WorldWideScience

Sample records for model neutron star

  1. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  2. Accretion Models for Young Neutron Stars

    OpenAIRE

    Alpar, M. Ali

    2003-01-01

    Interaction with possible fallback material, along with the magnetic fields and rotation rates at birth should determine the fates and categories of young neutron stars. This paper addresses some issues related to pure or hybrid accretion models for explaining the properties of young neutron stars.

  3. Non-Spherical Models of Neutron Stars

    CERN Document Server

    Zubairi, O; Romero, A; Mellinger, R; Weber, F; Orsaria, M; Contrera, G

    2015-01-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present (such as for magnetars) and/or the pressure of the matter in the cores of neutron stars is non-isotropic (e.g., color superconducting). In this paper, we investigate the structure of non-spherical neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we first derive a stellar structure equation for deformed neutron stars. Numerical investigations of this model equation show that the gravitational masses of deformed neutron stars depend rather strongly on the degree and type (oblate or prolate) of stellar deformation. In particular, we find that the mass of a neutron star increases with increasing oblateness but decreases with increasing prolateness. If this feature carries over to a full two-dimensional treatment of deformed neutron stars, this opens up the possibil...

  4. Charged Ising Model of Neutron Star Matter

    CERN Document Server

    Hasnaoui, K H O

    2012-01-01

    Background: The inner crust of a neutron star is believed to consist of Coulomb-frustrated complex structures known as "nuclear pasta" that display interesting and unique low-energy dynamics. Purpose: To elucidate the structure and composition of the neutron-star crust as a function of temperature, density, and proton fraction. Methods: A new lattice-gas model, the "Charged-Ising Model" (CIM), is introduced to simulate the behavior of neutron-star matter. Preliminary Monte Carlo simulations on 30^3 lattices are performed for a variety of temperatures, densities, and proton fractions. Results: Results are obtained for the heat capacity, pair-correlation function, and static structure factor for a variety of conditions appropriate to the inner stellar crust. Conclusions: Although relatively simple, the CIM captures the essence of Coulomb frustration that is required to simulate the subtle dynamics of the inner stellar crust. Moreover, the computationally demanding long-range Coulomb interactions have been pre-c...

  5. Models of magnetized neutron star atmospheres

    CERN Document Server

    Suleimanov, V; Werner, K

    2009-01-01

    We present a new computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plasma. Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. In particular, the outgoing spectrum using the "sandwich" model (thin atmosphere with a hydrogen layer above a helium layer) is constructed. Thin partially ionized hydrogen atmospheres with vacuum polarization are shown to be able to improv...

  6. Structures of Rotating Traditional Neutron Stars and Hyperon Stars in the Relativistic $\\sigma-\\omega$ Model

    CERN Document Server

    Wen, D; Wang, X; Ai, B; Liu, G; Dong, D; Liu, L; Wen, De-hua; Chen, Wei; Wang, Xian-ju; Ai, Bao-quan; Liu, Guo-tao; Dong, Dong-qiao; Liu, Liang-gang

    2003-01-01

    The influence of the rotation on the total masses and radii of the neutron stars are calculated by the Hartle's slow rotation formalism, while the equation of state is considered in a relativistic $\\sigma-\\omega$ model. Comparing with the observation, the calculating result shows that the double neutron star binaries are more like hyperon stars and the neutron stars of X-ray binaries are more like traditional neutron stars. As the changes of the mass and radius to a real neutron star caused by the rotation are very small comparing with the total mass and radius, one can see that Hartle's approximate method is rational to deal with the rotating neutron stars. If three property values: mass, radius and period are observed to the same neutron star, then the EOS of this neutron star could be decided entirely.

  7. NSMAXG: A new magnetic neutron star spectral model in XSPEC

    CERN Document Server

    Ho, Wynn C G

    2013-01-01

    The excellent sensitivity of X-ray telescopes, such as Chandra and XMM-Newton, is ideal for the study of cooling neutron stars, which can emit at these energies. In order to exploit the wealth of information contained in the high quality data, a thorough knowledge of the radiative properties of neutron star atmospheres is necessary. A key factor affecting photon emission is magnetic fields, and neutron stars are known to have strong surface magnetic fields. Here I briefly describe our latest work on constructing magnetic (B >= 10^10 G) atmosphere models of neutron stars and the NSMAXG implementation of these models in XSPEC. Our results allow for more robust extractions of neutron star parameters from observations.

  8. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  9. Model Atmospheres for X-ray Bursting Neutron Stars

    CERN Document Server

    Medin, Zach; Calder, Alan C; Fontes, Christopher J; Fryer, Chris L; Hungerford, Aimee L

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where X-ray bursts occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  10. Modeling magnetized neutron stars using resistive MHD

    CERN Document Server

    Palenzuela, Carlos

    2013-01-01

    This work presents an implementation of the resistive MHD equations for a generic algebraic Ohm's law which includes the effects of finite resistivity within full General Relativity. The implementation naturally accounts for magnetic-field-induced anisotropies and, by adopting a phenomenological current, is able to accurately describe electromagnetic fields in the star and in its magnetosphere. We illustrate the application of this approach in interesting systems with astrophysical implications; the aligned rotator solution and the collapse of a magnetized rotating neutron star to a black hole.

  11. Measuring the basic parameters of neutron stars using model atmospheres

    CERN Document Server

    Suleimanov, V F; Klochkov, D; Werner, K

    2015-01-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutronstar radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: (i) pure carbon atmospheres for relatively cool neutron stars (1--4 MK) and (ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  12. Relativistic superfluid models for rotating neutron stars

    CERN Document Server

    Carter, B

    2001-01-01

    This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.

  13. Dense Matter and Neutron Stars in Parity Doublet Models

    CERN Document Server

    Schramm, S; Negreiros, R; Steinheimer, J

    2011-01-01

    We investigate the properties of dense matter and neutron stars. In particular we discuss model calculations based on the parity doublet picture of hadronic chiral symmetry. In this ansatz the onset of chiral symmetry restoration is reflected by the degeneracy of baryons and their parity partners. In this approach we also incorporate quarks as degrees of freedom to be able to study hybrid stars.

  14. Two-fluid models of superfluid neutron star cores

    CERN Document Server

    Chamel, N

    2008-01-01

    Both relativistic and non-relativistic two-fluid models of neutron star cores are constructed, using the constrained variational formalism developed by Brandon Carter and co-workers. We consider a mixture of superfluid neutrons and superconducting protons at zero temperature, taking into account mutual entrainment effects. Leptons, which affect the interior composition of the neutron star and contribute to the pressure, are also included. We provide the analytic expression of the Lagrangian density of the system, the so-called master function, from which the dynamical equations can be obtained. All the microscopic parameters of the models are calculated consistently using the non-relativistic nuclear energy density functional theory. For comparison, we have also considered relativistic mean field models. The correspondence between relativistic and non-relativistic hydrodynamical models is discussed in the framework of the recently developed 4D covariant formalism of Newtonian multi-fluid hydrodynamics. We hav...

  15. Further stable neutron star models from f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I–80126 (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2013-12-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  16. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    CERN Document Server

    Ozel, Feryal; Arzoumanian, Zaven; Morsink, Sharon; Baubock, Michi

    2015-01-01

    The Neutron-star Interior Composition Explorer (NICER) is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better t...

  17. Further stable neutron star models from f(R) gravity

    CERN Document Server

    Astashenok, Artyom V; Odintsov, Sergei D

    2013-01-01

    Neutron star models in perturbative $f(R)$ gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for $f(R)=R+R(e^{-R/R_{0}}-1)$ model and for $R^2$ models with logarithmic and cubic corrections are obtained. In the case of $R^2$ gravity with logarithmic corrections with a piecewise equation of state (FPS+quark core), one obtains stars with radii $\\sim 9.5 $ km and masses $\\sim 1.50M_{\\odot}$. In contrast with GR, the minimal radius of neutron star for this equation is 9.9 km. In the case of $R^2$ gravity with cubic corrections, we obtain that at high central densities ($\\rho>10\\rho_{ns}$, where $\\rho_{ns}=2.7\\times 10^{14}$ g/cm$^{3}$ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass $\\sim 1.9 M_{\\odot}$ (SLy equation) or to 8.5 km with mass $\\sim 1.7M_{\\odot}$ (F...

  18. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    Science.gov (United States)

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  19. General Relativistic Equilibrium Models of Magnetized Neutron Stars

    CERN Document Server

    Pili, A G; Del Zanna, L

    2013-01-01

    Magnetic fields play a crucial role in many astrophysical scenarios and, in particular, are of paramount importance in the emission mechanism and evolution of Neutron Stars (NSs). To understand the role of the magnetic field in compact objects it is important to obtain, as a first step, accurate equilibrium models for magnetized NSs. Using the conformally flat approximation we solve the Einstein's equations together with the GRMHD equations in the case of a static axisymmetryc NS taking into account different types of magnetic configuration. This allows us to investigate the effect of the magnetic field on global properties of NSs such as their deformation.

  20. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  1. Neutron star models in frames of f (R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2009-01-01

    Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.

  2. Theoretical Models of Superbursts on Accreting Neutron Stars

    CERN Document Server

    Cooper, R L; Cooper, Randall L.; Narayan, Ramesh

    2004-01-01

    We carry out a general-relativistic global linear stability analysis of the amassed carbon fuel on the surface of an accreting neutron star to determine the conditions under which superbursts occur. By comparing our results with observations, we are able to set constraints on neutron star parameters such as the stellar radius and neutrino cooling mechanism in the core, as well as the composition of the ashes where superbursts are triggered. Specifically, we find that accreting neutron stars with ordered crusts and highly efficient neutrino emission in their cores produce extremely energetic superbursts which are inconsistent with observations. Also, because of pycnonuclear burning of carbon, they do not have superbursts in the range of accretion rates at which superbursts are actually observed. Stars with less efficient neutrino emission produce bursts that agree better with observations. Stars with highly inefficient neutrino emission in their cores produce bursts that agree best with observations. Furthermo...

  3. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  4. Modeling Mergers of Known Galactic Systems of Binary Neutron Stars

    CERN Document Server

    Feo, Alessandra; Maione, Francesco; Löffler, Frank

    2016-01-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between $0.75$ and $0.99$. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to $\\sim$ 20 ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems ($q=0.75$, J0453+1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein Toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and fr...

  5. Physics input for modelling superfluid neutron stars with hyperon cores

    CERN Document Server

    Gusakov, M E; Kantor, E M

    2014-01-01

    Observations of massive ($M \\approx 2.0~M_\\odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter consistent with the existence of $2~M_\\odot$ pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving $\\sigma\\omega\\rho\\phi\\sigma^\\ast$ meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the $\\ell=0,1$ Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. ...

  6. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  7. Relativistic model of neutron stars in X-ray binary

    Science.gov (United States)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  8. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  9. Ways to constrain neutron star equation of state models using relativistic disc lines

    CERN Document Server

    Bhattacharyya, Sudip

    2011-01-01

    Relativistic spectral lines from the accretion disc of a neutron star low-mass X-ray binary can be modelled to infer the disc inner edge radius. A small value of this radius tentatively implies that the disc terminates either at the neutron star hard surface, or at the innermost stable circular orbit (ISCO). Therefore an inferred disc inner edge radius either provides the stellar radius, or can directly constrain stellar equation of state (EoS) models using the theoretically computed ISCO radius for the spacetime of a rapidly spinning neutron star. However, this procedure requires numerical computation of stellar and ISCO radii for various EoS models and neutron star configurations using an appropriate rapidly spinning stellar spacetime. We have fully general relativistically calculated about 16000 stable neutron star structures to explore and establish the above mentioned procedure, and to show that the Kerr spacetime is inadequate for this purpose. Our work systematically studies the methods to constrain Eo...

  10. Slowly rotating superfluid neutron stars with isospin dependent entrainment in a two-fluid model

    CERN Document Server

    Kheto, Apurba

    2015-01-01

    We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-neutral fluid called the proton fluid, made of protons and electrons. The equation of state and the entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of $\\sigma$, $\\omega$, and $\\rho$ mesons and scalar self interactions are also included. The equations governing rotating neutron stars in the slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the global properties of rotating superfluid neutron stars such as mass, shape, and the mass shedding (Kepler) limit within the RMF model with different parameter sets. ...

  11. Nonspinning black hole-neutron star mergers: a model for the amplitude of gravitational waveforms

    CERN Document Server

    Pannarale, Francesco; Kyutoku, Koutarou; Shibata, Masaru

    2013-01-01

    Black hole-neutron star binary mergers display a much richer phenomenology than black hole-black hole mergers, even in the relatively simple case - considered in this paper - in which both the black hole and the neutron star are nonspinning. When the neutron star is tidally disrupted, the gravitational wave emission is radically different from the black hole-black hole case and it can be broadly classified in two groups, depending on the spatial extent of the disrupted material. We present a phenomenological model for the gravitational waveform amplitude in the frequency domain that encompasses the three possible outcomes of the merger: no tidal disruption, "mild", and "strong" tidal disruption. The model is calibrated to general relativistic numerical simulations using piecewise polytropic neutron star equations of state. It should prove useful to extract information on the nuclear equation of state from future gravitational-wave observations, and also to obtain more accurate estimates of black hole-neutron ...

  12. Models of neutron star atmospheres enriched with nuclear burning ashes

    CERN Document Server

    Nättilä, Joonas; Kajava, Jari J E; Poutanen, Juri

    2015-01-01

    Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor $f_c$ and the dilution factor $w$, the parameters of the diluted blackbody model $F_E \\approx w B_E(f_c T_{eff})$ that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition func...

  13. Comparison of Properties of the Simplest Neutron Stars in Three RMF Models

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-Hua; FU Wei-Jie; LIU Yu-Xin

    2008-01-01

    @@ We study some properties of the simplest neutron stars (NSs) in the Glendenning-Moszkowski (GM) model, the hybrid derivative coupling (HD) model and the Zimanyi-Moszkowski (ZM) model in the framework of relativistic mean field (RMF) theory with and without the interaction by exchanging the δ-meson. We show that the maximal mass of the NSs becomes smaller, but the redshift becomes larger from the GM model to the HD model, then to the ZM model. The interaction with the δ-meson exchange enlarges the maximal mass of neutron stars, increases the relative population of charged particles (proton, electron and muon) and descends the relative population of neutron.

  14. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  15. Neutron stars - General review

    Science.gov (United States)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  16. The Magnetospheres of (Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    Wilms J.

    2014-01-01

    Full Text Available I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.

  17. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  18. BPS Skyrmions as neutron stars

    CERN Document Server

    Adam, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A

    2014-01-01

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy-momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the "liquid droplet" model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin-isospin quantization, Coulomb energy, proton-neutron mass difference) led to an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather obvious proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide an excellent description of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is several solar masses, the precise value...

  19. Nuclear Masses and Neutron Stars

    CERN Document Server

    Kreim, Susanne; Lunney, David; Schaffner-Bielich, Jürgen

    2013-01-01

    Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.

  20. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  1. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  2. Neutron Star Matter

    CERN Document Server

    Wambach, Jochen

    2013-01-01

    In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.

  3. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  4. Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model

    CERN Document Server

    Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru

    2015-01-01

    The gravitational radiation emitted during the merger of a black hole with a neutron star is rather similar to the radiation from the merger of two black holes when the neutron star is not tidally disrupted. When tidal disruption occurs, gravitational waveforms can be broadly classified in two groups, depending on the spatial extent of the disrupted material. Extending previous work by some of us, here we present a phenomenological model for the gravitational waveform amplitude in the frequency domain encompassing the three possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal disruption. The model is calibrated to 134 general-relativistic numerical simulations of binaries where the black hole spin is either aligned or antialigned with the orbital angular momentum. All simulations were produced using the SACRA code and piecewise polytropic neutron star equations of state. The present model can be used to determine when black-hole binary waveforms are sufficient for gravitational-wave...

  5. Prospects for Measuring Neutron-Star Masses and Radii with X-Ray Pulse Profile Modeling

    CERN Document Server

    Psaltis, Dimitrios; Chakrabarty, Deepto

    2013-01-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the first harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a speci...

  6. Building relativistic mean field models for finite nuclei and neutron stars

    CERN Document Server

    Chen, Wei-Chia

    2014-01-01

    Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed chi-square objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, FSUGold2, is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron star mass observed up to date. In particul...

  7. Pasta phases in neutron star studied with extended relativistic mean field models

    CERN Document Server

    Gupta, Neha

    2013-01-01

    To explain several properties of finite nuclei, infinite matter, and neutron stars in a unified way within the relativistic mean field models, it is important to extend them either with higher order couplings or with density-dependent couplings. These extensions are known to have strong impact in the high-density regime. Here we explore their role on the equation of state at densities lower than the saturation density of finite nuclei which govern the phase transitions associated with pasta structures in the crust of neutron stars.

  8. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  9. Building relativistic mean field models for finite nuclei and neutron stars

    Science.gov (United States)

    Chen, Wei-Chia; Piekarewicz, J.

    2014-10-01

    Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed χ2 objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, "FSUGold2," is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron-star mass observed up to date. In particular, the model predicts both a stiff symmetry energy and a soft equation of state for symmetric nuclear matter, suggesting a fairly large neutron-skin thickness in Pb208 and a moderate value of the nuclear incompressibility. Conclusions: We conclude that without any meaningful constraint on the isovector sector, relativistic EDFs will continue to predict significantly large neutron skins. However, the calibration scheme adopted here is flexible enough to create models with different assumptions on various observables. Such a scheme—properly supplemented by a covariance analysis—provides a powerful tool to identify the critical measurements required to place meaningful constraints on theoretical models.

  10. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  11. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  12. Models of magnetized neutron star atmospheres: thin atmospheres and partially ionized hydrogen atmospheres with vacuum polarization

    CERN Document Server

    Suleimanov, V F; Werner, K

    2009-01-01

    Observed X-ray spectra of some isolated magnetized neutron stars display absorption features, sometimes interpreted as ion cyclotron lines. Modeling the observed spectra is necessary to check this hypothesis and to evaluate neutron star parameters.We develop a computer code for modeling magnetized neutron star atmospheres in a wide range of magnetic fields (10^{12} - 10^{15} G) and effective temperatures (3 \\times 10^5 - 10^7 K). Using this code, we study the possibilities to explain the soft X-ray spectra of isolated neutron stars by different atmosphere models. The atmosphere is assumed to consist either of fully ionized electron-ion plasmas or of partially ionized hydrogen. Vacuum resonance and partial mode conversion are taken into account. Any inclination of the magnetic field relative to the stellar surface is allowed. We use modern opacities of fully or partially ionized plasmas in strong magnetic fields and solve the coupled radiative transfer equations for the normal electromagnetic modes in the plas...

  13. Effective-one-body waveforms for binary neutron stars using surrogate models

    CERN Document Server

    Lackey, Benjamin D; Galley, Chad R; Meidam, Jeroen; Broeck, Chris Van Den

    2016-01-01

    Gravitational-wave observations of binary neutron star systems can provide information about the masses, spins, and structure of neutron stars. However, this requires accurate and computationally efficient waveform models that take <1s to evaluate for use in Bayesian parameter estimation codes that perform 10^7 - 10^8 waveform evaluations. We present a surrogate model of a nonspinning effective-one-body waveform model with l = 2, 3, and 4 tidal multipole moments that reproduces waveforms of binary neutron star numerical simulations up to merger. The surrogate is built from compact sets of effective-one-body waveform amplitude and phase data that each form a reduced basis. We find that 12 amplitude and 7 phase basis elements are sufficient to reconstruct any binary neutron star waveform with a starting frequency of 10Hz. The surrogate has maximum errors of 3.8% in amplitude (0.04% excluding the last 100M before merger) and 0.043 radians in phase. The version implemented in the LIGO Algorithm Library takes ~...

  14. Slowly rotating neutron stars with small differential rotation: equilibrium models and oscillations in the Cowling approximation

    CERN Document Server

    Chirenti, Cecilia; Yoshida, Shin'ichirou

    2013-01-01

    Newly born neutron stars can present differential rotation, even if later it should be suppressed by viscosity or a sufficiently strong magnetic field. And in this early stage of its life, a neutron star is expected to have a strong emission of gravitational waves, which could be influenced by the differential rotation. We present here a new formalism for modelling differentially rotating neutron stars: working on the slow rotation approximation and assuming a small degree of differential rotation, we show that it is possible to separate variables in the Einstein field equations. The dragging of inertial frames is determined by solving three decoupled ODEs. After we establish our equilibrium model, we explore the influence of the differential rotation on the f and r-modes of oscillation of the neutron star in the Cowling approximation, and we also analyze an effect of the differential rotation on the emission of gravitational radiation from the f-modes. We see that the gravitational radiation from the f-modes...

  15. Neutron Star Motion in the Disk Galaxy

    Institute of Scientific and Technical Information of China (English)

    WEI Ying-Chun; A.Taani; PAN Yuan-Yue; WANG Jing; CAI Yan; LIU Gao-Chao; LUO A-Li; ZHANG Hong-Bo; ZHAO Yong-Heng

    2010-01-01

    @@ The neutron star motions are based on the undisturbed finitely thick galactic disk gravitational potential model.Two initial conditions,I.e.the locations and velocities,are considered.The Monte Carlo method is employed to separate rich diversities of the orbits of neutron stars into several sorts.The Poincaré section has the potential to play an important role in the diagnosis of the neutron star motion.It has been observed that the increasing ratio of the motion range vertical to the galactic plane to that parallel to the galactic plane results in the irregularity of neutron star motion.

  16. Modeling of non-rotating neutron stars in minimal dilatonic gravity

    CERN Document Server

    Fiziev, Plamen

    2016-01-01

    The model of minimal dilatonic gravity (MDG), called also the massive Branse-Dicke model with $\\omega =0$, is an alternative model of gravitation, which uses one Branse-Dicke gravitation-dilaton field $\\Phi$ and offers a simultaneous explanation of the effects of dark energy (DE) and dark matter (DM). Here we present an extensive research of non-rotating neutron star models in MDG with four different realistic equations of state (EOS), which are in agreement with the latest observational data. The equations describing static spherically symmetric stars in MDG are solved numerically. The effects corresponding to DE and DM are clearly seen and discussed.

  17. Numerical models for stationary superfluid neutron stars in general relativity with realistic equations of state

    CERN Document Server

    Sourie, Aurélien; Novak, Jérôme

    2016-01-01

    We present a numerical model for uniformly rotating superfluid neutron stars, for the first time with realistic microphysics including entrainment, in a fully general relativistic framework. We compute stationary and axisymmetric configurations of neutron stars composed of two fluids, namely superfluid neutrons and charged particles (protons and electrons), rotating with different rates around a common axis. Both fluids are coupled by entrainment, a non-dissipative interaction which in case of a non-vanishing relative velocity between the fluids, causes the fluid momenta being not aligned with the respective fluid velocities. We extend the formalism by Comer and Joynt (2003) in order to calculate the equation of state (EoS) and entrainment parameters for an arbitrary relative velocity. The resulting entrainment matrix fulfills all necessary sum rules and in the limit of small relative velocity our results agree with Fermi liquid theory ones, derived to lowest order in the velocity. This formalism is applied t...

  18. Dynamics of Rotating, Magnetized Neutron Stars

    OpenAIRE

    Liebling, Steven L.

    2010-01-01

    Using a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions, the dynamics of magnetized, rigidly rotating neutron stars are studied. Beginning with fully consistent initial data constructed with Magstar, part of the Lorene project, we study the dynamics and stability of rotating, magnetized polytropic stars as models of neutron stars. Evolutions suggest that some of these rotating, magnetized stars may be minimally uns...

  19. Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars

    CERN Document Server

    Guo, L; Schaffner-Bielich, J; Maruhn, J A; Guo, Lu

    2007-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by the higher order corrections for the atomic binding, screening, exchange and zero-point energies, and taking into account for the first time triaxial deformations of nuclei. Experimental data of the atomic mass table from Audi, Wapstra and Thibault of 2003 are used together with two different theoretical nuclear models: the SLy6 parametrization for a Skyrme-Hartree-Fock model with BCS pairing and the parametrization D1S for a Hartree-Fock-Bogolyubov calculation with a finite-range Gogny interaction. The nuclear masses in both theoretical models were calculated under consideration of 3D triaxial deformations. The two models are compared concerning their neutron drip line, magic neutron numbers and the sequence of nuclei up to the neutron drip in the outer crust of nonaccreting cold neutron stars, with special emphasis on the effect of tria...

  20. Hyperons in neutron star matter within relativistic mean-field models

    CERN Document Server

    Oertel, M; Gulminelli, F; Raduta, A R

    2014-01-01

    Since the discovery of neutron stars with masses around 2 solar masses the composition of matter in the central part of these massive stars has been intensively discussed. Within this paper we will (re)investigate the question of the appearance of hyperons. To that end we will perform an extensive parameter study within relativistic mean field models. We will show that it is possible to obtain high mass neutron stars (i) with a substantial amount of hyperons, (ii) radii of 12-13 km for the canonical mass of 1.4 solar masses, and (iii) a spinodal instability at the onset of hyperons. The results depend strongly on the interaction in the hyperon-hyperon channels, on which only very little information is available from terrestrial experiments up to now.

  1. Differentially-rotating neutron star models with a parametrized rotation profile

    CERN Document Server

    Galeazzi, Filippo; Eriguchi, Yoshiharu

    2011-01-01

    We analyze the impact of the choice rotation law on equilibrium sequences of relativistic differentially-rotating neutron stars in axisymmetry. The maximum allowed mass for each model is strongly affected by the distribution of angular velocity along the radial direction and by the consequent degree of differential rotation. In order to study the wide parameter space implied by the choice of rotation law, we introduce a functional form that generalizes the so called "j-const. law" adopted in all previous work. Using this new rotation law we reproduce the angular velocity profile of differentially-rotating remnants from the coalescence of binary neutron stars in various 3-dimensional dynamical simulations. We compute equilibrium sequences of differentially rotating stars with a polytropic equation of state starting from the spherically symmetric static case. By analyzing the sequences at constant ratio, T/|W|, of rotational kinetic energy to gravitational binding energy, we find that the parameters that best d...

  2. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  3. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  4. Consistent neutron star models with magnetic field dependent equations of state

    CERN Document Server

    Chatterjee, Debarati; Novak, Jerome; Oertel, Micaela

    2014-01-01

    We present a self-consistent model for the study of the structure of a neutron star in strong magnetic fields. Starting from a microscopic Lagrangian, this model includes the effect of the magnetic field on the equation of state, the interaction of the electromagnetic field with matter (magnetisation), and anisotropies in the energy-momentum tensor, as well as general relativistic aspects. We build numerical axisymmetric stationary models and show the applicability of the approach with one example quark matter equation of state (EoS) often employed in the recent literature for studies of strongly magnetised neutron stars. For this EoS, the effect of inclusion of magnetic field dependence or the magnetisation do not increase the maximum mass significantly in contrast to what has been claimed by previous studies.

  5. Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation

    Science.gov (United States)

    Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.

    2004-01-01

    In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.

  6. Jets from Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  7. The nuclear symmetry energy, the inner crust, and global neutron star modeling

    CERN Document Server

    Newton, William G; Hooker, Josh; Li, Bao-An

    2011-01-01

    The structure and composition of the inner crust of neutron stars, as well as global stellar properties such as radius and moment of inertia, have been shown to correlate with parameters characterizing the symmetry energy of nuclear matter such as its magnitude J and density dependence L at saturation density. It is thus mutually beneficial to nuclear physicists and astrophysicists to examine the combined effects of such correlations on potential neutron star observables in the light of recent experimental and theoretical constraints on J, L, and relationships between them. We review some basic correlations between these nuclear and astrophysical observables, and illustrate the impact of recent progress in constraining the J-L parameter space on the composition of the inner crust, crust-core transition density and pressure, and extent of the hypothesized pasta region. We use a simple compressible liquid drop model in conjunction with a simple model of nuclear matter which allows for independent, smooth, varia...

  8. Excited nuclei in neutron star crusts

    CERN Document Server

    Takibayev, Nurgali; Nasirova, Diana

    2012-01-01

    The paper considers the chains of successive electron capture reactions by nuclei of the iron group which take place in the crystal structures of neutron star envelopes. It is shown that as a result of such reactions the daughter nuclei in excited states accumulate within certain layers of neutron star crusts. The phonon model of interactions is proposed between the excited nuclei in the crystalline structure, as well as formation of highly excited nuclear states which emit neutrons and higher energy photons.

  9. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models

    CERN Document Server

    Viganò, Daniele; Pons, Jose A; Perna, Rosalba; Aguilera, Deborah N; Miralles, Juan A

    2013-01-01

    Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radio-pulsars, thus confirming the idea that magnetic fields are involved in their X-ray emission. Here we present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. ...

  10. Proto-neutron stars with delta-resonances using the Zimanyi-Moszkowski model

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Luzinete Vilanova da Silva [Secretaria de Educacao, Cultura e Desportos do Estado de Roraima (SECD), RR (Brazil); Oliveira, Jose Carlos Teixeira de [Centro Federal de Educacao Tecnologica (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Duarte, Sergio Barbosa [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: In the present work we obtained the equation of state to be used to study the structure of proto-neutron stars. To this end, we adopted the model of Zimanyi-Moszkowski in the mean field approximation. In this model the equation of state consists of the octet of baryons of spin 1/2 (n, p, {Lambda}{sup 0}, {Sigma}{sup -}, {Sigma}{sup 0}, {Sigma}{sup +}, {Xi}{sup -}, {Xi}{sup 0}) and of the baryonic resonances of spin 3/2, represented by the delta matter ({Delta}{sup -}, {Delta}{sup 0}, {Delta}{sup +}, {Delta}{sup +}+ and by {Omega}{sup -}, in the baryonic sector. In the leptonic sector we consider the electrons, the muons and the trapped neutrinos. Thus, we studied the effects of the corresponding neutrinos on the equation of state during the initial formation of a neutron star. We discuss the structure of the proto-neutron stars including the delta resonances in their composition, and compared the results at the cooling phase induced by escape of neutrinos. From the equation of state obtained with this model we solve numerically the equation TOV (Tolman-Oppenheimer-Volkoff) and so we obtained the values of the maximum mass, before and after cooling. (author)

  11. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  12. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  13. Models of Kilonova/macronova emission from black hole-neutron star mergers

    CERN Document Server

    Kawaguchi, Kyohei; Shibata, Masaru; Tanaka, Masaomi

    2016-01-01

    Black hole-neutron star mergers are among the promising gravitational-wave sources for ground-based detectors, and gravitational waves from black hole-neutron mergers are expected to be detected in the next few years. Simultaneous detection of electromagnetic counterparts with gravitational-wave detection provides rich information about the merger events. Among the possible electromagnetic counterparts from the black hole-neutron merger, the emission powered by the decay of radioactive r-process nuclei, so called kilonova/macronova, is one of the best targets for follow-up observation. We derive fitting formulas for the mass and the velocity of ejecta from a generic black hole-neutron merger based on recently performed numerical relativity simulations. We combined these fitting formulas with a new semi-analytic model for a black hole-neutron kilonova/macronova lightcurve which reproduces the results of radiation-transfer simulations. Specifically, the semi-analytic model reproduces the result of each band mag...

  14. On Magnetized Neutron Stars

    CERN Document Server

    Lopes, Luiz L

    2014-01-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach uses a different prescription for the calculation of the pressure based on the chaotic field formalism for the stress tensor and also a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density.

  15. Modeling the structure of magnetic fields in Neutron Stars: from the interior to the magnetosphere

    CERN Document Server

    Bucciantini, N; Del Zanna, L

    2015-01-01

    The phenomenology of the emission of pulsars and magnetars depends dramatically on the structure and properties of their magnetic field. In particular it is believed that the outbursting and flaring activity observed in AXPs and SRGs is strongly related to their internal magnetic field. Recent observations have moreover shown that charges are present in their magnetospheres supporting the idea that their magnetic field is tightly twisted in the vicinity of the star. In principle these objects offer a unique opportunity to investigate physics in a regime beyond what can be obtained in the laboratory. We will discuss the properties of equilibrium models of magnetized neutron stars, and we will show how internal and external currents can be related. These magnetic field configurations will be discussed considering also their stability, relevant for their origin and possibly connected to events like SNe and GRBs. We will also show what kind of deformations they induce in the star, that could lead to emission of g...

  16. Axion emission from neutron stars

    Science.gov (United States)

    Iwamoto, N.

    1984-01-01

    It is shown that axion emission from neutron stars is the dominant energy-loss mechanism for a range of values of the Peccei-Quinn symmetry-breaking scale (F) not excluded by previous constraints. This gives the possibility of obtaining a better bound on F from measurements of surface temperature of neutron stars.

  17. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  18. Grand Unification in Neutron Stars

    CERN Document Server

    Kaspi, Victoria M

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to `isolated neutron stars,' from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-ray Observatory, in celebration of its tenth anniversary. Finally, I describe the current status of efforts at physical `grand unification' of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  19. Grand unification of neutron stars.

    Science.gov (United States)

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  20. Grand unification of neutron stars

    Science.gov (United States)

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  1. Gravitational waves from neutron-star mergers

    Science.gov (United States)

    Read, Jocelyn; Cullen, Torrey; Flynn, Eric; Lockett-Ruiz, Veronica; Park, Conner; Vong, Susan

    2016-03-01

    The inspiral and merger of binary neutron stars is expected to provide many signals for Advanced LIGO at design sensitivity. The waveform models currently used to search for and parameterize these signals ignore effects near the merger: as the stars coalesce, the gravitational waves depend additionally on the properties of matter in the core of the stars. In this talk, I will discuss potential systematic error from neglecting these features and present phenomenological waveform models currently being developed to capture the dynamics of merging neutron stars.

  2. How neutron stars constrain the nuclear equation of state

    CERN Document Server

    Thomas, Hell; Weise, Wolfram

    2013-01-01

    Recent neutron star observations set new constraints for the equation of state of baryonic matter. A chiral effective field theory approach is used for the description of neutron-dominated nuclear matter present in the outer core of neutron stars. Possible hybrid stars with quark matter in the inner core are discussed using a three-flavor Nambu--Jona-Lasinio model.

  3. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  4. Properties of Rotating Neutron Star

    Directory of Open Access Journals (Sweden)

    Shailesh K. Singh

    2015-08-01

    Full Text Available Using the nuclear equation of states for a large variety of relativistic and non-relativistic force parameters, we calculate the static and rotating masses and radii of neutron stars. From these equation of states, we evaluate the properties of rotating neutron stars, such as rotational frequencies, moment of inertia, quadrupole deformation parameter, rotational ellipticity and gravitational wave strain amplitude. The estimated gravitational wave strain amplitude of the star is found to be~sim 10-23.

  5. Reduced order model for binary neutron star waveforms with tidal interactions

    Science.gov (United States)

    Lackey, Benjamin; Bernuzzi, Sebastiano; Galley, Chad

    2016-03-01

    Observations of inspiralling binary neutron star (BNS) systems with Advanced LIGO can be used to determine the unknown neutron-star equation of state by measuring the phase shift in the gravitational waveform due to tidal interactions. Unfortunately, this requires computationally efficient waveform models for use in parameter estimation codes that typically require 106-107 sequential waveform evaluations, as well as accurate waveform models with phase errors less than 1 radian over the entire inspiral to avoid systematic errors in the measured tidal deformability. The effective one body waveform model with l = 2 , 3, and 4 tidal multipole moments is currently the most accurate model for BNS systems, but takes several minutes to evaluate. We develop a reduced order model of this waveform by constructing separate orthonormal bases for the amplitude and phase evolution. We find that only 10-20 bases are needed to reconstruct any BNS waveform with a starting frequency of 10 Hz. The coefficients of these bases are found with Chebyshev interpolation over the waveform parameter space. This reduced order model has maximum errors of 0.2 radians, and results in a speedup factor of more than 103, allowing parameter estimation codes to run in days to weeks rather than decades.

  6. X-ray bursting neutron star atmosphere models: spectra and color corrections

    CERN Document Server

    Suleimanov, V; Werner, K

    2010-01-01

    X-ray bursting neutron stars in low mass X-ray binaries constitute an appropriate source class to constrain masses and radii of neutron stars, but a sufficiently extended set of corresponding model atmospheres is necessary for these investigations. We computed such a set of model atmospheres and emergent spectra in a plane-parallel, hydrostatic, and LTE approximation with Compton scattering taken into account. The models were calculated for six different chemical compositions: pure hydrogen and pure helium atmospheres, and atmospheres with solar mix of hydrogen and helium, and various heavy element abundances Z = 1, 0.3, 0.1, and 0.01 Z_sun. For each chemical composition the models are computed for three values of surface gravity, log g =14.0, 14.3, and 14.6, and for 20 values of the luminosity in units of the Eddington luminosity, L/L_Edd, in the range 0.001--0.98. The emergent spectra of all models are redshifted and fitted by a diluted blackbody in the RXTE/PCA 3--20 keV energy band, and corresponding valu...

  7. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  8. An Upper Bound on Neutron Star Masses from Models of Short Gamma-ray Bursts

    CERN Document Server

    Lawrence, Scott; Bedaque, Paulo F; Miller, M Coleman

    2015-01-01

    The discovery of two neutron stars with gravitational masses $\\approx 2~M_\\odot$ has placed a strong lower limit on the maximum mass of a slowly rotating neutron star, and with it a strong constraint on the properties of cold matter beyond nuclear density. Current upper mass limits are much looser. Here we note that, if most short gamma-ray bursts are produced by the coalescence of two neutron stars, and if the merger remnant collapses quickly, then the upper mass limit is constrained tightly. We find that if the rotation of the merger remnant is limited only by mass-shedding (which seems plausible based on current numerical studies), then the maximum gravitational mass of a slowly rotating neutron star is between $\\approx 2~M_\\odot$ and $\\approx 2.2~M_\\odot$ if the masses of neutron stars that coalesce to produce gamma-ray bursts are in the range seen in Galactic double neutron star systems. These limits are increased by $\\sim 4$% if the rotation is slowed by $\\sim 30$%, and by $\\sim 15$% if the merger remna...

  9. Neutron star structure from QCD

    Science.gov (United States)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  10. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  11. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  12. Neutron star structure from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Kurkela, Aleksi [PH-TH, Case C01600, CERN, Theory Division, Geneva (Switzerland); University of Stavanger, Faculty of Science Technology, Stavanger (Norway); Vuorinen, Aleksi [University of Helsinki, Helsinki Institute of Physics and Department of Physics (Finland)

    2016-03-15

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities. (orig.)

  13. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  14. Modeling Equal and Unequal Mass Binary Neutron Star Mergers Using Public Codes

    CERN Document Server

    De Pietri, Roberto; Maione, Francesco; Löffler, Frank

    2015-01-01

    We present three-dimensional simulations of the dynamics of binary neutron star (BNS) mergers from the late stage of the inspiral process up to $\\sim 20$ ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH). We investigate five equal-mass models of total gravitational mass $2.207$, $2.373$, $2.537$, $2.697$ and $2.854 M_\\odot$, respectively, and four unequal mass models with $M_{\\mathrm{ADM}}\\simeq 2.53\\ M_\\odot$ and $q\\simeq 0.94$, $0.88$, $0.82$, and $0.77$ (where $q = M^{(1)}/M^{(2)}$ is the mass ratio). We use a semi-realistic equation of state (EOS) namely, the seven-segment piece-wise polytropic SLyPP with a thermal component given by $\\Gamma_{th} = 1.8$. We have also compared the resulting dynamics (for one model) using both, the BSSN-NOK and CCZ4 methods for the evolution of the gravitational sector, and also different reconstruction methods for the matter sector, namely PPM, WENO and MP5. Our results show agreement and high resolution, but sup...

  15. Analysis of Neutron Stars Observations Using a Correlated Fermi Gas Model

    CERN Document Server

    Hen, O; Piasetzky, E; Weinstein, L B

    2016-01-01

    Background: The nuclear symmetry energy is a fundamental ingredient in determining the equation of state (EOS) of neutron stars (NS). Recent terrestrial experiments constrain both its value and slope at nuclear saturation density, however, its value at higher densities is unknown. Assuming a Free Fermi-gas (FFG) model for the kinetic symmetry energy, the high-density extrapolation depends on a single parameter, the density dependence of the potential symmetry energy. The Correlated Fermi-gas (CFG) model improves on the FFG model by including the effects of short-range, correlated, high-momentum, nucleons in nuclear matter. Using the CFG model for the kinetic symmetry energy along with constraints from terrestrial measurements leads to a much softer density dependence for the potential symmetry energy. Purpose: Examine the ability of the FFG and CFG models to describe NS observables that are directly sensitive to the symmetry energy at high-density. Specifically, examine the ability of the CFG model, with its ...

  16. Structural and Spacial Characters of Neutron Star in Relativistic σ-ω Model

    Institute of Scientific and Technical Information of China (English)

    WEN De-Hua; HU Jian-Xun; LIU Liang-Gang

    2006-01-01

    The analytical and numerical solutions of structure and curvature of two kinds of static spherically symmetric neutron stars are calculated. The results show that Ricci tensor and curvature scalar cannot denote the curly character of the space directly, however, to static spherically symmetric stars, these two quantities can present the relative curly degree of the space and the matter distribution to a certain extent.

  17. Analytic modeling of tidal effects in the relativistic inspiral of binary neutron stars.

    Science.gov (United States)

    Baiotti, Luca; Damour, Thibault; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano

    2010-12-31

    To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the ≃22   GW cycles are Δϕ≃±0.24   rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians.

  18. Modeling the dynamics of tidally-interacting binary neutron stars up to merger

    CERN Document Server

    Bernuzzi, Sebastiano; Dietrich, Tim; Damour, Thibault

    2014-01-01

    We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model dynamics (described by the gauge invariant relation between binding energy and orbital angular momentum), and the gravitational wave phasing, with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement essentially within the uncertainty of the numerical data for all the configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate a...

  19. Antikaon condensation in neutron stars

    CERN Document Server

    Pal, S; Greiner, W

    2000-01-01

    We investigate the condensation of charged K sup - meson and neutral anti-K sup 0 meson in dense neutron star matter. Calculations are performed in relativistic mean field models in which both the baryon-baryon and (anti)kaon-baryon interactions are mediated by meson exchange. It is found that anti-K sup 0 condensation is quite sensitive to the antikaon optical potential and depends more strongly on the nucleonic equation of state. For moderate values of antikaon potential and a rather stiff equation of state, a significant region of maximum mass star will contain anti-K sup 0 meson. The critical density of anti-K sup 0 condensation is always higher than that of K sup - condensation. With the appearance of K sup - and anti-K sup 0 condensates, pairs of p-K sup - and n-Kbar sup 0 are produced with equal proportion leading to a perfectly symmetric matter of nucleons and antikaons in neutron stars. Along with K sup - condensate, anti-K sup 0 condensate makes the equation of state much softer resulting in smaller...

  20. Hydromagnetic Instabilities in Neutron Stars

    CERN Document Server

    Lasky, Paul D; Kokkotas, Kostas D; Glampedakis, Kostas

    2011-01-01

    We model the non-linear ideal magnetohydrodynamics of poloidal magnetic fields in neutron stars in general relativity assuming a polytropic equation of state. We identify familiar hydromagnetic modes, in particular the 'sausage/varicose' mode and 'kink' instability inherent to poloidal magnetic fields. The evolution is dominated by the kink instability, which causes a cataclysmic reconfiguration of the magnetic field. The system subsequently evolves to new, non-axisymmetric, quasi-equilibrium end-states. The existence of this branch of stable quasi-equilibria may have consequences for magnetar physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations.

  1. The Neutron Star Zoo

    Science.gov (United States)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  2. Neutron Star News and Puzzles

    CERN Document Server

    Prakash, Madappa

    2014-01-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. In this article, I give a brief account of some of the many ways in which Gerry shaped my research. Recent and on-going research on neutron stars in which the group built from scratch by Gerry at Stony Brook has made significant strides are reviewed. Selected puzzles about neutron stars that remain to be solved are noted.

  3. Neutron star news and puzzles

    Science.gov (United States)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  4. Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars

    CERN Document Server

    Baiotti, Luca; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano

    2010-01-01

    To detect the gravitational-wave signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the $\\simeq 22$ gravitational-wave cycles are $\\Delta \\phi\\simeq \\pm 0.24$ rad, thus with relative phase errors $\\Delta \\phi/\\phi \\simeq 0.2%$. We also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all of the numerically-computed phase evolutions, in contrast with what found when adopting a tidally corrected post-Newtonian Taylor-T4 expansion.

  5. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  6. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  7. Axion Cooling of Neutron Stars

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting X-ray sources puts constraints on the properties of axions, and by extension of any light pseudo-scalar dark matter particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by $S$- and $P$-wave nucleonic condensates in a benchmark code for cooling simulations as well as provide fit formulae for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring non-accreted iron and accreted light element envelopes, and a range of nucleon-axion coupling. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the tempe...

  8. Fab Four Neutron Stars

    CERN Document Server

    Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-01-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the $\\Lambda$CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John") and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and we show that there are no viable compact star solutions in theories of the Paul class.

  9. Proton Fraction in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    张丰收; 陈列文

    2001-01-01

    The proton fraction in β-stable neutron stars is investigated within the framework of the Skyrme-Hartree-Fock theory using the extended Skyrme effective interaction for the first time. The calculated results show that the proton fraction disappears at high density, which implies that the pure neutron matter may exist in the interior of neutron stars. The incompressibility of the nuclear equation-of-state is shown to be more important to determine the proton fraction. Meanwhile, it is indicated that the addition of muons in neutron stars will change the proton fraction. It is also found that the higher-order terms of the nuclear symmetry energy have obvious effects on the proton fraction and the parabolic law of the nuclear symmetry energy is not enough to determine the proton fraction.

  10. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  11. Microphysics of Neutron Star Outer Envelopes in the Periodized, Magnetic Thomas-Fermi Model

    CERN Document Server

    Engstrom, Tyler A; Owen, Benjamin J; Brannick, James; Hu, Xiaozhe

    2014-01-01

    Observations of several types of neutron stars indicate surface temperature inhomogeneities. In recent years magneto-thermal simulations have supported the idea that the magnetic field and anisotropic heat conduction play important roles in generating these inhomogeneities. Simulations rely on crustal microphysics input heretofore calculated at the level of a plasma model -- neglecting lattice structure and electron polarizability. We focus on the low density outer envelope, treating both of these elements by a proper periodization of the magnetic Thomas-Fermi model. Our solution method involves a novel domain decomposition and we describe a scalable implementation using \\textit{Hypre}. The method may be seen as a prototype for the general class of problems involving nonlinear charge screening of periodic, quasi-low-dimensionality structures, e.g. liquid crystals. Findings include low density $c'<0$ elastic instabilities for both bcc and fcc lattices, reminiscent of the situation in some light actinides, a...

  12. Rapidly rotating neutron star progenitors

    Science.gov (United States)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-08-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.

  13. The Nuclear Physics of Neutron Stars

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  14. Constraints on neutron-star theories from nearby neutron star observations

    CERN Document Server

    Neuhäuser, Ralph; Tetzlaff, Nina; Hohle, Markus M; Eisenbeiss, Thomas

    2011-01-01

    We try to constrain the nuclear Equation-of-State (EoS) and supernova ejecta models by observations of young neutron stars in our galactic neighbourhood. There are seven thermally emitting isolated neutron stars known from X-ray and optical observations, the so-called Magnificent Seven, which are young (few Myrs), nearby (few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that - by observing their surface - we can determine their luminosity, distance, and temperature, hence, their radius. We also see the possibility to determine their current neutron star masses and the masses of their progenitor stars by studying their origin. It is even feasible to find the neutron star which was born in the supernova, from which those Fe60 atoms were ejected, which were recently found in the Earth crust.

  15. Soft X-ray spectral fits of Geminga with model neutron star atmospheres

    Science.gov (United States)

    Meyer, R. D.; Pavlov, G. G.; Meszaros, P.

    1994-01-01

    The spectrum of the soft X-ray pulsar Geminga consists of two components, a softer one which can be interpreted as thermal-like radiation from the surface of the neutron star, and a harder one interpreted as radiation from a polar cap heated by relativistic particles. We have fitted the soft spectrum using a detailed magnetized hydrogen atmosphere model. The fitting parameters are the hydrogen column density, the effective temperature T(sub eff), the gravitational redshift z, and the distance to radius ratio, for different values of the magnetic field B. The best fits for this model are obtained when B less than or approximately 1 x 10(exp 12) G and z lies on the upper boundary of the explored range (z = 0.45). The values of T(sub eff) approximately = (2-3) x 10(exp 5) K are a factor of 2-3 times lower than the value of T(sub eff) obtained for blackbody fits with the same z. The lower T(sub eff) increases the compatibility with some proposed schemes for fast neutrino cooling of neutron stars (NSs) by the direct Urca process or by exotic matter, but conventional cooling cannot be excluded. The hydrogen atmosphere fits also imply a smaller distance to Geminga than that inferred from a blackbody fit. An accurate evaluation of the distance would require a better knowledge of the ROSAT Position Sensitive Proportional Counter (PSPC) response to the low-energy region of the incident spectrum. Our modeling of the soft component with a cooler magnetized atmosphere also implies that the hard-component fit requires a characteristic temperature which is higher (by a factor of approximately 2-3) and a surface area which is smaller (by a factor of 10(exp 3), compared to previous blackbody fits.

  16. Phenomenological neutron star equations of state. 3-window modeling of QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)

    2016-03-15

    We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B} neutron star radii. At high density, n{sub B} >or similar 5n{sub s}, we use the percolated quark matter equations of state which must be very stiff to pass the two-solar mass constraints. The intermediate domain at 2 model for the percolated domain, it is argued that the two-solar mass constraint requires the model parameters to be as large as their vacuum values, indicating that the gluon dynamics remains strongly non-perturbative to n{sub B} ∝ 10n{sub s}. The hyperon puzzle is also briefly discussed in light of quark descriptions. (orig.)

  17. Old and new neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  18. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  19. The Fate of Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of

  20. Isolated neutron stars in the galaxy: from magnetars to antimagnetars

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, P. A., E-mail: boldin.pavel@gmail.com [Moscow Engineering Physics Institute (State University) (Russian Federation); Popov, S. B., E-mail: polar@sai.msu.ru [Moscow State University, Sternberg Astronomical Institute (Russian Federation)

    2012-07-15

    Using the model with decaying magnetic fields it is possible to describe with one smooth (log-Gaussian) initial magnetic field distribution three types of isolated neutron stars: radiopulsar, magnetars, and cooling close-by compact objects. The same model is used here to make predictions for old accreting isolated neutron stars. It is shown that using the updated field distribution we predict a significant fraction of isolated neutron stars at the stage of accretion despite long subsonic propeller stage.

  1. Neutron Stars in the Laboratory

    CERN Document Server

    Graber, Vanessa; Hogg, Michael

    2016-01-01

    Neutron stars are astrophysical laboratories of many extremes of physics. Their rich phenomenology provides insights into the state and composition of matter at densities which cannot be reached in terrestrial experiments. Since the core of a mature neutron star is expected to be dominated by superfluid and superconducting components, observations also probe the dynamics of large-scale quantum condensates. The testing and understanding of the relevant theory tends to focus on the interface between the astrophysics phenomenology and nuclear physics. The connections with low-temperature experiments tend to be ignored. However, there has been dramatic progress in understanding laboratory condensates (from the different phases of superfluid helium to the entire range of superconductors and cold atom condensates). In this review, we provide an overview of these developments, compare and contrast the mathematical descriptions of laboratory condensates and neutron stars and summarise the current experimental state-o...

  2. Neutron stars are gold mines

    Science.gov (United States)

    Lattimer, James M.

    Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than A = 60 in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.

  3. Massive neutron stars and their implications

    Indian Academy of Sciences (India)

    T K Jha; Keshab C Panda

    2014-05-01

    Recent observations of high mass pulsar PSRJ1614-2230 has raised serious debate over the possible role of exotics in the dense core of neutron stars. The precise measurement of mass of the pulsar may play a very important role in limiting equation of state (EoS) of dense matter and its composition. Indirectly, it may also shape our understanding of the nucleon–hyperon or hyperon–hyperon interactions which is not well known. Within the framework of an effective chiral model, we compute models of neutron stars and analyse the hyperon composition in them. Further related implications are also discussed.

  4. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)

    N. Chamel

    2017-09-01

    Neutron stars, the compact stellar remnants of core-collapse supernova explosions, are unique cosmic laboratories for exploring novel phases of matter under extreme conditions. In particular, the occurrence of superfluidity and superconductivity in neutron stars will be briefly reviewed.

  5. Observational constraints on quarks in neutron stars

    CERN Document Server

    Nana, P; Nana, Pan; Xiaoping, Zheng

    2006-01-01

    We estimate the constraints of observational mass and redshift on the properties of equations of state for quarks in the compact stars. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing MIT bag model taking medium effect into account for quark matter and relativistic mean field theory for hadron matter. We find that quark may exist in strange stars and the interior of neutron stars, and only these quark matters with stiff equations of state could be consistent with both constraints. The bag constant is main one parameter that affects the mass strongly for strange stars and only the intermediate coupling constant may be the best choice for compatibility with observational constraints in hybrid stars.

  6. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    CERN Document Server

    Suvorova, S; Melatos, A; Moran, W; Evans, R J

    2016-01-01

    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount some of the challenges raised by spin wandering. Specifically it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F-statistic output from coherent segments with duration T_drift = 10d over a total observation time of T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital...

  7. The Electromagnetic Spectrum of Neutron Stars

    CERN Document Server

    Baykal, Altan; Inam, Sitki C; Grebenev, Sergei

    2005-01-01

    Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiat...

  8. A Model for Axions Producing Extended gamma-ray Emission from Neutron Star J0108-1431

    Science.gov (United States)

    Berenji, Bijan; Fermi LAT Collaboration

    2017-01-01

    Axions are hypothetical particles proposed to solve the strong CP problem in QCD and may constitute a significant fraction of the dark matter in the Universe. Axions are expected to be produced in neutron stars and subsequently decay, producing gamma-rays detectable by the Fermi Large Area Telescope (Fermi-LAT). Considering that light axions may travel a long range before they decay into gamma rays, neutron stars may appear as a spatially-extended source of gamma rays. We extend our previous search for gamma rays from axions, based on a point source model, to consider the neutron star as an extended source of gamma rays.We investigate the spatial emission of gamma rays using phenomenological models. We present models including the fundamental astrophysics and relativistic, extended gamma-ray emission from axions around neutron stars. A Monte Carlo simulation of the LAT gives us an expectation for the extended angular profile and spectrum. We predict a mean angular spread of 0.8 degrees with energies in the range 30-200 MeV. We consider projected sensitivities for mass limits on axions from J0108-1431, a neutron star at a distance of 240 pc. We demonstrate the feasibility of setting more stringent limits for axions in this mass range, excluding a range not probed by observations before. Based on the extended angular profile of the source, the expected sensitivity of the 95% CL upper limit on the axion mass from J0108-1431 is >10 meV. We also consider observational strategies in the search for axions from J0108-1431 with the Fermi-LAT.

  9. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  10. Magnetic field evolution in neutron stars

    Science.gov (United States)

    Castillo, F.; Reisenegger, A.; Valdivia, J. A.

    2017-07-01

    Neutron stars contain the strongest magnetic fields known in the Universe. Using numerical simulations restricted to axially symmetric geometry, we study the long-term evolution of the magnetic field in the interior of an isolated neutron star under the effect of ambipolar diffusion, i.e. the drift of the magnetic field and the charged particles relative to the neutrons. We model the stellar interior as an electrically neutral fluid composed of neutrons, protons and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. We show that, in the restricted case of pure ambipolar diffusion, neglecting weak interactions, the magnetic fields evolves towards a stable MHD equilibria configuration, in the timescales analytically expected.

  11. Relativistic Processes and the Internal Structure of Neutron Stars

    CERN Document Server

    Alvarez-Castillo, D E

    2011-01-01

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  12. Holographic Quark Matter and Neutron Stars.

    Science.gov (United States)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  13. An instability in neutron stars at birth

    Science.gov (United States)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  14. Neutrino Processes in Neutron Stars

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  15. Probing thermonuclear burning on accreting neutron stars

    OpenAIRE

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one seco...

  16. Gravitational wave background from rotating neutron stars

    Science.gov (United States)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  17. Constraining models of twin peak quasi-periodic oscillations with realistic neutron star equations of state

    CERN Document Server

    Török, Gabriel; Urbanec, Martin; Šrámková, Eva; Adámek, Karel; Urbancová, Gabriela; Pecháček, Tomáš; Bakala, Pavel; Stuchlík, Zdeněk; Horák, Jiří; Juryšek, Jakub

    2016-01-01

    Twin-peak quasi-periodic oscillations (QPOs) are observed in the X-ray power-density spectra of several accreting low-mass neutron star (NS) binaries. In our previous work we have considered several QPO models. We have identified and explored mass-angular-momentum relations implied by individual QPO models for the atoll source 4U 1636-53. In this paper we extend our study and confront QPO models with various NS equations of state (EoS). We start with simplified calculations assuming Kerr background geometry and then present results of detailed calculations considering the influence of NS quadrupole moment (related to rotationally induced NS oblateness) assuming Hartle-Thorne spacetimes. We show that the application of concrete EoS together with a particular QPO model yields a specific mass-angular-momentum relation. However, we demonstrate that the degeneracy in mass and angular momentum can be removed when the NS spin frequency inferred from the X-ray burst observations is considered. We inspect a large set ...

  18. Symmetry energy and neutron star properties in the saturated Nambu–Jona-Lasinio model

    Directory of Open Access Journals (Sweden)

    Si-Na Wei

    2016-12-01

    Full Text Available In this work, we adopt the Nambu–Jona-Lasinio (NJL model that ensures the nuclear matter saturation properties to study the density dependence of the symmetry energy. With the interactions constrained by the chiral symmetry, the symmetry energy shows novel characters different from those in conventional mean-field models. First, the negative symmetry energy at high densities that is absent in relativistic mean-field (RMF models can be obtained in the RMF approximation by introducing a chiral isovector–vector interaction, although it would be ruled out by the neutron star (NS stability. Second, with the inclusion of the isovector–scalar interaction the symmetry energy exhibits a general softening at high densities even for the large slope parameter of the symmetry energy. The NS properties obtained in the present NJL model can be in accord with the observations. The NS maximum mass obtained with various isovector–scalar couplings and momentum cutoffs is well above the 2M⊙, and the NS radius obtained well meets the limits extracted from recent measurements. In particular, the significant reduction of the canonical NS radius occurs with the moderate decrease of the slope of the symmetry energy.

  19. The masses of neutron stars

    CERN Document Server

    Horvath, J E

    2016-01-01

    We present in this article an overview of the problem of neutron star masses. After a brief appraisal of the methods employed to determine the masses of neutron stars in binary systems, the existing sample of measured masses is presented, with a highlight on some very well-determined cases. We discuss the analysis made to uncover the underlying distribution and a few robust results that stand out from them. The issues related to some particular groups of neutron stars originated from different channels of stellar evolution are shown. Our conclusions are that last century's paradigm that there a single, $1.4 M_{\\odot}$ scale is too simple. A bimodal or even more complex distribution is actually present. It is confirmed that some neutron stars have masses of $\\sim 2 M_{\\odot}$, and, while there is still no firm conclusion on the maximum and minimum values produced in nature, the field has entered a mature stage in which all these and related questions can soon be given an answer.

  20. Neutrino emission in neutron stars

    NARCIS (Netherlands)

    van Dalen, ENE; Dieperink, AEL; Tjon, JA

    Neutrino emissivities in a neutron star are computed for the neutrino bremsstrahlung process. In the first part, the electroweak nucleon-nucleon bremsstrahlung is calculated in free space in terms of an on-shell T matrix using a generalized low-energy theorem. In the second part, the emissivities

  1. Probing thermonuclear burning on accreting neutron stars

    NARCIS (Netherlands)

    Keek, L.

    2008-01-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes

  2. NSCool: Neutron star cooling code

    Science.gov (United States)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  3. Neutron Star Interiors and Topology Change

    Directory of Open Access Journals (Sweden)

    Peter K. F. Kuhfittig

    2013-01-01

    Full Text Available Quark matter is believed to exist in the center of neutron stars. A combined model consisting of quark matter and ordinary matter is used to show that the extreme conditions existing in the center could result in a topology change, that is, in the formation of wormholes.

  4. Model-Independent Inference of Neutron Star Radii from Moment of Inertia Measurements

    CERN Document Server

    Raithel, Carolyn A; Psaltis, Dimitrios

    2016-01-01

    A precise moment of inertia measurement for PSR J0737-3039A in the double pulsar system is expected within the next five years. We present here a new method of mapping the anticipated measurement of the moment of inertia directly into the neutron star structure. We determine the maximum and minimum values possible for the moment of inertia of a neutron star of a given radius based on physical stability arguments, assuming knowledge of the equation of state only at densities below the nuclear saturation density. If the equation of state is trusted up to the nuclear saturation density, we find that a measurement of the moment of inertia will place absolute bounds on the radius of PSR J0737-3039A to within $\\pm$1 km. The resulting combination of moment of inertia, mass, and radius measurements for a single source will allow for new, stringent constraints on the dense-matter equation of state.

  5. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  6. Neutron Stars: Laboratories for Fundamental Physics Under Extreme Astrophysical Conditions

    Science.gov (United States)

    Bandyopadhyay, Debades

    2017-09-01

    We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory experiments. It is observed that equations of state involving strangeness degrees of freedom such as hyperons and Bose-Einstein condensates are compatible with 2{M}_{solar} neutron stars. The role of hyperons is explored on the evolution and stability of the protoneutron star in the context of SN1987A. Moment of inertia, mass and radius which are direct probes of neutron star interior are computed and their observational consequences are discussed. We continue our study on the dense matter under strong magnetic fields and its application to magnetoelastic oscillations of neutron stars.

  7. Equation of state for neutron star matter with NJL model and Dirac-Brueckner-Hartree-Fock approximation

    CERN Document Server

    Kambe, Takahide; Saito, Koichi

    2016-01-01

    As the interior density of a neutron star can become very high, it has been expected and discussed that quark matter may exist inside it. To describe the transition from hadron to quark phases (and vice versa), there are mainly two methods; one is the first-order phase transition, and the other is the crossover phenomenon. In the present study, using the flavor-SU (3) NJL model with the vector coupling interaction, we have calculated the equation of state for the quark phase at high density. Furthermore, for the hadron phase at low density, we have used two kinds of the equations of state; one is a relatively soft one by the QHD model, and the other is a stiff one calculated with relativistic Brueckner-Hartree-Fock approximation. Using those equations of state for the two phases, we have investigated the influence of various choices of parameters concerning the crossover region on the mass and radius of a neutron star.

  8. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    Science.gov (United States)

    Suvorova, S.; Sun, L.; Melatos, A.; Moran, W.; Evans, R. J.

    2016-06-01

    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g., superfluid or magnetospheric) or external (e.g., accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F -statistic to surmount some of the challenges raised by spin wandering. Specifically, it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F -statistic output from coherent segments with duration Tdrift=10 d over a total observation time of Tobs=1 yr can detect signals with wave strains h0>2 ×10-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital period and semimajor axis are known approximately from electromagnetic observations, HMM tracking of the Bessel-weighted F -statistic output can detect signals with h0>8 ×10-26. An efficient, recursive, HMM solver based on the Viterbi algorithm is demonstrated, which requires ˜103 CPU hours for a typical, broadband (0.5-kHz) search for the low-mass x-ray binary Scorpius X-1, including generation of the relevant F -statistic input. In a "realistic" observational scenario, Viterbi tracking successfully detects 41 out of 50 synthetic signals without spin wandering in stage I of the Scorpius X-1 Mock Data Challenge convened by the LIGO Scientific Collaboration down to a wave strain of h0=1.1 ×10-25, recovering the frequency with a root-mean-square accuracy of ≤4.3 ×10-3 Hz .

  9. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    CERN Document Server

    Gu, Wei-Min; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche lobe overflow mechanism can be responsible for the observed repeating b...

  10. Impact of phase transition from neutrons to hyperons in neutron star properties

    Science.gov (United States)

    Alrizal, Sulaksono, A.

    2017-07-01

    We revisit the impact of phase transition from neutrons to hyperons in the properties of neutron star using BSP parameter set of relativistic mean field (RMF) model. Similar to the work reported in Reference [1], the significance of the phase transition is observed from the impact gσ∗Λ/gσN variation on the corresponding neutron stars equation of state and mass versus radius relation. The impact of anisotropic pressure on equation of state and mass versus radius relation of neutron stars is also investigated. It is found that equation of state of neutron stars is very sensitive to gσ∗Λ/gσN coupling constant variation. However, different to the result of Reference [1], we do not obtain hyperon stars with very small radii R˜ 8 km. We do not also find significant effect of anisotropic pressure to change the behavior of neutron star properties due to phase transition.

  11. Rotating proto-neutron stars under strong magnetic fields

    CERN Document Server

    Franzon, B; Schramm, S

    2016-01-01

    In this work, we study the effects of magnetic fields and rotation on the structure and composition of proto-neutron stars (PNSs). A hadronic chiral SU(3) model is applied to cold neutron stars (NS) and proto-neutron stars with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and in the particle population of these objects. We find that the magnetic field deforms the star and significantly alters the number of trapped neutrinos in the stellar interior, together with strangeness content and temperature in each evolution stage.

  12. Neutron stars: From the inner crust to the core with the (extended) Nambu-Jona-Lasinio model

    Science.gov (United States)

    Pais, Helena; Menezes, Débora P.; Providência, Constança

    2016-06-01

    Nucleonic matter is described within an SU(2) extended Nambu-Jona-Lasinio (NJL) model. Several parametrizations with different nuclear matter saturation properties are proposed. At subsaturation, nuclear pasta phases are calculated within two methods: the coexistence-phases approximation and the compressible liquid drop model, with the surface tension coefficient determined using a geometrical approach at zero temperature. A unified equation of state of stellar matter for the inner crust, with the nuclear pasta phases, and the core is calculated. The mass and radius of neutron stars within this framework are obtained for several families of hadronic and hybrid stars. The quark phase of hybrid stars is described within the SU(3) NJL model including a vector term. Stellar macroscopic properties are in accordance with some of the recent results in the literature.

  13. Properties of Neutron Star Critical Collapses

    Science.gov (United States)

    Wan, Mew-Bing

    2010-01-01

    Critical phenomena in gravitational collapse opened a new mathematical vista into the theory of general relativity and may ultimately entail fundamental physical implication in observations. However, at present, the dynamics of critical phenomena in gravitational collapse scenarios are still largely unknown. My thesis seeks to understand the properties of the threshold in the solution space of the Einstein field equations between the black hole and neutron star phases, understand the properties of the neutron star critical solution and clarify the implication of these results on realistic astrophysical scenarios. We develop a new set of neutron star-like initial data to establish the universality of the neutron star critical solution and analyze the structure of neutron star and neutron star-like critical collapses via the study of the phase spaces. We also study the different time scales involved in the neutron star critical solution and analyze the properties of the critical index via comparisons between neutron star and neutron star-like initial data. Finally, we explore the boundary of the attraction basin of the neutron star critical solution and its transition to a known set of non-critical fixed points.

  14. General relativistic neutron stars with twisted magnetosphere

    CERN Document Server

    Pili, A G; Del Zanna, L

    2014-01-01

    Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.

  15. Rapidly rotating neutron star progenitors

    CERN Document Server

    Postnov, K A; Kolesnikov, D A; Popov, S B; Porayko, N K

    2016-01-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $\\tau_c$. The validity of this approach is checked by direct MESA calculations ...

  16. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  17. Observational Constraints on Neutron Star Masses and Radii

    CERN Document Server

    Miller, M Coleman

    2016-01-01

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star -- black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method...

  18. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  19. Hiding a neutron star inside a wormhole

    CERN Document Server

    Dzhunushaliev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2014-01-01

    We consider neutron-star-plus-wormhole configurations supported by a massless ghost scalar field. The neutron fluid is modeled by an anisotropic equation of state. When the central energy density of the fluid is of comparable magnitude to the one of the scalar field, configurations with an equator at the center and a double-throat arise. These double-throat wormholes can be either partially or completely filled by the neutron fluid. In the latter case, the passage of light - radiated by the neutron matter - through these wormholes is studied. A stability analysis indicates that all considered configurations are unstable with respect to linear perturbations, independent of whether the fluid is isotropic or anisotropic.

  20. Neutrino Processes in Neutron Stars

    Directory of Open Access Journals (Sweden)

    Kolomeitsev E.E.

    2010-10-01

    Full Text Available The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities. The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong

  1. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  2. Topological characterization of neutron star crusts

    CERN Document Server

    Dorso, C O; López, J A

    2012-01-01

    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy ion reactions. After the model is shown to produce a plethora of the so-called "pasta" shapes, a series of techniques borrowed from nuclear physics, condensed matter physics and topology are used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way.

  3. Tidal Love numbers of neutron stars

    CERN Document Server

    Hinderer, Tanja

    2007-01-01

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k2. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n~0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l=2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second order differential equation for the perturbation to the metric coefficient g_tt, and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ~24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron sta...

  4. A gravitational wave afterglow in binary neutron star mergers

    CERN Document Server

    Doneva, Daniela D; Pnigouras, Pantelis

    2015-01-01

    We study in detail the f-mode secular instability for rapidly rotating neutron stars, putting emphasis on supermassive models which do not have a stable nonrotating counterpart. Such neutron stars are thought to be the generic outcome of the merger of two standard mass neutron stars. In addition we take into account the effects of strong magnetic field and r-mode instability, that can drain a substantial amount of angular momentum. We find that the gravitational wave signal emitted by supramassive neutron stars can reach above the Advance LIGO sensitivity at distance of about 20Mpc and the detectability is substantially enhanced for the Einstein Telescope. The event rate will be of the same order as the merging rates, while the analysis of the signal will carry information for the equation of state of the post-merging neutron stars and the strength of the magnetic fields.

  5. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  6. On the compactness of neutron stars

    CERN Document Server

    Chen, Wei-Chia

    2015-01-01

    Recent progress in the determination of both masses and radii of neutron stars are starting to place stringent constraints on the dense matter equation of state. In particular, new theoretical developments together with improved statistical tools seem to favor stellar radii that are significantly smaller than those predicted by models using purely nucleonic equations of state. Given that the underlying equation of state must also account for the observation of $2M_{\\odot}$ neutron stars, theoretical approaches to the study of the dense matter equation of state are facing serious challenges. In response to this challenge, we compute in a model-independent way the underlying equation of state associated with an assumed mass-radius template similar to the "common radius" assumption used in recent studies. Once such a mass-radius template is adopted, the equation of state follows directly from the implementation of Lindblom's algorithm; assumptions on the nature or composition of the dense stellar core are not re...

  7. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  8. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  9. The Dark Side of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Chris Kouvaris

    2013-01-01

    Full Text Available We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be effectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates.

  10. Probing the Internal Composition of Neutron Stars with Gravitational Waves

    CERN Document Server

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2015-01-01

    Gravitational waves from neutron star binary inspirals contain information about the equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure in a neutron star as function of its density have been proposed. These models differ not only in the approximations and techniques they use to solve the many-body Schr\\"odinger equation, but also in the neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both norm...

  11. Critical rotation of general-relativistic polytropic models simulating neutron stars: a post-Newtonian hybrid approximative scheme

    CERN Document Server

    Geroyannis, Vassilis S

    2014-01-01

    We develop a "hybrid approximative scheme" in the framework of the post-Newtonian approximation for computing general-relativistic polytropic models simulating neutron stars in critical rigid rotation. We treat the differential equations governing such a model as a "complex initial value problem", and we solve it by using the so-called "complex-plane strategy". We incorporate into the computations the complete solution for the relativistic effects, this issue representing a significant improvement with regard to the classical post-Newtonian approximation, as verified by extended comparisons of the numerical results.

  12. Neutron Stars in Rastall Gravity

    CERN Document Server

    Oliveira, A M; Fabris, J C; Casarini, L

    2015-01-01

    We calculate static and spherically symmetric solutions for the Rastall modification of gravity to describe Neutron Stars (NS). The key feature of the Rastall gravity is the non-conservation of the energy-momentum tensor proportionally to the space-time curvature. Using realistic equations of state for the NS interior we place a bound on the non-GR behaviour of the Rastall theory which should be $\\lesssim 0.1\\%$ level. This work presents the more stringent contraints on the deviations of GR caused by the Rastall proposal.

  13. QPO emission from moving hot spots on the surface of neutron stars: a model

    CERN Document Server

    Bachetti, Matteo; Kulkarni, Akshay; Burderi, Luciano; di Salvo, Tiziana

    2009-01-01

    We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in light curves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Simulations show that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one is the presence of Rayleigh-Taylor instabilities at the disk-magnetospheric boundary (e.g. Kulkarni & Romanova 2008), which produce tongues of accreting matter that can reach the star almost anywhere between the equator and the polar region; the other one is the motion of the hot spot around the magnetic pole during stable accretion (e.g. R...

  14. General relativistic models for rotating magnetized neutron stars in conformally flat space-time

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2017-09-01

    The extraordinary energetic activity of magnetars is usually explained in terms of dissipation of a huge internal magnetic field of the order of 1015-16 G. How such a strong magnetic field can originate during the formation of a neutron star (NS) is still subject of active research. An important role can be played by fast rotation: if magnetars are born as millisecond rotators dynamo mechanisms may efficiently amplify the magnetic field inherited from the progenitor star during the collapse. In this case, the combination of rapid rotation and strong magnetic field determine the right physical condition not only for the development of a powerful jet-driven explosion, manifesting as a gamma-ray burst, but also for a copious gravitational waves emission. Strong magnetic fields are indeed able to induce substantial quadrupolar deformations in the star. In this paper, we analyse the joint effect of rotation and magnetization on the structure of a polytropic and axisymmetric NS, within the ideal magneto-hydrodynamic regime. We will consider either purely toroidal or purely poloidal magnetic field geometries. Through the sampling of a large parameter space, we generalize previous results in literature, inferring new quantitative relations that allow for a parametrization of the induced deformation, that takes into account also the effects due to the stellar compactness and the current distribution. Finally, in the case of purely poloidal field, we also discuss how different prescription on the surface charge distribution (a gauge freedom) modify the properties of the surrounding electrosphere and its physical implications.

  15. Neutron stars interiors: Theory and reality

    Science.gov (United States)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  16. Neutron stars interiors: Theory and reality

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)

    2016-03-15

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  17. Hybrid stars that masquerade as neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Mark Paris; Mark Alford; Matt Braby; Sanjay Reddy

    2004-11-01

    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M{sub solar} for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

  18. Double Neutron Stars: Evidence For Two Different Neutron-Star Formation Mechanisms

    OpenAIRE

    Heuvel, E. P. J. van den

    2007-01-01

    Six of the eight double neutron stars known in the Galactic disk have low orbital eccentricities (< 0.27) indicating that their second-born neutron stars received only very small velocity kicks at birth. This is similar to the case of the B-emission X-ray binaries, where a sizable fraction of the neutron stars received hardly any velocity kick at birth (Pfahl et al. 2002). The masses of the second-born neutron stars in five of the six low-eccentricity double neutron stars are remarkably low (...

  19. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  20. Neutron Stars and Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  1. A dynamical description of neutron star crusts

    CERN Document Server

    de la Mota, V; Eudes, Ph

    2012-01-01

    Neutron Stars are natural laboratories where fundamental properties of matter under extreme conditions can be explored. Modern nuclear physics input as well as many-body theories are valuable tools which may allow us to improve our understanding of the physics of those compact objects. In this work the occurrence of exotic structures in the outermost layers of neutron stars is investigated within the framework of a microscopic model. In this approach the nucleonic dynamics is described by a time-dependent mean field approach at around zero temperature. Starting from an initial crystalline lattice of nuclei at subnuclear densities the system evolves toward a manifold of self-organized structures with different shapes and similar energies. These structures are studied in terms of a phase diagram in density and the corresponding sensitivity to the isospin-dependent part of the equation of state and to the isotopic composition is investigated.

  2. From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models

    CERN Document Server

    Newton, W G; Mezzacappa, A

    2006-01-01

    First results from a fully self-consistent, temperature-dependent equation of state that spans the whole density range of neutron stars and supernova cores are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neut...

  3. New model of relativistic slowly rotating neutron stars with surface layer crust: application to giant glitches of Vela Pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Romero, L M; Blazquez-Salcedo, J L, E-mail: mgromero@fis.ucm.es, E-mail: joseluis.blazquez@fis.ucm.es [Depto. Fisica Teorica II, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040-Madrid (Spain)

    2011-09-22

    Introducing a surface layer of matter on the edge of a neutron star in slow rigid rotation, we analyze, from an intrinsic point of view, the junction conditions that must be satisfied between the interior and exterior solutions of the Einstein equations. In our model the core-crust transition pressure arise as an essential parameter in the description of a configuration. As an application of this formalism, we describe giant glitches of the Vela pulsar as a result of variations in the transition pressure, finding that these small changes are compatible with the expected temperature variations of the inner crust during glitch time

  4. Evolution of Close Neutron Star Binaries

    CERN Document Server

    Ogawaguchi, W

    1996-01-01

    We have calculated evolution of neutron star binaries towards the coalescence driven by gravitational radiation. The hydrodynamical effects as well as the general relativistic effects are important in the final phase. All corrections up to post$^{2.5}$-Newtonian order and the tidal effect are included in the orbital motion. The star is approximated by a simple Newtonian stellar model called affine star model. Stellar spins and angular momentum are assumed to be aligned. We have showed how the internal stellar structure affects the stellar deformation, variations of the spins, and the orbital motion of the binary just before the contact. The gravitational wave forms from the last a few revolutions significantly depend on the stellar structure.

  5. Magnetised Neutron Stars An Overview

    CERN Document Server

    Goyal, A

    2003-01-01

    In the presence of strong magnetic field reported to have been observed on the surface of some neutron stars and on what are called Magnetars, a host of physical phenomenon from the birth of a neutron star to free streaming neutrino cooling phase will be modified. In this review I will discuss the effect of magnetic field on the equation of state of high density nuclear matter by including the anomalous magnetic moment of the nucleons into consideration. I would then go over to discuss the neutrino interaction processes in strong as well as in weak magnetic fields. The neutrino processes are important in studying the propagation of neutrinos and in studying the energy loss, Their study is a prerequisite for the understanding of actual dynamics of supernova explosion and on the stabilization of radial pulsation modes through the effect on bulk viscosity. The anisotropy introduced in the neutrino emission and through the modification of the shape of the neutrino sphere may explain the observed pulsar kicks.

  6. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  7. Slowly Rotating General Relativistic Superfluid Neutron Stars

    CERN Document Server

    Andersson, N

    2001-01-01

    We present a general formalism to treat slowly rotating general relativistic superfluid neutron stars. As a first approximation, their matter content can be described in terms of a two-fluid model, where one fluid is the neutron superfluid, which is believed to exist in the core and inner crust of mature neutron stars, and the other fluid represents a conglomerate of all other constituents (crust nuclei, protons, electrons, etc.). We obtain a system of equations, good to second-order in the rotational velocities, that determines the metric and the matter variables, irrespective of the equation of state for the two fluids. In particular, allowance is made for the so-called entrainment effect, whereby the momentum of one constituent (e.g. the neutrons) carries along part of the mass of the other constituent. As an illustration of the developed framework, we consider a simplified equation of state for which the two fluids are described by different polytropes. We determine numerically the effects of the two flui...

  8. On the conversion of neutron stars into quark stars

    CERN Document Server

    Pagliara, Giuseppe

    2013-01-01

    The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of $10^{53}$ erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  9. Neutron Star Crust and Molecular Dynamics Simulation

    CERN Document Server

    Horowitz, C J; Schneider, A; Berry, D K

    2011-01-01

    In this book chapter we review plasma crystals in the laboratory, in the interior of white dwarf stars, and in the crust of neutron stars. We describe a molecular dynamics formalism and show results for many neutron star crust properties including phase separation upon freezing, diffusion, breaking strain, shear viscosity and dynamics response of nuclear pasta. We end with a summary and discuss open questions and challenges for the future.

  10. Neutron Stars and Black Holes in Star Clusters

    CERN Document Server

    Rasio, F A; Corongiu, A; D'Antona, F; Fabbiano, G; Fregeau, J M; Gebhardt, K; Heinke, C O; Hut, P; Ivanova, N; Maccarone, T J; Ransom, S M; Webb, N A

    2006-01-01

    This article was co-authored by all invited speakers at the Joint Discussion on `Neutron Stars and Black Holes in Star Clusters,' which took place during the IAU General Assembly in Prague, Czech Republic, on August 17 and 18, 2006. Each section presents a short summary of recent developments in a key area of research, incorporating the main ideas expressed during the corresponding panel discussion at the meeting. Our meeting, which had close to 300 registered participants, was broadly aimed at the large community of astronomers around the world working on the formation and evolution of compact objects and interacting binary systems in dense star clusters, such as globular clusters and galactic nuclei. Great advances have occurred in this field during the past few years, including the introduction of fundamentally new theoretical paradigms for the formation and evolution of compact objects in binaries as well as countless new discoveries by astronomers that have challenged many accepted models. Some of the hi...

  11. Neutron stars: from the inner crust to the core with the (Extended) Nambu-Jona-Lasinio model

    CERN Document Server

    Pais, Helena; Providência, Constança

    2016-01-01

    We use an su(2) version of the extended Nambu-Jona-Lasinio model to describe nucleonic matter and the usual su(3) version of the NJL model with vector interaction to describe quark matter. We calculate the nuclear pasta phases that appear in the inner crust of neutron stars within the su(2) extended Nambu-Jona-Lasinio model with different parametrizations. We consider two methods for the non-homogeneous phases: the coexistence-phases approximation and the compressible liquid drop model, and we calculate the surface tension coefficient using a geometrical approach at zero temperature. The energy density and pressure are determined in the region of densities and proton fractions where the pasta shapes are expected to appear. The equation of state of stellar matter is calculated, and the mass-radius relation for several families of hadronic and hybrid stars determined. The quark phase of hybrid stars is described within the su(3) NJL model including a vector term. Masses above 2$M_{\\odot}$ have been obtained for...

  12. From neutron stars to quark stars in mimetic gravity

    Science.gov (United States)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  13. Light Curves for Rapidly-Rotating Neutron Stars

    CERN Document Server

    Cadeau, C; Leahy, D; Campbell, S S; Cadeau, Coire; Morsink, Sharon M.; Leahy, Denis; Campbell, Sheldon S.

    2006-01-01

    We present raytracing computations for light emitted from the surface of a rapidly-rotating neutron star in order to construct light curves for X-ray pulsars and bursters. These calculations are for realistic models of rapidly-rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect arising from rotation comes from the oblate shape of the rotating star. We find that approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, in most cases acceptable fits to the ratio M/R can be obtained with the spherical approximation.

  14. A G2-QCD neutron star

    CERN Document Server

    Hajizadeh, Ouraman

    2016-01-01

    The determination of the properties of neutron stars from the underlying theory, QCD, is still an unsolved problem. This is mainly due to the difficulty to obtain reliable results for the equation of state for cold, dense QCD. As an alternative route to obtain qualitative insights, we determine the structure of a neutron star for a modified version of QCD: By replacing the gauge group SU(3) with the exceptional Lie group G2, it is possible to perform lattice simulations at finite density, while still retaining neutrons. Here, results of these lattice simulations are used to determine the mass-radius relation of a neutron star for this theory. The results show that phase changes express themselves in this relation. Also, the radius of the most massive neutron stars is found to vary very little, which would make radius determinations much simpler if this would also be true in QCD.

  15. Cooling of neutron stars with diffusive envelopes

    CERN Document Server

    Beznogov, M V; Haensel, P; Yakovlev, D G; Zdunik, J L

    2016-01-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H--He, He--C, C--Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 0.1 - 1 Myr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reco...

  16. Can Neutron stars constrain Dark Matter?

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Tinyakov, Peter

    2010-01-01

    We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface...... temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....

  17. Observations of Type I Bursts from Neutron Stars

    CERN Document Server

    Swank, J H

    2000-01-01

    Observations of Type I X-ray bursts have long been taken as evidence that the sources are neutron stars. Black body models approximate the spectral data and imply a suddenly heated neutron star cooling over characteristic times of seconds to minutes. The phenomena are convincingly explained in terms of nuclear burning of accreted gas on neutron stars with low mass companion stars. Prospects are promising that detailed theory and data from RXTE and future missions will lead to better determinations of important physical parameters (neutron star mass and radius, composition of the accreting gas, distance of the source). Among the variety of bursts observed, there are probably representatives of different kinds of explosive burning. RXTE's discovery of a 2.5 ms persistent coherent period from one Type I burster has now linked bursters indisputably to the epitome of a neutron star, a fast spinning magnetic compact object. Oscillations in some bursts had already been thought to arise from the neutron stars' rotati...

  18. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  19. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    CERN Document Server

    Agathos, Michalis; Del Pozzo, Walter; Li, Tjonnie G F; Tompitak, Marco; Veitch, John; Vitale, Salvatore; Broeck, Chris Van Den

    2015-01-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1PN order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopo...

  20. The influence of Strong Magnetic Field in Hyperonic Neutron Stars

    CERN Document Server

    Lopes, Luiz L

    2013-01-01

    The physics of neutron stars leads historically towards Landau's speculation. Even before the discovery of the neutron, he postulated the possible existence of stars more compact than white dwarfs, containing matter of the order of nuclear density. From a modern point of view neutron stars are compact objects maintained by the equilibrium between gravity and the degeneracy pressure of the fermions together with a strong nuclear repulsion force due to the high density reached in their interior. While the physics in the vicinity of nuclear saturation density is well know from phenomenology, the physics of ultra-dense nuclear matter is still an open puzzle. In this work we study dense nuclear matter within a relativistic model, allowing hyperons to be present through beta equilibrium. The presence of hyperons is justifiable since the constituents of neutron stars are fermions. So, according to the Pauli principle, as the baryon density increases, so do the Fermi momentum and the Fermi energy. On the other hand, ...

  1. Neutrino-pair bremsstrahlung in a neutron star crust

    CERN Document Server

    Ofengeim, D D; Yakovlev, D G

    2014-01-01

    Based on the formalism by Kaminker et al. (Astron. Astrophys. 343 (1999) 1009) we derive an analytic approximation for neutrino-pair bremsstrahlung emissivity due to scattering of electrons by atomic nuclei in the neutron star crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm which we fit by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which the neutrino bremsstrahlung in the crust is affected by strong magnetic fields. The results can be applied for modelling of many phenomena in neutron stars, such as thermal relaxation in young isolated neutron stars and in accreting neutron stars with overheated crust in soft X-ray transients.

  2. Core-crust transition properties of neutron stars within systematically varied extended relativistic mean-field model

    CERN Document Server

    Sulaksono, A; Agrawal, B K

    2014-01-01

    The model dependence and the symmetry energy dependence of the core-crust transition properties for the neutron stars are studied using three different families of systematically varied extended relativistic mean field model. Several forces within each of the families are so considered that they yield wide variations in the values of the nuclear symmetry energy $a_{\\rm sym}$ and its slope parameter $L$ at the saturation density. The core-crust transition density is calculated using a method based on random-phase-approximation. The core-crust transition density is strongly correlated, in a model independent manner, with the symmetry energy slope parameter evaluated at the saturation density. The pressure at the transition point dose not show any meaningful correlations with the symmetry energy parameters at the saturation density. At best, pressure at the transition point is correlated with the symmetry energy parameters and their linear combination evaluated at the some sub-saturation density. Yet, such corre...

  3. Neutron-star matter within the energy-density functional theory and neutron-star structure

    Energy Technology Data Exchange (ETDEWEB)

    Fantina, A. F.; Chamel, N.; Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP226, Université Libre de Bruxelles (ULB), 1050 Brussels (Belgium); Pearson, J. M. [Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 (Canada)

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  4. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  5. Gravitational waves from rapidly rotating neutron stars

    CERN Document Server

    Haskell, Brynmor; D`Angelo, Caroline; Degenaar, Nathalie; Glampedakis, Kostas; Ho, Wynn C G; Lasky, Paul D; Melatos, Andrew; Oppenoorth, Manuel; Patruno, Alessandro; Priymak, Maxim

    2014-01-01

    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the ac...

  6. A SURVEY OF THE PARAMETER SPACE OF THE COMPRESSIBLE LIQUID DROP MODEL AS APPLIED TO THE NEUTRON STAR INNER CRUST

    Energy Technology Data Exchange (ETDEWEB)

    Newton, W. G.; Gearheart, M.; Li Baoan, E-mail: william.newton@tamuc.edu [Department of Physics and Astronomy, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States)

    2013-01-15

    We present a systematic survey of the range of predictions of the neutron star inner crust composition, crust-core transition densities and pressures, and density range of the nuclear 'pasta' phases at the bottom of the crust provided by the compressible liquid drop model in light of the current experimental and theoretical constraints on model parameters. Using a Skyrme-like model for nuclear matter, we construct baseline sequences of crust models by consistently varying the density dependence of the bulk symmetry energy at nuclear saturation density, L, under two conditions: (1) that the magnitude of the symmetry energy at saturation density J is held constant, and (2) J correlates with L under the constraint that the pure neutron matter (PNM) equation of state (EoS) satisfies the results of ab initio calculations at low densities. Such baseline crust models facilitate consistent exploration of the L dependence of crustal properties. The remaining surface energy and symmetric nuclear matter parameters are systematically varied around the baseline, and different functional forms of the PNM EoS at sub-saturation densities implemented, to estimate theoretical 'error bars' for the baseline predictions. Inner crust composition and transition densities are shown to be most sensitive to the surface energy at very low proton fractions and to the behavior of the sub-saturation PNM EoS. Recent calculations of the energies of neutron drops suggest that the low-proton-fraction surface energy might be higher than predicted in Skyrme-like models, which our study suggests may result in a greatly reduced volume of pasta in the crust than conventionally predicted.

  7. Holographic quark matter and neutron stars

    CERN Document Server

    Hoyos, Carlos; Jokela, Niko; Vuorinen, Aleksi

    2016-01-01

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs.

  8. Probing neutron stars with gravitational waves

    CERN Document Server

    Owen, Benjamin J

    2009-01-01

    Within the next decade gravitational-wave (GW) observations by Advanced LIGO in the United States, Advanced Virgo and GEO HF in Europe, and possibly other ground-based instruments will provide unprecedented opportunities to look directly into the dense interiors of neutron stars which are opaque to all forms of electromagnetic (EM) radiation. The 10-10000 Hz frequency band available to these ground-based interferometers is inhabited by many neutron star mode frequencies, spin frequencies, and inverse dynamical timescales. GWs can provide information on bulk properties of neutron stars (masses, radii, locations...) as well as microphysics of their substance (crystalline structure, viscosity, composition...), some of which is difficult or impossible to obtain by EM observations alone. The former will tell us about the astrophysics of neutron stars, and the latter will illuminate fundamental issues in nuclear and particle physics and the physics of extremely condensed matter. Although GW searches can be done "bl...

  9. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  10. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  11. Transport coefficients in superfluid neutron stars

    CERN Document Server

    Tolos, Laura; Sarkar, Sreemoyee; Tarrus, Jaume

    2014-01-01

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  12. Mesoscopic pinning forces in neutron star crusts

    CERN Document Server

    Seveso, Stefano; Grill, Fabrizio; Haskell, Brynmor

    2014-01-01

    The crust of a neutron star is thought to be comprised of a lattice of nuclei immersed in a sea of free electrons and neutrons. As the neutrons are superfluid their angular momentum is carried by an array of quantized vortices. These vortices can pin to the nuclear lattice and prevent the neutron superfluid from spinning down, allowing it to store angular momentum which can then be released catastrophically, giving rise to a pulsar glitch. A crucial ingredient for this model is the maximum pinning force that the lattice can exert on the vortices, as this allows us to estimate the angular momentum that can be exchanged during a glitch. In this paper we perform, for the first time, a detailed and quantitative calculation of the pinning force \\emph{per unit length} acting on a vortex immersed in the crust and resulting from the mesoscopic vortex-lattice interaction. We consider realistic vortex tensions, allow for displacement of the nuclei and average over all possible orientation of the crystal with respect to...

  13. From nuclear structure to neutron stars

    CERN Document Server

    Gandolfi, Stefano

    2013-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. As a demonstration, we show that the agreement between theoretical calculations of the charge form factor of 12C and the experimental data is excellent. Applying similar methods to isospin-asymmetric systems allows one to describe neutrons confined in an external potential and homogeneous neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  14. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Joshua Faber; Phillippe Grandclément; Frederic Rasio

    2004-10-01

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.

  15. Cooling of Accretion-Heated Neutron Stars

    Indian Academy of Sciences (India)

    Rudy Wijnands; Nathalie Degenaar; Dany Page

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  16. Observational Constraints on Quark Matter in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.

  17. The thermonuclear-flash model for X-ray burst sources - A new tool for observing neutron stars

    Science.gov (United States)

    Joss, P. C.

    1979-01-01

    The helium-flash model for X-ray burst sources, in which matter is presumed to accrete onto the surface of a neutron star, is discussed. Attention is given to the accretion process, nuclear burning, X-ray emission, and the energy released by convection as well as by radiative diffusion near the surface. The rise times of observed bursts, their spectral evolution, and the properties of the spectrally soft X-ray transients are considered. Problems in interpreting the continuum spectra are discussed, along with problems in the detection and measurement of line features in the spectra. Also considered are the ratio of time-averaged persistent luminosity to time-averaged burst luminosity, peak burst luminosities, and the possibility of detecting binary membership for burst sources.

  18. Super-Massive Neutron Stars

    CERN Document Server

    Freire, Paulo C C

    2007-01-01

    We present here the results of Arecibo timing of PSR B1516+02B, a 7.95-ms pulsar in a binary system with a ~0.17 solar mass companion and an orbital period of 6.85 days located in the globular cluster M5. The eccentricity of the orbit (e = 0.14) has allowed a measurement of the rate of advance of periastron: (0.0136 +/- 0.0007) degrees per year. It is very likely that the periastron advance is due to the effects of general relativity; the total mass of the binary system is (2.14 +/-0.16) solar masses. The small measured mass function implies, in a statistical sense, that a very large fraction of this total mass is contained in the pulsar: (1.94+0.17 -0.19) solar masses (1-sigma); there is a 5% probability that the mass of this object is below 1.59 solar masses. With the possible exception of PSR J1748-2021B, this is the largest neutron star mass measured to date. When combined with similar measurements made previously for Terzan 5 I and J, we can exclude, in a statistical sense, the ``soft'' equations of stat...

  19. Millisecond phenomena in mass accreting neutron stars

    NARCIS (Netherlands)

    van der Klis, M.; Cohen, L.

    2007-01-01

    The past twelve years have seen the discovery, with NASA's Rossi X-ray Timing Explorer (RXTE), of several long-predicted phenomena associated with the accretion of matter onto a neutron star in a binary (double) star system. These phenomena are observed in the strong X-ray emission produced by these

  20. A Test of the Neutron Star Hypothesis for Fomalhaut b

    OpenAIRE

    Poppenhaeger, K.; Auchettl, K.; Wolk, S. J.

    2017-01-01

    Fomalhaut b is a directly imaged object in the debris disk of the star Fomalhaut. It has been hypothesized to be a planet, however there are issues with the observed colours of the object that do not fit planetary models. An alternative hypothesis is that the object is a neutron star in the near fore- or background of Fomalhaut's disk. We test if Fomalhaut b could be a neutron star using X-ray observations with Chandra's HRC-I instrument in the energy range of 0.08-10 keV. We do not detect X-...

  1. SUPER STRONG MAGNETIC FIELDS OF NEUTRON STARS IN BE X-RAY BINARIES ESTIMATED WITH NEW TORQUE AND MAGNETOSPHERE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chang-Sheng; Zhang, Shuang-Nan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Xiang-Dong, E-mail: zhangsn@ihep.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093 (China)

    2015-11-10

    We re-estimate the surface magnetic fields of neutron stars (NSs) in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. In particular, a new torque model is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead to divergent results for any fastness parameter. The inferred surface magnetic fields of these NSs for the two compressed magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed magnetosphere radius leads to unique solutions near spin equilibrium in all cases, unlike other models that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the infalling accretion plasma is considered. The estimated surface magnetic fields for NSs BeXBs in the Large Magellanic Cloud, the Small Magellanic Cloud and the Milk Way are between the quantum critical field and the maximum “virial” value by the spin equilibrium condition.

  2. Neutron stars in Horndeski gravity

    Science.gov (United States)

    Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele

    2016-06-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.

  3. Double Neutron Stars: Evidence For Two Different Neutron-Star Formation Mechanisms

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2007-01-01

    Six of the eight double neutron stars known in the Galactic disk have low orbital eccentricities (< 0.27) indicating that their second-born neutron stars received only very small velocity kicks at birth. This is similar to the case of the B-emission X-ray binaries, where a sizable fraction of the ne

  4. Axion star collisions with neutron stars and fast radio bursts

    Science.gov (United States)

    Raby, Stuart

    2016-11-01

    Axions may make a significant contribution to the dark matter of the Universe. It has been suggested that these dark matter axions may condense into localized clumps, called "axion stars." In this paper we argue that collisions of dilute axion stars with neutron stars, of the type known as "magnetars," may be the origin of most of the observed fast radio bursts. This idea is a variation of an idea originally proposed by Iwazaki. However, instead of the surface effect of Iwazaki, we propose a perhaps stronger volume effect caused by the induced time dependent electric dipole moment of neutrons.

  5. Axion star collisions with Neutron stars and Fast Radio Bursts

    CERN Document Server

    Raby, Stuart

    2016-01-01

    Axions may make a significant contribution to the dark matter of the universe. It has been suggested that these dark matter axions may condense into localized clumps, called "axion stars." In this paper we argue that collisions of dilute axion stars with neutron stars may be the origin of most of the observed fast radio bursts. This idea is a variation of an idea originally proposed by Iwazaki. However, instead of the surface effect of Iwazaki, we propose a perhaps stronger volume effect caused by the induced time dependent electric dipole moment of neutrons.

  6. On the PBF neutrino losses in superfluid cores of neutron stars

    CERN Document Server

    Leinson, Lev B

    2016-01-01

    Axial anomalous contributions into neutrino PBF losses due to triplet pairing of neutrons are still ignored in modeling the evolution of neutron stars. In this paper, the influence of the anomalous axial contributions onto the rate of neutron stars cooling is estimated.

  7. Improved Universality in the Neutron Star Three-Hair Relations

    CERN Document Server

    Majumder, Barun; Yunes, Nicolas

    2015-01-01

    No-hair like relations between the multipole moments of the exterior gravitational field of neutron stars have recently been found to be approximately independent of the star's internal structure. This approximate, equation-of-state universality arises after one adimensionalizes the multipole moments appropriately, which then begs the question of whether there are better ways to adimensionalize the moments to obtain stronger universality. We here investigate this question in detail by considering slowly-rotating neutron stars both in the non-relativistic limit and in full General Relativity. We find that there exist normalizations that lead to stronger equation-of-state universality in the relations among the moment of inertia and the quadrupole, octopole and hexadecapole moments of neutron stars. We determine the optimal normalization that minimizes the equation-of-state dependence in these relations. The results found here may have applications in the modeling of X-ray pulses and atomic line profiles from m...

  8. The outer crust of non-accreting cold neutron stars

    CERN Document Server

    Ruster, S B; Schaffner-Bielich, J; Ruster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jurgen

    2006-01-01

    The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.

  9. Limiting rotational period of neutron stars

    Science.gov (United States)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  10. Keplerian frequency of uniformly rotating neutron stars and quark stars

    CERN Document Server

    Haensel, P; Bejger, M; Lattimer, J M

    2009-01-01

    We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10km)^-3/2, where M is the (gravitational) mass of Keplerian configuration, R is the (circumferential) radius of the non-rotating configuration of the same gravitational mass, and C = 1.04 kHz. Numerical calculations are performed using precise 2-D codes based on the multi-domain spectral methods. We use a representative set of equations of state (EOSs) of neutron stars and quark stars. We show that the empirical formula for f_K(M) holds within a few percent for neutron stars with realistic EOSs, provided 0.5 M_sun < M < 0.9 M_max,stat, where M_max,stat is the maximum allowable mass of non-rotating neutron stars for an EOS, and C=C_NS=1.08 kHz. Similar precision is obtained for quark stars with 0.5 M_sun < M < 0.9 M_max,stat. For maximal crust masses...

  11. Structure and Cooling of Neutron and Hybrid Stars

    CERN Document Server

    Schramm, S; Negreiros, R; Schürhoff, T; Steinheimer, J

    2012-01-01

    The study of neutron stars is a topic of central interest in the investigation of the properties of strongly compressed hadronic matter. Whereas in heavy-ion collisions the fireball, created in the collision zone, contains very hot matter, with varying density depending on the beam energy, neutron stars largely sample the region of cold and dense matter with the exception of the very short time period of the existence of the proto-neutron star. Therefore, neutron star physics, in addition to its general importance in astrophysics, is a crucial complement to heavy-ion physics in the study of strongly interacting matter. In the following, model approaches will be introduced to calculate properties of neutron stars that incorporate baryons and quarks. These approaches are also able to describe the state of matter over a wide range of temperatures and densities, which is essential if one wants to connect and correlate star observables and results from heavy-ion collisions. The effect of exotic particles and quark...

  12. The maximum mass and radius of neutron stars and the nuclear symmetry energy

    CERN Document Server

    Gandolfi, S; Reddy, Sanjay

    2011-01-01

    We calculate the equation of state of neutron matter with realistic two- and three-nucleon interactions using Quantum Monte Carlo techniques, and demonstrate that the short-range three-neutron interaction determines the correlation between neutron matter energy at nuclear saturation density and the higher densities relevant to neutron stars. Our model for the nuclear interactions makes an experimentally testable prediction for the correlation between the neutron matter energy (which in turn is related to the symmetry energy) and its density dependence. This correlation is solely determined by the strength of the short-range 3 neutron force. The same force also provides a stringent constraint on the maximum mass and radius of neutron stars. An experimental measurement of the symmetry energy with an accuracy of $\\lsim 1$ MeV will enable model predictions for neutron star structure that can be tested with current and anticipated constraints on the masses and radii of neutron stars from x-ray observations.

  13. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually `merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  14. Equations of state in the Hartle-Thorne model of neutron stars selecting acceptable variants of the resonant switch model of twin HF QPOs in the atoll source 4U 1636-53

    CERN Document Server

    Stuchlik, Zdenek; Kotrlova, Andrea; Torok, Gabriel; Goluchova, Katerina

    2015-01-01

    The Resonant Switch (RS) model of twin high-frequency quasi-periodic oscillations (HF QPOs) observed in neutron star binary systems, based on switch of the twin oscillations at a resonant point, has been applied to the atoll source 4U 1636-53 under assumption that the neutron star exterior can be approximated by the Kerr geometry. Strong restrictions of the neutron star parameters M (mass) and a (spin) arise due to fitting the frequency pairs admitted by the RS model to the observed data in the regions related to the resonant points. The most precise variants of the RS model are those combining the relativistic precession frequency relations with their modifications. Here, the neutron star mass and spin estimates given by the RS model are confronted with a variety of equations of state (EoS) governing structure of neutron stars in the framework of the Hartle-Thorne theory of rotating neutron stars applied for the observationally given rotation frequency f_rot~580 Hz (or alternatively f_rot~290 Hz) of the neut...

  15. Pycnonuclear burning and accreting neutron stars

    CERN Document Server

    Yakovlev, D G

    2002-01-01

    We outline the phenomenon of deep crustal heating in transiently accreting neutron stars. It is produced by nuclear transformations (mostly, by pycnonuclear reactions) in accreted matter while this matter sinks to densities rho > 10^{10} g/cc under the weight of freshly accreted material. We consider then thermal states of transiently accreting neutron stars (with mean mass accretion rates \\dot{M}=(10^{-14}-10^{-9}) M_\\odot/yr) determined by deep crustal heating. In a simplified fashion we study how the thermal flux emergent from such stars depends on the properties of superdense matter in stellar interiors. We analyze the most important regulators of the thermal flux: strong superfluidity in the cores of low-mass stars and fast neutrino emission (in nucleon, pion-condensed, kaon-condensed, or quark phases of dense matter) in the cores of high-mass stars. We compare the results with observations of soft X-ray transients in quiescent states.

  16. Thermal emission from low-field neutron stars

    CERN Document Server

    Gänsicke, B T; Romani, R W

    2002-01-01

    We present a new grid of LTE model atmospheres for weakly magnetic (B<=10e10G) neutron stars, using opacity and equation of state data from the OPAL project and employing a fully frequency and angle dependent radiation transfer. We discuss the differences to earlier models, including a comparison with a detailed NLTE calculation. As a first application of the new synthetic spectra, we re-analyze the available ROSAT PSPC data of the isolated neutron star candidate RXJ1856.5-3754. Our iron and solar abundance model spectra provide satisfactory fits to the X-ray spectrum and are consistent with the distance of RXJ1856.5-3754 recently measured by the Hubble Space Telescope, although pulse fractions as small as those observed are difficult to obtain for canonical neutron star radii.

  17. Formation scenarios and mass-radius relation for neutron stars

    CERN Document Server

    Zdunik, J L

    2011-01-01

    Neutron star crust, formed via accretion of matter from a companion in a low-mass X-ray binary (LMXB), has an equation of state (EOS) stiffer than that of catalyzed matter. At a given neutron star mass, M, the radius of a star with an accreted crust is therefore larger, by DR(M), than for usually considered star built of catalyzed matter. Using a compressible liquid drop model of nuclei, we calculate, within the one-component plasma approximation, the EOSs corresponding to different nuclear compositions of ashes of X-ray bursts in LMXB. These EOSs are then applied for studying the effect of different formation scenarios on the neutron-star mass-radius relation. Assuming the SLy EOS for neutron star's liquid core, derived by Douchin & Haensel (2001), we find that at M=1.4 M_sun the star with accreted crust has a radius more than 100 m larger that for the crust of catalyzed matter. Using smallness of the crust mass compared to M, we derive a formula that relates DR(M) to the difference in the crust EOS. Thi...

  18. Mass ejection in neutron star mergers

    Science.gov (United States)

    Rosswog, S.; Liebendörfer, M.; Thielemann, F.-K.; Davies, M. B.; Benz, W.; Piran, T.

    1999-01-01

    We present the results of 3D Newtonian SPH simulations of the merger of a neutron star binary. The microscopic properties of matter are described by the physical equation of state of Lattimer and Swesty (LS-EOS). To check the model dependence of the results we vary the resolution ( ~ 21000 and ~ 50000 particles), the equation of state (stiff and soft polytropes), the artificial viscosity scheme, the stellar masses, we include neutrinos (free-streaming limit), switch off the gravitational backreaction force, and vary the initial stellar spins. In addition we test the influence of the initial configuration, i.e. spherical stars versus corotating equilibrium configurations. The final matter distribution consists of a rapidly spinning central object with 2.5 to 3.1 Msun of baryonic mass that probably collapses to a black hole, a thick disk of 0.1 to 0.3 Msun and an extended low density region. In the case of corotation this low density material forms spiral arms that expand explosively due to an increase of the adiabatic exponent and the release of nuclear binding energy in the case of the LS-EOS, but remain narrow and well defined for the stiff polytropic equation of state. The main and new result is that for the realistic LS-EOS, depending on the initial spin, between 4*10(-3) and 4*10(-2) Msun of material become unbound. If, as suggested, large parts of this matter consist of r-process nuclei, neutron star mergers could account for the whole observed r-process material in the Galaxy.

  19. Genetic selection of neutron star structure matching the X-ray observations

    CERN Document Server

    Stuchlik, Zdenek; Torok, Gabriel; Urbanec, Martin; Bakala, Pavel

    2008-01-01

    Assuming a resonant origin of the quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilo-Hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. In several specific models, the two modes are related to physically plausible combinations of Keplerian, vertical and radial frequencies of geodesic orbital motion. We investigate this concept for a specific neutron star source, a fixed pair of modes and various neutron star equations of state. Each neutron star model is characterized by the equation of state (EOS), rotation frequency ($\\Omega$) and central energy density ($\\rho_\\mathrm c$). These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. When the parameters of n...

  20. Deconfinement phase transition in neutron star matter

    Institute of Scientific and Technical Information of China (English)

    LI Ang; PENG Guang-Xiong; Lombardo U

    2009-01-01

    The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.

  1. Magnetic Interactions in Coalescing Neutron Star Binaries

    CERN Document Server

    Piro, Anthony L

    2012-01-01

    It is expected on both evolutionary and empirical grounds that many merging neutron star (NS) binaries are composed of a highly magnetized NS in orbit with a relatively low magnetic field NS. I study the magnetic interactions of these binaries using the framework of a unipolar inductor model. The e.m.f. generated across the non-magnetic NS as it moves through the magnetosphere sets up a circuit connecting the two stars. The exact features of this circuit depend on the uncertain resistance in the space between the stars R_space. Nevertheless, I show that there are interesting observational and/or dynamical effects irrespective of its exact value. When R_space is large, electric dissipation as great as ~10^{46} erg/s (for magnetar-strength fields) occurs in the magnetosphere, which would exhibit itself as a hard X-ray precursor in the seconds leading up to merger. With less certainty, there may also be an associated radio transient, but this would be observed well past merger (~hrs) because of interstellar disp...

  2. From neutron stars to quark stars in mimetic gravity

    CERN Document Server

    Astashenok, A V

    2015-01-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with Lagrange multiplier constraint are presented. We discuss the effect of mimetic scalar aiming to describe dark matter on mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of mimetic scalar in the center of star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. {Such ambiguity allows to explain some observational facts better than in standard General Relativity}. The case of two mimetic potentials namely $V(\\phi)\\sim A\\phi^{-2}$ and $V(\\phi)\\sim Ae^{B\\phi^{2}}$ is considered in detail. The relative deviation of maximal moment of inertia is approximately twice larger than the relative deviation of maximal stellar mass. We also briefly discuss the mimetic $f(R)$ gravity. In the case of $f(R)=R+aR^2$ mimetic gravity it is expected that increase of maximal mass and maximal moment of iner...

  3. Exploring fundamental physics with neutron stars

    CERN Document Server

    Pizzochero, Pierre M

    2016-01-01

    In this lecture, we give a first introduction to neutron stars, based on fundamental physical principles. After outlining their outstanding macroscopic properties, as obtained from observations, we infer the extreme conditions of matter in their interiors. We then describe two crucial physical phenomena which characterize compact stars, namely the gravitational stability of strongly degenerate matter and the neutronization of nuclear matter with increasing density, and explain how the formation and properties of neutron stars are a direct consequence of the extreme compression of matter under strong gravity. Finally, we describe how multi-wavelength observations of different external macroscopic features (e.g. maximum mass, surface temperature, pulsar glitches) can give invaluable information about the exotic internal microscopic scenario: super-dense, isospin-asymmetric, superfluid, bulk hadronic matter (probably deconfined in the most central regions) which can be found nowhere else in the Universe. Indeed,...

  4. The Neutron Star Interior Composition Explorer (NICER)

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  5. Neutron Stars in Supernovae and Their Remnants

    CERN Document Server

    Chevalier, Roger A

    2010-01-01

    The magnetic fields of neutron stars have a large range (~3e10 - 1e15 G). There may be a tendency for more highly magnetized neutron stars to come from more massive stellar progenitors, but other factors must also play a role. When combined with the likely initial periods of neutron stars, the magnetic fields imply a spindown power that covers a large range and is typically dominated by other power sources in supernovae. Distinctive features of power input from pulsar spindown are the time dependence of power and the creation of a low density bubble in the interior of the supernova; line profiles in the late phases are not centrally peaked after significant pulsar rotational energy has been deposited. Clear evidence for pulsar power in objects <300 years old is lacking, which can be attributed to large typical pulsar rotation periods at birth.

  6. Towards a metallurgy of neutron star crusts

    CERN Document Server

    Kobyakov, D

    2013-01-01

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic (bcc) lattice of nuclei immersed in an essentially uniform electron gas. We show that at densities above that for neutron drip ($\\sim4\\times10^11$) g cm$^{-3}$ or roughly one thousandth of nuclear matter density, the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO$_3$. As a consequence, properties of matter in the inner crust are expected to be much richer than previously appreciated and we mention consequences for observable neutron star properties.

  7. Towards a metallurgy of neutron star crusts.

    Science.gov (United States)

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties.

  8. Neutron Star Dense Matter Equation of State Constraints with NICER

    Science.gov (United States)

    Bogdanov, Slavko; Arzoumanian, Zaven; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Morsink, Sharon; Ozel, Feryal; Psaltis, Dimitrios; Ray, Paul S.; Riley, Tom; Strohmayer, Tod E.; Watts, Anna; Wolff, Michael Thomas; Gendreau, Keith

    2017-08-01

    One of the principal goals of the Neutron Star Interior Composition Explorer (NICER) is to place constraints on the dense matter equation of state through sensitive X-ray observations of neutron stars. The NICER mission will focus on measuring the masses and radii of several relatively bright, thermally-emitting, rotation-powered millisecond pulsars, by fitting models that incorporate all relevant relativistic effects and atmospheric radiation transfer processes to their periodic soft X-ray modulations. Here, we provide an overview of the targets NICER will observe and tthe technique and models that have been developed by the NICER team to estimate the masses and radii of these pulsars.

  9. Quark matter and the astrophysics of neutron stars

    OpenAIRE

    Prakash, M.

    2007-01-01

    Some of the means through which the possible presence of nearly deconfined quarks in neutron stars can be detected by astrophysical observations of neutron stars from their birth to old age are highlighted.

  10. A propelling neutron star in the enigmatic Be-star γ Cassiopeia

    Science.gov (United States)

    Postnov, K.; Oskinova, L.; Torrejón, J. M.

    2017-02-01

    γ Cassiopeia (γ Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M ˜ 1 M⊙) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of γ Cas is a fast spinning neutron star, the key observational signatures of γ Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from γ Cas. We suggest that γ Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of γ Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from γ Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries.

  11. Magnetic and spin evolution of neutron stars in close binaries

    CERN Document Server

    Urpin, V; Konenkov, D Y

    1998-01-01

    The evolution of neutron stars in close binary systems with a low-mass companion is considered assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario of the evolution in a close binary system in accordance with which the neutron star passes throughout four evolutionary phases ("isolated pulsar" -- "propeller" -- accretion from the wind of a companion -- accretion due to Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties both of the neutron star and low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period being processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as $10^{10}$ yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The considered model can well account for the origin of millisecond pulsars.

  12. Measuring neutron-star ellipticity with measurements of the stochastic gravitational-wave background

    Science.gov (United States)

    Talukder, Dipongkar; Thrane, Eric; Bose, Sukanta; Regimbau, Tania

    2014-06-01

    Galactic neutron stars are a promising source of gravitational waves in the analysis band of detectors such as Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo. Previous searches for gravitational waves from neutron stars have focused on the detection of individual neutron stars, which are either nearby or highly nonspherical. Here, we consider the stochastic gravitational-wave signal arising from the ensemble of Galactic neutron stars. Using a population synthesis model, we estimate the single-sigma sensitivity of current and planned gravitational-wave observatories to average neutron star ellipticity ɛ as a function of the number of in-band Galactic neutron stars Ntot. For the plausible case of Ntot≈53000, and assuming one year of observation time with colocated initial LIGO detectors, we find it to be σɛ=2.1×10-7, which is comparable to current bounds on some nearby neutron stars. (The current best 95% upper limits are ɛ ≲7×10-8.) It is unclear if Advanced LIGO can significantly improve on this sensitivity using spatially separated detectors. For the proposed Einstein Telescope, we estimate that σɛ=5.6×10-10. Finally, we show that stochastic measurements can be combined with measurements of individual neutron stars in order to estimate the number of in-band Galactic neutron stars. In this way, measurements of stochastic gravitational waves provide a complementary tool for studying Galactic neutron stars.

  13. Symmetry energy effects on properties of neutron star crusts around the neutron drip density

    CERN Document Server

    Bao, S S; Zhang, Z W; Shen, H

    2014-01-01

    We study the effects of the symmetry energy on the neutron drip density and properties of nuclei in neutron star crusts. The nonuniform matter around the neutron drip point is calculated using the Thomas--Fermi approximation with the relativistic mean-field model. The neutron drip density and the composition of the crust are found to be correlated with the symmetry energy and its slope. We compare the self-consistent Thomas--Fermi approximation with other treatments of surface and Coulomb energies, and find that these finite-size effects play an essential role in determining the equilibrium state at low density.

  14. The Magneto Hydro Dynamical Model of KHz Quasi Periodic Oscillations in Neutron Star Low Mass X-ray Binaries (II)

    CERN Document Server

    Shi, Chang-Sheng; Li, Xiang-Dong

    2014-01-01

    We study the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries (LMXBs) with a new magnetohydrodynamics (MHD) model, in which the compressed magnetosphere is considered. The previous MHD model (Shi \\& Li 2009) is re-examined and the relation between the frequencies of the kHz QPOs and the accretion rate in LMXBs is obtained. Our result agrees with the observations of six sources (4U 0614+09, 4U 1636--53, 4U 1608--52, 4U 1915--15, 4U 1728--34, XTE 1807--294) with measured spins. In this model the kHz QPOs originate from the MHD waves in the compressed magnetosphere. The single kHz QPOs and twin kHz QPOs are produced in two different parts of the accretion disk and the boundary is close to the corotation radius. The lower QPO frequency in a frequency-accretion rate diagram is cut off at low accretion rate and the twin kHz QPOs encounter a top ceiling at high accretion rate due to the restriction of innermost stable circular orbit.

  15. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    Science.gov (United States)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  16. Are strange stars distinguishable from neutron stars by their cooling behaviour?

    OpenAIRE

    Schaab, Ch.; Hermann, B.; Weber, F.; Weigel, M. K.

    1997-01-01

    The general statement that strange stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. If so, strange stars would be slowly cooling and their surface temperatures would be more or less indistinguishable from those of slowly cooling neutron stars. The case of enhanced cooling is reinvestigated as well. It is found that strange stars cool significantly more ...

  17. Rotation at 1122 Hz and the neutron star structure

    CERN Document Server

    Bejger, M; Zdunik, J L

    2006-01-01

    Recent observations of XTE J1739-285 suggest that it contains a neutron star rotating at 1122 Hz. Such rotation imposes bounds on the structure of neutron star in XTE J1739-285. These bounds may be used to constrain poorly known equation of state of dense matter. One-parameter families of stationary configurations rotating rigidly at 1122 Hz are constructed, using a precise 2-D code solving Einstein equations. Hydrostatic equilibrium solutions are tested for stability with respect to axi-symmetric perturbations. A set of ten diverse EOSs of neutron stars is considered. Hypothetical strange stars are also studied. For each EOS, the family of possible neutron star models is limited by the mass shedding limit, corresponding to maximum allowed equatorial radius, R_max, and by the instability with respect to the axi-symmetric perturbations, reached at the minimum allowed equatorial radius, R_min. We get R_min \\simeq 10-13km, and R_max \\simeq 16-18km, with allowed mass 1.4-2.3 M_\\odot. Allowed stars with hyperonic ...

  18. Dense hadronic matter in neutron stars

    CERN Document Server

    Pagliara, Giuseppe; Lavagno, Andrea; Pigato, Daniele

    2014-01-01

    The existence of stars with masses up to $2 M_{\\odot}$ and the hints of the existence of stars with radii smaller than $\\sim 11$ km seem to require, at the same time, a stiff and a soft hadronic equation of state at large densities. We argue that these two apparently contradicting constraints are actually an indication of the existence of two families of compact stars: hadronic stars which could be very compact and quark stars which could be very massive. In this respect, a crucial role is played, in the hadronic equation of state, by the delta isobars whose early appearance shifts to large densities the formation of hyperons. We also discuss how recent experimental information on the symmetry energy of nuclear matter at saturation indicate, indirectly, an early appearance of delta isobars in neutron star matter.

  19. Approximate Universal Relations for Neutron Stars and Quark Stars

    CERN Document Server

    Yagi, Kent

    2016-01-01

    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia ($I$), its tidal Love number (Love) and its quadrupole moment ($Q$), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astroph...

  20. Constraining neutron star matter with Quantum Chromodynamics

    CERN Document Server

    Kurkela, Aleksi; Schaffner-Bielich, Jurgen; Vuorinen, Aleksi

    2014-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount --- or even presence --- of quark matter inside the stars.

  1. Constraining neutron star matter with quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, Aleksi [Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Fraga, Eduardo S.; Schaffner-Bielich, Jürgen [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2014-07-10

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  2. Constraining Neutron Star Matter with Quantum Chromodynamics

    Science.gov (United States)

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  3. Role of magnetic interactions in neutron stars

    CERN Document Server

    Adhya, Souvik Priyam

    2016-01-01

    In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  4. JD3 - Neutron Stars: Timing in Extreme Environments

    NARCIS (Netherlands)

    Belloni, Tomaso M.; Méndez, Mariano; Zhang, Chengmin

    2009-01-01

    The space-time around Neutron Stars is indeed an extreme environment. Whether they are in accreting binary systems, isolated or in non-accreting binaries (perhaps with another Neutron Star), Neutron Stars provide a window onto physical processes not accessible by other means. In particular, the stud

  5. JD3 - Neutron Stars: Timing in Extreme Environments

    NARCIS (Netherlands)

    Belloni, Tomaso M.; Méndez, Mariano; Zhang, Chengmin

    2010-01-01

    The space-time around Neutron Stars is indeed an extreme environment. Whether they are in accreting binary systems, isolated or in non-accreting binaries (perhaps with another Neutron Star), Neutron Stars provide a window onto physical processes not accessible by other means. In particular, the stud

  6. Spectra of the spreading layers on the neutron star surface and constraints on the neutron star equation of state

    CERN Document Server

    Suleimanov, V; Suleimanov, Valery; Poutanen, Juri

    2006-01-01

    Spectra of the spreading layers on the neutron star surface are calculated on the basis of the Inogamov-Sunyaev model taking into account general relativity correction to the surface gravity and considering various chemical composition of the accreting matter. Local (at a given latitude) spectra are similar to the X-ray burst spectra and are described by a diluted black body. Total spreading layer spectra are integrated accounting for the light bending, gravitational redshift, and the relativistic Doppler effect and aberration. They depend slightly on the inclination angle of the neutron star and on the luminosity. These spectra also can be fitted by a diluted black body with the color temperature depending mainly on a neutron star compactness. Constraints on the neutron star compactness were obtained by comparing the theoretical spreading layer spectra with the observed boundary layer spectrum described by a black body of color temperature 2.4 +- 0.1 keV. We obtain the neutron star radius R=15+-1.5 km (for a...

  7. Black Hole - Neutron Star Binary Simulations at Georgia Tech

    Science.gov (United States)

    Haas, Roland

    2009-05-01

    Mixed compact object binaries consisting of a black hole and a neutron star are expected to be not only one of the primary sources of gravitational radiation to be observed by interferometric detectors but also the central engine of short gamma-ray bursts. We report on the status of our effort at Georgia Tech to model these mixed binary systems using the moving puncture method. The results are obtained with an enhanced version our vacuum MayaKranc code coupled to the hydrodynamics Whisky code. We present preliminary results of gravitational waveforms and the disruption of the neutron star for simple polytropic equations of state.

  8. Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A

    Directory of Open Access Journals (Sweden)

    Lev B. Leinson

    2015-02-01

    Full Text Available In a simple model it is demonstrated that the neutron star surface temperature evolution is sensitive to the phase state of the triplet superfluid condensate. A multicomponent triplet pairing of superfluid neutrons in the core of a neutron star with participation of several magnetic quantum numbers leads to neutrino energy losses exceeding the losses from the unicomponent pairing. A phase transition of the neutron condensate into the multicomponent state triggers more rapid cooling of superfluid core in neutron stars. This makes it possible to simulate an anomalously rapid cooling of neutron stars within the minimal cooling paradigm without employing any exotic scenarios suggested earlier for rapid cooling of isolated neutron star in Cassiopeia A.

  9. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    Science.gov (United States)

    Ho, Wynn C G; Heinke, Craig O

    2009-11-05

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.

  10. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  11. Testing the relativistic precession model using low frequency and kHz quasi-periodic oscillations in neutron star low mass X-ray binaries with known spin

    CERN Document Server

    van Doesburgh, Marieke

    2016-01-01

    We analyze all available RXTE data on a sample of 13 low mass X-ray binaries with known neutron star spin that are not persistent pulsars. We carefully measure the correlations between the centroid frequencies of the quasi-periodic oscillations (QPOs). We compare these correlations to the prediction of the relativistic precession model (RPM) that, due to frame dragging, a QPO will occur at the Lense-Thirring precession frequency $\

  12. Collective Modes in the Superfluid Inner Crust of Neutron Stars

    CERN Document Server

    Urban, Michael

    2015-01-01

    The neutron-star inner crust is assumed to be superfluid at relevant temperatures. The contribution of neutron quasiparticles to thermodynamic and transport properties of the crust is therefore strongly suppressed by the pairing gap. Nevertheless, the neutron gas still has low-energy excitations, namely long-wavelength collective modes. We summarize different approaches to describe the collective modes in the crystalline phases of the inner crust and present an improved model for the description of the collective modes in the pasta phases within superfluid hydrodynamics.

  13. Dynamics of dissipative multifluid neutron star cores

    NARCIS (Netherlands)

    Haskell, B.; Andersson, N.; Comer, G.L.

    2012-01-01

    We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids." The problem is of direct astrophysical interest as the

  14. Neutron stars and their magnetic fields

    CERN Document Server

    Reisenegger, Andreas

    2008-01-01

    Neutron stars have the strongest magnetic fields known anywhere in the Universe. In this review, I intend to give a pedagogical discussion of some of the related physics. Neutron stars exist because of Pauli's exclusion principle, in two senses: 1) It makes it difficult to squeeze particles too close together, in this way allowing a mechanical equilibrium state in the presence of extremely strong gravity. 2) The occupation of low-energy proton and electron states makes it impossible for low-energy neutrons to beta decay. A corollary of the second statement is that charged particles are necessarily present inside a neutron star, allowing currents to flow. Since these particles are degenerate, they collide very little, and therefore make it possible for the star to support strong, organized magnetic fields over long times. These show themselves in pulsars and are the most likely energy source for the high X-ray and gamma-ray luminosity ``magnetars''. I briefly discuss the possible origin of this field and some ...

  15. ULXs: Neutron Stars vs Black Holes

    CERN Document Server

    King, Andrew

    2016-01-01

    We consider ultraluminous X-ray sources (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently-discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker ($\\simeq 10^{11}{\\rm G}$) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have {\\it higher} apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely propo...

  16. ON THE MASSES OF NEUTRON-STARS

    NARCIS (Netherlands)

    VANKERKWIJK, MH; VANPARADIJS, J; ZUIDERWIJK, EJ

    1995-01-01

    We analyze the currently available observations of X-ray binaries in a consistent way, to re-determine the masses of the neutron stars in these systems. In particular, our attention is focussed on a realistic and consistent assessment of observational uncertainties and sources of systematic error. C

  17. Buoyancy and g-modes in young superfluid neutron stars

    CERN Document Server

    Passamonti, A; Ho, W C G

    2015-01-01

    We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support fo...

  18. Spin paramagnetic deformation of a neutron star

    Science.gov (United States)

    Suvorov, A. G.; Mastrano, A.; Melatos, A.

    2016-02-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schrödinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect - spin paramagnetism - is most significant in a magnetar, where one typically has μ _B|B|≳ k_B T_e, where μB is the Bohr magneton, B is the magnetic field, and Te is the electron temperature. The spin paramagnetic deformation of a non-barotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ˜10 times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result implies that existing classical predictions underestimate the maximum strength of the gravitational wave signal from rapidly spinning magnetars at birth. Turning the argument around, future gravitational-wave upper limits of increasing sensitivity will place ever-stricter constraints on the physics of Pauli blocking and magnetic domain formation under magnetar conditions.

  19. Spin paramagnetic deformation of a neutron star

    CERN Document Server

    Suvorov, A G; Melatos, A

    2015-01-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schr\\"{o}dinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect --- spin paramagnetism --- is most significant in a magnetar, where one typically has $\\mu_{B}|\\boldsymbol{B}|\\gtrsim k_B T_e$, where $\\mu_{B}$ is the Bohr magneton, $\\boldsymbol{B}$ is the magnetic field, and $T_e$ is the electron temperature. The spin paramagnetic deformation of a nonbarotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ${{\\sim 10}}$ times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result impli...

  20. Can dark matter explain the braking index of neutron stars?

    DEFF Research Database (Denmark)

    Kouvaris, C.; Perez-Garcia, M. A.

    2014-01-01

    We explore a new mechanism of slowing down the rotation of neutron stars via accretion of millicharged dark matter. We find that this mechanism yields pulsar braking indices that can be substantially smaller than the standard n similar to 3 of the magnetic dipole radiation model for millicharged...... dark matter particles that are not excluded by existing experimental constraints thus accommodating existing observations....

  1. Extreme neutron stars from Extended Theories of Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  2. Rotating neutron stars with exotic cores: masses, radii, stability

    CERN Document Server

    Haensel, P; Fortin, M; Zdunik, J L

    2016-01-01

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency is 716 Hz and the maximum measured mass is $2\\;{\\rm M}_\\odot$. Present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a fi...

  3. Differences in the Cooling Behavior of Strange Quark Matter Stars and Neutron Stars

    OpenAIRE

    Schaab, Christoph; Hermann, Bernd; Weber, Fridolin; Weigel, Manfred K.

    1997-01-01

    The general statement that hypothetical strange (quark matter) stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. In this case, strange stars are slowly cooling, and their surface temperatures are more or less indistinguishable from those of slowly cooling neutron stars. Furthermore the case of enhanced cooling is reinvestigated. It shows that strange sta...

  4. Observations and modeling of the companions of short period binary millisecond pulsars: evidence for high-mass neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Joshua; Halpern, Jules [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States)

    2014-10-01

    We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the eclipsing light curve (ELC) model of Orosz and Hauschildt to measure the unknown system parameters. For PSR J1810+1744, we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be M {sub NS} > 1.75 M {sub ☉} at the 3σ level. We also find a discrepancy between the model temperature and the measured colors of this object, which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2215+5135 contains a relatively high mass companion (M {sub c} > 0.1 M {sub ☉}), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245–2452, the pulsar may transition between accretion- and rotation-powered modes.

  5. Colliding Neutron Stars as the Source of Heavy Elements

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  6. Non-identical neutron star twins

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discuss how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.

  7. A test of the neutron star hypothesis for Fomalhaut b

    Science.gov (United States)

    Poppenhaeger, K.; Auchettl, K.; Wolk, S. J.

    2017-07-01

    Fomalhaut b is a directly imaged object in the debris disc of the star Fomalhaut. It has been hypothesized to be a planet; however, there are issues with the observed colours of the object that do not fit planetary models. An alternative hypothesis is that the object is a neutron star in the near fore- or background of Fomalhaut's disc. We test if Fomalhaut b could be a neutron star using X-ray observations with Chandra's HRC-I instrument in the energy range of 0.08-10 keV. We do not detect X-ray emission from either Fomalhaut b or the star Fomalhaut itself. Our non-detection corresponds to an upper limit on the X-ray flux of Fomalhaut b of FX X-ray upper limit of LX X-ray non-detection constrains the parameter space for a possible neutron star significantly, implying surface temperatures lower than 91 000 K and distances closer than 13.3 pc to the Solar system. In addition, we find that reflected starlight from the central star fits the available optical detections of Fomalhaut b; a smaller planet with a large ring system might explain such a scenario.

  8. Neutron Star Mass-Radius Constraints using Evolutionary Optimization

    CERN Document Server

    Stevens, A L; Leahy, D A; Morsink, S M

    2016-01-01

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modelling pulse profiles of thermonuclear X-ray burst oscillations from hotspots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT, NICER, or LOFT. In this paper we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fitting masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles were fitted with the Ferret Genetic Algorithm to analyze both statistical and systematic uncertainty, and to explore how the goodness-of-fit depends on the input parameters. The best-determined parameter is...

  9. Superfluid Neutrons in the Core of the Neutron Star in Cassiopeia A

    CERN Document Server

    Page, Dany; Lattimer, James M; Steiner, Andrew W

    2011-01-01

    The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental properties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron star's cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.

  10. Free fall onto magnetized neutron stars

    Science.gov (United States)

    Salpeter, E. E.

    Some compact X-ray sources show evidence of cyclotron line radiation from excited electron Landau orbits, powered by hydrogen and helium falling onto a neutron star atmosphere along the magnetic field. The slowing of the incident matter is discussed, including the spread in energy loss due to Coulomb scattering and direct nuclear reactions for disintegrating the α particles. The α disintegrations, followed by neutron capture, lead to nuclear γ rays; the γ-ray intensity is (indirectly) coupled to the Coulomb energy loss and the cyclotron line emission.

  11. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    CERN Document Server

    Horowitz, C J; Berry, D K

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with $Z=8$ or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ factor for fusion reactions of neutron rich nuclei including $^{24}$O + $^{24}$O and $^{28}$Ne + $^{28}$Ne. We use a simple barrier penetration model. The $S$ factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in $S$ should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase sep...

  12. Constraining properties of rapidly rotating neutron stars using data from heavy-ion collisions

    CERN Document Server

    Krastev, Plamen G; Worley, Aaron

    2007-01-01

    Aims.- Properties, structure, and thermal evolution of neutron stars are determined by the equation of state of stellar matter. Recent data on isospin-diffusion in heavy-ion collisions at intermediate energies and the size of neutron skin in $^{208}Pb$ have constrained considerably the density dependence of the nuclear symmetry energy and, in turn, the equation of state of neutron-rich nucleonic matter. These constraints could provide useful information about the global properties of rapidly rotating neutron stars. Methods.- Models of rapidly rotating neutron stars are constructed applying several nucleonic equations of state. Particular emphasis is placed on configurations rotating rigidly at 716 and 1122Hz. The range of allowed hydrostatic equilibrium solutions is determined and tested for stability. The effect of rotation on the internal composition and thermal properties of neutron stars is also examined. Results.- At a given rotational frequency, each equation of state yields a range of possible neutron ...

  13. On the effect of pion condensates on the spectrum of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kolevatov, S. S.; Andrianov, A. A. [V. A. Fock Department of Theoretical Physics, Saint-Petersburg State University, 198504 St. Petersburg (Russian Federation); Espriu, D. [Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-22

    There is no precise theory describing the structure of neutron stars. However, inside such objects the baryon density is very high and a pion condensation may occur. These condensates, if they exist, might give a significant effect on a spectrum of neutron stars. We investigate this influence with a help of simplified model to give qualitative picture of the effect.

  14. Optical excess of dim isolated neutron stars

    Science.gov (United States)

    Ertan, Ü.; ćalışkan, Ş.; Alpar, M. A.

    2017-09-01

    The optical excess in the spectra of dim isolated neutron stars (XDINs) is a significant fraction of their rotational energy loss rate. This is strikingly different from the situation in isolated radio pulsars. We investigate this problem in the framework of the fallback disc model. The optical spectra can be powered by magnetic stresses on the innermost disc matter, as the energy dissipated is emitted as blackbody radiation mainly from the inner rim of the disc. In the fallback disc model, XDINs are the sources evolving in the propeller phase with similar torque mechanisms. In this model, the ratio of the total magnetic work that heats up the inner disc matter is expected to be similar for different XDINs. Optical luminosities that are calculated consistently with the optical spectra and the theoretical constraints on the inner disc radii give very similar ratios of the optical luminosity to the rotational energy loss rate for all these sources. These ratios indicate that a significant fraction of the magnetic torque heats up the disc matter while the remaining fraction expels disc matter from the system. For XDINs, the contribution of heating by X-ray irradiation to the optical luminosity is negligible in comparison with the magnetic heating. The correlation we expect between the optical luminosities and the rotational energy loss rates of XDINs can be a property of the systems with low X-ray luminosities, in particular those in the propeller phase.

  15. Measuring surface temperature of isolated neutron stars and related problems

    Science.gov (United States)

    Teter, Marcus Alton

    New and exciting results for measuring neutron star surface temperatures began with the successful launch of the Chandra X-ray observatory. Among these results are new detections of neutron star surface temperatures which have made it possible to seriously test neutron star thermal evolution theories. The important new temperature determination of the Vela pulsar (Pavlov, et al., 2001a) requires a non-standard cooling scenario to explain it. Apart from this result, we have measured PSR B1055-52's surface temperature in this thesis, determining that it can be explained by standard cooling with heating. Our spectral fit of the combined data from ROSAT and Chandra have shown that a three component model, two thermal blackbodies and an non-thermal power-law, is required to explain the data. Furthermore, our phase resolved spectroscopy has begun to shed light on the geometry of the hot spot on PSR B1055-52's surface as well as the structure of the magnetospheric radiation. Also, there is strong evidence for a thermal distribution over its surface. Most importantly, the fact that PSR B1055-52 does not have a hydrogen atmosphere has been firmly established. To reconcile these two key observations, on the Vela pulsar and PSR B1055-52, we tested neutron star cooling with neutrino processes including the Cooper pair neutrino emission process. Overall, it has been found that a phase change associated with pions being present in the cores of more massive neutron stars explains all current of the data. A transition from neutron matter to pion condensates in the central stellar core explains the difference between standard and non-standard cooling scenarios, because the superfluid suppression of pion cooling will reduce the emissivity of the pion direct URCA process substantially. A neutron star with a mass of [Special characters omitted.] with a medium stiffness equation of state and a T72 type neutron superfluid models the standard cooling case well. A neutron star of [Special

  16. Inertial modes of non-stratified superfluid neutron stars

    CERN Document Server

    Prix, R; Andersson, N

    2004-01-01

    We present results concerning adiabatic inertial-mode oscillations of non-stratified superfluid neutron stars in Newtonian gravity, using the anelastic and slow-rotation approximations. We consider a simple two-fluid model of a superfluid neutron star, where one fluid consists of the superfluid neutrons and the second fluid contains all the comoving constituents (protons, electrons). The two fluids are assumed to be ``free'' in the sense that vortex-mediated forces like mutual friction or pinning are absent, but they can be coupled by the equation of state, in particular by entrainment. The stationary background consists of the two fluids rotating uniformly around the same axis with potentially different rotation rates. We study the special cases of co-rotating backgrounds, vanishing entrainment, and the purely toroidal r-modes, analytically. We calculate numerically the eigenfunctions and frequencies of inertial modes in the general case of non co-rotating backgrounds, and study their dependence on the relat...

  17. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam

    2015-01-01

    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  18. Why neutron stars have three hairs

    Science.gov (United States)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  19. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    Science.gov (United States)

    Meisel, Zach; Deibel, Alex

    2017-03-01

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from {e}--capture/{β }--decay cycles and provide signatures of prior nuclear burning over the ˜century timescales it takes to accrete to the {e}--capture depth of the strongest cooling pairs. Using crust cooling models of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and {e}--capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.

  20. The Deconfinement Phase Transition in the Interior of Neutron Stars

    CERN Document Server

    Zhou, Xia

    2010-01-01

    The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.

  1. Electromagnetic multipole fields of neutron stars

    Science.gov (United States)

    Roberts, W. J.

    1979-01-01

    A formalism is developed for treating general multipole electromagnetic fields of neutron stars. The electric multipoles induced in a neutron star by its rotation with an arbitrary magnetic multipole at its center are presented. It is shown how to express a family of off-centered multipoles having the same l weight as an infinite array of centered multipoles of increasing l weight referred to the rotational axis. General expressions are given for the linear momentum present in the superposition of arbitrary multipole fields, and the results are combined to compute the radiation rate of linear momentum by an off-centered dipole to zeroth order in the parameter Omega x R/c. The general Deutsch (1955) solution is then rederived in a clear consistent manner, and some minor additions and corrections are provided.

  2. Life extinctions by neutron star mergers

    CERN Document Server

    Dar, Arnon; Shaviv, N J; Dar, Arnon; Laor, Ari; Shaviv, Nir J.

    1997-01-01

    High energy cosmic ray jets from nearby mergers or accretion induced collapse (AIC) of neutron stars (NS) that hit the atmosphere can produce lethal fluxes of atmospheric muons at ground level, underground and underwater, destroy the ozone layer and radioactivate the environment. They could have caused most of the massive life extinctions on planet Earth in the past 600 My. Biological mutations due to ionizing radiations could have caused the fast appearance of new species after the massive extinctions. An early warning of future extinctions due to NS mergers may be obtained by identifying, mapping and timing all the nearby binary neutron stars systems. A warning of an approaching cosmic ray burst from a nearby NS merger/AIC may be provided by a very intense gamma ray burst which preceeds it.

  3. Nuclear pasta in supernovae and neutron stars

    CERN Document Server

    Watanabe, Gentaro

    2011-01-01

    In supernova cores and neutron star crusts, nuclei with exotic shapes such as rod-like and slab-like nuclei are expected to exist. These nuclei are collectively called nuclear "pasta". For the past decades, existence of the pasta phases in the equilibrium state has been studied using various methods. Recently, the formation process of the pasta phases, which has been a long-standing problem, has been unveiled using molecular dynamics simulations. In this review, we first provide the astrophysical background of supernovae and neutron stars and overview the history of the study of the pasta phases. We then focus on the recent study on the formation process of the pasta phases. Finally, we discuss future important issues related to the pasta phases: their astrophysical evidence and consequences.

  4. Thermal radiation from magnetic neutron star surfaces

    CERN Document Server

    Pérez-Azorin, J F; Pons, J A

    2005-01-01

    We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool atmospheres with moderately intense magnetic fields. The thermal emission from an isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution, depending on the magnetic field geometry. In this case, the observed flux of such an object looks very similar to a BB spectrum, but depressed in a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter (and therefore its size) by a factor 5-10 (2-3).

  5. Dissipation in relativistic superfluid neutron stars

    CERN Document Server

    Gusakov, M E; Chugunov, A I; Gualtieri, L

    2012-01-01

    We analyze damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in [Gusakov & Kantor PRD 83, 081304(R) (2011)]. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that: (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f-modes; (ii) for radial and p-modes such an approximation is poor; (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighboring oscillation modes. The latter effect can substantially accel...

  6. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A., E-mail: amelatos@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  7. The Fascinating World of Neutron Stars

    Science.gov (United States)

    Piekarewicz, J.

    2009-07-01

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters in the journey from the low-density crust to the high-density core.

  8. Spin evolution of a proto-neutron star

    Science.gov (United States)

    Camelio, Giovanni; Gualtieri, Leonardo; Pons, José A.; Ferrari, Valeria

    2016-07-01

    We study the evolution of the rotation rate of a proto-neutron star, born in a core-collapse supernova, in the first seconds of its life. During this phase, the star evolution can be described as a sequence of stationary configurations, which we determine by solving the neutrino transport and the stellar structure equations in general relativity. We include in our model the angular momentum loss due to neutrino emission. We find that the requirement of a rotation rate not exceeding the mass-shedding limit at the beginning of the evolution implies a strict bound on the rotation rate at later times. Moreover, assuming that the proto-neutron star is born with a finite ellipticity, we determine the emitted gravitational wave signal and estimate its detectability by present and future ground-based interferometric detectors.

  9. Neutron star equations of state with optical potential constraint

    Energy Technology Data Exchange (ETDEWEB)

    Antić, S., E-mail: S.Antic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt (Germany); Typel, S., E-mail: S.Typel@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt (Germany)

    2015-06-15

    Nuclear matter and neutron stars are studied in the framework of an extended relativistic mean-field (RMF) model with higher-order derivative and density dependent couplings of nucleons to the meson fields. The derivative couplings lead to an energy dependence of the scalar and vector self-energies of the nucleons. It can be adjusted to be consistent with experimental results for the optical potential in nuclear matter. Several parametrization, which give identical predictions for the saturation properties of nuclear matter, are presented for different forms of the derivative coupling functions. The stellar structure of spherical, non-rotating stars is calculated for these new equations of state (EoS). A substantial softening of the EoS and a reduction of the maximum mass of neutron stars is found if the optical potential constraint is satisfied.

  10. On the spin evolution of a proto-neutron star

    CERN Document Server

    Camelio, G; Pons, J A; Ferrari, V

    2016-01-01

    We study the evolution of the rotation rate of a proto-neutron star, born in a core-collapse supernova, in the first seconds of its life. During this phase, the star evolution can be described as a sequence of stationary configurations, which we determine by solving the neutrino transport and the stellar structure equations in general relativity. We include in our model the angular momentum loss due to neutrino emission. We find that the requirement of a rotation rate not exceeding the mass-shedding limit at the beginning of the evolution, implies a strict bound on the rotation rate at later times. Moreover, assuming that the proto-neutron star is born with a finite ellipticity, we determine the emitted gravitational wave signal, and estimate its detectability by present and future ground-based interferometric detectors.

  11. Super-Strong Magnetic Fields of Neutron Stars in Be X-Ray Binaries Estimated with New Torque and Magnetosphere Models

    CERN Document Server

    Shi, Chang-Sheng; Li, Xiang-Dong

    2015-01-01

    We re-estimate the surface magnetic fields of neutron stars in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. (2014). In particular a new torque model (Dai \\& Li 2006) is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead divergent results for any fastness parameter. The inferred surface magnetic fields of these neutron stars for the two compressed-magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed-magnetosphere radius (Shi, Zhang \\& Li 2014) leads to unique solutions near spin-equilibrium in all cases, unlike other models that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the in...

  12. Magnetars: neutron stars with huge magnetic storms

    CERN Document Server

    Rea, Nanda

    2012-01-01

    Among the many different classes of stellar objects, neutron stars provide a unique environment where we can test (at the same time) our understanding of matter with extreme density, temperature, and magnetic field. In particular, the properties of matter under the influence of magnetic fields and the role of electromagnetism in physical processes are key areas of research in physics. However, despite decades of research, our limited knowledge on the physics of strong magnetic fields is clear: we only need to note that the strongest steady magnetic field achieved in terrestrial labs is some millions of Gauss, only thousands of times stronger than a common refrigerator magnet. In this general context, I will review here the state of the art of our research on the most magnetic objects in the Universe, a small sample of neutron stars called magnetars. The study of the large high-energy emission, and the flares from these strongly magnetized (~10^{15} Gauss) neutron stars is providing crucial information about t...

  13. Magneto--thermal evolution of neutron stars

    CERN Document Server

    Pons, J A; Geppert, U

    2008-01-01

    We study the mutual influence of thermal and magnetic evolution in a neutron star's crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite--differences scheme in the radial direction), coupled to the thermal diffusion equation. We present the first long term 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first million years of a NS's life. As a consequence, all neutron stars born with fields larg...

  14. Stability Analysis of Magnetised Neutron Stars - A Semi-analytic Approach

    CERN Document Server

    Herbrik, Marlene

    2015-01-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a New...

  15. Prospects for Neutron Star Equation of State Constraints using "Recycled" Millisecond Pulsars

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    Rotation-powered "recycled" millisecond pulsars are a variety of rapidly-spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  16. Strangeness in nuclei and neutron stars

    Science.gov (United States)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  17. Light curves from rapidly rotating neutron stars

    CERN Document Server

    Numata, Kazutoshi

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitudes to disturb the spot. For a $l'=m$ core $r$-mode, the oscillation frequency $\\omega\\approx2m\\Omega/[l'(l'+1)]$ defined in the co-rotating frame of the star will be detected by a distant observer, where $l'$ and $m$ are respectively the spherical harmonic degree and the azimuthal wave number of the mode, and $\\Omega$ is the spin frequency of the star. In a linear theory of oscillation, using a parameter $A$ we parametrize the mode amplitudes such that ${\\rm max}\\left(|\\xi_\\theta|,|\\xi_\\phi|\\right)/R=A$ at the surface, w...

  18. The evolution of low mass, close binary systems with a neutron star component: a detailed grid

    CERN Document Server

    De Vito, M A

    2012-01-01

    In close binary systems composed of a normal, donor star and an accreting neutron star, the amount of material received by the accreting component is, so far, a real intrigue. In the literature there are available models that link the accretion disk surrounding the neutron star with the amount of material it receives, but there is no model linking the amount of matter lost by the donor star to that falling onto the neutron star. In this paper we explore the evolutionary response of these close binary systems when we vary the amount of material accreted by the neutron star. We consider a parameter \\beta, which represents the fraction of material lost by the normal star that can be accreted by the neutron star. \\beta is considered as constant throughout evolution. We have computed the evolution of a set of models considering initial donor star masses (in solar units) between 0.5 and 3.50, initial orbital periods (in days) between 0.175 and 12, initial masses of neutron stars (in solar units) of 0.80, 1.00, 1.20...

  19. Pair Fireball Precursors of Neutron Star Mergers

    CERN Document Server

    Metzger, Brian D

    2016-01-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion through its dipole field during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the two objects. If a modest fraction eta of the electromagnetic power extracted during the inspiral is used to accelerate relativistic particles, the resulting gamma-ray emission in such a compact volume will result in the formation of a thermal electron-positron pair fireball. Applying the steady-state pair wind model of Paczynski (1986), we quantify the luminosities and temperatures of the precursor fireball and its detectability with gamma-ray satellites. Under the assumption that eta ~ 1, the gamma-ray detection horizon of Dmax ~ 20(Bd/1e14 G) is much closer than the Advanced LIGO/Virgo horizon of 200 Mpc, unless the surface magnetic field of the NS is very strong, Bd > 1e15 G. Given the quasi-isotropic nature of the emission, a sub-population of mergers w...

  20. Pair fireball precursors of neutron star mergers

    Science.gov (United States)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  1. Shear modulus of neutron star crust

    CERN Document Server

    Baiko, D A

    2011-01-01

    Shear modulus of solid neutron star crust is calculated by thermodynamic perturbation theory taking into account ion motion. At given density the crust is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative $\\propto T$ contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behavior is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for li...

  2. Approximate universal relations for neutron stars and quark stars

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás

    2017-04-01

    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.

  3. Time Evolution of Relativistic Force-Free Fields Connecting a Neutron Star and its Disk

    CERN Document Server

    Asano, E; Matsumoto, R; Asano, Eiji; Uchida, Toshio; Matsumoto, Ryoji

    2005-01-01

    We study the magnetic interaction between a neutron star and its disk by solving the time-dependent relativistic force-free equations. At the initial state, we assume that the dipole magnetic field of the neutron star connects the neutron star and its equatorial disk, which deeply enters into the magnetosphere of the neutron star. Magnetic fields are assumed to be frozen to the star and the disk. The rotation of the neutron star and the disk is imposed as boundary conditions. We apply Harten-Lax-van Leer (HLL) method to simulate the evolution of the star-disk system. We carry out simulations for (1) a disk inside the corotation radius, in which the disk rotates faster than the star, and (2) a disk outside the corotation radius, in which the neutron star rotates faster than the disk. Numerical results indicate that for both models, the magnetic field lines connecting the disk and the star inflate as they are twisted by the differential rotation between the disk and the star. When the twist angle exceeds pi rad...

  4. Nucleosynthesis in decompressing neutron star matter

    CERN Document Server

    Jaikumar, P; Otsuki, K; Ouyed, R; Jaikumar, Prashanth; Meyer, Bradley S.; Otsuki, Kaori; Ouyed, Rachid

    2006-01-01

    We explore heavy-element nucleosynthesis by rapid neutron capture (r-process) in the decompressing ejecta from the surface of a neutron star. The decompression is triggered by a violent phase transition to strange quark matter (quark-nova scenario). The presence of neutron-rich large Z nuclei (40,95)<(Z,A)<(70,177), the large neutron-to-seed ratio, and the low electron fraction Ye ~ 0.03 in the decompressing ejecta present favorable conditions for the r-process. We perform network calculations that are adapted to the quark-nova conditions, and which mimic usual (n-\\gamma) equilibrium r-process calculations during the initially cold decompression phase. They match to dynamical r-process calculations at densities below neutron drip (4x10^11 g/cc). We present results for the final element abundance distribution with and without heating from nuclear reactions, and compare to the solar abundance pattern of r-process elements. We highlight the distinguishing features of quark-novae by contrasting it with conv...

  5. Single neutron star systems evolving with fallback discs

    Science.gov (United States)

    Ertan, Unal; Caliskan, Sirin; Alpar, Mehmet Ali; Benli, Onur; Trümper, Joachim E.

    2016-07-01

    We have investigated the long-term evolution of the young neutron star systems, namely anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), dim isolated neutron stars (XDINs), and the so-called "high-B radio pulsars" in the frame of the fallback disk disc model. We have shown that the X-ray luminosities and the rotational properties of individual sources in these different populations can be achieved by neutron stars evolving with fallback disks and with conventional dipole magnetic fields of young neutron stars. Presence of small-scale magnetar fields in the higher multi-poles which are likely to be responsible for soft gamma bursts observed from these systems is compatible with the fallback disk model, since the rotational evolution of the star is governed by the interaction between the large-scale dipole field and the disc. The results of our model is self-consistent in that (1) the X-ray luminosity, period and period derivative of individual sources are produced simultaneously, and (2) these results are obtained with very similar set of main disk parameters for all these systems with rather different properties. Our results indicate that all known AXPs, except two sources, are in the accretion phase at present. The 6 XDINs with confirmed period and period derivatives reached their long periods in the accretion epochs in the past. At present, XDINs are evolving in the propeller phase without accretion, but they are still slowing down under effect of the disk torques. For the "high-B radio pulsars", the source properties are obtained in the phases when accretion is not allowed, which is consistent with the radio pulsar property of these sources.

  6. Effects of △-Isobars on Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    Jorge L.S. Lino; CHEN Yan-Jun; GUO Hua

    2008-01-01

    We have investigated the possibility of the presence of the deltas in neutron star matter and their effects on neutron stars. △-meson couplings of the theoretical predictions are only restricted in a region where the deltas can be present and even a first-order phase transition may take place, making the EOS softer and the maximum mass of neutron stars smaller. The presence of the deltas leads to the rapid decrease of neutrino mean free paths.

  7. Deconfinement Phase Transition Heating and Thermal Evolution of Neutron Stars

    CERN Document Server

    Kang, Miao; Wang, Xiaodong

    2007-01-01

    The deconfinement phase transition will lead to the release of latent heat during spins down of neutron stars if the transition is the first-order one.We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. The results show that neutron stars may be heated to higher temperature.This feature could be particularly interesting for high temperature of low-magnetic field millisecond pulsar at late stage.

  8. The Effects of δ Meson on the Neutron Star Cooling

    Institute of Scientific and Technical Information of China (English)

    许妍; 刘广洲; 吴姚睿; 朱明枫; 喻孜; 王红岩; 赵恩广

    2012-01-01

    In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.

  9. The freedom to choose neutron star magnetic field equilibria

    CERN Document Server

    Glampedakis, Kostas

    2016-01-01

    Our ability to interpret and glean useful information from the large body of observations of strongly magnetised neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.

  10. Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer

    Science.gov (United States)

    Bogdanov, Slavko

    2016-04-01

    [This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  11. Analyzing Neutron Star in HESS J1731-347 from Thermal Emission and Cooling Theory

    CERN Document Server

    Ofengeim, D D; Klochkov, D; Suleimanov, V; Yakovlev, D G

    2015-01-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  12. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.

  13. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    Madappa Prakash

    2015-05-01

    Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.

  14. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Masaru

    2016-12-15

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  15. Saturation of the f-mode instability in neutron stars: II. Applications and results

    CERN Document Server

    Pnigouras, Pantelis

    2016-01-01

    We present the first results on the saturation of the f-mode instability in neutron stars, due to nonlinear mode coupling. Emission of gravitational waves drives the f-mode (fundamental mode) unstable in fast-rotating, newborn neutron stars. The initial growth phase of the mode is followed by its saturation, because of energy leaking to other modes of the star. The saturation point determines the strain of the generated gravitational-wave signal, which can then be used to extract information about the neutron star equation of state. The parent (unstable) mode couples via parametric resonances with pairs of daughter modes, with the triplets' evolution exhibiting a rich variety of behaviors. We study both supernova- and merger-derived neutron stars, simply modeled as polytropes in a Newtonian context, and show that the parent may couple to many different daughter pairs during the star's evolution through the instability window, with the saturation amplitude changing by orders of magnitude.

  16. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  17. Neutron stars in Scalar-Tensor-Vector Gravity

    CERN Document Server

    Armengol, Federico G Lopez

    2016-01-01

    Scalar-Tensor-Vector Gravity (STVG), also referred as MOdified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to described Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman-Oppenheimer-Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the ...

  18. Evolutionary Channels for the Formation of Double Neutron Stars

    CERN Document Server

    Andrews, Jeff J; Kalogera, Vicky; Willems, Bart

    2014-01-01

    We analyze binary population models of double-neutron stars and compare results to the accurately measured orbital periods and eccentricities of the eight known such systems in our Galaxy. In contrast to past similar studies, we especially focus on the dominant evolutionary channels (we identify three); for the first time, we use a detailed understanding of the evolutionary history of three double neutron stars as actual constraints on the population models. We find that the evolutionary constraints derived from the double pulsar are particularly tight, and less than half of the examined models survive the full set of constraints. The top-likelihood surviving models yield constraints on the key binary evolution parameters, but most interestingly reveal (i) the need for electron-capture supernovae from relatively low-mass degenerate, progenitor cores, and (ii) the most likely evolutionary paths for the rest of the known double neutron stars. In particular, we find that J1913+16 likely went through a phase of C...

  19. Extreme neutron stars from Extended Theories of Gravity

    CERN Document Server

    Astashenok, Artyom V; Odintsov, Sergei D

    2014-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from $f(R)$ and $f(\\cal G)$ extensions of General Relativity where functions of the Ricci curvature invariant $R$ and the Gauss-Bonnet invariant ${\\cal G}$ are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in $f(R)$ gravity. In principle, massive stars with $M> 4 M_{\\odot}$ can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities $\\rho_{c}\\sim 1.5-2.0$ GeV/fm$^{3}$) are possible considering quadratic corrections of $f(\\cal {G})$ gravity. The magnetic field strength in the star center is of order $6-8\\times 10^{18}$ G. In general, we can say that other branches of ...

  20. Symmetry energy effects in the neutron star properties

    CERN Document Server

    Alvarez-Castillo, David Edwin

    2012-01-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  1. Predicting neutron star spins from twin kHz QPOs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the proposed relations between the frequencies of twin kilohertz quasi-periodic oscillations(kHz QPOs) and the spin frequencies in neutron star low-mass X-ray binaries(NSLMXBs).To test the validity of the proposed models,we estimate the spin frequencies under these theoretical relations and compare them with the measured ones.It seems that magnetohydrodynamic(MHD) oscillations are more promising to account for the kHz QPOs.

  2. Constraints on the Symmetry Energy Using the Mass-Radius Relation of Neutron Stars

    CERN Document Server

    Lattimer, James M

    2014-01-01

    The nuclear symmetry energy is intimately connected with nuclear astrophysics. This contribution focuses on the estimation of the symmetry energy from experiment and how it is related to the structure of neutron stars. The most important connection is between the radii of neutron stars and the pressure of neutron star matter in the vicinity of the nuclear saturation density $n_s$. This pressure is essentially controlled by the nuclear symmetry energy parameters $S_v$ and $L$, the first two coefficients of a Taylor expansion of the symmetry energy around $n_s$. We discuss constraints on these parameters that can be found from nuclear experiments. We demonstrate that these constraints are largely model-independent by deriving them qualitatively from a simple nuclear model. We also summarize how recent theoretical studies of pure neutron matter can reinforce these constraints. To date, several different astrophysical measurements of neutron star radii have been attempted. Attention is focused on photospheric rad...

  3. Quiescent thermal emission from neutron stars in LMXBs

    CERN Document Server

    Turlione, Anabela; Pons, José A

    2013-01-01

    The quiescent thermal emission from neutron stars in low mass X-ray binaries after active periods of intense activity in x-rays (outbursts) has been monitored. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust and envelope composition and transport properties, depending on the astrophysical scenarios assumed. We perform numerical simulations of the neutron star crust thermal evolution and compare them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We also present stationary envelope models to be used as a boundary condition for the crustal cooling models. We obtain a relation between the mass accretion rate and the temperature reached at the crust-envelope interface at the end of the active phase that accounts for early observations and reduces the number of free parameters of the problem. With this relation we are also able to set constraints to the env...

  4. Distributions of Neutron Exposures in AGB Stars and the Galaxy

    Institute of Scientific and Technical Information of China (English)

    Wen-Yuan Cui; Feng-Hua Zhang; Wei-Juan Zhang; Lu Zhang; Bo Zhang

    2007-01-01

    Based on the s-process nucleosynthesis model with the 13C(α, n)16O reaction occurring under radiative conditions in the interpulse phases, we investigate the characteristics of the distribution of neutron exposure in low-mass Asymptotic Giant Branch (AGB) stars.We introduce a new concept, the distribution of neutron exposures of the Galaxy (NEG), to study the chemical evolution characteristics of the Galaxy for s-process elements. Using a chemical evolution model of the Galaxy, we develop a model for the NEG and obtain the evolution results of the NEG in different epochs. The present results appear to reasonably reproduce the distribution of neutron exposures of the solar system (hereafter NES). The main component and the strong component in the NES are built up in different epochs. The strong component of the s-process is mainly synthesised in the low-mass and metal-poor AGB stars,and the main component is produced by the s-process in the low-mass AGB stars with higher metallicities.

  5. Quark matter droplets in neutron stars

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  6. Quark matter droplets in neutron stars

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  7. Modeling the X-rays from the Central Compact Object PSR J1852+0040 in Kesteven 79: Evidence for a Strongly Magnetized Neutron Star

    CERN Document Server

    Bogdanov, Slavko

    2014-01-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star, a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a "pencil plus fan" beam emission pattern, which is characteristic of strongly magnetized ($\\gtrsim$10^12 Gauss) neutron star atmospheres, substantially stronger than the ~10^10 Gauss external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields ($\\gtrsim$10^14} Gauss) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied hig...

  8. Neutron star properties and the equation of state for the core

    Science.gov (United States)

    Zdunik, J. L.; Fortin, M.; Haensel, P.

    2017-03-01

    Context. Few unified equations of state for neutron star matter, in which core and crust are described using the same nuclear model, are available. However the use of non-unified equations of state with simplified matching between the crust and core has been shown to introduce uncertainties in the radius determination, which can be larger than the expected precision of the next generation of X-ray satellites. Aims: We aim to eliminate the dependence of the radius and mass of neutron stars on the detailed model for the crust and on the crust-core matching procedure. Methods: We solved the approximate equations of the hydrostatic equilibrium for the crust of neutron stars and obtained a precise formula for the radius that only depends on the core mass and radius, the baryon chemical potential at the core-crust interface, and at the crust surface. For a fully accreted crust one needs, additionally, the value of the total deep crustal heating per one accreted nucleon. Results: For typical neutron star masses, the approximate approach allows us to determine the neutron star radius with an error 0.1% ( 10 m, equivalent to a 1% inaccuracy in the crust thickness). The formalism applies to neutron stars with a catalyzed or a fully accreted crust. The difference in the neutron star radius between the two models is proportional to the total energy release due to deep crustal heating. Conclusions: For a given model of dense matter describing the neutron star core, the radius of a neutron star can be accurately determined independent of the crust model with a precision much better than the 5% precision expected from the next generation of X-ray satellites. This allows us to circumvent the problem of the radius uncertainty that may arise when non-unified equations of state for the crust and core are used.

  9. Coalescence of Magnetized Binary Neutron Star Systems

    Science.gov (United States)

    Motl, Patrick M.; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Neilsen, David; Palenzuela, Carlos; Ponce, Marcelo

    2015-01-01

    We present simulations of the merger of binary neutron star systems calculated with full general relativity and incorporating the global magnetic field structure for the stars evolved with resistive magnetohydrodynamics. Our simulation tools have recently been improved to incorporate the effects of neutrino cooling and have been generalized to allow for tabular equations of state to describe the degenerate matter. Of particular interest are possible electromagnetic counterparts to the gravitational radiation that emerges from these systems. We focus on magnetospheric interactions that ultimately tap into the gravitational potential energy of the binary to power a Poynting flux and deposition of energy through Joule heating and magnetic reconnection. We gratefully acknowledge the support of NASA through the Astrophysics Theory Program grant NNX13AH01G.

  10. Gravitational wave spectrum of anisotropic neutron stars in Cowling approximation

    CERN Document Server

    Doneva, Daniela D

    2012-01-01

    One of the most common assumption in the studies of neutron star models and their oscillations is that the pressure is isotopic but there are arguments that this may not be correct. Thus in the present paper we make a first step towards studying the nonradial oscillations of neutron stars with anisotropic pressure. We adopt the so-called Cowling approximation where the spacetime metric is kept fixed and the oscillation spectrum for the first few fluid modes is obtained. The effect of the anisotropy on the frequencies is apparent, although with the present results it might be hard to distinguish it from the changes in the frequencies caused by different equations of state.

  11. Strange Stars: Can Their Crust Reach the Neutron Drip Density?

    Institute of Scientific and Technical Information of China (English)

    Hai Fu; Yong-Feng Huang

    2003-01-01

    The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.

  12. R-modes in neutron stars: Theory and observations

    CERN Document Server

    Haskell, Brynmor

    2015-01-01

    In this article I will review the theory behind the gravitational wave driven r-mode instability in rapidly rotating neutron stars and discuss which constraints can be derived from observations of spins and temperatures in Low Mass X-ray Binaries. I will discuss how a standard, `minimal' neutron star model is not consistent with the data, and discuss some of the additional physical mechanisms that could reconcile theory with observations. In particular I will focus on additional forms of damping due to exotic cores and on strong mutual friction due to superfluid vortices cutting through superconducting flux tubes, and examine the repercussions these effects could have on the saturation amplitude of the mode. Finally I will also discuss the possibility that oscillations due to r-modes may have been recently observed in the X-ray light curves of two Low Mass X-ray Binaries.

  13. Evolutions of Neutron Stars and their Magnetic Fields

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2016-01-01

    Estimations of magnetic fields of neutron stars, observed as radio and X-ray pulsars, are discussed. It is shown, that theoretical and observational values for different types of radiopulsars are in good correspondence. Radiopulsars in close binaries and millisecond pulsars, which have passed the stage of disk accretion (recycled radiopulsars), have magnetic fields 2-4 orders of magnitude smaller than ordinary single pulsars. Most probably, the magnetic field of the neutron star was screened by the infalling material. Several screening models are considered. Formation of single recycled pulsars loosing its companion is discussed. Magnetic fields of some X-ray pulsars are estimated from the cyclotron line energy. In the case of Her X-1 this estimation exceeds considerably the value of its magnetic field obtained from long term observational data related to the beam structure evolution. Another interpretation of the cyclotron feature, based on the relativistic dipole radiation mechanism, could remove this discr...

  14. On radial oscillations in viscous accretion discs surrounding neutron stars

    Science.gov (United States)

    Chen, Xingming; Taam, Ronald E.

    1992-01-01

    Radial oscillations resulting from axisymmetric perturbations in viscous accretion disks surrounding neutron stars in X-ray binary systems have been investigated. Within the framework of the alpha-viscosity model a series of hydrodynamic calculations demonstrates that the oscillations are global for alpha of about 1. On the other hand, for alpha of 0.4 or less, the oscillations are local and confined to the disk boundaries. If viscous stresses acting in the radial direction are included, however, it is found that the disk can be stabilized. The application of such instabilities in accretion disks, without reference to the boundary layer region between the neutron star (or magnetosphere) and the inner edge of the disk, to the phenomenology of quasi-periodic oscillations is brought into question.

  15. Gravitational waves from rotating proto-neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, V [Dipartimento di Fisica ' G Marconi' , Universita di Roma ' La Sapienza' and Sezione INFN ROMA 1, piazzale Aldo Moro 2, I-00185 Rome (Italy); Gualtieri, L [Dipartimento di Fisica ' G Marconi' , Universita di Roma ' La Sapienza' and Sezione INFN ROMA 1, piazzale Aldo Moro 2, I-00185 Rome (Italy); Pons, J A [Departament d' Astronomia i AstrofIsica, Universitat de Valencia, 46100 Burjassot, Valencia (Spain); Stavridis, A [Dipartimento di Fisica ' G Marconi' , Universita di Roma ' La Sapienza' and Sezione INFN ROMA 1, piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2004-03-07

    We study the effects of rotation on the quasi-normal modes (QNMs) of a newly born proto-neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves.

  16. Bose–Einstein condensation of anti-kaons and neutron star twins

    Indian Academy of Sciences (India)

    Sarmistha Banik; Debades Bandyopadhyay

    2003-05-01

    We investigate the role of Bose–Einstein condensation (BEC) of anti-kaons on the equation of state (EoS) and other properties of compact stars. In the framework of relativistic mean field model we determine the EoS for -stable hyperon matter and compare it to the situation when anti-kaons condense in the system. We observe that anti-kaon condensates soften the EoS, thereby lowering the maximum mass of the stars. We also demonstrate that the presence of antikaon condensates in the high density core of compact stars may lead to a new mass sequence beyond white dwarf and neutron stars. The limiting mass of the new sequence stars is nearly equal to that of neutron star branch though they have distinctly different radii and compositions. They are called neutron star twins.

  17. Axisymmetric oscillations of magnetic neutron stars

    Science.gov (United States)

    Lee, Umin

    2007-01-01

    We calculate axisymmetric oscillations of rotating neutron stars composed of the surface fluid ocean, solid crust and fluid core, taking account of a dipole magnetic field as strong as BS ~ 1015 G at the surface. The adiabatic oscillation equations for the solid crust threaded by a dipole magnetic field are derived in Newtonian dynamics, on the assumption that the axis of rotation is aligned with the magnetic axis so that perturbations on the equilibrium can be represented by series expansions in terms of spherical harmonic functions Yml(θ, φ) with different degrees l for a given azimuthal wave number m around the magnetic axis. Although the three component models can support a rich variety of oscillation modes, axisymmetric (m = 0) toroidal ltn and spheroidal lsn shear waves propagating in the solid crust are our main concerns, where l and n denote the harmonic degree and the radial order of the modes, respectively. In the absence of rotation, axisymmetric spheroidal and toroidal modes are completely decoupled, and we consider the effects of rotation on the oscillation modes only in the limit of slow rotation. We find that the oscillation frequencies of the fundamental toroidal torsional modes ltn in the crust are hardly affected by the magnetic field as strong as BS ~ 1015 G at the surface. As the radial order n of the shear modes in the crust becomes higher, however, both spheroidal and toroidal modes become susceptible to the magnetic field, and their frequencies in general get higher with increasing BS. We also find that the surface g modes and the crust/ocean interfacial modes are suppressed by a strong magnetic field, and that there appear magnetic modes in the presence of a strong magnetic field.

  18. Neutron stars in Scalar-Tensor-Vector Gravity

    Science.gov (United States)

    Lopez Armengol, Federico G.; Romero, Gustavo E.

    2017-02-01

    Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman-Oppenheimer-Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the deviation from GR. The theory exhibits unusual predictions for extreme values of this parameter. We conclude that STVG admits suitable spherically symmetric solutions with matter sources, relevant for stellar structure. Since recent determinations of neutron stars masses violate some GR predictions, STVG appears as a viable candidate for a new gravity theory.

  19. Nuclear superfluidity and cooling time of neutron-star crust

    Energy Technology Data Exchange (ETDEWEB)

    Monrozeau, C.; Margueron, J. [Institut de Physique Nucleaire, Universite Paris Sud, F-91406 Orsay CEDEX (France); Sandulescu, N. [Institut de Physique Nucleaire, Universite Paris Sud, F-91406 Orsay CEDEX (France); Institute of Physics and Nuclear Engineering, RO-76900 Bucharest (Romania)

    2007-03-15

    We analyse the effect of neutron superfluidity on the cooling time of inner crust matter in neutron stars, in the case of a rapid cooling of the core. The specific heat of the inner crust, which determines the thermal response of the crust, is calculated in the framework of HFB approach at finite temperature. The calculations are performed with two paring forces chosen to simulate the pairing properties of uniform neutron matter corresponding respectively to Gogny-BCS approximation and to many-body techniques including polarisation effects. Using a simple model for the heat transport across the inner crust, it is shown that the two pairing forces give very different values for the cooling time. (authors)

  20. Isolated neutron stars and studies of their interiors

    OpenAIRE

    Popov, S. B.

    2011-01-01

    In these lectures presented at Baikal summer school on physics of elementary particles and astrophysics 2011, I present a wide view of neutron star astrophysics with special attention paid to young isolated compact objects and studies of the properties of neutron star interiors using astronomical methods.

  1. Magnetic Fields in neutron stars : A theoretical perspective

    NARCIS (Netherlands)

    Reisenegger, A.; Prieto, J.; Benguria, R.; Lai, D.; Araya, P.

    2005-01-01

    Abstract: We present our view of the main physical ingredients determining the evolution of neutron star magnetic fields. This includes the basic properties of neutron star matter, possible scenarios for the origin of the magnetic field, constraints and mechanisms for its evolution, and a discussion

  2. The Thermodynamic Functions in Curved Space of Neutron Star

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  3. Quasi-universal properties of neutron star mergers

    CERN Document Server

    Bernuzzi, Sebastiano; Balmelli, Simone; Dietrich, Tim; Ujevic, Maximiliano

    2014-01-01

    Binary neutron star mergers are investigated using nonlinear 3+1 numerical relativity simulations and the analytical effective-one-body (EOB) model. The EOB model predicts quasi-universal relations between the mass-rescaled gravitational wave frequency and the binding energy at the moment of merger, and certain dimensionless binary tidal coupling constants depending on the stars Love numbers, compactnesses and the binary mass ratio. These relations are quasi-universal in the sense that, for a given value of the tidal coupling constant, they depend significantly neither on the equation of state nor on the mass ratio, though they do depend on stars spins. The spin dependence is approximately linear for small spins aligned with the orbital angular momentum. The quasi-universality is a property of the conservative dynamics, and emerges as the binary interaction becomes tidally dominated. This analytical prediction is qualitatively consistent with new, multi-orbit numerical relativity results for the relevant case...

  4. Do hyperons exist in the interior of neutron stars?

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Debarati [Universite Paris Diderot, LUTH, Observatoire de Paris, CNRS, Meudon (France); Laboratoire de Physique Corpusculaire, ENSICAEN, Caen Cedex (France); Vidana, Isaac [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal)

    2016-02-15

    In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called ''hyperon puzzle'', go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability. (orig.)

  5. Complete equation of state for neutron stars using the relativistic Hartree-Fock approximation

    Energy Technology Data Exchange (ETDEWEB)

    Miyatsu, Tsuyoshi; Cheoun, Myung-Ki [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Yamamuro, Sachiko; Nakazato, Ken' ichiro [Department of Physics, Faculty of Science and Technology, Tokyo University of Science (TUS), Noda 278-8510 (Japan)

    2014-05-02

    We construct the equation of state in a wide-density range for neutron stars within relativistic Hartree-Fock approximation. The properties of uniform and nonuniform nuclear matter are studied consistently. The tensor couplings of vector mesons to baryons due to exchange contributions (Fock terms) are included, and the change of baryon internal structure in matter is also taken into account using the quark-meson coupling model. The Thomas-Fermi calculation is adopted to describe nonuniform matter, where the lattice of nuclei and the neutron drip out of nuclei are considered. Even if hyperons exist in the core of a neutron star, we obtain the maximum neutron-star mass of 1.95M{sub ⊙}, which is consistent with the recently observed massive pulsar, PSR J1614-2230. In addition, the strange vector (φ) meson also plays a important role in supporting a massive neutron star.

  6. Neutron Star Radii, Universal Relations, and the Role of Prior Distributions

    CERN Document Server

    Steiner, A W; Brown, E F

    2015-01-01

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses...

  7. The Dynamical Evolution of Black Hole-Neutron Star Binaries in General Relativity: Simulations of Tidal Disruption

    CERN Document Server

    Faber, J A; Shapiro, S L; Taniguchi, K; Rasio, F A; Faber, Joshua A.; Baumgarte, Thomas W.; Shapiro, Stuart L.; Taniguchi, Keisuke; Rasio, Frederic A.

    2006-01-01

    We calculate the first dynamical evolutions of merging black hole-neutron star binaries that construct the combined black hole-neutron star spacetime in a general relativistic framework. We treat the metric in the conformal flatness approximation, and assume that the black hole mass is sufficiently large compared to that of the neutron star so that the black hole remains fixed in space. Using a spheroidal spectral methods solver, we solve the resulting field equations for a neutron star orbiting a Schwarzschild black hole. The matter is evolved using a relativistic, Lagrangian, smoothed particle hydrodynamics (SPH) treatment. We take as our initial data recent quasiequilibrium models for synchronized neutron star polytropes generated as solutions of the conformal thin-sandwich (CTS) decomposition of the Einstein field equations. We are able to construct from these models relaxed SPH configurations whose profiles show good agreement with CTS solutions. Our adiabatic evolution calculations for neutron stars wit...

  8. How Loud Are Neutron Star Mergers?

    CERN Document Server

    Bernuzzi, Sebastiano; Ott, Christian D; Roberts, Luke F; Moesta, Philipp; Galeazzi, Filippo

    2015-01-01

    We investigate neutron star merger dynamics using fully general relativistic simulations of equal and unequal-mass binaries sampling the galactic population, and including neutrino cooling and three different temperature-dependent microphysical equations of state. We focus on the emission of energy and angular momentum in gravitational waves in the postmerger phase. Our results reveal that the emitted gravitational-wave energy in the early evolution of the formed hypermassive neutron star (HMNS) is about twice as large as the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable or larger than that of nonspinning black hole mergers. About $0.8-2.5\\%$ of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution due to the strong nonaxisymmetric deformation of the HMNS. Our results also show that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to $\\lesssim0.7-0.8$. This may significa...

  9. Magnetic field evolution of accreting neutron stars

    CERN Document Server

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  10. How loud are neutron star mergers?

    Science.gov (United States)

    Bernuzzi, Sebastiano; Radice, David; Ott, Christian D.; Roberts, Luke F.; Mösta, Philipp; Galeazzi, Filippo

    2016-07-01

    We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. We find that the emitted gravitational-wave energy in the first ˜10 ms of the life of the resulting hypermassive neutron star (HMNS) is about twice the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable to or larger than that of nonspinning black hole inspiral-mergers. About 0.8-2.5% of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution. We find a clear dependence of the postmerger gravitational wave emission on binary configuration and equation of state and show that it can be encoded as a broad function of the binary tidal coupling constant κ2T. Our results also demonstrate that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to ≲0.7 - 0.8 . This may significantly impact the neutrino pair annihilation mechanism for powering short gamma-ray bursts (sGRB).

  11. Relativistic density functional theory for finite nuclei and neutron stars

    CERN Document Server

    Piekarewicz, J

    2015-01-01

    The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.

  12. Neutron star kicks and their relationship to supernovae ejecta mass

    Science.gov (United States)

    Bray, J. C.; Eldridge, J. J.

    2016-10-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume that the velocity is given by vkick = α (Mejecta/Mremnant) + β . To test this simple relationship, we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different α and β values, and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of α = 70 km s-1 and β = 110 km s-1 reproduce the Hobbs et al. observed two-dimensional velocities, and α = 70 km s-1 and β = 120 km s-1 reproduce their inferred three-dimensional velocity distribution for nearby single neutron stars with ages less than 3 Myr. After testing isotropic, spin-axis aligned and orthogonal to spin-axis `kick' orientations, we find no statistical preference for a `kick' orientation. While ejecta mass cannot be the only factor that determines the velocity of supernova compact remnants, we suggest that it is a significant contributor and that the ejecta-based `kick' should replace the Maxwell-Boltzmann velocity distribution currently used in many population synthesis codes.

  13. Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars

    CERN Document Server

    Kubis, S

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  14. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  15. Gravity Defied : From Potato Asteroids to Magnetised Neutron Stars 4. Neutron Stars (Dead Stars of the Second Kind)

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-06-01

    A star burns its nuclear fuel and balances gravitation by thepressure of the heated gas, during its active lifetime. Afterthe exhaustion of the nuclear fuel, a low mass star findspeace as a ‘white dwarf’, where the pressure support againstgravitation is provided by Fermi-degenerate electrons. However,for massive stars, the gravitational squeeze becomes sosevere that in the final phase of evolution, the average densityapproximately equals the nuclear density. At such densities,most of the protons combine with electrons to convertthemselves into neutrons. A `neutron star', composed of suchneutron-rich material, is host to some fascinating physics arisingout of its amazingly compact state of matter (where a solarmass is packed inside a sphere of radius ∼ 10Km).

  16. Limits on Self-Interacting Dark Matter from Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, C.

    2012-01-01

    We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. Weakly interacting massive particle (WIMP) self-interactions mediated by Yukawa-type interactions can lower significantly the number of WIMPs necessary...... for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete a sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints...

  17. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H.Y.

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  18. Deformed neutron stars due to strong magnetic field in terms of relativistic mean field theories

    Science.gov (United States)

    Yanase, Kota; Yoshinaga, Naotaka

    2014-09-01

    Some observations suggest that magnetic field intensity of neutron stars that have particularly strong magnetic field, magnetars, reaches values up to 1014-15G. It is expected that there exists more strong magnetic field of several orders of magnitude in the interior of such stars. Neutron star matter is so affected by magnetic fields caused by intrinsic magnetic moments and electric charges of baryons that masses of neutron stars calculated by using Tolman-Oppenheimer-Volkoff equation is therefore modified. We calculate equation of state (EOS) in density-dependent magnetic field by using sigma-omega-rho model that can reproduce properties of stable nuclear matter in laboratory Furthermore we calculate modified masses of deformed neutron stars.

  19. Neutron Star Kicks and their Relationship to Supernovae Ejecta Mass

    CERN Document Server

    Bray, J C

    2016-01-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume the velocity is given by $v_{\\rm kick}=\\alpha\\,(M_{\\rm ejecta} / M_{\\rm remnant}) + \\beta\\,$. To test this simple relationship we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different $\\alpha$ and $\\beta$ values and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of $\\alpha=70\\, {\\rm km\\,s^{-1}}$ and $\\beta=110\\,{\\rm km\\,s^{-1}}$ reproduce the \\c...

  20. Dense baryonic matter: constraints from recent neutron star observations

    CERN Document Server

    Hell, Thomas

    2014-01-01

    Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state for baryonic matter at high densities and low temperatures. The existence of two-solar-mass neutron stars rules out many soft equations of state with prominent "exotic" compositions. The present work reviews the conditions required for the pressure as a function of baryon density in order to satisfy these new constraints. Several scenarios for sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem. Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor Polyakov--Nambu--Jona-Lasinio (PNJL) model. It is found that a conventional equation of state based on nuclear chiral dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless addition...

  1. Magnetar activity mediated by plastic deformations of neutron star crust

    CERN Document Server

    Lyutikov, Maxim

    2014-01-01

    We advance a "Solar flare" model of magnetar activity, whereas a slow evolution of the magnetic field in the upper crust, driven by electron MHD (EMHD) flows, twists the external magnetic flux tubes, producing persistent emission, bursts and flares. At the same time the neutron star crust plastically relieves the imposed magnetic field stress, limiting the strain $ \\epsilon_t $ to values well below the critical strain $ \\epsilon_{crit}$ of a brittle fracture, $ \\epsilon_t \\sim 10^{-2}\\epsilon_{crit} $. Magnetar-like behavior, occurring near the magnetic equator, takes place in all neutron stars, but to a different extent. The persistent luminosity is proportional to cubic power of the magnetic field (at a given age), and hence is hardly observable in most rotationally powered neutron stars. Giant flares can occur only if the magnetic field exceeds some threshold value, while smaller bursts and flares may take place in relatively small magnetic fields. Bursts and flares are magnetospheric reconnection events t...

  2. Masses, Radii, and the Equation of State of Neutron Stars

    Science.gov (United States)

    Özel, Feryal; Freire, Paulo

    2016-09-01

    We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10-11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.

  3. On the spreading layer emission in luminous accreting neutron stars

    CERN Document Server

    Revnivtsev, Mikhail G; Poutanen, Juri

    2013-01-01

    Emission of the neutron star surface potentially contains information about its size and thus of vital importance for high energy astrophysics. In spite of the wealth of data on the emission of luminous accreting neutron stars, the emission of their surfaces is hard to disentangle from their time averaged spectra. A recent X-ray transient source XTE J1701-462 has provided a unique dataset covering the largest ever observed luminosity range for a single source. In this paper, we extract the spectrum of the boundary layer between the inner part of the accretion disc and the neutron star surface with the help of maximally spectral model-independent method. We show compelling evidences that the energy spectrum of the boundary layer stays virtually the same over factor of 20 variations of the source luminosity. It is rather wide and cannot be described by a single temperature blackbody spectrum, probably because of the inhomogeneity of the boundary layer and a spread in the colour temperature. The observed maximum...

  4. Masses, Radii, and Equation of State of Neutron Stars

    CERN Document Server

    Ozel, Feryal

    2016-01-01

    We summarize our current knowledge of neutron star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the last few years, leading to a large number of mass measurements. These discoveries show that the neutron star mass distribution is much wider than previously thought, with 3 known pulsars now firmly in the 1.9-2.0 Msun mass range. For radii, large, high quality datasets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 9.9-11.2 km range and shrinking their uncertainties due to a better understanding of the sources of systematic errors. The combination of the massive neutron star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties...

  5. Theoretical and observational constraints on the mass-radius relations of neutron stars

    CERN Document Server

    Boshkayev, Kuantay; Muccino, Marco

    2016-01-01

    We investigate theoretical and observational constraints on the mass-radius relations for neutron stars. For that purpose we consider the model of neutron stars taking into considerations strong, weak, electromagnetic and gravitational interactions in the equation of state and integrate the structure equations within the Hartle-Thorne formalism for rotating configurations. On the basis of the theoretical restrictions imposed by general relativity, mass-shedding and axisymmetric secular instabilities we calculate the upper and lower bounds for the parameters of neutron stars. Our theoretical calculations have been compared and contrasted with the observational constraints and as a result we show that the observational constraints favor stiff equations of state.

  6. Atmospheres and radiating surfaces of neutron stars with strong magnetic fields

    CERN Document Server

    Potekhin, A Y; Chabrier, G

    2016-01-01

    We review the current status of the theory of thermal emission from the surface layers of neutron stars with strong magnetic fields $B\\sim 10^{10}-10^{15}$ G, including formation of the spectrum in a partially ionized atmosphere and at a condensed surface. In particular, we describe recent progress in modeling partially ionized atmospheres of central compact objects in supernova remnants, which may have moderately strong fields $B\\sim 10^{10}-10^{11}$ G. Special attention is given to polarization of thermal radiation emitted by a neutron star surface. Finally, we briefly describe applications of the theory to observations of thermally emitting isolated neutron stars.

  7. Numerical solutions of general-relativistic field equations for rapidly rotating neutron stars

    Institute of Scientific and Technical Information of China (English)

    吴雪君; 须重明

    1997-01-01

    Stationary axial symmetric equilibrium configurations rapidly rotating with uniform angular velocity in the framework of genera! relativity are considered. Sequences of models are numerically computed by means of a computer code that solves the full Einstein equations exactly. This code employs Neugebauer’s minimal surface formalism, where the field equations are equivalent to two-dimensional minimal surface equations for 4 metric potentials. The calculations are based upon 10 different equations of state. Results of various structures of neutron stars and the rotational effects on stellar structures and properties are reported. Finally some limits to equations of state of neutron stars and the stability for rapidly rotating relativistic neutron stars are discussed.

  8. Energy Density Functional for Nuclei and Neutron Stars

    Energy Technology Data Exchange (ETDEWEB)

    Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

    2013-01-01

    Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data

  9. Investigating Variability of Quiescent Neutron Stars in the Globular Clusters NGC 6440 and Terzan 5

    CERN Document Server

    Walsh, A R; Bernardini, F

    2014-01-01

    The quiescent spectrum of neutron star low-mass X-ray binaries typically consists of two components - a thermal component associated with emission from the neutron star surface, and a non-thermal power-law component whose origin is not well understood. Spectral fitting of neutron star atmosphere models to the thermal component is one of the leading methods for measuring the neutron star radius. However, it has been known for years that the X-ray spectra of quiescent neutron stars vary between observations. While most quiescent variability is explained through a variable power-law component, the brightest and best-studied object, Cen X-4, requires a change in the thermal component and such thermal variability could be a problem for measuring neutron star radii. In this paper, we significantly increase the number of sources whose quiescent spectra have been studied for variability. We examine 9 potential quiescent neutron stars with luminosities <1E34 erg/s over the course of multiple Chandra observations of...

  10. Joule Heating in Neutron Stars under Strong Gravitation

    OpenAIRE

    Sengupta, Sujan

    2000-01-01

    Considering Joule heating caused by the dissipation of the magnetic field in the neutron star crust to be an efficient mechanism in maintaining a relatively high surface temperature in very old neutron stars, the role of general relativity is investigated. It is found that, although the effect of space-time curvature produced by the intense gravitational field of the star slows down the decay rate of the magnetic field, modification of the initial magnetic field configuration and the initial ...

  11. Relativistic Simulations of Eccentric Binary Neutron Star Mergers: One-arm Spiral Instability and Effects of Neutron Star Spin

    CERN Document Server

    East, William E; Pretorius, Frans; Shapiro, Stuart L

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Fur...

  12. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    Science.gov (United States)

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-01

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 1014 G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 1018 G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  13. Time dependent models of accretion disks with nuclear burning following the tidal disruption of a white dwarf by a neutron star

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...

  14. Rotating proto-neutron stars: spin evolution, maximum mass and I-Love-Q relations

    CERN Document Server

    Martinon, Grégoire; Gualtieri, Leonardo; Ferrari, Valeria

    2014-01-01

    Shortly after its birth in a gravitational collapse, a proto-neutron star enters in a phase of quasi-stationary evolution characterized by large gradients of the thermodynamical variables and intense neutrino emission. In few tens of seconds the gradients smooth out while the star contracts and cools down, until it becomes a neutron star. In this paper we study this phase of the proto-neutron star life including rotation, and employing finite temperature equations of state. We model the evolution of the rotation rate, and determine the relevant quantities characterizing the star. Our results show that an isolated neutron star cannot reach, at the end of the evolution, the maximum values of mass and rotation rate allowed by the zero-temperature equation of state. Moreover, a mature neutron star evolved in isolation cannot rotate too rapidly, even if it is born from a proto-neutron star rotating at the mass-shedding limit. We also show that the I-Love-Q relations are violated in the first second of life, but th...

  15. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D.; Fridriksson, J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Brown, E. F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Homan, J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Pooley, D., E-mail: degenaar@umich.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2013-09-20

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

  16. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    Science.gov (United States)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  17. Rotational and magnetic field instabilities in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kokkotas, Kostas D. [Theoretical Astrophysics, IAAT, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  18. Temperature distribution in magnetized neutron star crusts

    CERN Document Server

    Geppert, U; Page, D

    2004-01-01

    We investigate the influence of different magnetic field configurations on the temperature distribution in neutron star crusts. We consider axisymmetric dipolar fields which are either restricted to the stellar crust, ``crustal fields'', or allowed to penetrate the core, ``core fields''. By integrating the two-dimensional heat transport equation in the crust, taking into account the classical (Larmor) anisotropy of the heat conductivity, we obtain the crustal temperature distribution, assuming an isothermal core. Including quantum magnetic field effects in the envelope as a boundary condition, we deduce the corresponding surface temperature distributions. We find that core fields result in practically isothermal crusts unless the surface field strength is well above $10^{15}$ G while for crustal fields with surface strength above a few times $10^{12}$ G significant deviations from isothermality occur at core temperatures inferior or equal to $10^8$ K. At the stellar surface, the cold equatorial region produce...

  19. Physical Environment of Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-01-01

    Full Text Available Neutron stars (NSs powered by accretion, which are known as accretion-powered NSs, always are located in binary systems and manifest themselves as X-ray sources. Physical processes taking place during the accretion of material from their companions form a challenging and appealing topic, because of the strong magnetic field of NSs. In this paper, we review the physical process of accretion onto magnetized NS in X-ray binary systems. We, firstly, give an introduction to accretion-powered NSs and review the accretion mechanism in X-ray binaries. This review is mostly focused on accretion-induced evolution of NSs, which includes scenario of NSs both in high-mass binaries and in low-mass systems.

  20. Light Curves of Rapidly Rotating Neutron Stars

    CERN Document Server

    Braje, T M; Rauch, K P; Braje, Timothy M.; Romani, Roger W.; Rauch, Kevin P.

    2000-01-01

    We consider the effect of rapid rotation on the light curves of neutron stars with hot polar caps. For $P \\approx 3$ms spin periods, the pulse fractions can be as much as an order of magnitude larger than with simple slowly-rotating (Schwarzschild) estimates. Doppler boosting, in particular, leads to characteristic distortion and ``soft lags'' in the pulse profiles, which are easily measurable in light curves with moderate energy resolution. With $\\sim 10^5$ photons it should also be possible to isolate the more subtle distortions of light travel time variations and frame dragging. Detailed analysis of high quality millisecond pulsar data from upcoming X-ray missions must include these effects.

  1. Chandra Spectroscopy of a Remarkable Neutron Star

    Science.gov (United States)

    Miller, Jon

    2013-09-01

    IGR J17062-6143 is one of only 5 sources that have displayed a super-expansion burst. This requires a special mode of continuous low-level accretion that allows material to accumulate on the stellar surface, without triggering smaller bursts. Swift spectroscopy of a super-expansion burst in IGR J17062-6143 revealed the only strong detections of atomic emission and absorption lines in a burst observed at CCD or gratings resolution. Whereas atomic features from the stellar surface have not been detected in other neutron stars, the accretion mode in IGR J17062-6143 may provide the right conditions. To search for lines from the surface, and to better understand the nature of low-level accretion, we request a 100 ksec HETGS observation of IGR J17062-6143.

  2. (K)0 Condensation in Hyperonic Neutron Star Matter

    Institute of Scientific and Technical Information of China (English)

    DING Wen-Bo; LIU Guang-Zhou; ZHU Ming-Feng; YU Zi; ZHAO En-Guang

    2008-01-01

    In the framework of the relativistic mean field theory,we investigate (K)0 condensation along with Kˉcondensation occur well in the core of the maximum mass stars for relatively shallow optical potentials of (K) in the range of-100 MeV~-160 MeV.With the increasing optical potential of (K),the critical densities of (K) decrease and the species of baryons appearing in neutron stars become fewer.The main role of (K)0 condensation is to make the abundances of particles become identical leading to isospin saturated symmetric matter including antikaons,state,which leads to a large reduction in the maximum masses of neutron stars.In the core of massive neutron stars,neutron star matter including rich particle species,such as antikaons,nucleons and hyperons,may exist.

  3. Neutrino flavor evolution in neutron star mergers

    Science.gov (United States)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  4. The neutron star inner crust and symmetry energy

    CERN Document Server

    Grill, Fabrizio; Providência, Constança

    2012-01-01

    The cell structure of clusters in the inner crust of a cold \\beta-equilibrium neutron star is studied within a Thomas Fermi approach and compared with other approaches which include shell effects. Relativistic nuclear models are considered. We conclude that the symmetry energy slope L may have quite dramatic effects on the cell structure if it is very large or small. Rod-like and slab-like pasta clusters have been obtained in all models except one with a large slope L.

  5. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    Science.gov (United States)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  6. Isolated Neutron Stars: From the Surface to the Interior

    CERN Document Server

    Zane, Silvia; Page, Dany

    2007-01-01

    This book collects the contributions presented at the conference Isolated Neutron Stars: From the Surface to the Interior, held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years with the advance of multi-wavelength observations. The great variety of isolated neutron stars, from pulsars to magnetars, some of them discovered very recently and many of them not detectable in radio wavelengths, is amply covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.

  7. Energy of Gravitational Field of Static Spherically Symmetric Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    WENDe-Hua; CHENWei; WANGXian-Ju; AIBao-Quan; LIUGuo-Tao; LIULiang-Gang

    2003-01-01

    By using the Einstein-Tolman expression of the energy-momentum pseudo-tensor, the energy density of the gravitational field of the static spherically symmetric neutron stars is calculated in the Cartesian coordinate system.It is exciting that the energy density of gravitational field is positive and rational The xmmerical results of the energy density of gravitational field of neutron stars are calculated. For neutron stars with M=2M, the ratio of the energy density of gravitational field to the energy density of pure matters would be up to 0.54 at the surface.

  8. Joule heating governing the cooling of magnetized neutron stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2008-01-01

    We present two-dimensional simulations for the cooling of neutron stars with strong magnetic fields (B > 1e13 Gauss). We study how the cooling curves are influenced by magnetic field decay. We show that the Joule heating effects are very large and in some cases control the thermal evolution. We characterize the temperature anisotropy induced by the magnetic field and predict the surface temperature distribution for the early and late stages of the evolution of isolated neutron stars, comparing our results with available observational data of isolated neutron stars.

  9. The EOS of neutron matter and the effect of $\\Lambda$ hyperons to neutron star structure

    CERN Document Server

    Gandolfi, Stefano

    2015-01-01

    The structure of neutron stars is determined by the equation of state of the matter inside the star, which relies on the knowledge of nuclear interactions. While radii of neutron stars mostly depend on the equation of state of neutron matter at nuclear densities, their maximum mass can be drastically affected by the appearance of hyperons at higher densities in the inner core of the star. We summarize recent quantum Monte Carlo results on the calculation of the equation of state of neutron matter at nuclear and higher densities. We report about the development of realistic hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei and on the effect of $\\Lambda$ hyperons to the neutron star structure.

  10. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  11. Four-Hair Relations for Differentially Rotating Neutron Stars in the Weak-Field Limit

    CERN Document Server

    Bretz, Joseph; Yunes, Nicolas

    2015-01-01

    The opportunity to study physics at supra-nuclear densities through X-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about r...

  12. Supernova explosions and the birth of neutron stars

    CERN Document Server

    Janka, H -Th; Müller, B; Scheck, L

    2007-01-01

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from about 8 solar masses to at least 15 solar masses, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects ...

  13. Life Extinctions due to Neutron Star Mergers

    CERN Document Server

    Dar, Arnon; Shaviv, N J; Dar, Arnon; Laor, Ari; Shaviv, Nir J.

    1996-01-01

    In a recent paper, Shaviv and Dar have shown that highly relativistic ejecta of high Z material from merger or accretion induced collapse of neutron stars can boost and beam star-light in dense stellar regions into cosmological gamma ray bursts (GRBs) whose predicted properties reproduce remarkably well the observed properties of GRBs. Generally, only a small fraction of the relativistic kinetic energy of the ejecta is converted into gamma rays and most of it is injected into the interstellar medium as a very powerful cosmic ray burst (CRB). Here we show that such CRBs can extinct life on Earth-like planets if they are closer than $\\sim 1 ~kpc$ from the merger/explosion. Such CRBs produce lethal fluxes of atmospheric muons at ground, underground and underwater. They also destroy the ozone layer, radioactivate the atmosphere and the surface of the planet and induce large climatic changes. They are enormously more violent than the GRBs alone or supernova explosions. In Milky-Way like galaxies they destroy life ...

  14. Highly magnetized white dwarf as a possible alternate to neutron star to resolve shortcoming of magnetar model

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.; Das, Upasana; Subramanian, Sathyawageeswar; Bhattacharya, Mukul

    2016-07-01

    Since 2012, in a series of paper (so far 15, published in Phys. Rev. Lett., 110, 071102, 2013; ApJLett., 767, 14, 2013; MNRAS, 454, 752, 2015, etc.), we have been exploring the possible existence of highly magnetized super-Chandrasekhar white dwarfs. Not only their mass is highly super-Chandrasekhar, they could be much smaller in size compared to the conventional white dwarfs. Here, first I plan to give an overview of the scientific evolution of the model and its current status. Subsequently, on establishing its reliability, I will show that it could be a potential candidate to explain the features lying with soft gamma-ray repeaters and anomalous X-ray pulsars, some of which the conventional neutron state based model, based on huge observationally unconfirmed yet surface magnetic fields, cannot explain. I will also highlight that our highly magnetized white dwarfs should exhibit very low luminosity, hence are difficult to observe directly.

  15. Multiple-Orbit Simulations of Binary Neutron Stars

    CERN Document Server

    Suh, InSaeng; Haywood, J Reese; Lan, N Q

    2016-01-01

    We study the general relativistic hydrodynamic evolution of neutron stars in binary orbits and analyze the equation of state dependence of the orbits as the stars approach the inner most last stable circular orbit. We show that by employing a conformally flat condition on the metric, one can stably numerically evolve ~100 quasi-circular orbits and could straightforwardly extend the calculation to the ~10,000 orbits needed to follow stars through the LIGO frequency band. We apply this code to orbiting neutron stars in the quasi-circular orbit approximation to both demonstrate the stability of this approach and explore the equation of state dependence of the orbital properties. We employ variety of available realistic neutron star equations of state as well as a Gamma=2 polytrope. We confirm that both the orbital and emergent gravity wave frequency evolve more slowly for a softer equation of state as the stars approach the innermost stable circular orbit.

  16. Maximal neutron star mass and the resolution of hyperon puzzle in modified gravity

    CERN Document Server

    Astashenok, Artyom V; Odintsov, Sergei D

    2014-01-01

    The so-called hyperon puzzle in the theory of neutron stars is considered in the framework of modified $f(R)$ gravity. We show that for simple hyperon equations of state, it is possible to obtain the maximal neutron star mass which satisfies the recent observational data for PSR J1614-2230, in higher-derivative models with power-law terms as $f(R) = R+\\alpha R^2+ \\beta R^3$. The soft hyperon equation of state under consideration is usually treated as non-realistic in the standard General Relativity. The numerical analysis of Mass-Radius relation for massive neutron stars with hyperon equation of state in modified gravity turns out to be consistent with observations. Thus, we show that the same modified gravity can solve at once three problems: consistent description of the maximal mass of neutron star, realistic Mass-Radius relation and account for hyperons in equation of state.

  17. A comparison of methods for the detection of gravitational waves from unknown neutron stars

    CERN Document Server

    Walsh, Sinead; D'Antonio, Sabrina; Dergachev, Vladimir; Krolak, Andrzej; Oliver, Miquel; Astone, Pia; Bejger, Michal; Di Giovanni, Matteo; Dorosh, Orest; Frasca, Sergio; Leaci, Paola; Mastrogiovanni, Simone; Miller, Andrew; Palomba, Cristiano; Papa, Maria Alessandra; Piccinni, Ornella J; Riles, Keith; Sauter, Orion; Sintes, Alicia M

    2016-01-01

    Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the short duration search methods, while the long dur...

  18. Prospects For High Frequency Burst Searches Following Binary Neutron Star Coalescence With Advanced Gravitational Wave Detectors

    CERN Document Server

    Clark, J; Cadonati, L; Janka, H -T; Pankow, C; Stergioulas, N

    2014-01-01

    The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent numerical simulations with microphysical equation of state suggest the outcome of such events depends on the mass of the neutron stars. For less massive systems, simulations favor the formation of a hypermassive, quasi-stable neutron star, whose oscillations produce a short, high frequency burst of gravitational radiation. Its dominant frequency content is tightly correlated with the radius of the neutron star, and its measurement can be used to constrain the supranuclear equation of state. In contrast, the merger of higher mass systems results in prompt gravitational collapse to a black hole. We have developed an algorithm which combines waveform reconstruction from a morphology-independent search for gravitational wave transients with Bayesian model selection, to discriminate between post-merger scenarios and accurately measure the dominant oscillation frequency. We demonstrate the efficacy of the method us...

  19. Initial data for black hole-neutron star binaries, with rotating stars

    CERN Document Server

    Tacik, Nick; Pfeiffer, Harald P; Muhlberger, Curran; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2016-01-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as $S_{\\rm BH}/M_{\\rm BH}^2=0.99$.

  20. Initial data for black hole–neutron star binaries, with rotating stars

    Science.gov (United States)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole–neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  1. Constraining the Spin-down of the Nearby Isolated Neutron Star RX J0806.4-4123, and Implications for the Population of Nearby Neutron Stars

    CERN Document Server

    Kaplan, D L

    2009-01-01

    The nearby isolated neutron stars are a group of seven relatively slowly rotating neutron stars that show thermal X-ray spectra, most with broad absorption features. They are interesting both because they may allow one to determine fundamental neutron-star properties by modeling their spectra, and because they appear to be a large fraction of the overall neutron-star population. Here, we describe a series of XMM-Newton observations of the nearby isolated neutron star RX J0806.4-4123, taken as part of larger program of timing studies. From these, we limit the spin-down rate to dnu/dt=(-4.3+/-2.3)*10^{-16} Hz/s. This constrains the dipole magnetic field to be <3.7e13 G at 2sigma, significantly less than the field of 1e14 G implied by simple models for the X-ray absorption found at 0.45 keV. We confirm that the spectrum is thermal and stable (to within a few percent), but find that the 0.45 keV absorption feature is broader and more complex than previously thought. Considering the population of isolated neutr...

  2. Phase-resolved spectra of burst oscillations in Neutron Stars

    Science.gov (United States)

    Zoghbi, Abderahmen; Miller, Jon M.

    2017-08-01

    Millisecond oscillations have been observed during thermonuclear bursts from many neutron stars (NS) in LMXBs. Their periods are comparable to the rotational period of the NS, and are thought to be produced by temperature anisotropies on the NS surface. Understanding and correcly modeling these oscillation is a powerful tool to constrain the NS interior. Studying these oscillations has thus far focused on modeling the oscillation profile form these pulsations using mostly XTE data. Here, we take a different approach and extract spectra at different phases of the oscillations. This allows us track the observed spectrum as the NS rotates. We are able to measure temperature changes as the star rotates. The temperature profiles from some bursts show asymetries likely due to Doppler effects. Here, we present detailed results from the phase spectra and discuss their implications on measurements of NS masses and radii.

  3. Neutron-capture nucleosynthesis in the first stars

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Preston, George W.; Thompson, Ian B.; Shectman, Stephen A. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sneden, Christopher, E-mail: iur@umich.edu [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States)

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  4. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    K K Mohanta; R Mallick; N R Panda; L P Singh; P K Sahu

    2014-05-01

    Compact stars such as neutron stars (NS) can have either hadronic or exotic states like strange quark or colour superconducting matter. Stars can also have a quark core surrounded by hadronic matter, known as hybrid stars (HS). The HS is likely to have a mixed phase in between the hadron and the quark phases. Observational results suggest huge surface magnetic field in certain NS. Therefore, we study here the effect of strong magnetic field on the respective equation of states (EOS) of matter under extreme conditions. We further study the hadron–quark phase transition in the interiors of NS giving rise to HS in the presence of strong magnetic field. The hadronic matter EOS is described based on RMF theory and we include the effects of strong magnetic fields leading to Landau quantization of the charged particles. For quark phase, we use the simple Massachusetts Institute of Technology (MIT) bag model, assuming density-dependent bag pressure and magnetic field. The magnetic field strength increases from the surface to the centre of the star. We construct the intermediate mixed phase using Glendenning conjecture. The magnetic field softens the EOS of both the matter phases. We finally study, the mass–radius relationship for such types of mixed HS, calculating their maximum mass, and compare them with the recent observations of pulsar PSR J1614-2230, which is about 2 solar mass.

  5. Gravitational radiation from neutron stars deformed by crustal Hall drift

    Science.gov (United States)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  6. Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    CERN Document Server

    Jonker, P G

    2007-01-01

    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient CenX-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to t...

  7. Constraining neutron star tidal Love numbers with gravitational wave detectors

    CERN Document Server

    Flanagan, Eanna E

    2007-01-01

    We quantify the ability of ground-based gravitational wave detectors to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star (NS-NS) inspirals. In this early adiabatic regime, the influence of a NS's internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We restrict attention to gravitational wave frequencies smaller than a cutoff frequency of 400 Hz. In this domain, f-mode frequency dependent corrections to the internal-structure signal are less than 3%, and higher order multipole corrections are less than 5%, for NS models with f-mode frequencies greater than 1 kHz. For an inspiral of two non-spinning 1.4 solar mass NSs at a signal-to-noise ratio of 20, LIGO I (LIGO II) detectors will be able to constrain lambda to lambda < 1.3 (3.3) 10^(37) g cm^2 s^2 ...

  8. Electron transport through nuclear pasta in magnetized neutron stars

    CERN Document Server

    Yakovlev, D G

    2015-01-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  9. The spatial distribution of old neutron stars in the Galaxy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The spatial distributions of old neutron stars (NSs) with ages 109 to 1010 yr in our Galaxy are investigated by Monte Carlo simulation under two different initial random velocity models.It is found that the scale heights of the distribution increase with the Galactic radial distance.The location of the peak of the NS distribution is closer to the Galactic center than that of their progenitors.The results from our detailed numerical analysis reveal that there is resemblance between the simulated old NS distribution and the structure of the observed HI disk.

  10. The distance and internal composition of the neutron star in EXO 0748−676 with XMM-Newton

    NARCIS (Netherlands)

    Zhan, Guobao; Méndez, Mariano; Jonker, Peter; Hiemstra, Beike

    2011-01-01

    Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fits we constrained the allowed parameter space in

  11. The distance and internal composition of the neutron star in EXO 0748-676 with XMM-Newton

    NARCIS (Netherlands)

    Zhang, Guobao; Mendez, Mariano; Jonker, Peter; Hiemstra, Beike

    Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analysed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron star atmosphere models. From the fits we constrained the allowed parameter space in

  12. The distance and internal composition of the neutron star in EXO 0748−676 with XMM-Newton

    NARCIS (Netherlands)

    Zhan, Guobao; Méndez, Mariano; Jonker, Peter; Hiemstra, Beike

    2011-01-01

    Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fits we constrained the allowed parameter space in t

  13. Neutron stars as probes of extreme energy density matter

    CERN Document Server

    Prakash, Madappa

    2014-01-01

    Neutron stars have long been regarded as extra-terrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, I highlight some of the recent advances made in astrophysical observations and related theory. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.

  14. Effects of neutron-star dynamic tides on gravitational waveforms within the effective-one-body approach

    CERN Document Server

    Hinderer, Tanja; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-01-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging, neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star, as well as the merger signal for neutron-star--black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star--black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  15. Influence of Interactions on Populations for Hyperons in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Zhou; ZHAO En-Guang; LIU Wei; SUN Bao-Xi

    2004-01-01

    The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The influence of the hyperon interactions on hyperon populations in neutron star matter is discussed. The results manifest that when the ratio of the hyperon-to-nucleon couplings increases, all hyperons appear towards low baryon density direction.

  16. The Neutron star Interior Composition Explorer (NICER): design and development

    OpenAIRE

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Black, J. Kevin; Blaurock, Carl; Bronke, Ginger M.

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During P...

  17. Of Mountains and Molehills : Gravitational Waves from Neutron Stars

    CERN Document Server

    Konar, Sushan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-01-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seem to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in HMXBs would be worth considering for targeted search for continuous gravitational waves with the next generation of instruments.

  18. Gravitational waves from surface inhomogeneities of neutron stars

    Science.gov (United States)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  19. Many-body theory of nuclear and neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  20. Spectroscopic Analysis of Subluminous B Stars in Binaries - Four Candidate Systems with Neutron Star/Black Hole Companions Discovered

    CERN Document Server

    Geier, S; Edelmann, H; Heber, U; Napiwotzki, R

    2006-01-01

    The masses of compact objects like white dwarfs, neutron stars and black holes are fundamental to astrophysics, but very difficult to measure. We present the results of an analysis of subluminous B (sdB) stars in close binary systems with unseen compact companions to derive their masses and clarify their nature. Radial velocity curves were obtained from time resolved spectroscopy. The atmospheric parameters were determined in a quantitative spectral analysis. With high resolution spectra we were able to measure the projected rotational velocity of the stars with high accuracy. The assumption of orbital synchronization made it possible to constrain inclination angle and companion mass of the binaries. Five invisible companions have masses that are compatible with white dwarfs or late type main sequence stars. But four sdBs have very massive companions like heavy white dwarfs, neutron stars or even black holes. Such a high fraction of massive compact companions can not be explained with current models of binary...

  1. Continued Neutron Star Crust Cooling of the 11 Hz X-Ray Pulsar in Terzan 5: A Challenge to Heating and Cooling Models?

    CERN Document Server

    Degenaar, N; Brown, E F; Altamirano, D; Cackett, E M; Fridriksson, J; Homan, J; Heinke, C O; Miller, J M; Pooley, D; Sivakoff, G R

    2013-01-01

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11-week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ~2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the q...

  2. Advection of magnetic flux by accretion disks around neutron stars

    Science.gov (United States)

    Flores-Tulian, S.; Reisenegger, A.

    The aim of our research is to address why millisecond pulsars have relatively weak surface magnetic fields, of about 10^8 G, with a narrow spread. We propose that the accretion of plasma from the companion star fully screens the original neutron star field, but the accretion disk carries additional magnetic flux from the companion star, or itself can generate field by means of dynamo processes. For a strongly magnetized star, the field prevents the disk from approaching the star. The accretion is along the field lines and deposits the matter on the polar cap. Then, the accreted plasma flows, dragging with itself the magnetic field lines, from the pole to the equator (Payne & Melatos 2004). In a following stage, when the star becomes non-magnetic, because the field has been buried, the disk touches the star. We suggest that some effective mechanism of magnetic flux transport such as that proposed by Spruit & Uzdensky 2005 (or Bisnovatyi-Kogan & Lovelace 2007), operates and necessarily leads to a "strongly magnetized disk''. It becomes laminar because the magneto-rotational instability saturates (it is considered to be responsible for turbulence in the disk), and the magnetic difussivity is negligible. Then, the loss of angular momentum allowing the accretion is only caused by the magneto-centrifugal disk-wind (Blandford & Payne 1982). Meanwhile, the wind-driven transport of the magnetic flux by the disk re-magnetizes the star. This process continues until the Lorentz force due to the star's magnetic field forbids any further accretion of matter and magnetic flux, in the Ideal Magneto-Hydro-Dynamics approach. Additional of material can fall onto the star (but at lower rate) if some instability process sets in, allowing the diffusion of mass through the magnetic field lines (e.g the Interchange Instability, Spruit & Taam 1990). All these processes might lead to an asymptotic magnetic field of 10^8 G,as is inferred from observations. We are developing a self

  3. Appearance of innermost stable circular orbits of accretion discs around rotating neutron stars

    CERN Document Server

    Torok, G; Adamek, K; Urbancova, G

    2014-01-01

    The innermost stable cicular orbit (ISCO) of an accretion disc orbiting a neutron star (NS) is often assumed a unique prediction of general relativity. However, it has been argued that ISCO also appears around highly elliptic bodies described by Newtonian theory. In this sense, the behaviour of an ISCO around a rotating oblate neutron star is formed by the interplay between relativistic and Newtonian effects. Here we briefly explore the consequences of this interplay using a straightforward analytic approach as well as numerical models that involve modern NS equations of state. We examine the ratio K between the ISCO radius and the radius of the neutron star. We find that, with growing NS spin, the ratio K first decreases, but then starts to increase. This non-monotonic behaviour of K can give rise to a neutron star spin interval in which ISCO appears for two very different ranges of NS mass. This may strongly affect the distribution of neutron stars that have an ISCO (ISCO-NS). When (all) neutron stars are d...

  4. Hydrodynamics of coalescing binary neutron stars ellipsoidal treatment

    CERN Document Server

    Lai, D; Lai, Dong; Shapiro, Stu

    1994-01-01

    We employ an approximate treatment of dissipative hydrodynamics in three dimensions to study the coalescence of binary neutron stars driven by the emission of gravitational waves. The stars are modeled as compressible ellipsoids obeying a polytropic equation of state; all internal fluid velocities are assumed to be linear functions of the coordinates. The hydrodynamic equations then reduce to a set of coupled ordinary differential equations for the evolution of the principal axes of the ellipsoids, the internal velocity parameters and the binary orbital parameters. Gravitational radiation reaction and viscous dissipation are both incorporated. We set up exact initial binary equilibrium configurations and follow the transition from the quasi-static, secular decay of the orbit at large separation to the rapid dynamical evolution of the configurations just prior to contact. A hydrodynamical instability resulting from tidal interactions significantly accelerates the coalescence at small separation, leading to app...

  5. Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state

    Science.gov (United States)

    Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2011-09-01

    We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning

  6. Instability windows and evolution of rapidly rotating neutron stars

    CERN Document Server

    Gusakov, Mikhail E; Kantor, Elena M

    2013-01-01

    We consider an instability of rapidly rotating neutron stars in low-mass X-ray binaries (LMXBs) with respect to excitation of r-modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. We demonstrate that neutron stars with high spin frequency spend a substantial amount of time at these `resonance' temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot non-accreting rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB (qLMXB) candidates. We also impose a new theoretical limit on the neutron star spin frequency, explaining the cut-off spin frequency ~730 Hz, following from the statistical analysis of accreting milli...

  7. Lev Landau and the conception of neutron stars

    CERN Document Server

    Yakovlev, Dmitry G; Baym, Gordon; Pethick, Christopher J

    2012-01-01

    We review the history of neutron star physics in the 1930s that is related to L. Landau. According to recollections of Rosenfeld (1974, Proc. 16th Solvay Conference on Physics, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion took place in March 1931, before the discovery of the neutron, and that they in fact discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion, 1, 285). In his paper Landau mentioned the possible existence of dense stars which look like one giant nucleus; this can be regarded as an early theoretical prediction or anticipation of neutron stars, prior to the discovery of the neutron. The coincidence of the dates of the neutron's discovery and the paper's publication has led to an erroneous association of the paper with the discovery of the neutron. I...

  8. Magnetic Neutron Stars in f(R) gravity

    CERN Document Server

    Astashenok, Artyom V; Odintsov, Sergei D

    2015-01-01

    Neutron stars with strong magnetic fields are considered in the framework of f(R) gravity. In order to describe dense matter in magnetic field, the model with baryon octet interacting through $\\sigma$$\\rho$$\\omega$-fields is used. The hyperonization process results in softening the equation of state (EoS) and in decreasing the maximal mass. We investigate the effect of strong magnetic field in models involving quadratic and cubic corrections in the Ricci scalar $R$ to the Hilbert-Einstein action. For large fields, the Mass-Radius relation differs considerably from that of General Relativity only for stars with masses close to the maximal one. Another interesting feature is the possible existence of more compact stable stars with extremely large magnetic fields ($\\sim 6\\times 10^{18}$ G instead of $\\sim 4\\times 10^{18}$ G as in General Relativity) in the central regions of the stars. Due to cubic terms, a significant increasing of the maximal mass is possible.

  9. Probing the nuclear equation of state by heavy-ion reactions and neutron star properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, P.K.; Cassing, W.; Thoma, M.H. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany)

    1998-06-01

    We discuss the nuclear equation of state (EOS) using a non-linear relativistic transport model. From the baryon flow for Ni + Ni as well as Au + Au systems we find that the strength of the vector potential has to be reduced at high density or at high relative momenta to describe the experimental flow data at 1-2 A GeV. We use the same dynamical model to calculate the nuclear EOS and then employ this EOS to neutron star structure calculations. We consider the core of the neutron star to be composed of neutrons with an admixture of protons, electrons, muons, sigmas and lambdas at zero temperature. We find that the nuclear equation of state is softer at high densities and hence the maximum mass and the radius of the neutron star are in the observable range of M {proportional_to} 1.7 M{sub s}un and R = 8 km, respectively. (orig.)

  10. Super-Eddington accretion on to a magnetized neutron star

    Science.gov (United States)

    Chashkina, Anna; Abolmasov, Pavel; Poutanen, Juri

    2017-09-01

    Most of ultraluminous X-ray sources are thought to be objects accreting above their Eddington limits. In the recently identified class of ultraluminous X-ray pulsars, accretor is a neutron star and thus has a fairly small mass with a small Eddington limit. The accretion disc structure around such an object affects important observables such as equilibrium period, period derivative and the size of the magnetosphere. We propose a model of a nearly standard accretion disc interacting with the magnetosphere only in a thin layer near the inner disc rim. Our calculations show that the size of the magnetosphere may be represented as the classical Alfvén radius times a dimensionless factor ξ which depends only on the disc thickness. In the case of radiation-pressure-dominated disc, the size of the magnetosphere does not depend on the mass accretion rate. In general, increasing the disc thickness leads to a larger magnetosphere size in units of the Alfvén radius. For large enough mass accretion rates and magnetic moments, it is important to take into account not only the pressure of the magnetic field and the radiation pressure inside the disc, but also the pressure of the radiation produced close to the surface of the neutron star in accretion column. The magnetospheric size may increase by up to factor of 2 as a result of the effects related to the disc thickness and the irradiation from the central source. Accounting for these effects reduces the estimate of the neutron star magnetic moment by a factor of several orders.

  11. Comptonization and QPO Origins in Accreting Neutron Star Systems

    CERN Document Server

    Lee, H C; Lee, Hyong C.; Miller, Guy S.

    1997-01-01

    We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft ``seed photons'' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disk. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPO) observed in the X-ray outputs of many accreting neutron star and black hole syste...

  12. Accretion by a Neutron Star Moving at a High Kick Velocity in the Supernova Ejecta

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Ye Lu; Yong-Heng Zhao

    2007-01-01

    We suggest a two-dimensional time dependent analytic model to describe the accretion of matter onto a neutron star moving at a high speed across the ejecta left in the aftermath of a supernova explosion. The formation of a strange star resulting from the accretion is also addressed. The newborn neutron star is assumed to move outward at a kick velocity of vns ~ 103 km s-1, and the accretion flow is treated as a dust flow. When the neutron star travels across the ejecta with high speed, it sweeps up material, and when the accreted mass has reached a critical value, the neutron star will undergo a phase transition,for instance, to become a strange star. Our results show that the accretion rate decreases in a complicated way in time, not just a power law dependence: it drops much faster than the power law derived by Colpi et al. We also found that the total accreted mass and the phase transition of the neutron star depend sensitively on the velocity of supernova ejecta.

  13. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    Science.gov (United States)

    Bauswein, A; Janka, H-T

    2012-01-06

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.

  14. Constraints on the Equation-of-State of neutron stars from nearby neutron star observations

    OpenAIRE

    Neuhäuser, R.; Hambaryan, V. V.; Hohle, M. M.; Eisenbeiss, T.

    2011-01-01

    We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their p...

  15. Prospects for neutron star equation of state constraints using ''recycled'' millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia University, Columbia Astrophysics Laboratory, New York, NY (United States)

    2016-02-15

    ''Recycled'' millisecond pulsars are a variety of rapidly spinning neutron stars that typically show thermal X-ray radiation due to the heated surface of their magnetic polar caps. Detailed numerical modeling of the rotation-induced thermal X-ray pulsations observed from recycled millisecond pulsars, including all relevant relativistic and stellar atmospheric effects, has been identified as a promising approach towards an astrophysical determination of the true neutron star mass-radius relation, and by extension the state of cold matter at densities exceeding those of atomic nuclei. Herein, I review the basic model and methodology commonly used to extract information regarding neutron star structure from the pulsed X-ray radiation observed from millisecond pulsars. I also summarize the results of past X-ray observations of these objects and the prospects for precision neutron star mass-radius measurements with the upcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission. (orig.)

  16. Gravitational Higgs Mechanism in Neutron Star Interiors

    CERN Document Server

    Coates, Andrew; Sotiriou, Thomas P

    2016-01-01

    We suggest that nonminimally coupled scalar fields can lead to modifications of the microphysics in the interiors of relativistic stars. As a concrete example, we consider the generation of a non-zero photon mass in such high-density environments. This is achieved by means of a light gravitational scalar, and the scalarization phase transition in scalar-tensor theories of gravitation. Two distinct models are presented, and phenomenological implications are briefly discussed.

  17. A Hot Water Bottle for Aging Neutron Stars

    DEFF Research Database (Denmark)

    Alford, Mark; Jotwani, Pooja; Kouvaris, Christoforos

    2004-01-01

    The gapless color-flavor locked (gCFL) phase is the second-densest phase of matter in the QCD phase diagram, making it a plausible constituent of the core of neutron stars. We show that even a relatively small region of gCFL matter in a star will dominate both the heat capacity C_V and the heat l...

  18. Neutron Star Magnetic Field as for Nonzero Photon Mass

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-Wu; L(U) Xiao-Fu

    2005-01-01

    We investigate the neutron star magnetic field by the relative mean-field theory, where the photon effective mass depending on baryon density of charged particles is nonzero. This field is produced by star itself, which is the function of baryon density. The result fits the observations.

  19. Neutron star mass-radius relation with gravitational field shielding by a scalar field

    Institute of Scientific and Technical Information of China (English)

    Bo-Jun Zhang; Tian-Xi Zhang; Padmaja Guggilla; Mostafa Dokhanian

    2013-01-01

    The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass.To explain these measurements,the theory of gravitational field shielding by a scalar field is applied.This theory was recently developed in accordance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory.It is shown that a massive,compact neutron star can generate a strong scalar field,which can significantly shield or reduce its gravitational field,thus making it more massive and more compact.The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars.In addition,the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g.,40 M⊙ as measured recently) actually formed neutron stars rather than black holes as expected.The EoS models,ruled out by measurements of small radius and/or large mass neutron stars according to the theory of general relativity,can still work well in terms of the 5D fully covariant KK theory with a scalar field.

  20. Energy density functional for nuclei and neutron stars

    CERN Document Server

    Erler, J; Nazarewicz, W; Rafalski, M; Reinhard, P -G

    2012-01-01

    We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When c...

  1. On the Cooling of the Neutron Star in Cassiopeia A

    CERN Document Server

    Blaschke, D; Voskresensky, D N; Weber, F

    2011-01-01

    We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained within the "nuclear medium cooling" scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.

  2. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    Science.gov (United States)

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.

  3. Focused study of thermonuclear bursts on neutron stars

    DEFF Research Database (Denmark)

    Chenevez, Jérôme

    X-ray bursters are a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric...... detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of Simbol X may therefore make...

  4. Visual distortions near a neutron star and black hole

    CERN Document Server

    Nemiroff, R J

    1993-01-01

    The visual distortion effects visible to an observer traveling around and descending to the surface of an extremely compact star are described. Specifically, trips to a "normal" neutron star, a black hole, and an ultracompact neutron star with extremely high surface gravity, are described. Concepts such as multiple imaging, red- and blue-shifting, conservation of surface brightness, the photon sphere, and the existence of multiple Einstein rings are discussed in terms of what the viewer would see. Computer generated, general relativistically accurate illustrations highlighting the distortion effects are presented and discussed. A short movie (VHS) depicting many of these effects is available to those interested free of charge.

  5. Speed of sound bounds and neutron star structure

    CERN Document Server

    Moustakidis, Ch C; Margaritis, Ch; Lalazissis, G A

    2016-01-01

    The accurate determination of the maximum mass of the neutron stars is one of the most important tasks in Astrophysics. It is directly related with the identification of the black holes in the Universe, the production of neutron stars from the supernovae explosion and the Equation of State (EoS) of dense matter. However, not only the EoS is directly connected with neutron star masses, but also the speed of sound in dense matter is a crucial quantity which characterizes the stiffness of the EoS. The upper bound of the speed of sound imposes strong constraints on the maximum mass of neutron stars. However, this upper bound remains still an open issue. Recent observations, of binary neutron star systems, offer the possibility to measure with high accuracy both the mass and the tidal polarizability of the stars. We study possible effects of the upper bound of the speed of sound on the upper bound of the mass and the tidal polarizability. We conclude that this kind of measurements, combined with recent observation...

  6. Rotational properties of hypermassive neutron stars from binary mergers

    CERN Document Server

    Hanauske, Matthias; Bovard, Luke; Rezzolla, Luciano; Font, José A; Galeazzi, Filippo; Stöcker, Horst

    2016-01-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and hence on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasi-universality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a quasi-Keplerian "disk". Such a configuration is significantly different from the $...

  7. The host galaxy and environment of a neutron star merger

    CERN Document Server

    Postigo, A de Ugarte; Rowlinson, A; Garcia-Benito, R; Levan, A J; Gorosabel, J; Goldoni, P; Schulze, S; Zafar, T; Wiersema, K; Sanchez-Ramirez, R; Melandri, A; D'Avanzo, P; Oates, S; D'Elia, V; De Pasquale, M; Kruehler, T; van der Horst, A J; Xu, D; Watson, D; Piranomonte, S; Vergani, S; Milvang-Jensen, B; Kaper, L; Malesani, D; Fynbo, J P U; Cano, Z; Covino, S; Flores, H; Greiss, S; Hammer, F; Hartoog, O E; Hellmich, S; Heuser, C; Hjorth, J; Jakobsson, P; Mottola, S; Sparre, M; Sollerman, J; Tagliaferri, G; Tanvir, N R; Vestergaard, M; Wijers, R A M J

    2013-01-01

    The mergers of neutron stars have been predicted to cause an r-process supernova - a luminous near-infrared transient powered by the radioactive decay of freshly formed heavy metals. An r-process supernova, or kilonova, has recently been discovered coincident with the short-duration gamma-ray burst GRB 130603B, simultaneously confirming the widely-held theory of the origin of most short-durations GRBs in neutron star mergers. We report here the absorption spectrum of the afterglow of this GRB. From it we determine the redshift of the burst and the properties of the host galaxy and the environment in which the merger occurred. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the neutron star binary.

  8. Accuracy and precision of gravitational-wave models of inspiraling neutron star -- black hole binaries with spin: comparison with numerical relativity in the low-frequency regime

    CERN Document Server

    Kumar, Prayush; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A; Lovelace, Geoffrey; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    Coalescing binaries of neutron stars (NS) and black holes (BH) are one of the most important sources of gravitational waves for the upcoming network of ground based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The Effective-One-Body and other phenomenological models interpolate between analytic results and $10-30$ orbit numerical relativity (NR) merger simulations. In this paper we study the accuracy of these models using new NR simulations that span $36-88$ orbits, with mass-ratios and black hole spins $(q,\\chi_{BH}) = (7, \\pm 0.4), (7, \\pm 0.6)$, and $(5, -0.9)$. We find that: (i) the recently published SEOBNRv1 and SEOBNRv2 models of the Effective-One-Body family disagree with each other (mismatches of a few percent) for black hole spins $\\geq 0.5$ or $\\leq -0.3$, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicate that this disagreement is due to phasing errors of...

  9. Evolution of low mass close binary systems with a neutron star: its dependence with the initial neutron star mass

    CERN Document Server

    De Vito, M A

    2012-01-01

    We construct a set of binary evolutionary sequences for systems composed by a normal, solar composition, donor star together with a neutron star. We consider a variety of masses for each star as well as for the initial orbital period corresponding to systems that evolve to ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00, and 3.50 solar masses, whereas for the accreting neutron star we consider initial masses values of 0.8, 1.0, 1.2, and 1.4 solar masses. The considered initial orbital period interval ranges from 0.5 to 12 days. It is found that the evolution of systems, with fixed initial values for the orbital period and the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some cases, varying the initial value of the neutron star mass, we obtain evolved configurations ranging from ultra-compact to widely separated objects. We also analyse the...

  10. Dispersion and decay of collective modes in neutron star cores

    Science.gov (United States)

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-08-01

    We calculate the frequencies of collective modes of neutrons, protons, and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.

  11. Topics in the physics and astrophysics of neutron stars

    Science.gov (United States)

    Postnikov, Sergey

    In this dissertation, four topics related to the physics and astrophysics of neutron stars are studied. Two first topics deal with microscopical physics processes in the star outer crust and the last two with macroscopical properties of a star, such as mass and radius. In the first topic, the thermodynamical and transport properties of a dilute gas in which particles interact through a delta-shell potential are investigated. Through variations of a single parameter related to the strength and size of the delta-shell potential, the scattering length and effective range that determine the low-energy elastic scattering cross sections can be varied over wide ranges including the case of the unitary limit (infinite scattering length). It is found that the coefficients of shear viscosity, thermal conductivity and diffusion all decrease when the scattering length becomes very large and also when resonances occur as the temperature is increased. The calculated ratios of the shear viscosity to entropy density as a function of temperature for various interaction strengths (and therefore scattering lengths) were found to lie well above the recently suggested minimal value of (4pi)-1h/kB. A new result is the value of (4/5) for the dimensionless ratio of the energy density times the diffusion coefficient to viscosity for a dilute gas in the unitary limit. Whether or not this ratio changes upon the inclusion of more than two-body interactions is an interesting avenue for future investigations. These investigations shed pedagogical light on the issue of the thermal and transport properties of an interacting system in the unitary limit, of much current interest in both atomic physics and nuclear physics in which very long scattering lengths feature prominently at very low energies. In the second topic, the shear viscosity of a Yukawa liquid, a model for the outer crust of a neutron star, is calculated in both the classical and quantum regimes. Results of semi-analytic calculations

  12. On the detection probability of neutron star glitches

    Science.gov (United States)

    Yu, M.; Liu, Q.-J.

    2017-07-01

    Neutron stars are observed to undergo small, abrupt rotational speed-up. This phenomenon is known as glitch. In pulsar timing observations, detection of a neutron star glitch is constrained by the time of occurrence of the event relative to entire observing span and observing cadences, time of occurrence of preceding/subsequent glitches relative to observing cadences and the strength of timing noise. Using the Yu et al. data sets, in this paper, we analyse the observational selection in terms of detection probability. We define partial probabilities for the constraints and use the Monte Carlo method with assuming glitches distribute uniformly to solve the complete probability formula for both group case involving 157 pulsars and individual cases for each of the seven pulsars with glitch numbers ≥5. In the simulations, numerical Bayesian inference is used for glitch identification. With the derived detection probability density and observed results, we uncover glitch size probability distribution embedded in the data for both the group and individual cases. We find the most prominent correction occurred for PSR J1341-6220, in which the exponent of the power-law model varies from the observed +0.7^{+1.4}_{-0.7} to -0.4^{+1.0}_{-0.4}. We suggest observers determine the detection probability for glitch theories, e.g. the self-organized criticality.

  13. Neutron capture nucleosynthesis during core helium burning in massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Prantzos, N.; Arnould, M.; Arcoragi, J.P.

    1987-04-01

    Neutron-capture nucleosynthesis during core He burning in massive (ZAMS mass = 50-100 solar mass) mass-losing stars, which are identified with Wolf-Rayet stars, is studied in the framework of recent stellar models based on the Roxburgh criterion for convection and on the latest nuclear data available. The nucleosynthesis is followed with the aid of a full nuclear reaction network incorporating up-to-date Maxwellian-averaged neutron-capture cross sections and new density- and temperature-dependent beta-decay rates. Numerical techniques are developed in order to integrate efficiently the set of coupled differential equations of the network. The resulting stellar core and surface abundances are presented, as well as the composition of the stellar winds ejected during the WC phase. Consideration is given to the implications of these results for the composition of OB associations and of the solar system, for the isotopic anomalies in meteorites and in the galactic cosmic rays, as well as for nuclear gamma-ray line astronomy. 114 references.

  14. Creation of magnetic spots at the neutron star surface

    CERN Document Server

    Geppert, U

    2014-01-01

    According to the partially screened gap scenario, an efficient electron-positron pair creation, a general precondition of radio-pulsar activity, relies on the existence of magnetic spots, i.e., local concentrations of strong and small scale magnetic field structures at the surface of neutron stars. They have a strong impact on the surface temperature, which is potentially observable. Here we reinforce the idea that such magnetic spots can be formed by extracting magnetic energy from the toroidal field that resides in deep crustal layers, via Hall drift. We study and discuss the magneto-thermal evolution of qualitatively different neutron star models and initial magnetic field configurations that lead to the creation of magnetic spots. We find that magnetic spots can be created on a timescale of $10^4$ years with magnetic field strengths $\\gtrsim 5\\times 10^{13}$ G, provided almost the whole magnetic energy is stored in its toroidal component, and that the conductivity in the inner crust is not too large. The ...

  15. The Fate of Neutron Star Binary Mergers

    Science.gov (United States)

    Piro, Anthony L.; Giacomazzo, Bruno; Perna, Rosalba

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ˜60%-70% of SGRBs to be from NS-BH mergers rather than just binary NSs.

  16. A Survey of Chemical Separation in Accreting Neutron Stars

    Science.gov (United States)

    Mckinven, Ryan; Cumming, Andrew; Medin, Zach; Schatz, Hendrik

    2016-06-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al., but extends that result to a much larger range of compositions. We also find an alternative phase separation regime for the lightest ash mixtures which does not demonstrate this generic behavior. With a few exceptions, we find that chemical separation reduces the expected {Q}{{imp}} in the outer crust compared to the initial rp-process ash, where {Q}{{imp}} measures the mean-square dispersion in atomic number Z of the nuclei in the mixture. We find that the fractional spread of Z plays a role in setting the amount of chemical separation and is strongly correlated to the divergence between the two/three-component approximations and the full component model. The contrast in Y e between the initial rp-process ashes and the equilibrium liquid composition is similar to that assumed in earlier two-component models of compositionally driven convection, except for very light compositions which produce nearly negligible convective driving. We discuss the implications of these results for observations of accreting neutron stars.

  17. Colored condensates deep inside neutron stars

    CERN Document Server

    Blaschke, David

    2014-01-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 $M_\\odot$.

  18. $\\gamma$-Ray Bursts From Neutron Star Phase Transitions

    CERN Document Server

    Fryer, C L

    1998-01-01

    The phase-transition induced collapse of a neutron star to a more compact configuration (typically a ``strange'' star) and the subsequent core bounce is often invoked as a model for gamma-ray bursts. We present the results of numerical simulations of this kind of event using realistic neutrino physics and a high density equation of state. The nature of the collapse itself is represented by the arbitrary motion of a piston deep within the star, but if any shock is to develop, the transition, or at least its final stages, must occur in less than a sonic time. Fine surface zoning is employed to adequately represent the acceleration of the shock to relativistic speeds and to determine the amount and energy of the ejecta. We find that these explosions are far too baryon-rich (ejected Mass > 0.01 solar masses) and have much too low an energy to explain gamma-ray bursts. The total energy of the ejecta having relativistic lorentz factors > 40 is less than 10^46 erg even in our most optimistic models (deep bounce, no ...

  19. Optically thick envelopes around ULXs powered by accreating neutron stars

    Science.gov (United States)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Ingram, Adam

    2017-01-01

    Magnetized neutron stars power at least some ultra-luminous X-ray sources. The accretion flow in these cases is interrupted at the magnetospheric radius and then reaches the surface of a neutron star following magnetic field lines. Accreting matter moving along magnetic field lines forms the accretion envelope around the central object. We show that, in case of high mass accretion rates ≳ 1019 g s-1 the envelope becomes closed and optically thick, which influences the dynamics of the accretion flow and the observational manifestation of the neutron star hidden behind the envelope. Particularly, the optically thick accretion envelope results in a multi-color black-body spectrum originating from the magnetospheric surface. The spectrum and photon energy flux vary with the viewing angle, which gives rise to pulsations characterized by high pulsed fraction and typically smooth pulse profiles. The reprocessing of radiation due to interaction with the envelope leads to the disappearance of cyclotron scattering features from the spectrum. We speculate that the super-orbital variability of ultra-luminous X-ray sources powered by accreting neutron stars can be attributed to precession of the neutron star due to interaction of magnetic dipole with the accretion disc.

  20. Nuclear Equation of State and Neutron Star Cooling

    CERN Document Server

    Lim, Yeunhwan; Lee, Chang-Hwan

    2015-01-01

    We investigate the effects of the nuclear equation of state (EoS) to the neutron star cooling. New era for nuclear EoS has begun after the discovery of $\\sim 2\\msun$ neutron stars PSR J1614$-$2230 and PSR J0348$+$0432 [1, 2]. Also recent works on the mass and radius of neutron stars from low-mass X-ray binaries [3] strongly constrain the EoS of nuclear matter. On the other hand, observations of the neutron star in Cassiopeia A (Cas A) more than 10 years confirmed the existence of nuclear superfluidity [4, 5]. Nuclear superfluidity reduces the heat capacities as well as neutrino emissivities. With nuclear superfluidity the neutrino emission processes are highly suppressed, and the existence of superfluidity makes the cooling path quite different from that of the standard cooling process. Superfluidity also allows new neutrino emission process, which is called `Pair Breaking and Formation'(PBF). PBF is a fast cooling process and can explain the fast cooling rate of neutron star in Cas A. Therefore, it is essent...

  1. Magnetorotational instability in neutron star mergers: impact of neutrinos

    CERN Document Server

    Guilet, Jerome; Just, Oliver; Janka, Hans-Thomas

    2016-01-01

    The merger of two neutron stars may give birth to a long-lived hypermassive neutron star. If it harbours a strong magnetic field of magnetar strength, its spin-down could explain several features of short gamma-ray burst afterglows. The magnetorotational instability (MRI) has been proposed as a mechanism to amplify the magnetic field to the required strength. Previous studies have, however, neglected neutrinos, which may have an important impact on the MRI. We study the impact of neutrinos on the linear growth of the MRI by applying a local stability analysis to snapshots of a neutron star merger simulation. We find that neutrinos have a significant impact inside the hypermassive neutron star, but have at most a marginal effect in the torus surrounding it. Inside the hypermassive neutron star, the MRI grows in different regimes depending on the radius and on the initial magnetic field strength. For magnetic fields weaker than $10^{13}-10^{14}\\,{\\rm G}$, the growth rate of the MRI is significantly reduced due ...

  2. Ocean gravitational-modes in transient neutron stars

    CERN Document Server

    Deibel, Alex

    2015-01-01

    The neutron star ocean is a plasma of ions and electrons that extends from the base of the neutron star's envelope to a depth where the plasma crystallizes into a solid crust. During an accretion outburst in an X-ray transient, material accumulates in the envelope of the neutron star primary. This accumulation compresses the neutron star's outer layers and induces nuclear reactions in the ocean and crust. Accretion-driven heating raises the ocean's temperature and increases the frequencies of g-modes in the ocean; when accretion halts, the ocean cools and ocean g-mode frequencies decrease. If the observed low frequency quasi-periodic oscillations on accreting neutron stars are g-modes in the ocean, the observed quasi-periodic oscillation frequencies will increase during outburst --- reaching a maximum when the ocean temperature reaches steady state --- and subsequently decrease during quiescence. For time-averaged accretion rates during outburst between $\\langle \\dot{M} \\rangle = 0.1 \\textrm{--} 1.0\\, \\dot{\\r...

  3. The Fate of the Compact Remnant in Neutron Star Mergers

    CERN Document Server

    Fryer, Chris L; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W

    2015-01-01

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constr...

  4. An accurate metric for the spacetime around neutron stars

    CERN Document Server

    Pappas, George

    2016-01-01

    The problem of having an accurate description of the spacetime around neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical propert...

  5. A Strongly Heated Neutron Star in the Transient Z Source MAXI J0556-332

    Science.gov (United States)

    Homan, Jeroen; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel; Lin, Dacheng; Remillard, Ronald A.

    2014-11-01

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ~16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M ⊙. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ~500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT_eff∞ = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (~200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT_eff∞ = 190-336 eV) and a shorter e-folding time (~160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  6. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  7. Testing the formation scenarios of binary neutron star systems with measurements of the neutron star moment of inertia

    CERN Document Server

    Newton, William G; Yagi, Kent

    2016-01-01

    Two low mass neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed from the collapse of an ONeMg core in an electron capture supernova (ECSN) or in an ultra-stripped iron core collapse supernova (FeCCSN). Using three different systematically generated sets of equations of state we explore the relationship between the moment of inertia of J0737-3039A and the binding energy of the two low mass neutron stars. We find this relationship, a less strict variant of the recently discovered I-Love-Q relations, is nevertheless more robust than a previously explored correlation between the binding energy and the slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in an ECSN, no more than 0.06 solar masses could have been lost from the progenitor core, more than four times the mass loss predicted by current supernova modeling. A measurement of the moment of inertia of J0737-3039A to within 10% accuracy from pulsar ti...

  8. Neutron Stars in X-ray Binaries and their Environments

    Science.gov (United States)

    Paul, Biswajit

    2017-09-01

    Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.

  9. Superfluid hydrodynamics in the inner crust of neutron stars

    CERN Document Server

    Martin, Noël

    2016-01-01

    The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters) that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a BCC crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound neutrons. Consequences for the constraints from glitch observations are discussed.

  10. Superfluid hydrodynamics in the inner crust of neutron stars

    Science.gov (United States)

    Martin, Noël; Urban, Michael

    2016-12-01

    The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters) that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a body-centered cubic (BCC) crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound neutrons. Consequences for the constraints from glitch observations are discussed.

  11. Black holes and neutron stars in vector Galileons

    Science.gov (United States)

    Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo

    2017-08-01

    The direct detection of gravitational waves opens new perspectives for measuring properties of gravitationally bound compact objects. It is then important to investigate black holes and neutron stars in alternative theories of gravity, since they can have features that make them observationally distinguishable from their general relativity (GR) counterparts. In this work, we examine a special case of vector Galileons, a vector-tensor theory of gravity with interesting cosmological properties, which consists of a one parameter modification of the Einstein-Maxwell action. Within this theory, we study configurations describing asymptotically flat, spherically symmetric black holes and neutron stars. The set of black hole solutions in this theory is surprisingly rich, generalising results found in GR or in related scalar-tensor theories. We investigate the properties and conserved charges of black holes, using both analytical and numerical techniques, highlighting configurations that are more compact than in GR. We then study properties of neutron stars, showing how the vector profile can influence the star internal structure. Depending on properties of matter and fields inside the star, neutron stars can be more massive than in GR, and they can be even more compact than Schwarzschild black holes, making these objects observationally interesting. We also comment on possible extensions of our configurations to magnetically charged or rotating configurations.

  12. Effects of the quark-hadron phase transition on highly magnetized neutron stars

    Science.gov (United States)

    Franzon, B.; Gomes, R. O.; Schramm, S.

    2016-11-01

    The presence of quark-hadron phase transitions in neutron stars can be related to several interesting phenomena. In particular, previous calculations have shown that fast rotating neutron stars, when subjected to a quark-hadron phase transition in their interiors, could give rise to the backbending phenomenon characterized by a spin-up era. In this work, we use an equation of state composed of two phases, containing nucleons (and leptons) and quarks. The hadronic phase is described in a relativistic mean field formalism that takes many-body forces into account, and the quark phase is described by the MIT bag model with a vector interaction. Stationary and axisymmetric stellar models are obtained in a self-consistent way by solving numerically the Einstein-Maxwell equations by means of a pseudo-spectral method. As a result, we obtain the interesting backbending phenomenon for fast spinning neutron stars. More importantly, we show that a magnetic field, which is assumed to be axisymmetric and poloidal, can also be enhanced due to the phase transition from normal hadronic matter to quark matter on highly magnetized neutron stars. Therefore, in parallel to the spin-up era, classes of neutron stars endowed with strong magnetic fields may go through a `magnetic-up era' in their lives.

  13. The force-free twisted magnetosphere of a neutron star

    Science.gov (United States)

    Akgün, T.; Miralles, J. A.; Pons, J. A.; Cerdá-Durán, P.

    2016-10-01

    We present a detailed analysis of the properties of twisted, force-free magnetospheres of non-rotating neutron stars, which are of interest in the modelling of magnetar properties and evolution. In our models the magnetic field smoothly matches to a current-free (vacuum) solution at some large external radius, and they are specifically built to avoid pathological surface currents at any of the interfaces. By exploring a large range of parameters, we find a few remarkable general trends. We find that the total dipolar moment can be increased by up to 40 per cent with respect to a vacuum model with the same surface magnetic field, due to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates of the surface magnetic field based on the large-scale dipolar braking torque are slightly overestimating the surface value by the same amount. Consistently, there is a moderate increase in the total energy of the model with respect to the vacuum solution of up to 25 per cent, which would be the available energy budget in the event of a fast, global magnetospheric reorganization commonly associated with magnetar flares. We have also found the interesting result of the existence of a critical twist (ϕmax ≲ 1.5 rad), beyond which we cannot find any more numerical solutions. Combining the models considered in this paper with the evolution of the interior of neutron stars will allow us to study the influence of the magnetosphere on the long-term magnetic, thermal, and rotational evolution.

  14. Pseudo Nambu-Goldstone modes in neutron stars

    CERN Document Server

    Kojo, Toru

    2016-01-01

    If quarks and gluons are either gapped or confined in neutron stars (NSs), the most relevant light modes are Nambu-Goldstone (NG) modes. We study NG modes within a schematic quark model whose parameters at high density are constrained by the two-solar mass constraint. Our model has the color-flavor-locked phase at high density, with the effective couplings as strong as in hadron physics. We find that strong coupling effects make NG modes more massive than in weak coupling predictions, and would erase several phenomena caused by the stressed pairings in mismatched Fermi surfaces. For instance, we found that charged kaons, which are dominated by diquark and anti-diquark components, are not light enough to condense at strong coupling. Implications for gravitational wave signals for NS-NS mergers are also briefly discussed.

  15. Quark-novae in neutron star-white dwarf binaries: a model for luminous (spin-down powered) sub-Chandrasekhar-mass Type Ia supernovae?

    Institute of Scientific and Technical Information of China (English)

    Rachid Ouyed; Jan Staff

    2013-01-01

    We show that,by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD),a Type Ia explosion could occur.The QN ejecta collides with the WD,driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia).The conditions in the compressed low-mass WD (MWD < 0.9 M☉) in our model mimic those of a Chandrasekhar mass WD.The spin-down luminosity from the QN compact remnant (the quark star) provides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield.In QNe-Ia,photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay.Although QNe-Ia may not obey the Phillips relationship,their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample.Light-curve fitters would be confused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes,thus over-or under-estimating the true magnitude of these spin-down powered SNe-Ia.Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift.The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the i-band despite their luminous nature.We discuss possible QNe-Ia progenitors.

  16. The influence of the enhanced vector meson sector on the properties of the matter of neutron stars.

    Science.gov (United States)

    Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika

    2014-01-01

    This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral SU(3)L x SU(3)R symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass.

  17. Bare Quark Stars or Naked Neutron Stars: The Case of RX J1856.5-3754

    CERN Document Server

    Turolla, R; Drake, J J; Turolla, Roberto; Zane, Silvia; Drake, Jeremy J.

    2004-01-01

    In a cool neutron star (T 10^13 G), a phase transition may occur in the outermost layers. As a consequence the neutron star becomes `bare', i.e. no gaseous atmosphere sits on the top of the crust. The surface of cooling, bare neutron stars not necessary gives off blackbody radiation because of the strong suppression in the emissivity at energies below the electron plasma frequency \\omega_p. Since \\omega_p~1 keV under the conditions typical of the dense electron gas in the condensate, the emission from a T~100 eV bare neutron star will be substantially depressed with respect to that of a perfect Planckian radiator at most energies. Here we present a detailed analysis of the emission properties of a bare neutron star. In particular, we derive the surface emissivity for a Fe composition in a range of magnetic fields and temperatures representative of cooling isolated neutron stars, like RX J1856.5-3754. We find that the emitted spectrum is strongly dependent on the electron conductivity in the solid surface lay...

  18. Quark-Novae in Neutron Star-White-Dwarf Binaries: A model for dim, sub-Chandrasekhar, Type Ia Supernovae ?

    CERN Document Server

    Ouyed, Rachid

    2011-01-01

    We show that appealing to a Quark-Nova in a tight NS-WD binary system, a Type Ia explosion can occur for a narrow range in white dwarf mass (0.5 2 universe, we expect QNe-Ia to manifest themselves as rare sub-Chandrasekhar Type Ias; most likely in star-forming galaxies.

  19. Rapidly rotating neutron stars in $R$-squared gravity

    CERN Document Server

    Yazadjiev, Stoytcho S; Kokkotas, Kostas D

    2015-01-01

    $f(R)$ theories of gravity are one of the most popular alternative explanations for dark energy and therefore studying the possible astrophysical implications of these theories is an important task. In the present paper we make a substantial advance in this direction by considering rapidly rotating neutron stars in $R^2$ gravity. The results are obtained numerically and the method we use is non-perturbative and self-consistent. The neutron star properties, such as mass, radius and moment of inertia, are studied in detail and the results show that rotation magnifies the deviations from general relativity and the maximum mass and moment of inertia can reach very high values. This observation is similar to previous studies of rapidly rotating neutron stars in other alternative theories of gravity, such as the scalar-tensor theories, and it can potentially lead to strong astrophysical manifestations.

  20. Neutrino Flavor Evolution in Binary Neutron Star Merger Remnants

    CERN Document Server

    Frensel, Maik; Volpe, Cristina; Perego, Albino

    2016-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti-)neutrino absorption rates on free nucleons and may thus impact the $r$-process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.