical Milne's problem of neutron transport for the planar one speed and isotropic scattering case. The solution is based on the Case eigen-function formalism. The relevant X functions are evaluated accurately by the Double Exponential quadrature. The calculated quantities are the extrapolation distance and the scalar and the angular fluxes. Also, the H function needed in astrophysical calculations is evaluated as a byproduct. Program summaryProgram title: Milne Catalogue identifier: AEGS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 701 No. of bytes in distributed program, including test data, etc.: 6845 Distribution format: tar.gz Programming language: Fortran 77 Computer: PC under Linux or Windows Operating system: Ubuntu 8.04 (Kernel version 2.6.24-16-generic), Windows-XP Classification: 4.11, 21.1, 21.2 Nature of problem: The X functions are integral expressions. The convergence of these regular and Cauchy Principal Value integrals are impaired by the singularities of the integrand in the complex plane. The DE quadrature scheme tackles these singularities in a robust manner compared to the standard Gauss quadrature. Running time: The test included in the distribution takes a few seconds to run.
Recent advances in numerical modeling of detonations
Energy Technology Data Exchange (ETDEWEB)
Mader, C.L.
1986-12-01
Three lectures were presented on recent advances in numerical modeling detonations entitled (1) Jet Initiation and Penetration of Explosives; (2) Explosive Desensitization by Preshocking; (3) Inert Metal-Loaded Explosives.
A numerical reference model for themomechanical subduction
DEFF Research Database (Denmark)
Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola
2010-01-01
Building an advanced numerical model of subduction requires choosing values for various geometrical parameters and material properties, among others, the initial lithosphere thicknesses, representative lithological types and their mechanical and thermal properties, rheologies, initial temperature...
Other relevant numerical modelling papers
International Nuclear Information System (INIS)
Chartier, M.
1989-01-01
The ocean modelling is a rapidly evolving science and a large number of results have been published. Several categories of papers are of particular interest for this review: the papers published by the international atomic institutions, such as the NEA (for the CRESP or Subseabed Programs), the IAEA (for example the Safety Series, the Technical Report Series or the TECDOC), and the ICRP, and the papers concerned by more fundamental research, which are published in specific scientific literature. This paper aims to list some of the most relevant publications for the CRESP purposes. It means by no way to be exhaustive, but informative on the incontestable progress recently achieved in that field. One should note that some of these papers are so recent that their final version has not yet been published
Numerical investigation of the recruitment process in open marine population models
International Nuclear Information System (INIS)
Angulo, O; López-Marcos, J C; López-Marcos, M A; Martínez-Rodríguez, J
2011-01-01
The changes in the dynamics, produced by the recruitment process in an open marine population model, are investigated from a numerical point of view. The numerical method considered, based on the representation of the solution along the characteristic lines, approximates properly the steady states of the model, and is used to analyze the asymptotic behavior of the solutions of the model
Numerical modelling of elastic space tethers
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.
2012-01-01
In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermo....... It is also shown that on the slow manifold the dynamics of the satellites are well-approximated by the finite dimensional slack-spring model....
Numerical solution of compressible flow equations inside an ejector
International Nuclear Information System (INIS)
Omid khah, M. R.; Navid Famili, M. H.; Jalili Keshtiban, E.
2002-01-01
Ejector is important equipment in the chemical industry. It is mainly used for vaccuming and mixing of flows. In the present work a computer modeling of the flow inside an ejector is used to give a better understanding of the principle of the operation of an ejector. Since the fluid inside an ejector passes through subsonic, sonic and supersonic regimens, the pressure field is used as the controlling variable and the density is found through the constitutive equations. The control volume method with a co-location grid, attached to the boundary is used to discretize the domain. The overall solution is obtained by the SIMPLEC method and to dissociate the pressure and the velocity grid Rhie-Chow interpolation method is employed. A central difference approximation method is used to approximate the density on the elements borders and the upwind approximation is used to correct the density correction factors. Both upwind, quick and minimum gradient methods were used to approximate the momentum variables on the control volumes. The resultant matrices are solved with the tri-diagonal method. The accuracy of the model is checked by simulating a flow regiment in a converging-diverging nozzle, and comparing the results with the available experimental data. The results show that for an inviscid the first order approximation produce as an accurate results as the higher order approximations while it has a better stability. However, for the viscous fluid the second order approximation produces a better understanding of the physics of the problem. The solution also showes that the flow field inside an ejector is a complex one and the shock wave has a great influence on the pressure field especially close to the walls. The upper convective quick method did not converge well in the shock calculations while the slowest descent method had a very stable behavior in the analysis of the shock behavior
Numerical models of groundwater flow and transport
International Nuclear Information System (INIS)
Konikow, L.F.
1996-01-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs
Numerical models of groundwater flow and transport
Energy Technology Data Exchange (ETDEWEB)
Konikow, L F [Geological Survey, Reston, VA (United States)
1996-10-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Analytical and numerical modeling of sandbanks dynamics
Idier, Deborah; Astruc, Dominique
2003-01-01
Linear and nonlinear behavior of large-scale underwater bedform patterns like sandbanks are studied using linear stability analysis and numerical modeling. The model is based on depth-integrated hydrodynamics equations with a quadratic bottom friction law and a bed load sediment transport model
Numerical 3-D Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.
2008-01-01
-dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when...
The numerical solution of boundary value problems over an infinite domain
International Nuclear Information System (INIS)
Shepherd, M.; Skinner, R.
1976-01-01
A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail
Discrete convolution-operators and radioactive disintegration. [Numerical solution
Energy Technology Data Exchange (ETDEWEB)
Kalla, S L; VALENTINUZZI, M E [UNIVERSIDAD NACIONAL DE TUCUMAN (ARGENTINA). FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA
1975-08-01
The basic concepts of discrete convolution and discrete convolution-operators are briefly described. Then, using the discrete convolution - operators, the differential equations associated with the process of radioactive disintegration are numerically solved. The importance of the method is emphasized to solve numerically, differential and integral equations.
Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
Kumar, Dinesh; Kumar, P; Rai, K N
2017-11-01
This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.
Numeric databases on the kinetics of transient species in solution
International Nuclear Information System (INIS)
Helman, W.P.; Hug, G.L.; Carmichael, Ian; Ross, A.B.
1988-01-01
A description is given of data compilations on the kinetics of transient species in solution. In particular information is available for the reactions of radicals in aqueous solution and for excited states such as singlet molecular oxygen and those of metal complexes in solution. Methods for compilation and use of the information in computer-readable form are also described. Emphasis is placed on making the database available for online searching. (author)
Numerical solution of the kinetic equation in reactor shielding
International Nuclear Information System (INIS)
Germogenova, T.A.
1975-01-01
A review is made of methods of solving marginal problems of multi-group systems of equations of neutron and γ radiation transfer. The first stage of the solution - the quantification of the basic task, is determined by the qualitative behaviour of the solution - is the nature of its performance and asymptotics. In the second stage - solution of the approximating system, various modifications of the iterative method are as a rule used. A description is given of the features of the major Soviet complexes of programmes (ROZ and RADUGA) for the solution of multi-group systems of transfer equations and some methodological research findings are presented. (author)
Comparing numerically exact and modelled static friction
Directory of Open Access Journals (Sweden)
Krengel Dominik
2017-01-01
Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
Numerical methods and modelling for engineering
Khoury, Richard
2016-01-01
This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...
Numerical solutions of the N-body problem
International Nuclear Information System (INIS)
Marciniak, A.
1985-01-01
Devoted to the study of numerical methods for solving the general N-body problem and related problems, this volume starts with an overview of the conventional numerical methods for solving the initial value problem. The major part of the book contains original work and features a presentation of special numerical methods conserving the constants of motion in the general N-body problem and methods conserving the Jacobi constant in the problem of motion of N bodies in a rotating frame, as well as an analysis of the applications of both (conventional and special) kinds of methods for solving these problems. For all the methods considered, the author presents algorithms which are easily programmable in any computer language. Moreover, the author compares various methods and presents adequate numerical results. The appendix contains PL/I procedures for all the special methods conserving the constants of motion. 91 refs.; 35 figs.; 41 tabs
Calibration and verification of numerical runoff and erosion model
Directory of Open Access Journals (Sweden)
Gabrić Ognjen
2015-01-01
Full Text Available Based on the field and laboratory measurements, and analogous with development of computational techniques, runoff and erosion models based on equations which describe the physics of the process are also developed. Based on the KINEROS2 model, this paper presents basic modelling principles of runoff and erosion processes based on the St. Venant's equations. Alternative equations for friction calculation, calculation of source and deposition elements and transport capacity are also shown. Numerical models based on original and alternative equations are calibrated and verified on laboratory scale model. According to the results, friction calculation based on the analytic solution of laminar flow must be included in all runoff and erosion models.
On the Hughes model and numerical aspects
Gomes, Diogo A.; Machado Velho, Roberto
2017-01-01
We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori
Periodic solutions of nonautonomous differential systems modeling obesity population
Energy Technology Data Exchange (ETDEWEB)
Arenas, Abraham J. [Departamento de Matematicas y Estadistica, Universidad de Cordoba Monteria (Colombia)], E-mail: aarenas@sinu.unicordoba.edu.co; Gonzalez-Parra, Gilberto [Departamento de Calculo, Universidad de los Andes, Merida (Venezuela, Bolivarian Republic of)], E-mail: gcarlos@ula.ve; Jodar, Lucas [Instituto de Matematica Multidisciplinar, Universidad Politecnica de Valencia Edificio 8G, 2o, 46022 Valencia (Spain)], E-mail: ljodar@imm.upv.es
2009-10-30
In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.
Periodic solutions of nonautonomous differential systems modeling obesity population
International Nuclear Information System (INIS)
Arenas, Abraham J.; Gonzalez-Parra, Gilberto; Jodar, Lucas
2009-01-01
In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.
Numerical Solution of Magnetostatic Field of Maglev System
Directory of Open Access Journals (Sweden)
Jaroslav Sobotka
2008-01-01
Full Text Available The paper deals with the design of the levitation and guidance system of the levitation train Transrapid 08 by means of QuickField 5.0 – a 2D program formagnetic electromagnetic fields solutions.
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China. 2 Department of ... exact solution of fuzzy first-order boundary value problems. (BVPs). ...... edge partial financial support by the Ministerio de Economıa.
Fundamentals of Numerical Modelling of Casting Processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper
Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...
Numerical modeling techniques for flood analysis
Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.
2016-12-01
Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Numerical Methods for Solution of the Extended Linear Quadratic Control Problem
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog
2012-01-01
In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....
Numerical solution of pipe flow problems for generalized Newtonian fluids
International Nuclear Information System (INIS)
Samuelsson, K.
1993-01-01
In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)
numerical and numerical and experimental modeling of the static
African Journals Online (AJOL)
eobe
than that of the beam theory solution respectively. Verification of the software with published solutions is also conducted. The results from the developed ..... span L = 40 m is subjected to self-weight and eight point forces, which are symmetrical ...
WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method
Crevoisier, David; Voltz, Marc
2013-04-01
To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute
Basset force in numerical models of saltation
Czech Academy of Sciences Publication Activity Database
Lukerchenko, Nikolay; Dolanský, Jindřich; Vlasák, Pavel
2012-01-01
Roč. 60, č. 4 (2012), s. 277-287 ISSN 0042-790X R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : basset force * bed load transport * numerical model * particle-bed collision Subject RIV: BK - Fluid Dynamics Impact factor: 0.653, year: 2012
Thin sheet numerical modelling of continental collision
Jimenez-Munt, I.; Garcia-Gastellanos, D.; Fernandez, M.
2005-01-01
We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping
Numerical modeling of magma-repository interactions
Bokhove, Onno
2001-01-01
This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic
Graphical interpretation of numerical model results
International Nuclear Information System (INIS)
Drewes, D.R.
1979-01-01
Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.
Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason
2017-02-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.
A numerical solution for a toroidal plasma in equilibrium
International Nuclear Information System (INIS)
Hintz, E.; Sudano, J.P.
1982-01-01
The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt
Numerical Solution of Hamilton-Jacobi Equations in High Dimension
2012-11-23
high dimension FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA-Universita di Roma P. Aldo Moro, 2 00185 ROMA AH930...solution of Hamilton-Jacobi equations in high dimension AFOSR contract n. FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA
Analysis of the Numerical Solution of the Shallow Water Equations
National Research Council Canada - National Science Library
Hamrick, Thomas
1997-01-01
.... The two schemes are finite difference method (FDM) and the finite element method (FEM). After presenting the shallow water equations in several formulations, some examples will be presented. The use of the Fourier transform to find the solution of a semidiscrete analog of the shallow water equations is also demonstrated.
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
Numerical modelling in non linear fracture mechanics
Directory of Open Access Journals (Sweden)
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
NUMERICAL MODELING OF HARDENING OF UNINTERRUPTEDLY-CASTED BRONZE CASTING
Directory of Open Access Journals (Sweden)
E. I. Marukovich
2009-01-01
Full Text Available The three-dimensional numerical model for calculation of thermal fields during solidification of continuously casted bronze casting is developed. Coefficients of heat transfer on borders of calculation areas on the basis of the solution of inverse heat transfer conduction problem are determined. The analysis of thermal fields, depending on loop variables of drawing and the sizes of not cooled zone of crystallizer is curried out.
Numerical Modeling of a Wave Energy Point Absorber
DEFF Research Database (Denmark)
Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning
2009-01-01
The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....
Lectures on the Numerical Solution of Partial Differential Equations.
1981-12-01
Mathematics Rockefeller University Professor F. Brezzi New York, New York 10021 Laboratorio di Analisi Numerica Universita di Pavia Professor Amiram Harten...equations and to control the spacing of the points sj. In the MFE process the grid points move with the solution and cluster atound areas of roughness...149-159. [28] Fichera, G.: Analisi essistenziale per le soluzioni die problemi al contorno misti relativi alle equazione ed ai sistemi di equazioni
Hartree-Fock-Bogoliubov model: a theoretical and numerical perspective
International Nuclear Information System (INIS)
Paul, S.
2012-01-01
This work is devoted to the theoretical and numerical study of Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which is one of the main methods in nuclear physics. We first present the model and its main properties, and then explain how to get numerical solutions. We prove some convergence results, in particular for the simple fixed point algorithm (sometimes called Roothaan). We show that it converges, or oscillates between two states, none of them being a solution. This generalizes to the HFB case previous results of Cances and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following these authors, we also propose a relaxed constraint algorithm for which convergence is guaranteed. In the last part of the thesis, we illustrate the behavior of these algorithms by some numerical experiments. We first consider a system where the particles only interact through the Newton potential. Our numerical results show that the pairing matrix never vanishes, a fact that has not yet been proved rigorously. We then study a very simplified model for protons and neutrons in a nucleus. (author)
Numerical modeling of fires on gas pipelines
International Nuclear Information System (INIS)
Zhao Yang; Jianbo Lai; Lu Liu
2011-01-01
When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
The numerical solution of thawing process in phase change slab using variable space grid technique
Directory of Open Access Journals (Sweden)
Serttikul, C.
2007-09-01
Full Text Available This paper focuses on the numerical analysis of melting process in phase change material which considers the moving boundary as the main parameter. In this study, pure ice slab and saturated porous packed bed are considered as the phase change material. The formulation of partial differential equations is performed consisting heat conduction equations in each phase and moving boundary equation (Stefan equation. The variable space grid method is then applied to these equations. The transient heat conduction equations and the Stefan condition are solved by using the finite difference method. A one-dimensional melting model is then validated against the available analytical solution. The effect of constant temperature heat source on melting rate and location of melting front at various times is studied in detail.It is found that the nonlinearity of melting rate occurs for a short time. The successful comparison with numerical solution and analytical solution should give confidence in the proposed mathematical treatment, and encourage the acceptance of this method as useful tool for exploring practical problems such as forming materials process, ice melting process, food preservation process and tissue preservation process.
Numerical Solutions of the Complete Navier-Stokes Equations
Robinson, David F.; Hassan, H. A.
1997-01-01
This report details the development of a new two-equation turbulence closure model based on the exact turbulent kinetic energy k and the variance of vorticity, zeta. The model, which is applicable to three dimensional flowfields, employs one set of model constants and does not use damping or wall functions, or geometric factors.
Wind laws for shockless initialization. [numerical forecasting model
Ghil, M.; Shkoller, B.
1976-01-01
A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Numerical Modeling of Piezoelectric Transducers Using Physical Parameters
Cappon, H.; Keesman, K.J.
2012-01-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and
Numerical modeling in materials science and engineering
Rappaz, Michel; Deville, Michel
2003-01-01
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
A numerical dressing method for the nonlinear superposition of solutions of the KdV equation
International Nuclear Information System (INIS)
Trogdon, Thomas; Deconinck, Bernard
2014-01-01
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)
Infrared radiation parameterizations in numerical climate models
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Induction and direct resistance heating theory and numerical modeling
Lupi, Sergio; Aliferov, Aleksandr
2015-01-01
This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.
Numerical solution of three-dimensional magnetic differential equations
International Nuclear Information System (INIS)
Reiman, A.H.; Greenside, H.S.
1987-02-01
A computer code is described that solves differential equations of the form B . del f = h for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new algorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch-Schlueter currents for a stellarator
rights reserved Numerical Solution of the Differential Equation for ...
African Journals Online (AJOL)
ADOWIE PERE
2017-12-10
Dec 10, 2017 ... permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited ... The mathematical model has been used to describe ..... Prachin Buri Rice Research Center for historical.
NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-12-01
Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were
Advanced Numerical Model for Irradiated Concrete
Energy Technology Data Exchange (ETDEWEB)
Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Features of the Numerical Solution of Thermal Destruction Fuel Pins Problems in the Fast Reactor
Usov, E. V.; Butov, A. A.; Klimonov, I. A.; Chuhno, V. I.; Nikolaenko, A. V.; Zhdanov, V. S.; Pribaturin, N. A.; Strizhov, V. F.
2017-11-01
In this paper the description of the basic equations which can be used for calculation of melting of fuel and cladding of the fast reactor, moving of the melt on a fuel pin surface and its solidification is presented. The special attention is given speed of calculation algorithms and fidelity of the phenomena which are observed at a stage of severe accidents in fast reactors. For check of working capacity of initial models, numerical calculations of Stefan-type problems on front movement of melting/solidification in cylindrical geometry are presented. Comparison with the solutions received by known analytical methods is executed. For validation of the numerical realization of calculation algorithms the analysis is carried out and experiments in which melting of the model fuel pins of fast reactors was studied are chosen. On the basis of the chosen experiments calculation schemes taking into account initial and boundary conditions are prepared and modeling is performed. Modeling results are shown in the present paper. Estimation of calculation error of the basic physical parameters is done by results of the modeling and conclusions are drawn on a correctness of algorithms operation.
Numerical Analysis of Electromagnetic Fields in Multiscale Model
International Nuclear Information System (INIS)
Ma Ji; Fang Guang-You; Ji Yi-Cai
2015-01-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)
A quasilinear model for solute transport under unsaturated flow
International Nuclear Information System (INIS)
Houseworth, J.E.; Leem, J.
2009-01-01
We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Numerical modelling of methanol liquid pool fires
Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.
1999-12-01
The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.
Explicit appropriate basis function method for numerical solution of stiff systems
International Nuclear Information System (INIS)
Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling
2015-01-01
Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations
Fast numerical solution of KKR-CPA equations: Testing new algorithms
Energy Technology Data Exchange (ETDEWEB)
Bruno, E.; Florio, G.M.; Ginatempo, B.; Giuliano, E.S. (Universita di Messina (Italy))
1994-04-01
Some numerical methods for the solution of KKR-CPA equations are discussed and tested. New, efficient, computational algorithms are proposed, allowing a remarkable reduction of computing time and a good reliability in evaluating spectral quantities. 16 refs., 7 figs.
special algorithm for the numerical solution of system of initial value ...
African Journals Online (AJOL)
Nwokem et al.
Science World Journal Vol 12(No 4) 2017 ... Over the years, several researchers have considered the collocation method as a way of generating numerical solutions to ... study problems in mathematics, engineering, computer science and.
The secret to successful solute-transport modeling
Konikow, Leonard F.
2011-01-01
Modeling subsurface solute transport is difﬁcult—more so than modeling heads and ﬂows. The classical governing equation does not always adequately represent what we see at the ﬁeld scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex ﬁeld problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-ﬂow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efﬁciency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-ﬂow problems. However, numerical errors can be kept within acceptable limits if sufﬁcient computational effort is expended. But impractically long
Numerical solution of incompressible flow through branched channels
Czech Academy of Sciences Publication Activity Database
Louda, Petr; Kozel, K.; Příhoda, Jaromír; Beneš, L.; Kopáček, T.
2011-01-01
Roč. 46, č. 1 (2011), s. 318-324 ISSN 0045-7930 R&D Projects: GA ČR GA103/09/0977; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * branched channel * EARSM turbulence model Subject RIV: BK - Fluid Dynamics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793010003506
Numerical Solution of Inviscid Compressible Steady Flows around the RAE 2822 Airfoil
Kryštůfek, P.; Kozel, K.
2015-05-01
The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Euler equations in 2D compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil. The results are compared with the solution using the software Ansys Fluent 15.0.7.
Numerical modelling of swirling diffusive flames
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Mathematical and numerical models for eddy currents and magnetostatics with selected applications
Rappaz, Jacques
2013-01-01
This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem
Numerical equilibrium analysis for structured consumer resource models.
de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A
2010-02-01
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.
Numerical solution of ordinary differential equations. For classical, relativistic and nano systems
International Nuclear Information System (INIS)
Greenspan, D.
2006-01-01
An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)
Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil
Kryštůfek, P.; Kozel, K.
2014-03-01
The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.
Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil
Directory of Open Access Journals (Sweden)
Kryštůfek P.
2014-03-01
Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.
Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil
Directory of Open Access Journals (Sweden)
Kozel K
2013-04-01
Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.
International Nuclear Information System (INIS)
Saha Ray, S.; Patra, A.
2012-01-01
Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .
Numerical solutions of ordinary and partial differential equations in the frequency domain
International Nuclear Information System (INIS)
Hazi, G.; Por, G.
1997-01-01
Numerical problems during the noise simulation in a nuclear power plant are discussed. The solutions of ordinary and partial differential equations are studied in the frequency domain. Numerical methods by the transfer function method are applied. It is shown that the correctness of the numerical methods is limited for ordinary differential equations in the frequency domain. To overcome the difficulties, step-size selection is suggested. (author)
A numerical solution for a class of time fractional diffusion equations with delay
Directory of Open Access Journals (Sweden)
Pimenov Vladimir G.
2017-09-01
Full Text Available This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ2−α+ h4 in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Aerosol numerical modelling at local scale
International Nuclear Information System (INIS)
Albriet, Bastien
2007-01-01
At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr
Numerical solutions of the aerosol general dynamic equation for nuclear reactor safety studies
International Nuclear Information System (INIS)
Park, J.W.
1988-01-01
Methods and approximations inherent in modeling of aerosol dynamics and evolution for nuclear reactor source term estimation have been investigated. Several aerosol evolution problems are considered to assess numerical methods of solving the aerosol dynamic equation. A new condensational growth model is constructed by generalizing Mason's formula to arbitrary particle sizes, and arbitrary accommodation of the condensing vapor and background gas at particle surface. Analytical solution is developed for the aerosol growth equation employing the new condensation model. The space-dependent aerosol dynamic equation is solved to assess implications of spatial homogenization of aerosol distributions. The results of our findings are as follows. The sectional method solving the aerosol dynamic equation is quite efficient in modeling of coagulation problems, but should be improved for simulation of strong condensation problems. The J-space transform method is accurate in modeling of condensation problems, but is very slow. For the situation considered, the new condensation model predicts slower aerosol growth than the corresponding isothermal model as well as Mason's model, the effect of partial accommodation is considerable on the particle evolution, and the effect of the energy accommodation coefficient is more pronounced than that of the mass accommodation coefficient. For the initial conditions considered, the space-dependent aerosol dynamics leads to results that are substantially different from those based on the spatially homogeneous aerosol dynamic equation
Posttraumatic Orbital Emphysema: A Numerical Model
Directory of Open Access Journals (Sweden)
Andrzej Skorek
2014-01-01
Full Text Available Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall. The observation was made from 1·10-3 to 1·10-2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found.
Numerical modeling of atmospheric washout processes
International Nuclear Information System (INIS)
Bayer, D.; Beheng, K.D.; Herbert, F.
1987-01-01
For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW) [de
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
Numerical study of traveling-wave solutions for the Camassa-Holm equation
International Nuclear Information System (INIS)
Kalisch, Henrik; Lenells, Jonatan
2005-01-01
We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied
Automated smoother for the numerical decoupling of dynamics models.
Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-08-21
Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental
Markou, A. A.; Manolis, G. D.
2018-03-01
Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.
Directory of Open Access Journals (Sweden)
Markou A.A.
2018-03-01
Full Text Available Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark’s time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.
Energy Technology Data Exchange (ETDEWEB)
Loch, Guilherme G.; Bevilacqua, Joyce S., E-mail: guiloch@ime.usp.br, E-mail: joyce@ime.usp.br [Universidade de Sao Paulo (IME/USP), Sao Paulo, SP (Brazil). Departamento de Matematica Aplicada. Instituto de Matematica e Estatistica; Hiromoto, Goro; Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)
2013-07-01
The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)
Darmana, D.; Henket, R.L.B.; Deen, N.G.; Kuipers, J.A.M.
2007-01-01
This paper describes simulations that were performed with an Euler–Lagrange model that takes into account mass transfer and chemical reaction reported by Darmana et al. (2005. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model.
A numerical solution of the coupled proton-H atom transport equations for the proton aurora
International Nuclear Information System (INIS)
Basu, B.; Jasperse, J.R.; Grossbard, N.J.
1990-01-01
A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates
A global numerical solution of the radial Schroedinger equation by second-order perturbation theory
International Nuclear Information System (INIS)
Adam, G.
1979-01-01
A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)
Polyanin, A. D.; Sorokin, V. G.
2017-12-01
The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
Numerical study of the evolution of a magnetized plasma by means of a hybrid model
Energy Technology Data Exchange (ETDEWEB)
Dinu, L [Institutul de Matematica, Bucharest (Romania); Vlad, M [Institutul de Fizica si Tehnologia Aparatelor cu Radiatii, Bucharest (Romania)
1979-01-01
A numerical solution of the Vlasov-fluid model describing a time and space plasma evolution is presented. This should be compared with J.P. Frjedberg's analysis (1), (2) which provides growth rates for instabilities and some stability criteria.
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Numerical modelling of glass dissolution: gel layer morphology
Energy Technology Data Exchange (ETDEWEB)
Devreux, F. E-mail: fd@pmc.polytechnique.fr; Barboux, P
2001-09-01
Numerical simulations of glass dissolution are presented. The glass is modelized as a random binary mixture composed of two species representing silica and soluble oxides, such as boron and alkali oxides. The soluble species are dissolved immediately when they are in contact with the solution. For the species which represents silica, one introduces dissolution and condensation probabilities. It is shown that the morphology and the thickness of the surface hydration layer (the gel) are highly dependent on the dissolution model, especially on the parameter which controls the surface tension. Simulations with different glass surface area to solution volume ratio (S/V) show that this experimental parameter has important effects on both the shrinkage and the gel layer thickness.
Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification
Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.
2017-12-01
We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.
Boundary integral equation methods and numerical solutions thin plates on an elastic foundation
Constanda, Christian; Hamill, William
2016-01-01
This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...
Analytical solution of dispersion relations for the nuclear optical model
Energy Technology Data Exchange (ETDEWEB)
VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)
2000-12-01
Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)
Matching of analytical and numerical solutions for neutron stars of arbitrary rotation
International Nuclear Information System (INIS)
Pappas, George
2009-01-01
We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R ISCO ), the rotation frequency and the epicyclic frequencies Ω ρ , Ω z . Finally we present some results of the comparison.
Matching of analytical and numerical solutions for neutron stars of arbitrary rotation
Energy Technology Data Exchange (ETDEWEB)
Pappas, George, E-mail: gpappas@phys.uoa.g [Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)
2009-10-01
We demonstrate the results of an attempt to match the two-soliton analytical solution with the numerically produced solutions of the Einstein field equations, that describe the spacetime exterior of rotating neutron stars, for arbitrary rotation. The matching procedure is performed by equating the first four multipole moments of the analytical solution to the multipole moments of the numerical one. We then argue that in order to check the effectiveness of the matching of the analytical with the numerical solution we should compare the metric components, the radius of the innermost stable circular orbit (R{sub ISCO}), the rotation frequency and the epicyclic frequencies {Omega}{sub {rho}}, {Omega}{sub z}. Finally we present some results of the comparison.
Numerical modeling of materials under extreme conditions
Brown, Eric
2014-01-01
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
International Nuclear Information System (INIS)
Fenwick, John D.; Pardo-Montero, Juan
2010-01-01
Purpose: Homogenized blocked arcs are intuitively appealing as basis functions for multicriteria optimization of rotational radiotherapy. Such arcs avoid an organ-at-risk (OAR), spread dose out well over the rest-of-body (ROB), and deliver homogeneous doses to a planning target volume (PTV) using intensity modulated fluence profiles, obtainable either from closed-form solutions or iterative numerical calculations. Here, the analytic and iterative arcs are compared. Methods: Dose-distributions have been calculated for nondivergent beams, both including and excluding scatter, beam penumbra, and attenuation effects, which are left out of the derivation of the analytic arcs. The most straightforward analytic arc is created by truncating the well-known Brahme, Roos, and Lax (BRL) solution, cutting its uniform dose region down from an annulus to a smaller nonconcave region lying beyond the OAR. However, the truncation leaves behind high dose hot-spots immediately on either side of the OAR, generated by very high BRL fluence levels just beyond the OAR. These hot-spots can be eliminated using alternative analytical solutions ''C'' and ''L,'' which, respectively, deliver constant and linearly rising fluences in the gap region between the OAR and PTV (before truncation). Results: Measured in terms of PTV dose homogeneity, ROB dose-spread, and OAR avoidance, C solutions generate better arc dose-distributions than L when scatter, penumbra, and attenuation are left out of the dose modeling. Including these factors, L becomes the best analytical solution. However, the iterative approach generates better dose-distributions than any of the analytical solutions because it can account and compensate for penumbra and scatter effects. Using the analytical solutions as starting points for the iterative methodology, dose-distributions almost as good as those obtained using the conventional iterative approach can be calculated very rapidly. Conclusions: The iterative methodology is
A delta-rule model of numerical and non-numerical order processing.
Verguts, Tom; Van Opstal, Filip
2014-06-01
Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Adaptive Numerical Algorithms in Space Weather Modeling
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.;
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
A numerical solution of the problem of crown forest fire initiation and spread
Marzaeva, S. I.; Galtseva, O. V.
2018-05-01
Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.
Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
Hireche, Omar; Weisman, Catherine; Baltean-Carlès, Diana; Le Quéré, Patrick; Bauwens, Luc
2010-12-01
A model of an idealized thermoacoustic engine is formulated, coupling nonlinear flow and heat exchange in the heat exchangers and stack with a simple linear acoustic model of the resonator and load. Correct coupling results in an asymptotically consistent global model, in the small Mach number approximation. A well-resolved numerical solution is obtained for two-dimensional heat exchangers and stack. The model assumes that the heat exchangers and stack are shorter than the overall length by a factor of the order of a representative Mach number. The model is well-suited for simulation of the entire startup process, whereby as a result of some excitation, an initially specified temperature profile in the stack evolves toward a near-steady profile, eventually reaching stationary operation. A validation analysis is presented, together with results showing the early amplitude growth and approach of a stationary regime. Two types of initial excitation are used: Random noise and a small periodic wave. The set of assumptions made leads to a heat-exchanger section that acts as a source of volume but is transparent to pressure and to a local heat-exchanger model characterized by a dynamically incompressible flow to which a locally spatially uniform acoustic pressure fluctuation is superimposed.
Advanced modelling and numerical strategies in nuclear thermal-hydraulics
International Nuclear Information System (INIS)
Staedtke, H.
2001-01-01
The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)
Numerical modelling of ion transport in flames
Han, Jie
2015-10-20
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.
Chrystal and Proudman resonances simulated with three numerical models
Bubalo, Maja; Janeković, Ivica; Orlić, Mirko
2018-05-01
The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).
Numerical methods for the Lévy LIBOR model
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
2010-01-01
but the methods are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure....... This enables simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the L\\'evy LIBOR model of Eberlein and \\"Ozkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates...
Numerical Methods for the Lévy LIBOR Model
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure. This enables...... simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets.......The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the Lévy LIBOR model of Eberlein and Özkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods...
Modeling and numerical simulations of the influenced Sznajd model
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
New Trends in Model Coupling Theory, Numerics and Applications
International Nuclear Information System (INIS)
Coquel, F.; Godlewski, E.; Herard, J. M.; Segre, J.
2010-01-01
This special issue comprises selected papers from the workshop New Trends in Model Coupling, Theory, Numerics and Applications (NTMC'09) which took place in Paris, September 2 - 4, 2009. The research of optimal technological solutions in a large amount of industrial systems requires to perform numerical simulations of complex phenomena which are often characterized by the coupling of models related to various space and/or time scales. Thus, the so-called multi-scale modelling has been a thriving scientific activity which connects applied mathematics and other disciplines such as physics, chemistry, biology or even social sciences. To illustrate the variety of fields concerned by the natural occurrence of model coupling we may quote: meteorology where it is required to take into account several turbulence scales or the interaction between oceans and atmosphere, but also regional models in a global description, solid mechanics where a thorough understanding of complex phenomena such as propagation of cracks needs to couple various models from the atomistic level to the macroscopic level; plasma physics for fusion energy for instance where dense plasmas and collisionless plasma coexist; multiphase fluid dynamics when several types of flow corresponding to several types of models are present simultaneously in complex circuits; social behaviour analysis with interaction between individual actions and collective behaviour. (authors)
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Modelling and numerical simulation of liquid-vapor phase transitions
International Nuclear Information System (INIS)
Caro, F.
2004-11-01
This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)
Computational numerical modelling of plasma focus
International Nuclear Information System (INIS)
Brollo, Fabricio
2005-01-01
Several models for calculation of the dynamics of Plasma Focus have been developed. All of them begin from the same physic principle: the current sheet run down the anode length, ionizing and collecting the gas that finds in its way.This is known as snow-plow model.Concerning pinch's compression, a MHD model is proposed.The plasma is treated as a fluid , particularly as a high ionized gas.However, there are not many models that, taking into account thermal equilibrium inside the plasma, make approximated calculations of the maximum temperatures reached in the pinch.Besides, there are no models which use those temperatures to estimate the termofusion neutron yield for the Deuterium or Deuterium-Tritium gas filled cases.In the PLADEMA network (Dense Magnetized Plasmas) a code was developed with the objective of describe the plasma focus dynamics, in a conceptual engineering stage.The codes calculates the principal variables (currents, time to focus, etc) and estimates the neutron yield in Deuterium-filled plasma focus devices.It can be affirmed that the code's experimental validation, in its axial and radial stages, was very successfully. However, it was accepted that the compression stage should be formulated again, to find a solution for a large variation of a parameter related with velocity profiles for the particles trapped inside the pinch.The objectives of this work can be stated in the next way : - Check the compression's model hypothesis. Develop a new model .- Implement the new model in the code. Compare results against experimental data of Plasma Focus devices from all around the world [es
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks
Leube, P.; Nowak, W.; Sanchez-Vila, X.
2013-12-01
High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of
Numerical modeling of bubble dynamics in magmas
Huber, Christian; Su, Yanqing; Parmigiani, Andrea
2014-05-01
Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.
Numerical modeling of polar mesocyclones generation mechanisms
Sergeev, Dennis; Stepanenko, Victor
2013-04-01
parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
Directory of Open Access Journals (Sweden)
Rahman Farnoosh
2014-07-01
Full Text Available In this paper, we present the numerical solution of ordinary differential equations (or SDEs, from each orderespecially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysisfor second-order equations in specially case of scalar linear second-order equations (damped harmonicoscillators with additive or multiplicative noises. Making stochastic differential equations system from thisequation, it could be approximated or solved numerically by different numerical methods. In the case oflinear stochastic differential equations system by Computing fundamental matrix of this system, it could becalculated based on the exact solution of this system. Finally, this stochastic equation is solved by numericallymethod like E.M. and Milstein. Also its Asymptotic stability and statistical concepts like expectationand variance of solutions are discussed.
International Nuclear Information System (INIS)
Kupka, F.
1997-11-01
This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)
Energy Technology Data Exchange (ETDEWEB)
Teixeira, Vinicius Ligiero; Pires, Adolfo Puime; Bedrikovetsky, Pavel G. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)
2004-07-01
Enhanced Oil Recovery (EOR) methods include injection of different fluids into reservoirs to improve oil displacement. The EOR methods may be classified into the following kinds: injection of chemical solutions, injection of solvents and thermal methods. The chemical fluids most commonly injected are polymers, surfactants, micellar solutions, etc. Displacement of oil by any of these fluids involves complex physico-chemical processes of interphase mass transfer, phase transitions and transport properties changes. These processes can be divided into two main categories: thermodynamical and hydrodynamical ones. They occur simultaneously during the displacement, and are coupled in the modern mathematical models of EOR. The model for one-dimensional displacement of oil by polymer solutions is analyzed in this paper. The Courant number is fixed, and we compare the results of different runs of a numerical simulator with the analytical solution of this problem. Each run corresponds to a different spatial discretization. (author)
Numerical Modelling of Flow and Settling in Secondary Settling Tanks
DEFF Research Database (Denmark)
Dahl, Claus Poulsen
This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....
Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation
International Nuclear Information System (INIS)
Wei, T; Qin, H H; Shi, R
2008-01-01
In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method
Numerical treatment of elliptic BVP with several solutions and of MHD equilibrium problems
International Nuclear Information System (INIS)
Meyer-Spasche, R.
1975-12-01
It is found out empirically that Newton iteration and difference methods are very suitable for the numerical treatment of elliptic boundary value problems (Lu)(x) = f(x,u(x)) in D c R 2 , u/deltaD = g having several solutions. Some convergence theorems for these methods are presented. Some notable numerical examples are given, including bifurcation diagrams, which are interesting in themselves and show also the applicability of the methods developed. (orig./WB) [de
Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline
Directory of Open Access Journals (Sweden)
Ravi Kanth A.S.V.
2016-01-01
Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.
Numerical solutions of multi-order fractional differential equations by Boubaker polynomials
Directory of Open Access Journals (Sweden)
Bolandtalat A.
2016-01-01
Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.
GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD
2016-01-01
This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...
International Nuclear Information System (INIS)
Wehner, M.F.
1983-01-01
A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs
The simulation of solute transport: An approach free of numerical dispersion
International Nuclear Information System (INIS)
Carrera, J.; Melloni, G.
1987-01-01
The applicability of most algorithms for simulation of solute transport is limited either by instability or by numerical dispersion, as seen by a review of existing methods. A new approach is proposed that is free of these two problems. The method is based on the mixed Eulerian-Lagrangian formulation of the mass-transport problem, thus ensuring stability. Advection is simulated by a variation of reverse-particle tracking that avoids the accumulation of interpolation errors, thus preventing numerical dispersion. The algorithm has been implemented in a one-dimensional code. Excellent results are obtained, in comparison with an analytical solution. 36 refs., 14 figs., 1 tab
Solutions manual to accompany An introduction to numerical methods and analysis
Epperson, James F
2014-01-01
A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, sp
Numerical modeling of the autumnal thermal bar
Tsydenov, Bair O.
2018-03-01
The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.
A numerical model of aerosol scavenging
International Nuclear Information System (INIS)
Bradley, M.M.; Molenkamp, C.R.
1991-10-01
Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate
Numerical Modelling of Seismic Slope Stability
Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles
Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.
International Nuclear Information System (INIS)
Esmail, S.F.H.
2011-01-01
The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.
On the numerical evaluation of algebro-geometric solutions to integrable equations
International Nuclear Information System (INIS)
Kalla, C; Klein, C
2012-01-01
Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated with real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey–Stewartson and the multi-component nonlinear Schrödinger equations
Modelling of cardiovascular system: development of a hybrid (numerical-physical) model.
Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Mimmo, R; Guaragno, M; Tosti, G; Darowski, M
2003-12-01
Physical models of the circulation are used for research, training and for testing of implantable active and passive circulatory prosthetic and assistance devices. However, in comparison with numerical models, they are rigid and expensive. To overcome these limitations, we have developed a model of the circulation based on the merging of a lumped parameter physical model into a numerical one (producing therefore a hybrid). The physical model is limited to the barest essentials and, in this application, developed to test the principle, it is a windkessel representing the systemic arterial tree. The lumped parameters numerical model was developed in LabVIEW environment and represents pulmonary and systemic circulation (except the systemic arterial tree). Based on the equivalence between hydraulic and electrical circuits, this prototype was developed connecting the numerical model to an electrical circuit--the physical model. This specific solution is valid mainly educationally but permits the development of software and the verification of preliminary results without using cumbersome hydraulic circuits. The interfaces between numerical and electrical circuits are set up by a voltage controlled current generator and a voltage controlled voltage generator. The behavior of the model is analyzed based on the ventricular pressure-volume loops and on the time course of arterial and ventricular pressures and flow in different circulatory conditions. The model can represent hemodynamic relationships in different ventricular and circulatory conditions.
Use of Green's functions in the numerical solution of two-point boundary value problems
Gallaher, L. J.; Perlin, I. E.
1974-01-01
This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.
The Fermi-Pasta-Ulam Model Periodic Solutions
Arioli, G; Terracini, S
2003-01-01
We introduce two novel methods for studying periodic solutions of the FPU beta-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.
TLC scheme for numerical solution of the transport equation on equilateral triangular meshes
International Nuclear Information System (INIS)
Walters, W.F.
1983-01-01
A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy
A note on numerical solution of a parabolic-Schrödinger equation
Ozdemir, Yildirim; Alp, Mustafa
2016-08-01
In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.
The Numerical Solution of the Equilibrium Problem for a Stretchable Elastic Beam
Mehdiyeva, G. Y.; Aliyev, A. Y.
2017-08-01
The boundary value problem under consideration describes the equilibrium of an elastic beam that is stretched or contracted by specified forces. The left end of the beam is free of load, and the right end is rigidly lapped. To solve the problem numerically, an appropriate difference problem is constructed. Solving the difference problem, we obtain an approximate solution of the problem. We estimate the approximate solution of the stated problem.
Understanding Etna flank instability through numerical models
Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro
2013-02-01
As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was
Benchmark problems for numerical implementations of phase field models
International Nuclear Information System (INIS)
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.
2016-01-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.
A simplified model for TIG-dressing numerical simulation
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
International Nuclear Information System (INIS)
Kotler, Z.; Neria, E.; Nitzan, A.
1991-01-01
The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)
Numerical modeling of atoll island hydrogeology.
Bailey, R T; Jenson, J W; Olsen, A E
2009-01-01
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2016-04-01
behavior depends on the magnitude of the flow rates and hydraulic conductivity curves of the materials. Based on the unsaturated hydraulic conductivity at the intersection point of conductivity curves, we are able to define an estimate of flow rates at which the dynamic of the upper boundary condition significantly alters preferential flow paths through the system. If flow rates are low, with regard to the materials hydraulic conductivity at the intersection point, the influence of dynamic boundary conditions is small. If flow rates are in the range of the unsaturated hydraulic conductivity at intersection, solute is trapped in the fine material during upwards transport, which results in a more pronounced tailing. For flow rates exceeding the intersection conductivity, a redistribution at the soil surface can occur. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Bechtold, M., J. Vanderborght, O. Ippisch and H. Vereecken. 2011b. Efficient random walk particle tracking algorithm for advective dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res., 47, W10526, doi: 10.1029/2010WR010267. Ippisch O., H.-J. Vogel and P. Bastian. 2006. Validity limits fort he van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789, doi: 10.1016/j.advwateres.2005.12.011. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.
Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media
Mehmani, Yashar; Tchelepi, Hamdi
2017-11-01
Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).
New methods For Modeling Transport Of Water And Solutes In Soils
DEFF Research Database (Denmark)
Møldrup, Per
Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...
Numerical solution of the ekpyrotic scenario in the moduli space approximation
International Nuclear Information System (INIS)
Soerensen, Torquil MacDonald
2005-01-01
A numerical solution to the equations of motion for the ekpyrotic bulk brane scenario in the moduli space approximation is presented. The visible universe brane has positive tension, and we use a potential that goes to zero exponentially at large distance, and also goes to zero at small distance. In the case considered, no bulk brane, visible brane collision occurs in the solution. This property and the general behavior of the solution is qualitatively the same when the visible brane tension is negative, and for many different parameter choices
Directory of Open Access Journals (Sweden)
Elmira Ashpazzadeh
2018-04-01
Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
A numerical method for finding sign-changing solutions of superlinear Dirichlet problems
Energy Technology Data Exchange (ETDEWEB)
Neuberger, J.M.
1996-12-31
In a recent result it was shown via a variational argument that a class of superlinear elliptic boundary value problems has at least three nontrivial solutions, a pair of one sign and one which sign changes exactly once. These three and all other nontrivial solutions are saddle points of an action functional, and are characterized as local minima of that functional restricted to a codimension one submanifold of the Hilbert space H-0-1-2, or an appropriate higher codimension subset of that manifold. In this paper, we present a numerical Sobolev steepest descent algorithm for finding these three solutions.
Numerical Problems and Agent-Based Models for a Mass Transfer Course
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.
2009-01-01
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Numerical solution of modified fokker-planck equation with poissonian input
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Král, Radomil
2010-01-01
Roč. 17, 3/4 (2010), s. 251-268 ISSN 1802-1484 R&D Projects: GA AV ČR(CZ) IAA200710805; GA ČR(CZ) GA103/09/0094 Institutional research plan: CEZ:AV0Z20710524 Keywords : Fokker-Planck equation * poisson ian exciation * numerical solution * transition effects Subject RIV: JN - Civil Engineering
Directory of Open Access Journals (Sweden)
Decio Levi
2013-10-01
Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.
Numerical solutions of stochastic Lotka-Volterra equations via operational matrices
Directory of Open Access Journals (Sweden)
F. Hosseini Shekarabi
2016-03-01
Full Text Available In this paper, an efficient and convenient method for numerical solutions of stochastic Lotka-Volterra dynamical system is proposed. Here, we consider block pulse functions and their operational matrices of integration. Illustrative example is included to demonstrate the procedure and accuracy of the operational matrices based on block pulse functions.
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.
Directory of Open Access Journals (Sweden)
SURE KÖME
2014-12-01
Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Large scale experiments as a tool for numerical model development
DEFF Research Database (Denmark)
Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper
2003-01-01
Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...
Numerical modelling of new rockfall interception nets
von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna
2010-05-01
The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development
Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation
International Nuclear Information System (INIS)
Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi
2015-01-01
Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM
Advanced Combustion Numerics and Modeling - FY18 First Quarter Report
Energy Technology Data Exchange (ETDEWEB)
Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-05
This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.
State of the art of numerical modeling of thermohydrologic flow in fractured rock mass
International Nuclear Information System (INIS)
Wang, J.S.Y.; Tsang, C.F.; Sterbentz, R.A.
1983-01-01
The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground-water hydrology, petroleum engineering, and other geologic fields. The general review is followed by separate summaries of the main characteristics of the governing equations, numerical solutions, computer codes, validations, and applications for each model
The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses
International Nuclear Information System (INIS)
Wang, J.S.Y.; Sterbentz, R.A.; Tsang, C.F.
1982-01-01
The state of the art of numerical modeling of thermohydrologic flow in fractured rock masses is reviewed and a comparative study is made of several models which have been developed in nuclear waste isolation, geothermal energy, ground water hydrology, petroleum engineering, and other geologic fields. The general review is followed by individual summaries of each model and the main characteristics of its governing equations, numerical solutions, computer codes, validations, and applications
Directory of Open Access Journals (Sweden)
Dmitry V. Lukyanenko
2017-01-01
Full Text Available This work develops a theory of the asymptotic-numerical investigation of the moving fronts in reaction-diffusion-advection models. By considering the numerical solution of the singularly perturbed Burgers’s equation we discuss a method of dynamically adapted mesh construction that is able to significantly improve the numerical solution of this type of equations. For the construction we use a priori information that is based on the asymptotic analysis of the problem. In particular, we take into account the information about the speed of the transition layer, its width and structure. Our algorithms are able to reduce significantly complexity and enhance stability of the numerical calculations in comparison with classical approaches for solving this class of problems. The numerical experiment is presented to demonstrate the effectiveness of the proposed method.The article is published in the authors’ wording.
Numerical solution of the full potential equation using a chimera grid approach
Holst, Terry L.
1995-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.
A conservative finite difference method for the numerical solution of plasma fluid equations
International Nuclear Information System (INIS)
Colella, P.; Dorr, M.R.; Wake, D.D.
1999-01-01
This paper describes a numerical method for the solution of a system of plasma fluid equations. The fluid model is similar to those employed in the simulation of high-density, low-pressure plasmas used in semiconductor processing. The governing equations consist of a drift-diffusion model of the electrons, together with an internal energy equation, coupled via Poisson's equation to a system of Euler equations for each ion species augmented with electrostatic force, collisional, and source/sink terms. The time integration of the full system is performed using an operator splitting that conserves space charge and avoids dielectric relaxation timestep restrictions. The integration of the individual ion species and electrons within the time-split advancement is achieved using a second-order Godunov discretization of the hyperbolic terms, modified to account for the significant role of the electric field in the propagation of acoustic waves, combined with a backward Euler discretization of the parabolic terms. Discrete boundary conditions are employed to accommodate the plasma sheath boundary layer on underresolved grids. The algorithm is described for the case of a single Cartesian grid as the first step toward an implementation on a locally refined grid hierarchy in which the method presented here may be applied on each refinement level
Numerical models for high beta magnetohydrodynamic flow
International Nuclear Information System (INIS)
Brackbill, J.U.
1987-01-01
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Numerical modelling of multicomponent LNAPL dissolution kinetics ...
Indian Academy of Sciences (India)
subsequent removal of free phase liquid, still the organic compounds are present .... Since the flow through porous media is mainly restricted to the pore space ..... initial and boundary conditions for the numerical scheme are given in table 2.
Ikeguchi, Mitsunori; Doi, Junta
1995-09-01
The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.
Numerical Modelling of Sediment Transport in Combined Sewer Systems
DEFF Research Database (Denmark)
Schlütter, Flemming
A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....
A numerical 4D Collision Risk Model
Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise
2017-04-01
With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical
Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.
Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S
2015-07-27
In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.
Directory of Open Access Journals (Sweden)
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe
2018-04-01
The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Multi-skyrmion solutions of a sixth order Skyrme model
International Nuclear Information System (INIS)
Floratos, I.
2001-08-01
In this thesis, we study some of the classical properties of an extension of the Skyrme model defined by adding a sixth order derivative term to the Lagrangian. In chapter 1, we review the physical as well as the mathematical motivation behind the study of the Skyrme model and in chapter 2, we give a brief summary of various extended Skyrme models that have been proposed over the last few years. We then define a new sixth order Skyrme model by introducing a dimensionless parameter λ that denotes the mixing between the two higher order terms, the Skyrme term and the sixth order term. In chapter 3 we compute numerically the multi-skyrmion solutions of this extended model and show that they have the same symmetries with the usual skyrmion solutions. In addition, we analyse the dependence of the energy and radius of these classical solutions with respect to the coupling constant λ. We compare our results with experimental data and determine whether this modified model can provide us with better theoretical predictions than the original one. In chapter 4, we use the rational map ansatz, introduced by Houghton, Manton and Sutcliffe, to approximate minimum energy multi-skyrmion solutions with B ≤ 9 of the SU(2) model and with B ≤ 6 of the SU(3) model. We compare our results with the ones obtained numerically and show that the rational map ansatz works just as well for the generalised model as for the pure Skyrme model, at least for B ≤ 5. In chapter 5, we use a generalisation of the rational map ansatz, introduced by loannidou, Piette and Zakrzewski, to construct analytically some topologically non-trivial solutions of the extended model in SU(3). These solutions are spherically symmetric and some of them can be interpreted as bound states of skyrmions. Finally, we use the same ansatz to construct low energy configurations of the SU(N) sixth order Skyrme model. (author)
Numerical schemes for one-point closure turbulence models
International Nuclear Information System (INIS)
Larcher, Aurelien
2010-01-01
First-order Reynolds Averaged Navier-Stokes (RANS) turbulence models are studied in this thesis. These latter consist of the Navier-Stokes equations, supplemented with a system of balance equations describing the evolution of characteristic scalar quantities called 'turbulent scales'. In so doing, the contribution of the turbulent agitation to the momentum can be determined by adding a diffusive coefficient (called 'turbulent viscosity') in the Navier-Stokes equations, such that it is defined as a function of the turbulent scales. The numerical analysis problems, which are studied in this dissertation, are treated in the frame of a fractional step algorithm, consisting of an approximation on regular meshes of the Navier-Stokes equations by the nonconforming Crouzeix-Raviart finite elements, and a set of scalar convection-diffusion balance equations discretized by the standard finite volume method. A monotone numerical scheme based on the standard finite volume method is proposed so as to ensure that the turbulent scales, like the turbulent kinetic energy (k) and its dissipation rate (ε), remain positive in the case of the standard k - ε model, as well as the k - ε RNG and the extended k - ε - ν 2 models. The convergence of the proposed numerical scheme is then studied on a system composed of the incompressible Stokes equations and a steady convection-diffusion equation, which are both coupled by the viscosities and the turbulent production term. This reduced model allows to deal with the main difficulty encountered in the analysis of such problems: the definition of the turbulent production term leads to consider a class of convection-diffusion problems with an irregular right-hand side belonging to L 1 . Finally, to step towards the unsteady problem, the convergence of the finite volume scheme for a model convection-diffusion equation with L 1 data is proved. The a priori estimates on the solution and on its time derivative are obtained in discrete norms, for
Russo, David; Laufer, Asher; Shapira, Roi H.; Kurtzman, Daniel
2013-02-01
Detailed numerical simulations were used to analyze water flow and transport of nitrate, chloride, and a tracer solute in a 3-D, spatially heterogeneous, variably saturated soil, originating from a citrus orchard irrigated with treated sewage water (TSW) considering realistic features of the soil-water-plant-atmosphere system. Results of this study suggest that under long-term irrigation with TSW, because of nitrate uptake by the tree roots and nitrogen transformations, the vadose zone may provide more capacity for the attenuation of the nitrate load in the groundwater than for the chloride load in the groundwater. Results of the 3-D simulations were used to assess their counterparts based on a simplified, deterministic, 1-D vertical simulation and on limited soil monitoring. Results of the analyses suggest that the information that may be gained from a single sampling point (located close to the area active in water uptake by the tree roots) or from the results of the 1-D simulation is insufficient for a quantitative description of the response of the complicated, 3-D flow system. Both might considerably underestimate the movement and spreading of a pulse of a tracer solute and also the groundwater contamination hazard posed by nitrate and particularly by chloride moving through the vadose zone. This stems mainly from the rain that drove water through the flow system away from the rooted area and could not be represented by the 1-D model or by the single sampling point. It was shown, however, that an additional sampling point, located outside the area active in water uptake, may substantially improve the quantitative description of the response of the complicated, 3-D flow system.
Masonry constructions mechanical models and numerical applications
Lucchesi, Massimiliano; Padovani, Cristina
2008-01-01
Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w
A New Method to Solve Numeric Solution of Nonlinear Dynamic System
Directory of Open Access Journals (Sweden)
Min Hu
2016-01-01
Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.
International Nuclear Information System (INIS)
Houfek, Karel
2008-01-01
Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.
A numerical solution of a singular boundary value problem arising in boundary layer theory.
Hu, Jiancheng
2016-01-01
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
New numerical method for iterative or perturbative solution of quantum field theory
International Nuclear Information System (INIS)
Hahn, S.C.; Guralnik, G.S.
1999-01-01
A new computational idea for continuum quantum Field theories is outlined. This approach is based on the lattice source Galerkin methods developed by Garcia, Guralnik and Lawson. The method has many promising features including treating fermions on a relatively symmetric footing with bosons. As a spin-off of the technology developed for 'exact' solutions, the numerical methods used have a special case application to perturbation theory. We are in the process of developing an entirely numerical approach to evaluating graphs to high perturbative order. (authors)
Bessel collocation approach for approximate solutions of Hantavirus infection model
Directory of Open Access Journals (Sweden)
Suayip Yuzbasi
2017-11-01
Full Text Available In this study, a collocation method is introduced to find the approximate solutions of Hantavirus infection model which is a system of nonlinear ordinary differential equations. The method is based on the Bessel functions of the first kind, matrix operations and collocation points. This method converts Hantavirus infection model into a matrix equation in terms of the Bessel functions of first kind, matrix operations and collocation points. The matrix equation corresponds to a system of nonlinear equations with the unknown Bessel coefficients. The reliability and efficiency of the suggested scheme are demonstrated by numerical applications and all numerical calculations have been done by using a program written in Maple.
Numerical modelling of random walk one-dimensional diffusion
International Nuclear Information System (INIS)
Vamos, C.; Suciu, N.; Peculea, M.
1996-01-01
The evolution of a particle which moves on a discrete one-dimensional lattice, according to a random walk low, approximates better the diffusion process smaller the steps of the spatial lattice and time are. For a sufficiently large assembly of particles one can assume that their relative frequency at lattice knots approximates the distribution function of the diffusion process. This assumption has been tested by simulating on computer two analytical solutions of the diffusion equation: the Brownian motion and the steady state linear distribution. To evaluate quantitatively the similarity between the numerical and analytical solutions we have used a norm given by the absolute value of the difference of the two solutions. Also, a diffusion coefficient at any lattice knots and moment of time has been calculated, by using the numerical solution both from the diffusion equation and the particle flux given by Fick's low. The difference between diffusion coefficient of analytical solution and the spatial lattice mean coefficient of numerical solution constitutes another quantitative indication of the similarity of the two solutions. The results obtained show that the approximation depends first on the number of particles at each knot of the spatial lattice. In conclusion, the random walk is a microscopic process of the molecular dynamics type which permits simulations precision of the diffusion processes with given precision. The numerical method presented in this work may be useful both in the analysis of real experiments and for theoretical studies
A numerical solution to the radial equation of the tidal wave propagation
International Nuclear Information System (INIS)
Makarious, S.H.
1981-08-01
The tidal wave function y(x) is a solution to an inhomogeneous, linear, second-order differential equation with variable coefficient. Numerical values for the height-dependence terms, in the observed tides, have been utilized in finding y(x) as a solution to an initial-value problem. Complex Fast Fourier Transform technique is also used to obtain the solution in a complex form. Based on a realistic temperature structure, the atmosphere - below 110 km - has been divided into layers with distinct characteristics, and thus the technique of propagation in stratified media has been applied. The reduced homogeneous equation assumes the form of Helmholtz equation and with initial conditions the general solution is obtained. (author)
Modeling and numerical study of two phase flow
International Nuclear Information System (INIS)
Champmartin, A.
2011-01-01
This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr
Small-scale engagement model with arrivals: analytical solutions
International Nuclear Information System (INIS)
Engi, D.
1977-04-01
This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied
Some Experiences with Numerical Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.
2007-01-01
across the edge of the overflow. To ensure critical flow across the edge, the upstream flow must be subcritical whereas the downstream flow is either supercritical or a free jet. Experimentally overflows are well studied. Based on laboratory experiments and Froude number scaling, numerous accurate...
Numerical time integration for air pollution models
J.G. Verwer (Jan); W. Hundsdorfer (Willem); J.G. Blom (Joke)
1998-01-01
textabstractDue to the large number of chemical species and the three space dimensions, off-the-shelf stiff ODE integrators are not feasible for the numerical time integration of stiff systems of advection-diffusion-reaction equations [ fracpar{c{t + nabla cdot left( vu{u c right) = nabla cdot left(
Numerical modeling and the physical basis of seismic discriminants
International Nuclear Information System (INIS)
Denny, M.D.
1993-01-01
Accurate seismic event discrimination is critical to detection of nuclear explosions. Numerical modeling applied to seismic event discrimination can lead to increased reliability of proliferation detection. It is particularly applicable to error budgeting and to understanding explosion and earthquake phenomenologies. There also is a need for minimum requirements to validate the models used in numerical modeling
2-dimensional numerical modeling of active magnetic regeneration
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders
2009-01-01
Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...
International Nuclear Information System (INIS)
Khotylev, V.A.; Hoogenboom, J.E.
1996-01-01
The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)
Energy Technology Data Exchange (ETDEWEB)
Khotylev, V.A.; Hoogenboom, J.E. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands)
1996-07-01
The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)
New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars
Hossain, Murshed; Mullan, D. J.
1990-01-01
Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Determination of Solution Accuracy of Numerical Schemes as Part of Code and Calculation Verification
Energy Technology Data Exchange (ETDEWEB)
Blottner, F.G.; Lopez, A.R.
1998-10-01
This investigation is concerned with the accuracy of numerical schemes for solving partial differential equations used in science and engineering simulation codes. Richardson extrapolation methods for steady and unsteady problems with structured meshes are presented as part of the verification procedure to determine code and calculation accuracy. The local truncation error de- termination of a numerical difference scheme is shown to be a significant component of the veri- fication procedure as it determines the consistency of the numerical scheme, the order of the numerical scheme, and the restrictions on the mesh variation with a non-uniform mesh. Genera- tion of a series of co-located, refined meshes with the appropriate variation of mesh cell size is in- vestigated and is another important component of the verification procedure. The importance of mesh refinement studies is shown to be more significant than just a procedure to determine solu- tion accuracy. It is suggested that mesh refinement techniques can be developed to determine con- sistency of numerical schemes and to determine if governing equations are well posed. The present investigation provides further insight into the conditions and procedures required to effec- tively use Richardson extrapolation with mesh refinement studies to achieve confidence that sim- ulation codes are producing accurate numerical solutions.
Lötstedt, Erik; Jentschura, Ulrich D
2009-02-01
In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.
Hassan Fathabadi
2013-01-01
In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtrat...
An efficient approach to the numerical solution of rate-independent problems with nonconvex energies
Czech Academy of Sciences Publication Activity Database
Bartels, S.; Kružík, Martin
2011-01-01
Roč. 9, č. 3 (2011), s. 1275-1300 ISSN 1540-3459 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : numerical solution * nonconvexity Subject RIV: BA - General Mathematics Impact factor: 2.009, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/kruzik-0364707.pdf
The Navier-Stokes-Fourier system: From weak solutions to numerical analysis
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2015-01-01
Roč. 35, č. 3 (2015), s. 185-193 ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier system * weak solution * mixed finite-volume finite-element numerical scheme Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1300/anly-2014-1300. xml
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic
International Nuclear Information System (INIS)
Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene
2007-01-01
We develop an iterative method for finding solutions to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas recently developed by Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on the tangent bundle and a rank three vector bundle on P 2 . In addition, we find a hermitian Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic
Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens
International Nuclear Information System (INIS)
Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.
2012-01-01
An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation
Directory of Open Access Journals (Sweden)
Hakon A. Hoel
2007-07-01
Full Text Available We consider a numerical scheme for entropy weak solutions of the DP (Degasperis-Procesi equation $u_t - u_{xxt} + 4uu_x = 3u_{x}u_{xx}+ uu_{xxx}$. Multi-shockpeakons, functions of the form $$ u(x,t =sum_{i=1}^n(m_i(t -hbox{sign}(x-x_i(ts_i(te^{-|x-x_i(t|}, $$ are solutions of the DP equation with a special property; their evolution in time is described by a dynamical system of ODEs. This property makes multi-shockpeakons relatively easy to simulate numerically. We prove that if we are given a non-negative initial function $u_0 in L^1(mathbb{R}cap BV(mathbb{R}$ such that $u_{0} - u_{0,x}$ is a positive Radon measure, then one can construct a sequence of multi-shockpeakons which converges to the unique entropy weak solution in $mathbb{R}imes[0,T$ for any $T>0$. From this convergence result, we construct a multi-shockpeakon based numerical scheme for solving the DP equation.
A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models
Directory of Open Access Journals (Sweden)
Shengwu Zhou
2012-01-01
Full Text Available A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.
Warsta, L.; Karvonen, T.
2017-12-01
There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the
Assessing numerical methods used in nuclear aerosol transport models
International Nuclear Information System (INIS)
McDonald, B.H.
1987-01-01
Several computer codes are in use for predicting the behaviour of nuclear aerosols released into containment during postulated accidents in water-cooled reactors. Each of these codes uses numerical methods to discretize and integrate the equations that govern the aerosol transport process. Computers perform only algebraic operations and generate only numbers. It is in the numerical methods that sense can be made of these numbers and where they can be related to the actual solution of the equations. In this report, the numerical methods most commonly used in the aerosol transport codes are examined as special cases of a general solution procedure, the Method of Weighted Residuals. It would appear that the numerical methods used in the codes are all capable of producing reasonable answers to the mathematical problem when used with skill and care. 27 refs
Energy Technology Data Exchange (ETDEWEB)
Ojeda Gonzalez, A.; Domingues, M.O.; Mendes, O., E-mail: ojeda.gonzalez.a@gmail.com [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Kaibara, M.K. [Universidade Federal Fluminense (GMA/IME/UFF), Niteroi, RJ (Brazil); Prestes, A. [Universidade do Vale do Paraiba (IP and D/UNIVAP), Sao Jose dos Campos, SP (Brazil). Lab. de Fisica e Astronomia
2015-10-15
The Grad-Shafranov equation is a Poisson's equation, i.e., a partial differential equation of elliptic type. The problem is depending on the initial condition and can be treated as a Cauchy problem. Although it is ill-posed or ill-conditioned, it can be integrated numerically. In the integration of the GS equation, singularities with large values of the potential arise after a certain number of integration steps away from the original data line, and a filter should be used. The Grad-Shafranov reconstruction (GSR) technique was developed from 1996 to 2000 for recovering two-dimensional structures in the magnetopause in an ideal MHD formulation. Other works have used the GSR techniques to study magnetic flux ropes in the solar wind and in the magnetotail from a single spacecraft dataset; posteriorly, it was extended to treat measurements from multiple satellites. From Vlasov equation, it is possible to arrive at the GS-equation in function of the normalized vector potential. A general solution is obtained using complex variable theory. A specific solution was chosen as benchmark case to solve numerically the GS equation.We propose some changes in the resolution scheme of the GS equation to improve the solution. The result of each method is compared with the solution proposed by Hau and Sonnerup (J. Geophys. Res. 104(A4), 6899-6917 (1999)). The main improvement found in the GS resolution was the need to filter Bx values at each y value. (author)
Numerical Analysis of Ginzburg-Landau Models for Superconductivity.
Coskun, Erhan
Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.
Development of numerical solution techniques in the KIKO3D code
International Nuclear Information System (INIS)
Panka, Istvan; Kereszturi, Andras; Hegedus, Csaba
2005-01-01
The paper describes the numerical methods applied in KIKO3D three-dimensional reactor dynamics code and present a new, more effective method (Bi-CGSTAB) for accelerating the large sparse matrix equation solution. The convergence characteristics were investigated in a given macro time step of a Control Rod Ejection transient. The results obtained by the old GMRES and new Bi-CGSTAB methods are compared. It is concluded that the real relative errors of the solutions obtained by GMRES or Bi - CGSTAB algorithms are in fact closer together than the estimated relative errors. The KIKO3D-Bi-CGSTAB method converges safely and it is 7-12 % faster than the old KIKO3D-GMRES solution (Authors)
Solved problems in classical mechanics analytical and numerical solutions with comments
de Lange, O L
2010-01-01
Apart from an introductory chapter giving a brief summary of Newtonian and Lagrangian mechanics, this book consists entirely of questions and solutions on topics in classical mechanics that will be encountered in undergraduate and graduate courses. These include one-, two-, and three- dimensional motion; linear and nonlinear oscillations; energy, potentials, momentum, and angular momentum; spherically symmetric potentials; multi-particle systems; rigid bodies; translation androtation of the reference frame; the relativity principle and some of its consequences. The solutions are followed by a set of comments intended to stimulate inductive reasoning and provide additional information of interest. Both analytical and numerical (computer) techniques are used to obtain andanalyze solutions. The computer calculations use Mathematica (version 7), and the relevant code is given in the text. It includes use of the interactive Manipulate function which enables one to observe simulated motion on a computer screen, and...
Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1991-01-01
As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented. ...
Numerical Solution of Fuzzy Differential Equations with Z-numbers Using Bernstein Neural Networks
Directory of Open Access Journals (Sweden)
Raheleh Jafari
2017-01-01
Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations or fuzzy differential equations (FDEs by incorporating the fuzzy set theory. The solutions of them are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by two types of Bernstein neural networks. Here, the uncertainties are in the sense of Z-numbers. Initially the FDE is transformed into four ordinary differential equations (ODEs with Hukuhara differentiability. Then neural models are constructed with the structure of ODEs. With modified back propagation method for Z- number variables, the neural networks are trained. The theory analysis and simulation results show that these new models, Bernstein neural networks, are effective to estimate the solutions of FDEs based on Z-numbers.
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
Smailagic, A.
1981-08-01
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
International Nuclear Information System (INIS)
Chang Tiejun; Tian Mingzhen
2007-01-01
A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process
A numerical model of heavy gas dispersion
International Nuclear Information System (INIS)
Bidokhtti, A.A.
1993-01-01
A simple mathematical model describing the motion of a dense gas released continuously into and environment is presented. The model correctly predicts the laboratory experiments which were carried out by Britter and Snyder (1987). It is an entrainment model better known as box model. In this model, the effects of temperature change and phase change are not considered and it is for a steady-state case. Further work is required for including these effects which are often associated with the mechanisms involved in accidental or natural release of heavy gases in the environment. The results of such a model will be extended to the practical situations which are and will be common to the nuclear industry at the Atomic Energy Organization of Iran. The applicability of such studies to these situations will be discussed
On the efficient numerical solution of lattice systems with low-order couplings
International Nuclear Information System (INIS)
Ammon, A.; Genz, A.; Hartung, T.; Jansen, K.; Volmer, J.; Leoevey, H.
2015-10-01
We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling.
Numerical Model of High Strength Concrete
Wang, R. Z.; Wang, C. Y.; Lin, Y. L.
2018-03-01
The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.
Atlas : A library for numerical weather prediction and climate modelling
Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.
2017-11-01
The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.
Numerical Modeling of Electrical Contact Conductance of Rough Bodies
Directory of Open Access Journals (Sweden)
M. V. Murashov
2015-01-01
Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are
Koster, T.; Peelen, W.; Larbi, J.; Rooij, M. de; Polder, R.
2010-01-01
A mathematical model is being developed to describe a repair method in concrete, called cathodic protection (CP). The model is in principle also useful to describe electrodeposition in concrete, e.g. the process of re-precipitation of Ca(OH)_{2} invoked by an electrical current. In CP, the
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Improving stability of regional numerical ocean models
Herzfeld, Mike
2009-02-01
An operational limited-area ocean modelling system was developed to supply forecasts of ocean state out to 3 days. This system is designed to allow non-specialist users to locate the model domain anywhere within the Australasian region with minimum user input. The model is required to produce a stable simulation every time it is invoked. This paper outlines the methodology used to ensure the model remains stable over the wide range of circumstances it might encounter. Central to the model configuration is an alternative approach to implementing open boundary conditions in a one-way nesting environment. Approximately 170 simulations were performed on limited areas in the Australasian region to assess the model stability; of these, 130 ran successfully with a static model parameterisation allowing a statistical estimate of the model’s approach toward instability to be determined. Based on this, when the model was deemed to be approaching instability a strategy of adaptive intervention in the form of constraint on velocity and elevation was invoked to maintain stability.
Numerical solution of special ultra-relativistic Euler equations using central upwind scheme
Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul
2018-06-01
This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.
Enriched Meshfree Method for an Accurate Numerical Solution of the Motz Problem
Directory of Open Access Journals (Sweden)
Won-Tak Hong
2016-01-01
Full Text Available We present an enriched meshfree solution of the Motz problem. The Motz problem has been known as a benchmark problem to verify the efficiency of numerical methods in the presence of a jump boundary data singularity at a point, where an abrupt change occurs for the boundary condition. We propose a singular basis function enrichment technique in the context of partition of unity based meshfree method. We take the leading terms of the local series expansion at the point singularity and use them as enrichment functions for the local approximation space. As a result, we obtain highly accurate leading coefficients of the Motz problem that are comparable to the most accurate numerical solution. The proposed singular enrichment technique is highly effective in the case of the local series expansion of the solution being known. The enrichment technique that is used in this study can be applied to monotone singularities (of type rα with α<1 as well as oscillating singularities (of type rαsin(ϵlogr. It is the first attempt to apply singular meshfree enrichment technique to the Motz problem.
Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems
Frohne, Jörg
2015-08-06
© 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.
Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems
Frohne, Jö rg; Heister, Timo; Bangerth, Wolfgang
2015-01-01
© 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.
Numerical Model of Air Valve For Computation of One-dimensional Flow
Directory of Open Access Journals (Sweden)
Daniel HIMR
2014-06-01
Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.
Numerical Modelling of Structures with Uncertainties
Directory of Open Access Journals (Sweden)
Kahsin Maciej
2017-04-01
Full Text Available The nature of environmental interactions, as well as large dimensions and complex structure of marine offshore objects, make designing, building and operation of these objects a great challenge. This is the reason why a vast majority of investment cases of this type include structural analysis, performed using scaled laboratory models and complemented by extended computer simulations. The present paper focuses on FEM modelling of the offshore wind turbine supporting structure. Then problem is studied using the modal analysis, sensitivity analysis, as well as the design of experiment (DOE and response surface model (RSM methods. The results of modal analysis based simulations were used for assessing the quality of the FEM model against the data measured during the experimental modal analysis of the scaled laboratory model for different support conditions. The sensitivity analysis, in turn, has provided opportunities for assessing the effect of individual FEM model parameters on the dynamic response of the examined supporting structure. The DOE and RSM methods allowed to determine the effect of model parameter changes on the supporting structure response.
Paleoclimate validation of a numerical climate model
International Nuclear Information System (INIS)
Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.
1994-01-01
An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE's Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented
Amorphous track models: a numerical comparison study
DEFF Research Database (Denmark)
Greilich, Steffen; Grzanka, Leszek; Hahn, Ute
in carbon ion treatment at the particle facility HIT in Heidelberg. Apparent differences between the LEM and the Katz model are the way how interactions of individual particle tracks and how extended targets are handled. Complex scenarios, however, can mask the actual effect of these differences. Here, we......Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization...
International Nuclear Information System (INIS)
Imhof, Armando Luis; Calvo, Carlos Adolfo; Moyano, Amalia; Sanchez, Manuel
2015-01-01
A determined curve path is followed by the propagation of seismic waves generated in emitters and detected in receivers by the principle of minimum time of Fermat. An ordinary differential equation is derived from the application of the calculation of variations. Due to the compaction of the terrain, the speed usually increases with depth. The experimental laws for each soil have led to this variation leading to a numerical resolution. The adjustment of experimental speed data by an exponential function; the analytical integration of the differential equation and the numerical determination of the integration constants are studied. A geophysical method such as up-hole or down-hole has determined the experimental data. Its main application is centered in the validation of numerical models of curved trajectories. Then time of first arrivals through tomographic algorithms for detection and modeling of anomalies in the first 12 m depth. (author) [es
The quantum Rabi model: solution and dynamics
International Nuclear Information System (INIS)
Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T
2017-01-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)
NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...
African Journals Online (AJOL)
2014-06-30
Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.
Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method
International Nuclear Information System (INIS)
Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr
2008-01-01
Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code
Henclik, Sławomir
2018-03-01
The influence of dynamic fluid-structure interaction (FSI) onto the course of water hammer (WH) can be significant in non-rigid pipeline systems. The essence of this effect is the dynamic transfer of liquid energy to the pipeline structure and back, which is important for elastic structures and can be negligible for rigid ones. In the paper a special model of such behavior is analyzed. A straight pipeline with a steady flow, fixed to the floor with several rigid supports is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. FSI effects are assumed to be present mainly at the valve which is fixed with a spring dash-pot attachment. Analysis of WH runs, especially transient pressure changes, for various stiffness and damping parameters of the spring dash-pot valve attachment is presented in the paper. The solutions are found analytically and numerically. Numerical results have been computed with the use of an own computer program developed on the basis of the four equation model of WH-FSI and the specific boundary conditions formulated at the valve. Analytical solutions have been found with the separation of variables method for slightly simplified assumptions. Damping at the dash-pot is taken into account within the numerical study. The influence of valve attachment parameters onto the WH courses was discovered and it was found the transient amplitudes can be reduced. Such a system, elastically attached shut-off valve in a pipeline or other, equivalent design can be a real solution applicable in practice.
The influence of numerical models on determining the drag coefficient
Directory of Open Access Journals (Sweden)
Dobeš Josef
2014-03-01
Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.
Flute-like musical instruments: A toy model investigated through numerical continuation
Terrien, Soizic; Vergez, Christophe; Fabre, Benoît
2013-07-01
Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.
Numerical modelling of laser rapid prototyping by fusion wire deposit
Arbaoui , Larbi; Masse , J.E.; Barrallier , Laurent; Mocellin , Katia
2010-01-01
International audience; A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based...
Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem
Ceccobello, C.; Farinelli, R.; Titarchuk, L.
2014-01-01
We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
Numerical Modeling of Ophthalmic Response to Space
Nelson, E. S.; Myers, J. G.; Mulugeta, L.; Vera, J.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Ethier, C. R.
2015-01-01
To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
Born approximation to a perturbative numerical method for the solution of the Schroedinger equation
International Nuclear Information System (INIS)
Adam, Gh.
1978-01-01
A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)
Long-time behavior in numerical solutions of certain dynamical systems
International Nuclear Information System (INIS)
Vazquez, L.
1987-01-01
A general discretization of the ordinary nonlinear differential equations d 2 v/dt 2 =f(v) and dv/dt=g(v) is studied. The discrete scheme conserves the discrete analogous of a quantity that is conserved by the corresponding equations. This method is applied to two cases and no ''ghost solutions'' were observed for the long range calculation. In these cases we analyze the stability of the corresponding numerical scheme as a dynamical system and in the sense studied by Kuo Pen-Yu and Stetter. In particular we find a correspondence between both kinds of stability. (author)
The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory
International Nuclear Information System (INIS)
Woznicki, Z.I.
1994-01-01
The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs
Human-computer interfaces applied to numerical solution of the Plateau problem
Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério
2015-09-01
In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.
Born approximation to a perturbative numerical method for the solution of the Schrodinger equation
International Nuclear Information System (INIS)
Adam, Gh.
1978-05-01
A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)
Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem
International Nuclear Information System (INIS)
Chen Zhijiang; Kong Fanmei; Din Yibin
1987-01-01
An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc
International Nuclear Information System (INIS)
Carver, M.B.
1995-08-01
The discussion briefly establishes some requisite concepts of differential equation theory, and applies these to describe methods for numerical solution of the thermalhydraulic conservation equations in their various forms. The intent is to cover the general methodology without obscuring the principles with details. As a short overview of computational thermalhydraulics, the material provides an introductory foundation, so that those working on the application of thermalhydraulic codes can begin to understand the many intricacies involved without having to locate and read the references given. Those intending to work in code development will need to read and understand all the references. (author). 49 refs
The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory
Energy Technology Data Exchange (ETDEWEB)
Woznicki, Z I [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs.
Rosenbaum, J. S.
1971-01-01
Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.
The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory
International Nuclear Information System (INIS)
Woznicki, Z.I.
1995-01-01
The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs
The numerical solution of linear multi-term fractional differential equations: systems of equations
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
2002-11-01
In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.
Czech Academy of Sciences Publication Activity Database
Papež, Jan; Liesen, J.; Strakoš, Z.
2014-01-01
Roč. 449, 15 May (2014), s. 89-114 ISSN 0024-3795 R&D Projects: GA AV ČR IAA100300802; GA ČR GA201/09/0917 Grant - others:GA MŠk(CZ) LL1202; GA UK(CZ) 695612 Institutional support: RVO:67985807 Keywords : numerical solution of partial differential equations * finite element method * adaptivity * a posteriori error analysis * discretization error * algebra ic error * spatial distribution of the error Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014
Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling
Dobronets, B. S.; Popova, O. A.
2018-05-01
Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
International Nuclear Information System (INIS)
Graf, U.
1986-01-01
A combination of several numerical methods is used to construct a procedure for effective calculation of complex three-dimensional fluid flow problems. The split coefficient matrix (SCM) method is used so that the differenced equations of the hyperbolic system do not disturb correct signal propagation. The semi-discretisation of the equations of the SCM method is done with the asymmetric, separated region, weighted residual (ASWR) method to give accurate solutions on a relatively coarse mesh. For the resulting system of ordinary differential equations, a general-purpose ordinary differential equation solver is used in conjunction with a method of fractional steps for an economic solution of the large system of linear equations. (orig.) [de
Numerical solution of quadratic matrix equations for free vibration analysis of structures
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Energy Technology Data Exchange (ETDEWEB)
Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn
2006-11-15
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.
Numerical model updating technique for structures using firefly algorithm
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
Numerical Modeling of Rotary Kiln Productivity Increase
Romero-Valle, M.A.; Pisaroni, M.; Van Puyvelde, D.; Lahaye, D.J.P.; Sadi, R.
2013-01-01
Rotary kilns are used in many industrial processes ranging from cement manufacturing to waste incineration. The operating conditions vary widely depending on the process. While there are many models available within the literature and industry, the wide range of operating conditions justifies
Numerical modeling of transformer inrush currents
Energy Technology Data Exchange (ETDEWEB)
Cardelli, E. [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy); Faba, A., E-mail: faba@unipg.it [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy)
2014-02-15
This paper presents an application of a vector hysteresis model to the prediction of the inrush current due the arbitrary initial excitation of a transformer after a fault. The approach proposed seems promising in order to predict the transient overshoot in current and the optimal time to close the circuit after the fault.
Numerical Modeling of Foam Drilling Hydraulics
Directory of Open Access Journals (Sweden)
Ozcan Baris
2007-12-01
Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.
Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation
Peters, A.; Lantermann, U.; el Moctar, O.
2015-12-01
The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.
Modeling and numerical simulation of multi-component flow in porous media
International Nuclear Information System (INIS)
Saad, B.
2011-01-01
This work deals with the modelization and numerical simulation of two phase multi-component flow in porous media. The study is divided into two parts. First we study and prove the mathematical existence in a weak sense of two degenerate parabolic systems modeling two phase (liquid and gas) two component (water and hydrogen) flow in porous media. In the first model, we assume that there is a local thermodynamic equilibrium between both phases of hydrogen by using the Henry's law. The second model consists of a relaxation of the previous model: the kinetic of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is no longer instantaneous. The second part is devoted to the numerical analysis of those models. Firstly, we propose a numerical scheme to compare numerical solutions obtained with the first model and numerical solutions obtained with the second model where the characteristic time to recover the thermodynamic equilibrium goes to zero. Secondly, we present a finite volume scheme with a phase-by-phase upstream weighting scheme without simplified assumptions on the state law of gas densities. We also validate this scheme on a 2D test cases. (author)
Numerical Modelling and Measurement in a Test Secondary Settling Tank
DEFF Research Database (Denmark)
Dahl, C.; Larsen, Torben; Petersen, O.
1994-01-01
sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters...... for model description of settling and density differences. In the test tank experiments, flow velocities and suspended sludge concentrations were measured with different tank inlet geomotry and hydraulic and sludge loads. The test tank experiments provided results for the calibration of the numerical model......A numerical model and measurements of flow and settling in activated sludge suspension is presented. The numerical model is an attempt to describe the complex and interrelated hydraulic and sedimentation phenomena by describing the turbulent flow field and the transport/dispersion of suspended...
A numerical two layer model for blood oxygenation in lungs
International Nuclear Information System (INIS)
Aminatai, A.
2001-01-01
In the modelling of the simultaneous transport of O 2 and CO 2 in the pulmonary circulation described in our earlier studies, the blood has been treated as a homogeneous layer of haemoglobin solution. Since the size of the erythrocyte is not negligible in comparison with that of the capillary, the blood can no longer be considered as a homogeneous fluid and hence, It is worthwhile to consider the blood flow as a two-phase flow consisting of cells and plasma. In the present study, the heterogeneous nature of blood has been proposed by considering the axial train model for the flow [whitmore (1967)], in order to analyze the effect of cell free plasma layer on the process of blood oxygenation in pulmonary capillaries. The proposed model consists of a core of suspended erythrocytes surrounded by a cell free plasma layer near the wall. The coupled system of convective diffusion equaions together with the physiologically relevant boundary, entrance and interface conditions is solved numerically by a four-point semi-implicit scheme to gether with a fixed point iterative technique. The distance traversed by the blood before getting fully oxygenated is computed. It is shown that the core haematocrit and the thickness of the cell depleted layer affect the oxygenation process significantly. It is found that (i) oxygen takes longest and carbondioxide is the fastest to attain equilibraton, (ii) the blood is completely oxygenated within one-fifth part of its transit and (iii) the rate of oxygenation is smaller in case of homogeneous model than that in heterogenous model in the capillary. Finally, the effect of various physiological parameters on the rate of oxygenation has been examined
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous
Sweilam, N. H.; Abou Hasan, M. M.
2017-05-01
In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.
NUMERICAL MODELLING OF CHICKEN-FOOT FOUNDATION
Directory of Open Access Journals (Sweden)
Vipman Tandjiria
1999-01-01
Full Text Available This paper presents an analysis of the chicken-foot foundation using the finite element method. The foundation is considered as a reinforced concrete slab resting on a number of reinforced concrete pipes filled with and surrounded by in-situ soil. The soil and the pipes were modelled by isoparametric solid elements while the slab was modelled by isoparametric thick-plate elements. The study was intended to illustrate the basic mechanism of the chicken-foot foundation. Three cases have been considered for the parametric studies. The parameters investigated are thickness of slab, length of pipes and spacing between pipes. It is shown that such a foundation improves the behaviour of the raft foundation. It is also found that all the parameters used in the parametric studies influence the behaviour of the chicken-foot foundation.
Analytical and numerical modeling for flexible pipes
Wang, Wei; Chen, Geng
2011-12-01
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
Numerical modeling of a vaporizing multicomponent droplet
Megaridis, C. M.; Sirignano, W. A.
The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.
REPFLO model evaluation, physical and numerical consistency
International Nuclear Information System (INIS)
Wilson, R.N.; Holland, D.H.
1978-11-01
This report contains a description of some suggested changes and an evaluation of the REPFLO computer code, which models ground-water flow and nuclear-waste migration in and about a nuclear-waste repository. The discussion contained in the main body of the report is supplemented by a flow chart, presented in the Appendix of this report. The suggested changes are of four kinds: (1) technical changes to make the code compatible with a wider variety of digital computer systems; (2) changes to fill gaps in the computer code, due to missing proprietary subroutines; (3) changes to (a) correct programming errors, (b) correct logical flaws, and (c) remove unnecessary complexity; and (4) changes in the computer code logical structure to make REPFLO a more viable model from the physical point of view
Numerical Analysis of Fractional Order Epidemic Model of Childhood Diseases
Directory of Open Access Journals (Sweden)
Fazal Haq
2017-01-01
Full Text Available The fractional order Susceptible-Infected-Recovered (SIR epidemic model of childhood disease is considered. Laplace–Adomian Decomposition Method is used to compute an approximate solution of the system of nonlinear fractional differential equations. We obtain the solutions of fractional differential equations in the form of infinite series. The series solution of the proposed model converges rapidly to its exact value. The obtained results are compared with the classical case.
Numerical modeling of the debris flows runout
Directory of Open Access Journals (Sweden)
Federico Francesco
2017-01-01
Full Text Available Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a ‘shear layer’, typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.
An implicit second order numerical method for two-fluid models
International Nuclear Information System (INIS)
Toumi, I.
1995-01-01
We present an implicit upwind numerical method for a six equation two-fluid model based on a linearized Riemann solver. The construction of this approximate Riemann solver uses an extension of Roe's scheme. Extension to second order accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a linearized implicit integrating step is used. In practice this new numerical method has proved to be stable and capable of generating accurate non-oscillating solutions for two-phase flow calculations. The scheme was applied both to shock tube problems and to standard tests for two-fluid codes. (author)
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
International Nuclear Information System (INIS)
Ahlstrom, S.W.; Foote, H.P.; Arnett, R.C.; Cole, C.R.; Serne, R.J.
1977-05-01
The Multicomponent Mass Transfer (MMT) Model is a generic computer code, currently in its third generation, that was developed to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. This model was designed to use the water movement patterns produced by the unsaturated and saturated flow models coupled with dispersion and soil-waste reaction submodels to predict contaminant transport. This report documents the theorical foundation and the numerical solution procedure of the current (third) generation of the MMT Model. The present model simulates mass transport processes using an analog referred to as the Discrete-Parcel-Random-Walk (DPRW) algorithm. The basic concepts of this solution technique are described and the advantages and disadvantages of the DPRW scheme are discussed in relation to more conventional numerical techniques such as the finite-difference and finite-element methods. Verification of the numerical algorithm is demonstrated by comparing model results with known closed-form solutions. A brief error and sensitivity analysis of the algorithm with respect to numerical parameters is also presented. A simulation of the tritium plume beneath the Hanford Site is included to illustrate the use of the model in a typical application. 32 figs
Scaffolding Mathematical Modelling with a Solution Plan
Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner
2015-01-01
In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…
Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage
Ji, Youjun; Zhang, Linzhi; Yue, Jiannan
2014-01-01
Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199
Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage
Directory of Open Access Journals (Sweden)
Youjun Ji
2014-01-01
Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.
International Nuclear Information System (INIS)
Talamo, Alberto
2013-01-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto, E-mail: alby@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.