Quark fragmentation function and the nonlinear chiral quark model
International Nuclear Information System (INIS)
Zhu, Z.K.
1993-01-01
The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results
DEFF Research Database (Denmark)
Péguin-Feissolle, Anne; Strikholm, Birgit; Teräsvirta, Timo
In this paper we propose a general method for testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form. These tests are based on a Taylor expansion of the nonlinear model around a given point in the sample space. We study the performance of our tests b...
DEFF Research Database (Denmark)
Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza
2018-01-01
This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising...
Computer-aided Nonlinear Control System Design Using Describing Function Models
Nassirharand, Amir
2012-01-01
A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
International Nuclear Information System (INIS)
Lin-Jie, Chen; Chang-Feng, Ma
2010-01-01
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)
Isomorphism and the #betta#-function of the non-linear sigma model in symmetric spaces
International Nuclear Information System (INIS)
Hikami, S.
1983-01-01
The renormalization group #betta#-function of the non-linear sigma model in symmetric spaces is discussed via the isomorphic relation and the reciprocal relation about a parameter α. The four-loop term is investigated and the symmetric properties of the #betta#-function are studied. The four-loop term in the #betta#-function is shown to be vanishing for the orthogonal Anderson localization problem. (orig.)
Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model
Directory of Open Access Journals (Sweden)
Yazid Edwar
2014-07-01
Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.
Nonlinearity of the forward-backward correlation function in the model with string fusion
Vechernin, Vladimir
2017-12-01
The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.
Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong
2017-12-01
Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data
DEFF Research Database (Denmark)
Raket, Lars Lau; Sommer, Stefan Horst; Markussen, Bo
2014-01-01
We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitti...
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-01-01
With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...
Deimling, Klaus
1985-01-01
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2016-01-01
in its plane, and in the circular cylinder unlimited in length.An approximate numerical solution of the differential equation that is included in a nonlinear mathematical model of the thermal explosion enables us to obtain quantitative estimates of combination of determining parameters at which the limit state occurs in areas of not only canonical form. A capability to study of the thermal explosion state can be extended in the context of development of mathematical modeling methods, including methods of model analysis to describe the thermal state of solids.To analyse a mathematical model of the thermal explosion in a homogeneous solid the paper uses a variational approach based on the dual variational formulation of the appropriate nonlinear stationary problem of heat conduction in such a body. This formulation contains two alternative functional reaching the matching values in their stationary points corresponding to the true temperature distribution. This functional feature allows you to not only get an approximate quantitative estimate of the combination of parameters that determine the thermal explosion state, but also to find the greatest possible error in such estimation.
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...
Nonlinear Modeling by Assembling Piecewise Linear Models
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Nonlinear Ritz approximation for Fredholm functionals
Directory of Open Access Journals (Sweden)
Mudhir A. Abdul Hussain
2015-11-01
Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
An exactly solvable model of an oscillator with nonlinear coupling and zeros of Bessel functions
Dodonov, V. V.; Klimov, A. B.
1993-01-01
We consider an oscillator model with nonpolynomial interaction. The model admits exact solutions for two situations: for energy eigenvalues in terms of zeros of Bessel functions, that were considered as functions of the continuous index; and for the corresponding eigenstates in terms of Lommel polynomials.
Directory of Open Access Journals (Sweden)
Qiang Zhang
2017-09-01
Full Text Available Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.
Identification of nonlinear anelastic models
International Nuclear Information System (INIS)
Draganescu, G E; Bereteu, L; Ercuta, A
2008-01-01
A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
A New Nonlinear Unit Root Test with Fourier Function
Güriş, Burak
2017-01-01
Traditional unit root tests display a tendency to be nonstationary in the case of structural breaks and nonlinearity. To eliminate this problem this paper proposes a new flexible Fourier form nonlinear unit root test. This test eliminates this problem to add structural breaks and nonlinearity together to the test procedure. In this test procedure, structural breaks are modeled by means of a Fourier function and nonlinear adjustment is modeled by means of an Exponential Smooth Threshold Autore...
Frequency response functions for nonlinear convergent systems
Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.
2007-01-01
Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency
LDRD report nonlinear model reduction
Energy Technology Data Exchange (ETDEWEB)
Segalman, D.; Heinstein, M.
1997-09-01
The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
Gao, Mingwu; Cheng, Hao-Min; Sung, Shih-Hsien; Chen, Chen-Huan; Olivier, Nicholas Bari; Mukkamala, Ramakrishna
2017-07-01
pulse transit time (PTT) varies with blood pressure (BP) throughout the cardiac cycle, yet, because of wave reflection, only one PTT value at the diastolic BP level is conventionally estimated from proximal and distal BP waveforms. The objective was to establish a technique to estimate multiple PTT values at different BP levels in the cardiac cycle. a technique was developed for estimating PTT as a function of BP (to indicate the PTT value for every BP level) from proximal and distal BP waveforms. First, a mathematical transformation from one waveform to the other is defined in terms of the parameters of a nonlinear arterial tube-load model accounting for BP-dependent arterial compliance and wave reflection. Then, the parameters are estimated by optimally fitting the waveforms to each other via the model-based transformation. Finally, PTT as a function of BP is specified by the parameters. The technique was assessed in animals and patients in several ways including the ability of its estimated PTT-BP function to serve as a subject-specific curve for calibrating PTT to BP. the calibration curve derived by the technique during a baseline period yielded bias and precision errors in mean BP of 5.1 ± 0.9 and 6.6 ± 1.0 mmHg, respectively, during hemodynamic interventions that varied mean BP widely. the new technique may permit, for the first time, estimation of PTT values throughout the cardiac cycle from proximal and distal waveforms. the technique could potentially be applied to improve arterial stiffness monitoring and help realize cuff-less BP monitoring.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Nonlinear Control of Heartbeat Models
Directory of Open Access Journals (Sweden)
Witt Thanom
2011-02-01
Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.
A non-linear kinematic hardening function
International Nuclear Information System (INIS)
Ottosen, N.S.
1977-05-01
Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)
Nonlinear GARCH model and 1 / f noise
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
Rajeswaran, Jeevanantham; Blackstone, Eugene H; Barnard, John
2018-07-01
In many longitudinal follow-up studies, we observe more than one longitudinal outcome. Impaired renal and liver functions are indicators of poor clinical outcomes for patients who are on mechanical circulatory support and awaiting heart transplant. Hence, monitoring organ functions while waiting for heart transplant is an integral part of patient management. Longitudinal measurements of bilirubin can be used as a marker for liver function and glomerular filtration rate for renal function. We derive an approximation to evolution of association between these two organ functions using a bivariate nonlinear mixed effects model for continuous longitudinal measurements, where the two submodels are linked by a common distribution of time-dependent latent variables and a common distribution of measurement errors.
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Nonlinear Growth Models in M"plus" and SAS
Grimm, Kevin J.; Ram, Nilam
2009-01-01
Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…
Another Class of Perfect Nonlinear Polynomial Functions
Directory of Open Access Journals (Sweden)
Menglong Su
2013-01-01
Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.
Nonlinear Dynamic Models in Advanced Life Support
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Simplified Model of Nonlinear Landau Damping
International Nuclear Information System (INIS)
Yampolsky, N.A.; Fisch, N.J.
2009-01-01
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Adaptive regression for modeling nonlinear relationships
Knafl, George J
2016-01-01
This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...
Model reduction of systems with localized nonlinearities.
Energy Technology Data Exchange (ETDEWEB)
Segalman, Daniel Joseph
2006-03-01
An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.
Optimization of nonlinear wave function parameters
International Nuclear Information System (INIS)
Shepard, R.; Minkoff, M.; Chemistry
2006-01-01
An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules
Nonlinear models for autoregressive conditional heteroskedasticity
DEFF Research Database (Denmark)
Teräsvirta, Timo
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are discu...
International Nuclear Information System (INIS)
Jiang, He; Dong, Yao
2016-01-01
Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Relation between nonlinear models and gauge ambiguities
International Nuclear Information System (INIS)
Balachandran, A.P.; Ramachandran, R.; Rupertsberger, H.; Skagerstam, B.S.
1980-01-01
We show that the solutions of a class of nonlinear models also generate gauge ambiguities in the vacuum sector of Yang-Mills theories. Our results extend known connections between gauge ambiguities and certain nonlinear sigma-models, and clarify the underlying group theory. For many nonlinear models, we also give a simple, intrinsic parametrization of physical fields (which have values in a homogeneous space of a group). (orig.)
Nonlinear Inertia Classification Model and Application
Directory of Open Access Journals (Sweden)
Mei Wang
2014-01-01
Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.
Superspace formulation of new nonlinear sigma models
International Nuclear Information System (INIS)
Gates, S.J. Jr.
1983-07-01
The superspace formulation of two classes of supersymmetric nonlinear σ-models are presented. Two alternative N=1 superspace formulations are given for the d=2 supersymmetric nonlinear σ-models with Killing vector potentials: (a) formulation uses an active central charge and, (b) formulation uses a spurion superfield without inducing a classical breakdown of supersymmetry. The N=2 vector multiplet is used to construct a new class of d=4 nonlinear σ-models which when reduced to d=2 possess N=4 supersymmetry. Implications of these two classes of nonlinear σ-models for N>=4 superfield supergravity are discussed. (author)
From spiking neuron models to linear-nonlinear models.
Ostojic, Srdjan; Brunel, Nicolas
2011-01-20
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Nonlinear flow model for well production in an underground formation
Directory of Open Access Journals (Sweden)
J. C. Guo
2013-05-01
Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.
A nonlinear theory of generalized functions
1990-01-01
This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...
Nonparametric Transfer Function Models
Liu, Jun M.; Chen, Rong; Yao, Qiwei
2009-01-01
In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
The Human Cochlear Mechanical Nonlinearity Inferred via Psychometric Functions
Directory of Open Access Journals (Sweden)
Nizami Lance
2013-12-01
Extension of the model of Schairer and colleagues results in credible cochlear nonlinearities in man, suggesting that forward-masking provides a non-invasive way to infer the human mechanical cochlear nonlinearity.
Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals
Energy Technology Data Exchange (ETDEWEB)
Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)
2016-01-31
The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)
Comparing coefficients of nested nonlinear probability models
DEFF Research Database (Denmark)
Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders
2011-01-01
In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...
Parameter Estimation of Nonlinear Models in Forestry.
Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.
1999-01-01
Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...
Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction
Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.
2005-03-01
We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.
Forecasting with nonlinear time series models
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...
Convex models and probabilistic approach of nonlinear fatigue failure
International Nuclear Information System (INIS)
Qiu Zhiping; Lin Qiang; Wang Xiaojun
2008-01-01
This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Nonlinear analysis of a rotor-bearing system using describing functions
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
Nonlinear signal processing using neural networks: Prediction and system modelling
Energy Technology Data Exchange (ETDEWEB)
Lapedes, A.; Farber, R.
1987-06-01
The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Topological approximation of the nonlinear Anderson model
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Nonlinear control of the Salnikov model reaction
DEFF Research Database (Denmark)
Recke, Bodil; Jørgensen, Sten Bay
1999-01-01
This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.; Salama, Khaled N.
2009-01-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Dissipative quantum dynamics and nonlinear sigma-model
International Nuclear Information System (INIS)
Tarasov, V.E.
1992-01-01
Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs
Green function formalism for nonlinear acoustic waves in layered media
International Nuclear Information System (INIS)
Lobo, A.; Tsoy, E.; De Sterke, C.M.
2000-01-01
Full text: The applications of acoustic waves in identifying defects in adhesive bonds between metallic plates have received little attention at high intensities where the media respond nonlinearly. However, the effects of reduced bond strength are more distinct in the nonlinear response of the structure. Here we assume a weak nonlinearity acting as a small perturbation, thereby reducing the problem to a linear one. This enables us to develop a specialized Green function formalism for calculating acoustic fields in layered media
Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2007-10-01
Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.
Nonlinear Model Reduction for RTCVD
National Research Council Canada - National Science Library
Newman, Andrew J; Krishnaprasad, P. S
1998-01-01
...) for semiconductor manufacturing. They focus on model reduction for the ordinary differential equation model describing heat transfer to, from, and within a semiconductor wafer in the RTCVD chamber...
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...
Modeling vector nonlinear time series using POLYMARS
de Gooijer, J.G.; Ray, B.K.
2003-01-01
A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector
Nonlinear friction model for servo press simulation
Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo
2013-12-01
The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.
Measurement Model Nonlinearity in Estimation of Dynamical Systems
Majji, Manoranjan; Junkins, J. L.; Turner, J. D.
2012-06-01
The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.
Finite element model for nonlinear shells of revolution
International Nuclear Information System (INIS)
Cook, W.A.
1979-01-01
Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Likelihood-Based Inference in Nonlinear Error-Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbæk, Anders
We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...
On nonlinear reduced order modeling
International Nuclear Information System (INIS)
Abdel-Khalik, Hany S.
2011-01-01
When applied to a model that receives n input parameters and predicts m output responses, a reduced order model estimates the variations in the m outputs of the original model resulting from variations in its n inputs. While direct execution of the forward model could provide these variations, reduced order modeling plays an indispensable role for most real-world complex models. This follows because the solutions of complex models are expensive in terms of required computational overhead, thus rendering their repeated execution computationally infeasible. To overcome this problem, reduced order modeling determines a relationship (often referred to as a surrogate model) between the input and output variations that is much cheaper to evaluate than the original model. While it is desirable to seek highly accurate surrogates, the computational overhead becomes quickly intractable especially for high dimensional model, n ≫ 10. In this manuscript, we demonstrate a novel reduced order modeling method for building a surrogate model that employs only 'local first-order' derivatives and a new tensor-free expansion to efficiently identify all the important features of the original model to reach a predetermined level of accuracy. This is achieved via a hybrid approach in which local first-order derivatives (i.e., gradient) of a pseudo response (a pseudo response represents a random linear combination of original model’s responses) are randomly sampled utilizing a tensor-free expansion around some reference point, with the resulting gradient information aggregated in a subspace (denoted by the active subspace) of dimension much less than the dimension of the input parameters space. The active subspace is then sampled employing the state-of-the-art techniques for global sampling methods. The proposed method hybridizes the use of global sampling methods for uncertainty quantification and local variational methods for sensitivity analysis. In a similar manner to
Perturbation analysis of nonlinear matrix population models
Directory of Open Access Journals (Sweden)
Hal Caswell
2008-03-01
Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.
Modeling of nonlinear responses for reciprocal transducers involving polarization switching
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Linxiang
2007-01-01
Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...... intrinsically. The time-dependent Ginzburg-Landau theory is used in the parameter identification involving hysteresis effects. We use the Chebyshev collocation method in the numerical simulations. The elastic field is assumed to be coupled linearly with other fields, and the nonlinearity is in the E-D coupling...
Nonlinear distortion in wireless systems modeling and simulation with Matlab
Gharaibeh, Khaled M
2011-01-01
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...
Nonlinear correction to the longitudinal structure function at small x
International Nuclear Information System (INIS)
Boroun, G.R.
2010-01-01
We computed the longitudinal proton structure function F L , using the nonlinear Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (NLDGLAP) evolution equation approach at small x. For the gluon distribution, the nonlinear effects are related to the longitudinal structure function. As the very small-x behavior of the gluon distribution is obtained by solving the Gribov, Levin, Ryskin, Mueller and Qiu (GLR-MQ) evolution equation with the nonlinear shadowing term incorporated, we show that the strong rise that corresponds to the linear QCD evolution equations can be tamed by screening effects. Consequently, the obtained longitudinal structure function shows a tamed growth at small x. We computed the predictions for all details of the nonlinear longitudinal structure function in the kinematic range where it has been measured by the H1 Collaboration and made comparisons with the computation by Moch, Vermaseren and Vogt at the second order with input data from the MRST QCD fit. (orig.)
Jacobian elliptic function expansion solutions of nonlinear stochastic equations
International Nuclear Information System (INIS)
Wei Caimin; Xia Zunquan; Tian Naishuo
2005-01-01
Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation
New exact travelling wave solutions of nonlinear physical models
International Nuclear Information System (INIS)
Bekir, Ahmet; Cevikel, Adem C.
2009-01-01
In this work, we established abundant travelling wave solutions for some nonlinear evolution equations. This method was used to construct travelling wave solutions of nonlinear evolution equations. The travelling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The ((G ' )/G )-expansion method presents a wider applicability for handling nonlinear wave equations.
Analysis of nonlinear systems using ARMA [autoregressive moving average] models
International Nuclear Information System (INIS)
Hunter, N.F. Jr.
1990-01-01
While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs
A nonlinear model for AC induced corrosion
Directory of Open Access Journals (Sweden)
N. Ida
2012-09-01
Full Text Available The modeling of corrosion poses particular difficulties. The understanding of corrosion as an electrochemical process has led to simple capacitive-resistive models that take into account the resistance of the electrolytic cell and the capacitive effect of the surface potential at the interface between conductors and the electrolyte. In some models nonlinear conduction effects have been added to account for more complex observed behavior. While these models are sufficient to describe the behavior in systems with cathodic protection, the behavior in the presence of induced AC currents from power lines and from RF sources cannot be accounted for and are insufficient to describe the effects observed in the field. Field observations have shown that a rectifying effect exists that affects the cathodic protection potential and this effect is responsible for corrosion in the presence of AC currents. The rectifying effects of the metal-corrosion interface are totally missing from current models. This work proposes a nonlinear model based on finite element analysis that takes into account the nonlinear behavior of the metal-oxide interface and promises to improve modeling by including the rectification effects at the interface.
Research on nonlinear stochastic dynamical price model
International Nuclear Information System (INIS)
Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng
2008-01-01
In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies
International Nuclear Information System (INIS)
Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra
2014-01-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
Directory of Open Access Journals (Sweden)
Chaojiao Sun
2016-01-01
Full Text Available An adaptive neural control scheme is proposed for nonaffine nonlinear system without using the implicit function theorem or mean value theorem. The differential conditions on nonaffine nonlinear functions are removed. The control-gain function is modeled with the nonaffine function probably being indifferentiable. Furthermore, only a semibounded condition for nonaffine nonlinear function is required in the proposed method, and the basic idea of invariant set theory is then constructively introduced to cope with the difficulty in the control design for nonaffine nonlinear systems. It is rigorously proved that all the closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Finally, simulation examples are provided to demonstrate the effectiveness of the designed method.
Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon
2018-04-01
By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
On the evaluation of scalarproducts of nonlinear spinorfield state functionals
International Nuclear Information System (INIS)
Stumpf, H.
1981-01-01
The metrical structure of the linear state space of a quantized nonlinear field cannot be given a priori. Rather it is determined by the dynamics of the field itself. For the evaluation of state norms and scalarproducts this metric must be known. In functional quantum theory the metrical structure is expressed by the metric tensor G(j) in functional space. Equivalent to the knowledge of G(j) is the knowledge of the set of dual state functionals ( vertical stroke S(j,a)>) together with the corresponding original state functionals ( vertical stroke F(j,a)>). In preceding papers attempts were made to calculate G(j). In this paper an approach is made to determine the dual state functionals directly. Equations are derived which have to be satisfied by the dual functionals. The method works in those state sectors which are characterized by real (monopole) particles or monopole ghosts, while it does not work for multipole ghost states. Norm calculations are performed for local monopole fermion states and local monopole boson states of the lepton- quark model derived in a preceding paper. (orig.)
Preisach hysteresis model for non-linear 2D heat diffusion
International Nuclear Information System (INIS)
Jancskar, Ildiko; Ivanyi, Amalia
2006-01-01
This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way
Stability of Nonlinear Neutral Stochastic Functional Differential Equations
Directory of Open Access Journals (Sweden)
Minggao Xue
2010-01-01
Full Text Available Neutral stochastic functional differential equations (NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but they can also be verified much more easily than the classical criteria. Finally, several examples are given to illustrate main results.
Thermoviscous Model Equations in Nonlinear Acoustics
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne
Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Energy Technology Data Exchange (ETDEWEB)
Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)
2014-09-25
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.
International Nuclear Information System (INIS)
Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar
2014-01-01
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
SILVA R. G.
1999-01-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Spatiotemporal drought forecasting using nonlinear models
Vasiliades, Lampros; Loukas, Athanasios
2010-05-01
Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with
Non-linear variation of the beta function with momentum
International Nuclear Information System (INIS)
Parzen, G.
1983-07-01
A theory is presented for computing the non-linear dependence of the β-functions on momentum. Results are found for the quadratic term. The results of the theory are compared with computed results. A procedure is proposed for computing the strengths of the sextupole correctors to correct the dependence of the β-function on momentum
Fast evaluation of nonlinear functionals of tensor product wavelet expansions
Schwab, C.; Stevenson, R.
2011-01-01
Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree
Hamed Kharrati; Sohrab Khanmohammadi; Witold Pedrycz; Ghasem Alizadeh
2012-01-01
This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy m...
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Model of anisotropic nonlinearity in self-defocusing photorefractive media.
Barsi, C; Fleischer, J W
2015-09-21
We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.
Reduced Complexity Volterra Models for Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Hacıoğlu Rıfat
2001-01-01
Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.
Exponential function method for solving nonlinear ordinary ...
Indian Academy of Sciences (India)
[14] introduced a new system of rational. 79 ..... Also, for k-power of function f (η), by induction, we have ..... reliability and efficiency of the method. .... electric field and the polarization effects are negligible and B(x) is assumed by Chaim [8] as.
New Exact Penalty Functions for Nonlinear Constrained Optimization Problems
Directory of Open Access Journals (Sweden)
Bingzhuang Liu
2014-01-01
Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.
A Versatile Nonlinear Method for Predictive Modeling
Liou, Meng-Sing; Yao, Weigang
2015-01-01
As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.
A multilevel nonlinear mixed-effects approach to model growth in pigs
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H.
2010-01-01
Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....
Nonlinear interaction model of subsonic jet noise.
Sandham, Neil D; Salgado, Adriana M
2008-08-13
Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.
Nonlinear price impact from linear models
Patzelt, Felix; Bouchaud, Jean-Philippe
2017-12-01
The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.
Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models
Low, Ian; Yin, Zhewei
2018-02-01
We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S -matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.
Kim, J.; Rasouli, S.; Timmermans, H.J.P.
2014-01-01
The hybrid choice model (HCM) provides a powerful framework to account for heterogeneity across decision-makers in terms of different underlying latent attitudes. Typically, effects of the latent attitudes have been represented assuming linear utility functions. In contributing to the further
Kim, J.; Rasouli, S.; Timmermans, H.J.P.
2016-01-01
The hybrid choice model (HCM) provides a powerful framework to account for heterogeneity across decision-makers in terms of different underlying latent attitudes. Typically, effects of the latent attitudes have been represented assuming linear utility functions. In contributing to the further
A model of nonlinear strain and damage accumulation in polymer composites
Directory of Open Access Journals (Sweden)
A. N. Ruslantsev
2014-01-01
Full Text Available This paper presents a model to predict a nonlinear strain of the carbon laminate; the model is based on the relations between the theory of laminated plates and the non-linear approximation of deformation curve of unidirectional layer at the shear in the layer plane. The explicit expressions of stiffness and compliance matrices were obtained via multiplying the matrices that correspond to the elastic characteristics by the matrices, considering the non-linear properties of the laminate. The paper suggests an approximation option for the non-linear properties of the layer at the shear using an exponential function. Some considerations on damage accumulation in carbon laminates were made.
Differential quadrature method of nonlinear bending of functionally graded beam
Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You
2018-02-01
Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.
Nonlinear ECRH and ECCD modeling in toroidal devices
International Nuclear Information System (INIS)
Kamendje, R.; Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.; Poli, E.
2003-01-01
A Monte Carlo method of evaluation of the electron distribution function which takes into account realistic orbits of electrons during their nonlinear cyclotron interaction with the wave beam has been proposed. The focus there was on a proper description of particle interaction with a wave beam while the geometry of the main magnetic field outside the beam was the simplest possible (slab model). In the actual work, a more realistic tokamak geometry has been implemented in the model. In addition, an expression for the parallel current density through Green's function has been used. This allows to reduce statistical errors which result from the fact that the current generated by particles with positive v parallel >0 is almost compensated by the current resulting from particles with v parallel <0 if the complete distribution function is taken into account in the expression for the current. The code ECNL which is a Monte Carlo kinetic equation solver based on this model, has been coupled with the beam tracing code TORBEAM. The results of nonlinear modeling of ECCD in a tokamak with ASDEX Upgrade parameters with help of this combination of codes are compared below to the results of linear modeling performed with TORBEAM alone. In addition, implications for stellarators are discussed. (orig.)
Nonlinear Model of Tape Wound Core Transformers
Directory of Open Access Journals (Sweden)
A. Vahedi
2015-03-01
Full Text Available Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a model based on reluctance networks method is presented for analysis of magnetic flux in wound cores. Using this model, distribution of longitudinal and transverse fluxes within the core can be determined. To consider the nonlinearity of the core, a dynamic hysteresis model is included in the presented model. Having flux density in different points of the core, magnetic losses can be calculated. To evaluate the validity of the model, results are compared with 2-D FEM simulations. In addition, a transformer designed for series-resonant converter and simulation results are compared with experimental measurements. Comparisons show accuracy of the model besides simplicity and fast convergence
NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION
Directory of Open Access Journals (Sweden)
Roman L. Leibov
2017-09-01
Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented
Viscosity solutions of fully nonlinear functional parabolic PDE
Directory of Open Access Journals (Sweden)
Liu Wei-an
2005-01-01
Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.
Nonlinear Analysis and Modeling of Tires
Noor, Ahmed K.
1996-01-01
The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.
Nonlinear integral equations for the sausage model
Ahn, Changrim; Balog, Janos; Ravanini, Francesco
2017-08-01
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.
Nonlinear Convective Models of RR Lyrae Stars
Feuchtinger, M.; Dorfi, E. A.
The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.
Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order
Directory of Open Access Journals (Sweden)
Taher S. Hassan
2016-01-01
Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t, i=1,…,n-1, with x0=x, ϕβ(u≔uβsgnu, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.
Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models
Baianu, I C
2004-01-01
A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.
Computational Models for Nonlinear Aeroelastic Systems, Phase II
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...
Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures
Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent
2018-03-01
Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.
Model Updating Nonlinear System Identification Toolbox, Phase II
National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...
Testing and inference in nonlinear cointegrating vector error correction models
DEFF Research Database (Denmark)
Kristensen, D.; Rahbek, A.
2013-01-01
We analyze estimators and tests for a general class of vector error correction models that allows for asymmetric and nonlinear error correction. For a given number of cointegration relationships, general hypothesis testing is considered, where testing for linearity is of particular interest. Under...... the null of linearity, parameters of nonlinear components vanish, leading to a nonstandard testing problem. We apply so-called sup-tests to resolve this issue, which requires development of new(uniform) functional central limit theory and results for convergence of stochastic integrals. We provide a full...... asymptotic theory for estimators and test statistics. The derived asymptotic results prove to be nonstandard compared to results found elsewhere in the literature due to the impact of the estimated cointegration relations. This complicates implementation of tests motivating the introduction of bootstrap...
Nonlinear structural mechanics theory, dynamical phenomena and modeling
Lacarbonara, Walter
2013-01-01
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...
Nonlinear Rheology in a Model Biological Tissue
Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten
2017-04-01
The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.
Coherent nonlinear quantum model for composite fermions
Energy Technology Data Exchange (ETDEWEB)
Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)
2014-04-01
Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris
When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... the potential of the unscented Kalman …filter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalman …filter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...
A simple numerical model of a geometrically nonlinear Timoshenko beam
Keijdener, C.; Metrikine, A.
2015-01-01
In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.
International Nuclear Information System (INIS)
Fujii, Akira; Kluemper, Andreas
1999-01-01
We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation
Hash function based on piecewise nonlinear chaotic map
International Nuclear Information System (INIS)
Akhavan, A.; Samsudin, A.; Akhshani, A.
2009-01-01
Chaos-based cryptography appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. In this paper, an algorithm for one-way hash function construction based on piecewise nonlinear chaotic map with a variant probability parameter is proposed. Also the proposed algorithm is an attempt to present a new chaotic hash function based on multithreaded programming. In this chaotic scheme, the message is connected to the chaotic map using probability parameter and other parameters of chaotic map such as control parameter and initial condition, so that the generated hash value is highly sensitive to the message. Simulation results indicate that the proposed algorithm presented several interesting features, such as high flexibility, good statistical properties, high key sensitivity and message sensitivity. These properties make the scheme a suitable choice for practical applications.
COMBINING LONG MEMORY AND NONLINEAR MODEL OUTPUTS FOR INFLATION FORECAST
Heri Kuswanto; Irhamah Alimuhajin; Laylia Afidah
2014-01-01
Long memory and nonlinearity have been proven as two models that are easily to be mistaken. In other words, nonlinearity is a strong candidate of spurious long memory by introducing a certain degree of fractional integration that lies in the region of long memory. Indeed, nonlinear process belongs to short memory with zero integration order. The idea of the forecast is to obtain the future condition with minimum error. Some researches argued that no matter what the model is, the important thi...
Drabinová, Adéla; Martinková, Patrícia
2017-01-01
In this article we present a general approach not relying on item response theory models (non-IRT) to detect differential item functioning (DIF) in dichotomous items with presence of guessing. The proposed nonlinear regression (NLR) procedure for DIF detection is an extension of method based on logistic regression. As a non-IRT approach, NLR can…
Explicit Nonlinear Model Predictive Control Theory and Applications
Grancharova, Alexandra
2012-01-01
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
Dynamics in a nonlinear Keynesian good market model
International Nuclear Information System (INIS)
Naimzada, Ahmad; Pireddu, Marina
2014-01-01
In this paper, we show how a rich variety of dynamical behaviors can emerge in the standard Keynesian income-expenditure model when a nonlinearity is introduced, both in the cases with and without endogenous government spending. A specific sigmoidal functional form is used for the adjustment mechanism of income with respect to the excess demand, in order to bound the income variation. With the aid of analytical and numerical tools, we investigate the stability conditions, bifurcations, as well as periodic and chaotic dynamics. Globally, we study multistability phenomena, i.e., the coexistence of different kinds of attractors
Visualization of nonlinear kernel models in neuroimaging by sensitivity maps
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard
There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions
Directory of Open Access Journals (Sweden)
Hamed Kharrati
2012-01-01
Full Text Available This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.
Quantum-mechanical Green's functions and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.
1986-01-01
The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt
Quantum-mechanical Green's function and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.
1986-01-01
It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field
Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation
Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet
2015-01-01
When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating
Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials
International Nuclear Information System (INIS)
Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan
2007-01-01
A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong
2015-08-19
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.
Nonlinear spectral mixing theory to model multispectral signatures
Energy Technology Data Exchange (ETDEWEB)
Borel, C.C. [Los Alamos National Lab., NM (United States). Astrophysics and Radiation Measurements Group
1996-02-01
Nonlinear spectral mixing occurs due to multiple reflections and transmissions between discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an energy conserving computational method used in thermal engineering and it models nonlinear spectral mixing realistically and accurately. In contrast to the radiative transfer method the radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact location, orientation and shape) such as leaves and includes mutual shading between them. An analytic radiosity-based scattering model for vegetation was developed and used to compute vegetation indices for various configurations. The leaf reflectance and transmittance was modeled using the PROSPECT model for various amounts of water, chlorophyll and variable leaf structure. The soil background was modeled using SOILSPEC with a linear mixture of reflectances of sand, clay and peat. A neural network and a geometry based retrieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat TM channels were used. The authors used an empirical function to compute the signal-to-noise ratio of a retrieved quantity.
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...
Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models
Institute of Scientific and Technical Information of China (English)
Jochen Aβfalg; Frank Allg(o)wer
2007-01-01
This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.
Directory of Open Access Journals (Sweden)
Bighnaraj Naik
2018-01-01
Full Text Available All the higher order ANNs (HONNs including functional link ANN (FLANN are sensitive to random initialization of weight and rely on the learning algorithms adopted. Although a selection of efficient learning algorithms for HONNs helps to improve the performance, on the other hand, initialization of weights with optimized weights rather than random weights also play important roles on its efficiency. In this paper, the problem solving approach of the teaching learning based optimization (TLBO along with learning ability of the gradient descent learning (GDL is used to obtain the optimal set of weight of FLANN learning model. TLBO does not require any specific parameters rather it requires only some of the common independent parameters like number of populations, number of iterations and stopping criteria, thereby eliminating the intricacy in selection of algorithmic parameters for adjusting the set of weights of FLANN model. The proposed TLBO-FLANN is implemented in MATLAB and compared with GA-FLANN, PSO-FLANN and HS-FLANN. The TLBO-FLANN is tested on various 5-fold cross validated benchmark data sets from UCI machine learning repository and analyzed under the null-hypothesis by using Friedman test, Holm’s procedure and post hoc ANOVA statistical analysis (Tukey test & Dunnett test.
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima
2017-07-10
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.
Multidimensional splines for modeling FET nonlinearities
Energy Technology Data Exchange (ETDEWEB)
Barby, J A
1986-01-01
Circuit simulators like SPICE and timing simulators like MOTIS are used extensively for critical path verification of integrated circuits. MOSFET model evaluation dominates the run time of these simulators. Changes in technology results in costly updates, since modifications require reprogramming of the functions and their derivatives. The computational cost of MOSFET models can be reduced by using multidimensional polynomial splines. Since simulators based on the Newton Raphson algorithm require the function and first derivative, quadratic splines are sufficient for this purpose. The cost of updating the MOSFET model due to technology changes is greatly reduced since splines are derived from a set of points. Crucial for convergence speed of simulators is the fact that MOSFET characteristic equations are monotonic. This must be maintained by any simulation model. The splines the author designed do maintain monotonicity.
Modeling of Nonlinear Beat Signals of TAE's
Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin
2012-03-01
Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core
Model reduction tools for nonlinear structural dynamics
Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.
1995-01-01
Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their
Nonlinear model of high-dose implantation
International Nuclear Information System (INIS)
Danilyuk, A.
2001-01-01
The models of high-dose implantation, using the distribution functions, are relatively simple. However, they must take into account the variation of the function of distribution of the implanted ions with increasing dose [1-4]. This variation takes place owing to the fact that the increase of the concentration of the implanted ions results in a change of the properties of the target. High-dose implantation is accompanied by sputtering, volume growth, diffusion, generation of defects, formation of new phases, etc. The variation of the distribution function is determined by many factors and is not known in advance. The variation within the framework of these models [1-4] is taken into account in advance by the introduction of intuitive assumptions on the basis of implicit considerations. Therefore, these attempts should be regarded as incorrect. The model prepared here makes it possible to take into account the sputtering of the target, volume growth and additional declaration on the implanted ions. Without any assumptions in relation to the variation of the distribution function with increasing dose. In our model it is assumed that the type of distribution function for small doses in a pure target substance is the same as in substances with implanted ions. A second assumption relates to the type of the distribution function valid for small doses in the given substances. These functions are determined as a result of a large number of theoretical and experimental investigations and are well-known at the present time. They include the symmetric and nonsymmetric Gauss distribution, the Pearson distribution, and others. We examine implantation with small doses of up to 10 14 - 10 15 cm -2 when the accurately known distribution is valid
Models of the delayed nonlinear Raman response in diatomic gases
International Nuclear Information System (INIS)
Palastro, J. P.; Antonsen, T. M. Jr.; Pearson, A.
2011-01-01
We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O 2 and N 2 , and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas' orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.
The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.
Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin
2016-07-01
Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Homogenized global nonlinear constitutive model for RC panels under cyclic loadings
International Nuclear Information System (INIS)
Huguet, Miquel; Voldoire, Francois; Kotronis, Panagiotis; Erlicher, Silvano
2014-01-01
A new nonlinear stress resultant global constitutive model for RC panels is presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the main nonlinear effects identified at the local scale that constitute the basis for the construction of the stress resultant global model through an analytical homogenization technique. The closed form solution is obtained using general functions for the previous phenomena. (authors)
Nonlinear Modeling of the PEMFC Based On NNARX Approach
Shan-Jen Cheng; Te-Jen Chang; Kuang-Hsiung Tan; Shou-Ling Kuo
2015-01-01
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accurac...
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
Novel features of the nonlinear model arising in nano-ionic currents throughout microtubules
Celik, E.; Bulut, H.; Baskonus, H. M.
2018-05-01
In this manuscript, the modified exp (- Ω (ξ )) -expansion function method is implemented to find the new solutions to the nonlinear differential equation being the transmission line model. We obtain some new solutions to this model such as complex, exponential, trigonometric and hyperbolic functions. We plot the two- and three-dimensional surfaces of each solutions obtained in this manuscript.
Physics constrained nonlinear regression models for time series
International Nuclear Information System (INIS)
Majda, Andrew J; Harlim, John
2013-01-01
A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)
Variational Boussinesq model for strongly nonlinear dispersive waves
Lawrence, C.; Adytia, D.; van Groesen, E.
2018-01-01
For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem
2017-01-01
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order
Nonlinear spherical perturbations in quintessence models of dark energy
Pratap Rajvanshi, Manvendra; Bagla, J. S.
2018-06-01
Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.
Heeding the waveform inversion nonlinearity by unwrapping the model and data
Alkhalifah, Tariq Ali
2012-01-01
Unlike traveltime inversion, waveform inversion provides relatively higher-resolution inverted models. This feature, however, comes at the cost of introducing complex nonlinearity to the inversion operator complicating the convergence process. We use unwrapped-phase-based objective functions to reduce such nonlinearity in a domain in which the high-frequency component is given by the traveltime inversion. Such information is packaged in a frequency-dependent attribute (or traveltime) that can be easily manipulated at different frequencies. It unwraps the phase of the wavefield yielding far less nonlinearity in the objective function than those experienced with the conventional misfit objective function, and yet it still holds most of the critical waveform information in its frequency dependency. However, it suffers from nonlinearity introduced by the model (or reflectivity), as events interact with each other (something like cross talk). This stems from the sinusoidal nature of the band-limited reflectivity model. Unwrapping the phase for such a model can mitigate this nonlinearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced nonlinearity and, thus, make the inversion more convergent. Simple examples are used to highlight such features.
On concurvity in nonlinear and nonparametric regression models
Directory of Open Access Journals (Sweden)
Sonia Amodio
2014-12-01
Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.
PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems
Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai
2017-09-01
In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.
Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.
Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang
2016-10-31
Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter
Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç
2017-01-01
This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.
Heterotic sigma models and non-linear strings
International Nuclear Information System (INIS)
Hull, C.M.
1986-01-01
The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)
DEFF Research Database (Denmark)
Baty, Florent; Ritz, Christian; van Gestel, Arnoldus
2016-01-01
describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...
Directory of Open Access Journals (Sweden)
Massimo Buscema
2007-01-01
(2007, this protocol includes a new type of artificial organism, named TWIST. The working hypothesis was that compared to the results presented by the workgroup (2007; the new artificial organism TWIST could produce a better classification between AD and MCI. Material and methods. Resting eyes-closed EEG data were recorded in 180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing performed by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable better than the ones reported in our previous study (∼92% (2007. Conclusion. The results confirm the working hypothesis that a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the EEG.
Real-Time Implementation of Nonlinear Optical Processing Functions.
1986-09-30
information capacity) with the nonlinear error correction properties of associative neural nets such as the Hopfield model. Analogies between holography...symnolic ma.Ip’:ation Th.e error correcting -apart" :ty of non" ;n-ar associative merTtnies is necessary for s’uch structu-res Experimerta. results... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.
2011-01-01
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
Frank, T. D.
2008-02-01
We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.
A deep belief network with PLSR for nonlinear system modeling.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli
2017-10-31
Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Model Updating Nonlinear System Identification Toolbox, Phase I
National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...
Sphaleron in a non-linear sigma model
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1989-08-01
We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)
Computational Models for Nonlinear Aeroelastic Systems, Phase I
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...
forecasting with nonlinear time series model: a monte-carlo
African Journals Online (AJOL)
PUBLICATIONS1
Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.
A Multivariate Approach to Functional Neuro Modeling
DEFF Research Database (Denmark)
Mørch, Niels J.S.
1998-01-01
by the application of linear and more flexible, nonlinear microscopic regression models to a real-world dataset. The dependency of model performance, as quantified by generalization error, on model flexibility and training set size is demonstrated, leading to the important realization that no uniformly optimal model......, provides the basis for a generalization theoretical framework relating model performance to model complexity and dataset size. Briefly summarized the major topics discussed in the thesis include: - An introduction of the representation of functional datasets by pairs of neuronal activity patterns...... exists. - Model visualization and interpretation techniques. The simplicity of this task for linear models contrasts the difficulties involved when dealing with nonlinear models. Finally, a visualization technique for nonlinear models is proposed. A single observation emerges from the thesis...
Directory of Open Access Journals (Sweden)
Il Young Song
2015-01-01
Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Nonlinear associations between plasma cholesterol levels and neuropsychological function.
Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R
2016-11-01
Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as Reproduction II ( b = -.0020, p = .026) and log of the Trail Making Test, Part B (b = .0001, p = .044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Nonlinear dynamics new directions models and applications
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...
Special class of nonlinear damping models in flexible space structures
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
A finite element model for nonlinear shells of revolution
International Nuclear Information System (INIS)
Cook, W.A.
1979-01-01
A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)
Nonlinear mirror mode dynamics: Simulations and modeling
Czech Academy of Sciences Publication Activity Database
Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel
2008-01-01
Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
McNeish, Daniel; Dumas, Denis
2017-01-01
Recent methodological work has highlighted the promise of nonlinear growth models for addressing substantive questions in the behavioral sciences. In this article, we outline a second-order nonlinear growth model in order to measure a critical notion in development and education: potential. Here, potential is conceptualized as having three components-ability, capacity, and availability-where ability is the amount of skill a student is estimated to have at a given timepoint, capacity is the maximum amount of ability a student is predicted to be able to develop asymptotically, and availability is the difference between capacity and ability at any particular timepoint. We argue that single timepoint measures are typically insufficient for discerning information about potential, and we therefore describe a general framework that incorporates a growth model into the measurement model to capture these three components. Then, we provide an illustrative example using the public-use Early Childhood Longitudinal Study-Kindergarten data set using a Michaelis-Menten growth function (reparameterized from its common application in biochemistry) to demonstrate our proposed model as applied to measuring potential within an educational context. The advantage of this approach compared to currently utilized methods is discussed as are future directions and limitations.
Heterotic non-linear sigma models with anti-de Sitter target spaces
International Nuclear Information System (INIS)
Michalogiorgakis, Georgios; Gubser, Steven S.
2006-01-01
We calculate the beta function of non-linear sigma models with S D+1 and AdS D+1 target spaces in a 1/D expansion up to order 1/D 2 and to all orders in α ' . This beta function encodes partial information about the spacetime effective action for the heterotic string to all orders in α ' . We argue that a zero of the beta function, corresponding to a worldsheet CFT with AdS D+1 target space, arises from competition between the one-loop and higher-loop terms, similarly to the bosonic and supersymmetric cases studied previously in [J.J. Friess, S.S. Gubser, Non-linear sigma models with anti-de Sitter target spaces, Nucl. Phys. B 750 (2006) 111-141]. Various critical exponents of the non-linear sigma model are calculated, and checks of the calculation are presented
The application of He's exp-function method to a nonlinear differential-difference equation
International Nuclear Information System (INIS)
Dai Chaoqing; Cen Xu; Wu Shengsheng
2009-01-01
This paper applies He's exp-function method, which was originally proposed to find new exact travelling wave solutions of nonlinear partial differential equations (NPDEs) or coupled nonlinear partial differential equations (CNPDEs), to a nonlinear differential-difference equation, and some new travelling wave solutions are obtained.
Nonlinear differential equations with exact solutions expressed via the Weierstrass function
Kudryashov, NA
2004-01-01
A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear
Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis
Directory of Open Access Journals (Sweden)
Moussa Leblouba
2016-01-01
Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.
A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.
A nonlinear analytic function expansion nodal method for transient calculations
Energy Technology Data Exchange (ETDEWEB)
Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)
A nonlinear analytic function expansion nodal method for transient calculations
Energy Technology Data Exchange (ETDEWEB)
Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)
Non-perturbative aspects of nonlinear sigma models
Energy Technology Data Exchange (ETDEWEB)
Flore, Raphael
2012-12-07
The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3){approx_equal}CP{sup 1} model. By the generalization of the topological
Non-perturbative aspects of nonlinear sigma models
International Nuclear Information System (INIS)
Flore, Raphael
2012-01-01
The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3)≅CP 1 model. By the generalization of the topological operator and the
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Non-Linear Slosh Damping Model Development and Validation
Yang, H. Q.; West, Jeff
2015-01-01
Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can
A nonlinear complementarity approach for the national energy modeling system
International Nuclear Information System (INIS)
Gabriel, S.A.; Kydes, A.S.
1995-01-01
The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP
International Nuclear Information System (INIS)
Nazareth, J. L.
1979-01-01
1 - Description of problem or function: OCOPTR and DRVOCR are computer programs designed to find minima of non-linear differentiable functions f: R n →R with n dimensional domains. OCOPTR requires that the user only provide function values (i.e. it is a derivative-free routine). DRVOCR requires the user to supply both function and gradient information. 2 - Method of solution: OCOPTR and DRVOCR use the variable metric (or quasi-Newton) method of Davidon (1975). For OCOPTR, the derivatives are estimated by finite differences along a suitable set of linearly independent directions. For DRVOCR, the derivatives are user- supplied. Some features of the codes are the storage of the approximation to the inverse Hessian matrix in lower trapezoidal factored form and the use of an optimally-conditioned updating method. Linear equality constraints are permitted subject to the initial Hessian factor being chosen correctly. 3 - Restrictions on the complexity of the problem: The functions to which the routine is applied are assumed to be differentiable. The routine also requires (n 2 /2) + 0(n) storage locations where n is the problem dimension
New Exact Solutions for New Model Nonlinear Partial Differential Equation
Maher, A.; El-Hawary, H. M.; Al-Amry, M. S.
2013-01-01
In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.
Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control
Domínguez, Luis F.
2011-01-19
In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.
Modeling of nonlinear biological phenomena modeled by S-systems.
Mansouri, Majdi M; Nounou, Hazem N; Nounou, Mohamed N; Datta, Aniruddha A
2014-03-01
A central challenge in computational modeling of biological systems is the determination of the model parameters. In such cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. For example, time-series dynamic genomic data can be used to develop models representing dynamic genetic regulatory networks, which can be used to design intervention strategies to cure major diseases and to better understand the behavior of biological systems. Unfortunately, biological measurements are usually highly infected by errors that hide the important characteristics in the data. Therefore, these noisy measurements need to be filtered to enhance their usefulness in practice. This paper addresses the problem of state and parameter estimation of biological phenomena modeled by S-systems using Bayesian approaches, where the nonlinear observed system is assumed to progress according to a probabilistic state space model. The performances of various conventional and state-of-the-art state estimation techniques are compared. These techniques include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and the developed variational Bayesian filter (VBF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the enzyme CadA, the model cadBA, the cadaverine Cadav and the lysine Lys for a model of the Cad System in Escherichia coli (CSEC)) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of the number of estimated model parameters on the accuracy and convergence of these
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
Symmetries and discretizations of the O(3) nonlinear sigma model
Energy Technology Data Exchange (ETDEWEB)
Flore, Raphael [TPI, Universitaet Jena (Germany)
2011-07-01
Nonlinear sigma models possess many interesting properties like asymptotic freedom, confinement or dynamical mass generation, and hence serve as toy models for QCD and other theories. We derive a formulation of the N=2 supersymmetric extension of the O(3) nonlinear sigma model in terms of constrained field variables. Starting from this formulation, it is discussed how the model can be discretized in a way that maintains as many symmetries of the theory as possible. Finally, recent numerical results related to these discretizations are presented.
Modeling and nonlinear heading control for sailing yachts
DEFF Research Database (Denmark)
Xiao, Lin; Jouffroy, Jerome
2014-01-01
This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also...
Modeling and nonlinear heading control for sailing yachts
DEFF Research Database (Denmark)
Xiao, Lin; Jouffroy, Jerome
2011-01-01
This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design...
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...
An Improved Nonlinear Five-Point Model for Photovoltaic Modules
Directory of Open Access Journals (Sweden)
Sakaros Bogning Dongue
2013-01-01
Full Text Available This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.
Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer
Directory of Open Access Journals (Sweden)
Yinhui Zhang
2015-01-01
Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.
Study of the nonlinear imperfect software debugging model
International Nuclear Information System (INIS)
Wang, Jinyong; Wu, Zhibo
2016-01-01
In recent years there has been a dramatic proliferation of research on imperfect software debugging phenomena. Software debugging is a complex process and is affected by a variety of factors, including the environment, resources, personnel skills, and personnel psychologies. Therefore, the simple assumption that debugging is perfect is inconsistent with the actual software debugging process, wherein a new fault can be introduced when removing a fault. Furthermore, the fault introduction process is nonlinear, and the cumulative number of nonlinearly introduced faults increases over time. Thus, this paper proposes a nonlinear, NHPP imperfect software debugging model in consideration of the fact that fault introduction is a nonlinear process. The fitting and predictive power of the NHPP-based proposed model are validated through related experiments. Experimental results show that this model displays better fitting and predicting performance than the traditional NHPP-based perfect and imperfect software debugging models. S-confidence bounds are set to analyze the performance of the proposed model. This study also examines and discusses optimal software release-time policy comprehensively. In addition, this research on the nonlinear process of fault introduction is significant given the recent surge of studies on software-intensive products, such as cloud computing and big data. - Highlights: • Fault introduction is a nonlinear changing process during the debugging phase. • The assumption that the process of fault introduction is nonlinear is credible. • Our proposed model can better fit and accurately predict software failure behavior. • Research on fault introduction case is significant to software-intensive products.
Nonlinear modeling of a rotational MR damper via an enhanced Bouc–Wen model
International Nuclear Information System (INIS)
Miah, Mohammad S; Chatzi, Eleni N; Dertimanis, Vasilis K; Weber, Felix
2015-01-01
The coupling of magnetorheological (MR) dampers with semi-active control schemes has proven to be an effective and failsafe approach for vibration mitigation of low-damped structures. However, due to the nonlinearities inherently relating to such damping devices, the characterization of the associated nonlinear phenomena is still a challenging task. Herein, an enhanced phenomenological modeling approach is proposed for the description of a rotational-type MR damper, which comprises a modified Bouc–Wen model coupled with an appropriately selected sigmoid function. In a first step, parameter optimization is performed on the basis of individual models in an effort to approximate the experimentally observed response for varying current levels and actuator force characteristics. In a second step, based on the previously identified parameters, a generalized best-fit model is proposed by performing a regression analysis. Finally, model validation is carried out via implementation on different sets of experimental data. The proposed model indeed renders an improved representation of the actually observed nonlinear behavior of the tested rotational MR damper. (paper)
Computation of Value Functions in Nonlinear Differential Games with State Constraints
Botkin, Nikolai; Hoffmann, Karl-Heinz; Mayer, Natalie; Turova, Varvara
2013-01-01
Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a
Modelling and control of a nonlinear magnetostrictive actuator system
Ramli, M. H. M.; Majeed, A. P. P. Abdul; Anuar, M. A. M.; Mohamed, Z.
2018-04-01
This paper explores the implementation of a feedforward control method to a nonlinear control system, in particular, Magnetostrictive Actuators (MA) that has excellent properties of energy conversion between the mechanical and magnetic form through magnetostriction effects which could be used in actuating and sensing application. MA is known to exhibit hysteresis behaviour and it is rate dependent (the level of hysteresis depends closely on the rate of input excitation frequency). This is, nonetheless, an undesirable behaviour and has to be eliminated in realising high precision application. The MA is modelled by a phenomenological modelling approach via Prandtl-Ishlinskii (P-I) operator to characterise the hysteresis nonlinearities. A feedforward control strategy is designed and implemented to linearize and eliminate the hysteresis by model inversion. The results show that the P-I operator has the capability to model the hysteretic nonlinearity of MA with an acceptable accuracy. Furthermore, the proposed control scheme has demonstrated to be effective in providing superior trajectory tracking.
A Simple Model for Nonlinear Confocal Ultrasonic Beams
Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen
2007-01-01
A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.
Modeling TAE Response To Nonlinear Drives
Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin
2012-10-01
Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.
Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity
Directory of Open Access Journals (Sweden)
Isao Ishida
2015-01-01
Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.
Forecasting Volatility of Dhaka Stock Exchange: Linear Vs Non-linear models
Directory of Open Access Journals (Sweden)
Masudul Islam
2012-10-01
Full Text Available Prior information about a financial market is very essential for investor to invest money on parches share from the stock market which can strengthen the economy. The study examines the relative ability of various models to forecast daily stock indexes future volatility. The forecasting models that employed from simple to relatively complex ARCH-class models. It is found that among linear models of stock indexes volatility, the moving average model ranks first using root mean square error, mean absolute percent error, Theil-U and Linex loss function criteria. We also examine five nonlinear models. These models are ARCH, GARCH, EGARCH, TGARCH and restricted GARCH models. We find that nonlinear models failed to dominate linear models utilizing different error measurement criteria and moving average model appears to be the best. Then we forecast the next two months future stock index price volatility by the best (moving average model.
Nonlinear dynamics of avian influenza epidemic models.
Liu, Sanhong; Ruan, Shigui; Zhang, Xinan
2017-01-01
Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
Theory of heart biomechanics, biophysics, and nonlinear dynamics of cardiac function
Hunter, Peter; McCulloch, Andrew
1991-01-01
In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electromechanics. This volume is the result of a workshop held in July 1989 at the Institute for Nonlinear Sciences at the University of California at San Diego that brought together scientists and clinicians with graduate students and postdoctoral fellows who shared an interest in the heart. The chapters were prepared by the invited speakers as didactic reviews of their subjects but also include the structure, mechanical properties, and function of the heart and the myocardium, electrical activity of the heart and myocardium, and mathematical models of heart function.
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional
Directory of Open Access Journals (Sweden)
Şeref Doğuşcan Akbaş
2013-01-01
Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.
A Comparative Study Of Stock Price Forecasting Using Nonlinear Models
Directory of Open Access Journals (Sweden)
Diteboho Xaba
2017-03-01
Full Text Available This study compared the in-sample forecasting accuracy of three forecasting nonlinear models namely: the Smooth Transition Regression (STR model, the Threshold Autoregressive (TAR model and the Markov-switching Autoregressive (MS-AR model. Nonlinearity tests were used to confirm the validity of the assumptions of the study. The study used model selection criteria, SBC to select the optimal lag order and for the selection of appropriate models. The Mean Square Error (MSE, Mean Absolute Error (MAE and Root Mean Square Error (RMSE served as the error measures in evaluating the forecasting ability of the models. The MS-AR models proved to perform well with lower error measures as compared to LSTR and TAR models in most cases.
forecasting with nonlinear time series model: a monte-carlo
African Journals Online (AJOL)
PUBLICATIONS1
erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.
Nonlinear Dynamics of a Helicopter Model in Ground Resonance
Tang, D. M.; Dowell, E. H.
1985-01-01
An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.
Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.
Buzzanell, Patrice M.; Goldzwig, Steven R.
1991-01-01
Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…
An analog model for quantum lightcone fluctuations in nonlinear optics
International Nuclear Information System (INIS)
Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.
2013-01-01
We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: ► Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. ► Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. ► Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. ► We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. ► Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.
Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers
Directory of Open Access Journals (Sweden)
Nicolás Peréz Alvarez
2015-11-01
Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.
Nonlinear surface impedance of YBCO thin films: Measurements, modeling, and effects in devices
International Nuclear Information System (INIS)
Oates, D.E.; Koren, G.; Polturak, E.
1995-01-01
High-T c thin films continue to be of interest for passive device applications at microwave frequencies, but nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear surface impedance Z s in a number of YBa 2 Cu 3 O 7-x thin films as a function of frequency from 1 to 18 GHz, rf surface magnetic field H rf to 1500 Oe, and temperature from 4 K to T c . The results at low H rf are shown to agree quantitatively with a modified coupled-grain model and at high H rf with hysteresis-loss calculations using the Bean critical-state model applied to a thin strip. The loss mechanisms are extrinsic properties resulting from defects in the films. We also report preliminary measurements of the nonlinear impedance of Josephson junctions, and the results are related to the models of nonlinear Z s . The implications of nonlinear Z s for devices are discussed using the example of a five-pole bandpass filter
Note on off-shell relations in nonlinear sigma model
International Nuclear Information System (INIS)
Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing
2015-01-01
In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.
Nonlinear thermal reduced model for Microwave Circuit Analysis
Chang, Christophe; Sommet, Raphael; Quéré, Raymond; Dueme, Ph.
2004-01-01
With the constant increase of transistor power density, electro thermal modeling is becoming a necessity for accurate prediction of device electrical performances. For this reason, this paper deals with a methodology to obtain a precise nonlinear thermal model based on Model Order Reduction of a three dimensional thermal Finite Element (FE) description. This reduced thermal model is based on the Ritz vector approach which ensure the steady state solution in every case. An equi...
Institute of Scientific and Technical Information of China (English)
Wan-sheng WANG; Shou-fu LI; Run-sheng YANG
2012-01-01
A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.
Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbæk, Anders
In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction considered. A simulation study shows that the fi…nite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....
Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders
In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....
Mathematical models for suspension bridges nonlinear structural instability
Gazzola, Filippo
2015-01-01
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
Modeling and non-linear responses of MEMS capacitive accelerometer
Directory of Open Access Journals (Sweden)
Sri Harsha C.
2014-01-01
Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.
Modelling of a bridge-shaped nonlinear piezoelectric energy harvester
International Nuclear Information System (INIS)
Gafforelli, G; Corigliano, A; Xu, R; Kim, S G
2013-01-01
Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters
Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing
2018-02-01
Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.
Hidden physics models: Machine learning of nonlinear partial differential equations
Raissi, Maziar; Karniadakis, George Em
2018-03-01
While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
Cutoff effects in O(N) nonlinear sigma models
International Nuclear Information System (INIS)
Knechtli, Francesco; Leder, Bjoern; Wolff, Ulli
2005-01-01
In the nonlinear O(N) sigma model at N=3 unexpected cutoff effects have been found before with standard discretizations and lattice spacings. Here the situation is analyzed further employing additional data for the step scaling function of the finite volume mass gap at N=3,4,8 and a large N-study of the leading as well as next-to-leading terms in 1/N. The latter exact results are demonstrated to follow Symanzik's form of the asymptotic cutoff dependence. At the same time, when fuzzed with artificial statistical errors and then fitted like the Monte Carlo results, a picture similar to N=3 emerges. We hence cannot conclude a truly anomalous cutoff dependence but only relatively large cutoff effects, where the logarithmic component is important. Their size shrinks at larger N, but the structure remains similar. The large N results are particularly interesting as we here have exact nonperturbative control over an asymptotically free model both in the continuum limit and on the lattice
Cutoff effects in O(N) nonlinear sigma models
International Nuclear Information System (INIS)
Knechtli, F.; Wolff, U.; Leder, B.
2005-06-01
In the nonlinear O(N) sigma model at N=3 unexpected cutoff effects have been found before with standard discretizations and lattice spacings. Here the situation is analyzed further employing additional data for the step scaling function of the finite volume mass gap at N=3,4,8 and a large N-study of the leading as well as next-to-leading terms in 1/N. The latter exact results are demonstrated to follow Symanzik's form of the asymptotic cutoff dependence. At the same time, when fuzzed with artificial statistical errors and then fitted like the Monte Carlo results, a picture similar to N=3 emerges. We hence cannot conclude a truly anomalous cutoff dependence but only relatively large cutoff effects, where the logarithmic component is important. Their size shrinks at larger N, but the structure remains similar. The large N results are particularly interesting as we here have exact nonperturbative control over an asymptotically free model both in the continuum limit and on the lattice. (orig.)
Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses
DEFF Research Database (Denmark)
Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech
2017-01-01
The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable mod...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...
Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.
Global Nonlinear Model Identification with Multivariate Splines
De Visser, C.C.
2011-01-01
At present, model based control systems play an essential role in many aspects of modern society. Application areas of model based control systems range from food processing to medical imaging, and from process control in oil refineries to the flight control systems of modern aircraft. Central to a
DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel
2016-03-29
We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.
Current algebra of classical non-linear sigma models
International Nuclear Information System (INIS)
Forger, M.; Laartz, J.; Schaeper, U.
1992-01-01
The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)
Dynamics of breathers in discrete nonlinear Schrodinger models
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge
1998-01-01
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...
Control mechanisms for a nonlinear model of international relations
Energy Technology Data Exchange (ETDEWEB)
Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.
1997-07-15
Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.
S-AMP for non-linear observation models
DEFF Research Database (Denmark)
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Modelling the nonlinearity of piezoelectric actuators in active ...
African Journals Online (AJOL)
Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration control systems, it is important to have an accurate model of the control branch. This paper demonstrates the ability of neural ...
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...
A non-linear dissipative model of magnetism
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2010-01-01
Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/
Modeling and verifying non-linearities in heterodyne displacement interferometry
Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.
2002-01-01
The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the
Global attractivity of an almost periodic N-species nonlinear ecological competitive model
Xia, Yonghui; Han, Maoan; Huang, Zhenkun
2008-01-01
By using comparison theorem and constructing suitable Lyapunov functional, we study the following almost periodic nonlinear N-species competitive Lotka-Volterra model: A set of sufficient conditions is obtained for the existence and global attractivity of a unique positive almost periodic solution of the above model. As applications, some special competition models are studied again, our new results improve and generalize former results. Examples and their simulations show the feasibility of our main results.
Identification of stochastic interactions in nonlinear models of structural mechanics
Kala, Zdeněk
2017-07-01
In the paper, the polynomial approximation is presented by which the Sobol sensitivity analysis can be evaluated with all sensitivity indices. The nonlinear FEM model is approximated. The input area is mapped using simulations runs of Latin Hypercube Sampling method. The domain of the approximation polynomial is chosen so that it were possible to apply large number of simulation runs of Latin Hypercube Sampling method. The method presented also makes possible to evaluate higher-order sensitivity indices, which could not be identified in case of nonlinear FEM.
International Nuclear Information System (INIS)
Yomba, Emmanuel
2008-01-01
With the aid of symbolic computation, we demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations. This system includes the modified Hubbard model and the system of coupled nonlinear Schroedinger derived by Lazarides and Tsironis. Four types of solutions for this system are given explicitly, namely: new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons
Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation
Abdelkefi, Abdessattar
2013-06-18
In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.
Nonlinear Structured Growth Mixture Models in Mplus and OpenMx
Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne
2014-01-01
Growth mixture models (GMMs; Muthén & Muthén, 2000; Muthén & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models because of their common use, flexibility in modeling many types of change patterns, the availability of statistical programs to fit such models, and the ease of programming. In this paper, we present additional ways of modeling nonlinear change patterns with GMMs. Specifically, we show how LCMs that follow specific nonlinear functions can be extended to examine the presence of multiple latent classes using the Mplus and OpenMx computer programs. These models are fit to longitudinal reading data from the Early Childhood Longitudinal Study-Kindergarten Cohort to illustrate their use. PMID:25419006
Special function solutions of a spectral problem for a nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A; Morris, J R
2012-01-01
We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)
Modelization of highly nonlinear waves in coastal regions
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2015-04-01
The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.
A Memristor Model with Piecewise Window Function
Directory of Open Access Journals (Sweden)
J. Yu
2013-12-01
Full Text Available In this paper, we present a memristor model with piecewise window function, which is continuously differentiable and consists of three nonlinear pieces. By introducing two parameters, the shape of this window function can be flexibly adjusted to model different types of memristors. Using this model, one can easily obtain an expression of memristance depending on charge, from which the numerical value of memristance can be readily calculated for any given charge, and eliminate the error occurring in the simulation of some existing window function models.
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular analysis tools within the neuroimaging community. Such methods...... neuroimaging data sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative...... be carefully selected, so that the model and its visualization enhance our ability to interpret brain function. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...
Nonlinear dynamic phenomena in the beer model
DEFF Research Database (Denmark)
Mosekilde, Erik; Laugesen, Jakob Lund
2007-01-01
The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann; Christensen, Knud Bank
1996-01-01
A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...
Nonclassical measurements errors in nonlinear models
DEFF Research Database (Denmark)
Madsen, Edith; Mulalic, Ismir
Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... that contains very detailed information about incomes. This gives a unique opportunity to learn about the magnitude and nature of the measurement error in income reported by the respondents in the Danish NTS compared to income from the administrative register (correct measure). We find that the classical...
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Soliton excitations in a class of nonlinear field theory models
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Fedyanin, V.K.
1985-01-01
Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated
The quantum nonlinear Schroedinger model with point-like defect
International Nuclear Information System (INIS)
Caudrelier, V; Mintchev, M; Ragoucy, E
2004-01-01
We establish a family of point-like impurities which preserve the quantum integrability of the nonlinear Schroedinger model in 1+1 spacetime dimensions. We briefly describe the construction of the exact second quantized solution of this model in terms of an appropriate reflection-transmission algebra. The basic physical properties of the solution, including the spacetime symmetry of the bulk scattering matrix, are also discussed. (letter to the editor)
Eddy current modeling in linear and nonlinear multifilamentary composite materials
Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean
2018-04-01
In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.
Classical solutions for the 4-dimensional σ-nonlinear model
International Nuclear Information System (INIS)
Tataru-Mihai, P.
1979-01-01
By interpreting the σ-nonlinear model as describing the Gauss map associated to a certain immersion, several classes of classical solutions for the 4-dimensional model are derived. As by-products one points out i) an intimate connection between the energy-momentum tensor of the solution and the second differential form of the immersion associated to it and ii) a connection between self- (antiself-)duality of the solution and the minimality of the associated immersion. (author)
Study of the 'non-Abelian' current algebra of a non-linear σ-model
International Nuclear Information System (INIS)
Ghosh, Subir
2006-01-01
A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
Quantum Gelfand-Levitan equations for nonlinear Schroedinger model of spin-1/2 particles
International Nuclear Information System (INIS)
Pu, F.; Zhao, B.
1984-01-01
The quantum Gelfand-Levitan equations for the nonlinear Schroedinger model of spin-(1/2) particles are obtained. Two Izergin-Korepin relations are used in the derivation. A new type commutation relation of L operators is introduced to get the commutation relations which are needed for the study of S matrices and Green's functions. As examples, the four-point Green's functions and the two-body S matrices are given
Modeling exposure–lag–response associations with distributed lag non-linear models
Gasparrini, Antonio
2014-01-01
In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
Directory of Open Access Journals (Sweden)
Wansheng Wang
2010-01-01
Full Text Available This paper is devoted to generalize Halanay's inequality which plays an important rule in study of stability of differential equations. By applying the generalized Halanay inequality, the stability results of nonlinear neutral functional differential equations (NFDEs and nonlinear neutral delay integrodifferential equations (NDIDEs are obtained.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
International Nuclear Information System (INIS)
Khare, Avinash; Saxena, Avadh
2014-01-01
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ 4 , the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn 2 (x, m), it also admits solutions in terms of dn 2 (x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations
Nonlinear System Identification Using Quasi-ARX RBFN Models with a Parameter-Classified Scheme
Directory of Open Access Journals (Sweden)
Lan Wang
2017-01-01
Full Text Available Quasi-linear autoregressive with exogenous inputs (Quasi-ARX models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.
Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.
Shang, Xituan; Yen, Michael R T; Gaber, M Waleed
2010-06-01
The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Directory of Open Access Journals (Sweden)
Lakshmi Narayan Mishra
2016-04-01
Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.
Nguyen, Nhan; Ting, Eric
2018-01-01
This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..
Observing and modeling nonlinear dynamics in an internal combustion engine
International Nuclear Information System (INIS)
Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.
1998-01-01
We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society
Multi-atom Jaynes-Cummings model with nonlinear effects
International Nuclear Information System (INIS)
Aleixo, Armando Nazareno Faria; Balantekin, Akif Baha; Ribeiro, Marco Antonio Candido
2001-01-01
The standard Jaynes-Cummings (JC) model and its extensions, normally used in quantum optics, idealizes the interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level atom coupled to a single bosonic mode. This Hamiltonian has a fundamental importance to the field of quantum optics and it is a central ingredient in the quantized description of any optical system involving the interaction between light and atoms. The JC Hamiltonian defines a molecule, a composite system formed from the coupling of a two-state system and a quantized harmonic oscillator. For this Hamiltonian, mostly the single-particle situation has been studied. This model can also be extended for the situation where one has N two-level systems, which interact only with the electromagnetic radiation. In this case the effects of the spatial distribution of the particles it is not taken into account and the spin angular momentum S-circumflex i of each particle contributes to form a total angular momentum J-circumflex of the system. When one considers the effects due to the spatial variation in the field intensity in a nonlinear medium it is necessary to further add a Kerr term to the standard JC Hamiltonian. This kind of nonlinear JC Hamiltonian is used in the study of micro masers. Another nonlinear variant of the JC model takes the coupling between matter and the radiation to depend on the intensity of the electromagnetic field. This model is interesting since this kind of interaction means that effectively the coupling is proportional to the amplitude of the field representing a very simple case of a nonlinear interaction corresponding to a more realistic physical situation. In this work we solve exactly the problem of the interaction of a N two-level atoms with an electromagnetic radiation when nonlinear effects due to the spatial variation in the field intensity in a nonlinear Kerr medium and the dependence on the intensity of the electromagnetic field on the matter
A data driven nonlinear stochastic model for blood glucose dynamics.
Zhang, Yan; Holt, Tim A; Khovanova, Natalia
2016-03-01
The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Modal model for the nonlinear multimode Rayleigh endash Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Alon, U.; Shvarts, D.; McCrory, R.L.; Verdon, C.P.
1996-01-01
A modal model for the Rayleigh endash Taylor (RT) instability, applicable at all stages of the flow, is introduced. The model includes a description of nonlinear low-order mode coupling, mode growth saturation, and post-saturation mode coupling. It is shown to significantly extend the range of applicability of a previous model proposed by Haan, to cases where nonlinear mode generation is important. Using the new modal model, we study the relative importance of mode coupling at late nonlinear stages and resolve the difference between cases in which mode generation assumes a dominant role, leading to the late time inverse cascade of modes and loss of memory of initial conditions, and cases where mode generation is not important and memory of initial conditions is retained. Effects of finite density ratios (Atwood number A<1) are also included in the model and the difference between various measures of the mixing zone penetration depth for A<1 is discussed. copyright 1996 American Institute of Physics
Nonlinear modeling of magnetorheological energy absorbers under impact conditions
Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy
2013-11-01
Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.
Nonlinear modeling of magnetorheological energy absorbers under impact conditions
International Nuclear Information System (INIS)
Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy
2013-01-01
Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)
Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations
International Nuclear Information System (INIS)
Yu Jianping; Sun Yongli
2008-01-01
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations
Nonlinear unitary quantum collapse model with self-generated noise
Geszti, Tamás
2018-04-01
Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.
Non-linear sigma model on the fuzzy supersphere
International Nuclear Information System (INIS)
Kurkcuoglu, Seckin
2004-01-01
In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)
Cardiovascular oscillations: in search of a nonlinear parametric model
Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan
2003-05-01
We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.
Spatio-temporal modeling of nonlinear distributed parameter systems
Li, Han-Xiong
2011-01-01
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087
Estimation of Nonlinear DC-Motor Models Using a Sensitivity Approach
DEFF Research Database (Denmark)
Knudsen, Morten; Jensen, J.G.
1995-01-01
A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed.......A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed....
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.
2016-01-01
Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm ...... controller is shown very reliable keeping the comfort levels in the two considered seasons and shifting the load away from peak hours in order to achieve the desired flexible electricity consumption.......Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...
Non-linear calibration models for near infrared spectroscopy
DEFF Research Database (Denmark)
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-01-01
by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Directory of Open Access Journals (Sweden)
Dhakne Machindra B.
2017-04-01
Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Nonlinear Stochastic Models for Water Level Dynamics in Closed Lakes
Mishchenko, A.S.; Zelikin, M.I.; Zelikina, L.F.
1995-01-01
This paper presents the results of investigation of nonlinear mathematical models of the behavior of closed lakes using the example of the Caspian Sea. Forecasting the level of the Caspian Sea is crucial both for the economy of the region and for the region's environment. The Caspian Sea is a closed reservoir; it is well known that its level changes considerably due to a variety of factors including global climate change. A series of forecasts exists based on different methods and taking...
NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS
International Nuclear Information System (INIS)
TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.
2004-01-01
For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability
Nonlinear evolution inclusions arising from phase change models
Czech Academy of Sciences Publication Activity Database
Colli, P.; Krejčí, Pavel; Rocca, E.; Sprekels, J.
2007-01-01
Roč. 57, č. 4 (2007), s. 1067-1098 ISSN 0011-4642 R&D Projects: GA ČR GA201/02/1058 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear and nonlocal evolution equations * Cahn-Hilliard type dynamics * phase transitions models Subject RIV: BA - General Mathematics Impact factor: 0.155, year: 2007 http://www.dml.cz/bitstream/handle/10338.dmlcz/128228/CzechMathJ_57-2007-4_2.pdf
Mathematical modeling and visualization of functional neuroimages
DEFF Research Database (Denmark)
Rasmussen, Peter Mondrup
This dissertation presents research results regarding mathematical modeling in the context of the analysis of functional neuroimages. Specifically, the research focuses on pattern-based analysis methods that recently have become popular within the neuroimaging community. Such methods attempt...... sets are characterized by relatively few data observations in a high dimensional space. The process of building models in such data sets often requires strong regularization. Often, the degree of model regularization is chosen in order to maximize prediction accuracy. We focus on the relative influence...... be carefully selected, so that the model and its visualization enhance our ability to interpret the brain. The second part concerns interpretation of nonlinear models and procedures for extraction of ‘brain maps’ from nonlinear kernel models. We assess the performance of the sensitivity map as means...
Nonlinear Model Predictive Control for Cooperative Control and Estimation
Ru, Pengkai
Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.
Exact solutions for nonlinear evolution equations using Exp-function method
International Nuclear Information System (INIS)
Bekir, Ahmet; Boz, Ahmet
2008-01-01
In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations
Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations
International Nuclear Information System (INIS)
Bekir, Ahmet; Boz, Ahmet
2009-01-01
In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.
Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach
Doeswijk, T.G.; Keesman, K.J.
2005-01-01
Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J
2018-05-01
Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Use of nonlinear dose-effect models to predict consequences
International Nuclear Information System (INIS)
Seiler, F.A.; Alvarez, J.L.
1996-01-01
The linear dose-effect relationship was introduced as a model for the induction of cancer from exposure to nuclear radiation. Subsequently, it has been used by analogy to assess the risk of chemical carcinogens also. Recently, however, the model for radiation carcinogenesis has come increasingly under attack because its calculations contradict the epidemiological data, such as cancer in atomic bomb survivors. Even so, its proponents vigorously defend it, often using arguments that are not so much scientific as a mix of scientific, societal, and often political arguments. At least in part, the resilience of the linear model is due to two convenient properties that are exclusive to linearity: First, the risk of an event is determined solely by the event dose; second, the total risk of a population group depends only on the total population dose. In reality, the linear model has been conclusively falsified; i.e., it has been shown to make wrong predictions, and once this fact is generally realized, the scientific method calls for a new paradigm model. As all alternative models are by necessity nonlinear, all the convenient properties of the linear model are invalid, and calculational procedures have to be used that are appropriate for nonlinear models
Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics
International Nuclear Information System (INIS)
Passot, T.; Sulem, P. L.
2005-01-01
In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)
Hamim, Salah Uddin Ahmed
Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.
The inherent complexity in nonlinear business cycle model in resonance
International Nuclear Information System (INIS)
Ma Junhai; Sun Tao; Liu Lixia
2008-01-01
Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future
Application of nonlinear forecasting techniques for meteorological modeling
Directory of Open Access Journals (Sweden)
V. Pérez-Muñuzuri
2000-10-01
Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields
Application of nonlinear forecasting techniques for meteorological modeling
Directory of Open Access Journals (Sweden)
V. Pérez-Muñuzuri
Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.
Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields
Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity
International Nuclear Information System (INIS)
Vassiliadis, D.
1992-01-01
The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms
Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times
Directory of Open Access Journals (Sweden)
Songtao Zhang
2017-01-01
Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.
Comparison of a nonlinear dynamic model of a piping system to test data
International Nuclear Information System (INIS)
Blakely, K.D.; Howard, G.E.; Walton, W.B.; Johnson, B.A.; Chitty, D.E.
1983-01-01
Response of a nonlinear finite element model of the Heissdampfreaktor recirculation piping loop (URL) was compared to measured data, representing the physical benchmarking of a nonlinear model. Analysis-test comparisons of piping response are presented for snapback tests that induced extreme nonlinear behavior of the URL system. Nonlinearities in the system are due to twelve swaybraces (pipe supports) that possessed nonlinear force-deflection characteristics. These nonlinearities distorted system damping estimates made by using the half-power bandwidth method on Fourier transforms of measured accelerations, with the severity of distortion increasing with increasing degree of nonlinearity. Time domain methods, which are not so severely affected by the presence of nonlinearities, were used to compute system damping ratios. Nonlinear dynamic analyses were accurately and efficiently performed using the pseudo-force technique and the finite element program MSC/NASTRAN. Measured damping was incorporated into the model for snapback simulations. Acceleration time histories, acceleration Fourier transforms, and swaybrace force time histories of the nonlinear model, plus several linear models, were compared to test measurements. The nonlinear model predicted three-fourths of the measured peak accelerations to within 50%, half of the accelerations to within 25%, and one-fifth of the accelerations to within 10%. This nonlinear model predicted accelerations (in the time and frequency domains) and swaybrace forces much better than did any of the linear models, demonstrating the increased accuracy resulting from properly simulating nonlinear support behavior. In addition, earthquake response comparisons were made between the experimentally validated nonlinear model and a linear model. Significantly lower element stresses were predicted for the nonlinear model, indicating the potential usefulness of nonlinear simulations in piping design assessments. (orig.)
Directory of Open Access Journals (Sweden)
Juing-Shian Chiou
2013-01-01
Full Text Available This paper has implemented nonlinear control strategy for the single tilt tri-rotor aerial robot. Based on Newton-Euler’s laws, the linear and nonlinear mathematical models of tri-rotor UAVs are obtained. A numerical analysis using Newton-Raphson method is chosen for finding hovering equilibrium point. Back-stepping nonlinear controller design is based on constructing Lyapunov candidate function for closed-loop system. By imitating the linguistic logic of human thought, fuzzy logic controllers (FLCs are designed based on control rules and membership functions, which are much less rigid than the calculations computers generally perform. Effectiveness of the controllers design scheme is shown through nonlinear simulation model on each channel.
Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model
T. H. Lee; J. H. Park; S. M. Lee; S. C. Lee
2010-01-01
In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of ...
Fsheikh, Ahmed H.
2013-01-01
A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.
An SIRS model with a nonlinear incidence rate
International Nuclear Information System (INIS)
Jin Yu; Wang, Wendi; Xiao Shiwu
2007-01-01
The global dynamics of an SIRS model with a nonlinear incidence rate is investigated. We establish a threshold for a disease to be extinct or endemic, analyze the existence and asymptotic stability of equilibria, and verify the existence of bistable states, i.e., a stable disease free equilibrium and a stable endemic equilibrium or a stable limit cycle. In particular, we find that the model admits stability switches as a parameter changes. We also investigate the backward bifurcation, the Hopf bifurcation and Bogdanov-Takens bifurcation and obtain the Hopf bifurcation criteria and Bogdanov-Takens bifurcation curves, which are important for making strategies for controlling a disease
Stability Analysis of Some Nonlinear Anaerobic Digestion Models
Directory of Open Access Journals (Sweden)
Ivan Simeonov
2010-04-01
Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.
The Precession Index and a Nonlinear Energy Balance Climate Model
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold
A nonlinear model for ionic polymer metal composites as actuators
Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.
2007-02-01
This paper introduces a comprehensive nonlinear dynamic model of motion actuators based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the acting properties of IPMC-based actuators are taken into account. The model is organized as follows. As a first step, the dependence of the IPMC absorbed current on the voltage applied across its thickness is taken into account; a nonlinear circuit model is proposed to describe this relationship. In a second step the transduction of the absorbed current into the IPMC mechanical reaction is modelled. The model resulting from the cascade of both the electrical and the electromechanical stages represents a novel contribution in the field of IPMCs, capable of describing the electromechanical behaviour of these materials and predicting relevant quantities in a large range of applied signals. The effect of actuator scaling is also investigated, giving interesting support to the activities involved in the design of actuating devices based on these novel materials. Evidence of the excellent agreement between the estimations obtained by using the proposed model and experimental signals is given.
Estimation methods for nonlinear state-space models in ecology
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro
2011-01-01
The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...
Modeling and Simulation of Nonlinear Micro-electromechanical Circular Plate
Directory of Open Access Journals (Sweden)
Chin-Chia Liu
2013-09-01
Full Text Available In the present study, the hybrid differential transformation and finite difference method is applied to analyze the dynamic behavior of the nonlinear micro-electromechanical circular plate actuated by combined DC / AC loading schemes. The analysis takes account of the axial residual stress and hydrostatic pressure acting on micro circular plate upper surface. The dynamic response of the plate as a function of the magnitude of the AC driving voltage is explored. Moreover, the effect of the initial gap height on the pull-in voltage of the plate is systematically explored.
A non-linear state space approach to model groundwater fluctuations
Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.
2006-01-01
A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Directory of Open Access Journals (Sweden)
Ronghui Zhang
2017-05-01
Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
A non-linear model of information seeking behaviour
Directory of Open Access Journals (Sweden)
Allen E. Foster
2005-01-01
Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.
Park, J. J.
2017-12-01
Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long
Neutron stars in non-linear coupling models
International Nuclear Information System (INIS)
Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo
2001-01-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Neutron stars in non-linear coupling models
Energy Technology Data Exchange (ETDEWEB)
Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)
2001-07-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Lattice Boltzmann model for high-order nonlinear partial differential equations
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Lattice Boltzmann model for high-order nonlinear partial differential equations.
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model
Directory of Open Access Journals (Sweden)
Simon Heru Prassetyo
2017-08-01
Full Text Available Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing, inducing dilation and resulting in nonlinear joint shear strength and shear stress vs. shear displacement behaviors. The Barton–Bandis (BB joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints. The BB model accounts for asperity roughness and strength through the joint roughness coefficient (JRC and joint wall compressive strength (JCS parameters. Nevertheless, many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr–Coulomb (M−C model, which is only appropriate for smooth and non-dilatant joints. This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior. To bridge the BB and the M−C models, this paper aims to provide a linearized implementation of the BB model using a tangential technique to obtain the equivalent M−C parameters that can satisfy the nonlinear shear behavior of rock joints. These equivalent parameters, namely the equivalent peak cohesion, friction angle, and dilation angle, are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing. The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre- and post-peak regions of shear displacement, respectively. Likewise, the pre- and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established. Verifications of the linearized implementation of the BB model show that the shear stress-shear displacement curves, the dilation behavior, and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.
A nonlinear model of gold production in Malaysia
Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi
2014-06-01
Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.
A Study on the Analysis and Optimal Control of Nonlinear Systems via Walsh Function
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Tae; Kim, Tai Hoon; Ahn, Doo Soo [Sungkyunkwan University (Korea); Lee, Myung Kyu [Kyungsung University (Korea)
2000-07-01
This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposes method is easily applicable to the analysis and optimal control of nonlinear systems. (author). 15 refs., 6 figs., 1 tab.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...
Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field
International Nuclear Information System (INIS)
Deng Fengyan; He Xingsuo; Li Liang; Zhang Juan
2007-01-01
In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a 'stiffening beam' can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases
Nonlinear Modeling and Simulation of Thermal Effects in Microcantilever Resonators Dynamic
International Nuclear Information System (INIS)
Tadayon, M A; Sayyaadi, H; Jazar, G Nakhaie
2006-01-01
Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved
Directory of Open Access Journals (Sweden)
Luiz Augusto da Cruz Meleiro
2005-06-01
Full Text Available In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs, identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Neste trabalho um controlador preditivo não linear multivariável foi desenvolvido para um processo de fermentação alcoólica extrativa. O modelo interno do controlador foi representado por duas redes do tipo Functional Link (FLN, identificadas usando dados de simulação gerados a partir de um modelo validado experimentalmente. A estrutura FLN apresenta como vantagem o treinamento rápido e convergência garantida, já que a estimação dos seus pesos é um problema de otimização linear. Além disso, a eliminação de pesos não significativos gera modelos parsimoniosos, o que permite a rápida execução em algoritmos de controle preditivo baseado em modelo. Os resultados mostram que o algoritmo proposto tem grande potencial para identificação e controle de processos não lineares.
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.
Application of the descriptive function on non-linear electromagnetic phenomena
International Nuclear Information System (INIS)
Silva, H.T.
1982-01-01
This paper presents the solution of the nonlinear plan wave equation in non-equilibrium dielectric medium. The descriptive function appears as a useful tool to describe the medium response when it is possible to consider intensive electromagnetic response. Despite it has been considered an ideal situation of a limitless nonlinear medium, the results constitute a solid basis to mold more complex processes, such as those which take place in the plasma physics
Institute of Scientific and Technical Information of China (English)
LI Shoufu
2005-01-01
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.
A Simplification for Exp-Function Method When the Balanced Nonlinear Term Is a Certain Product
Directory of Open Access Journals (Sweden)
Hong-Zhun Liu
2013-01-01
Full Text Available The Exp-function method plays an important role in searching for analytic solutions of many nonlinear differential equations. In this paper, we prove that the balancing procedure in the method is unnecessary when the balanced nonlinear term is a product of the dependent variable under consideration and its derivatives. And in this case, the ansatz of the method can be simplified to be with less parameters so as to be easy to calculate.
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
Chon, K. H.; Cohen, R. J.
1997-01-01
This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.
Nonlinear flight dynamics and stability of hovering model insects
Liang, Bin; Sun, Mao
2013-01-01
Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
DEFF Research Database (Denmark)
Fraccaro, Marco; Kamronn, Simon Due; Paquet, Ulrich
2017-01-01
This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework...... for unsupervised learning of sequential data that disentangles two latent representations: an object’s representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate...
Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator
Directory of Open Access Journals (Sweden)
CONSTANTINESCU, F.
2011-02-01
Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.
Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.
Meaud, Julien; Grosh, Karl
2012-03-21
In this article, a nonlinear mathematical model is developed based on the physiology of the cochlea of the guinea pig. The three-dimensional intracochlear fluid dynamics are coupled to a micromechanical model of the organ of Corti and to electrical potentials in the cochlear ducts and outer hair cells (OHC). OHC somatic electromotility is modeled by linearized piezoelectric relations whereas the OHC hair-bundle mechanoelectrical transduction current is modeled as a nonlinear function of the hair-bundle deflection. The steady-state response of the cochlea to a single tone is simulated in the frequency domain using an alternating frequency time scheme. Compressive nonlinearity, harmonic distortion, and DC shift on the basilar membrane (BM), tectorial membrane (TM), and OHC potentials are predicted using a single set of parameters. The predictions of the model are verified by comparing simulations to available in vivo experimental data for basal cochlear mechanics. In particular, the model predicts more amplification on the reticular lamina (RL) side of the cochlear partition than on the BM, which replicates recent measurements. Moreover, small harmonic distortion and DC shifts are predicted on the BM, whereas more significant harmonic distortion and DC shifts are predicted in the RL and TM displacements and in the OHC potentials. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys
International Nuclear Information System (INIS)
Jin Ke; Kou Yong; Zheng Xiaojing
2012-01-01
This paper presents a general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive alloys. The model considered here is thermodynamically motivated and based on the Gibbs free energy function. A nonlinear part of the elastic strain arising from magnetic domain rotation induced by the pre-stress is taken into account. Furthermore, the movement of the domain walls is incorporated to describe hysteresis based on Jiles–Atherton's model. Then a set of closed and analytical expressions of the constitutive law for the magnetostrictive rods and films are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. Comparing this model with other existing models in this field, the quantitative results show that the relationships obtained here are more effective to describe the effects of the pre-stress or in-plane residual stress and ambient temperature on the magnetization or the magnetostriction hysteresis loops. - Highlights: ► A general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive materials is proposed. ► Model is thermodynamically motivated and the reversible magnetic domain rotation and irreversible domain wall motion are taken. ► The predictions are in good accordance with the experimental data including both rods and films. ► Magnetostrictive alloys are sensitive to environment temperature and pre-stress or residual stress.
International Nuclear Information System (INIS)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao
2015-01-01
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications
CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL
CARRILLO, JOSÉ ANTONIO
2012-12-01
A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.
Bernaola-Galván, Pedro A.; Gómez-Extremera, Manuel; Romance, A. Ramón; Carpena, Pedro
2017-09-01
The correlation properties of the magnitude of a time series are associated with nonlinear and multifractal properties and have been applied in a great variety of fields. Here we have obtained the analytical expression of the autocorrelation of the magnitude series (C|x |) of a linear Gaussian noise as a function of its autocorrelation (Cx). For both, models and natural signals, the deviation of C|x | from its expectation in linear Gaussian noises can be used as an index of nonlinearity that can be applied to relatively short records and does not require the presence of scaling in the time series under study. In a model of artificial Gaussian multifractal signal we use this approach to analyze the relation between nonlinearity and multifractallity and show that the former implies the latter but the reverse is not true. We also apply this approach to analyze experimental data: heart-beat records during rest and moderate exercise. For each individual subject, we observe higher nonlinearities during rest. This behavior is also achieved on average for the analyzed set of 10 semiprofessional soccer players. This result agrees with the fact that other measures of complexity are dramatically reduced during exercise and can shed light on its relationship with the withdrawal of parasympathetic tone and/or the activation of sympathetic activity during physical activity.
International Nuclear Information System (INIS)
Ge Zhengming; Chang Chingming
2009-01-01
By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchronization is studied in this paper. Instead of current mixed error dynamics in which master state variables and slave state variables are presented, the nonlinear generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation. The elaborate nondiagonal Lyapunov function is applied rather than current monotonous square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both autonomous and nonautonomous double Mathieu systems are used as examples with numerical simulations.
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.
International Nuclear Information System (INIS)
Abe, H.; Okuda, H.
1994-06-01
We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media
A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials
International Nuclear Information System (INIS)
Zhou Haomiao; Zhou Youhe; Zheng Xiaojing; Ye Qiang; Wei Jing
2009-01-01
In this paper, a new general nonlinear magnetostrictive constitutive model is proposed for soft ferromagnetic materials, and it can predict magnetostrictive strain and magnetization curves under various pre-stresses. From the viewpoint of magnetic domain, it is based on the important physical fact that a nonlinear part of the elastic strain produced by magnetic domain wall motion under a pre-stress is responsible for the change of the maximum magnetostrictive strain in accordance with the pre-stress. Then the reduction of magnetostrictive strain from the maximum is caused by the domain rotation. Meanwhile, the magnetization under various pre-stresses in this model is introduced by magnetostrictive effect under the same pre-stress. A simplified 3-D model is put forward by means of linearizing the nonlinear function, i.e. the nonlinear part of the elastic strain produced by domain wall motion, and by using the quartic of magnetization to describe domain rotation. Besides, for the convenience of engineering applications, two-dimensional (plate or film) and one-dimensional (rod) models are also given for isotropic materials and their application ranges are discussed too. In comparison with the experimental data of Kuruzar and Jiles, it is found that this model can predict magnetostrictive strain and magnetization curves under various pre-stresses. The numerical simulation further illustrates that the new model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves. Additionally, this model can be degenerated to the existing magnetostrictive constitutive model for giant magnetostrictive materials (GMM), i.e. a special soft ferromagnetic material
Pattern dynamics of vortex ripples in sand: Nonlinear modeling and experimental validation
DEFF Research Database (Denmark)
Andersen, Ken Haste; Abel, M.; Krug, J.
2002-01-01
Vortex ripples in sand are studied experimentally in a one-dimensional setup with periodic boundary conditions. The nonlinear evolution, far from the onset of instability, is analyzed in the framework of a simple model developed for homogeneous patterns. The interaction function describing the mass...... transport between neighboring ripples is extracted from experimental runs using a recently proposed method for data analysis, and the predictions of the model are compared to the experiment. An analytic explanation of the wavelength selection mechanism in the model is provided, and the width of the stable...... band of ripples is measured....
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Nonlinear realizations and effective Lagrangian densities for nonlinear σ-models
International Nuclear Information System (INIS)
Hamilton-Charlton, Jason Dominic
2003-01-01
Nonlinear realizations of the groups SU(N), SO(m) and SO(t,s) are analysed, described by the coset spaces SU(N) / SU(N-1) x U(1), SO(m) / SO(m-1), SO(1,m-1) / SO(1,m-2) and SO(m) / SO(m-2 x SO(2). The analysis consists of determining the transformation properties of the Goldstone Bosons, constructing the most general possible Lagrangian for the realizations, and as a result identifying the coset space metric. We view the λ matrices of SU(N) as being the basis of an (N 2 - 1) dimensional real vector space, and from this we learn how to construct the basis of a Cartan Subspace associated with a vector. This results in a mathematical structure which allows us to find expressions for coset representative elements used in the analysis. This structure is not only relevant to SU(N) breaking models, but may also be used to find results in SO(m) and SO(1,m - 1) breaking models. (author)
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
bathymetric profile also compare well with the measured values. The statistical distributions of the free surface elevation and wave height, calculated from the simulated time series, are compared to those of the measurements, with particular attention paid to the extreme waves. To use this model for realistic cases with complex bathymetric variations and multidirectional wave fields, the model has been extended to two horizontal dimensions (2DH). The spectral approach in the vertical dimension is retained, while the horizontal plane is discretized with scattered nodes to maintain the model's flexibility. The horizontal derivatives are estimated with finite-difference type formulas using Radial Basis Functions (Wright and Fornberg, 2006). The 2DH version of the code is applied to simulate the propagation of regular waves over a semi-circular step, which acts as a focusing lens. The simulation results are compared to the experimental data set of Whalin (1971). The evolution of the higher harmonic amplitudes in the shallow-water zone demonstrates the ability of the model to simulate wave propagation over complex 2DH coastal bathymetries. References: Becq-Girard F., Forget P., Benoit M. (1999) Non-linear propagation of unidirectional wave fields over varying topography. Coastal Eng., 38, 91-113. Tian Y., Sato S. (2008) A numerical model on the interaction between nearshore nonlinear waves and strong currents. Coast. Eng. Journal, 50(4), 369-395. Whalin R.W. (1971) The limit of applicability of linear wave refraction theory in a convergence zone. Technical report, DTIC Documents. Wright G.B., Fornberg B. (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comp. Phys., 212, 99-123. Yates M.L., Benoit M. (2015) Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves. Int. J. Numer. Meth. Fluids, 77, 616-640. Zakharov V.E. (1968) Stability of periodic
Kalkkuhl, J; Hunt, K J; Fritz, H
1999-01-01
An finite-element methods (FEM)-based neural-network approach to Nonlinear AutoRegressive with eXogenous input (NARX) modeling is presented. The method uses multilinear interpolation functions on C0 rectangular elements. The local and global structure of the resulting model is analyzed. It is shown that the model can be interpreted both as a local model network and a single layer feedforward neural network. The main aim is to use the model for nonlinear control design. The proposed FEM NARX description is easily accessible to feedback linearizing control techniques. Its use with a two-degrees of freedom nonlinear internal model controller is discussed. The approach is applied to modeling of the nonlinear longitudinal dynamics of an experimental lorry, using measured data. The modeling results are compared with local model network and multilayer perceptron approaches. A nonlinear speed controller was designed based on the identified FEM model. The controller was implemented in a test vehicle, and several experimental results are presented.
International Nuclear Information System (INIS)
Kara, Tolgay; Eker, Ilyas
2004-01-01
Modeling and identification of mechanical systems constitute an essential stage in practical control design and applications. Controllers commanding systems that operate at varying conditions or require high precision operation raise the need for a nonlinear approach in modeling and identification. Most mechanical systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behavior in certain regions of operation. For a multi-mass rotational system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the system operation when the rotation changes direction. The paper presents nonlinear modeling and identification of a DC motor rotating in two directions together with real time experiments. Linear and nonlinear models for the system are obtained for identification purposes, and the major nonlinearities in the system, such as Coulomb friction and dead zone, are investigated and integrated in the nonlinear model. The Hammerstein nonlinear system approach is used for identification of the nonlinear system model. Online identification of the linear and nonlinear system models is performed using the recursive least squares method. Results of the real time experiments are graphically and numerically presented, and the advantages of the nonlinear identification approach are revealed
A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
NARESHA RAM
2009-04-01
Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.
Fluid mechanics and heat transfer advances in nonlinear dynamics modeling
Asli, Kaveh Hariri
2015-01-01
This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.
Lectures on nonlinear sigma-models in projective superspace
International Nuclear Information System (INIS)
Kuzenko, Sergei M
2010-01-01
N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)
Lectures on nonlinear sigma-models in projective superspace
Energy Technology Data Exchange (ETDEWEB)
Kuzenko, Sergei M, E-mail: kuzenko@cyllene.uwa.edu.a [School of Physics M013, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)
2010-11-05
N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)
Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects
Directory of Open Access Journals (Sweden)
Yi Hu
2014-01-01
Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.
Magnetically nonlinear dynamic model of synchronous motor with permanent magnets
International Nuclear Information System (INIS)
Hadziselimovic, Miralem; Stumberger, Gorazd; Stumberger, Bojan; Zagradisnik, Ivan
2007-01-01
This paper deals with a magnetically nonlinear two-axis dynamic model of a permanent magnet synchronous motor (PMSM). The geometrical and material properties of iron core and permanent magnets, the effects of winding distribution, saturation, cross-saturation and slotting effects are, for the first time, simultaneously accounted for in a single two-axis dynamic model of a three-phase PMSM. They are accounted for by current- and position-dependent characteristics of flux linkages. These characteristics can be determined either experimentally or by the finite element (FE) computations. The results obtained by the proposed dynamic model show a very good agreement with the measured ones and those obtained by the FE computation
Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.
Vafamand, Navid; Arefi, Mohammad Mehdi; Khayatian, Alireza
2018-03-01
This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Lu, Tao
2016-01-01
The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.
Identification of a Class of Non-linear State Space Models using RPE Techniques
DEFF Research Database (Denmark)
Zhou, Wei-Wu; Blanke, Mogens
1989-01-01
The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...
Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process
Directory of Open Access Journals (Sweden)
Dazi Li
2015-01-01
Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.
Brain plasticity and functionality explored by nonlinear optical microscopy
Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.
2010-02-01
In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising
Elsheikh, Ahmed H.
2013-06-01
We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2014-01-01
Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.
Global-local nonlinear model reduction for flows in heterogeneous porous media
AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi
2015-01-01
In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.
Global-local nonlinear model reduction for flows in heterogeneous porous media
AlOtaibi, Manal
2015-08-01
In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Parameter identification in a nonlinear nuclear reactor model using quasilinearization
International Nuclear Information System (INIS)
Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.
1980-09-01
Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt
Locally supersymmetric D=3 non-linear sigma models
International Nuclear Information System (INIS)
Wit, B. de; Tollsten, A.K.; Nicolai, H.
1993-01-01
We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)
Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation
Petráš, Ivo
2011-01-01
"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...
Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows
Tseng, K.; Morino, L.
1978-01-01
The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.
Linear and nonlinear stability analysis in BWRs applying a reduced order model
Energy Technology Data Exchange (ETDEWEB)
Olvera G, O. A.; Espinosa P, G.; Prieto G, A., E-mail: omar_olverag@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)
2016-09-15
Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)
Linear and nonlinear stability analysis in BWRs applying a reduced order model
International Nuclear Information System (INIS)
Olvera G, O. A.; Espinosa P, G.; Prieto G, A.
2016-09-01
Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)
Sierra, Carlos; Müller, Markus
2016-04-01
SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.
Non-linear time variant model intended for polypyrrole-based actuators
Farajollahi, Meisam; Madden, John D. W.; Sassani, Farrokh
2014-03-01
Polypyrrole-based actuators are of interest due to their biocompatibility, low operation voltage and relatively high strain and force. Modeling and simulation are very important to predict the behaviour of each actuator. To develop an accurate model, we need to know the electro-chemo-mechanical specifications of the Polypyrrole. In this paper, the non-linear time-variant model of Polypyrrole film is derived and proposed using a combination of an RC transmission line model and a state space representation. The model incorporates the potential dependent ionic conductivity. A function of ionic conductivity of Polypyrrole vs. local charge is proposed and implemented in the non-linear model. Matching of the measured and simulated electrical response suggests that ionic conductivity of Polypyrrole decreases significantly at negative potential vs. silver/silver chloride and leads to reduced current in the cyclic voltammetry (CV) tests. The next stage is to relate the distributed charging of the polymer to actuation via the strain to charge ratio. Further work is also needed to identify ionic and electronic conductivities as well as capacitance as a function of oxidation state so that a fully predictive model can be created.
Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.
2018-01-01
Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.
An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion
Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo
2018-05-01
The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.
Polynomic nonlinear dynamical systems - A residual sensitivity method for model reduction
Yurkovich, S.; Bugajski, D.; Sain, M.
1985-01-01
The motivation for using polynomic combinations of system states and inputs to model nonlinear dynamics systems is founded upon the classical theories of analysis and function representation. A feature of such representations is the need to make available all possible monomials in these variables, up to the degree specified, so as to provide for the description of widely varying functions within a broad class. For a particular application, however, certain monomials may be quite superfluous. This paper examines the possibility of removing monomials from the model in accordance with the level of sensitivity displayed by the residuals to their absence. Critical in these studies is the effect of system input excitation, and the effect of discarding monomial terms, upon the model parameter set. Therefore, model reduction is approached iteratively, with inputs redesigned at each iteration to ensure sufficient excitation of remaining monomials for parameter approximation. Examples are reported to illustrate the performance of such model reduction approaches.
A Non-linear Stochastic Model for an Office Building with Air Infiltration
DEFF Research Database (Denmark)
Thavlov, Anders; Madsen, Henrik
2015-01-01
This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit
Geometric subspace updates with applications to online adaptive nonlinear model reduction
DEFF Research Database (Denmark)
Zimmermann, Ralf; Peherstorfer, Benjamin; Willcox, Karen
2018-01-01
In many scientific applications, including model reduction and image processing, subspaces are used as ansatz spaces for the low-dimensional approximation and reconstruction of the state vectors of interest. We introduce a procedure for adapting an existing subspace based on information from...... Estimation (GROUSE). We establish for GROUSE a closed-form expression for the residual function along the geodesic descent direction. Specific applications of subspace adaptation are discussed in the context of image processing and model reduction of nonlinear partial differential equation systems....
Robust nonlinear control of nuclear reactors under model uncertainty
International Nuclear Information System (INIS)
Park, Moon Ghu
1993-02-01
A nonlinear model-based control method is developed for the robust control of a nuclear reactor. The nonlinear plant model is used to design a unique control law which covers a wide operating range. The robustness is a crucial factor for the fully automatic control of reactor power due to time-varying, uncertain parameters, and state estimation error, or unmodeled dynamics. A variable structure control (VSC) method is introduced which consists of an adaptive performance specification (fime control) after the tracking error reaches the narrow boundary-layer by a time-optimal control (coarse control). Variable structure control is a powerful method for nonlinear system controller design which has inherent robustness to parameter variations or external disturbances using the known uncertainty bounds, and it requires very low computational efforts. In spite of its desirable properties, conventional VSC presents several important drawbacks that limit its practical applicability. One of the most undesirable phenomena is chattering, which implies extremely high control activity and may excite high-frequency unmodeled dynamics. This problem is due to the neglected actuator time-delay or sampling effects. The problem was partially remedied by replacing chattering control by a smooth control inter-polation in a boundary layer neighnboring a time-varying sliding surface. But, for the nuclear reactor systems which has very fast dynamic response, the sampling effect may destroy the narrow boundary layer when a large uncertainty bound is used. Due to the very short neutron life time, large uncertainty bound leads to the high gain in feedback control. To resolve this problem, a derivative feedback is introduced that gives excellent performance by reducing the uncertainty bound. The stability of tracking error dynamics is guaranteed by the second method of Lyapunov using the two-level uncertainty bounds that are obtained from the knowledge of uncertainty bound and the estimated
New insights into soil temperature time series modeling: linear or nonlinear?
Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram
2018-03-01
Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and
Background field method for nonlinear σ-model in stochastic quantization
International Nuclear Information System (INIS)
Nakazawa, Naohito; Ennyu, Daiji
1988-01-01
We formulate the background field method for the nonlinear σ-model in stochastic quantization. We demonstrate a one-loop calculation for a two-dimensional non-linear σ-model on a general riemannian manifold based on our formulation. The formulation is consistent with the known results in ordinary quantization. As a simple application, we also analyse the multiplicative renormalization of the O(N) nonlinear σ-model. (orig.)
Non-linear modelling to describe lactation curve in Gir crossbred cows
Directory of Open Access Journals (Sweden)
Yogesh C. Bangar
2017-02-01
Full Text Available Abstract Background The modelling of lactation curve provides guidelines in formulating farm managerial practices in dairy cows. The aim of the present study was to determine the suitable non-linear model which most accurately fitted to lactation curves of five lactations in 134 Gir crossbred cows reared in Research-Cum-Development Project (RCDP on Cattle farm, MPKV (Maharashtra. Four models viz. gamma-type function, quadratic model, mixed log function and Wilmink model were fitted to each lactation separately and then compared on the basis of goodness of fit measures viz. adjusted R2, root mean square error (RMSE, Akaike’s Informaion Criteria (AIC and Bayesian Information Criteria (BIC. Results In general, highest milk yield was observed in fourth lactation whereas it was lowest in first lactation. Among the models investigated, mixed log function and gamma-type function provided best fit of the lactation curve of first and remaining lactations, respectively. Quadratic model gave least fit to lactation curve in almost all lactations. Peak yield was observed as highest and lowest in fourth and first lactation, respectively. Further, first lactation showed highest persistency but relatively higher time to achieve peak yield than other lactations. Conclusion Lactation curve modelling using gamma-type function may be helpful to setting the management strategies at farm level, however, modelling must be optimized regularly before implementing them to enhance productivity in Gir crossbred cows.
Nonlinear H∞ Optimal Control Scheme for an Underwater Vehicle with Regional Function Formulation
Directory of Open Access Journals (Sweden)
Zool H. Ismail
2013-01-01
Full Text Available A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a robust technique is presented for an Autonomous Underwater Vehicle (AUV with region tracking function. Within this control scheme, nonlinear H∞ and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities and it leads to uniform ultimate boundedness of the region tracking error.
On MV-algebras of non-linear functions
Directory of Open Access Journals (Sweden)
Antonio Di Nola
2017-01-01
Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.
On MV-algebras of non-linear functions
Directory of Open Access Journals (Sweden)
Antonio Di Nola
2017-01-01
Full Text Available In this paper, the main results are: a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I; a study of Hopfian MV-algebras; and a category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.
International Nuclear Information System (INIS)
Panda, Satyajit; Ray, M C
2008-01-01
In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed
Panda, Satyajit; Ray, M. C.
2008-04-01
In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei
2016-02-01
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
Qualitative analysis of nonlinear incidence rate upon the behaviour of an epidemiological model
International Nuclear Information System (INIS)
Li Xiaogui.
1988-12-01
Two theorems concerning the solutions of the system of differential equations describing an epidemiological model with nonlinear incidence rate per infective individual are demonstrated. 2 refs, 1 fig
DEFF Research Database (Denmark)
Fournier, David A.; Skaug, Hans J.; Ancheta, Johnoel
2011-01-01
Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlinear optimization problem.Automatic Differentiation Model Builder (ADMB) is a programming framework based on automatic differentiation, aimed at highly nonlinear models with a large number...... of such a feature is the generic implementation of Laplace approximation of high-dimensional integrals for use in latent variable models. We also review the literature in which ADMB has been used, and discuss future development of ADMB as an open source project. Overall, the main advantages ofADMB are flexibility...
Parameter estimation in nonlinear models for pesticide degradation
International Nuclear Information System (INIS)
Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.
1991-01-01
A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)
Predicting Madura cattle growth curve using non-linear model
Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.
2018-03-01
Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (plogistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.
Analytical model for nonlinear piezoelectric energy harvesting devices
International Nuclear Information System (INIS)
Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P
2014-01-01
In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)
Onset of the nonlinear regime in unified dark matter models
International Nuclear Information System (INIS)
Avelino, P.P.; Beca, L.M.G.; Carvalho, J.P.M. de; Martins, C.J.A.P.; Copeland, E.J.
2004-01-01
We discuss the onset of the nonlinear regime in the context of unified dark matter models involving a generalized Chaplygin gas. We show that the transition from dark-matter-like to dark-energy-like behavior will never be smooth. In some regions of space the transition will never take place while in others it may happen sooner or later than naively expected. As a result the linear theory used in previous studies may break down late in the matter dominated era even on large cosmological scales. We study the importance of this effect showing that its magnitude depends on the exact form of the equation of state in the low density regime. We expect that our results will be relevant for other unified dark matter scenarios, particularly those where the quartessence candidate is a perfect fluid
Nonlinear model predictive control for chemical looping process
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
2017-08-22
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.
On the Reliability of Nonlinear Modeling using Enhanced Genetic Programming Techniques
Winkler, S. M.; Affenzeller, M.; Wagner, S.
The use of genetic programming (GP) in nonlinear system identification enables the automated search for mathematical models that are evolved by an evolutionary process using the principles of selection, crossover and mutation. Due to the stochastic element that is intrinsic to any evolutionary process, GP cannot guarantee the generation of similar or even equal models in each GP process execution; still, if there is a physical model underlying to the data that are analyzed, then GP is expected to find these structures and produce somehow similar results. In this paper we define a function for measuring the syntactic similarity of mathematical models represented as structure trees; using this similarity function we compare the results produced by GP techniques for a data set representing measurement data of a BMW Diesel engine.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
Directory of Open Access Journals (Sweden)
Olga Kononova
2016-01-01
Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.
Core seismic behaviour: linear and non-linear models
International Nuclear Information System (INIS)
Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.
1981-08-01
The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here
Describing Growth Pattern of Bali Cows Using Non-linear Regression Models
Directory of Open Access Journals (Sweden)
Mohd. Hafiz A.W
2016-12-01
Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.
Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method
Arafa, A. A. M.; Rida, S. Z.; Mohammadein, A. A.; Ali, H. M.
2013-06-01
In this paper, we use Mittag—Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.
Nonlinear Optical Functions in Crystalline and Amorphous Silicon-on-Insulator Nanowires
DEFF Research Database (Denmark)
Baets, R.; Kuyken, B.; Liu, X.
2012-01-01
Silicon-on-Insulator nanowires provide an excellent platform for nonlinear optical functions in spite of the two-photon absorption at telecom wavelengths. Work on both crystalline and amorphous silicon nanowires is reviewed, in the wavelength range of 1.5 to 2.5 µm....
DEFF Research Database (Denmark)
Abrahamsen, Trine Julie; Hansen, Lars Kai
2011-01-01
We investigate sparse non-linear denoising of functional brain images by kernel Principal Component Analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input space, also referred to as ”the pre-image problem”. Since the feature space mapping is typi...
A sampling approach to constructing Lyapunov functions for nonlinear continuous–time systems
Bobiti, R.V.; Lazar, M.
2016-01-01
The problem of constructing a Lyapunov function for continuous-time nonlinear dynamical systems is tackled in this paper via a sampling-based approach. The main idea of the sampling-based method is to verify a Lyapunov-type inequality for a finite number of points (known state vectors) in the
Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method
International Nuclear Information System (INIS)
Ebaid, A.
2007-01-01
Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method
Czech Academy of Sciences Publication Activity Database
Drabinová, Adéla; Martinková, Patrícia
2017-01-01
Roč. 54, č. 4 (2017), s. 498-517 ISSN 0022-0655 R&D Projects: GA ČR GJ15-15856Y Institutional support: RVO:67985807 Keywords : differential item functioning * non-linear regression * logistic regression * item response theory Subject RIV: AM - Education OBOR OECD: Statistics and probability Impact factor: 0.979, year: 2016
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Půža, B.
2015-01-01
Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1
Wallen, Samuel P.
Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing
Modelling female fertility traits in beef cattle using linear and non-linear models.
Naya, H; Peñagaricano, F; Urioste, J I
2017-06-01
Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2 linear models; h 2 > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.
Neural network modeling of nonlinear systems based on Volterra series extension of a linear model
Soloway, Donald I.; Bialasiewicz, Jan T.
1992-01-01
A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.
Monte Carlo simulations with Symanzik's improved actions in the lattice 0(3) non-linear sigma-model
International Nuclear Information System (INIS)
Berg, B.; Montvay, I.; Meyer, S.
1983-10-01
The scaling properties of the lattice 0(3) non-linear delta-model are studied. The mass-gap, energy-momentum dispersion, correlation functions are measured by numerical Monte Carlo methods. Symanzik's tree-level and 1-loop improved actions are compared to the standard (nearest neigbour) action. (orig.)
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
A simple non-linear model of immune response
International Nuclear Information System (INIS)
Gutnikov, Sergei; Melnikov, Yuri
2003-01-01
It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background
FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.
Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P
2010-09-27
A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.
Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence
Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui
2018-05-01
We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2013-01-01
Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.
Directory of Open Access Journals (Sweden)
Spannenberg Jescica
2017-09-01
Full Text Available Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.
Soliton solution for nonlinear partial differential equations by cosine-function method
International Nuclear Information System (INIS)
Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.
2007-01-01
In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations
Investigation of the Nonlinear Model of the Cellular Population System Development
Directory of Open Access Journals (Sweden)
M. S. Vinogradova
2014-01-01
Full Text Available An isolated population system is considered which consists of two types of human stem cells: normal cells and cells with chromosomal anomalies (abnormal. In the paper the nonlinear dynamic model which describes dynamics of cell populations developing in vitro is elaborated. The model allows to investigate the processes of the formation of the abnormal cells population from the abnormal cells population of normal cells as well as joint development of these populations. The model takes into account the limited resources.An important feature of the developed model is the use of biological characteristics of processes in the cell population system, such as the proportion of cells, divided over a specified time, the proportion of cells whish are not divided, and which are "lost" and which are passed in the population of abnormal cells from the normal population. This approach allows a more detailed analysis of the impact of various "primary" parameters on the evolution of the population system.Under cultivation of cell populations in vitro a struggle for resources primarily affects the processes of the cell reproduction. This is reflected in the existence of the dividing cells frequency dependence of the total population of normal and abnormal cells. For the account of such dependencies different non-linear functions are typically used. However, the use of such non-linear relationships leads to the difficulties in finding confidence intervals for the estimates of the model parameters at subsequent stages of research. At the same time, the problem of the system parameters estimating and finding of the corresponding confidence intervals for estimates can be solved easy in case when the nonlinear system is linear with respect to the unknown parameters. In the paper it is achieved due to the piecewise linear approximation of nonlinear dependencies.An important feature of the model is a different view of the right part of the differential equations system
International Nuclear Information System (INIS)
Ghaffari, A.; Nikkhah Bahrami, M.; Mohammadzaheri, M.
2005-01-01
In this paper a new method for linear modeling of nonlinear systems is presented. The method is based on the design of an artificial neural network with two layers. The network is trained only according to the input-output data of the system. The weights of connections in this network, represents the coefficients of the transfer function. For systems with linear behavior the method of least square error represents the best linear model of the system. However, for nonlinear systems, such as some subsystems in power plants boilers LSE does not represent the best linear approximation of the system, necessarily. In this paper a new linear modeling method is presented and applied to some subsystems in a power plant boiler. Comparison between the transfer function obtained in this way and by least square error method,shows that the neural network method gives better linear models for these nonlinear systems
von Götz, N; Richter, O
1999-03-01
The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.
Performance of nonlinear mixed effects models in the presence of informative dropout.
Björnsson, Marcus A; Friberg, Lena E; Simonsson, Ulrika S H
2015-01-01
Informative dropout can lead to bias in statistical analyses if not handled appropriately. The objective of this simulation study was to investigate the performance of nonlinear mixed effects models with regard to bias and precision, with and without handling informative dropout. An efficacy variable and dropout depending on that efficacy variable were simulated and model parameters were reestimated, with or without including a dropout model. The Laplace and FOCE-I estimation methods in NONMEM 7, and the stochastic simulations and estimations (SSE) functionality in PsN, were used in the analysis. For the base scenario, bias was low, less than 5% for all fixed effects parameters, when a dropout model was used in the estimations. When a dropout model was not included, bias increased up to 8% for the Laplace method and up to 21% if the FOCE-I estimation method was applied. The bias increased with decreasing number of observations per subject, increasing placebo effect and increasing dropout rate, but was relatively unaffected by the number of subjects in the study. This study illustrates that ignoring informative dropout can lead to biased parameters in nonlinear mixed effects modeling, but even in cases with few observations or high dropout rate, the bias is relatively low and only translates into small effects on predictions of the underlying effect variable. A dropout model is, however, crucial in the presence of informative dropout in order to make realistic simulations of trial outcomes.
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise
2013-01-01
1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.
Directory of Open Access Journals (Sweden)
Olav Slupphaug
2001-01-01
Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.
Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia
2012-04-01
This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with
Directory of Open Access Journals (Sweden)
YanBin Liu
2017-01-01
Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Iterative method of the parameter variation for solution of nonlinear functional equations
International Nuclear Information System (INIS)
Davidenko, D.F.
1975-01-01
The iteration method of parameter variation is used for solving nonlinear functional equations in Banach spaces. The authors consider some methods for numerical integration of ordinary first-order differential equations and construct the relevant iteration methods of parameter variation, both one- and multifactor. They also discuss problems of mathematical substantiation of the method, study the conditions and rate of convergence, estimate the error. The paper considers the application of the method to specific functional equations
Non-linear shape functions over time in the space-time finite element method
Directory of Open Access Journals (Sweden)
Kacprzyk Zbigniew
2017-01-01
Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.
Zhao, L. W.; Du, J. G.; Yin, J. L.
2018-05-01
This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.
Sphalerons of O(3) nonlinear sigma model on a circle
International Nuclear Information System (INIS)
Funakubo, Koichi; Otsuki, Shoichiro; Toyoda, Fumihiko.
1989-09-01
A series of saddle point solutions of O(3) nonlinear sigma model with symmetry breaking term in 1 + 1 dimensions are obtained by imposing boundary condition either periodic or partially antiperiodic (O(3) sphalerons on a circle). Under the periodic boundary condition, classical features of the O(3) sphalerons are similar to scalar sphalerons of φ 4 model on a circle by Manton and Samols. Under the partially antiperiodic boundary condition, the lowest of the O(3) sphalerons coincides in the limit of infinite spatial domain with the O(3) sphaleron by Mottola and Wipf. In particular, zero and negative modes of them are examined in detail. An estimate of transition rate over the lowest O(3) sphaleron at finite temperature is made, and some remarks on simulating the transition on a lattice are given. One to one correspondence between these O(3) sphalerons on a circle and a series of (possible) classical solutions of SU(2) gauge-Higgs model, to which the electroweak sphaleron S and new sphaleron S* belong, is discussed. (author)
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Importance measures in global sensitivity analysis of nonlinear models
International Nuclear Information System (INIS)
Homma, Toshimitsu; Saltelli, Andrea
1996-01-01
The present paper deals with a new method of global sensitivity analysis of nonlinear models. This is based on a measure of importance to calculate the fractional contribution of the input parameters to the variance of the model prediction. Measures of importance in sensitivity analysis have been suggested by several authors, whose work is reviewed in this article. More emphasis is given to the developments of sensitivity indices by the Russian mathematician I.M. Sobol'. Given that Sobol' treatment of the measure of importance is the most general, his formalism is employed throughout this paper where conceptual and computational improvements of the method are presented. The computational novelty of this study is the introduction of the 'total effect' parameter index. This index provides a measure of the total effect of a given parameter, including all the possible synergetic terms between that parameter and all the others. Rank transformation of the data is also introduced in order to increase the reproducibility of the method. These methods are tested on a few analytical and computer models. The main conclusion of this work is the identification of a sensitivity analysis methodology which is both flexible, accurate and informative, and which can be achieved at reasonable computational cost
Cnoidal waves as solutions of the nonlinear liquid drop model
International Nuclear Information System (INIS)
Ludu, Andrei; Sandulescu, Aureliu; Greiner Walter
1997-01-01
By introducing in the hydrodynamic model, i.e. in the hydrodynamic equation and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equations (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by ratio of the square amplitudes in the two minima. (authors)
Nonlinear sigma models with compact hyperbolic target spaces
International Nuclear Information System (INIS)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-01-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Nonlinear sigma models with compact hyperbolic target spaces
Energy Technology Data Exchange (ETDEWEB)
Gubser, Steven [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Saleem, Zain H. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); National Center for Physics, Quaid-e-Azam University Campus,Islamabad 4400 (Pakistan); Schoenholz, Samuel S. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Stokes, James [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States)
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of
A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes
Directory of Open Access Journals (Sweden)
Qi-Zhi Zhang
2005-01-01
Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.
Kelvin Balcombe; George Rapsomanikis
2008-01-01
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest ...
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second....... The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported...
Tawel, Raoul (Inventor)
1994-01-01
A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.