Chemical diffusion coefficient of oxygen in thoria-urania mixed oxide
Matsui, Tsuneo; Naito, Keiji
1985-10-01
The chemical diffusion coefficients of oxygen ( D˜) in sintered samples of ( Th1- yUy) O2+ x ( y = 0.2 and 0.4) were measured by means of thermogravimetry in the temperature range 1282 ⩽ T ⩽ 1373 K. The defect diffusion coefficients ( Dd) were also calculated from the chemical diffusion coefficients obtained in this study. The activation energies of D˜ or Dd for the two samples ( Th1- yUy) O2+ xwithy = 0.2 and 0.4 were observed to be nearly the same, irrespective of the y value. These activation energies also nearly coincided with those of UO 2+x reported previously, suggesting the presence of a similar diffusion mechanism to that found in UO 2+x. The magnitude of both diffusion coefficients D˜ and Dd of ( Th1- yUy) O2+ x increased with increasing uranium content and approached that of UO 2+x. The increase of Dd of ( Th1- yUy) O2+ x with y value was considered to be due to the increase of both the vibrational frequency of lattice and the entropy change of migration produced by the substitution of a U ion for a Th ion.
Thermal expansion of simulated thoria-urania fuel by high temperature XRD
Bhagat, R. K.; Krishnan, K.; Kutty, T. R. G.; Kumar, Arun; Kamath, H. S.; Banerjee, S.
2012-03-01
The thermal expansion behavior of polycrystalline samples of ThO2-3.45% UO2 and SIMFUEL corresponding to burn-up of 43,000 MWd/Te has been investigated from room temperature to 1473 K, and for SIMFUEL corresponding to burn-up of 28,000 MWd/Te has been investigated from room temperature to 1173 K, using a high temperature X-ray diffraction (HTXRD). Linear and volumetric thermal expansion data like, percentage thermal expansion, average or mean coefficient of thermal expansion (CTE) was generated using the lattice parameters. It is observed that SIMFUEL has a lower lattice parameter compared to ThO2-3.45% UO2 and this is attributed to the dissolution of the rare earths and part of the Zr and Ce in fuel matrix. Also SIMFUEL has slightly higher thermal expansion than ThO2-3.45% UO2 and this is related to the lower melting point of SIMFUEL.
Thermal expansion of simulated thoria-urania fuel by high temperature XRD
Energy Technology Data Exchange (ETDEWEB)
Bhagat, R.K. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Krishnan, K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kutty, T.R.G., E-mail: tkutty@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kamath, H.S. [Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Banerjee, S. [Department of Atomic Energy, Anushakti Bhavan, Mumbai 400 001 (India)
2012-03-15
The thermal expansion behavior of polycrystalline samples of ThO{sub 2}-3.45% UO{sub 2} and SIMFUEL corresponding to burn-up of 43,000 MWd/Te has been investigated from room temperature to 1473 K, and for SIMFUEL corresponding to burn-up of 28,000 MWd/Te has been investigated from room temperature to 1173 K, using a high temperature X-ray diffraction (HTXRD). Linear and volumetric thermal expansion data like, percentage thermal expansion, average or mean coefficient of thermal expansion (CTE) was generated using the lattice parameters. It is observed that SIMFUEL has a lower lattice parameter compared to ThO{sub 2}-3.45% UO{sub 2} and this is attributed to the dissolution of the rare earths and part of the Zr and Ce in fuel matrix. Also SIMFUEL has slightly higher thermal expansion than ThO{sub 2}-3.45% UO{sub 2} and this is related to the lower melting point of SIMFUEL.
Energy Technology Data Exchange (ETDEWEB)
Lee, S; Richard Dimenna, R; David Tamburello, D
2008-11-13
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and
Energy Technology Data Exchange (ETDEWEB)
Lee, S; Dimenna, R; Tamburello, D
2011-02-14
height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?
Carvalho, Francisco; Covas, Ricardo
2016-06-01
We consider mixed models y =∑i =0 w Xiβi with V (y )=∑i =1 w θiMi Where Mi=XiXi⊤ , i = 1, . . ., w, and µ = X0β0. For these we will estimate the variance components θ1, . . ., θw, aswell estimable vectors through the decomposition of the initial model into sub-models y(h), h ∈ Γ, with V (y (h ))=γ (h )Ig (h )h ∈Γ . Moreover we will consider L extensions of these models, i.e., y˚=Ly+ɛ, where L=D (1n1, . . ., 1nw) and ɛ, independent of y, has null mean vector and variance covariance matrix θw+1Iw, where w =∑i =1 n wi .
The Additive Hazard Mixing Models
Institute of Scientific and Technical Information of China (English)
Ping LI; Xiao-liang LING
2012-01-01
This paper is concerned with the aging and dependence properties in the additive hazard mixing models including some stochastic comparisons.Further,some useful bounds of reliability functions in additive hazard mixing models are obtained.
Generalized, Linear, and Mixed Models
McCulloch, Charles E; Neuhaus, John M
2011-01-01
An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m
Discriminative Mixed-Membership Models
National Aeronautics and Space Administration — Although mixed-membership models have achieved great success in unsupervised learning, they have not been widely applied to classification problems. In this paper,...
2016-01-01
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829
Kriging with mixed effects models
Directory of Open Access Journals (Sweden)
Alessio Pollice
2007-10-01
Full Text Available In this paper the effectiveness of the use of mixed effects models for estimation and prediction purposes in spatial statistics for continuous data is reviewed in the classical and Bayesian frameworks. A case study on agricultural data is also provided.
Bayesian stable isotope mixing models
In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...
Linear mixed models in sensometrics
DEFF Research Database (Denmark)
Kuznetsova, Alexandra
quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products......, texture, sound - depending on the aim of a study. It is a common approach in both studies to consider persons coming from a larger population, which, from the statistical perspective, leads to the use of mixed effects models, where consumers/assessors enter as random effects (Lawless and Heymann, 1997...
Mixed Effects Models for Complex Data
Wu, Lang
2009-01-01
Presenting effective approaches to address missing data, measurement errors, censoring, and outliers in longitudinal data, this book covers linear, nonlinear, generalized linear, nonparametric, and semiparametric mixed effects models. It links each mixed effects model with the corresponding class of regression model for cross-sectional data and discusses computational strategies for likelihood estimations of mixed effects models. The author briefly describes generalized estimating equations methods and Bayesian mixed effects models and explains how to implement standard models using R and S-Pl
Senju, H.
1991-07-01
Inspired by unique features of the preon-subpreon model, we propose a new scheme for quark mixing. In our scheme, the mass relations m_{d} << m_{s} << m_{b} and m_{u} << m_{c} << m_{t} are naturally understood. The resultant CKM matrix has very nice properties. The fact that |V_{us}| and |V_{cd}| are remarkably large compared with other off-diagonal elements is naturally understood. |V_{cb}| =~ |V_{ts}| is predicted and their small values are explained. |V_{ub}| and |V_{td}| are predicted to be much smaller than |V_{cb}|. The parametrization invariant measure of CP violation, J, is predicted to be |V_{ud}| |V_{ub}| |V_{td}| sin phi. The mass relations and mixings of q', q'', l_{s} and leptons are also discussed.
Mixed models for predictive modeling in actuarial science
Antonio, K.; Zhang, Y.
2012-01-01
We start with a general discussion of mixed (also called multilevel) models and continue with illustrating specific (actuarial) applications of this type of models. Technical details on (linear, generalized, non-linear) mixed models follow: model assumptions, specifications, estimation techniques
Mixed-mode modelling mixing methodologies for organisational intervention
Clarke, Steve; Lehaney, Brian
2001-01-01
The 1980s and 1990s have seen a growing interest in research and practice in the use of methodologies within problem contexts characterised by a primary focus on technology, human issues, or power. During the last five to ten years, this has given rise to challenges regarding the ability of a single methodology to address all such contexts, and the consequent development of approaches which aim to mix methodologies within a single problem situation. This has been particularly so where the situation has called for a mix of technological (the so-called 'hard') and human centred (so-called 'soft') methods. The approach developed has been termed mixed-mode modelling. The area of mixed-mode modelling is relatively new, with the phrase being coined approximately four years ago by Brian Lehaney in a keynote paper published at the 1996 Annual Conference of the UK Operational Research Society. Mixed-mode modelling, as suggested above, is a new way of considering problem situations faced by organisations. Traditional...
Composite model with large mixing of neutrinos
Haba, N
1999-01-01
We suggest a simple composite model that induces the large flavor mixing of neutrino in the supersymmetric theory. This model has only one hyper-color in addition to the standard gauge group, which makes composite states of preons. In this model, {\\bf 10} and {\\bf 1} representations in SU(5) grand unified theory are composite states and produce the mass hierarchy. This explains why the large mixing is realized in the lepton sector, while the small mixing is realized in the quark sector. This model can naturally solve the atmospheric neutrino problem. We can also solve the solar neutrino problem by improving the model.
Linear mixed models for longitudinal data
Molenberghs, Geert
2000-01-01
This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...
Quantifying uncertainty in stable isotope mixing models
Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.
2015-05-01
Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated
Lagrangian mixing in an axisymmetric hurricane model
Directory of Open Access Journals (Sweden)
B. Rutherford
2009-09-01
Full Text Available This paper discusses the extension of established Lagrangian mixing measures to make them applicable to data extracted from a 2-D axisymmetric hurricane simulation. Because of the non-steady and unbounded characteristics of the simulation, the previous measures are extended to a moving frame approach to create time-dependent mixing rates that are dependent upon the initial time of particle integration, and are computed for nonlocal regions. The global measures of mixing derived from finite-time Lyapunov exponents, relative dispersion, and a measured mixing rate are applied to distinct regions representing different characteristic feautures within the model. It is shown that these time-dependent mixing rates exhibit correlations with maximal tangential winds during a quasi-steady state, establishing a connection between mixing and hurricane intensity.
Statistical Tests for Mixed Linear Models
Khuri, André I; Sinha, Bimal K
2011-01-01
An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a
Multivariate generalized linear mixed models using R
Berridge, Damon Mark
2011-01-01
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...
Flavor Mixing Phenomenology in Supersymmetric Models
Rehman, Muhammad
2016-01-01
This dissertation investigates the flavor mixing effects in supersymmetric models on electroweak precision observables, Higgs boson mass predictions, B-physics observables, quark flavor violating Higgs decays, lepton flavor violating charged lepton decays and lepton flavor violating Higgs decays. The flavor mixing effects are studied in model independent way i.e. by putting off-diagonal entries in the sfermion mass matrix by hand as well as in the minimal flavor violating constrained MSSM, where mixing can originate from CKM matrix in the case of squarks and from PMNS matrix in the case of sleptons. We found that flavor mixing can have large impact to some observables, enabling us to put new constraints on parameter space in supersymmetric models.
Scotogenic model for co-bimaximal mixing
Ferreira, P M; Jurciukonis, D; Lavoura, L
2016-01-01
We present a scotogenic model, \\textit{i.e.}\\ a one-loop neutrino mass model with dark right-handed neutrino gauge singlets and one inert dark scalar gauge doublet $\\eta$, which has symmetries that lead to co-bimaximal mixing, \\textit{i.e.}\\ to an atmospheric mixing angle $\\theta_{23} = 45^\\circ$ and to a $CP$-violating phase $\\delta = \\pm \\pi/2$, while the mixing angle $\\theta_{13}$ remains arbitrary. The symmetries consist of softly broken lepton numbers $L_\\alpha$ ($\\alpha = e,\\mu,\\tau$), a non-standard $CP$ symmetry, and three $Z_2$ symmetries. We indicate two possibilities for extending the model to the quark sector. Since the model has, besides $\\eta$, three scalar gauge doublets, we perform a thorough discussion of its scalar sector. We demonstrate that it can accommodate a Standard Model-like scalar with mass $125\\, \\mathrm{GeV}$, with all the other charged and neutral scalars having much higher masses.
Mixed models theory and applications with R
Demidenko, Eugene
2013-01-01
Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be g
Modeling of Salt Solubilities in Mixed Solvents
DEFF Research Database (Denmark)
Chiavone-Filho, O.; Rasmussen, Peter
2000-01-01
A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...
Modeling of Salt Solubilities in Mixed Solvents
DEFF Research Database (Denmark)
Chiavone-Filho, O.; Rasmussen, Peter
2000-01-01
A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...
Cohesive mixed mode fracture modelling and experiments
DEFF Research Database (Denmark)
Walter, Rasmus; Olesen, John Forbes
2008-01-01
A nonlinear mixed mode model originally developed by Wernersson [Wernersson H. Fracture characterization of wood adhesive joints. Report TVSM-1006, Lund University, Division of Structural Mechanics; 1994], based on nonlinear fracture mechanics, is discussed and applied to model interfacial cracking...... in a steel–concrete interface. The model is based on the principles of Hillerborgs fictitious crack model, however, the Mode I softening description is modified taking into account the influence of shear. The model couples normal and shear stresses for a given combination of Mode I and II fracture...... curves, which may be interpreted using the nonlinear mixed mode model. The interpretation of test results is carried out in a two step inverse analysis applying numerical optimization tools. It is demonstrated how to perform the inverse analysis, which couples the assumed individual experimental load...
Multivariate Generalized Linear Mixed Models Using R
Berridge, Damon M
2011-01-01
To provide researchers with the ability to analyze large and complex data sets using robust models, this book presents a unified framework for a broad class of models that can be applied using a dedicated R package (Sabre). The first five chapters cover the analysis of multilevel models using univariate generalized linear mixed models (GLMMs). The next few chapters extend to multivariate GLMMs and the last chapters address more specialized topics, such as parallel computing for large-scale analyses. Each chapter includes many real-world examples implemented using Sabre as well as exercises and
Relating masses and mixing angles. A model-independent model
Energy Technology Data Exchange (ETDEWEB)
Hollik, Wolfgang Gregor [DESY, Hamburg (Germany); Saldana-Salazar, Ulises Jesus [CINVESTAV (Mexico)
2016-07-01
In general, mixing angles and fermion masses are seen to be independent parameters of the Standard Model. However, exploiting the observed hierarchy in the masses, it is viable to construct the mixing matrices for both quarks and leptons in terms of the corresponding mass ratios only. A closer view on the symmetry properties leads to potential realizations of that approach in extensions of the Standard Model. We discuss the application in the context of flavored multi-Higgs models.
Improved testing inference in mixed linear models
Melo, Tatiane F N; Cribari-Neto, Francisco; 10.1016/j.csda.2008.12.007
2011-01-01
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test and also to a test obtained from a modified profile likelihood function. Our results generalize those in Zucker et al. (Journal of the Royal Statistical Society B, 2000, 62, 827-838) by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report numerical evidence which shows that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presente...
Configuration mixing calculations in soluble models
Cambiaggio, M. C.; Plastino, A.; Szybisz, L.; Miller, H. G.
1983-07-01
Configuration mixing calculations have been performed in two quasi-spin models using basis states which are solutions of a particular set of Hartree-Fock equations. Each of these solutions, even those which do not correspond to the global minimum, is found to contain interesting physical information. Relatively good agreement with the exact lowest-lying states has been obtained. In particular, one obtains a better approximation to the ground state than that provided by Hartree-Fock.
CFD Modeling of Mixed-Phase Icing
Zhang, Lifen; Liu, Zhenxia; Zhang, Fei
2016-12-01
Ice crystal ingestion at high altitude has been reported to be a threat for safe operation of aero-engine in recently. Ice crystals do not accrete on external surface because of cold environment. But when they enter the core flow of aero-engine, ice crystals melt partially into droplets due to higher temperature. Air-droplets-ice crystal is the mixed-phase, which will give rise to ice accretion on static and rotating components in compressor. Subsequently, compressor surge and engine shutdowns may occur. To provide a numerical tool to analyze this in detail, a numerical method was developed in this study. The mixed phase flow was solved using Eulerian-Lagrangian method. The dispersed phase was represented by one-way coupling. A thermodynamic model that considers mass and energy balance with ice crystals and droplets was presented as well. The icing code was implemented by the user-defined function of Fluent. The method of ice accretion under mixed-phase conditions was validated by comparing the results simulated on a cylinder with experimental data derived from literature. The predicted ice shape and mass agree with these data, thereby confirming the validity of the numerical method developed in this research for mixed-phase conditions.
Neutrino Mixing Discriminates Geo-reactor Models
Dye, S T
2009-01-01
Geo-reactor models suggest the existence of natural nuclear reactors at different deep-earth locations with loosely defined output power. Reactor fission products undergo beta decay with the emission of electron antineutrinos, which routinely escape the earth. Neutrino mixing distorts the energy spectrum of the electron antineutrinos. Characteristics of the distorted spectrum observed at the earth's surface could specify the location of a geo-reactor, discriminating the models and facilitating more precise power measurement. The existence of a geo-reactor with known position could enable a precision measurement of the neutrino oscillation parameter delta-mass-squared.
MHD Turbulent Mixing Layers: Equilibrium Cooling Models
Esquivel, A; Cho, J; Lazarian, A; Leitner, S N
2006-01-01
We present models of turbulent mixing at the boundaries between hot (T~10^{6-7} K) and warm material (T~10^4 K) in the interstellar medium, using a three-dimensional magnetohydrodynamical code, with radiative cooling. The source of turbulence in our simulations is a Kelvin-Helmholtz instability, produced by shear between the two media. We found, that because the growth rate of the large scale modes in the instability is rather slow, it takes a significant amount of time (~1 Myr) for turbulence to produce effective mixing. We find that the total column densities of the highly ionized species (C IV, N V, and O VI) per interface (assuming ionization equilibrium) are similar to previous steady-state non-equilibrium ionization models, but grow slowly from log N ~10^{11} to a few 10^{12} cm^{-2} as the interface evolves. However, the column density ratios can differ significantly from previous estimates, with an order of magnitude variation in N(C IV)/N(O VI) as the mixing develops.
A model of quark and lepton mixing
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2014-01-22
We propose a model of quark and lepton mixing based on the tetrahedral A{sub 4} family symmetry with quark-lepton unification via the tetra-colour Pati-Salam gauge group SU(4){sub PS}, together with SU(2){sub L}×U(1){sub R}. The “tetra-model” solves many of the flavour puzzles and remarkably gives ten predictions at leading order, including all six PMNS parameters. The Cabibbo angle is approximately given by θ{sub C}≈1/4, due to the tetra-vacuum alignment (1,4,2), providing the Cabibbo connection between quark and lepton mixing. Higher order corrections are responsible for the smaller quark mixing angles and CP violation and provide corrections to the Cabibbo and lepton mixing angles and phases. The tetra-model involves an SO(10)-like pattern of Dirac and heavy right-handed neutrino masses, with the strong up-type quark mass hierarchy cancelling in the see-saw mechanism, leading to a normal hierarchy of neutrino masses with an atmospheric angle in the first octant, θ{sub 23}{sup l}=40{sup ∘}±1{sup ∘}, a solar angle θ{sub 12}{sup l}=34{sup ∘}±1{sup ∘}, a reactor angle θ{sub 13}{sup l}=9.0{sup ∘}±0.5{sup ∘}, depending on the ratio of neutrino masses m{sub 2}/m{sub 3}, and a Dirac CP violating oscillation phase δ{sup l}=260{sup ∘}±5{sup ∘}.
Toward Better Modeling of Supercritical Turbulent Mixing
Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth
2008-01-01
study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.
Introduction to mixed modelling beyond regression and analysis of variance
Galwey, N W
2007-01-01
Mixed modelling is one of the most promising and exciting areas of statistical analysis, enabling more powerful interpretation of data through the recognition of random effects. However, many perceive mixed modelling as an intimidating and specialized technique.
Mixing parameterizations in ocean climate modeling
Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.
2016-03-01
Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.
Mixing parametrizations for ocean climate modelling
Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir
2016-04-01
The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model
Mixed Models: Combining Incompatible Scalar Models in Any Spacetime Dimension
Klauder, John R
2016-01-01
Traditionally, covariant scalar field theory models are either super renormalizable, strictly renormalizable, or nonrenormalizable. The goal of `Mixed Models' is to make sense of sums of these distinct examples, e.g., $g\\varphi^4_3+g'\\varphi^6_3+g''\\varphi^8_3$, which includes an example of each kind for spacetime dimension $n=3$. We show how the several interactions such mixed models have may be turned on and off in any order without any difficulties. Analogous results are shown for $g\\varphi^4_n+g'\\varphi^{138}_n$, etc., for all $n\\ge3$. Different categories hold for $n=2$ such as, e.g., ${g P(\\varphi)_2+g' N\\!P}(\\varphi)_2$, that involve polynomial ($P$) and suitable nonpolynomial ($N\\!P$) interactions, etc. Analogous situations for $n=1$ (time alone) offer simple `toy' examples of how such mixed models may be constructed.
Forecasting Exchange Rates with Mixed Models
Directory of Open Access Journals (Sweden)
Laura Maria Badea
2013-06-01
Full Text Available Gaining accuracy in exchange rate forecasting applications provides true benefits for financial activities. Supported today by the advancements in computing power, machine learning techniques provide good alternatives to traditional time series estimation methods. Very approached in time series forecasting are Artificial Neural Networks (ANNs which offer robust results and allow a flexible data manipulation. When integrating both, the “white-box” feature of conventional methods and the complexity of machine learning techniques, forecasting models perform even better in terms of generated errors. In this study, input variables (independent variables are selected using an ARIMA technique and are further employed in differently configured multilayered feed-forward neural networks using Broyden-Fletcher-Goldfarb-Shanno (BFGS optimization algorithm to perform predictions on EUR/RON and CHF/RON exchange rates. Results in terms of mean squared error highlight good results when using mixed models.
Mixed models in cerebral ischemia study
Directory of Open Access Journals (Sweden)
Matheus Henrique Dal Molin Ribeiro
2016-06-01
Full Text Available The data modeling from longitudinal studies stands out in the current scientific scenario, especially in the areas of health and biological sciences, which induces a correlation between measurements for the same observed unit. Thus, the modeling of the intra-individual dependency is required through the choice of a covariance structure that is able to receive and accommodate the sample variability. However, the lack of methodology for correlated data analysis may result in an increased occurrence of type I or type II errors and underestimate/overestimate the standard errors of the model estimates. In the present study, a Gaussian mixed model was adopted for the variable response latency of an experiment investigating the memory deficits in animals subjected to cerebral ischemia when treated with fish oil (FO. The model parameters estimation was based on maximum likelihood methods. Based on the restricted likelihood ratio test and information criteria, the autoregressive covariance matrix was adopted for errors. The diagnostic analyses for the model were satisfactory, since basic assumptions and results obtained corroborate with biological evidence; that is, the effectiveness of the FO treatment to alleviate the cognitive effects caused by cerebral ischemia was found.
Directory of Open Access Journals (Sweden)
J. Lu
2010-01-01
Full Text Available A new method for describing externally mixed particles, the Detailed Aerosol Mixing State (DAMS representation, is presented in this study. This novel method classifies aerosols by both composition and size, using a user-specified mixing criterion to define boundaries between compositional populations. Interactions between aerosol mixing state, semivolatile partitioning, and coagulation are investigated with a Lagrangian box model that incorporates the DAMS approach. Model results predict that mixing state affects the amount and types of semivolatile organics that partition to available aerosol phases, causing external mixtures to produce a more size-varying composition than internal mixtures. Both coagulation and condensation contribute to the mixing of emitted particles, producing a collection of multiple compositionally distinct aerosol populations that exists somewhere between the extremes of a strictly external or internal mixture. The selection of mixing criteria has a significant impact on the size and type of individual populations that compose the modeled aerosol mixture.
Nonequilibrium antiferromagnetic mixed-spin Ising model.
Godoy, Mauricio; Figueiredo, Wagner
2002-09-01
We studied an antiferromagnetic mixed-spin Ising model on the square lattice subject to two competing stochastic processes. The model system consists of two interpenetrating sublattices of spins sigma=1/2 and S=1, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at temperature T, and the exchange of energy with the heat bath occurs via one-spin flip (Glauber dynamics). Besides, the system interacts with an external agency of energy, which supplies energy to it whenever two nearest neighboring spins are simultaneously flipped. By employing Monte Carlo simulations and a dynamical pair approximation, we found the phase diagram for the stationary states of the model in the plane temperature T versus the competition parameter between one- and two-spin flips p. We observed the appearance of three distinct phases, that are separated by continuous transition lines. We also determined the static critical exponents along these lines and we showed that this nonequilibrium model belongs to the universality class of the two-dimensional equilibrium Ising model.
Estimation of growth parameters using a nonlinear mixed Gompertz model.
Wang, Z; Zuidhof, M J
2004-06-01
In order to maximize the utility of simulation models for decision making, accurate estimation of growth parameters and associated variances is crucial. A mixed Gompertz growth model was used to account for between-bird variation and heterogeneous variance. The mixed model had several advantages over the fixed effects model. The mixed model partitioned BW variation into between- and within-bird variation, and the covariance structure assumed with the random effect accounted for part of the BW correlation across ages in the same individual. The amount of residual variance decreased by over 55% with the mixed model. The mixed model reduced estimation biases that resulted from selective sampling. For analysis of longitudinal growth data, the mixed effects growth model is recommended.
Cabibbo Mixing in Superstring Derived Standard--like Models
Faraggi, A E; Faraggi, Alon E.; Halyo, Edi
1993-01-01
We examine the problem of generation mixing in realistic superstring derived standard--like models, constructed in the free fermionic formulation. We study the possible sources of family mixing in these models . In a specific model we estimate the Cabibbo angle. We argue that a Cabibbo angle of the correct order of magnitude can be obtained in these models.
On Local Homogeneity and Stochastically Ordered Mixed Rasch Models
Kreiner, Svend; Hansen, Mogens; Hansen, Carsten Rosenberg
2006-01-01
Mixed Rasch models add latent classes to conventional Rasch models, assuming that the Rasch model applies within each class and that relative difficulties of items are different in two or more latent classes. This article considers a family of stochastically ordered mixed Rasch models, with ordinal latent classes characterized by increasing total…
Blind channel identication of nonlinear folding mixing model
Institute of Scientific and Technical Information of China (English)
Su Yong; Xu Shangzhi; Ye Zhongfu
2006-01-01
Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question: how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.
Nonlinear Mixed-Effects Models for Repairable Systems Reliability
Institute of Scientific and Technical Information of China (English)
TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE
2007-01-01
Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.
Inference of ICF implosion core mix using experimental data and theoretical mix modeling
Energy Technology Data Exchange (ETDEWEB)
Sherrill, Leslie Welser [Los Alamos National Laboratory; Haynes, Donald A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Mancini, Roberto C [UNR; Tommasini, Riccardo [LLNL; Golovkin, Igor E [PRISM COMP. SCIENCES; Haan, Steven W [LLNL
2009-01-01
The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.
A Note on the Identifiability of Generalized Linear Mixed Models
DEFF Research Database (Denmark)
Labouriau, Rodrigo
2014-01-01
I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity ...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization......I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...
Modeling Dynamic Effects of the Marketing Mix on Market Shares
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2003-01-01
textabstractTo comprehend the competitive structure of a market, it is important to understand the short-run and long-run effects of the marketing mix on market shares. A useful model to link market shares with marketing-mix variables, like price and promotion, is the market share attraction model.
Modeling Dynamic Effects of the Marketing Mix on Market Shares
D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)
2003-01-01
textabstractTo comprehend the competitive structure of a market, it is important to understand the short-run and long-run effects of the marketing mix on market shares. A useful model to link market shares with marketing-mix variables, like price and promotion, is the market share attraction model.
Pricing Model of Multiattribute Derivatives Based on Mixed Process
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
By Analyzing the behavior and character of derivative security, the authorsestablished a pricing model of multiattribute derivative security whose underlying asset pricingprocess is a mixed process, and obtained a new model for option pricing of multiattribute derivatives based on mixed process, and improved some original results.
Models of neutrino mass, mixing and CP violation
King, Stephen F.
2015-12-01
In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.
Molecular Thermodynamic Modeling of Mixed Solvent Solubility
DEFF Research Database (Denmark)
Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.
2010-01-01
A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...
TESTS FOR VARIANCE COMPONENTS IN VARYING COEFFICIENT MIXED MODELS
National Research Council Canada - National Science Library
Zaixing Li; Yuedong Wang; Ping Wu; Wangli Xu; Lixing Zhu
2012-01-01
.... To address the question of whether a varying coefficient mixed model can be reduced to a simpler varying coefficient model, we develop one-sided tests for the null hypothesis that all the variance components are zero...
A multifluid mix model with material strength effects
Energy Technology Data Exchange (ETDEWEB)
Chang, C. H. [Los Alamos National Laboratory; Scannapieco, A. J. [Los Alamos National Laboratory
2012-04-23
We present a new multifluid mix model. Its features include material strength effects and pressure and temperature nonequilibrium between mixing materials. It is applicable to both interpenetration and demixing of immiscible fluids and diffusion of miscible fluids. The presented model exhibits the appropriate smooth transition in mathematical form as the mixture evolves from multiphase to molecular mixing, extending its applicability to the intermediate stages in which both types of mixing are present. Virtual mass force and momentum exchange have been generalized for heterogeneous multimaterial mixtures. The compression work has been extended so that the resulting species energy equations are consistent with the pressure force and material strength.
Modeling a Rain-Induced Mixed Layer
1990-06-01
te -)-A-- e e -2)- . (7) ’&Z AZ Az D Using the exponential relations with trigonometry , equation (7) becomes, Ok n) 3 (I- cos2ikAz)+ D (1- cos ikAz...completely unknown because there are no prior studies which predict what portion of total energy may go into subsurface mixing. The biggest obstacle
Models of Neutrino Mass, Mixing and CP Violation
King, Stephen F
2015-01-01
In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and CP violation. We begin with an overview of the Standard Model puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and CP violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of flavour using GUTs and discrete family symmetry. We classify models ...
An Investigation of Item Fit Statistics for Mixed IRT Models
Chon, Kyong Hee
2009-01-01
The purpose of this study was to investigate procedures for assessing model fit of IRT models for mixed format data. In this study, various IRT model combinations were fitted to data containing both dichotomous and polytomous item responses, and the suitability of the chosen model mixtures was evaluated based on a number of model fit procedures.…
Modeling of Mixed Decision Making Process
yahia, Nesrine Ben; Bellamine, Narjès; Ghezala, Henda Ben
2012-01-01
Decision making whenever and wherever it is happened is key to organizations success. In order to make correct decision, individuals, teams and organizations need both knowledge management (to manage content) and collaboration (to manage group processes) to make that more effective and efficient. In this paper, we explain the knowledge management and collaboration convergence. Then, we propose a formal description of mixed and multimodal decision making (MDM) process where decision may be mad...
Modeling of Mixed Decision Making Process
Yahia, Nesrine Ben; Bellamine, Narjès; Ghezala, Henda Ben
2012-01-01
Decision making whenever and wherever it is happened is key to organizations success. In order to make correct decision, individuals, teams and organizations need both knowledge management (to manage content) and collaboration (to manage group processes) to make that more effective and efficient. In this paper, we explain the knowledge management and collaboration convergence. Then, we propose a formal description of mixed and multimodal decision making (MDM) process where decision may be mad...
Lagrangian Mixing in an Axisymmetric Hurricane Model
2010-07-23
important role for intensification. The proposed mechanisms are either direct and mechanical or indirect and thermodynamic. Direct and mechanical...2001), and Green et al. (2006), and applied in a study of Koh and Legras (2002) to the strato - spheric polar vortex. Relative dispersion was studied...winds delayed 4 minutes for the BL inflow, with linear best fit and norm of residuals. nent role for mixing in the region, which is related to hurri
On the coalescence-dispersion modeling of turbulent molecular mixing
Givi, Peyman; Kosaly, George
1987-01-01
The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.
Nonlinear diffusion model for Rayleigh-Taylor mixing.
Boffetta, G; De Lillo, F; Musacchio, S
2010-01-22
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Nonlinear diffusion model for Rayleigh-Taylor mixing
Boffetta, G; Musacchio, S
2010-01-01
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusiviy models for the mean temperature profile. It is found that a non-linear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Discrete Flavor Symmetries and Models of Neutrino Mixing
Altarelli, Guido
2010-01-01
We review the application of non abelian discrete groups to the theory of neutrino masses and mixing, which is strongly suggested by the agreement of the Tri-Bimaximal mixing pattern with experiment. After summarizing the motivation and the formalism, we discuss specific models, based on A4, S4 and other finite groups, and their phenomenological implications, including lepton flavor violating processes, leptogenesis and the extension to quarks. In alternative to Tri-Bimaximal mixing the application of discrete flavor symmetries to quark-lepton complementarity and Bimaximal Mixing is also considered.
Kinetic mixing effect in the 3 -3 -1 -1 model
Dong, P. V.; Si, D. T.
2016-06-01
We show that the mixing effect of the neutral gauge bosons in the 3 -3 -1 -1 model comes from two sources. The first one is due to the 3 -3 -1 -1 gauge symmetry breaking as usual, whereas the second one results from the kinetic mixing between the gauge bosons of U (1 )X and U (1 )N groups, which are used to determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the ρ -parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing neutral currents due to the gauge boson mixings and nonuniversal fermion generations are also given.
Perturbative estimates of lepton mixing angles in unified models
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany)], E-mail: antusch@mppmu.mpg.de; King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Malinsky, Michal [Department of Theoretical Physics, School of Engineering Sciences, Royal Institute of Technology (KTH) - AlbaNova University Center, Roslagstullsbacken 21, SE-106 91 Stockholm (Sweden)
2009-10-11
Many unified models predict two large neutrino mixing angles, with the charged lepton mixing angles being small and quark-like, and the neutrino masses being hierarchical. Assuming this, we present simple approximate analytic formulae giving the lepton mixing angles in terms of the underlying high energy neutrino mixing angles together with small perturbations due to both charged lepton corrections and renormalisation group (RG) effects, including also the effects of third family canonical normalization (CN). We apply the perturbative formulae to the ubiquitous case of tri-bimaximal neutrino mixing at the unification scale, in order to predict the theoretical corrections to mixing angle predictions and sum rule relations, and give a general discussion of all limiting cases. We also discuss the implications for the sum rule relations of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.
CREDO-MIX - DIGITAL MODEL PROJECT
Белятинський, А. О.; Національний авіаційний університет; Чичикало, Л. Г.; Національний авіаційний університет; Резнік, О. М.; Національний авіаційний університет
2013-01-01
System CREDO-MIX which is intended for the decision of problems of designing of general plans of the enterprises, transport constructions, inhabited and civil objects is considered. Рассмотрена система CREDO_MIX, которая предназначена для решения задач проектирования генеральных планов предприятий, транспортных сооружений и жилищно-гражданских объектов. Розглянуто систему CREDO_MIX, яка призначена для вирішення завдань проектування генеральних планів підприємств, транспортних споруд і ж...
Mixed finite elements for global tide models
Cotter, Colin J
2014-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
Shell model of optimal passive-scalar mixing
Miles, Christopher; Doering, Charles
2015-11-01
Optimal mixing is significant to process engineering within industries such as food, chemical, pharmaceutical, and petrochemical. An important question in this field is ``How should one stir to create a homogeneous mixture while being energetically efficient?'' To answer this question, we consider an initially unmixed scalar field representing some concentration within a fluid on a periodic domain. This passive-scalar field is advected by the velocity field, our control variable, constrained by a physical quantity such as energy or enstrophy. We consider two objectives: local-in-time (LIT) optimization (what will maximize the mixing rate now?) and global-in-time (GIT) optimization (what will maximize mixing at the end time?). Throughout this work we use the H-1 mix-norm to measure mixing. To gain a better understanding, we provide a simplified mixing model by using a shell model of passive-scalar advection. LIT optimization in this shell model gives perfect mixing in finite time for the energy-constrained case and exponential decay to the perfect-mixed state for the enstrophy-constrained case. Although we only enforce that the time-average energy (or enstrophy) equals a chosen value in GIT optimization, interestingly, the optimal control keeps this value constant over time.
Profile construction in experimental choice designs for mixed logit models
Sandor, Z; Wedel, M
2002-01-01
A computationally attractive model for the analysis of conjoint choice experiments is the mixed multinomial logit model, a multinomial logit model in which it is assumed that the coefficients follow a (normal) distribution across subjects. This model offers the advantage over the standard
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
Watanabe, T.; Nagata, K.
2016-08-01
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
Constitutive mixed mode model for cracks in concrete
DEFF Research Database (Denmark)
Jacobsen, J.S.; Poulsen, P.N.; Olesen, J.F.;
2013-01-01
The scope of the paper is to set up a constitutive mixed mode model for cracks in concrete. The model is formulated at macro level and includes the most important micro scale effects. An associated plasticity model inspired by the modified Cam clay model is established. The hardening parameters...... is determined from the topographic information and the constitutive model is thereby purely mechanically based. Using the actual topographic description the model is validated against experimental results for mixed mode crack openings....... are based on the standard Mode I tensile softening response and the response for Mode I crushing. The roughness of the crack is included through a topographic description of the crack surface. The constitutive behavior is based on the integration of local contributions. The local mixed mode ratio...
Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling
Directory of Open Access Journals (Sweden)
Karjalainen Matti
2004-01-01
Full Text Available Digital waveguides and finite difference time domain schemes have been used in physical modeling of spatially distributed systems. Both of them are known to provide exact modeling of ideal one-dimensional (1D band-limited wave propagation, and both of them can be composed to approximate two-dimensional (2D and three-dimensional (3D mesh structures. Their equal capabilities in physical modeling have been shown for special cases and have been assumed to cover generalized cases as well. The ability to form mixed models by joining substructures of both classes through converter elements has been proposed recently. In this paper, we formulate a general digital signal processing (DSP-oriented framework where the functional equivalence of these two approaches is systematically elaborated and the conditions of building mixed models are studied. An example of mixed modeling of a 2D waveguide is presented.
Mixing Model Performance in Non-Premixed Turbulent Combustion
Pope, Stephen B.; Ren, Zhuyin
2002-11-01
In order to shed light on their qualitative and quantitative performance, three different turbulent mixing models are studied in application to non-premixed turbulent combustion. In previous works, PDF model calculations with detailed kinetics have been shown to agree well with experimental data for non-premixed piloted jet flames. The calculations from two different groups using different descriptions of the chemistry and turbulent mixing are capable of producing the correct levels of local extinction and reignition. The success of these calculations raises several questions, since it is not clear that the mixing models used contain an adequate description of the processes involved. To address these questions, three mixing models (IEM, modified Curl and EMST) are applied to a partially-stirred reactor burning hydrogen in air. The parameters varied are the residence time and the mixing time scale. For small relative values of the mixing time scale (approaching the perfectly-stirred limit) the models yield the same extinction behavior. But for larger values, the behavior is distictly different, with EMST being must resistant to extinction.
A Comparison of Item Fit Statistics for Mixed IRT Models
Chon, Kyong Hee; Lee, Won-Chan; Dunbar, Stephen B.
2010-01-01
In this study we examined procedures for assessing model-data fit of item response theory (IRT) models for mixed format data. The model fit indices used in this study include PARSCALE's G[superscript 2], Orlando and Thissen's S-X[superscript 2] and S-G[superscript 2], and Stone's chi[superscript 2*] and G[superscript 2*]. To investigate the…
Modeling Recycling Asphalt Pavement Processing Technologies in Asphalt Mixing Plants
Simonas Tamaliūnas; Henrikas Sivilevičius
2011-01-01
The article presents reclaimed asphalt pavement (RAP) processing technologies and equipment models used in the asphalt mixing plant (AMP). The schematic model indicating all possible ways to process RAP in AMP is shown. The model calculating the needed temperature of mineral materials used for heating RAP is given and an example of such calculation is provided.Article in Lithuanian
Modeling Recycling Asphalt Pavement Processing Technologies in Asphalt Mixing Plants
Directory of Open Access Journals (Sweden)
Simonas Tamaliūnas
2011-04-01
Full Text Available The article presents reclaimed asphalt pavement (RAP processing technologies and equipment models used in the asphalt mixing plant (AMP. The schematic model indicating all possible ways to process RAP in AMP is shown. The model calculating the needed temperature of mineral materials used for heating RAP is given and an example of such calculation is provided.Article in Lithuanian
Markov and mixed models with applications
DEFF Research Database (Denmark)
Mortensen, Stig Bousgaard
This thesis deals with mathematical and statistical models with focus on applications in pharmacokinetic and pharmacodynamic (PK/PD) modelling. These models are today an important aspect of the drug development in the pharmaceutical industry and continued research in statistical methodology within...... as a deterministic mean value using ordinary differential equations to which a random error is added. This thesis explores methods based on stochastic differential equations (SDEs) to extend the models to more adequately describe both true random biological variations and also variations due to unknown...... the individual in almost any thinkable way. This project focuses on measuring the eects on sleep in both humans and animals. The sleep process is usually analyzed by categorizing small time segments into a number of sleep states and this can be modelled using a Markov process. For this purpose new methods...
A Model of Quark and Lepton Mixing and Mass Hierarchy
Barr, S M
2015-01-01
It is shown that an idea proposed in 1996 that relates in a qualitatively correct way the inter-family mass hierarchies of the up quarks, down quarks, charged leptons, and neutrinos, can be combined with a predictive scheme recently proposed for relating quark mixing and neutrino mixing. In the resulting model, the entire flavor structure of the quarks and leptons is expressible in terms of two "master matrices": a diagonal matrix that gives the inter-family mass ratios, and an off-diagonal matrix that controls all flavor mixing.
A Mixed Effects Randomized Item Response Model
Fox, J.-P.; Wyrick, Cheryl
2008-01-01
The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…
DIFFUSION MODEL OF CREAMY- AND VEGETABLE SPREADS MIXING
Directory of Open Access Journals (Sweden)
A. N. Ostrikov
2015-01-01
Full Text Available Summary .A mathematical model of the process of mixing cream- and vegetable spread was developed. In modeling the diffusion understanding of the nature of the process were used, allowing escape from the apparatus geometry. After turning on the mixer the mixing process begins. Its duration can be determined by the behavior of the tracer particles introduced into the agitated medium in a predetermined quantity through the free liquid surface within a short period of time. If tracer particles have the same density with the surrounding bulk liquid phase, then the path of movement of the particles and the fluid are identical. The degree of homogeneity of the composition can be stirred calculated by the coefficient of variation, which is identified by the local concentrations of tracer particles in the volume of stirred medium. The task of a one-dimensional particle transport in the plane layer of the mixed liquid is solved for their calculation. The calculated ratios obtained allow us to calculate the particle concentration at any point in the volume being mixed at random times. Based on the experiment effective mixing coefficients are identified and relations for their assessment, depending on the Reynolds number of the mixer in the range studied variations of process are offered. Using the time dependence of the variation coefficient characterizing the homogenity of the system being mixed, it is possible to determine the duration of mixing to obtain the product with the desired uniformity and homogeneity of the product under the definition of a predetermined duration of the mixing process. The variation coefficient %, indicating a sufficiently good uniformity of the spread composition was found for the spread №1, being mixed with a stirrer rotating at a speed of n=150 rev / min, and the dimensionless length of the process Fo =0,0935 for obtaining estimated relations. Using the proposed calculation algorithm one can estimate the homogeneity of the
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2006-01-01
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo
Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits
DEFF Research Database (Denmark)
Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo
2013-01-01
A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant....... The discrete time models used are multivariate variants of the discrete relative risk models. These models allow for regular parametric likelihood-based inference by exploring a coincidence of their likelihood functions and the likelihood functions of suitably defined multivariate generalized linear mixed...
Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits
DEFF Research Database (Denmark)
Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo
2014-01-01
A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant....... The discrete time models used are multivariate variants of the discrete relative risk models. These models allow for regular parametric likelihood-based inference by exploring a coincidence of their likelihood functions and the likelihood functions of suitably defined multivariate generalized linear mixed...
Teaching Service Modelling to a Mixed Class: An Integrated Approach
Deng, Jeremiah D.; Purvis, Martin K.
2015-01-01
Service modelling has become an increasingly important area in today's telecommunications and information systems practice. We have adapted a Network Design course in order to teach service modelling to a mixed class of both the telecommunication engineering and information systems backgrounds. An integrated approach engaging mathematics teaching…
Teaching the Mixed Model Design: A Flowchart to Facilitate Understanding.
Mills, Jamie D.
2005-01-01
The Mixed Model (MM) design, sometimes known as a Split-Plot design, is very popular in educational research. This model can be used to examine the effects of several independent variables on a dependent variable and it offers a more powerful alternative to the completely randomized design. The MM design considers both a between-subjects factor,…
Analyzing Mixed-Dyadic Data Using Structural Equation Models
Peugh, James L.; DiLillo, David; Panuzio, Jillian
2013-01-01
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Wax Precipitation Modeled with Many Mixed Solid Phases
DEFF Research Database (Denmark)
Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan
2005-01-01
The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub...
An Interface Stretching-Diffusion Model for Mixing-Limited Reactions During Convective Mixing
Hidalgo, J. J.; Dentz, M.; Cabeza, Y.; Carrera, J.
2014-12-01
We study the behavior of mixing-limited dissolution reactions under the unstable flow conditions caused by a Rayleigh-Bénard convective instability in a two fluids system. The reactions produce a dissolution pattern that follows the ascending fluids's interface where the largest concentration gradients and maximum mixing are found. Contrary to other chemical systems, the mixing history engraved by the dissolution does not map out the fingering geometry of the unstable flow. The temporal scaling of the mixing Χ and the reaction rate r are explained by a stretching-diffusion model of the interface between the fluids. The model accurately reproduces the three observed regimes: a diffusive regime at which Χ, r ~ t-1/2; a convective regime of at which the interface contracts to the Batchelor scale resulting in a constant Χf and r independent of the Rayleigh number; and an attenuated convection regime in which Χ and r decay faster than diffusion as t-3/2 and t-1, respectevely, because of the decompression of the interface and weakened reactions caused by the accumulation of dissolved fluid below the interface.
Effects of mixing in threshold models of social behavior
Akhmetzhanov, Andrei R; Dushoff, Jonathan
2013-01-01
We consider the dynamics of an extension of the influential Granovetter model of social behavior, where individuals are affected by their personal preferences and observation of the neighbors' behavior. Individuals are arranged in a network (usually, the square lattice) and each has a state and a fixed threshold for behavior changes. We simulate the system asynchronously either by picking a random individual and either update its state or exchange it with another randomly chosen individual (mixing). We describe the dynamics analytically in the fast-mixing limit by using the mean-field approximation and investigate it mainly numerically in case of a finite mixing. We show that the dynamics converge to a manifold in state space, which determines the possible equilibria, and show how to estimate the projection of manifold by using simulated trajectories, emitted from different initial points. We show that the effects of considering the network can be decomposed into finite-neighborhood effects, and finite-mixing...
Discrete symmetries and model-independent patterns of lepton mixing
Hernandez, D
2012-01-01
In the context of discrete flavor symmetries, we elaborate a method that allows one to obtain relations between the mixing parameters in a model-independent way. Under very general conditions, we show that flavor groups of the von Dyck type, that are not necessarily finite, determine the absolute values of the entries of one column of the mixing matrix. We apply our formalism to finite subgroups of the infinite von Dyck groups, such as the modular groups, and find cases that yield an excellent agreement with the best fit values for the mixing angles. We explore the Klein group as the residual symmetry of the neutrino sector and explain the permutation property that appears between the elements of the mixing matrix in this case.
Discrete symmetries and model-independent patterns of lepton mixing
Hernandez, D.; Smirnov, A. Yu.
2013-03-01
In the context of discrete flavor symmetries, we elaborate a method that allows one to obtain relations between the mixing parameters in a model-independent way. Under very general conditions, we show that flavor groups of the von Dyck type, that are not necessarily finite, determine the absolute values of the entries of one column of the mixing matrix. We apply our formalism to finite subgroups of the infinite von Dyck groups, such as the modular groups, and find cases that yield an excellent agreement with the best fit values for the mixing angles. We explore the Klein group as the residual symmetry of the neutrino sector and explain the permutation property that appears between the elements of the mixing matrix in this case.
Metapopulation epidemic models with heterogeneous mixing and travel behaviour
Apolloni, Andrea; Ramasco, Jose' J; Jensen, Pablo; Colizza, Vittoria
2014-01-01
The complex interplay between population movements in space and non-homogeneous mixing patterns have so far hindered the fundamental understanding of the conditions for spatial invasion through a general theoretical framework. To address this issue, we present an analytical modelling approach taking into account such interplay under general conditions of mobility and interactions, in the simplifying assumption of two population classes. We describe a spatially structured population with non-homogeneous mixing and travel behaviour through a multi-host stochastic epidemic metapopulation model. Different population partitions, mixing patterns and mobility structures are considered, along with a specific application for the study of the role of age partition in the early spread of the 2009 H1N1 pandemic influenza. We provide a complete mathematical formulation of the model and derive a semi-analytical expression of the threshold condition for global invasion of an emerging infectious disease in the metapopulation...
Fermion masses and mixing in $\\Delta(27)$ flavour model
Abbas, Mohammed
2014-01-01
An extension of the Standard Model (SM) based on the non-Abelian discrete group $\\Delta(27)$ is considered. The $\\Delta(27)$ flavour symmetry is spontaneously broken only by gauge singlet scalar fields, therefore our model is free from any flavour changing neural current. We show that the model accounts simultaneously for the observed quark and lepton masses and their mixing. In the quark sector, we find that the up quark mass matrix is flavour diagonal and the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix arises from down quarks. In the lepton sector, we show that the charged lepton mass matrix is almost diagonal. We also adopt type-I seesaw mechanism to generate neutrino masses. A deviated mixing matrix from tri-bimaximal Maki-Nakagawa-Sakata (MNS), with $\\sin\\theta_{13} \\sim 0.13$ and $\\sin^2 \\theta_{23} \\sim 0.41$, is naturally produced.
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Computer modeling of ORNL storage tank sludge mobilization and mixing
Energy Technology Data Exchange (ETDEWEB)
Terrones, G.; Eyler, L.L.
1993-09-01
This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.
The Parisi formula for mixed p-spin models
Panchenko, Dmitry
2011-01-01
The Parisi formula for the free energy in the Sherrington-Kirkpatrick and mixed p-spin models for even p \\geq 2 was proved in the seminal work of Michel Talagrand, [24]. In this paper we prove the Parisi formula for general mixed p-spin models which also include p-spin interactions for odd p. Most of the ideas used in the paper are well known and can now be combined following a recent proof of the Parisi ultrametricity conjecture in [17].
A system dynamics model to determine products mix
Directory of Open Access Journals (Sweden)
Mahtab Hajghasem
2014-02-01
Full Text Available This paper presents an implementation of system dynamics model to determine appropriate product mix by considering various factors such as labor, materials, overhead, etc. for an Iranian producer of cosmetic and sanitary products. The proposed model of this paper considers three hypotheses including the relationship between product mix and profitability, optimum production capacity and having minimum amount of storage to take advantage of low cost production. The implementation of system dynamics on VENSIM software package has confirmed all three hypotheses of the survey and suggested that in order to reach better mix product, it is necessary to reach optimum production planning, take advantage of all available production capacities and use inventory management techniques.
modelling of far modelling of far-field mixing o field mixing o ambient ...
African Journals Online (AJOL)
User
Moreover, the study by [19] carried out economic analysis and ... of assimilative capacity in optimal flow pollution control and concluded by drawing attention to the need to include ... support and the theory of mixing of the pollutants in the near ...
The Worm Process for the Ising Model is Rapidly Mixing
Collevecchio, Andrea; Garoni, Timothy M.; Hyndman, Timothy; Tokarev, Daniel
2016-09-01
We prove rapid mixing of the worm process for the zero-field ferromagnetic Ising model, on all finite connected graphs, and at all temperatures. As a corollary, we obtain a fully-polynomial randomized approximation scheme for the Ising susceptibility, and for a certain restriction of the two-point correlation function.
The 4s web-marketing mix model
Constantinides, Efthymios
2002-01-01
This paper reviews the criticism on the 4Ps Marketing Mix framework, the most popular tool of traditional marketing management, and categorizes the main objections of using the model as the foundation of physical marketing. It argues that applying the traditional approach, based on the 4Ps paradigm,
The 4s web-marketing mix model
Constantinides, Efthymios
2002-01-01
This paper reviews the criticism on the 4Ps Marketing Mix framework, the most popular tool of traditional marketing management, and categorizes the main objections of using the model as the foundation of physical marketing. It argues that applying the traditional approach, based on the 4Ps paradigm,
Development of stable isotope mixing models in ecology - Fremantle
More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...
Development of stable isotope mixing models in ecology - Dublin
More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...
Historical development of stable isotope mixing models in ecology
More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...
Development of stable isotope mixing models in ecology - Sydney
More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...
Development of stable isotope mixing models in ecology - Perth
More than 40 years ago, stable isotope analysis methods used in geochemistry began to be applied to ecological studies. One common application is using mathematical mixing models to sort out the proportional contributions of various sources to a mixture. Examples include contri...
Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data
Xu, Shu; Blozis, Shelley A.
2011-01-01
Mixed models are used for the analysis of data measured over time to study population-level change and individual differences in change characteristics. Linear and nonlinear functions may be used to describe a longitudinal response, individuals need not be observed at the same time points, and missing data, assumed to be missing at random (MAR),…
Longitudinal mixed-effects models for latent cognitive function
Hout, van den Ardo; Fox, Jean-Paul; Muniz-Terrera, Graciela
2015-01-01
A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response t
COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS
Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are, respectiv......We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Low-order models of biogenic ocean mixing
Dabiri, J. O.; Rosinelli, D.; Koumoutsakos, P.
2009-12-01
Biogenic ocean mixing, the process whereby swimming animals may affect ocean circulation, has primarily been studied using order-of-magnitude theoretical estimates and a small number of field observations. We describe numerical simulations of arrays of simplified animal shapes migrating in inviscid fluid and at finite Reynolds numbers. The effect of density stratification is modeled in the fluid dynamic equations of motion by a buoyancy acceleration term, which arises due to perturbations to the density field by the migrating bodies. The effects of fluid viscosity, body spacing, and array configuration are investigated to identify scenarios in which a meaningful contribution to ocean mixing by swimming animals is plausible.
Dynamic Behaviors of Mix-game Model and Its Applications
Gou, C
2005-01-01
This paper proposes a modification to Minority Game (MG) by adding some agents who play majority game into MG. So it is referred to as Mix-game. Through simulations, this paper finds out that the fluctuations of local volatilities change a lot by adding some agents who play majority game into MG, but the stylized features of MG do not change obviously except agents with memory length 1 and2. This paper also uses mix-game to model Shanghai stock market and to do prediction about Shanghai index.
Quark mixing in the discrete dark matter model
Toorop, Reinier de Adelhart; Morisi, Stefano
2011-01-01
We consider a model in which dark matter is stable as it is charged under a Z2 symmetry that is residual after an A4 flavour symmetry is broken. We consider the possibility to generate the quark masses by charging the quarks appropriately under A4. We find that it is possible to generate the CKM mixing matrix by an interplay of renormalisable and dimension-six operators. In this set-up, we predict the third neutrino mixing angle to be large and the dark matter relic density to be in the correct range. However, low energy observables - in particular meson-antimeson oscillations - strongly limit the available parameter space.
Modeling condensation with a noncondensable gas for mixed convection flow
Liao, Yehong
2007-05-01
This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface
Fluctuations in a mixed IS-LM business cycle model
Directory of Open Access Journals (Sweden)
Hamad Talibi Alaoui
2008-09-01
Full Text Available In the present paper, we extend a delayed IS-LM business cycle model by introducing an additional advance (anticipated capital stock in the investment function. The resulting model is represented in terms of mixed differential equations. For the deviating argument $au$ (advance and delay being a bifurcation parameter we investigate the local stability and the local Hopf bifurcation. Also some numerical simulations are given to support the theoretical analysis.
Plasma interfacial mixing layers: Comparisons of fluid and kinetic models
Vold, Erik; Yin, Lin; Taitano, William; Albright, B. J.; Chacon, Luis; Simakov, Andrei; Molvig, Kim
2016-10-01
We examine plasma transport across an initial discontinuity between two species by comparing fluid and kinetic models. The fluid model employs a kinetic theory approximation for plasma transport in the limit of small Knudsen number. The kinetic simulations include explicit particle-in-cell simulations (VPIC) and a new implicit Vlasov-Fokker-Planck code, iFP. The two kinetic methods are shown to be in close agreement for many aspects of the mixing dynamics at early times (to several hundred collision times). The fluid model captures some of the earliest time dynamic behavior seen in the kinetic results, and also generally agrees with iFP at late times when the total pressure gradient relaxes and the species transport is dominated by slow diffusive processes. The results show three distinct phases of the mixing: a pressure discontinuity forms across the initial interface (on times of a few collisions), the pressure perturbations propagate away from the interfacial mixing region (on time scales of an acoustic transit) and at late times the pressure relaxes in the mix region leaving a non-zero center of mass flow velocity. The center of mass velocity associated with the outward propagating pressure waves is required to conserve momentum in the rest frame. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.
Simple mixing model for pressurized thermal shock applications
Energy Technology Data Exchange (ETDEWEB)
Chexal, B.; Chao, J.; Nickell, R.; Griesbach, T. (Electric Power Research Inst., Palo Alto, CA (USA))
1983-02-01
The phenomenon of fluid/thermal mixing in the cold leg and downcomer of a Pressurized Water Reactor (PWR) has been a critical issue related to the concern of pressurized thermal shock. The question of imperfect mixing arises when the possibility of cold emergency core cooling water contacting the vessel wall during an overcooling transient could produce thermal stresses large enough to initiate a flaw in a radiation embrittled vessel wall. The temperature of the fluid in contact with the vessel wall is crucial to a determination of vessel integrity since temperature affects both the stresses and the material toughness of the vessel material. A simple mixing model is described which was developed as part of the EPRI pressurized thermal shock program for evaluation of reactor vessel integrity.
Dynamic behaviours of mix-game model and its application
Institute of Scientific and Technical Information of China (English)
Gou Cheng-Ling
2006-01-01
In this paper a minority game (MG) is modified by adding into it some agents who play a majority game. Such a game is referred to as a mix-game. The highlight of this model is that the two groups of agents in the mix-game have different bounded abilities to deal with historical information and to count their own performance. Through simulations,it is found that the local volatilities change a lot by adding some agents who play the majority game into the MG,and the change of local volatilities greatly depends on different combinations of historical memories of the two groups.Furthermore, the analyses of the underlying mechanisms for this finding are made. The applications of mix-game mode are also given as an example.
Upscaling of Mixing Processes using a Spatial Markov Model
Bolster, Diogo; Sund, Nicole; Porta, Giovanni
2016-11-01
The Spatial Markov model is a model that has been used to successfully upscale transport behavior across a broad range of spatially heterogeneous flows, with most examples to date coming from applications relating to porous media. In its most common current forms the model predicts spatially averaged concentrations. However, many processes, including for example chemical reactions, require an adequate understanding of mixing below the averaging scale, which means that knowledge of subscale fluctuations, or closures that adequately describe them, are needed. Here we present a framework, consistent with the Spatial Markov modeling framework, that enables us to do this. We apply and present it as applied to a simple example, a spatially periodic flow at low Reynolds number. We demonstrate that our upscaled model can successfully predict mixing by comparing results from direct numerical simulations to predictions with our upscaled model. To this end we focus on predicting two common metrics of mixing: the dilution index and the scalar dissipation. For both metrics our upscaled predictions very closely match observed values from the DNS. This material is based upon work supported by NSF Grants EAR-1351625 and EAR-1417264.
Handbook of mixed membership models and their applications
Airoldi, Edoardo M; Erosheva, Elena A; Fienberg, Stephen E
2014-01-01
In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology.Through examples using real data sets, yo
Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models
DEFF Research Database (Denmark)
Rombouts, Jeroen V.K.; Stentoft, Lars Peter
While stochastic volatility models improve on the option pricing error when compared to the Black-Scholes-Merton model, mispricings remain. This paper uses mixed normal heteroskedasticity models to price options. Our model allows for significant negative skewness and time varying higher order...... moments of the risk neutral distribution. Parameter inference using Gibbs sampling is explained and we detail how to compute risk neutral predictive densities taking into account parameter uncertainty. When forecasting out-of-sample options on the S&P 500 index, substantial improvements are found compared...
Glueball-Quarkonium Mixing in the Quark and Chromon Model
Zhang, Pengming; Xie, Ju-Jun; Yoon, J H; Cho, Y M
2016-01-01
The Abelian decomposition of QCD which decomposes the gluons to the color neutral binding gluons (the neurons) and the colored valence gluons (the chromons) gauge independently naturally generalizes the quark model to the quark and chromon model which can play the central role in hadron spectroscopy. We discuss how the quark and chromon model describes the glueballs and the glueball-quarkonium mixing in QCD. We present the numerical analysis of glueball-quarkonium mixing in $0^{++}$, $2^{++}$, and $0^{-+}$ sectors below 2 GeV, and show that in the $0^{++}$ sector $f_0(500)$ and $f_0(1500)$, in the $2^{++}$ sector $f_2(1950)$, and in the $0^{-+}$ sector $\\eta(1405)$ and $\\eta(1475)$ could be identified as predominantly the glueball states. We discuss the physical implications of our result.
Comparison of mixed layer models predictions with experimental data
Energy Technology Data Exchange (ETDEWEB)
Faggian, P.; Riva, G.M. [CISE Spa, Divisione Ambiente, Segrate (Italy); Brusasca, G. [ENEL Spa, CRAM, Milano (Italy)
1997-10-01
The temporal evolution of the PBL vertical structure for a North Italian rural site, situated within relatively large agricultural fields and almost flat terrain, has been investigated during the period 22-28 June 1993 by experimental and modellistic point of view. In particular, the results about a sunny day (June 22) and a cloudy day (June 25) are presented in this paper. Three schemes to estimate mixing layer depth have been compared, i.e. Holzworth (1967), Carson (1973) and Gryning-Batchvarova models (1990), which use standard meteorological observations. To estimate their degree of accuracy, model outputs were analyzed considering radio-sounding meteorological profiles and stability atmospheric classification criteria. Besides, the mixed layer depths prediction were compared with the estimated values obtained by a simple box model, whose input requires hourly measures of air concentrations and ground flux of {sup 222}Rn. (LN)
Modelling the development of mixing height in near equatorial region
Energy Technology Data Exchange (ETDEWEB)
Samah, A.A. [Univ. of Malaya, Air Pollution Research Unit, Kuala Lumpur (Malaysia)
1997-10-01
Most current air pollution models were developed for mid-latitude conditions and as such many of the empirical parameters used were based on observations taken in the mid-latitude boundary layer which is physically different from that of the equatorial boundary layer. In the equatorial boundary layer the Coriolis parameter f is small or zero and moisture plays a more important role in the control of stability and the surface energy balance. Therefore air pollution models such as the OMLMULTI or the ADMS which were basically developed for mid-latitude conditions must be applied with some caution and would need some adaptation to properly simulate the properties of equatorial boundary layer. This work elucidates some of the problems of modelling the evolution of mixing height in the equatorial region. The mixing height estimates were compared with routine observations taken during a severe air pollution episodes in Malaysia. (au)
Numerical modeling of two-phase binary fluid mixing using mixed finite elements
Sun, Shuyu
2012-07-27
Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.
Chen, Hsiang-Chun; Wehrly, Thomas E
2015-02-20
The classic concordance correlation coefficient measures the agreement between two variables. In recent studies, concordance correlation coefficients have been generalized to deal with responses from a distribution from the exponential family using the univariate generalized linear mixed model. Multivariate data arise when responses on the same unit are measured repeatedly by several methods. The relationship among these responses is often of interest. In clustered mixed data, the correlation could be present between repeated measurements either within the same observer or between different methods on the same subjects. Indices for measuring such association are needed. This study proposes a series of indices, namely, intra-correlation, inter-correlation, and total correlation coefficients to measure the correlation under various circumstances in a multivariate generalized linear model, especially for joint modeling of clustered count and continuous outcomes. The proposed indices are natural extensions of the concordance correlation coefficient. We demonstrate the methodology with simulation studies. A case example of osteoarthritis study is provided to illustrate the use of these proposed indices. Copyright © 2014 John Wiley & Sons, Ltd.
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised.Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
Water diffusion in bicelles and the mixed bicelle model.
Soong, Ronald; Macdonald, Peter M
2009-01-06
To test a prediction of the mixed bicelle model, stimulated echo (STE) pulsed field gradient (PFG) (1)H nuclear magnetic resonance (NMR) measurements of water diffusion between and across bicellar lamellae were performed in positively and negatively magnetically aligned bicelles, composed of mixtures of DHPC (1,2-dihexanoyl-sn-glycero-3-phosphocholine) and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), as a function of temperature and of the proportion of added short-chain lipid DHPC. (31)P NMR spectra obtained for each situation confirmed that the DHPC undergoes fast exchange between curved and planar regions as per the mixed bicelle model and permitted an estimate of the proportion of the two DHPC populations. Water diffusion across the bicellar lamellae was shown to scale directly with q*, the fraction of edge versus planar phospholipid, rather than simply the ratio q, the global fraction of long-chain to short-chain phospholipid. Geometric modeling of the dependence of water diffusion on q* suggested an upper limit of 400 A for the size of DHPC-rich toroidal perforations within the bicelle lamellae. These findings constitute an independent confirmation of the mixed bicelle model in which DHPC is not confined to edge regions but enjoys, instead, a finite miscibility with DMPC.
Fermion Masses and Mixing in General Warped Extra Dimensional Models
Frank, Mariana; Pourtolami, Nima; Toharia, Manuel
2015-01-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave-functions to small flavor breaking effects yield naturally hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor-blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the 5D neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is naturally more successful in generalized warped scenarios where the metric bac...
Fermion masses and mixing in general warped extra dimensional models
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
A mixed model reduction method for preserving selected physical information
Zhang, Jing; Zheng, Gangtie
2017-03-01
A new model reduction method in the frequency domain is presented. By mixedly using the model reduction techniques from both the time domain and the frequency domain, the dynamic model is condensed to selected physical coordinates, and the contribution of slave degrees of freedom is taken as a modification to the model in the form of effective modal mass of virtually constrained modes. The reduced model can preserve the physical information related to the selected physical coordinates such as physical parameters and physical space positions of corresponding structure components. For the cases of non-classical damping, the method is extended to the model reduction in the state space but still only contains the selected physical coordinates. Numerical results are presented to validate the method and show the effectiveness of the model reduction.
Mixed-Membership Stochastic Block-Models for Transactional Networks
Shafiei, Mahdi
2010-01-01
Transactional network data can be thought of as a list of one-to-many communications(e.g., email) between nodes in a social network. Most social network models convert this type of data into binary relations between pairs of nodes. We develop a latent mixed membership model capable of modeling richer forms of transactional network data, including relations between more than two nodes. The model can cluster nodes and predict transactions. The block-model nature of the model implies that groups can be characterized in very general ways. This flexible notion of group structure enables discovery of rich structure in transactional networks. Estimation and inference are accomplished via a variational EM algorithm. Simulations indicate that the learning algorithm can recover the correct generative model. Interesting structure is discovered in the Enron email dataset and another dataset extracted from the Reddit website. Analysis of the Reddit data is facilitated by a novel performance measure for comparing two soft ...
Renormalisation running of masses and mixings in UED models
Cornell, A S; Liu, Lu-Xin; Tarhini, Ahmad
2012-01-01
We review the Universal Extra-Dimensional Model compactified on a S1/Z2 orbifold, and the renormalisation group evolution of quark and lepton masses, mixing angles and phases both in the UED extension of the Standard Model and of the Minimal Supersymmetric Standard Model. We consider two typical scenarios: all matter fields propagating in the bulk, and matter fields constrained to the brane. The resulting renormalisation group evolution equations in these scenarios are compared with the existing results in the literature, together with their implications.
Modelling of the Self Sum-Frequency-Mixing Laser
Institute of Scientific and Technical Information of China (English)
CHEN Xue-Yuan; LUO Zun-Du; HUANG Yi-Dong
2001-01-01
A theoretical model of the self sum-frequency-mixing (SFM) laser generated by a single crystal is proposed, in which spatial distribution of the pump and circulating fundamental lasers with arbitrary beam waists are taken into account. The model is then applied to two kinds of crystals of current interest, Nd:YAl3(BO3)4 and Nd:Ca4 GdO(BO3 )a. Numerical analyses of the self-SFM laser properties predict and confirm some experimental results. The model proposed is not limited to self-SFM lasers and may be applied to general analyses of the fundamental or nonlinear laser generation with Gaussian beams.
A Non-Fickian Mixing Model for Stratified Turbulent Flows
2013-09-30
Berselli et al., 2011) and in ocean models ( Marques and Özgökmen, 2012). Our approach in Özgökmen et al. (2012) is perhaps the first truly multi-scale...Transport in Star Eddies: Star eddies have been observed from MODIS SST images in both the summer 2011 and winter 2012 LatMix cruises. I have...published, refereed]. Marques , G.M. and T.M. Özgökmen: On modeling the turbulent exchange in buoyancy-driven fronts. Ocean Modelling [submitted
Analysis of mixed model in gear transmission based on ADAMS
Li, Xiufeng; Wang, Yabin
2012-09-01
The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains higher precision of results while the calculation process is complex, also it is not easy to converge. Currently, most of the researches are focused on the description of geometric models and the definition of boundary conditions. However, none of them can solve the problems fundamentally. To improve the simulation efficiency while ensure the results with high accuracy, a mixed model method which uses gear tooth profiles to take the place of the solid gear to simulate gear movement is presented under these circumstances. In the process of modeling, build the solid models of the mechanism in the SolidWorks firstly; Then collect the point coordinates of outline curves of the gear using SolidWorks API and create fit curves in Adams based on the point coordinates; Next, adjust the position of those fitting curves according to the position of the contact area; Finally, define the loading conditions, boundary conditions and simulation parameters. The method provides gear shape information by tooth profile curves; simulates the mesh process through tooth profile curve to curve contact and offer mass as well as inertia data via solid gear models. This simulation process combines the two models to complete the gear driving analysis. In order to verify the validity of the method presented, both theoretical derivation and numerical simulation on a runaway escapement are conducted. The results show that the computational efficiency of the mixed model method is 1.4 times over the traditional method which contains solid to solid contact. Meanwhile, the simulation results are more closely to theoretical calculations. Consequently, mixed model method has a high application value regarding to the study of the dynamics of gear mechanism.
Maximal atmospheric neutrino mixing in an SU(5) model
Grimus, W.; Lavoura, L.
2003-05-01
We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model.
Shell Model Depiction of Isospin Mixing in sd Shell
Energy Technology Data Exchange (ETDEWEB)
Lam, Yi Hua; Smirnova, Nadya A. [CENBG (CNRS/IN2P3 - Universite Bordeaux 1) Chemin du Solarium, 33175 Gradignan (France); Caurier, Etienne [IPHC, IN2P3-CNRS et Universite Louis Pasteur, 67037 Strasbourg (France)
2011-11-30
We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.
The 4s web-marketing mix model
Constantinides, Efthymios
2002-01-01
This paper reviews the criticism on the 4Ps Marketing Mix framework, the most popular tool of traditional marketing management, and categorizes the main objections of using the model as the foundation of physical marketing. It argues that applying the traditional approach, based on the 4Ps paradigm, is also a poor choice in the case of virtual marketing and identifies two main limitations of the framework in online environments: the drastically diminished role of the Ps and the lack of any st...
Eigenstates and eigenergies of seven bosonic modes mixing models
Institute of Scientific and Technical Information of China (English)
詹志明; 李伟斌; 杨文星
2005-01-01
We present the explicit analytical results of all the eigenstates and eigenvalues by using a parameter λ without the assumption of Bethe ansatz for three different kinds of seven bosonic modes mixing models. It is shown that the parameter is determined by the roots of a simple polynomial. Besides, we also accurately obtain the explicit analytical expressions of infinite eigenstates and energies without any unknown parameter.
Car Delay Model near Bus Stops with Mixed Traffic Flow
Yang Xiaobao; Huan Mei; Gao Ziyou
2013-01-01
This paper proposes a model for estimating car delays at bus stops under mixed traffic using probability theory and queuing theory. The roadway is divided to serve motorized and nonmotorized traffic streams. Bus stops are located on the nonmotorized lanes. When buses dwell at the stop, they block the bicycles. Thus, two conflict points between car stream and other traffic stream are identified. The first conflict point occurs as bicycles merge to the motorized lane to avoid waiting behind the...
Higgs-radion mixing in stabilized brane world models
Boos, Edward E.; Bunichev, Viacheslav E.; Perfilov, Maxim A.; Smolyakov, Mikhail N.; Volobuev, Igor P.
2015-11-01
We consider a quartic interaction of the Higgs and Goldberger-Wise fields, which connects the mechanism of the extra dimension size stabilization with spontaneous symmetry breaking on our brane and gives rise to a coupling of the Higgs field to the radion and its KK tower. We estimate a possible influence of this coupling on the Higgs-radion mixing and study restrictions on model parameters from the LHC data.
Effects of mixing in threshold models of social behavior
Akhmetzhanov, Andrei R.; Worden, Lee; Dushoff, Jonathan
2013-07-01
We consider the dynamics of an extension of the influential Granovetter model of social behavior, where individuals are affected by their personal preferences and observation of the neighbors’ behavior. Individuals are arranged in a network (usually the square lattice), and each has a state and a fixed threshold for behavior changes. We simulate the system asynchronously by picking a random individual and we either update its state or exchange it with another randomly chosen individual (mixing). We describe the dynamics analytically in the fast-mixing limit by using the mean-field approximation and investigate it mainly numerically in the case of finite mixing. We show that the dynamics converge to a manifold in state space, which determines the possible equilibria, and show how to estimate the projection of this manifold by using simulated trajectories, emitted from different initial points. We show that the effects of considering the network can be decomposed into finite-neighborhood effects, and finite-mixing-rate effects, which have qualitatively similar effects. Both of these effects increase the tendency of the system to move from a less-desired equilibrium to the “ground state.” Our findings can be used to probe shifts in behavioral norms and have implications for the role of information flow in determining when social norms that have become unpopular in particular communities (such as foot binding or female genital cutting) persist or vanish.
Nested by design: model fitting and interpretation in a mixed model era
National Research Council Canada - National Science Library
Schielzeth, Holger; Nakagawa, Shinichi; Freckleton, Robert
2013-01-01
...‐effects models offer a powerful framework to do so. Nested effects can usually be fitted using the syntax for crossed effects in mixed models, provided that the coding reflects implicit nesting...
Mixed-Symmetry Shell-Model Calculations in Nuclear Physics
Gueorguiev, V G
2010-01-01
We consider a novel approach to the nuclear shell model. The one-dimensional harmonic oscillator in a box is used to introduce the concept of an oblique-basis shell-model theory. By implementing the Lanczos method for diagonalization of large matrices, and the Cholesky algorithm for solving generalized eigenvalue problems, the method is applied to nuclei. The mixed-symmetry basis combines traditional spherical shell-model states with SU(3) collective configurations. We test the validity of this mixed-symmetry scheme on 24Mg and 44Ti. Results for 24Mg, obtained using the Wilthental USD intersection in a space that spans less than 10% of the full-space, reproduce the binding energy within 2% as well as an accurate reproduction of the low-energy spectrum and the structure of the states - 90% overlap with the exact eigenstates. In contrast, for an m-scheme calculation, one needs about 60% of the full space to obtain compatible results. Calculations for 44Ti support the mixed-mode scheme although the pure SU(3) ca...
Study on system dynamics of evolutionary mix-game models
Gou, Chengling; Guo, Xiaoqian; Chen, Fang
2008-11-01
Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.
Efficient estimation of moments in linear mixed models
Wu, Ping; Zhu, Li-Xing; 10.3150/10-BEJ330
2012-01-01
In the linear random effects model, when distributional assumptions such as normality of the error variables cannot be justified, moments may serve as alternatives to describe relevant distributions in neighborhoods of their means. Generally, estimators may be obtained as solutions of estimating equations. It turns out that there may be several equations, each of them leading to consistent estimators, in which case finding the efficient estimator becomes a crucial problem. In this paper, we systematically study estimation of moments of the errors and random effects in linear mixed models.
Teaching Service Modelling to a Mixed Class: An Integrated Approach
Directory of Open Access Journals (Sweden)
Jeremiah D. DENG
2015-04-01
Full Text Available Service modelling has become an increasingly important area in today's telecommunications and information systems practice. We have adapted a Network Design course in order to teach service modelling to a mixed class of both the telecommunication engineering and information systems backgrounds. An integrated approach engaging mathematics teaching with strategies such as problem-solving, visualization, and the use of examples and simulations, has been developed. From assessment on student learning outcomes, it is indicated that the proposed course delivery approach succeeded in bringing out comparable and satisfactory performance from students of different educational backgrounds.
A new estimate of the parameters in linear mixed models
Institute of Scientific and Technical Information of China (English)
王松桂; 尹素菊
2002-01-01
In linear mixed models, there are two kinds of unknown parameters: one is the fixed effect, theother is the variance component. In this paper, new estimates of these parameters, called the spectral decom-position estimates, are proposed, Some important statistical properties of the new estimates are established,in particular the linearity of the estimates of the fixed effects with many statistical optimalities. A new methodis applied to two important models which are used in economics, finance, and mechanical fields. All estimatesobtained have good statistical and practical meaning.
An A4 x Z4 model for neutrino mixing
BenTov, Yoni; Zee, A
2012-01-01
The A4 x U(1) flavor model of He, Keum, and Volkas is extended to provide a minimal modification to tribimaximal mixing that accommodates a nonzero reactor angle theta13 ~ 0.1. The sequestering problem is circumvented by forbidding superheavy scales and large coupling constants which would otherwise generate sizable RG flows. The model is compatible with (but does not require) a stable or metastable dark matter candidate in the form of a complex scalar field with unit charge under a discrete subgroup Z4 of the U(1) flavor symmetry.
Current Status of cosmological models with mixed dark matter
Mikheeva, E V
2000-01-01
An analysis of cosmological mixed dark matter models in spatially flat Friedmann Universe with zero $\\Lambda$-term is presented. We argue that the introduction of cosmic gravity waves helps to satisfy observational constraints. The analysis of models is based on the confrontation with the mass function of clusters of galaxies and the CMB anisotropy. The implication of Press-Schechter formalism allowed to constrain $\\sigma_8=0.52 \\pm 0.01$. This normalisation of the spectrum of density perturbations has been used to calculate numerically the value of the large scale CMB anisotropy and the relative contribution of cosmological gravitational waves, T/S. We found that increasing $\\Omega_\
A Gaussian Mixed Model for Learning Discrete Bayesian Networks.
Balov, Nikolay
2011-02-01
In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.
Mixed Portmanteau Test for Diagnostic Checking of Time Series Models
Directory of Open Access Journals (Sweden)
Sohail Chand
2014-01-01
Full Text Available Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals. We derived the asymptotic distribution of the mixture test and studied its size and power using Monte Carlo simulations.
The Dependence of Global Ocean Modeling on Background Diapycnal Mixing
Directory of Open Access Journals (Sweden)
Zengan Deng
2014-01-01
Full Text Available The Argo-derived background diapycnal mixing (BDM proposed by Deng et al. (in publish is introduced to and applied in Hybrid Coordinate Ocean Model (HYCOM. Sensitive experiments are carried out using HYCOM to detect the responses of ocean surface temperature and Meridional Overturning Circulation (MOC to BDM in a global context. Preliminary results show that utilizing a constant BDM, with the same order of magnitude as the realistic one, may cause significant deviation in temperature and MOC. It is found that the dependence of surface temperature and MOC on BDM is prominent. Surface temperature is decreased with the increase of BDM, because diapycnal mixing can promote the deep cold water return to the upper ocean. Comparing to the control run, more striking MOC changes can be caused by the larger variation in BDM.
Detecting the violation of variance homogeneity in mixed models.
Fang, Xicheng; Li, Jialiang; Wong, Weng Kee; Fu, Bo
2016-12-01
Mixed-effects models are increasingly used in many areas of applied science. Despite their popularity, there is virtually no systematic approach for examining the homogeneity of the random-effects covariance structure commonly assumed for such models. We propose two tests for evaluating the homogeneity of the covariance structure assumption across subjects: one is based on the covariance matrices computed from the fitted model and the other is based on the empirical variation computed from the estimated random effects. We used simulation studies to compare performances of the two tests for detecting violations of the homogeneity assumption in the mixed-effects models and showed that they were able to identify abnormal clusters of subjects with dissimilar random-effects covariance structures; in particular, their removal from the fitted model might change the signs and the magnitudes of important predictors in the analysis. In a case study, we applied our proposed tests to a longitudinal cohort study of rheumatoid arthritis patients and compared their abilities to ascertain whether the assumption of covariance homogeneity for subject-specific random effects holds. © The Author(s) 2014.
Mixing height computation from a numerical weather prediction model
Energy Technology Data Exchange (ETDEWEB)
Jericevic, A. [Croatian Meteorological and Hydrological Service, Zagreb (Croatia); Grisogono, B. [Univ. of Zagreb, Zagreb (Croatia). Andrija Mohorovicic Geophysical Inst., Faculty of Science
2004-07-01
Dispersion models require hourly values of the mixing height, H, that indicates the existence of turbulent mixing. The aim of this study was to investigate a model ability and characteristics in the prediction of H. The ALADIN, limited area numerical weather prediction (NWP) model for short-range 48-hour forecasts was used. The bulk Richardson number (R{sub iB}) method was applied to determine the height of the atmospheric boundary layer at one grid point nearest to Zagreb, Croatia. This specific location was selected because there were available radio soundings and the verification of the model could be done. Critical value of bulk Richardson number R{sub iBc}=0.3 was used. The values of H, modelled and measured, for 219 days at 12 UTC are compared, and the correlation coefficient of 0.62 is obtained. This indicates that ALADIN can be used for the calculation of H in the convective boundary layer. For the stable boundary layer (SBL), the model underestimated H systematically. Results showed that R{sub iBc} evidently increases with the increase of stability. Decoupling from the surface in the very SBL was detected, which is a consequence of the flow ease resulting in R{sub iB} becoming very large. Verification of the practical usage of the R{sub iB} method for H calculations from NWP model was performed. The necessity for including other stability parameters (e.g., surface roughness length) was evidenced. Since ALADIN model is in operational use in many European countries, this study would help the others in pre-processing NWP data for input to dispersion models. (orig.)
Box-Cox Mixed Logit Model for Travel Behavior Analysis
Orro, Alfonso; Novales, Margarita; Benitez, Francisco G.
2010-09-01
To represent the behavior of travelers when they are deciding how they are going to get to their destination, discrete choice models, based on the random utility theory, have become one of the most widely used tools. The field in which these models were developed was halfway between econometrics and transport engineering, although the latter now constitutes one of their principal areas of application. In the transport field, they have mainly been applied to mode choice, but also to the selection of destination, route, and other important decisions such as the vehicle ownership. In usual practice, the most frequently employed discrete choice models implement a fixed coefficient utility function that is linear in the parameters. The principal aim of this paper is to present the viability of specifying utility functions with random coefficients that are nonlinear in the parameters, in applications of discrete choice models to transport. Nonlinear specifications in the parameters were present in discrete choice theory at its outset, although they have seldom been used in practice until recently. The specification of random coefficients, however, began with the probit and the hedonic models in the 1970s, and, after a period of apparent little practical interest, has burgeoned into a field of intense activity in recent years with the new generation of mixed logit models. In this communication, we present a Box-Cox mixed logit model, original of the authors. It includes the estimation of the Box-Cox exponents in addition to the parameters of the random coefficients distribution. Probability of choose an alternative is an integral that will be calculated by simulation. The estimation of the model is carried out by maximizing the simulated log-likelihood of a sample of observed individual choices between alternatives. The differences between the predictions yielded by models that are inconsistent with real behavior have been studied with simulation experiments.
Application of a mixing-ratios based formulation to model mixing-driven dissolution experiments
Guadagnini, Alberto; Sanchez-Vila, Xavier; Saaltink, Maarten W.; Bussini, Michele; Berkowitz, Brian
2009-05-01
We address the question of how one can combine theoretical and numerical modeling approaches with limited measurements from laboratory flow cell experiments to realistically quantify salient features of complex mixing-driven multicomponent reactive transport problems in porous media. Flow cells are commonly used to examine processes affecting reactive transport through porous media, under controlled conditions. An advantage of flow cells is their suitability for relatively fast and reliable experiments, although measuring spatial distributions of a state variable within the cell is often difficult. In general, fluid is sampled only at the flow cell outlet, and concentration measurements are usually interpreted in terms of integrated reaction rates. In reactive transport problems, however, the spatial distribution of the reaction rates within the cell might be more important than the bulk integrated value. Recent advances in theoretical and numerical modeling of complex reactive transport problems [De Simoni M, Carrera J, Sanchez-Vila X, Guadagnini A. A procedure for the solution of multicomponent reactive transport problems. Water Resour Res 2005;41:W11410. doi: 10.1029/2005WR004056, De Simoni M, Sanchez-Vila X, Carrera J, Saaltink MW. A mixing ratios-based formulation for multicomponent reactive transport. Water Resour Res 2007;43:W07419. doi: 10.1029/2006WR005256] result in a methodology conducive to a simple exact expression for the space-time distribution of reaction rates in the presence of homogeneous or heterogeneous reactions in chemical equilibrium. The key points of the methodology are that a general reactive transport problem, involving a relatively high number of chemical species, can be formulated in terms of a set of decoupled partial differential equations, and the amount of reactants evolving into products depends on the rate at which solutions mix. The main objective of the current study is to show how this methodology can be used in conjunction
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2014-01-01
Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM.New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggest...
Mixed-model Regression for Variable-star Photometry
Dose, Eric
2016-05-01
Mixed-model regression, a recent advance from social-science statistics, applies directly to reducing one night's photometric raw data, especially for variable stars in fields with multiple comparison stars. One regression model per filter/passband yields any or all of: transform values, extinction values, nightly zero-points, rapid zero-point fluctuations ("cirrus effect"), ensemble comparisons, vignette and gradient removal arising from incomplete flat-correction, check-star and target-star magnitudes, and specific indications of unusually large catalog magnitude errors. When images from several different fields of view are included, the models improve without complicating the calculations. The mixed-model approach is generally robust to outliers and missing data points, and it directly yields 14 diagnostic plots, used to monitor data set quality and/or residual systematic errors - these diagnostic plots may in fact turn out to be the prime advantage of this approach. Also presented is initial work on a split-annulus approach to sky background estimation, intended to address the sensitivity of photometric observations to noise within the sky-background annulus.
Mixing Study in an Unbaffled Stirred Precipitator Using LES Modelling
Directory of Open Access Journals (Sweden)
Murielle Bertrand
2012-01-01
Full Text Available This paper describes the CFD modelling of a reactor operating in the nuclear industry using LES approach. The reactor consists of an unbaffled stirred tank reactor in which plutonium precipitation reactions are carried out. The flow generated in such a precipitator is complex and there is very little information available in the literature about unbaffled reactors stirred with magnetic rod. That is why a hydrodynamic modelling has been developed using computational fluid dynamics (CFD in order to get accurate description of mixing phenomena inside the precipitator and therefore to be able to predict the solid particle properties. Due to the strong turbulence anisotropy, the turbulence transport simulation is achieved by a large eddy simulation (LES approach which gives unsteady solutions. The numerical simulations are performed in 3D using the Trio_U code developed at the Commissariat à l'Énergie Atomique. The predictive performances of the modelling are analysed through a mixing phenomena study. Both experimental and numerical studies are performed. This work shows how hydrodynamics inside the reactor can have a noticeable effect on the precipitate properties and how LES modelling is a very effective tool for the process control.
Modelling rainfall amounts using mixed-gamma model for Kuantan district
Zakaria, Roslinazairimah; Moslim, Nor Hafizah
2017-05-01
An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.
Linking effort and fishing mortality in a mixed fisheries model
DEFF Research Database (Denmark)
Thøgersen, Thomas Talund; Hoff, Ayoe; Frost, Hans Staby
2012-01-01
in fish stocks has led to overcapacity in many fisheries, leading to incentives for overfishing. Recent research has shown that the allocation of effort among fleets can play an important role in mitigating overfishing when the targeting covers a range of species (multi-species—i.e., so-called mixed...... fisheries), while simultaneously optimising the overall economic performance of the fleets. The so-called FcubEcon model, in particular, has elucidated both the biologically and economically optimal method for allocating catches—and thus effort—between fishing fleets, while ensuring that the quotas...
ROBUST ESTIMATION IN PARTIAL LINEAR MIXED MODEL FOR LONGITUDINAL DATA
Institute of Scientific and Technical Information of China (English)
Qin Guoyou; Zhu Zhongyi
2008-01-01
In this article, robust generalized estimating equation for the analysis of par- tial linear mixed model for longitudinal data is used. The authors approximate the non- parametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.
Delta-tilde interpretation of standard linear mixed model results
DEFF Research Database (Denmark)
Brockhoff, Per Bruun; Amorim, Isabel de Sousa; Kuznetsova, Alexandra
2016-01-01
effects relative to the residual error and to choose the proper effect size measure. For multi-attribute bar plots of F-statistics this amounts, in balanced settings, to a simple transformation of the bar heights to get them transformed into depicting what can be seen as approximately the average pairwise...... for factors with differences in number of levels. For mixed models, where in general the relevant error terms for the fixed effects are not the pure residual error, it is suggested to base the d-prime-like interpretation on the residual error. The methods are illustrated on a multifactorial sensory profile...... inherently challenging effect size measure estimates in ANOVA settings....
A model for imperfect mixing in a CSTR
Bar-Eli, Kedma; Noyes, Richard M.
1986-09-01
When a chemical reaction is carried out in a continuously stirred tank reactor, the behavior may be significantly affected by the efficiency with which the entering chemicals are mixed with the main contents of the reactor. We have developed a model for this effect which assumes that a feed of premixed chemicals remains for a while in totally segregated packets before they are rapidly and perfectly mixed with the rest of the system. The time of this initial segregation is affected by the efficiency of stirring in the reactor. The model has been tested by computations on a mechanism developed by Roelofs et al. for a reaction which would oscillate even in a closed system. It has also been tested by computations on the rapid autocatalytic oxidation of cerous ion by bromate in the presence of a small amount of bromide. The results are qualitatively consistent with effects observed experimentally and in computations with other models including a somewhat similar one by Kumpinsky and Epstein. More quantitative tests should recognize the difference whether two streams of chemicals enter the reactor independently or are premixed before they do so.
Modeling of speed distribution for mixed bicycle traffic flow
Directory of Open Access Journals (Sweden)
Cheng Xu
2015-11-01
Full Text Available Speed is a fundamental measure of traffic performance for highway systems. There were lots of results for the speed characteristics of motorized vehicles. In this article, we studied the speed distribution for mixed bicycle traffic which was ignored in the past. Field speed data were collected from Hangzhou, China, under different survey sites, traffic conditions, and percentages of electric bicycle. The statistics results of field data show that the total mean speed of electric bicycles is 17.09 km/h, 3.63 km/h faster and 27.0% higher than that of regular bicycles. Normal, log-normal, gamma, and Weibull distribution models were used for testing speed data. The results of goodness-of-fit hypothesis tests imply that the log-normal and Weibull model can fit the field data very well. Then, the relationships between mean speed and electric bicycle proportions were proposed using linear regression models, and the mean speed for purely electric bicycles or regular bicycles can be obtained. The findings of this article will provide effective help for the safety and traffic management of mixed bicycle traffic.
REGRESSION ANALYSIS OF PRODUCTIVITY USING MIXED EFFECT MODEL
Directory of Open Access Journals (Sweden)
Siana Halim
2007-01-01
Full Text Available Production plants of a company are located in several areas that spread across Middle and East Java. As the production process employs mostly manpower, we suspected that each location has different characteristics affecting the productivity. Thus, the production data may have a spatial and hierarchical structure. For fitting a linear regression using the ordinary techniques, we are required to make some assumptions about the nature of the residuals i.e. independent, identically and normally distributed. However, these assumptions were rarely fulfilled especially for data that have a spatial and hierarchical structure. We worked out the problem using mixed effect model. This paper discusses the model construction of productivity and several characteristics in the production line by taking location as a random effect. The simple model with high utility that satisfies the necessary regression assumptions was built using a free statistic software R version 2.6.1.
Integrable mixing of A_{n-1} type vertex models
Grillo, S
2002-01-01
Given a family of monodromy matrices {T_u; u=1,...,K} corresponding to integrable anisotropic vertex models of A_{n_u-1}-type, we build up a related mixed vertex model by means of gluing the lattices on which they are defined, in such a way that integrability property is preserved. Algebraically, the gluing process is implemented through one dimensional representations of rectangular matrix algebras A(R_p,R_q), where R_n indicates the R-matrix associated to the standard Hopf algebra deformation of the simple Lie algebra A_{n-1}. We show that algebraic Bethe ansatz can be applied, and the resulting nested equations are identical to the ones corresponding to an A_{n-1} quasi- periodic model with n=min{n_u; u=1,...,K}.
Mixing height derived from the DMI-HIRLAM NWP model, and used for ETEX dispersion modelling
Energy Technology Data Exchange (ETDEWEB)
Soerensen, J.H.; Rasmussen, A. [Danish Meteorological Inst., Copenhagen (Denmark)
1997-10-01
For atmospheric dispersion modelling it is of great significance to estimate the mixing height well. Mesoscale and long-range diffusion models using output from numerical weather prediction (NWP) models may well use NWP model profiles of wind, temperature and humidity in computation of the mixing height. This is dynamically consistent, and enables calculation of the mixing height for predicted states of the atmosphere. In autumn 1994, the European Tracer Experiment (ETEX) was carried out with the objective to validate atmospheric dispersion models. The Danish Meteorological Institute (DMI) participates in the model evaluations with the Danish Emergency Response Model of the Atmosphere (DERMA) using NWP model data from the DMI version of the High Resolution Limited Area Model (HIRLAM) as well as from the global model of the European Centre for Medium-Range Weather Forecast (ECMWF). In DERMA, calculation of mixing heights are performed based on a bulk Richardson number approach. Comparing with tracer gas measurements for the first ETEX experiment, a sensitivity study is performed for DERMA. Using DMI-HIRLAM data, the study shows that optimum values of the critical bulk Richardson number in the range 0.15-0.35 are adequate. These results are in agreement with recent mixing height verification studies against radiosonde data. The fairly large range of adequate critical values is a signature of the robustness of the method. Direct verification results against observed missing heights from operational radio-sondes released under the ETEX plume are presented. (au) 10 refs.
System dynamics of behaviour-evolutionary mix-game models
Gou, Cheng-Ling; Gao, Jie-Ping; Chen, Fang
2010-11-01
In real financial markets there are two kinds of traders: one is fundamentalist, and the other is a trend-follower. The mix-game model is proposed to mimic such phenomena. In a mix-game model there are two groups of agents: Group 1 plays the majority game and Group 2 plays the minority game. In this paper, we investigate such a case that some traders in real financial markets could change their investment behaviours by assigning the evolutionary abilities to agents: if the winning rates of agents are smaller than a threshold, they will join the other group; and agents will repeat such an evolution at certain time intervals. Through the simulations, we obtain the following findings: (i) the volatilities of systems increase with the increase of the number of agents in Group 1 and the times of behavioural changes of all agents; (ii) the performances of agents in both groups and the stabilities of systems become better if all agents take more time to observe their new investment behaviours; (iii) there are two-phase zones of market and non-market and two-phase zones of evolution and non-evolution; (iv) parameter configurations located within the cross areas between the zones of markets and the zones of evolution are suited for simulating the financial markets.
System dynamics of behaviour-evolutionary mix-game models
Institute of Scientific and Technical Information of China (English)
Gou Cheng-Ling; Gao Jie-Ping; Chen Fang
2010-01-01
In real financial markets there are two kinds of traders:one is fundamentalist,and the other is a trend-follower.The mix-game model is proposed to mimic such phenomena.In a mix-game model there are two groups of agents:Group 1 plays the majority game and Group 2 plays the minority game.In this paper,we investigate such a case that some traders in real financial markets could change their investment behaviours by assigning the evolutionary abilities to agents:if the winning rates of agents are smaller than a threshold,they will join the other group;and agents will repeat such an evolution at certain time intervals.Through the simulations,we obtain the following findings:(i) the volatilities of systems increase with the increase of the number of agents in Group 1 and the times of behavioural changes of all agents;(ii) the performances of agents in both groups and the stabilities of systems become better if all agents take more time to observe their new investment behaviours;(iii) there are two-phase zones of market and non-market and two-phase zones of evolution and non-evolution;(iv) parameter configurations located within the cross areas between the zones of markets and the zones of evolution are suited for simulating the financial markets.
A modified EM algorithm for estimation in generalized mixed models.
Steele, B M
1996-12-01
Application of the EM algorithm for estimation in the generalized mixed model has been largely unsuccessful because the E-step cannot be determined in most instances. The E-step computes the conditional expectation of the complete data log-likelihood and when the random effect distribution is normal, this expectation remains an intractable integral. The problem can be approached by numerical or analytic approximations; however, the computational burden imposed by numerical integration methods and the absence of an accurate analytic approximation have limited the use of the EM algorithm. In this paper, Laplace's method is adapted for analytic approximation within the E-step. The proposed algorithm is computationally straightforward and retains much of the conceptual simplicity of the conventional EM algorithm, although the usual convergence properties are not guaranteed. The proposed algorithm accommodates multiple random factors and random effect distributions besides the normal, e.g., the log-gamma distribution. Parameter estimates obtained for several data sets and through simulation show that this modified EM algorithm compares favorably with other generalized mixed model methods.
Goodness-of-fit tests in mixed models
Claeskens, Gerda
2009-05-12
Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors are normally distributed. Most of the proposed methods can be extended to generalized linear models where tests for non-normal distributions are of interest. Our tests are nonparametric in the sense that they are designed to detect virtually any alternative to normality. In case of rejection of the null hypothesis, the nonparametric estimation method that is used to construct a test provides an estimator of the alternative distribution. © 2009 Sociedad de Estadística e Investigación Operativa.
A mixing evolution model for bidirectional microblog user networks
Yuan, Wei-Guo; Liu, Yun
2015-08-01
Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.
Modeling and Reconstruction of Mixed Functional and Molecular Patterns
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Functional medical imaging promises powerful tools for the visualization and elucidation of important disease-causing biological processes in living tissue. Recent research aims to dissect the distribution or expression of multiple biomarkers associated with disease progression or response, where the signals often represent a composite of more than one distinct source independent of spatial resolution. Formulating the task as a blind source separation or composite signal factorization problem, we report here a statistically principled method for modeling and reconstruction of mixed functional or molecular patterns. The computational algorithm is based on a latent variable model whose parameters are estimated using clustered component analysis. We demonstrate the principle and performance of the approaches on the breast cancer data sets acquired by dynamic contrast-enhanced magnetic resonance imaging.
Watanabe, Tomoaki; Nagata, Koji
2016-11-01
The mixing volume model (MVM), which is a mixing model for molecular diffusion in Lagrangian simulations of turbulent mixing problems, is proposed based on the interactions among spatially distributed particles in a finite volume. The mixing timescale in the MVM is derived by comparison between the model and the subgrid scale scalar variance equation. A-priori test of the MVM is conducted based on the direct numerical simulations of planar jets. The MVM is shown to predict well the mean effects of the molecular diffusion under various conditions. However, a predicted value of the molecular diffusion term is positively correlated to the exact value in the DNS only when the number of the mixing particles is larger than two. Furthermore, the MVM is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (ILES/LPS). The ILES/LPS with the present mixing model predicts well the decay of the scalar variance in planar jets. This work was supported by JSPS KAKENHI Nos. 25289030 and 16K18013. The numerical simulations presented in this manuscript were carried out on the high performance computing system (NEC SX-ACE) in the Japan Agency for Marine-Earth Science and Technology.
A phase mixing model for the frequency-doubling illusion.
Wielaard, James; Smith, R Theodore
2013-10-01
We introduce a temporal phase mixing model for a description of the frequency-doubling illusion (FDI). The model is generic in the sense that it can be set to refer to retinal ganglion cells, lateral geniculate cells, as well as simple cells in the primary visual cortex (V1). Model parameters, however, strongly suggest that the FDI originates in the cortex. The model shows how noise in the response phases of cells in V1, or in further processing of these phases, easily produces observed behavior of FDI onset as a function of spatiotemporal frequencies. It also shows how this noise can accommodate physiologically plausible spatial delays in comparing neural signals over a distance. The model offers an explanation for the disappearance of the FDI at sufficiently high spatial frequencies via increasingly correlated coding of neighboring grating stripes. Further, when the FDI is equated to vanishing perceptual discrimination between asynchronous contrast-reversal gratings, the model proposes the possibility that the FDI shows a resonance behavior at sufficiently high spatial frequencies, by which it is alternately perceived and not perceived in sequential temporal frequency bands.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model,as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three endmembers. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.
Cabibbo--Kobayashi--Maskawa Mixing in Superstring Derived Standard--like Models
Faraggi, A E; Faraggi, Alon E.; Halyo, Edi
1994-01-01
We examine the problem of three generation quark flavor mixing in realistic, superstring derived standard--like models, constructed in the free fermionic formulation. We study the sources of family mixing in these models and discuss the necessary conditions to obtain a realistic Cabibbo--Kobayashi--Maskawa (CKM) mixing matrix. In a specific model, we estimate the mixing angles and discuss the weak CP violating phase. We argue that the superstring standard--like models can produce a realistic CKM mixing matrix. We discuss the possible textures of quark mass matrices that may be obtained in these models.
Linear models for sound from supersonic reacting mixing layers
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
Modelling Mixed Discrete-Continuous Domains for Planning
Fox, M; 10.1613/jair.2044
2011-01-01
In this paper we present pddl+, a planning domain description language for modelling mixed discrete-continuous planning domains. We describe the syntax and modelling style of pddl+, showing that the language makes convenient the modelling of complex time-dependent effects. We provide a formal semantics for pddl+ by mapping planning instances into constructs of hybrid automata. Using the syntax of HAs as our semantic model we construct a semantic mapping to labelled transition systems to complete the formal interpretation of pddl+ planning instances. An advantage of building a mapping from pddl+ to HA theory is that it forms a bridge between the Planning and Real Time Systems research communities. One consequence is that we can expect to make use of some of the theoretical properties of HAs. For example, for a restricted class of HAs the Reachability problem (which is equivalent to Plan Existence) is decidable. pddl+ provides an alternative to the continuous durative action model of pddl2.1, adding a more flex...
Modeling of mixed-mode chromatography of peptides.
Bernardi, Susanna; Gétaz, David; Forrer, Nicola; Morbidelli, Massimo
2013-03-29
Mixed-mode chromatographic materials are more and more often used for the purification of biomolecules, such as peptides and proteins. In many instances they in fact exhibit better selectivity values and therefore improve the purification efficiency compared to classical materials. In this work, a model to describe biomolecules retention in cation-exchange/reversed-phase (CIEX-RP) mixed-mode columns under diluted conditions has been developed. The model accounts for the effect of the salt and organic modifier concentration on the biomolecule Henry coefficient through three parameters: α, β and γ. The α parameter is related to the adsorption strength and ligand density, β represents the number of organic modifier molecules necessary to displace one adsorbed biomolecule and γ represents the number of salt molecules necessary to desorb one biomolecule. The latter parameter is strictly related to the number of charges on the biomolecule surface interacting with the ion-exchange ligands and it is shown experimentally that its value is close to the biomolecule net charge. The model reliability has been validated by a large set of experimental data including retention times of two different peptides (goserelin and insulin) on five columns: a reversed-phase C8 column and four CIEX-RP columns with different percentages of sulfonic groups and various concentration values of the salt and organic modifier. It has been found that the percentage of sulfonic groups on the surface strongly affects the peptides adsorption strength, and in particular, in the cases investigated, a CIEX ligand density around 0.04μmol/m(2) leads to optimal retention values.
Efficient material flow in mixed model assembly lines.
Alnahhal, Mohammed; Noche, Bernd
2013-01-01
In this study, material flow from decentralized supermarkets to stations in mixed model assembly lines using tow (tugger) trains is investigated. Train routing, scheduling, and loading problems are investigated in parallel to minimize the number of trains, variability in loading and in routes lengths, and line-side inventory holding costs. The general framework for solving these problems in parallel contains analytical equations, Dynamic Programming (DP), and Mixed Integer Programming (MIP). Matlab in conjunction with LP-solve software was used to formulate the problem. An example was presented to explain the idea. Results which were obtained in very short CPU time showed the effect of using time buffer among routes on the feasible space and on the optimal solution. Results also showed the effect of the objective, concerning reducing the variability in loading, on the results of routing, scheduling, and loading. Moreover, results showed the importance of considering the maximum line-side inventory beside the capacity of the train in the same time in finding the optimal solution.
Energy Technology Data Exchange (ETDEWEB)
JACKSON VL
2011-08-31
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
Computational Modeling and Experimental Facts of Mixed Self- Assembly Systems.
Messina, Paula V; Besada-Porto, Jose Miguel; Rial, Ramón; González-Díaz, Humberto; Ruso, Juan M
2016-01-01
The formation of liposomes, nanoparticle micelles, and related systems by mixtures of drugs and/or surfactants is of major relevance for the design of drug delivery systems. We can design new systems using different compounds. Traditionally these systems are created by trial and error using experimental data. However, in most cases measuring all the possible combinations represents a extensive work and almost always unaffordable. In this sense, we can use theoretical concepts and develop computational models to predict different physicochemical properties of self-aggregation processes of mixed molecular systems. In a previous work, we developed a new PT-LFER model (Linear Free Energy Relationships, LFER, combined with Perturbation Theory, PT, ideas) for binary systems. The best PT-LFER model found predicted the effects of 25000 perturbations over nine different properties of binary systems. The present work has two parts. Firstly, we carry out an analysis on the new results on the applications and experimental-theoretical studies of binary selfassembled systems. In the second part, we report for the first time, a new experimental-theoretic study of the NaDC-DTAB binary system. For this purpose, we have combined experimental procedures plus physicochemical thermodynamic framework with the PT-LFER model reported in our previous work.
Bayesian Gaussian Copula Factor Models for Mixed Data.
Murray, Jared S; Dunson, David B; Carin, Lawrence; Lucas, Joseph E
2013-06-01
Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.
Directory of Open Access Journals (Sweden)
Cascaval Dan
2004-01-01
Full Text Available The mixing time for bioreactors depends mainly on the rheoiogicai properties of the broths, the biomass concentration and morphology, mixing system characteristics and fermentation conditions. For quantifying the influence of these factors on the mixing efficiency for stirred bioreactors, aerated broths of bacteria (P. shermanii, yeasts (S. cerevisiae and fungi (P. chrysogenum, free mycelia and mycelial aggregates of different concentrations have been investigated using a laboratory bioreactor with a double turbine impeller. The experimental data indicated that the influence of the rotation speed, aeration rate and stirrer positions on the mixing intensity strongly differ from one system to another and must be correlated with the microorganism characteristics, namely: the biomass concentration and morphology. Moreover, compared with non-aerated broths, variations of the mixing time with the considered parameters are very different, due to the complex flow mechanism of gas-liquid dispersions. By means of the experimental data and using a multiregression analysis method some mathematical correlations for the mixing time of the general form: tm = a1*Cx2+a2*Cx+a3*IgVa+a4-N2+a5-N+a6/a7*L2+a8*L+a9 were established. The proposed equations offer good agreement with the experiments, the average deviation being ±6.7% - ±9.4 and are adequate for the flow regime Re < 25,000.
Latent Fundamentals Arbitrage with a Mixed Effects Factor Model
Directory of Open Access Journals (Sweden)
Andrei Salem Gonçalves
2012-09-01
Full Text Available We propose a single-factor mixed effects panel data model to create an arbitrage portfolio that identifies differences in firm-level latent fundamentals. Furthermore, we show that even though the characteristics that affect returns are unknown variables, it is possible to identify the strength of the combination of these latent fundamentals for each stock by following a simple approach using historical data. As a result, a trading strategy that bought the stocks with the best fundamentals (strong fundamentals portfolio and sold the stocks with the worst ones (weak fundamentals portfolio realized significant risk-adjusted returns in the U.S. market for the period between July 1986 and June 2008. To ensure robustness, we performed sub period and seasonal analyses and adjusted for trading costs and we found further empirical evidence that using a simple investment rule, that identified these latent fundamentals from the structure of past returns, can lead to profit.
Vertimill™ pilot scale tests simulated by perfect mixing model
Directory of Open Access Journals (Sweden)
Douglas Batista Mazzinghy
2014-07-01
Full Text Available Minas-Rio Project, Anglo American property, located in Brazil, considers Vertimill™ to make the particle size distribution adequate to feed slurry pipeline. A pilot test campaign was carried out at Metso's pilot plant facility located in York city, Pennsylvania State, USA, to provide information to scale up the industrial grinding circuit. The perfect mixing model, normally used to simulate ball mills, was used to compare the direct and reverse circuit configurations. The simulations were based on the appearance function determined from the laboratory tests using a batch tube mill. The combined breakage rate/discharge rate function (r/d was determined from Vertimill™ feed and product particle size distributions obtained from pilot tests. The residence time was estimated considering the mill hold-up and solids flow rate. The simulation results show that there are no significant differences between direct and reverse circuits for the sample tested.
Building a Bridge from Moments to PDF's: A New Approach to Finding PDF Mixing Models
Schüler, Lennart; Knabner, Peter; Attinger, Sabine
2016-01-01
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. A mixing model, also known as a dissipation model, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Differential expression analysis for RNAseq using Poisson mixed models.
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang
2017-06-20
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers
Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.
2016-10-01
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.
The transition model test for serial dependence in mixed-effects models for binary data
DEFF Research Database (Denmark)
Breinegaard, Nina; Rabe-Hesketh, Sophia; Skrondal, Anders
2016-01-01
Generalized linear mixed models for longitudinal data assume that responses at different occasions are conditionally independent, given the random effects and covariates. Although this assumption is pivotal for consistent estimation, violation due to serial dependence is hard to assess by model...... the targeted root mean squared error of approximation (TRSMEA) as a measure of the population misfit due to serial dependence....
Cruise observation and numerical modeling of turbulent mixing in the Pearl River estuary in summer
Pan, Jiayi; Gu, Yanzhen
2016-06-01
The turbulent mixing in the Pearl River estuary and plume area is analyzed by using cruise data and simulation results of the Regional Ocean Model System (ROMS). The cruise observations reveal that strong mixing appeared in the bottom layer on larger ebb in the estuary. Modeling simulations are consistent with the observation results, and suggest that inside the estuary and in the near-shore water, the mixing is stronger on ebb than on flood. The mixing generation mechanism analysis based on modeling data reveals that bottom stress is responsible for the generation of turbulence in the estuary, for the re-circulating plume area, internal shear instability plays an important role in the mixing, and wind may induce the surface mixing in the plume far-field. The estuary mixing is controlled by the tidal strength, and in the re-circulating plume bulge, the wind stirring may reinforce the internal shear instability mixing.
Mixed axion/neutralino cold dark matter in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard; Lessa, Andre; Rajagopalan, Shibi; Sreethawong, Warintorn, E-mail: baer@nhn.ou.edu, E-mail: lessa@nhn.ou.edu, E-mail: shibi@nhn.ou.edu, E-mail: wstan@nhn.ou.edu [Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)
2011-06-01
We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter (a Z-tilde {sub 1} CDM). The mixed a Z-tilde {sub 1} CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos (ã) to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as ∼ (f{sub a}/N)/m{sub ã}{sup 3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In a Z-tilde {sub 1} CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.
Energy Technology Data Exchange (ETDEWEB)
Cho, Bong Hyun; Kim, Hwan Yeol; Kang, Hyung Seok; Bae, Yoon Young
1997-05-01
Direct injection of emergency core cooling water into the reactor vessel downcomer annulus (DVI) is an unique feature of the four-train safety injection system of Korean Next Generation Reactor(KNGR). In this study, in order to evaluate the fluid mixing characteristics of the injected water for DVI case, we have suggested for application to DVI, Theofanous` regional mixing model and Wallis` experiments of flow regimes for injection water to the annulus. Theofanous`model was developed as a fluid mixing model in reactor vessel downcomer for the case of Cold Leg Injection(CLI). We have established a procedure for calculating fluid mixing temperature, calculated the mixing temperature for SBLOCA and MSLB, and compared them to those of CLI. In general, the fluid temperatures across the reactor vessel beltline are higher than 110 deg F, the RT{sub NDT} of EOL for reactor vessel material, and the values are within the acceptable limits of PTS concern. (author). 6 tabs., 21 figs., 11 refs.
Predictability of Shanghai Stock Market by Agent-based Mix-game Model
Gou, C
2005-01-01
This paper reports the effort of using agent-based mix-game model to predict financial time series. It introduces the prediction methodology by means of mix-game model and gives an example of its application to forecasting Shanghai Index. The results show that this prediction methodology is effective and agent-based mix-game model is a potential good model to predict time series of financial markets.
Feedback model evaluation of high-mix product manufacturing
King, Dion; Cheng, Mingjen; Lu, Aho; Mao, Zhibiao; Liang, Curtis
2006-03-01
As the patterns are getting smaller, the difficulty to control a margin-tight process expands exponentially. The use of the Automated Process Control (APC), therefore, becomes a widely employed mean in photolithography process to control overlay and CD variations. The accuracy of APC is dependent upon the amount of the previous process data. However, in a foundry with high-mix products it is typical that there are not enough historic data points for accurate calculation of process parameters for a low volume product. The consequence is the high rework rate of pilot runs and test runes due to poor process parameter prediction for overlay. Several studies of the method for predicting the overlay correction have been reported. The key to build a good prediction model is to break the overlay errors down to several parts. Some are equipment or technology related errors, which are shared by all products. Others are the characteristic for certain products, for instance, mask error or special alignment marks. In the production environment the former parts are updated in real time by data feedback from processing all kinds of products. The low volume products or pilot products can share the information. Thus we can achieve a more accurate control or prediction for a new product. In this paper we provide a new model for predicting the process parameter settings of overlay for a pilot run or a product not being run on a tool for a long period of time. This new model is a Simplified Cerebellar Manipulation Arithmetic Controller (SCMAC), which is one kind of Neural Network (NN) model. We assume each part of overlay errors is a cell in SCMAC and build the whole cell table by using this assumption. The final overlay correction value is the sum of a group of cells, which is activated by one lot information. We will also present the details of the building and training of this new SCMAC model. The prediction accuracy of SCMAC in overlay parameters is also evaluated. According to
Extended Mixed-Efects Item Response Models with the MH-RM Algorithm
Chalmers, R. Philip
2015-01-01
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…
Mixed Dark Matter in Left-Right Symmetric Models
Berlin, Asher; Hooper, Dan; Mohlabeng, Gopolang
2016-01-01
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W' boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, gR = gL. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
Mixed dark matter in left-right symmetric models
Energy Technology Data Exchange (ETDEWEB)
Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)
2016-06-08
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
Car Delay Model near Bus Stops with Mixed Traffic Flow
Directory of Open Access Journals (Sweden)
Yang Xiaobao
2013-01-01
Full Text Available This paper proposes a model for estimating car delays at bus stops under mixed traffic using probability theory and queuing theory. The roadway is divided to serve motorized and nonmotorized traffic streams. Bus stops are located on the nonmotorized lanes. When buses dwell at the stop, they block the bicycles. Thus, two conflict points between car stream and other traffic stream are identified. The first conflict point occurs as bicycles merge to the motorized lane to avoid waiting behind the stopping buses. The second occurs as buses merge back to the motorized lane. The average car delay is estimated as the sum of the average delay at these two conflict points and the delay resulting from following the slower bicycles that merged into the motorized lane. Data are collected to calibrate and validate the developed model from one site in Beijing. The sensitivity of car delay to various operation conditions is examined. The results show that both bus stream and bicycle stream have significant effects on car delay. At bus volumes above 200 vehicles per hour, the curbside stop design is not appropriate because of the long car delays. It can be replaced by the bus bay design.
Modeling 210Pb-derived mixing activity in ocean margin sediments: Diffusive versus nonlocal mixing
Soetaert, K.E.R.; Herman, P.M.J.; Middelburg, J.J.; Heip, C.H.R.; De Stigter, H.; Van Weering, T.C.E.; Epping, E.; Helder, W.
1996-01-01
The influence of sediment mixing on activity versus depth profiles of the radionuclide (210)pb in the upper 20 cm of the sediments has been investigated along a depth transect (208 m- 4500 m, 17 stations) in the OMEX study area (Goban Spur, NE Atlantic Ocean). A hierarchical family of bioturbation/n
Prediction of stock markets by the evolutionary mix-game model
Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping
2008-06-01
This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.
Oxygen reduction kinetics on mixed conducting SOFC model cathodes
Energy Technology Data Exchange (ETDEWEB)
Baumann, F.S.
2006-07-01
The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos
Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures
Directory of Open Access Journals (Sweden)
Reis Maria AM
2008-07-01
Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of
FBR for catalytic propylene polymerization: Controlled mixing and reactor modeling
Meier, G.B.; Weickert, G.; Swaaij, van W.P.M.
2002-01-01
Particle mixing and segregation have been studied in a small-scale fluidized-bed reactor (FBR) under pressure. The solids mixing is relatively faster than the residence time of catalyst particles in the case of a polymerization process, but smaller particles accumulate in the upper zone. Semibatch p
Genomic Heritability of Bovine Growth Using a Mixed Model
Directory of Open Access Journals (Sweden)
Jihye Ryu
2014-11-01
Full Text Available This study investigated heritability for bovine growth estimated with genomewide single nucleotide polymorphism (SNP information obtained from a DNA microarray chip. Three hundred sixty seven Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,112 SNPs of 364 animals filtered by quality assurance were analyzed to estimate heritability of body weights at 6, 9, 12, 15, 18, 21, and 24 months of age. Restricted maximum likelihood estimate of heritability was obtained using covariance structure of genomic relationships among animals in a mixed model framework. Heritability estimates ranged from 0.58 to 0.76 for body weights at different ages. The heritability estimates using genomic information in this study were larger than those which had been estimated previously using pedigree information. The results revealed a trend that the heritability for body weight increased at a younger age (6 months. This suggests an early genetic evaluation for bovine growth using genomic information to increase genetic merits of animals.
A MIXED LUBRICATION MODEL MODIFIED BY SURFACES' FRACTAL CHARACTERISTICS
Institute of Scientific and Technical Information of China (English)
孟凡明; 张有云
2003-01-01
Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D, compared with the oil film thickness to roughness ratio h/Rq. As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.
PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL
Institute of Scientific and Technical Information of China (English)
H.W.Yang; D.P.Tao; Z.H.Zhou
2008-01-01
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.
Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models
DEFF Research Database (Denmark)
Gerhard, Daniel; Bremer, Melanie; Ritz, Christian
2014-01-01
A unified modeling framework based on a set of nonlinear mixed models is proposed for flexible modeling of gene expression in real-time PCR experiments. Focus is on estimating the marginal or population-based derived parameters: cycle thresholds and ΔΔc(t), but retaining the conditional mixed mod...
Mixed isoparametric finite element models of laminated composite shells
Noor, A. K.; Andersen, C. M.
1977-01-01
Mixed shear-flexible isoparametric elements are presented for the stress and free vibration analysis of laminated composite shallow shells. Both triangular and quadrilateral elements are considered. The 'generalized' element stiffness, consistent mass, and consistent load coefficients are obtained by using a modified form of the Hellinger-Reissner mixed variational principle. Group-theoretic techniques are used in conjunction with computerized symbolic integration to obtain analytic expressions for the stiffness, mass and load coefficients. A procedure is outlined for efficiently handling the resulting system of algebraic equations. The accuracy of the mixed isoparametric elements developed is demonstrated by means of numerical examples, and their advantages over commonly used displacement elements are discussed.
Directory of Open Access Journals (Sweden)
J. Uchida
2010-05-01
Full Text Available The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES and a mixed layer model (MLM. The strength of the second aerosol indirect effect simulated by the two model types agrees within 50% for cases in which the LES-simulated boundary layer remains well mixed, if the MLM entrainment closure includes the effects of cloud droplet sedimentation.
To achieve this agreement, parameters in the MLM entrainment closure and the drizzle parameterization must be retuned to match the LES. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a comparable decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed.
Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and parameterized microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates the central assumption of an MLM, substantially limiting the range of conditions that MLM-predicted sensitivities to droplet concentration are meaningful.
Directory of Open Access Journals (Sweden)
P. N. Blossey
2009-12-01
Full Text Available The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES and a mixed layer model (MLM, to see if the two model types agree on the strength of the second aerosol indirect effect. Good agreement can be obtained if the MLM entrainment closure explicitly reduces entrainment efficiency proportional to the rate of cloud droplet sedimentation at cloud top for cases in which the LES-simulated boundary layer remains well mixed, with a single peak in the vertical profile of vertical velocity variance.
To achieve this agreement, the MLM entrainment closure and the drizzle parameterization must be modified from their observationally-based defaults. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a similar decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed.
Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulus-topped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates MLM-predicted sensitivity to droplet concentrations.
Modeling of mixing processes: Fluids, particulates, and powders
Energy Technology Data Exchange (ETDEWEB)
Ottino, J.M.; Hansen, S. [Northwestern Univ., Evanston, IL (United States)
1995-12-31
Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is found that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.
The vineyard yeast microbiome, a mixed model microbial map.
Directory of Open Access Journals (Sweden)
Mathabatha Evodia Setati
Full Text Available Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard.
The vineyard yeast microbiome, a mixed model microbial map.
Setati, Mathabatha Evodia; Jacobson, Daniel; Andong, Ursula-Claire; Bauer, Florian Franz; Bauer, Florian
2012-01-01
Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS) to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard.
Multilayer Numerical Modeling of Flows through Vegetation Using a Mixing-Length Turbulence Model
Directory of Open Access Journals (Sweden)
Hector Barrios-Piña
2014-07-01
Full Text Available This work focuses on the effects of vegetation on a fluid flow pattern. In this numerical research, we verify the applicability of a simpler turbulence model than the commonly used k-" model to predict the mean flow through vegetation. The novel characteristic of this turbulence model is that the horizontal mixing-length is explicitly calculated and coupled with a multi-layer approach for the vertical mixing-length, within a general three-dimensional eddy-viscosity formulation. This mixing-length turbulence model has been validated in previous works for different kinds of non-vegetated flows. The hydrodynamic numerical model used for simulations is based on the Reynolds-averaged Navier–Stokes equations for shallow water flows, where a vegetation shear stress term is considered to reproduce the effects of drag forces on flow. A second-order approximation is used for spatial discretization and a semi-implicit Lagrangian–Eulerian scheme is used for time discretization. In order to validate the numerical results, we compare them against experimental data reported in the literature. The comparisons are carried out for two cases of study: submerged vegetation and submerged and emergent vegetation, both within an open channel flow.
Bello, Nora M; Steibel, Juan P; Tempelman, Robert J
2010-06-01
Bivariate mixed effects models are often used to jointly infer upon covariance matrices for both random effects (u) and residuals (e) between two different phenotypes in order to investigate the architecture of their relationship. However, these (co)variances themselves may additionally depend upon covariates as well as additional sets of exchangeable random effects that facilitate borrowing of strength across a large number of clusters. We propose a hierarchical Bayesian extension of the classical bivariate mixed effects model by embedding additional levels of mixed effects modeling of reparameterizations of u-level and e-level (co)variances between two traits. These parameters are based upon a recently popularized square-root-free Cholesky decomposition and are readily interpretable, each conveniently facilitating a generalized linear model characterization. Using Markov Chain Monte Carlo methods, we validate our model based on a simulation study and apply it to a joint analysis of milk yield and calving interval phenotypes in Michigan dairy cows. This analysis indicates that the e-level relationship between the two traits is highly heterogeneous across herds and depends upon systematic herd management factors.
A Proposed Model of Retransformed Qualitative Data within a Mixed Methods Research Design
Palladino, John M.
2009-01-01
Most models of mixed methods research design provide equal emphasis of qualitative and quantitative data analyses and interpretation. Other models stress one method more than the other. The present article is a discourse about the investigator's decision to employ a mixed method design to examine special education teachers' advocacy and…
A Proposed Model of Retransformed Qualitative Data within a Mixed Methods Research Design
Palladino, John M.
2009-01-01
Most models of mixed methods research design provide equal emphasis of qualitative and quantitative data analyses and interpretation. Other models stress one method more than the other. The present article is a discourse about the investigator's decision to employ a mixed method design to examine special education teachers' advocacy and…
DEFF Research Database (Denmark)
Thorsted, A; Thygesen, P; Agersø, H;
2016-01-01
BACKGROUND AND PURPOSE: We aimed to develop a mechanistic mixed-effects pharmacokinetic (PK)-pharmacodynamic (PD) (PKPD) model for recombinant human growth hormone (rhGH) in hypophysectomized rats and to predict the human PKPD relationship. EXPERIMENTAL APPROACH: A non-linear mixed-effects model...
Running Effects on Lepton Mixing Angles in Flavour Models with Type I Seesaw
Lin, Y; Paris, A
2009-01-01
We study renormalization group running effects on neutrino mixing patterns when a (type I) seesaw model is implemented by suitable flavour symmetries. We are particularly interested in mass-independent mixing patterns to which the widely studied tribimaximal mixing pattern belongs. In this class of flavour models, the running contribution from neutrino Yukawa coupling, which is generally dominant at energies above the seesaw threshold, can be absorbed by a small shift on neutrino mass eigenvalues leaving mixing angles unchanged. Consequently, in the whole running energy range, the change in mixing angles is due to the contribution coming from charged lepton sector. Subsequently, we analyze in detail these effects in an explicit flavour model for tribimaximal neutrino mixing based on an A4 discrete symmetry group. We find that for normally ordered light neutrinos, the tribimaximal prediction is essentially stable under renormalization group evolution. On the other hand, in the case of inverted hierarchy, the d...
Numerical modelling of sandstone uniaxial compression test using a mix-mode cohesive fracture model
Gui, Yilin; Kodikara, Jayantha
2015-01-01
A mix-mode cohesive fracture model considering tension, compression and shear material behaviour is presented, which has wide applications to geotechnical problems. The model considers both elastic and inelastic displacements. Inelastic displacement comprises fracture and plastic displacements. The norm of inelastic displacement is used to control the fracture behaviour. Meantime, a failure function describing the fracture strength is proposed. Using the internal programming FISH, the cohesive fracture model is programmed into a hybrid distinct element algorithm as encoded in Universal Distinct Element Code (UDEC). The model is verified through uniaxial tension and direct shear tests. The developed model is then applied to model the behaviour of a uniaxial compression test on Gosford sandstone. The modelling results indicate that the proposed cohesive fracture model is capable of simulating combined failure behaviour applicable to rock.
Models and measures of mixing and effective diffusion
Lin, Zhi; Doering, Charles R
2010-01-01
Mixing a passive scalar field by stirring can be measured in a variety of ways including tracer particle dispersion, via the flux-gradient relationship, or by suppression of scalar concentration variations in the presence of inhomogeneous sources and sinks. The mixing efficiency or efficacy of a particular flow is often expressed in terms of enhanced diffusivity and quantified as an effective diffusion coefficient. In this work we compare and contrast several notions of effective diffusivity. We thoroughly examine the fundamental case of a steady sinusoidal shear flow mixing a scalar sustained by a steady sinusoidal source-sink distribution to explore apparent quantitative inconsistencies among the measures. Ultimately the conflicts are attributed to the noncommutative asymptotic limits of large P$\\acute{\\text{e}}$clet number and large length-scale separation. We then propose another approach, a generalization of Batchelor's 1949 theory of diffusion in homogeneous turbulence, that helps unify the particle dis...
A time-dependent Mixing Model for PDF Methods in Heterogeneous Aquifers
Schüler, Lennart; Suciu, Nicolae; Knabner, Peter; Attinger, Sabine
2016-04-01
Predicting the transport of groundwater contaminations remains a demanding task, especially with respect to the heterogeneity of the subsurface and the large measurement uncertainties. A risk analysis also includes the quantification of the uncertainty in order to evaluate how accurate the predictions are. Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, which can be used as a first measure of uncertainty. A mixing model, also known as a dissipation model, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling. The implications of the new mixing model for different kinds of flow conditions are discussed and some comments are made on efficiently handling spatially resolved higher moments.
Prediction of microbial growth in mixed culture with a competition model.
Fujikawa, Hiroshi; Sakha, Mohammad Z
2014-01-01
Prediction of microbial growth in mixed culture was studied with a competition model that we had developed recently. The model, which is composed of the new logistic model and the Lotka-Volterra model, is shown to successfully describe the microbial growth of two species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. With the parameter values of the model obtained from the experimental data on monoculture and mixed culture with two species, it then succeeded in predicting the simultaneous growth of the three species in mixed culture inoculated with various cell concentrations. To our knowledge, it is the first time for a prediction model for multiple (three) microbial species to be reported. The model, which is not built on any premise for specific microorganisms, may become a basic competition model for microorganisms in food and food materials.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Mixed Models: Combining incompatible scalar models in any space-time dimension
Klauder, John R.
2017-01-01
Traditionally, covariant scalar field theory models are either super renormalizable, strictly renormalizable, or nonrenormalizable. The goal of “Mixed Models” is to make sense of sums of these distinct examples, e.g. gφ34 + g‧φ 36 + g″φ 38, which includes an example of each kind for space-time dimension n = 3. We show how the several interactions such mixed models have may be turned on and off in any order without any difficulties. Analogous results are shown for gφn4 + g‧φ n138, etc. for all n ≥ 3. Different categories hold for n = 2 such as, e.g. gP(φ)2 + g‧NP(φ) 2, that involve polynomial (P) and suitable nonpolynomial (NP) interactions, etc. Analogous situations for n = 1 (time alone) offer simple “toy” examples of how such mixed models may be constructed. As a general rule, if the introduction of a specific interaction term reduces the domain of the free classical action, we invariably find that the introduction of the associated quantum interaction leads, effectively, to a “nonrenormalizable” quantum theory. However, in special cases, a classical interaction that does not reduce the domain of the classical free action may generate an “unsatisfactory” quantum theory, which generally involves a model-specific, different approach to become “satisfactory.” We will encounter both situations in our analysis.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather
Mixed-domain multi-simulator statistical device modeling and yiel-driven design
Bandler, J.W.; Biernacki, R.M.; S. H. Chen
1997-01-01
We present mixed-domain, multi-simulator approaches to device modeling and yield-driven optimization. Intelligent computational interfaces combine and enhance the features of otherwise disjoint simulators. Time-domain, frequency-domain and electromagnetic simulations are integrated for efficient statistical modeling and design with mixed-domain specifications. Our approach is demonstrated by statistical modeling of GaAs MESFETs and yield optimization using, simultaneously, SPICE device models...
Subgrid-scale heat flux modeling for large eddy simulation of turbulent mixed convection
Morar, Dejan
2014-01-01
In the present work, new subgrid-scale (SGS) heat flux model for large eddy simulation (LES) of turbulent mixed convection is developed. The new model explicitly includes the buoyancy production term. It is based on the algebraic equations and dynamic procedure is applied to calculate model coefficients. An experiment on turbulent mixed convection to water in a vertical duct is used for validation of the model.
Mixed-domain multi-simulator statistical device modeling and yiel-driven design
Bandler, J.W.; Biernacki, R.M.; Chen, S H
1997-01-01
We present mixed-domain, multi-simulator approaches to device modeling and yield-driven optimization. Intelligent computational interfaces combine and enhance the features of otherwise disjoint simulators. Time-domain, frequency-domain and electromagnetic simulations are integrated for efficient statistical modeling and design with mixed-domain specifications. Our approach is demonstrated by statistical modeling of GaAs MESFETs and yield optimization using, simultaneously, SPICE device models...
Linking effort and fishing mortality in a mixed fisheries model
DEFF Research Database (Denmark)
Thøgersen, Thomas Talund; Hoff, Ayoe; Frost, Hans Staby
2012-01-01
in fish stocks has led to overcapacity in many fisheries, leading to incentives for overfishing. Recent research has shown that the allocation of effort among fleets can play an important role in mitigating overfishing when the targeting covers a range of species (multi-species—i.e., so-called mixed...
Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model.
Altmann, Yoann; Dobigeon, Nicolas; Tourneret, Jean-Yves
2013-04-01
This paper studies a nonlinear mixing model for hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated by polynomials leading to a polynomial post-nonlinear mixing model. We have shown in a previous paper that the parameters involved in the resulting model can be estimated using least squares methods. A generalized likelihood ratio test based on the estimator of the nonlinearity parameter is proposed to decide whether a pixel of the image results from the commonly used linear mixing model or from a more general nonlinear mixing model. To compute the test statistic associated with the nonlinearity detection, we propose to approximate the variance of the estimated nonlinearity parameter by its constrained Cramér-Rao bound. The performance of the detection strategy is evaluated via simulations conducted on synthetic and real data. More precisely, synthetic data have been generated according to the standard linear mixing model and three nonlinear models from the literature. The real data investigated in this study are extracted from the Cuprite image, which shows that some minerals seem to be nonlinearly mixed in this image. Finally, it is interesting to note that the estimated abundance maps obtained with the post-nonlinear mixing model are in good agreement with results obtained in previous studies.
Directory of Open Access Journals (Sweden)
Maitraye Sen
2017-04-01
Full Text Available A discrete element model (DEM has been developed for an industrial batch bin blender in which three different types of materials are mixed. The mixing dynamics have been evaluated from a model-based study with respect to the blend critical quality attributes (CQAs which are relative standard deviation (RSD and segregation intensity. In the actual industrial setup, a sensor mounted on the blender lid is used to determine the blend composition in this region. A model-based analysis has been used to understand the mixing efficiency in the other zones inside the blender and to determine if the data obtained near the blender-lid region are able to provide a good representation of the overall blend quality. Sub-optimal mixing zones have been identified and other potential sampling locations have been investigated in order to obtain a good approximation of the blend variability. The model has been used to study how the mixing efficiency can be improved by varying the key processing parameters, i.e., blender RPM/speed, fill level/volume and loading order. Both segregation intensity and RSD reduce at a lower fill level and higher blender RPM and are a function of the mixing time. This work demonstrates the use of a model-based approach to improve process knowledge regarding a pharmaceutical mixing process. The model can be used to acquire qualitative information about the influence of different critical process parameters and equipment geometry on the mixing dynamics.
Comparative quantification of physically and numerically induced mixing in ocean models
Burchard, Hans; Rennau, Hannes
A diagnostic method for calculating physical and numerical mixing of tracers in ocean models is presented. The physical mixing is defined as the turbulent mean tracer variance decay rate. The numerical mixing due to discretisation errors of tracer advection schemes is shown to be the decay rate between the advected square of the tracer variance and the square of the advected tracer and can be easily implemented into any ocean model. The applicability of the method is demonstrated for four test cases: (i) a one-dimensional linear advection equation with periodic boundary conditions, (ii) a two-dimensional flat-bottom lock exchange test case without mixing, (iii) a two-dimensional marginal sea overflow study with mixing and entrainment and (iv) the DOME test case with a dense bottom current propagating down a broad linear slope. The method has a number of advantages over previously introduced estimates for numerical mixing.
Statistical Modelling of Cardiovascular Data. An Introduction to Linear Mixed Models
Gonçalves, Paulo; Lenoir, Christophe; Heymes, Christophe; Swynghedauw, Bernard; Lavergne, Christian
2005-01-01
Most of statistical approaches in cardiovascular research were based on variance analysis (ANOVA). However, most of the time, the assumption that data are independent is violated since several measures are performed on the same subject (repeated measures). In addition, the presence of intra- and inter-observers variability can potentially obscure significant differences. The linear mixed model (LMM) is an extended multivariate linear regression method of analysis that accounts for both fixed ...
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
Energy Technology Data Exchange (ETDEWEB)
Rossi, R; Gallagher, B; Neville, J; Henderson, K
2011-11-11
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.
Model Analysis of Influences of Aerosol Mixing State upon Its Optical Properties in East Asia
Institute of Scientific and Technical Information of China (English)
HAN Xiao; ZHANG Meigen; ZHU Lingyun; XU Liren
2013-01-01
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e.,externally mixed,half externally and half internally mixed,and internally mixed) on radiative forcing in East Asia.The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed,while the single scattering albedo (SSA) decreased.Therefore,the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states.Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed.Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex.Generally,the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China,Korean peninsula,and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process,and the variation range can reach ±5 W m-2.The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens.Conversely,the internal mixture of anthropogenic aerosols,including sulfate,nitrate,ammonium,black carbon,and organic carbon,could obviously weaken the cooling effect.
Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhien [Univ. of Wyoming, Laramie, WY (United States)
2016-12-13
Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentration retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations
Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik; Guo Larsén, Xiaoli
2016-07-01
Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress reduces the near-surface wind speed. Introducing the wave influence roughness length has a larger influence than does adding the swell influence on mixing. Compared with measurements, adding the swell influence on both atmospheric mixing and wind stress gives the best model performance for the wind speed. The influence varies with wave characteristics for different sea basins. Swell occurs infrequently in the studied area, and one could expect more influence in high-swell-frequency areas (i.e., low-latitude ocean). We conclude that the influence of swell on atmospheric mixing and wind stress should be considered when developing climate models.
Bootstrapping Mixed Correlators in the 3D Ising Model
Kos, Filip; Simmons-Duffin, David
2014-01-01
We study the conformal bootstrap for systems of correlators involving non-identical operators. The constraints of crossing symmetry and unitarity for such mixed correlators can be phrased in the language of semidefinite programming. We apply this formalism to the simplest system of mixed correlators in 3D CFTs with a $\\mathbb{Z}_2$ global symmetry. For the leading $\\mathbb{Z}_2$-odd operator $\\sigma$ and $\\mathbb{Z}_2$-even operator $\\epsilon$, we obtain numerical constraints on the allowed dimensions $(\\Delta_\\sigma, \\Delta_\\epsilon)$ assuming that $\\sigma$ and $\\epsilon$ are the only relevant scalars in the theory. These constraints yield a small closed region in $(\\Delta_\\sigma, \\Delta_\\epsilon)$ space compatible with the known values in the 3D Ising CFT.
Mixed Higher Order Variational Model for Image Recovery
Directory of Open Access Journals (Sweden)
Pengfei Liu
2014-01-01
Full Text Available A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR and restoration quality.
McKeown, Gary J; Sneddon, Ian
2014-03-01
Emotion research has long been dominated by the "standard method" of displaying posed or acted static images of facial expressions of emotion. While this method has been useful, it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose generalized additive models and generalized additive mixed models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The generalized additive mixed model approach is preferred, as it can account for autocorrelation in time series data and allows emotion decoding participants to be modeled as random effects. To increase confidence in linear differences, we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition, we provide comments on the use of generalized additive models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally, we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.
Higgs-radion mixing in stabilized brane world models
Boos, Edward E; Perfilov, Maxim A; Smolyakov, Mikhail N; Volobuev, Igor P
2015-01-01
We consider a quartic interaction of the Higgs and Goldberger-Wise fields, which connects the mechanism of the extra dimension size stabilization with spontaneous symmetry breaking on our brane and gives rise to a coupling of the Higgs field to the radion and its KK tower. We estimate a possible influence of this coupling on the Higgs-radion mixing and study its experimental consequences.
Photonic states mixing beyond the plasmon hybridization model
Suryadharma, Radius N. S.; Iskandar, Alexander A.; Tjia, May-On
2016-07-01
A study is performed on a photonic-state mixing-pattern in an insulator-metal-insulator cylindrical silver nanoshell and its rich variations induced by changes in the geometry and dielectric media of the system, representing the combined influences of plasmon coupling strength and cavity effects. This study is performed in terms of the photonic local density of states (LDOS) calculated using the Green tensor method, in order to elucidate those combined effects. The energy profiles of LDOS inside the dielectric core are shown to exhibit consistently growing number of redshifted photonic states due to an enhanced plasmon coupling induced state mixing arising from decreased shell thickness, increased cavity size effect, and larger symmetry breaking effect induced by increased permittivity difference between the core and the background media. Further, an increase in cavity size leads to increased additional peaks that spread out toward the lower energy regime. A systematic analysis of those variations for a silver nanoshell with a fixed inner radius in vacuum background reveals a certain pattern of those growing number of redshifted states with an analytic expression for the corresponding energy downshifts, signifying a photonic state mixing scheme beyond the commonly adopted plasmon hybridization scheme. Finally, a remarkable correlation is demonstrated between the LDOS energy profiles outside the shell and the corresponding scattering efficiencies.
Photonic states mixing beyond the plasmon hybridization model
Energy Technology Data Exchange (ETDEWEB)
Suryadharma, Radius N. S.; Iskandar, Alexander A., E-mail: iskandar@fi.itb.ac.id; Tjia, May-On [Physics of Magnetism and Photonics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)
2016-07-28
A study is performed on a photonic-state mixing-pattern in an insulator-metal-insulator cylindrical silver nanoshell and its rich variations induced by changes in the geometry and dielectric media of the system, representing the combined influences of plasmon coupling strength and cavity effects. This study is performed in terms of the photonic local density of states (LDOS) calculated using the Green tensor method, in order to elucidate those combined effects. The energy profiles of LDOS inside the dielectric core are shown to exhibit consistently growing number of redshifted photonic states due to an enhanced plasmon coupling induced state mixing arising from decreased shell thickness, increased cavity size effect, and larger symmetry breaking effect induced by increased permittivity difference between the core and the background media. Further, an increase in cavity size leads to increased additional peaks that spread out toward the lower energy regime. A systematic analysis of those variations for a silver nanoshell with a fixed inner radius in vacuum background reveals a certain pattern of those growing number of redshifted states with an analytic expression for the corresponding energy downshifts, signifying a photonic state mixing scheme beyond the commonly adopted plasmon hybridization scheme. Finally, a remarkable correlation is demonstrated between the LDOS energy profiles outside the shell and the corresponding scattering efficiencies.
Generalized linear mixed models modern concepts, methods and applications
Stroup, Walter W
2012-01-01
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data
First Look at Photometric Reduction via Mixed-Model Regression (Poster abstract)
Dose, E.
2016-12-01
(Abstract only) Mixed-model regression is proposed as a new approach to photometric reduction, especially for variable-star photometry in several filters. Mixed-model regression adds to normal multivariate regression certain "random effects": categorical-variable terms that model and extract specific systematic errors such as image-to-image zero-point fluctuations (cirrus effect) or even errors in comp-star catalog magnitudes.
Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France
2012-01-01
International audience; Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or chan...
A Simple and Unified Model for Spanwise Mixing in Multistage Axial Flow COmpressors
Institute of Scientific and Technical Information of China (English)
S.－M.Li; M.－Z.Chen
1992-01-01
A basic equation system for meridional throughflow fileds in multistage axial flow compressors has been deduced,containing many unknown correlation terms,which describe different kinds of spanwise mixing mechanism in a unified form.The equation system shows that spanwise mixing of meridional flows in compressors is attributed to three kinds of mechanism:molecular motion,turbulent diffusion,and circumferential non-uniformities,the last of which includes secondary flow effects and others,Therefore the equation system unifles the two models for spanwise mixing coefficients defined and introduced into the basic equation system,a novel,much simpler equation system,without additional unknown correlation terms included,has been obtained.This novel equation system makes throughflow computations including mixing far easier for multistage compressors .It has been rigorously shown that these apparent mixing coefficients contain full information of all the three kinds of mixing mechanism,so that the simpler equation system can also be taken as a unified model for meridional flows with all the dinds of the mixing effects.Calculations of the flow through multistage machines have been made by incorporating the new model into a streamline curvature throughflow calculation method and the improved agreement with experimental data has been obtained.It is believed that the simpler equation system can be apphed to the flows not only in subsonic but in transonic and supersonic compressors if an appropriate model is propsed for the apparent mixing coeffcients.
Directory of Open Access Journals (Sweden)
Gianola Daniel
2010-01-01
Full Text Available Abstract Background The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL, calving difficulty (CD and stillbirth (SB. All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype. Methods Four models were compared in terms of goodness of fit and predictive ability: 1 standard mixed model (SMM, a model with unstructured (covariance matrices; 2 recursive mixed model 1 (RMM1, assuming that residual correlations are due to the recursive relationships between phenotypes; 3 RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4 RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes. Results For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB. Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible. Conclusions The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the
Fluid Flow and Mixing in Non-Isothermal Water Model of Continuous Casting Tundish
Institute of Scientific and Technical Information of China (English)
Mehdi ALIZADEH; Hossein EDRIS; Ali SHAFYEI
2008-01-01
Fluid flow and mixing of molten steel in a twin-slab-strand continuous casting tundish were investigated using a mixing model under non-isothermal conditions. This model led to a set of ordinary differential equations that were solved with a Runge-Kutta algorithm. Steady state water modeling was carried out under non-isothermal conditions. Experimental data obtained from the water model were used to calibrate the mixing model. Owing to the presence of a mixed convection in the non-isothermal conditions, a channelizing flow would be created in the fluid inside the tundish. A mixing model was designed that was capable of predicting RTD (residence time distribution) curves for different cases in non-isothermal conditions. The relationship between RTD parameters and the Tu (tundish Richardson number) was obtained for various cases under non-isothermal conditions. The results show that the RTD parameters were completely different under isothermal and non-isothermal conditions. The comparison of the RTD curves between the isothermal and non-isothermal conditions presents that the extent of mixing in the tundish in nonisothermal conditions is lower than the mixing extent in isothermal conditions.
Vertical mixing in atmospheric tracer transport models: error characterization and propagation
Directory of Open Access Journals (Sweden)
C. Gerbig
2008-02-01
Full Text Available Imperfect representation of vertical mixing near the surface in atmospheric transport models leads to uncertainties in modelled tracer mixing ratios. When using the atmosphere as an integrator to derive surface-atmosphere exchange from mixing ratio observations made in the atmospheric boundary layer, this uncertainty has to be quantified and taken into account. A comparison between radiosonde-derived mixing heights and mixing heights derived from ECMWF meteorological data during May–June 2005 in Europe revealed random discrepancies of about 40% for the daytime with insignificant bias errors, and much larger values approaching 100% for nocturnal mixing layers with bias errors also exceeding 50%. The Stochastic Time Inverted Lagrangian Transport (STILT model was used to propagate this uncertainty into CO_{2} mixing ratio uncertainties, accounting for spatial and temporal error covariance. Average values of 3 ppm were found for the 2 month period, indicating that this represents a large fraction of the overall uncertainty. A pseudo data experiment shows that the error propagation with STILT avoids biases in flux retrievals when applied in inversions. The results indicate that flux inversions employing transport models based on current generation meteorological products have misrepresented an important part of the model error structure likely leading to biases in the estimated mean and uncertainties. We strongly recommend including the solution presented in this work: better, higher resolution atmospheric models, a proper description of correlated random errors, and a modification of the overall sampling strategy.
Bayes factor between Student t and Gaussian mixed models within an animal breeding context
Directory of Open Access Journals (Sweden)
García-Cortés Luis
2008-07-01
Full Text Available Abstract The implementation of Student t mixed models in animal breeding has been suggested as a useful statistical tool to effectively mute the impact of preferential treatment or other sources of outliers in field data. Nevertheless, these additional sources of variation are undeclared and we do not know whether a Student t mixed model is required or if a standard, and less parameterized, Gaussian mixed model would be sufficient to serve the intended purpose. Within this context, our aim was to develop the Bayes factor between two nested models that only differed in a bounded variable in order to easily compare a Student t and a Gaussian mixed model. It is important to highlight that the Student t density converges to a Gaussian process when degrees of freedom tend to infinity. The twomodels can then be viewed as nested models that differ in terms of degrees of freedom. The Bayes factor can be easily calculated from the output of a Markov chain Monte Carlo sampling of the complex model (Student t mixed model. The performance of this Bayes factor was tested under simulation and on a real dataset, using the deviation information criterion (DIC as the standard reference criterion. The two statistical tools showed similar trends along the parameter space, although the Bayes factor appeared to be the more conservative. There was considerable evidence favoring the Student t mixed model for data sets simulated under Student t processes with limited degrees of freedom, and moderate advantages associated with using the Gaussian mixed model when working with datasets simulated with 50 or more degrees of freedom. For the analysis of real data (weight of Pietrain pigs at six months, both the Bayes factor and DIC slightly favored the Student t mixed model, with there being a reduced incidence of outlier individuals in this population.
Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model
DEFF Research Database (Denmark)
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik;
2016-01-01
Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere......-wave-coupled regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...
Unit physics performance of a mix model in Eulerian fluid computations
Energy Technology Data Exchange (ETDEWEB)
Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory
2011-01-25
In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.
Application of a mixed DEA model to evaluate relative efficiency validity
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Data envelopment analysis(DEA) model is widely used to evaluate the relative efficiency of producers. It is a kind of objective decision method with multiple indexes. However, the two basic models frequently used at present, the C2R model and the C2GS2 model have limitations when used alone,resulting in evaluations that are often unsatisfactory. In order to solve this problem, a mixed DEA model is built and is used to evaluate the validity of the business efficiency of listed companies. An explanation of how to use this mixed DEA model is offered and its feasibility is verified.
On the formulation of the dynamic mixed subgrid-scale model
Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.
1994-01-01
The dynamic mixed subgrid‐scale model of Zang et al. [Phys. Fluids A 5, 3186 (1993)] (DMM1) is modified with respect to the incorporation of the similarity model in order to remove a mathematical inconsistency. Compared to DMM1, the magnitude of the dynamic model coefficient of the modified model
The Impact of Varied Discrimination Parameters on Mixed-Format Item Response Theory Model Selection
Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.
2013-01-01
Whittaker, Chang, and Dodd compared the performance of model selection criteria when selecting among mixed-format IRT models and found that the criteria did not perform adequately when selecting the more parameterized models. It was suggested by M. S. Johnson that the problems when selecting the more parameterized models may be because of the low…
The Brown Muck of $B^0$ and $B^0_s$ Mixing: Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Bouchard, Christopher Michael [Univ. of Illinois, Urbana-Champaign, IL (United States)
2011-01-01
Standard Model contributions to neutral $B$ meson mixing begin at the one loop level where they are further suppressed by a combination of the GIM mechanism and Cabibbo suppression. This combination makes $B$ meson mixing a promising probe of new physics, where as yet undiscovered particles and/or interactions can participate in the virtual loops. Relating underlying interactions of the mixing process to experimental observation requires a precise calculation of the non-perturbative process of hadronization, characterized by hadronic mixing matrix elements. This thesis describes a calculation of the hadronic mixing matrix elements relevant to a large class of new physics models. The calculation is performed via lattice QCD using the MILC collaboration's gauge configurations with $2+1$ dynamical sea quarks.
Model-independent analysis of B-$\\overline{B}$ mixing and CP violation in B decays
Goto, T; Okada, Y; Tanaka, M
1996-01-01
We present a framework to analyze effects of new physics beyond the standard model on B-\\bar B mixing and CP violation in B decays in a model-independent manner. Assuming that tree level decay amplitudes are dominated by the standard model ones, new physics contribution to the B-\\bar B mixing can be extracted from several measurements at B factories. Using this framework, we show the present constraint on new physics contribution to the B-\\bar B mixing, and illustrate constraints expected to be given by future experiments at B factories. We also point out a possibility that CP asymmetries in B\\rightarrow\\psi K_S, B\\rightarrow\\pi\\pi, and B\\rightarrow DK modes look consistent with the standard model, even if a large new physics contribution is present in the B-\\bar B mixing.
National Research Council Canada - National Science Library
Aoki, Yasunori; Nordgren, Rikard; Hooker, Andrew C
2016-01-01
... a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix...
Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.
Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng
2014-06-01
Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.
robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models
Directory of Open Access Journals (Sweden)
Manuel Koller
2016-12-01
Full Text Available As any real-life data, data modeled by linear mixed-effects models often contain outliers or other contamination. Even little contamination can drive the classic estimates far away from what they would be without the contamination. At the same time, datasets that require mixed-effects modeling are often complex and large. This makes it difficult to spot contamination. Robust estimation methods aim to solve both problems: to provide estimates where contamination has only little influence and to detect and flag contamination. We introduce an R package, robustlmm, to robustly fit linear mixed-effects models. The package's functions and methods are designed to closely equal those offered by lme4, the R package that implements classic linear mixed-effects model estimation in R. The robust estimation method in robustlmm is based on the random effects contamination model and the central contamination model. Contamination can be detected at all levels of the data. The estimation method does not make any assumption on the data's grouping structure except that the model parameters are estimable. robustlmm supports hierarchical and non-hierarchical (e.g., crossed grouping structures. The robustness of the estimates and their asymptotic efficiency is fully controlled through the function interface. Individual parts (e.g., fixed effects and variance components can be tuned independently. In this tutorial, we show how to fit robust linear mixed-effects models using robustlmm, how to assess the model fit, how to detect outliers, and how to compare different fits.
Short-term monitoring of the Spanish Government balance with mixed-frequencies models
Teresa Leal; Diego J. Pedregal; Javier J. Pérez
2009-01-01
We construct multivariate, state-space mixed-frequencies models for the main componentsof the Spanish General Government sector made up of blocks for each one of its subsectors: Central Government, Social Security and aggregate of Regional and Local government sectors. Each block is modelled through its total revenue and expenditure categories, and encompasses a number of indicators, depending on data availability. The mixed-frequencies approach is particularly relevant for the case of Spain,...
Balancing mixed-model assembly lines: A computational evaluation of objectives to smoothen workload
Emde, Simon; Boysen, Nils; Scholl, Armin
2010-01-01
Abstract Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardized commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint ...
A Weighted Multiobjective Optimization Method for Mixed-Model Assembly Line Problem
Şükran Şeker; Mesut Özgürler; Mehmet Tanyaş
2013-01-01
Mixed-model assembly line (MMAL) is a type of assembly line where several distinct models of a product are assembled. MMAL is applied in many industrial environments today because of its greater variety in demand. This paper considers the objective of minimizing the work overload (i.e., the line balancing problem) and station-to-station product flows. Generally, transportation time between stations are ignored in the literature. In this paper, Multiobjective Mixed-Integer Programming (MOMIP)...
Mixed-Effects State Space Models for Analysis of Longitudinal Dynamic Systems
Liu, Dacheng; Lu, Tao; Niu, Xu-Feng; Wu, Hulin
2010-01-01
The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject-specific biomedical systems can be described by a set of differential or difference equations which are similar to engineering dynamic systems. In this paper, motivated by HIV dynamic studies, we propose a class of mixed-effects state space models based on the longitudinal feature of dynamic systems. State space models with mixed-ef...
Newman, P. A.; Schoeberl, M. R.; Plumb, R. A.
1986-01-01
Calculations of the two-dimensional, species-independent mixing coefficients for two-dimensional chemical models for the troposphere and stratosphere are performed using quasi-geostrophic potential vorticity fluxes and gradients from 4 years of National Meteorological Center data for the four seasons in both hemispheres. Results show that the horizontal mixing coefficient values for the winter lower stratosphere are broadly consistent with those currently employed in two-dimensional models, but the horizontal mixing coefficient values in the northern winter upper stratosphere are much larger than those usually used.
Fermion masses and mixing in SU(5)×D4 × U(1) model
Ahl Laamara, R.; Loualidi, M. A.; Miskaoui, M.; Saidi, E. H.
2017-03-01
We propose a supersymmetric SU (5) ×Gf GUT model with flavor symmetry Gf =D4 × U (1) providing a good description of fermion masses and mixing. The model has twenty eight free parameters, eighteen are fixed to produce approximative experimental values of the physical parameters in the quark and charged lepton sectors. In the neutrino sector, the TBM matrix is generated at leading order through type I seesaw mechanism, and the deviation from TBM studied to reconcile with the phenomenological values of the mixing angles. Other features in the charged sector such as Georgi-Jarlskog relations and CKM mixing matrix are also studied.
Mixed deterministic statistical modelling of regional ozone air pollution
Kalenderski, Stoitchko Dimitrov
2011-03-17
We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..
Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs
Doherty, S. J.; C. M. Bitz; M. G. Flanner
2014-01-01
A series of recent studies have used prescribed aerosol deposition flux fields in climate model runs to assess forcing by black carbon in snow. In these studies, the prescribed mass deposition flux of BC to surface snow is decoupled from the mass deposition flux of snow water to the surface. Here we use a series of offline calculations to show that this approach results, on average, in a~factor of about 1.5–2.5 high bias in annual-mean surface snow BC mixing ratios in three ...
Energy Technology Data Exchange (ETDEWEB)
Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh
2009-05-01
Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.
Eliciting mixed emotions: a meta-analysis comparing models, types, and measures
Berrios, Raul; Totterdell, Peter; Kellett, Stephen
2015-01-01
The idea that people can experience two oppositely valenced emotions has been controversial ever since early attempts to investigate the construct of mixed emotions. This meta-analysis examined the robustness with which mixed emotions have been elicited experimentally. A systematic literature search identified 63 experimental studies that instigated the experience of mixed emotions. Studies were distinguished according to the structure of the underlying affect model—dimensional or discrete—as well as according to the type of mixed emotions studied (e.g., happy-sad, fearful-happy, positive-negative). The meta-analysis using a random-effects model revealed a moderate to high effect size for the elicitation of mixed emotions (dIG+ = 0.77), which remained consistent regardless of the structure of the affect model, and across different types of mixed emotions. Several methodological and design moderators were tested. Studies using the minimum index (i.e., the minimum value between a pair of opposite valenced affects) resulted in smaller effect sizes, whereas subjective measures of mixed emotions increased the effect sizes. The presence of more women in the samples was also associated with larger effect sizes. The current study indicates that mixed emotions are a robust, measurable and non-artifactual experience. The results are discussed in terms of the implications for an affect system that has greater versatility and flexibility than previously thought. PMID:25926805
On the use of the Prandtl mixing length model in the cutting torch modeling
Energy Technology Data Exchange (ETDEWEB)
Mancinelli, B [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Minotti, F O; Kelly, H, E-mail: bmancinelli@arnet.com.ar [Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)
2011-05-01
The Prandtl mixing length model has been used to take into account the turbulent effects in a 30 A high-energy density cutting torch model. In particular, the model requires the introduction of only one adjustable coefficient c corresponding to the length of action of the turbulence. It is shown that the c value has little effect on the plasma temperature profiles outside the nozzle (the differences being less than 10 %), but severely affects the plasma velocity distribution, with differences reaching about 100% at the middle of the nozzle-anode gap. Within the experimental uncertainties it was also found that the value c = 0.08 allows to reproduce both, the experimental data of velocity and temperature
Data on copula modeling of mixed discrete and continuous neural time series
Directory of Open Access Journals (Sweden)
Meng Hu
2016-06-01
Full Text Available Copula is an important tool for modeling neural dependence. Recent work on copula has been expanded to jointly model mixed time series in neuroscience (“Hu et al., 2016, Joint Analysis of Spikes and Local Field Potentials using Copula” [1]. Here we present further data for joint analysis of spike and local field potential (LFP with copula modeling. In particular, the details of different model orders and the influence of possible spike contamination in LFP data from the same and different electrode recordings are presented. To further facilitate the use of our copula model for the analysis of mixed data, we provide the Matlab codes, together with example data.
Development of a competition model for microbial growth in mixed culture.
Fujikawa, Hiroshi; Munakata, Kanako; Sakha, Mohammad Z
2014-01-01
A novel competition model for describing bacterial growth in mixed culture was developed in this study. Several model candidates were made with our logistic growth model that precisely describes the growth of a monoculture of bacteria. These candidates were then evaluated for the usefulness in describing growth of two competing species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. Bacterial cells of two species grew at initial doses of 10(3), 10(4), and 10(5) CFU/g at 28ºC. Among the candidates, a model where the Lotka-Volterra model, a general competition model in ecology, was incorporated as a new term in our growth model was the best for describing all types of growth of two competitors in mixed culture. Moreover, the values for the competition coefficient in the model were stable at various combinations of the initial populations of the species. The Baranyi model could also successfully describe the above types of growth in mixed culture when it was coupled with the Gimenez and Dalgaard model. However, the values for the competition coefficients in the competition model varied with the conditions. The present study suggested that our model could be a basic model for describing microbial competition.
Institute of Scientific and Technical Information of China (English)
郑金海; 严以新; 诸裕良
2002-01-01
For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model isdeveloped, in which the gradients of horizontal pressure contain the gradient of barotropic pressure arising from the gradi-ent of tidal level and the gradient of baroclinic pressure due to the gradient of salinity. The Eulerian-Lagrangian method isemployed to descretize both the momentum equations of tidal motion and the equation of salt water diffusion so as to im-prove the computational stability and accuracy. The methods to provide the boundary conditions and the initial conditionsare proposed, and the criterion for computational stability of the salinity fields is presented. The present model is used formodeling fresh and salt water mixing in the Yangtze Estuary. Computations show that the salinity distribution has thecharacteristics of partial mixing pattern, and that the present model is suitable for simulation of fresh and salt water mixing in the Yangtze Estuary.
Neutral $B$ mixing from $2+1$ flavor lattice-QCD: the Standard Model and beyond
Bouchard, C M; Bernard, C; El-Khadra, A X; Gamiz, E; Kronfeld, A S; Laiho, J; Van de Water, R S
2011-01-01
We report on the status of our lattice-QCD calculation of the hadronic contribution to $B_d^0$ and $B^0_s$ mixing, with $2+1$ flavors of dynamical sea quarks. Preliminary results for hadronic mixing matrix elements are given for a basis of five four-quark, dimension-six, $\\Delta B=2$ mixing operators that spans the space of all possible hadronic mixing contributions in the Standard Model and beyond. At the intermediate stage of analysis reported on in this work, our errors are competitive with published Standard Model matrix element results. For beyond the Standard Model matrix elements, this is the first unquenched calculation and the first new lattice-QCD calculation in ten years.
A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow
Liu, Mianfang; Xiong, Shengwu
2016-12-01
Mixed traffic flow sharing the “same lane” and having no discipline on road is a common phenomenon in the developing countries. For example, motorized vehicles (m-vehicles) and nonmotorized vehicles (nm-vehicles) may share the m-vehicle lane or nm-vehicle lane and pedestrians may share the nm-vehicle lane. Simulating pedestrian-vehicle mixed traffic flow consisting of three kinds of traffic objects: m-vehicles, nm-vehicles and pedestrians, can be a challenge because there are some erratic drivers or pedestrians who fail to follow the lane disciplines. In the paper, we investigate various moving and interactive behavior associated with mixed traffic flow, such as lateral drift including illegal lane-changing and transverse crossing different lanes, overtaking and forward movement, and propose some new moving and interactive rules for pedestrian-vehicle mixed traffic flow based on a refined and dynamic cellular automaton (CA) model. Simulation results indicate that the proposed model can be used to investigate the traffic flow characteristic in a mixed traffic flow system and corresponding complicated traffic problems, such as, the moving characteristics of different traffic objects, interaction phenomenon between different traffic objects, traffic jam, traffic conflict, etc., which are consistent with the actual mixed traffic system. Therefore, the proposed model provides a solid foundation for the management, planning and evacuation of the mixed traffic flow.
Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models
De Blasi, Pierpaolo; Lau, John W; 10.3150/09-BEJ233
2011-01-01
This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution $G$. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution $G$, to estimate choice probabilities. We provide an important theoretical support for the use of the proposed methodology by investigating consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Consistency is defined according to an $L_1$-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different te...
Mixing Formal and Informal Model Elements for Tracing Requirements
DEFF Research Database (Denmark)
Jastram, Michael; Hallerstede, Stefan; Ladenberger, Lukas
2011-01-01
a system for traceability with a state-based formal method that supports refinement. We do not require all specification elements to be modelled formally and support incremental incorporation of new specification elements into the formal model. Refinement is used to deal with larger amounts of requirements......Tracing between informal requirements and formal models is challenging. A method for such tracing should permit to deal efficiently with changes to both the requirements and the model. A particular challenge is posed by the persisting interplay of formal and informal elements. In this paper, we...
Software engineering the mixed model for genome-wide association studies on large samples.
Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J
2009-11-01
Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.
Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate
Institute of Scientific and Technical Information of China (English)
Hong-liang Zhao; Pan Yin; Li-feng Zhang; and Sen Wang
2016-01-01
We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing proc-esses at different liquid heights, lance diameters, lance submersion depths, and gas flow rates were subsequently measured using the conduc-tivity method. A new criterion was proposed to determine the mixing time. On this basis, the quasi-equations of the mixing time as a function of different parameters were established. The parameters of the top-blown smelting process were optimized using high-speed photography. An excessively high gas flow rate or excessively low liquid height would enhance the fluctuation and splashing of liquid in the bath, which is unfavorable for material mixing. Simultaneously increasing the lance diameter and the lance submersion depth would promote the mixing in the bath, thereby improving the smelting efficiency.
Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate
Zhao, Hong-liang; Yin, Pan; Zhang, Li-feng; Wang, Sen
2016-12-01
We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing processes at different liquid heights, lance diameters, lance submersion depths, and gas flow rates were subsequently measured using the conductivity method. A new criterion was proposed to determine the mixing time. On this basis, the quasi-equations of the mixing time as a function of different parameters were established. The parameters of the top-blown smelting process were optimized using high-speed photography. An excessively high gas flow rate or excessively low liquid height would enhance the fluctuation and splashing of liquid in the bath, which is unfavorable for material mixing. Simultaneously increasing the lance diameter and the lance submersion depth would promote the mixing in the bath, thereby improving the smelting efficiency.
Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Laxemar
Energy Technology Data Exchange (ETDEWEB)
Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))
2009-01-15
, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on available primary data from the extended data freeze L2.3 at Laxemar (November 30 2007). The data interpretation was carried out during November 2007 to September 2008. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. The original works by the ChemNet modellers are presented in four level III reports containing complementary information for the bedrock hydrogeochemistry Laxemar Site Descriptive Model (SDM-Site Laxemar, R-08-93) level II report. There is also a fifth level III report: Fracture mineralogy of the Laxemar area (R-08-99). This report presents the modelling work performed by the UZ (Univ. of Zaragoza) group as part of the work plan for Laxemar-Simpevarp 2.2 and 2.3. The main processes determining the global geochemical evolution of the Laxemar-Simpevarp groundwaters system are mixing and reaction processes. Mixing has taken place between different types of waters (end members) over time, making the discrimination of the main influences not always straightforward. Several lines of evidence suggest the input of dilute waters (cold or warm), at different stages, into a bedrock with pre-existing very saline groundwaters. Subsequently, marine water entered the system over the Littorina period (when the topography and the distance to the coast allowed it) and mixed with pre-existent groundwaters of variable salinity. In the Laxemar subarea mainland, the Littorina input occurred only locally and it has mostly been flushed out by the subsequent input of warm meteoric waters with a distinctive modern isotopic signature. In addition to mixing processes and superimposed to their
Mixed Frequency Data Sampling Regression Models: The R Package midasr
Directory of Open Access Journals (Sweden)
Eric Ghysels
2016-08-01
Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.
A Thermodynamic Mixed-Solid Asphaltene Precipitation Model
DEFF Research Database (Denmark)
Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar
1998-01-01
A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...
A revision of sexual mixing matrices in models of sexually transmitted infection.
Walker, Robert; Nickson, Carolyn; Lew, Jie-Bin; Smith, Megan; Canfell, Karen
2012-11-30
Two sexual mixing matrices previously used in models of sexually transmitted infections (STIs) are intended to calculate the probability of sexual interaction between age groups and sexual behaviour subgroups. When these matrices are used to specify multiple criteria for how people select sexual partners (such as age group and sexual behaviour class), their conditional probability structure means that they have in practice been prone to misuse. We constructed revised mixing matrices that incorporate a corrected conditional probability structure and then used one of them to examine the effect of this revision on population modelling of STIs. Using a dynamic model of human papillomavirus (HPV) transmission as an example, we examined changes to estimates of HPV prevalence and the relative reduction in age-standardised HPV incidence after the commencement of publicly funded HPV vaccination in Australia. When all other model specifications were left unchanged, the revised mixing matrix initially led to estimates of age-specific oncogenic HPV prevalence that were up to 11% higher than our previous models at certain ages. After re-calibrating the model by modifying unobservable parameters characterising HPV natural history, the revised mixing matrix yielded similar estimates to our previous models, predicting that vaccination would lead to relative HPV incidence reductions of 43% and 85% by 2010 and 2050, respectively, compared with 43% and 86% using the unrevised mixing matrix formulation. Our revised mixing matrix offers a rigorous alternative to commonly used mixing matrices, which can be used to reliably and explicitly accommodate conditional probabilities, with appropriate re-calibration of unobservable model parameters.
Grossman, Yuval
1997-01-01
In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed.
A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis.
Zeng, Ziqiang; Zhu, Wenbo; Ke, Ruimin; Ash, John; Wang, Yinhai; Xu, Jiuping; Xu, Xinxin
2017-02-01
The mixed multinomial logit (MNL) approach, which can account for unobserved heterogeneity, is a promising unordered model that has been employed in analyzing the effect of factors contributing to crash severity. However, its basic assumption of using a linear function to explore the relationship between the probability of crash severity and its contributing factors can be violated in reality. This paper develops a generalized nonlinear model-based mixed MNL approach which is capable of capturing non-monotonic relationships by developing nonlinear predictors for the contributing factors in the context of unobserved heterogeneity. The crash data on seven Interstate freeways in Washington between January 2011 and December 2014 are collected to develop the nonlinear predictors in the model. Thirteen contributing factors in terms of traffic characteristics, roadway geometric characteristics, and weather conditions are identified to have significant mixed (fixed or random) effects on the crash density in three crash severity levels: fatal, injury, and property damage only. The proposed model is compared with the standard mixed MNL model. The comparison results suggest a slight superiority of the new approach in terms of model fit measured by the Akaike Information Criterion (12.06 percent decrease) and Bayesian Information Criterion (9.11 percent decrease). The predicted crash densities for all three levels of crash severities of the new approach are also closer (on average) to the observations than the ones predicted by the standard mixed MNL model. Finally, the significance and impacts of the contributing factors are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; Crawford, Nathan C.; Fischer, Paul F.
2017-04-11
Designing processing equipment for the mixing of settling suspensions is a challenging problem. Achieving low-cost mixing is especially difficult for the application of slowly reacting suspended solids because the cost of impeller power consumption becomes quite high due to the long reaction times (batch mode) or due to large-volume reactors (continuous mode). Further, the usual scale-up metrics for mixing, e.g., constant tip speed and constant power per volume, do not apply well for mixing of suspensions. As an alternative, computational fluid dynamics (CFD) can be useful for analyzing mixing at multiple scales and determining appropriate mixer designs and operating parameters. We developed a mixture model to describe the hydrodynamics of a settling cellulose suspension. The suspension motion is represented as a single velocity field in a computationally efficient Eulerian framework. The solids are represented by a scalar volume-fraction field that undergoes transport due to particle diffusion, settling, fluid advection, and shear stress. A settling model and a viscosity model, both functions of volume fraction, were selected to fit experimental settling and viscosity data, respectively. Simulations were performed with the open-source Nek5000 CFD program, which is based on the high-order spectral-finite-element method. Simulations were performed for the cellulose suspension undergoing mixing in a laboratory-scale vane mixer. The settled-bed heights predicted by the simulations were in semi-quantitative agreement with experimental observations. Further, the simulation results were in quantitative agreement with experimentally obtained torque and mixing-rate data, including a characteristic torque bifurcation. In future work, we plan to couple this CFD model with a reaction-kinetics model for the enzymatic digestion of cellulose, allowing us to predict enzymatic digestion performance for various mixing intensities and novel reactor designs.
Selecting an optimal mixed products using grey relationship model
Directory of Open Access Journals (Sweden)
Farshad Faezy Razi
2013-06-01
Full Text Available This paper presents an integrated supplier selection and inventory management using grey relationship model (GRM as well as multi-objective decision making process. The proposed model of this paper first ranks different suppliers based on GRM technique and then determines the optimum level of inventory by considering different objectives. To show the implementation of the proposed model, we use some benchmark data presented by Talluri and Baker [Talluri, S., & Baker, R. C. (2002. A multi-phase mathematical programming approach for effective supply chain design. European Journal of Operational Research, 141(3, 544-558.]. The preliminary results indicate that the proposed model of this paper is capable of handling different criteria for supplier selection.
Modeling the adsorption of mixed gases based on pure gas adsorption properties
Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.
2015-12-01
Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.
A Weighted Multiobjective Optimization Method for Mixed-Model Assembly Line Problem
Directory of Open Access Journals (Sweden)
Şükran Şeker
2013-01-01
Full Text Available Mixed-model assembly line (MMAL is a type of assembly line where several distinct models of a product are assembled. MMAL is applied in many industrial environments today because of its greater variety in demand. This paper considers the objective of minimizing the work overload (i.e., the line balancing problem and station-to-station product flows. Generally, transportation time between stations are ignored in the literature. In this paper, Multiobjective Mixed-Integer Programming (MOMIP model is presented to optimize these two criteria simultaneously. Also, this MOMIP model incorporates a practical constraint that allows to add parallel stations to assembly line to decrease higher station time. In the last section, MOMIP is applied to optimize the cycle time and transportation time simultaneously in mixed-model assembly line of a real consumer electronics firm in Turkey, and computational results are presented.
An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.
2016-11-01
Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.
A Situative Space Model for Mobile Mixed-Reality Computing
DEFF Research Database (Denmark)
Pederson, Thomas; Janlert, Lars-Erik; Surie, Dipak
2011-01-01
This article proposes a situative space model that links the physical and virtual realms and sets the stage for complex human-computer interaction defined by what a human agent can see, hear, and touch, at any given point in time.......This article proposes a situative space model that links the physical and virtual realms and sets the stage for complex human-computer interaction defined by what a human agent can see, hear, and touch, at any given point in time....
Measured 3D turbulent mixing in a small-scale circuit breaker model
Energy Technology Data Exchange (ETDEWEB)
Basse, Nils T; Bini, Riccardo [ABB Switzerland Ltd., Corporate Research, Baden-Daettwil, CH-5405 (Switzerland); Kissing, Christopher, E-mail: nils.basse@npb.dk [Rheinische Fachhochschule Koeln, DE-50676 (Germany)
2011-06-22
Turbulence plays a key role in several physical processes related to the interruption of current in a gas circuit breaker (GCB). In this paper we study one aspect, namely turbulent gas mixing in the heating volume of a small-scale 3D GCB model. Mixing is observed using a shadowgraphy setup; postprocessing extracts information on the time-varying velocity field. Discharges with two different current amplitudes were studied and their repeatability investigated. A measure of mixing completeness, the largest vortex area, was investigated. The experiments reported upon in this paper were done in air at atmospheric pressure.
A Mixed Approach for Modeling Blood Flow in Brain Microcirculation
Peyrounette, M.; Sylvie, L.; Davit, Y.; Quintard, M.
2014-12-01
We have previously demonstrated [1] that the vascular system of the healthy human brain cortex is a superposition of two structural components, each corresponding to a different spatial scale. At small-scale, the vascular network has a capillary structure, which is homogeneous and space-filling over a cut-off length. At larger scale, veins and arteries conform to a quasi-fractal branched structure. This structural duality is consistent with the functional duality of the vasculature, i.e. distribution and exchange. From a modeling perspective, this can be viewed as the superposition of: (a) a continuum model describing slow transport in the small-scale capillary network, characterized by a representative elementary volume and effective properties; and (b) a discrete network approach [2] describing fast transport in the arterial and venous network, which cannot be homogenized because of its fractal nature. This problematic is analogous to modeling problems encountered in geological media, e.g, in petroleum engineering, where fast conducting channels (wells or fractures) are embedded in a porous medium (reservoir rock). An efficient method to reduce the computational cost of fractures/continuum simulations is to use relatively large grid blocks for the continuum model. However, this also makes it difficult to accurately couple both structural components. In this work, we solve this issue by adapting the "well model" concept used in petroleum engineering [3] to brain specific 3-D situations. We obtain a unique linear system of equations describing the discrete network, the continuum and the well model coupling. Results are presented for realistic geometries and compared with a non-homogenized small-scale network model of an idealized periodic capillary network of known permeability. [1] Lorthois & Cassot, J. Theor. Biol. 262, 614-633, 2010. [2] Lorthois et al., Neuroimage 54 : 1031-1042, 2011. [3] Peaceman, SPE J. 18, 183-194, 1978.
Statistical tests with accurate size and power for balanced linear mixed models.
Muller, Keith E; Edwards, Lloyd J; Simpson, Sean L; Taylor, Douglas J
2007-08-30
The convenience of linear mixed models for Gaussian data has led to their widespread use. Unfortunately, standard mixed model tests often have greatly inflated test size in small samples. Many applications with correlated outcomes in medical imaging and other fields have simple properties which do not require the generality of a mixed model. Alternately, stating the special cases as a general linear multivariate model allows analysing them with either the univariate or multivariate approach to repeated measures (UNIREP, MULTIREP). Even in small samples, an appropriate UNIREP or MULTIREP test always controls test size and has a good power approximation, in sharp contrast to mixed model tests. Hence, mixed model tests should never be used when one of the UNIREP tests (uncorrected, Huynh-Feldt, Geisser-Greenhouse, Box conservative) or MULTIREP tests (Wilks, Hotelling-Lawley, Roy's, Pillai-Bartlett) apply. Convenient methods give exact power for the uncorrected and Box conservative tests. Simulations demonstrate that new power approximations for all four UNIREP tests eliminate most inaccuracy in existing methods. In turn, free software implements the approximations to give a better choice of sample size. Two repeated measures power analyses illustrate the methods. The examples highlight the advantages of examining the entire response surface of power as a function of sample size, mean differences, and variability.
Description of Mixed-Phase Clouds in Weather Forecast and Climate Models
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Description of Mixed-Phase Clouds in Weather Forecast...TERM GOALS To develop improved parameterizations of so-called mixed-phase stratocumulus in numerical models of weather and climate, and of their...impact on the surface energy budget over the Arctic Ocean, their impact on the vertical structure of the lower troposphere and relationships to larger
When western leadership models become a mixed blessing
Directory of Open Access Journals (Sweden)
J. Reimer
2010-07-01
Full Text Available Russia plunged into a deep leadership crisis after the collapse of the Soviet Union. The attempt to implement western leadership models only deepened the crisis. With the take over of power by Vladimir Putin a new leadership theory evolved, which looked critically at western models. Totalitarianism, contextuality, cultural sensibility and pragmatism are issues being investigated with respect to leadership. This article includes these themes whilst reflecting on the critical dialogue between the American leadership expert Stephen R. Covey and his Russian critic Vladimir Tarassenko.
Mixed continuous/discrete time modelling with exact time adjustments
Rovers, K.C.; Kuper, Jan; van de Burgwal, M.D.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria
2011-01-01
Many systems interact with their physical environment. Design of such systems need a modelling and simulation tool which can deal with both the continuous and discrete aspects. However, most current tools are not adequately able to do so, as they implement both continuous and discrete time signals
Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.
Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa
2017-01-01
TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.
Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling.
Noé, Frank; Banisch, Ralf; Clementi, Cecilia
2016-11-08
Identification of the main reaction coordinates and building of kinetic models of macromolecular systems require a way to measure distances between molecular configurations that can distinguish slowly interconverting states. Here we define the commute distance that can be shown to be closely related to the expected commute time needed to go from one configuration to the other, and back. A practical merit of this quantity is that it can be easily approximated from molecular dynamics data sets when an approximation of the Markov operator eigenfunctions is available, which can be achieved by the variational approach to approximate eigenfunctions of Markov operators, also called variational approach of conformation dynamics (VAC) or the time-lagged independent component analysis (TICA). The VAC or TICA components can be scaled such that a so-called commute map is obtained in which Euclidean distance corresponds to the commute distance, and thus kinetic models such as Markov state models can be computed based on Euclidean operations, such as standard clustering. In addition, the distance metric gives rise to a quantity we call total kinetic content, which is an excellent score to rank input feature sets and kinetic model quality.
Conflicts Management Model in School: A Mixed Design Study
Dogan, Soner
2016-01-01
The object of this study is to evaluate the reasons for conflicts occurring in school according to perceptions and views of teachers and resolution strategies used for conflicts and to build a model based on the results obtained. In the research, explanatory design including quantitative and qualitative methods has been used. The quantitative part…
Mixed-effects state-space models for analysis of longitudinal dynamic systems.
Liu, Dacheng; Lu, Tao; Niu, Xu-Feng; Wu, Hulin
2011-06-01
The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject-specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed-effects state-space models based on the longitudinal feature of dynamic systems. State-space models with mixed-effects components are very flexible in modeling the serial correlation of within-subject observations and between-subject variations. The Bayesian approach and the maximum likelihood method for standard mixed-effects models and state-space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E-step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed-effects state-space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling. © 2010, The International Biometric Society.
[Branch growth of Korean pine plantation based on nonlinear mixed model].
Wang, Chun-Hong; Li, Feng-Ri; Jia, Wei-Wei; Dong, Li-Hu
2013-07-01
Based on the branch analysis data from 36 sample trees in a Korean pine plantation in Mengjiagang Forest Farm of Heilongjiang Province, Northeast China, and by using Mitcherlich and Richards equations as the models of branch diameter and branch length growth, respectively, the effects of sampling plot and sample tree were investigated, and the nonlinear mixed models of branch diameter and branch length growth were established by the PROC NLMIXED procedure of SAS software. The evaluation statistics such as Akaike information criterion (AIC), Bayesian information criterion (BIC), -2Log likelihood, and likelihood ratio test (LRT) were used to compare the prediction precisions of the models. When considering plot effect, and taking alpha1 and alpha3 and beta1 and beta3 as the random parameters, respectively, the models of branch diameter and branch length growth had the best performance. When considering tree effect, and taking alpha2 and alpha3 and beta2 and beta3 as the random parameters, respectively, the models of branch diameter and branch length growth had the best performance. The nonlinear mixed model could not only reflect the mean variation of branch growth, but also show the differences among the individual trees. No matter considering plot effect or tree effect, the fitting precision of the nonlinear mixed model was better than that of the ordinary regression analysis model. Moreover, the fitting precision of the nonlinear mixed model was better when considering tree effect than considering plot effect.
Digital Repository Service at National Institute of Oceanography (India)
Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Saito, H.; Muneyama, K.
in the ocean isopycnal general circulation model (OPYC). A higher abundance of chlorophyll increases absorption of solar irradiance and heating rate in the upper ocean, resulting in decreasing the mixed layer thickness than they would be under clear waer...
Modeling turbulent mixing and sand distribution in the bottom boundary layer
Absi, Rafik
2011-01-01
For the calculation of turbulent mixing in the bottom boundary layer, we present simple analytical tools for the mixing velocity wm and the mixing length lm. Based on observations of turbulence intensity measurements, the mixing velocity wm is represented by an exponential function decaying with z. We suggest two theoretical functions for the mixing length, a first lm1 obtained from the k-equation written as a constant modeled fluctuating kinetic energy flux and a second lm2 based on von K\\'arm\\'an's similarity hypothesis. These analytical tools were used in the finite-mixing-length model of Nielsen and Teakle (2004). The modeling of time-mean sediment concentration profiles C(z) over wave ripples shows that at the opposite of the second equation lm2 which increases the upward convexity of C(z), the first equation lm1 increases the upward concavity of C(z) and is able to reproduce the shape of the measured concentrations for coarse sand.
Mixing and Transport in the Small Intestine: A Lattice-Boltzmann Model
Banco, Gino; Brasseur, James; Wang, Yanxing; Aliani, Amit; Webb, Andrew
2007-11-01
The two primary functions of the small intestine are absorption of nutrients into the blood stream and transport of material along the gut for eventual evacuation. The primary transport mechanism is peristalsis. The time scales for absorption, however, rely on mixing and transport of molecules between the bulk flow and epithelial surface. Two basic motions contribute to mixing: peristalsis and repetitive segmental contraction of short segments of the gut. In this study we evaluate the relative roles of peristalsis vs. segmental contraction on the degree of mixing and time scales of nutrient transport to the epithelium using a two-dimensional model of flow and mixing in the small intestine. The model uses the lattice-Boltzmann framework with second-order moving boundary conditions and passive scalar (Sc = 10). Segmental and peristaltic contractions were parameterized using magnetic resonance imaging data from rat models. The Reynolds numbers (1.9), segment lengths (33 mm), max radii (2.75 mm) and occlusion ratios (0.33) were matched for direct comparison. Mixing is quantified by the rate of dispersion of scalar from an initial concentration in the center of the segment. We find that radial mixing is more rapid with segmental than peristaltic motion, that radial dispersion is much more rapid than axial, and that axial is comparable between the motions.
Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution
Directory of Open Access Journals (Sweden)
Weitiao Wu
2013-01-01
Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.
Energy Technology Data Exchange (ETDEWEB)
Rupšys, P. [Aleksandras Stulginskis University, Studenų g. 11, Akademija, Kaunas district, LT – 53361 Lithuania (Lithuania)
2015-10-28
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Optimization model and algorithm for mixed traffic of urban road network with flow interference
Institute of Scientific and Technical Information of China (English)
SI BingFeng; LONG JianCeng; GAO ZiYou
2008-01-01
In this paper, the problem of interferences between motors and non-motors in ur-ban road mixed traffic network is considered and the corresponding link imped-ance function is presented based on travel demand, On the base of this, the main factors that influence travelers' traffic choices are all considered and a combined model including flow-split and assignment problem is proposed, Then a bi-level model with its algorithm for system optimization of urban road mixed traffic net-work is proposed. Finally the application of the model and its algorithm is illus-trated with a numerical example.
Rupšys, P.
2015-10-01
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
An applied model for the height of the daytime mixed layer and the entrainment zone
DEFF Research Database (Denmark)
Batchvarova, E.; Gryning, Sven-Erik
1994-01-01
-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence......A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth...
Evaluation of Parameterization Schemes in the WRF Model for Estimation of Mixing Height
Directory of Open Access Journals (Sweden)
R. Shrivastava
2014-01-01
Full Text Available This paper deals with the evaluation of parameterization schemes in the WRF model for estimation of mixing height. Numerical experiments were performed using various combinations of parameterization schemes and the results were compared with the mixing height estimated using the radiosonde observations taken by the India Meteorological Department (IMD at Mangalore site for selected days of the warm and cold season in the years 2004–2007. The results indicate that there is a large variation in the mixing heights estimated by the model using various combinations of parameterization schemes. It was seen that the physics option consisting of Mellor Yamada Janjic (Eta as the PBL scheme, Monin Obukhov Janjic (Eta as the surface layer scheme, and Noah land surface model performs reasonably well in reproducing the observed mixing height at this site for both the seasons as compared to the other combinations tested. This study also showed that the choice of the land surface model can have a significant impact on the simulation of mixing height by a prognostic model.
A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems
Directory of Open Access Journals (Sweden)
R. Dimitri
2014-07-01
Full Text Available Due to their simplicity, cohesive zone models (CZMs are very attractive to describe mixed-mode failure and debonding processes of materials and interfaces. Although a large number of coupled CZMs have been proposed, and despite the extensive related literature, little attention has been devoted to ensuring the consistency of these models for mixed-mode conditions, primarily in a thermodynamical sense. A lack of consistency may affect the local or global response of a mechanical system. This contribution deals with the consistency check for some widely used exponential and bilinear mixed-mode CZMs. The coupling effect on stresses and energy dissipation is first investigated and the path-dependance of the mixed-mode debonding work of separation is analitically evaluated. Analytical predictions are also compared with results from numerical implementations, where the interface is described with zero-thickness contact elements. A node-to-segment strategy is here adopted, which incorporates decohesion and contact within a unified framework. A new thermodynamically consistent mixed-mode CZ model based on a reformulation of the Xu-Needleman model as modified by van den Bosch et al. is finally proposed and derived by applying the Coleman and Noll procedure in accordance with the second law of thermodynamics. The model holds monolithically for loading and unloading processes, as well as for decohesion and contact, and its performance is demonstrated through suitable examples.
Conditional likelihood inference in generalized linear mixed models.
Sartori, Nicola; Severini , T.A
2002-01-01
Consider a generalized linear model with a canonical link function, containing both fixed and random effects. In this paper, we consider inference about the fixed effects based on a conditional likelihood function. It is shown that this conditional likelihood function is valid for any distribution of the random effects and, hence, the resulting inferences about the fixed effects are insensitive to misspecification of the random effects distribution. Inferences based on the conditional likelih...
Linear-mixing model for shock-compressed liquid deuterium
Energy Technology Data Exchange (ETDEWEB)
Ross, M. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
1998-07-01
A model has been developed for the equation of state of deuterium that builds in the correct limiting behavior for the molecular fluid at low pressure and extends smoothly through dissociation to the very high-density monatomic-metallic fluid. The key assumption is that the Helmholtz free energy of the dissociating mixture is a function that can be approximated by the composition average of the free energy of the pure molecular and metallic hydrogen equations of state. The composition is determined by minimizing the free energy. In comparison to earlier studies this model leads to an enhancement of molecular dissociation and a lowering of shock temperatures and pressures. Calculations for shock-compressed liquid deuterium are in agreement with experiments to a pressure of 2.1 Mbar. At about 1 Mbar and 20thinsp000 K liquid deuterium is 90{percent} dissociated and is a nearly degenerate metal. The model predicts that molecular dissociation will lead to negative values of ({partial_derivative}P/{partial_derivative}T){sub V} in the range 4000 to 10thinsp000 K and volumes below 7 cc/mol. This feature suggests the formation of covalently bonded species in the partially dissociated mixture. {copyright} {ital 1998} {ital The American Physical Society}
Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets
Yang, J.; Jia, L.; Cui, Y.; Zhou, J.; Menenti, M.
2014-01-01
A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR
Marketing for a Web-Based Master's Degree Program in Light of Marketing Mix Model
Pan, Cheng-Chang
2012-01-01
The marketing mix model was applied with a focus on Web media to re-strategize a Web-based Master's program in a southern state university in U.S. The program's existing marketing strategy was examined using the four components of the model: product, price, place, and promotion, in hopes to repackage the program (product) to prospective students…
Marketing for a Web-Based Master's Degree Program in Light of Marketing Mix Model
Pan, Cheng-Chang
2012-01-01
The marketing mix model was applied with a focus on Web media to re-strategize a Web-based Master's program in a southern state university in U.S. The program's existing marketing strategy was examined using the four components of the model: product, price, place, and promotion, in hopes to repackage the program (product) to prospective students…
An arbitrary stressed NBTI compact model for analog/mixed-signal reliability simulations
Wan, Jinbo; Kerkhoff, Hans G.
2013-01-01
A compact NBTI model is presented by directly solving the reaction-diffusion (RD) equations in a simple way. The new model can handle arbitrary stress conditions without solving time-consuming equations and is hence very suitable for analog/mixed-signal NBTI simulations in SPICE-like environments. T
BAYESIAN PARAMETER ESTIMATION IN A MIXED-ORDER MODEL OF BOD DECAY. (U915590)
We describe a generalized version of the BOD decay model in which the reaction is allowed to assume an order other than one. This is accomplished by making the exponent on BOD concentration a free parameter to be determined by the data. This "mixed-order" model may be ...
Taking Advantage of Model-Driven Engineering Foundations for Mixed Interaction Design
Gauffre, Guillaume; Dubois, Emmanuel
New forms of interactive systems, hereafter referred to as Mixed Interactive Systems (MIS), are based on the use of physical artefacts present in the environment. Mixing the digital and physical worlds affects the development of interactive systems, especially from the point of view of the design resources which need to express new dimensions. Consequently, there is a crucial need to clearly describe the content and utility of the recent models associated to these new interaction forms. Based on existing initiatives in the field of HCI, this chapter first highlights the interest of using a Model-Driven Engineering (MDE) approach for the design of MIS. Then, this chapter retraces the application of a MDE approach on a specific Mixed Interaction design resource. The resulted contribution is a motivated, explicit, complete and standardized definition of the ASUR model, a model for mixed interaction design. This definition constitutes a basis to promote the use of this model, to support its diffusion and to derive design tools from this model. The model-driven development of a flexible ASUR editor is finally introduced, thus facilitating the insertion of model extensions and articulations.
Issues in claims reserving and credibility: a semiparametric approach with mixed models
Antonio, K.; Beirlant, J.
2008-01-01
Using the statistical methodology of semi-parametric regression and its connection with mixed models, this article revisits smoothing models for loss reserving and credibility. Apart from the flexibility inherent to all semiparametric methods, advantages of the semiparametric approach developed here
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.
Dapelo, Davide; Alberini, Federico; Bridgeman, John
2015-11-15
A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application.
Modeling of melt-coolant mixing by bottom injection
Energy Technology Data Exchange (ETDEWEB)
Kazachkov, I.V.; Paladino, D.; Sehgal, B.R. [Royal Inst. of Tech., Div. of Nuclear Power Safety, Stockholm (Sweden)
2001-07-01
In this paper, the flow characteristics during the coolant injection, with submerged nozzles, at the bottom of a molten pool are studied. The flow pattern developed by the rising coolant is considered for the case of complete coolant vaporization, and the pool-coolant phase distributions are assessed by a modeling approach delivered from literature for a heterogeneous turbulent jet. To calculate the basic characteristics of such flow, integral relationships are proposed for the two-phase boundary layer. The results of numerical computations and approximate solution are compared with the experimental data obtained in the low temperature experiments, conducted in the DECOBI (debris coolability by bottom injection) facility. (authors)
Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Laxemar
Energy Technology Data Exchange (ETDEWEB)
Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))
2009-01-15
, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on available primary data from the extended data freeze L2.3 at Laxemar (November 30 2007). The data interpretation was carried out during November 2007 to September 2008. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. The original works by the ChemNet modellers are presented in four level III reports containing complementary information for the bedrock hydrogeochemistry Laxemar Site Descriptive Model (SDM-Site Laxemar, R-08-93) level II report. There is also a fifth level III report: Fracture mineralogy of the Laxemar area (R-08-99). This report presents the modelling work performed by the UZ (Univ. of Zaragoza) group as part of the work plan for Laxemar-Simpevarp 2.2 and 2.3. The main processes determining the global geochemical evolution of the Laxemar-Simpevarp groundwaters system are mixing and reaction processes. Mixing has taken place between different types of waters (end members) over time, making the discrimination of the main influences not always straightforward. Several lines of evidence suggest the input of dilute waters (cold or warm), at different stages, into a bedrock with pre-existing very saline groundwaters. Subsequently, marine water entered the system over the Littorina period (when the topography and the distance to the coast allowed it) and mixed with pre-existent groundwaters of variable salinity. In the Laxemar subarea mainland, the Littorina input occurred only locally and it has mostly been flushed out by the subsequent input of warm meteoric waters with a distinctive modern isotopic signature. In addition to mixing processes and superimposed to their
Modeling of mixing and interaction of multi-cathode spot vacuum arc jets
Wang, Lijun; Qin, Kang; Deng, Jie; Jia, Shenli
2016-12-01
Vacuum arc consists of cathode spot and mixing zone, arc column and anode zone. The separate jets and the mixing zone should be considered in the model of diffuse arc. Moreover, the interaction between the plasma jets in multi-cathode spot vacuum arc also is very important. In this paper, mixing and interaction of multi-cathode spot vacuum arc jets were studied through simulation. To completely investigate the mixing and interaction of vacuum arc jets, a steady 3D Magneto-Hydro-Dynamic (MHD) modeling was established. In order to find out the influence of different parameters on mixing and interaction of vacuum arc jets, simulations with different parameters such as currents, angel of vacuum arc jets, with or without electromagnetic equations, tilted jets and different height of mixing zone were conducted. The simulation results show that the densities of ion number and plasma pressure as well as ion temperature increase with the increase of arc current, while the plasma velocity decreases. The jet center is more deviated from the cathode center with the increase of angle of tilted jets.
A New Model for Inclusive Sports? An Evaluation of Participants’ Experiences of Mixed Ability Rugby
Directory of Open Access Journals (Sweden)
Martino Corazza
2017-06-01
Full Text Available Sport has been recognised as a potential catalyst for social inclusion. The Mixed Ability Model represents an innovative approach to inclusive sport by encouraging disabled and non-disabled players to interact in a mainstream club environment. However, research around the impacts of the Model is currently lacking. This paper aims to contribute empirical data to this gap by evaluating participants’ experiences of Mixed Ability Rugby and highlighting implications for future initiatives. Primary qualitative data were collected within two Mixed Ability Rugby teams in the UK and Italy through online questionnaires and focus groups. Data were analysed using Simplican et al.’s (2015 model of social inclusion. Data show that Mixed Ability Rugby has significant potential for achieving inclusionary outcomes. Positive social impacts, reported by all participants, regardless of (disability, include enhanced social networks, an increase in social capital, personal development and fundamental perception shifts. Factors relevant to the Mixed Ability Model are identified that enhance these impacts and inclusionary outcomes. The mainstream setting was reportedly the most important, with further aspects including a supportive club environment and promotion of self-advocacy. A ‘Wheel of Inclusion’ is developed that provides a useful basis for evaluating current inclusive sport initiatives and for designing new ones.
Validation of mixing heights derived from the operational NWP models at the German weather service
Energy Technology Data Exchange (ETDEWEB)
Fay, B.; Schrodin, R.; Jacobsen, I. [Deutscher Wetterdienst, Offenbach (Germany); Engelbart, D. [Deutscher Wetterdienst, Meteorol. Observ. Lindenberg (Germany)
1997-10-01
NWP models incorporate an ever-increasing number of observations via four-dimensional data assimilation and are capable of providing comprehensive information about the atmosphere both in space and time. They describe not only near surface parameters but also the vertical structure of the atmosphere. They operate daily, are well verified and successfully used as meteorological pre-processors in large-scale dispersion modelling. Applications like ozone forecasts, emission or power plant control calculations require highly resolved, reliable, and routine values of the temporal evolution of the mixing height (MH) which is a critical parameter in determining the mixing and transformation of substances and the resulting pollution levels near the ground. The purpose of development at the German Weather Service is a straightforward mixing height scheme that uses only parameters derived from NWP model variables and thus automatically provides spatial and temporal fields of mixing heights on an operational basis. An universal parameter to describe stability is the Richardson number Ri. Compared to the usual diagnostic or rate equations, the Ri number concept of determining mixing heights has the advantage of using not only surface layer parameters but also regarding the vertical structure of the boundary layer resolved in the NWP models. (au)
Comparison of measured and modelled mixing heights during the Borex`95 experiment
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, T.; Astrup, P.; Joergensen, H.E.; Ott, S. [Risoe National Lab., Roskilde (Denmark); Soerensen, J.H. [Danish Meteorological Inst., Copenhagen (Denmark); Loefstroem, P. [National Environmental Research Inst., Roskilde (Denmark)
1997-10-01
A real-time modelling system designed for `on-the-fly` assessment of atmospheric dispersion during accidental releases is under establishment within the framework of the European Union. It integrates real-time dispersion models for both local scale and long range transport with wind, turbulence and deposition models. As meteorological input, the system uses both on-situ measured and on-line available meteorology. The resulting real-time dispersion system is called MET-RODOS. This paper focuses on evaluation of the MET-RODOS systems build-in local scale pre-processing software for real-time determination of mixing height, - an important parameter for the local scale dispersion assessments. The paper discusses the systems local scale mixing height algorithms as well as its in-line mixing height acquisition from the DMI-HIRLAM model. Comparisons of the diurnal mixing height evolution is made with measured mixing heights from in-situ radio-sonde data during the Borex`95 field trials, and recently also with remote sensed (LIDAR) aerosol profiles measured at Risoe. (LN)
DEFF Research Database (Denmark)
Baty, Florent; Ritz, Christian; van Gestel, Arnoldus
2016-01-01
regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...
DEFF Research Database (Denmark)
Baty, Florent; Ritz, Christian; van Gestel, Arnoldus;
2016-01-01
regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...
Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.
Weaver, Bruce; Black, Ryan A
2015-06-01
Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.
Current mixing and properties of vector bosons in preon model with preonic charge
Energy Technology Data Exchange (ETDEWEB)
Senju, Hirofumi (Nagoya Municipal Women' s Coll. (Japan))
1994-09-01
In the preon model with preonic charge, new vector boson which can mix with the photon exists. On the basis of the current mixing model, its properties are studied. Cross sections of e[sup +]e[sup -] [yields] U boson pair and of [iota][sub s]-nucleus scattering are given. It will be also shown that, if the new vector boson is sufficiently heavy (say [approx] 500 GeV), the success of the standard model at the LEP level is naturally reproduced. Small deviations from the standard model are predicted in a definite way, which seems to be rather supported by the data. Our model leads to lighter W boson than the standard model does and to positive [epsilon][sub b] parameter in contrast to the standard model. (author).
Current Mixing and Properties of Vector Bosons in Preon Model with Preonic Charge
Senju, H.
1994-09-01
In the preon model with preonic charge, new vector boson which can mix with the photon exists. On the basis of the current mixing model, its properties are studied. Cross sections of e+e- --> U boson pair and of ls-nucleus scattering are given. It will be also shown that, if the new vector boson is sufficiently heavy (say ~500 GeV), the success of the standard model at the LEP level is naturally reproduced. Small deviations from the standard model are predicted in a definite way, which seems to be rather supported by the data. Our model leads to lighter W boson than the standard model does and to positive ɛb parameter in contrast to the standard model.
Kinetic mixing effect in the 3-3-1-1 model
Dong, P V
2015-01-01
We show that the mixing effect of the neutral gauge bosons in the 3-3-1-1 model comes from two sources. The first one is due to the 3-3-1-1 gauge symmetry breaking as usual, whereas the second one results from the kinetic mixing between the gauge bosons of U(1)_X and U(1)_N groups, which are used to determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the \\rho-parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing neutral currents due to the gauge boson mixings and non-universal fermion generations are also given.
Comparing Bayesian stable isotope mixing models: Which tools are best for sediments?
Morris, David; Macko, Stephen
2016-04-01
Bayesian stable isotope mixing models have received much attention as a means of coping with multiple sources and uncertainty in isotope ecology (e.g. Phillips et al., 2014), enabling the probabilistic determination of the contributions made by each food source to the total diet of the organism in question. We have applied these techniques to marine sediments for the first time. The sediments of the Chukchi Sea and Beaufort Sea offer an opportunity to utilize these models for organic geochemistry, as there are three likely sources of organic carbon; pelagic phytoplankton, sea ice algae and terrestrial material from rivers and coastal erosion, as well as considerable variation in the marine δ13C values. Bayesian mixing models using bulk δ13C and δ15N data from Shelf Basin Interaction samples allow for the probabilistic determination of the contributions made by each of the sources to the organic carbon budget, and can be compared with existing source contribution estimates based upon biomarker models (e.g. Belicka & Harvey, 2009, Faux, Belicka, & Rodger Harvey, 2011). The δ13C of this preserved material varied from -22.1 to -16.7‰ (mean -19.4±1.3‰), while δ15N varied from 4.1 to 7.6‰ (mean 5.7±1.1‰). Using the SIAR model, we found that water column productivity was the source of between 50 and 70% of the organic carbon buried in this portion of the western Arctic with the remainder mainly supplied by sea ice algal productivity (25-35%) and terrestrial inputs (15%). With many mixing models now available, this study will compare SIAR with MixSIAR and the new FRUITS model. Monte Carlo modeling of the mixing polygon will be used to validate the models, and hierarchical models will be utilised to glean more information from the data set.
Ocean Mixing with Lead-Dependent Subgrid Scale Brine Rejection Parameterization in a Climate Model
Institute of Scientific and Technical Information of China (English)
Meibing Jin; Jennifer Hutchings; Yusuke Kawaguchi; Takashi Kikuchi
2012-01-01
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth (MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.
CIVA workstation for NDE: mixing of NDE techniques and modeling
Energy Technology Data Exchange (ETDEWEB)
Benoist, P.; Besnard, R. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes et Systemes Avances; Bayon, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux; Boutaine, J.L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants
1994-12-31
In order to compare the capabilities of different NDE techniques, or to use complementary inspection methods, the same components are examined with different procedures. It is then very useful to have a single evaluation tool allowing direct comparison of the methods: CIVA is an open system for processing NDE data; it is adapted to a standard work station (UNIX, C, MOTIF) and can read different supports on which the digitized data are stored. It includes a large library of signal and image processing methods accessible and adapted to NDE data (filtering, deconvolution, 2D and 3D spatial correlations...). Different CIVA application examples are described: brazing inspection (neutronography, ultrasonic), tube inspection (eddy current, ultrasonic), aluminium welds examination (UT and radiography). Modelling and experimental results are compared. 16 fig., 7 ref.
Two-level mixed modeling of longitudinal pedigree data for genetic association analysis
DEFF Research Database (Denmark)
Tan, Q.
2013-01-01
assess the genetic associations with the mean level and the rate of change in a phenotype both with kinship correlation integrated in the mixed effect models. We apply our method to longitudinal pedigree data to estimate the genetic effects on systolic blood pressure measured over time in large pedigrees...... of follow-up. Approaches have been proposed to integrate kinship correlation into the mixed effect models to explicitly model the genetic relationship which have been proven as an efficient way for dealing with sample clustering in pedigree data. Although useful for adjusting relatedness in the mixed....... Our results show that the method efficiently handles relatedness in detecting genetic variations that affect the mean level or the rate of change for a phenotype of interest....
CATHARE Multi-1D Modeling of Coolant Mixing in VVER-1000 for RIA Analysis
Directory of Open Access Journals (Sweden)
I. Spasov
2010-01-01
Full Text Available The paper presents validation results for multichannel vessel thermal-hydraulic models in CATHARE used in coupled 3D neutronic/thermal hydraulic calculations. The mixing is modeled with cross flows governed by local pressure drops. The test cases are from the OECD VVER-1000 coolant transient benchmark (V1000CT and include asymmetric vessel flow transients and main steam line break (MSLB transients. Plant data from flow mixing experiments are available for comparison. Sufficient mesh refinement with up to 24 sectors in the vessel is considered for acceptable resolution. The results demonstrate the applicability of such validated thermal-hydraulic models to MSLB scenarios involving thermal mixing, azimuthal flow rotation, and primary pump trip. An acceptable trade-off between accuracy and computational efficiency can be obtained.
Mixed observation favors motor learning through better estimation of the model's performance.
Andrieux, Mathieu; Proteau, Luc
2014-10-01
Observation contributes to motor learning. It was recently demonstrated that the observation of both a novice and an expert model (mixed observation) resulted in better learning of a complex spatio-temporal task than the observation of either a novice or an expert model alone. In the present study, we sought to determine whether the advantage of mixed observation resulted from the development of a better error detection mechanism. The results revealed that mixed observation resulted in a better estimation of the model's performance than that with other regimens of observation. The results also suggest that observational learning is improved when observation with knowledge of the results (KR) is followed by an observation phase without KR.
Directory of Open Access Journals (Sweden)
Mei Guangyi
Full Text Available A systematic evaluation of nonlinear mixed-effect taper models for volume prediction was performed. Of 21 taper equations with fewer than 5 parameters each, the best 4-parameter fixed-effect model according to fitting statistics was then modified by comparing its values for the parameters total height (H, diameter at breast height (DBH, and aboveground height (h to modeling data. Seven alternative prediction strategies were compared using the best new equation in the absence of calibration data, which is often unavailable in forestry practice. The results of this study suggest that because calibration may sometimes be a realistic option, though it is rarely used in practical applications, one of the best strategies for improving the accuracy of volume prediction is the strategy with 7 calculated total heights of 3, 6 and 9 trees in the largest, smallest and medium-size categories, respectively. We cannot use the average trees or dominant trees for calculating the random parameter for further predictions. The method described here will allow the user to make the best choices of taper type and the best random-effect calculated strategy for each practical application and situation at tree level.
Guangyi, Mei; Yujun, Sun; Hao, Xu; de-Miguel, Sergio
2015-01-01
A systematic evaluation of nonlinear mixed-effect taper models for volume prediction was performed. Of 21 taper equations with fewer than 5 parameters each, the best 4-parameter fixed-effect model according to fitting statistics was then modified by comparing its values for the parameters total height (H), diameter at breast height (DBH), and aboveground height (h) to modeling data. Seven alternative prediction strategies were compared using the best new equation in the absence of calibration data, which is often unavailable in forestry practice. The results of this study suggest that because calibration may sometimes be a realistic option, though it is rarely used in practical applications, one of the best strategies for improving the accuracy of volume prediction is the strategy with 7 calculated total heights of 3, 6 and 9 trees in the largest, smallest and medium-size categories, respectively. We cannot use the average trees or dominant trees for calculating the random parameter for further predictions. The method described here will allow the user to make the best choices of taper type and the best random-effect calculated strategy for each practical application and situation at tree level.
Energy Technology Data Exchange (ETDEWEB)
Klein, Stephen A.; McCoy, Renata; Morrison, H.; Ackerman, Andrew; Avramov, Alexander; DeBoer, GIJS; Chen, Mingxuan; Cole, Jason N.; DelGenio, Anthony D.; Falk, Michael; Foster, Mike; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg; Menon, Surabi; Neggers, Roel; Park, Sungsu; Poellot, M. R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben; Shupe, Matthew D.; Spangenberg, D.; Sud, Yogesh; Turner, David D.; Veron, Dana; Von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.
2009-05-21
Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the ARM Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of –15°C. While the cloud was water dominated, ice precipitation appears to have lowered the liquid water path to about 2/3 of the adiabatic value. The simulations, which were performed by seventeen single column and nine cloud-resolving models, generally underestimate the liquid water path with the median single-column and cloud-resolving model liquid water path a factor of 3 smaller than observed. While the simulated ice water path is in general agreement with the observed values, results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice phase microphysics is responsible for the strong model underestimate of liquid water path. Although no single factor is found to lead to a good simulation, these results emphasize the need for care in the model treatment of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be benchmark for model simulations of mixed-phase clouds.
Non equilibrium dynamics of mixing, oscillations, and equilibration: A model study
Energy Technology Data Exchange (ETDEWEB)
Ho, Chiu Man; Boyanovsky, D.; Ho, C. M.
2006-12-22
The non-equilibrium dynamics of mixing, oscillations and equilibration is studied in a field theory of flavored neutral mesons that effectively models two flavors of mixed neutrinos, in interaction with other mesons that represent a thermal bath of hadrons or quarks and charged leptons. This model describes the general features of neutrino mixing and relaxation via charged currents in a medium. The reduced density matrix and the non-equilibrium effective action that describes the propagation of neutrinos is obtained by integrating out the bath degrees of freedom. We obtain the dispersion relations, mixing angles and relaxation rates of ``neutrino'' quasiparticles. The dispersion relations and mixing angles are of the same form as those of neutrinos in the medium, and the relaxation rates are given by $\\Gamma_1(k) = \\Gamma_{ee}(k) \\cos^2\\theta_m(k)+\\Gamma_{\\mu\\mu}(k)\\sin^2\\theta_m(k); \\Gamma_2(k)= \\Gamma_{\\mu\\mu}(k) \\cos^2\\theta_m(k)+\\Gamma_{ee}(k)\\sin^2\\theta_m(k) $ where $\\Gamma_{\\alpha\\alpha}(k)$ are the relaxation rates of the flavor fields in \\emph{absence} of mixing, and $\\theta_m(k)$ is the mixing angle in the medium. A Weisskopf-Wigner approximation that describes the asymptotic time evolution in terms of a non-hermitian Hamiltonian is derived. At long time $>>\\Gamma^{-1}_{1,2}$ ``neutrinos'' equilibrate with the bath. The equilibrium density matrix is nearly diagonal in the basis of eigenstates of an \\emph{effective Hamiltonian that includes self-energy corrections in the medium}. The equilibration of ``sterile neutrinos'' via active-sterile mixing is discussed.
A latent factor linear mixed model for high-dimensional longitudinal data analysis.
An, Xinming; Yang, Qing; Bentler, Peter M
2013-10-30
High-dimensional longitudinal data involving latent variables such as depression and anxiety that cannot be quantified directly are often encountered in biomedical and social sciences. Multiple responses are used to characterize these latent quantities, and repeated measures are collected to capture their trends over time. Furthermore, substantive research questions may concern issues such as interrelated trends among latent variables that can only be addressed by modeling them jointly. Although statistical analysis of univariate longitudinal data has been well developed, methods for modeling multivariate high-dimensional longitudinal data are still under development. In this paper, we propose a latent factor linear mixed model (LFLMM) for analyzing this type of data. This model is a combination of the factor analysis and multivariate linear mixed models. Under this modeling framework, we reduced the high-dimensional responses to low-dimensional latent factors by the factor analysis model, and then we used the multivariate linear mixed model to study the longitudinal trends of these latent factors. We developed an expectation-maximization algorithm to estimate the model. We used simulation studies to investigate the computational properties of the expectation-maximization algorithm and compare the LFLMM model with other approaches for high-dimensional longitudinal data analysis. We used a real data example to illustrate the practical usefulness of the model. Copyright © 2013 John Wiley & Sons, Ltd.
Hossein-Zadeh, Navid Ghavi
2016-08-01
The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.
Ram Upadhayay, Hari; Bodé, Samuel; Griepentrog, Marco; Bajracharya, Roshan Man; Blake, Will; Cornelis, Wim; Boeckx, Pascal
2017-04-01
The implementation of compound-specific stable isotope (CSSI) analyses of biotracers (e.g. fatty acids, FAs) as constraints on sediment-source contributions has become increasingly relevant to understand the origin of sediments in catchments. The CSSI fingerprinting of sediment utilizes CSSI signature of biotracer as input in an isotopic mixing model (IMM) to apportion source soil contributions. So far source studies relied on the linear mixing assumptions of CSSI signature of sources to the sediment without accounting for potential effects of source biotracer concentration. Here we evaluated the effect of FAs concentration in sources on the accuracy of source contribution estimations in artificial soil mixture of three well-separated land use sources. Soil samples from land use sources were mixed to create three groups of artificial mixture with known source contributions. Sources and artificial mixture were analysed for δ13C of FAs using gas chromatography-combustion-isotope ratio mass spectrometry. The source contributions to the mixture were estimated using with and without concentration-dependent MixSIAR, a Bayesian isotopic mixing model. The concentration-dependent MixSIAR provided the closest estimates to the known artificial mixture source contributions (mean absolute error, MAE = 10.9%, and standard error, SE = 1.4%). In contrast, the concentration-independent MixSIAR with post mixing correction of tracer proportions based on aggregated concentration of FAs of sources biased the source contributions (MAE = 22.0%, SE = 3.4%). This study highlights the importance of accounting the potential effect of a source FA concentration for isotopic mixing in sediments that adds realisms to mixing model and allows more accurate estimates of contributions of sources to the mixture. The potential influence of FA concentration on CSSI signature of sediments is an important underlying factor that determines whether the isotopic signature of a given source is observable
A Model For Halo Formation With Axion Mixed Dark Matter
Marsh, David J E
2013-01-01
There are several issues to do with dwarf galaxy predictions in the standard $\\Lambda$CDM cosmology that have suscitated much recent debate about the possible modification of the nature of dark matter as providing a solution. We explore a novel solution involving ultra-light axions that can potentially resolve the missing satellites problem, the cusp-core problem, and the `too big to fail' problem. We discuss approximations to non-linear structure formation in dark matter models containing a component of ultra-light axions across four orders of magnitude in mass, $10^{-24}\\lesssim m_a \\lesssim 10^{-20}$, a range too heavy to be well constrained by linear cosmological probes such as the CMB and matter power spectrum, and too light for other astrophysical or terrestrial axion searches. We find that an axion of mass $m_a\\approx 10^{-21}\\text{eV}$ contributing $\\Omega_a/\\Omega_d \\gtrsim 0.85$ of the total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite galaxy in sharp contr...
A multilevel nonlinear mixed-effects approach to model growth in pigs
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H
2009-01-01
Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....
Micromechanical model of cross-over fibre bridging - Prediction of mixed mode bridging laws
DEFF Research Database (Denmark)
Sørensen, Bent F.; Gamstedt, E.K.; Østergaard, Rasmus Christian;
2008-01-01
on the observed bridging mechanism, a micromechanical model is developed for the prediction of macroscopic mixed mode bridging laws (stress-opening laws). The model predicts a high normal stress for very small openings, decreasing rapidly with increasing normal and tangential crack opening displacements......The fracture resistance of fibre composites can be greatly enhanced by crack bridging. In situ observations of mixed mode crack growth in a unidirectional carbon-fibre/epoxy composite reveal crack bridging by single fibres and by beam-like ligaments consisting of several fibres. Based...
Inferring fixed effects in a mixed linear model from an integrated likelihood
DEFF Research Database (Denmark)
Gianola, Daniel; Sorensen, Daniel
2008-01-01
of all nuisances, viewing random effects and variance components as missing data. In a simulation of a grazing trial, the procedure was compared with four widely used estimators of fixed effects in mixed models, and found to be competitive. An analysis of body weight in freshwater crayfish was conducted......A new method for likelihood-based inference of fixed effects in mixed linear models, with variance components treated as nuisance parameters, is presented. The method uses uniform-integration of the likelihood; the implementation employs the expectation-maximization (EM) algorithm for elimination...
Neutrino Mixing With Non-Zero $\\theta_{13}$ In Zee-Babu Model
Long, H N
2014-01-01
The exact solution for the neutrino mass matrix of the Zee-Babu model is derived. Tribimaximal mixing imposes conditions on the Yukawa couplings, from which the normal mass hierarchy is preferred. The derived conditions give a possibility of Majorana maximal $\\mathrm{CP}$ violation in the neutrino sector. We have shown that non-zero $\\theta_{13}$ is generated if Yukawa couplings between leptons almost equal to each other. The model gives some regions of the parameters where neutrino mixing angles and the normal neutrino mass hierarchy obtained consistent with the recent experimental data.
A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand
Directory of Open Access Journals (Sweden)
Dionicio Neira Rodado
2016-11-01
Full Text Available The product-mix planning and the lot size decisions are some of the most fundamental research themes for the operations research community. The fact that markets have become more unpredictable has increaed the importance of these issues, rapidly. Currently, directors need to work with product-mix planning and lot size decision models by introducing stochastic variables related to the demands, lead times, etc. However, some real mathematical models involving stochastic variables are not capable of obtaining good solutions within short commuting times. Several heuristics and metaheuristics have been developed to deal with lot decisions problems, in order to obtain high quality results within short commuting times. Nevertheless, the search for an efficient model by considering product mix and deal size with stochastic demand is a prominent research area. This paper aims to develop a general model for the product-mix, and lot size decision within a stochastic demand environment, by introducing the Economic Value Added (EVA as the objective function of a product portfolio selection. The proposed stochastic model has been solved by using a Sample Average Approximation (SAA scheme. The proposed model obtains high quality results within acceptable computing times.
Wang, Lily; Jia, Peilin; Wolfinger, Russell D; Chen, Xi; Grayson, Britney L; Aune, Thomas M; Zhao, Zhongming
2011-03-01
In genome-wide association studies (GWAS) of complex diseases, genetic variants having real but weak associations often fail to be detected at the stringent genome-wide significance level. Pathway analysis, which tests disease association with combined association signals from a group of variants in the same pathway, has become increasingly popular. However, because of the complexities in genetic data and the large sample sizes in typical GWAS, pathway analysis remains to be challenging. We propose a new statistical model for pathway analysis of GWAS. This model includes a fixed effects component that models mean disease association for a group of genes, and a random effects component that models how each gene's association with disease varies about the gene group mean, thus belongs to the class of mixed effects models. The proposed model is computationally efficient and uses only summary statistics. In addition, it corrects for the presence of overlapping genes and linkage disequilibrium (LD). Via simulated and real GWAS data, we showed our model improved power over currently available pathway analysis methods while preserving type I error rate. Furthermore, using the WTCCC Type 1 Diabetes (T1D) dataset, we demonstrated mixed model analysis identified meaningful biological processes that agreed well with previous reports on T1D. Therefore, the proposed methodology provides an efficient statistical modeling framework for systems analysis of GWAS. The software code for mixed models analysis is freely available at http://biostat.mc.vanderbilt.edu/LilyWang.
Dobigeon, Nicolas; Somers, Ben; Altmann, Yoann; Coppin, Pol
2013-01-01
Spectral unmixing is a crucial processing step when analyzing hyperspectral data. In such analysis, most of the work in the literature relies on the widely acknowledged linear mixing model to describe the observed pixels. Unfortunately, this model has been shown to be of limited interest for specific scenes, in particular when acquired over vegetated areas. Consequently, in the past few years, several nonlinear mixing models have been introduced to take nonlinear effects into account. These models have been proposed empirically, however without any thorough validation. In this paper, the authors take advantage of two sets of real and physical-based simulated data to validate the accuracy of various nonlinear models in vegetated areas. These physics-based and analysis models, and their corresponding unmixing algorithms, are evaluated with respect to their ability of fitting the measured spectra and of providing an accurate estimation of the abundance coefficients, considered as the spatial distribution of the ...
A mathematical model for unsteady mixed flows in closed water pipes
Institute of Scientific and Technical Information of China (English)
BOURDARIAS; Christian; ERSOY; Mehmet; GERBI; Stéphane
2012-01-01
We present the formal derivation of a new unidirectional model for unsteady mixed flows in nonuniform closed water pipes.In the case of free surface incompressible flows,the FS-model is formally obtained,using formal asymptotic analysis,which is an extension to more classical shallow water models.In the same way,when the pipe is full,we propose the P-model,which describes the evolution of a compressible inviscid flow,close to gas dynamics equations in a nozzle.In order to cope with the transition between a free surface state and a pressured(i.e.,compressible) state,we propose a mixed model,the PFS-model,taking into account changes of section and slope variation.
A mathematical model for unsteady mixed flows in closed water pipes
Bourdarias, Christian; Gerbi, Stéphane
2011-01-01
We present the formal derivation of a new unidirectional model for unsteady mixed flows in non uniform closed water pipe. In the case of free surface incompressible flows, the \\FS-model is formally obtained, using formal asymptotic analysis, which is an extension to more classical shallow water models. In the same way, when the pipe is full, we propose the \\Pres-model, which describes the evolution of a compressible inviscid flow, close to gas dynamics equations in a nozzle. In order to cope the transition between a free surface state and a pressured (i.e. compressible) state, we propose a mixed model, the \\PFS-model, taking into account changes of section and slope variation.
Shi, J Q; Wang, B; Will, E J; West, R M
2012-11-20
We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime.
AlRamadan, Abdullah S.
2015-10-01
The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.
Drying and Heating Modelling of Granular Flow: Application to the Mix-Asphalt Processes
Directory of Open Access Journals (Sweden)
L Le Guen
2011-01-01
Full Text Available Concrete asphalt is a hydrocarbon material that includes a mix of mineral components along with a bituminous binder. Prior to mixing, its production protocol requires drying and heating the aggregates. Generally performed in a rotary drum, these drying and heating steps within mix asphalt processes have never been studied from a physical perspective. We are thus proposing in the present paper to analyze the drying and heating mechanisms when granular materials and hot gases are involved in a co-current flow. This process step accounts for a large proportion of the overall energy consumed during hot-mix asphalt manufacturing. In the present context, the high energy cost associated with this step has encouraged developing new strategies specifically for the drying process. Applying new asphalt techniques so that an amount of moisture can be preserved in the asphalt concrete appears fundamental to such new strategies. This low-energy asphalt, also referred to as the "warm technique", depends heavily on a relevant prediction of the actual moisture content inside asphalt concrete during the mixing step. The purpose of this paper is to present a physical model dedicated to the evolution in temperature and moisture of granular solids throughout the drying and heating steps carried out inside a rotary drum. An initial experimental campaign to visualize inside a drum at the pilot scale (i.e. 1/3 scale has been carried out in order to describe the granular flow and establish the necessary physical assumptions for the drying and heating model. Energy and mass balance equations are solved by implementing an adequate heat and mass transfer coupling, yielding a 1D model from several parameters that in turn drives the physical modeling steps. Moreover, model results will be analyzed and compared to several measurements performed in an actual asphalt mix plant at the industrial scale (i.e. full scale.
Understanding Flow Pathways, Mixing and Transit Times for Water Quality Modelling
Dunn, S. M.; Bacon, J. R.; Soulsby, C.; Tetzlaff, D.
2007-12-01
Water quality modelling requires representation of the physical processes controlling the movement of solutes and particulates at an appropriate level of detail to address the objective of the model simulations. To understand and develop mitigation strategies for diffuse pollution at catchment scales, it is necessary for models to be able to represent the sources and age of water reaching rivers at different times. Experimental and modelling studies undertaken on several catchments in the north east of Scotland have used natural hydrochemical and isotopic tracers as a means of obtaining spatially integrated information about mixing processes. Methods for obtaining and integrating appropriate data are considered together with the implications of neglecting it. The tracer data have been incorporated in a conceptual hydrological model to study the sensitivity of the modelled tracer response to factors that may not affect runoff simulations but do affect mixing and transit times of the water. Results from the studies have shown how model structural and parameter uncertainties can lead to errors in the representation of: the flow pathways of water; the degree to which these flow pathways have mixed and the length of time for which water has been stored within the soil / groundwater system. It has been found to be difficult to eliminate structural uncertainty regarding the mechanisms of mixing, and parameter uncertainty regarding the role of groundwater. Simulations of nitrate pollution, resulting from the application of agricultural fertilisers, have been undertaken to demonstrate the sensitivity of water quality simulations to the potential errors in physical transport mechanisms, inherent in models that fail to account correctly for flow pathways, mixing and transit times.
Blackstone, Christopher C.; Sanov, Andrei
2016-06-01
Using the generalized model for photodetachment of electrons from mixed-character molecular orbitals, we gain insight into the nature of the HOMO of HO2- by treating it as a coherent superpostion of one p- and one d-type atomic orbital. Fitting the pd model function to the ab initio calculated HOMO of HO2- yields a fractional d-character, γp, of 0.979. The modeled curve of the anisotropy parameter, β, as a function of electron kinetic energy for a pd-type mixed character orbital is matched to the experimental data.
Modelling transverse turbulent mixing in a shallow flow by using an eddy viscosity approach
Gualtieri, C.
2009-04-01
The mixing of contaminants in streams and rivers is a significant problem in environmental fluid mechanics and rivers engineering since to understand the impact and the fate of pollutants in these water bodies is a primary goal of water quality management. Since most rivers have a high aspect ratio, that is the width to depth ratio, discharged pollutants become vertically mixed within a short distance from the source and vertical mixing is only important in the so-called near-field. As a rule of thumb, neutrally buoyant solute becomes fully mixed vertically within 50-75 depths from the source. Notably, vertical mixing analysis relies on well-known theoretical basis, that is Prandtl mixing length model, which assumes the hypothesis of plane turbulent shear flow and provides theoretical predictions of the vertical turbulent diffusivity which closely match experimental results. In the mid-field, the vertical concentration gradients are negligible and both subsequent transverse and longitudinal changes of the depth-averaged concentrations of the pollutants should be addressed. In the literature, for the application of one-dimensional water quality models the majority of research efforts were devoted to estimate the rate of longitudinal mixing of a contaminant, that is the development of a plume resulting from a temporally varying pollutant source once it has become cross-sectionally well-mixed, in the far-field. Although transverse mixing is a significant process in river engineering when dealing with the discharge of pollutants from point sources or the mixing of tributary inflows, no theoretical basis exists for the prediction of its rate, which is indeed based upon the results of experimental works carried on in laboratory channels or in streams and rivers. Turbulence models based on the eddy viscosity approach, such as the k-É model, k-? and their variation are the most widely used turbulence models and this is largely due to their ease in implementation
A fast model for mean and turbulent wind characteristics over terrain with mixed surface roughness
DEFF Research Database (Denmark)
Astrup, P.; Mikkelsen, T.; Jensen, N.O.
1997-01-01
The real-time near-range atmospheric model chain in RODOS already includes the fast spectral LINCOM code, which was originally developed by Rise for modelling the mean wind fields over hilly, but otherwise homogeneous, terrain. Its output is used as a wind field driver for the dispersion model...... of arrival of radioactive clouds traversing, for instance, a land/water/land surface, and (2) for calculation of the turbulent shear stress, and thereby the scaling parameters, over mixed terrain....
A simple model for the magnetocrystalline anisotropy in mixed ferrite nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Biasi, R.S. de, E-mail: rsbiasi@ime.eb.br [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. Gen. Tiburcio 80 SE/4, Urca, 22290-270 Rio de Janeiro, RJ (Brazil); Cardoso, L.H.G., E-mail: lh.cardoso@yahoo.com.br [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. Gen. Tiburcio 80 SE/4, Urca, 22290-270 Rio de Janeiro, RJ (Brazil)
2012-09-15
A simple model, based on the relative occupancy of tetrahedral and octahedral sites by different cations, is proposed for the magnetocrystalline anisotropy of mixed ferrite nanoparticles. According to this model, the total magnetocrystalline anisotropy is the weighted average of the contributions of the anisotropies of Fe{sup 3+} and M{sup 2+} ions in A and B sites. The model predictions are confirmed in the case of cobalt-zinc ferrite.
Ability of non-linear mixed models to predict growth in laying hens
Directory of Open Access Journals (Sweden)
Luis Fernando Galeano-Vasco
2014-11-01
Full Text Available In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weighed weekly from day 20 after hatch until they were 553 days of age. All the nonlinear models used were transformed into mixed models by the inclusion of random parameters. Accuracy of the models was determined by the Akaike and Bayesian information criteria (AIC and BIC, respectively, and the correlation values. According to AIC, BIC, and correlation values, the best fit for modeling the growth curve of the birds was obtained with Gompertz, followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic models did not fit the data. The Gompertz nonlinear mixed model showed the best goodness of fit for the data set, and is considered the model of choice to describe and predict the growth curve of Lohmann LSL commercial layers at the production system of University of Antioquia.
Lee, Yi Feng; Graalfs, Heiner; Frech, Christian
2016-09-16
An extended model is developed to describe protein retention in mixed-mode chromatography based on thermodynamic principles. Special features are the incorporation of pH dependence of the ionic interaction on a mixed-mode resin and the addition of a water term into the model which enables one to describe the total number of water molecules released at the hydrophobic interfaces upon protein-ligand binding. Examples are presented on how to determine the model parameters using isocratic elution chromatography. Four mixed-mode anion-exchanger prototype resins with different surface chemistries and ligand densities were tested using isocratic elution of two monoclonal antibodies at different pH values (7-10) and encompassed a wide range of NaCl concentrations (0-5M). U-shape mixed-mode retention curves were observed for all four resins. By taking into account of the deprotonation and protonation of the weak cationic functional groups in these mixed-mode anion-exchanger prototype resins, conditions which favor protein-ligand binding via mixed-mode strong cationic ligands as well as conditions which favor protein-ligand binding via both mixed-mode strong cationic ligands and non-hydrophobic weak cationic ligands were identified. The changes in the retention curves with pH, salt, protein, and ligand can be described very well by the extended model using meaningful thermodynamic parameters like Gibbs energy, number of ionic and hydrophobic interactions, total number of released water molecules as well as modulator interaction constant. Furthermore, the fitted model parameters based on isocratic elution data can also be used to predict protein retention in dual salt-pH gradient elution chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulating the evolution of soot mixing state with a particle-resolved aerosol model
Riemer, N; Zaveri, R A; Easter, R C
2008-01-01
The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the e...
Detailed Description of Mixed Symmetry States in 94Mo Using Interacting Boson Model
Institute of Scientific and Technical Information of China (English)
LONG GuiLu; F.H. Al-Khudair
2002-01-01
We have investigated the low-lying collective states and electromagnetic transitions in 94Mo within the framework of the interacting boson model. The influence of model parameters on the energy levels and electromagnetic properties has been investigated. The analysis of the obtained results and the parameter values predict that the 23+state is the lowest mixed symmetry state with pure F = Fmax - 1 in this nucleus. The calculated results predicate that the 25+ (two-Q-phonon) mixed symmetry state is closed to the J = 2+ at 2.870 MeV in the experimental data, and the 2.965 MeV state is the lowest mixed symmetry with J = 3+.
Cheung, Mike W.-L.
2008-01-01
Meta-analysis and structural equation modeling (SEM) are two important statistical methods in the behavioral, social, and medical sciences. They are generally treated as two unrelated topics in the literature. The present article proposes a model to integrate fixed-, random-, and mixed-effects meta-analyses into the SEM framework. By applying an…
Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark
Energy Technology Data Exchange (ETDEWEB)
Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))
2008-08-15
in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report presents the modelling work performed by the University of Zaragoza group as part of the work planned for Forsmark during stages 2.2 and 2.3. The chemical characteristics of the groundwaters in the Forsmark and Laxemar areas are the result of a complex mixing process driven by the input of different recharge waters since the last glaciation. The successive penetration at different depths of dilute glacial melt-waters, Littorina Sea waters and dilute meteoric waters has triggered complex density and hydraulically driven flows that have mixed them with long residence time, highly saline waters present in the fractures and in the rock matrix. A general description of the main characteristics and processes controlling the hydrogeochemical evolution with depth in the Forsmark groundwater system is presented in this report: The hydrochemical characteristics and evolution of the Near surface waters (up to 20 m depth) is mainly determined by weathering reactions and especially affected by the presence of limestones. The biogenic CO{sub 2} input (derived from decay of organic matter and root respiration) and the associated weathering of carbonates control the pH and the concentrations of Ca and HCO{sub 3}- in the near-surface environment. Current seasonal variability of CO{sub 2} input produces variable but high calcium and bicarbonate contents in the Forsmark near-surface waters: up to 240 mg/L Ca and 150 to
Mixed Model Association with Family-Biased Case-Control Ascertainment.
Hayeck, Tristan J; Loh, Po-Ru; Pollack, Samuela; Gusev, Alexander; Patterson, Nick; Zaitlen, Noah A; Price, Alkes L
2017-01-05
Mixed models have become the tool of choice for genetic association studies; however, standard mixed model methods may be poorly calibrated or underpowered under family sampling bias and/or case-control ascertainment. Previously, we introduced a liability threshold-based mixed model association statistic (LTMLM) to address case-control ascertainment in unrelated samples. Here, we consider family-biased case-control ascertainment, where case and control subjects are ascertained non-randomly with respect to family relatedness. Previous work has shown that this type of ascertainment can severely bias heritability estimates; we show here that it also impacts mixed model association statistics. We introduce a family-based association statistic (LT-Fam) that is robust to this problem. Similar to LTMLM, LT-Fam is computed from posterior mean liabilities (PML) under a liability threshold model; however, LT-Fam uses published narrow-sense heritability estimates to avoid the problem of biased heritability estimation, enabling correct calibration. In simulations with family-biased case-control ascertainment, LT-Fam was correctly calibrated (average χ(2) = 1.00-1.02 for null SNPs), whereas the Armitage trend test (ATT), standard mixed model association (MLM), and case-control retrospective association test (CARAT) were mis-calibrated (e.g., average χ(2) = 0.50-1.22 for MLM, 0.89-2.65 for CARAT). LT-Fam also attained higher power than other methods in some settings. In 1,259 type 2 diabetes-affected case subjects and 5,765 control subjects from the CARe cohort, downsampled to induce family-biased ascertainment, LT-Fam was correctly calibrated whereas ATT, MLM, and CARAT were again mis-calibrated. Our results highlight the importance of modeling family sampling bias in case-control datasets with related samples. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
The treatment of mixing in core helium burning models - II. Constraints from cluster star counts
Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.; van Duijneveldt, Adam
2016-03-01
The treatment of convective boundaries during core helium burning is a fundamental problem in stellar evolution calculations. In the first paper of this series, we showed that new asteroseismic observations of these stars imply they have either very large convective cores or semiconvection/partially mixed zones that trap g modes. We probe this mixing by inferring the relative lifetimes of asymptotic giant branch (AGB) and horizontal branch (HB) from R2, the observed ratio of these stars in recent HST photometry of 48 Galactic globular clusters. Our new determinations of R2 are more self-consistent than those of previous studies and our overall calculation of R2 = 0.117 ± 0.005 is the most statistically robust now available. We also establish that the luminosity difference between the HB and the AGB clump is Δ log {L}_HB^AGB = 0.455 ± 0.012. Our results accord with earlier findings that standard models predict a lower R2 than is observed. We demonstrate that the dominant sources of uncertainty in models are the prescription for mixing and the stochastic effects that can result from its numerical treatment. The luminosity probability density functions that we derive from observations feature a sharp peak near the AGB clump. This constitutes a strong new argument against core breathing pulses, which broaden the predicted width of the peak. We conclude that the two mixing schemes that can match the asteroseismology are capable of matching globular cluster observations, but only if (i) core breathing pulses are avoided in models with a semiconvection/partially mixed zone, or (ii) that models with large convective cores have a particular depth of mixing beneath the Schwarzschild boundary during subsequent early-AGB `gravonuclear' convection.
Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model
Vallejo, Jonathon; Hejduk, Matt; Stamey, James
2015-01-01
We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.
Validation of sub-grid-scale mixing schemes using CFCs in a global ocean model
Robitaille, Daniel Y.; Weaver, Andrew J.
Three sub-grid-scale mixing parameterizations (lateral/vertical; isopycnal; Gent and McWilliams, 1990) are used in a global ocean model in an attempt to determine which yields the best ocean climate. Observed CFC-11 distributions, in both the North and South Atlantic, are used in evaluating the model results. While the isopycnal mixing scheme does improve the deep ocean potential temperature and salinity distributions, when compared to results from the traditional lateral/vertical mixing scheme, the CFC-11 distribution is worse in the upper ocean due to too much mixing. The Gent and McWilliams (1990) parameterization significantly improves the CFC-11 distributions when compared to both of the other schemes. The main improvement comes from a reduction of CFC uptake in the southern ocean where the ‘bolus’ transport cancels the mean advection of tracers and hence causes the Deacon Cell to disappear. These results suggest that the asymmetric response found in CO2-increase experiments, whereby the climate over the southern ocean does not warm as much as in the northern hemisphere, may be due to the particular mixing schemes used.
Estimation of urban mixed layer height in Zanjan using LIDAR observations and numerical modeling
Indian Academy of Sciences (India)
A A Bidokhti; M Khoshsima; S Sabetghadam; H M Khalesifard
2008-12-01
Air pollution predictions often require the height of atmospheric mixed layer in time especially in big cities. Here, the variation of the height of this layer is estimated from direct measurements and also from a numerical forecast model with a high resolution boundary layer scheme. The height of the daytime mixed layer for the city of Zanjan (48.5°N, 36.7°E, 1700 m above sea level)is measured using a LIDAR (532 nm)system, which works based on aerosols scattering of laser light. The mixed layer height () for Zanjan city, well above mean sea level compared to other major cities in the world,is found to be between 1.4 km typically in spring and 2.2 km in summer, for synoptic calm conditions. Also, the MM5 forecast model with a proper boundary layer scheme (MRF)is used to estimate which shows rather good agreement with direct observations using the LIDAR system. The entrainment zone of the mixed layer was also found to undergo some occasional temporal growth that may be attributed to shear instability that led to more mixed layer growth.
Including source uncertainty and prior information in the analysis of stable isotope mixing models.
Ward, Eric J; Semmens, Brice X; Schindler, Daniel E
2010-06-15
Stable isotope mixing models offer a statistical framework for estimating the contribution of multiple sources (such as prey) to a mixture distribution. Recent advances in these models have estimated the source proportions using Bayesian methods, but have not explicitly accounted for uncertainty in the mean and variance of sources. We demonstrate that treating these quantities as unknown parameters can reduce bias in the estimated source contributions, although model complexity is increased (thereby increasing the variance of estimates). The advantages of this fully Bayesian approach are particularly apparent when the source geometry is poor or sample sizes are small. A second benefit to treating source quantities as parameters is that prior source information can be included. We present findings from 9 lake food-webs, where the consumer of interest (fish) has a diet composed of 5 sources: aquatic insects, snails, zooplankton, amphipods, and terrestrial insects. We compared the traditional Bayesian stable isotope mixing model with fixed source parameters to our fully Bayesian model-with and without an informative prior. The informative prior has much less impact than the choice of model-the traditional mixing model with fixed source parameters estimates the diet to be dominated by aquatic insects, while the fully Bayesian model estimates the diet to be more balanced but with greater importance of zooplankton. The findings from this example demonstrate that there can be stark differences in inference between the two model approaches, particularly when the source geometry of the mixing model is poor. These analyses also emphasize the importance of investing substantial effort toward characterizing the variation in the isotopic characteristics of source pools to appropriately quantify uncertainties in their contributions to consumers in food webs.
Moderate Deviations for M-estimators in Linear Models with φ-mixing Errors
Institute of Scientific and Technical Information of China (English)
Jun FAN
2012-01-01
In this paper,the moderate deviations for the M-estimators of regression parameter in a linear model are obtained when the errors form a strictly stationary φ-mixing sequence.The results are applied to study many different types of M-estimators such as Huber's estimator,Lp-regression estimator,least squares estimator and least absolute deviation estimator.
Comparing mixing-length models of the diabatic wind profile over homogeneous terrain
DEFF Research Database (Denmark)
Pena Diaz, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay
2010-01-01
Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed...
Mixed model approaches for the identification of QTLs within a maize hybrid breeding program.
Eeuwijk, van F.A.; Boer, M.; Totir, L.; Bink, M.C.A.M.; Wright, D.; Winkler, C.; Podlich, D.; Boldman, K.; Baumgarten, R.; Smalley, M.; Arbelbide, M.; Braak, ter C.J.F.; Cooper, M.
2010-01-01
Two outlines for mixed model based approaches to quantitative trait locus (QTL) mapping in existing maize hybrid selection programs are presented: a restricted maximum likelihood (REML) and a Bayesian Markov Chain Monte Carlo (MCMC) approach. The methods use the in-silico-mapping procedure developed
Validation of a Theoretical Model of Diagnostic Classroom Assessment: A Mixed Methods Study
Koh, Nancy
2012-01-01
The purpose of the study was to validate a theoretical model of diagnostic, formative classroom assessment called, "Proximal Assessment for Learner Diagnosis" (PALD). To achieve its purpose, the study employed a two-stage, mixed-methods design. The study utilized multiple data sources from 11 elementary level mathematics teachers who…
DMU - A Package for Analyzing Multivariate Mixed Models in quantitative Genetics and Genomics
DEFF Research Database (Denmark)
Madsen, Per; Jensen, Just; Labouriau, Rodrigo;
The DMU-package for Analyzing Multivariate Mixed Models has been developed over a period of more than 25 years. This paper gives an overview of new features and the recent developments around the DMU-package, including: Genomic prediction (SNP-BLUP, G-BLUP and “One-Step”), Genome-wide association...
Aguinis, Herman; Molina-Azorín, José F.
2015-01-01
The microfoundations research agenda presents an expanded theoretical perspective because it considers individuals, their characteristics, and their interactions as relevant variables to help us understand firm-level strategic issues. However, microfoundations empirical research faces unique challenges because processes take place at different levels of analysis and these multilevel processes must be considered simultaneously. We describe multilevel modeling and mixed methods as methodologica...
Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM
Directory of Open Access Journals (Sweden)
U. Karstens
2012-03-01
Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.
Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron.
Krupa, M.; Popovic, N.; Kopell, N.; Rotstein, H.G.
2008-01-01
Mixed-mode dynamics is a complex type of dynamical behavior that has been observed both numerically and experimentally in numerous prototypical systems in the natural sciences. The compartmental Wilson-Callaway model for the dopaminergic neuron is an example of a system that exhibits a wide variety
Realized mixed-frequency factor models for vast dimensional covariance estimation
K. Bannouh (Karim); M.P.E. Martens (Martin); R.C.A. Oomen (Roel); D.J.C. van Dijk (Dick)
2012-01-01
textabstractWe introduce a Mixed-Frequency Factor Model (MFFM) to estimate vast dimensional covari- ance matrices of asset returns. The MFFM uses high-frequency (intraday) data to estimate factor (co)variances and idiosyncratic risk and low-frequency (daily) data to estimate the factor loadings. We
Software engineering the mixed model for genome-wide association studies on large samples
Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...
Review of: Mixed Effects Models and Extensions in Ecology with R
Royle, J. Andrew
2013-01-01
This is a review of the book "Mixed Effects Models and Extensions in Ecology with R" by Zuur, Ieno, Walker, Saveliev and Smith (2009, Springer). I was asked to review this book for The American Statistician in 2010. After I wrote the review, the invitation was revoked. This is the review.
Modeling snag dynamics in northern Arizona mixed-conifer and ponderosa pine forests
Joseph L. Ganey; Scott C. Vojta
2007-01-01
Snags (standing dead trees) are important components of forested habitats that contribute to ecological decay and recycling processes as well as providing habitat for many life forms. As such, snags are of special interest to land managers, but information on dynamics of snag populations is lacking. We modeled trends in snag populations in mixed-conifer and ponderosa...
Roche, Kevin R; Aubeneau, Antoine F; Xie, Minwei; Aquino, Tomás; Bolster, Diogo; Packman, Aaron I
2016-09-20
Bioturbation is the dominant mode of sediment transport in many aquatic environments and strongly influences both sediment biogeochemistry and contaminant fate. Available bioturbation models rely on highly simplified biodiffusion formulations that inadequately capture the behavior of many benthic organisms. We present a novel experimental and modeling approach that uses time-lapse imagery to directly relate burrow formation to resulting sediment mixing. We paired white-light imaging of burrow formation with fluorescence imaging of tracer particle redistribution by the oligochaete Lumbriculus variegatus. We used the observed burrow formation statistics and organism density to parametrize a parsimonious model for sediment mixing based on fundamental random walk theory. Worms burrowed over a range of times and depths, resulting in homogenization of sediments near the sediment-water interface, rapid nonlocal transport of tracer particles to deep sediments, and large areas of unperturbed sediments. Our fundamental, parsimonious random walk model captures the central features of this highly heterogeneous sediment bioturbation, including evolution of the sediment-water interface coupled with rapid near-surface mixing and anomalous late-time mixing resulting from infrequent, deep burrowing events. This approach provides a general, transferable framework for explicitly linking sediment transport to governing biophysical processes.
A mixed integer program to model spatial wildfire behavior and suppression placement decisions
Erin J. Belval; Yu Wei; Michael. Bevers
2015-01-01
Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...
A nondestructive and sensitive method was developed to detect the presence of mixed pesticides of acetamiprid, chlorpyrifos and carbendazim on apples by surface-enhanced Raman spectroscopy (SERS). Self-modeling mixture analysis (SMA) was used to extract and identify the Raman spectra of individual p...
A Simple Diffusion-Controled Model of Mixing Across a Stable Density Interface
Kranenburg, C.
1979-01-01
Mixing across a stable density interface caused by a shear stress externally acting on a two-layer fluid initially at rest is modelled using the turbulent-diffusion concept. The influence of a (relatively weak) longitudinal pressure gradient is also considered. The central point of view developed is
Aguinis, Herman; Molina-Azorín, José F.
2015-01-01
The microfoundations research agenda presents an expanded theoretical perspective because it considers individuals, their characteristics, and their interactions as relevant variables to help us understand firm-level strategic issues. However, microfoundations empirical research faces unique challenges because processes take place at different levels of analysis and these multilevel processes must be considered simultaneously. We describe multilevel modeling and mixed methods as methodologica...
Mixing Studies in a 1:60 scale model of a cornerfired boiler with OFA
DEFF Research Database (Denmark)
Matlok, Simon; Scheel Larsen, Poul; Gjernes, Erik;
1998-01-01
In a model of a boiler, concentration distributions of injected gas into a swirling bulk flow are determined from quantitative laser-sheet visualization. Together with LDA-measurements of velocity fields this describes the mixing process and its efficiency expressed by several measures (unmixedness...
Kranenburg, C.
1999-01-01
The Prandtl mixing-length model of turbulent exchange of mass and momentum is applied to calculate the entrainment of overlying water into a layer of suspended fine sediment at a horizontal bed. In the field the flow and turbulence in such a concentrated benthic suspension (CBS) are driven by a
Energy Technology Data Exchange (ETDEWEB)
Morrison, H.; McCoy, Renata; Klein, Stephen A.; Xie, Shaocheng; Luo, Yali; Avramov, Alexander; Chen, Mingxuan; Cole, Jason N.; Falk, Michael; Foster, Mike; Del Genio, Anthony D.; Harrington, Jerry Y.; Hoose, Corinna; Khrairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; McFarquhar, Greg; Poellot, M. R.; Von Salzen, Knut; Shipway, Ben; Shupe, Matthew D.; Sud, Yogesh C.; Turner, David D.; Veron, Dana; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.
2009-05-21
Results are presented from an intercomparison of single-column and cloud resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, the cloud-resolving models and models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models also tend to produce a larger cloud fraction than the single column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.
A nonlinear mixed-effects model for degradation data obtained from in-service inspections
Energy Technology Data Exchange (ETDEWEB)
Yuan, X.-X. [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Pandey, M.D. [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)], E-mail: mdpandey@uwaterloo.ca
2009-02-15
Monitoring of degradation and predicting its progression using periodic inspection data are important to ensure safety and reliability of engineering systems. Traditional regression models are inadequate in modeling the periodic inspection data, as it ignores units specific random effects and potential correlation among repeated measurements. This paper presents an advanced nonlinear mixed-effects (NLME) model, generally adopted in bio-statistical literature, for modeling and predicting degradation in nuclear piping system. The proposed model offers considerable improvement by reducing the variance associated with degradation of a specific unit, which leads to more realistic estimates of risk.
Simulation Model for Scenario Optimization of the Ready-Mix Concrete Delivery Problem
Galić, Mario; Kraus, Ivan
2016-12-01
This paper introduces a discrete simulation model for solving routing and network material flow problems in construction projects. Before the description of the model a detailed literature review is provided. The model is verified using a case study of solving the ready-mix concrete network flow and routing problem in metropolitan area in Croatia. Within this study real-time input parameters were taken into account. Simulation model is structured in Enterprise Dynamics simulation software and Microsoft Excel linked with Google Maps. The model is dynamic, easily managed and adjustable, but also provides good estimation for minimization of costs and realization time in solving discrete routing and material network flow problems.
Narasimhan, T. N.; White, A. F.; Tokunaga, T.
1986-12-01
At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.
Estimate of influenza cases using generalized linear, additive and mixed models.
Oviedo, Manuel; Domínguez, Ángela; Pilar Muñoz, M
2015-01-01
We investigated the relationship between reported cases of influenza in Catalonia (Spain). Covariates analyzed were: population, age, data of report of influenza, and health region during 2010-2014 using data obtained from the SISAP program (Institut Catala de la Salut - Generalitat of Catalonia). Reported cases were related with the study of covariates using a descriptive analysis. Generalized Linear Models, Generalized Additive Models and Generalized Additive Mixed Models were used to estimate the evolution of the transmission of influenza. Additive models can estimate non-linear effects of the covariates by smooth functions; and mixed models can estimate data dependence and variability in factor variables using correlations structures and random effects, respectively. The incidence rate of influenza was calculated as the incidence per 100 000 people. The mean rate was 13.75 (range 0-27.5) in the winter months (December, January, February) and 3.38 (range 0-12.57) in the remaining months. Statistical analysis showed that Generalized Additive Mixed Models were better adapted to the temporal evolution of influenza (serial correlation 0.59) than classical linear models.
Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach
Thomas, C.; Lark, R. M.
2013-12-01
Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second
Directory of Open Access Journals (Sweden)
Hae Kyung Im
2012-02-01
Full Text Available The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs. Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM, which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748 of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs. The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.
Efficient and robust estimation for longitudinal mixed models for binary data
DEFF Research Database (Denmark)
Holst, René
2009-01-01
This paper proposes a longitudinal mixed model for binary data. The model extends the classical Poisson trick, in which a binomial regression is fitted by switching to a Poisson framework. A recent estimating equations method for generalized linear longitudinal mixed models, called GEEP, is used...... as a vehicle for fitting the conditional Poisson regressions, given a latent process of serial correlated Tweedie variables. The regression parameters are estimated using a quasi-score method, whereas the dispersion and correlation parameters are estimated by use of bias-corrected Pearson-type estimating...... equations, using second moments only. Random effects are predicted by BLUPs. The method provides a computationally efficient and robust approach to the estimation of longitudinal clustered binary data and accommodates linear and non-linear models. A simulation study is used for validation and finally...
An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin
2015-11-01
Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.
DEFF Research Database (Denmark)
Thorsted, Anders; Thygesen, Peter; Agersø, Henrik
2016-01-01
BACKGROUND AND PURPOSE: We aimed to develop a mechanistic mixed-effects pharmacokinetic (PK)-pharmacodynamic (PD) (PKPD) model for recombinant human growth hormone (rhGH) in hypophysectomized rats and to predict the human PKPD relationship. EXPERIMENTAL APPROACH: A non-linear mixed-effects model...... was developed from experimental PKPD studies of rhGH and effects of long-term treatment as measured by insulin-like growth factor 1 (IGF-1) and bodyweight gain in rats. Modelled parameter values were scaled to human values using the allometric approach with fixed exponents for PKs and unscaled for PDs...... a clinically relevant biomarker, IGF-1, to a primary clinical end-point, growth/bodyweight gain. Scaling of the model parameters provided robust predictions of the human PKPD in growth hormone-deficient patients including variability....
Modeling Mixed Traffic Flow at Crosswalks in Micro-Simulations Using Cellular Automata
Institute of Scientific and Technical Information of China (English)
DUAN Houli; ZHANG Yi
2007-01-01
The cellular automata (CA) micro-simulation model was used to describe the behavior of the mixed traffic flows at crosswalks where the pedestrians compete with the vehicles to cross the roadway. The focus of this paper is the behavior of pedestrians and the influence of pedestrians' behavior on the vehicle flow, pedestrian flows, and the vehicle waiting time. The proportion of pedestrians who do not obey traffic laws, the group effect, and expected waiting time of pedestrians, regarded as the most important pedestrian characteristics, are taken into consideration in the analysis. Simulation results show the ability of the microsimulation to capture the most important features of mixed traffic flow.
Stochastic Modelling and Self Tuning Control of a Continuous Cement Raw Material Mixing System
Directory of Open Access Journals (Sweden)
Hannu T. Toivonen
1980-01-01
Full Text Available The control of a continuously operating system for cement raw material mixing is studied. The purpose of the mixing system is to maintain a constant composition of the cement raw meal for the kiln despite variations of the raw material compositions. Experimental knowledge of the process dynamics and the characteristics of the various disturbances is used for deriving a stochastic model of the system. The optimal control strategy is then obtained as a minimum variance strategy. The control problem is finally solved using a self-tuning minimum variance regulator, and results from a successful implementation of the regulator are given.
Constraint on the scale-unifying supersymmetric preon model from ? - ? mixing
Kim, Jongbae
1997-06-01
We study the flavour changing neutral current process in 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mixing in the supersymmetric preon model (SPM). Compared to the minimal supersymmetric standard model (MSSM), one distinguishing feature of 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mixing in the SPM is that there are new contributions from box diagrams involving two vector-like families of quarks and their supersymmetric (SUSY) partners with masses of order 1 TeV. Another special feature of the process in the SPM, in contrast to the MSSM, is that left - right squark 0954-3899/23/6/005/img7 - 0954-3899/23/6/005/img8 mixing is highly suppressed owing to symmetries of the underlying model. We calculate the SUSY box diagrams for 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mixing for the case of the SPM, using observed 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mass splitting, and obtain the constraint of 0954-3899/23/6/005/img13 on the squark mass degeneracy in the model. This upper limit is smaller by about a factor of 3.6 than the corresponding limit for the MSSM. The difference arises because of the absence of 0954-3899/23/6/005/img7 - 0954-3899/23/6/005/img8 mixing in the the preon model.
Energy Technology Data Exchange (ETDEWEB)
Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G
2008-02-27
Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.
Malatesta, Luca C.; Berger, Quentin; Avouac, Jean-Philippe
2017-04-01
The accurate interpretation of clastic sedimentary records hinges on a good understanding of the timescale and mode of sediment transport from source to sink. An environmental signal can be accurately recorded in the stratigraphy if it is transported quickly without being mixed with older sediments, or it can be entirely shredded by a slow transport and significant mixing along the way. Both transformations can happen in alluvial piedmonts by successive episodes of aggradation and incision. For example, in the Tian Shan the sediment flux reaching the foreland basin is mixed with sediments of up to 0.5 Ma age, mixing and blurring the environmental signals it carries. We present here a numerical model that reproduces cycles of aggradation and incision on an alluvial fan and keeps track of the age composition in the sediment outflow. The model is based on three fundamental time- and length-scales: the period of aggradation-incision cycles, the depth of incision with respect to net aggradation, and the pattern of lateral migration. All three parameters can be reasonably easily surveyed in the field and with remote sensing. For simple geometries, we replace the numerical model with a probabilistic light analytical model. The output of both models quantifies sediment mixing in terms of the probability of finding a given minimum proportion of sediments of age T or older in the output flux. We apply and test the analytical and numerical models to the Eastern Tian Shan where we can rely on independent measurements of mixing and buffering. There, rivers repeatedly aggraded and incised 100's of meters every 20 to 30 kyr with two main effects: 1) the delivery of coarse sediments to the basin is delayed by at least 7 to 14 kyrs between being first evacuated from the mountain and later re-eroded and transported basinward; 2) the outflux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the
A Mixed Integer Programming Model Formulation for Solving the Lot-Sizing Problem
Mohammadi, Maryam
2012-01-01
This paper addresses a mixed integer programming (MIP) formulation for the multi-item uncapacitated lot-sizing problem that is inspired from the trailer manufacturer. The proposed MIP model has been utilized to find out the optimum order quantity, optimum order time, and the minimum total cost of purchasing, ordering, and holding over the predefined planning horizon. This problem is known as NP-hard problem. The model was presented in an optimal software form using LINGO 13.0.
Bayesian prediction of spatial count data using generalized linear mixed models
DEFF Research Database (Denmark)
Christensen, Ole Fredslund; Waagepetersen, Rasmus Plenge
2002-01-01
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, we...... demonstrate that so-called Langevin-Hastings updates are useful for efficient simulation of the posterior distributions, and we discuss computational issues concerning prediction....
Mixed Monotonicity of Partial First-In-First-Out Traffic Flow Models
Coogan, Samuel; Arcak, Murat; Kurzhanskiy, Alexander A.
2015-01-01
In vehicle traffic networks, congestion on one outgoing link of a diverging junction often impedes flow to other outgoing links, a phenomenon known as the first-in-first-out (FIFO) property. Simplified traffic models that do not account for the FIFO property result in monotone dynamics for which powerful analysis techniques exist. FIFO models are in general not monotone, but have been shown to be mixed monotone - a generalization of monotonicity that enables similarly powerful analysis techni...
Han, Yingying; Gong, Pu; Zhou, Xiang
2016-02-01
In this paper, we apply time varying Gaussian and SJC copula models to study the correlations and risk contagion between mixed assets: financial (stock), real estate and commodity (gold) assets in China firstly. Then we study the dynamic mixed-asset portfolio risk through VaR measurement based on the correlations computed by the time varying copulas. This dynamic VaR-copula measurement analysis has never been used on mixed-asset portfolios. The results show the time varying estimations fit much better than the static models, not only for the correlations and risk contagion based on time varying copulas, but also for the VaR-copula measurement. The time varying VaR-SJC copula models are more accurate than VaR-Gaussian copula models when measuring more risky portfolios with higher confidence levels. The major findings suggest that real estate and gold play a role on portfolio risk diversification and there exist risk contagion and flight to quality between mixed-assets when extreme cases happen, but if we take different mixed-asset portfolio strategies with the varying of time and environment, the portfolio risk will be reduced.
Reed, Frances M; Fitzgerald, Les; Rae, Melanie
2016-01-01
To highlight philosophical and theoretical considerations for planning a mixed methods research design that can inform a practice model to guide rural district nursing end of life care. Conceptual models of nursing in the community are general and lack guidance for rural district nursing care. A combination of pragmatism and nurse agency theory can provide a framework for ethical considerations in mixed methods research in the private world of rural district end of life care. Reflection on experience gathered in a two-stage qualitative research phase, involving rural district nurses who use advocacy successfully, can inform a quantitative phase for testing and complementing the data. Ongoing data analysis and integration result in generalisable inferences to achieve the research objective. Mixed methods research that creatively combines philosophical and theoretical elements to guide design in the particular ethical situation of community end of life care can be used to explore an emerging field of interest and test the findings for evidence to guide quality nursing practice. Combining philosophy and nursing theory to guide mixed methods research design increases the opportunity for sound research outcomes that can inform a nursing model of care.
Numerical analysis of magnetic states mixing in the Heisenberg model with the dihedral symmetry
Directory of Open Access Journals (Sweden)
Jaśniewicz-Pacer K.
2013-01-01
Full Text Available The total spin number S is not a ‘good quantum number for’ the Heisenberg model with singleion anisotropy, so the Hamiltonian eigenstates with diﬀerent S may form linear combinations. Sometimes it is assumed that S can be used as an ‘approximate quantum number’, though some results show that mixing of S-states is important in investigations of magnetic molecules. Some small spin systems with the dihedral symmetry are analyzed to investigate diﬀerent schemes of mixing and its dependence on the anisotropy parameter. The results show various behavior of the magnetic state mixing. The mean (over a state value of total spin is quite stable for the ground state, but in other cases this dependence is nonlinear and sometimes non-monotonic.
A Mixed Land Cover Spatio-temporal Data Model Based on Object-oriented and Snapshot
Directory of Open Access Journals (Sweden)
LI Yinchao
2016-07-01
Full Text Available Spatio-temporal data model (STDM is one of the hot topics in the domains of spatio-temporal database and data analysis. There is a common view that a universal STDM is always of high complexity due to the various situation of spatio-temporal data. In this article, a mixed STDM is proposed based on object-oriented and snapshot models for modelling and analyzing landcover change (LCC. This model uses the object-oriented STDM to describe the spatio-temporal processes of land cover patches and organize their spatial and attributive properties. In the meantime, it uses the snapshot STDM to present the spatio-temporal distribution of LCC on the whole via snapshot images. The two types of models are spatially and temporally combined into a mixed version. In addition to presenting the spatio-temporal events themselves, this model could express the transformation events between different classes of spatio-temporal objects. It can be used to create database for historical data of LCC, do spatio-temporal statistics, simulation and data mining with the data. In this article, the LCC data in Heilongjiang province is used for case study to validate spatio-temporal data management and analysis abilities of mixed STDM, including creating database, spatio-temporal query, global evolution analysis and patches spatio-temporal process expression.
Directory of Open Access Journals (Sweden)
Petras Rupšys
2015-01-01
Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.
Modeling policy mix to improve the competitiveness of Indonesian palm oil industry
Directory of Open Access Journals (Sweden)
Roland Y H Silitonga
2016-04-01
Full Text Available Purpose: The purpose of this research is to develop a model that will explain the impact of government policies to the competitiveness of palm oil industry. The model involves two commodities in this industry, namely crude palm oil (CPO and refined palm oil (RPO, each has different added value. Design/methodology/approach: The model built will define the behavior of government in controlling palm oil industry, and their interactions with macro-environment, in order to improve the competitiveness of the industry. Therefore the first step was to map the main activities in this industry using value chain analysis. After that a conceptual model was built, where the output of the model is competitiveness of the industry based on market share. The third step was model formulation. The model is then utilized to simulate the policy mix given by government in improving the competitiveness of Palm Oil Industry. Research limitations/implications: The model was developed using only some policies which give direct impact to the competitiveness of the industry. For macro environment input, only price is considered in this model. Practical implications: The model can simulate the output of the industry for various government policies mix given to the industry. Originality/value: This research develops a model that can represent the structure and relationship between industry, government and macro environment, using value chain analysis and hierarchical multilevel system approach.
Energy Technology Data Exchange (ETDEWEB)
VOLD, ERIK L. [Los Alamos National Laboratory; SCANNAPIECO, TONY J. [Los Alamos National Laboratory
2007-10-16
A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.
Microbiological risk assessment models for partitioning and mixing during food handling.
Nauta, Maarten J
2005-04-15
To describe the transmission dynamics of a pathogen over a food pathway in quantitative microbiological risk assessment (QMRA), several types of processes need to be modelled. Next to microbial processes like bacterial growth and inactivation, four food handling processes can be identified. Among these are partitioning and mixing of the food product. With these processes, the (sizes of) units of food product are modified and the pathogenic cells are reallocated over the units, so that the prevalence of contaminated units and the number of cells per unit may change. Usually, simple models of these processes are applied in QMRA food chain models. These models assume independence of units, random homogeneous distribution of cells (for partitioning) and equal contribution of units (for mixing), which is often not realistic in food and food handling processes. In this paper, these assumptions are abandoned. The use of multivariate distributions is proposed to include the effect of dependence between units: the Multinomial distribution for partitioning and the Dirichlet distribution for mixing. Effects of cell clustering and/or unequal sizes of units formed by partitioning or contributing to mixing are incorporated. Some algorithms are derived that are easily implemented in spreadsheet models that simulate food production and preparation. Some examples show the effect of more realistic modelling by implementation of these algorithms on the prevalence and the probability distribution of the number of pathogens per unit of food product. In general, cell clustering will result in lower prevalences, but higher levels of contamination in contaminated food units. With the methods presented, these effects can be quantified. Difficulties in estimating the model parameters and the impact of implementation of the proposed methods on risk estimates in QMRA are discussed.
An efficient model for predicting mixing lengths in serial pumping of petroleum products
Energy Technology Data Exchange (ETDEWEB)
Baptista, Renan Martins [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br; Rachid, Felipe Bastos de Freitas [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: rachid@mec.uff.br; Araujo, Jose Henrique Carneiro de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Ciencia da Computacao]. E-mail: jhca@dcc.ic.uff.br
2000-07-01
This paper presents a new model for estimating mixing volumes which arises in batching transfers in multi product pipelines. The novel features of the model are the incorporation of the flow rate variation with time and the use of a more precise effective dispersion coefficient, which is considered to depend on the concentration. The governing equation of the model forms a non linear initial value problem that is solved by using a predictor corrector finite difference method. A comparison among the theoretical predictions of the proposed model, a field test and other classical procedures show that it exhibits the best estimate over the whole range of admissible concentrations investigated. (author)
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Directory of Open Access Journals (Sweden)
Van Dyk David A
2000-03-01
Full Text Available Abstract This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence are obtained for PX-EM relative to the basic EM algorithm in the random regression.
Simulation of the mixing process in FCIs with hydrodynamic fragmentation model
Institute of Scientific and Technical Information of China (English)
LIN Qian; CAO Xuewu
2007-01-01
Fuel Coolant Interactions (FCIs) are important issues in nuclear reactor severe accident analysis. In FCIs,fragmentation model of molten droplets is a key factor to estimate degree of possible damage. In this paper, the mixing process in FCIs is studied by the simulation of MIXA experiment with hydrodynamic fragmentation model. The result shows that hydrodynamic fragmentation model underestimates the fragmentation rate of high temperature molten droplets under the condition of low Weber numbers. It is concluded that models based on thermal fragmentation mechanism should be adopted to analyze the FCI process and its consequence.
Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.
2017-01-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
Row, Jeffrey R; Knick, Steven T; Oyler-McCance, Sara J; Lougheed, Stephen C; Fedy, Bradley C
2017-06-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R(2) values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
Oxygen diffusion model of the mixed (U,Pu)O2 ± x: Assessment and application
Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul
2017-03-01
The uranium-plutonium (U,Pu)O2 ± x mixed oxide (MOX) is used as a nuclear fuel in some light water reactors and considered for future reactor generations. To gain insight into fuel restructuring, which occurs during the fuel lifetime as well as possible accident scenarios understanding of the thermodynamic and kinetic behavior is crucial. A comprehensive evaluation of thermo-kinetic properties is incorporated in a computational CALPHAD type model. The present DICTRA based model describes oxygen diffusion across the whole range of plutonium, uranium and oxygen compositions and temperatures by incorporating vacancy and interstitial migration pathways for oxygen. The self and chemical diffusion coefficients are assessed for the binary UO2 ± x and PuO2 - x systems and the description is extended to the ternary mixed oxide (U,Pu)O2 ± x by extrapolation. A simulation to validate the applicability of this model is considered.
Harrison, Chris D; Phan, Phi Anh; Zhang, Cathy; Geer, Daniel; Farmery, Andrew D; Payne, Stephen J
2017-08-01
Routine estimation of functional residual capacity (FRC) in ventilated patients has been a long held goal, with many methods previously proposed, but none have been used in routine clinical practice. This paper proposes three models for determining FRC using the nitrous oxide concentration from the entire expired breath in order to improve the precision of the estimate. Of the three models proposed, a dead space with two mixing compartments provided the best results, reducing the mean limits of agreement with the FRC measured by whole body plethysmography by up to 41%. This moves away from traditional lung models, which do not account for mixing within the dead space. Compared to literature values for FRC, the results are similar to those obtained using helium dilution and better than the LUFU device (Dräger Medical, Lubeck, Germany), with significantly better limits of agreement compared to plethysmography. Copyright © 2017 Elsevier B.V. All rights reserved.
A REVIEW ON SEQUENCING APPROACHES FOR MIXED-MODEL JUST-IN-TIME PRODUCTION SYSTEM
Directory of Open Access Journals (Sweden)
Tanka Dhamala
2009-10-01
Full Text Available Research interests have been focused on the concept of penalizing jobs both for being early and for being tardy because not only of modern competitive industrial challenges of providing a variety of products at a very low cost by smoothing productions but also of its increasing and exciting computer applications. Here, sequencing approaches of the mixed- model just-in-time production systems is reviewed. In this note, realizing a need of critical review, a survey on the elegant mathematical models, methods and complexity of the mixed- model just-in-time sequencing problem with an insight into the existing analytical literature is given. The established research results together with open problems and possible extensions are presented.
Renormalisation Group Corrections to the Littlest Seesaw Model and Maximal Atmospheric Mixing
King, Stephen F; Zhou, Shun
2016-01-01
The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, $\\theta_{23}=45^\\circ \\pm 1^\\circ$, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.
Winsorization on linear mixed model (Case study: National exam of senior high school in West Java)
Yuliyani, Leny; Kurnia, Anang; Indahwati
2017-03-01
In the case of hierarchical data is typically modeled with linear mixed model (LMM). The LMM requires the assumption of normality which is error and random effects are assumed normal distribution. However in practice, to meet the assumption of normality is difficult especially if the sample is small. Violation of the normality assumption can be caused by outliers. In this paper, we will examine the effect of outliers on the random effects and error and overcome them with the Winsorization technique. The result of application indicated that Winsorization technique with c-tuning constant iterative process produced root mean squared error, AIC, and BIC are smaller than the others. We conclude that Winsorization technique can be used to overcome outliers in linear mixed model fitting.
Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France
2012-05-20
Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or changing between periods. We use the expected standard errors of treatment effect to compute the power for the Wald test of comparison or equivalence and the number of subjects needed for a given power. We perform various simulations mimicking crossover two-period trials to show the relevance of these developments. We then apply these developments to design a crossover pharmacokinetic study of amoxicillin in piglets and implement them in the new version 3.2 of the r function PFIM.
DEFF Research Database (Denmark)
Luo, Yangjun; Wu, Xiaoxiang; Zhou, Mingdong
2015-01-01
on a probability-interval mixed reliability model, the imprecision of design parameters is modeled as interval uncertainties fluctuating within allowable tolerance bounds. The optimization model is defined as to minimize the total manufacturing cost under mixed reliability index constraints, which are further...... transformed into their equivalent formulations by using the performance measure approach. The optimization problem is then solved with the sequential approximate programming. Meanwhile, a numerically stable algorithm based on the trust region method is proposed to efficiently update the target performance......Both structural sizes and dimensional tolerances strongly influence the manufacturing cost and the functional performance of a practical product. This paper presents an optimization method to simultaneously find the optimal combination of structural sizes and dimensional tolerances. Based...
Renormalisation group corrections to the littlest seesaw model and maximal atmospheric mixing
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Zhang, Jue [Center for High Energy Physics, Peking University,Beijing 100871 (China); Zhou, Shun [Center for High Energy Physics, Peking University,Beijing 100871 (China); Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China)
2016-12-06
The Littlest Seesaw (LS) model involves two right-handed neutrinos and a very constrained Dirac neutrino mass matrix, involving one texture zero and two independent Dirac masses, leading to a highly predictive scheme in which all neutrino masses and the entire PMNS matrix is successfully predicted in terms of just two real parameters. We calculate the renormalisation group (RG) corrections to the LS predictions, with and without supersymmetry, including also the threshold effects induced by the decoupling of heavy Majorana neutrinos both analytically and numerically. We find that the predictions for neutrino mixing angles and mass ratios are rather stable under RG corrections. For example we find that the LS model with RG corrections predicts close to maximal atmospheric mixing, θ{sub 23}=45{sup ∘}±1{sup ∘}, in most considered cases, in tension with the latest NOvA results. The techniques used here apply to other seesaw models with a strong normal mass hierarchy.
Implementation of a Mixing Length Turbulence Formulation Into the Dynamic Wake Meandering Model
DEFF Research Database (Denmark)
Keck, Rolf-Erik; Veldkamp, Dick; Aagaard Madsen, Helge
2012-01-01
The work presented in this paper focuses on improving the description of wake evolution due to turbulent mixing in the dynamic wake meandering (DWM) model. From wake investigations performed with high-fidelity actuator line simulations carried out in ELLIPSYS3D, it is seen that the current DWM...... description, where the eddy viscosity is assumed to be constant in each cross-section of the wake, is insufficient. Instead, a two-dimensional eddy viscosity formulation is proposed to model the shear layer generated turbulence in the wake, based on the classical mixing length model. The performance...... from 3 to 12 diameters behind the rotor, is reduced by 27% by using the new eddy viscosity formulation. ©2012 American Society of Mechanical Engineers...
Mixed layer modeling in the East Pacific warm pool during 2002
Energy Technology Data Exchange (ETDEWEB)
Van Roekel, Luke P. [Colorado State University, Department of Atmospheric Science, Fort Collins, CO (United States); University of Colorado at Boulder, Boulder, CO (United States); Maloney, Eric D. [Colorado State University, Department of Atmospheric Science, Fort Collins, CO (United States)
2012-06-15
Two vertical mixing models (the modified dynamic instability model of Price et al.; PWP, and K-Profile Parameterizaton; KPP) are used to analyze intraseasonal sea surface temperature (SST) variability in the northeast tropical Pacific near the Costa Rica Dome during boreal summer of 2002. Anomalies in surface latent heat flux and shortwave radiation are the root cause of the three intraseasonal SST oscillations of order 1 C amplitude that occur during this time, although surface stress variations have a significant impact on the third event. A slab ocean model that uses observed monthly varying mixed layer depths and accounts for penetrating shortwave radiation appears to well-simulate the first two SST oscillations, but not the third. The third oscillation is associated with small mixed layer depths (<5 m) forced by, and acting with, weak surface stresses and a stabilizing heat flux that cause a transient spike in SST of 2 C. Intraseasonal variations in freshwater flux due to precipitation and diurnal flux variability do not significantly impact these intraseasonal oscillations. These results suggest that a slab ocean coupled to an atmospheric general circulation model, as used in previous studies of east Pacific intraseasonal variability, may not be entirely adequate to realistically simulate SST variations. Further, while most of the results from the PWP and KPP models are similar, some important differences that emerge are discussed. (orig.)
Constraints on the septet-doublet mixing models from oblique parameters
Geng, Chao-Qiang; Yu, Yao
2014-01-01
The limitations of the doublet-septet mixing models by electroweak oblique parameters of $S$ and $T$ are studied. In the minimal model, the mixture of the septet and the scalar doublet in the standard model (SM) is driven by a non-Hermitian dimension-7 operator. For a smaller bare mass of the septet, $\\Delta S$ gives a stringent constraint on $\\sin\\beta$, for example, $\\sin\\beta\\lesssim 0.22$ for $M_\\eta=300\\,{\\rm GeV}$. In general, increasing $M_\\eta$ will enhance the deviation of $T$ from the SM, whereas it decreases the magnitude of $\\Delta S$ for a larger bare mass within the range $M_\\eta\\lesssim 400\\,{\\rm GeV}$. We also examine two expended models from the ordinary doublet-septet mixture pattern. One of them is based on a inert doublet-septet mixing pattern, in which there is no vacuum expectation value for the neutral component of $\\eta$, and a stable dark matter could naturally exist. For a benchmark point with $M_\\chi=250{\\rm}$ and $M_\\eta=400\\,{\\rm GeV}$ in this model, the mixing coefficient is foun...
Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark
Energy Technology Data Exchange (ETDEWEB)
Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))
2008-08-15
in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report presents the modelling work performed by the University of Zaragoza group as part of the work planned for Forsmark during stages 2.2 and 2.3. The chemical characteristics of the groundwaters in the Forsmark and Laxemar areas are the result of a complex mixing process driven by the input of different recharge waters since the last glaciation. The successive penetration at different depths of dilute glacial melt-waters, Littorina Sea waters and dilute meteoric waters has triggered complex density and hydraulically driven flows that have mixed them with long residence time, highly saline waters present in the fractures and in the rock matrix. A general description of the main characteristics and processes controlling the hydrogeochemical evolution with depth in the Forsmark groundwater system is presented in this report: The hydrochemical characteristics and evolution of the Near surface waters (up to 20 m depth) is mainly determined by weathering reactions and especially affected by the presence of limestones. The biogenic CO{sub 2} input (derived from decay of organic matter and root respiration) and the associated weathering of carbonates control the pH and the concentrations of Ca and HCO{sub 3}- in the near-surface environment. Current seasonal variability of CO{sub 2} input produces variable but high calcium and bicarbonate contents in the Forsmark near-surface waters: up to 240 mg/L Ca and 150 to
Lu, Tao; Liang, Hua; Li, Hongzhe; Wu, Hulin
2011-01-01
Gene regulation is a complicated process. The interaction of many genes and their products forms an intricate biological network. Identification of this dynamic network will help us understand the biological process in a systematic way. However, the construction of such a dynamic network is very challenging for a high-dimensional system. In this article we propose to use a set of ordinary differential equations (ODE), coupled with dimensional reduction by clustering and mixed-effects modeling techniques, to model the dynamic gene regulatory network (GRN). The ODE models allow us to quantify both positive and negative gene regulations as well as feedback effects of one set of genes in a functional module on the dynamic expression changes of the genes in another functional module, which results in a directed graph network. A five-step procedure, Clustering, Smoothing, regulation Identification, parameter Estimates refining and Function enrichment analysis (CSIEF) is developed to identify the ODE-based dynamic GRN. In the proposed CSIEF procedure, a series of cutting-edge statistical methods and techniques are employed, that include non-parametric mixed-effects models with a mixture distribution for clustering, nonparametric mixed-effects smoothing-based methods for ODE models, the smoothly clipped absolute deviation (SCAD)-based variable selection, and stochastic approximation EM (SAEM) approach for mixed-effects ODE model parameter estimation. The key step, the SCAD-based variable selection of the proposed procedure is justified by investigating its asymptotic properties and validated by Monte Carlo simulations. We apply the proposed method to identify the dynamic GRN for yeast cell cycle progression data. We are able to annotate the identified modules through function enrichment analyses. Some interesting biological findings are discussed. The proposed procedure is a promising tool for constructing a general dynamic GRN and more complicated dynamic networks.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.
2017-02-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.
The Use of Mixed Models for the Analysis of Mediated Data with Time-Dependent Predictors
Directory of Open Access Journals (Sweden)
Emily A. Blood
2011-01-01
Full Text Available Linear mixed models (LMMs are frequently used to analyze longitudinal data. Although these models can be used to evaluate mediation, they do not directly model causal pathways. Structural equation models (SEMs are an alternative technique that allows explicit modeling of mediation. The goal of this paper is to evaluate the performance of LMMs relative to SEMs in the analysis of mediated longitudinal data with time-dependent predictors and mediators. We simulated mediated longitudinal data from an SEM and specified delayed effects of the predictor. A variety of model specifications were assessed, and the LMMs and SEMs were evaluated with respect to bias, coverage probability, power, and Type I error. Models evaluated in the simulation were also applied to data from an observational cohort of HIV-infected individuals. We found that when carefully constructed, the LMM adequately models mediated exposure effects that change over time in the presence of mediation, even when the data arise from an SEM.
Random effects coefficient of determination for mixed and meta-analysis models.
Demidenko, Eugene; Sargent, James; Onega, Tracy
2012-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.
Chen, Yuh-Ing; Huang, Chi-Shen
2014-02-28
In the pharmacokinetic (PK) study under a 2x2 crossover design that involves both the test and reference drugs, we propose a mixed-effects model for the drug concentration-time profiles obtained from subjects who receive different drugs at different periods. In the proposed model, the drug concentrations repeatedly measured from the same subject at different time points are distributed according to a multivariate generalized gamma distribution, and the drug concentration-time profiles are described by a compartmental PK model with between-subject and within-subject variations. We then suggest a bioequivalence test based on the estimated bioavailability parameters in the proposed mixed-effects model. The results of a Monte Carlo study further show that the proposed model-based bioequivalence test is not only better on maintaining its level but also more powerful for detecting the bioequivalence of the two drugs than the conventional bioequivalence test based on a non-compartmental analysis or the one based on a mixed-effects model with a normal error variable. The application of the proposed model and test is finally illustrated by using data sets in two PK studies.
Directory of Open Access Journals (Sweden)
Kohei Arai
2013-04-01
Full Text Available Comparative study on linear and nonlinear mixed pixel models of which pixels in remote sensing satellite images is composed with plural ground cover materials mixed together, is conducted for remote sensing satellite image analysis. The mixed pixel models are based on Cierniewski of ground surface reflectance model. The comparative study is conducted by using of Monte Carlo Ray Tracing: MCRT simulations. Through simulation study, the difference between linear and nonlinear mixed pixel models is clarified. Also it is found that the simulation model is validated.
The sensitivity of subannual and intraseasonal tropical variability to model ocean mixed layer depth
Watterson, I. G.
2002-01-01
The influence of air-sea interaction on subannual and intraseasonal tropical variability is explored through analysis of three long simulations of the Commonwealth Scientific and Industrial Research Organisation atmospheric general circulation model (GCM) with differing ocean specifications: a coupled ocean GCM, a simple 50-m mixed layer model, or climatological sea surface temperatures (SST); together with 50-year simulations with mixed layer depths of 10 m and 20 m. The analysis focuses initially on a signal similar to a Madden-Julian Oscillation (MJO) contained in the first two empirical orthogonal functions (EOF) of monthly anomalies of tropical 807-hPa winds in January in the coupled model. Time-lag regression is used to demonstrate that these patterns propagate eastward, although at only half the speed of the MJO, and induce perturbations to the Australian monsoon. The specified SST model shows no such propagation. Similar results are then obtained using daily data filtered to retain subannual periods. The eastward propagation speed is faster in the shallower mixed layer cases, with the 10-m case producing speeds close to observations. In the interactive models, surface energy fluxes force SST anomalies propagating ahead of the EOF convergence. These fluxes are largely consistent with evaporation perturbed by wind anomalies to the monsoon westerlies, augmented by solar radiation. The SST anomalies then further perturb the winds, as is confirmed by a separate SST perturbation experiment. From the examination of other seasons, it is seen that air-sea interaction generally enhances the amplitude of the MJO-like patterns. It also enhances their eastward propagation along westerly wind bands. Analysis of zonal wave number one winds confirms the strong sensitivity to mixed layer depth in the amplitude and period of the eastward propagating component, particularly during September through February. The results suggest that air-sea interaction may be important to the
Chandra Observations and Models of the Mixed Morphology Supernova Remnant W44: Global Trends
Shelton, R. L.; Kuntz, K. D.; Petre, R.
2004-01-01
We report on the Chandra observations of the archetypical mixed morphology (or thermal composite) supernova remnant, W44. As with other mixed morphology remnants, W44's projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. In addition, X-ray bright knots dot W44's image. The spectral analysis of the Chandra data show that the remnant s hot, bright projected center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. Neon is among the affected elements, suggesting that ejecta contributes to the abundance trends. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first potential X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44's X-ray bright center: 1.) entropy mixing due to bulk mixing or thermal conduction, 2.) evaporation of swept up clouds, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was tested against the Chandra spectrum for the remnant's projected center and found to be a good match. The evaporating clouds model was constrained by the finding that the ionization parameters of the bright knots are similar to those of the surrounding regions. While both the entropy mixed and the evaporating clouds models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnant's projected center. The preponderance of evidence (including that drawn from other studies) suggests that W44's remarkable morphology can be attributed to dust destruction
Empirical Likelihood for Mixed-effects Error-in-variables Model
Institute of Scientific and Technical Information of China (English)
Qiu-hua Chen; Ping-shou Zhong; Heng-jian Cui
2009-01-01
This paper mainly introduces the method of empirical likelihood and its applications on two dif-ferent models.We discuss the empirical likelihood inference on fixed-effect parameter in mixed-effects model with error-in-variables.We first consider a linear mixed-effects model with measurement errors in both fixed and random effects.We construct the empirical likelihood confidence regions for the fixed-effects parameters and the mean parameters of random-effects.The limiting distribution of the empirical log likelihood ratio at the true parameter is χ2p+q,where p,q are dimension of fixed and random effects respectively.Then we discuss empirical likelihood inference in a semi-linear error-in-variable mixed-effects model.Under certain conditions,it is shown that the empirical log likelihood ratio at the true parameter also converges to χ2p+q.Simulations illustrate that the proposed confidence region has a coverage probability more closer to the nominal level than normal approximation based confidence region.
Rheology of Fly Ash Mixed Tailings Slurries and Applicability of Prediction Models
Directory of Open Access Journals (Sweden)
Joon Kyu Lee
2017-09-01
Full Text Available Coal fly ash has potential applications in the management of reactive mine tailings. The shear stress versus shear rate curves obtained during viscometer tests are presented to describe the rheological behaviors of tailings slurries mixed with fly ash. The investigation was conducted on specimens prepared with different fly ash additions as well as prepared at variable conditions of temperature, mixing time, and CaCl2 solution. It was observed that the rheological properties of ash-tailings slurry mixtures are influenced by the hydration of fly ash as well as the particle packing and arrangement. Rheological properties of specimen mixtures were determined from the resulting flow curves using the existing rheological models. The performance of prediction models in calculating the rheological properties of the mixed specimens, as quantified by the root mean square error (RMSE, varied with the mixture constituents, temperature, and time. In general, the Papanastasion, Herschel-Bulkley, Sisko, and Robertson-Stiff models were found to be favorable for use with mixtures of fly ash and tailings slurries, compared to the Bingham, Modified Bingham, Casson, and De Kee models.
A dependent stress-strength interference model based on mixed copula function
Energy Technology Data Exchange (ETDEWEB)
Gao, Jian Xiong; An, Zong Wen; Liu, Bo [School of Mechatronics Engineering, Lanzhou University of Technology, Lanzhou (China)
2016-10-15
In the traditional Stress-strength interference (SSI) model, stress and strength must satisfy the basic assumption of mutual independence. However, a complex dependence between stress and strength exists in practical engineering. To evaluate structural reliability under the case that stress and strength are dependent, a mixed copula function is introduced to a new dependent SSI model. This model can fully characterize the dependence between stress and strength. The residual square sum method and genetic algorithm are also used to estimate the unknown parameters of the model. Finally, the validity of the proposed model is demonstrated via a practical case. Results show that traditional SSI model ignoring the dependence between stress and strength more easily overestimates product reliability than the new dependent SSI model.
[download] (969dlmap: An R Package for Mixed Model QTL and Association Analysis
Directory of Open Access Journals (Sweden)
B. Emma Huang
2012-08-01
Full Text Available dlmap is a software package capable of mapping quantitative trait loci (QTL in a variety of genetic studies. Unlike most other QTL mapping packages, dlmap is built on a linear mixed model platform, and thus can simultaneously handle multiple sources of genetic and environmental variation. Furthermore, it can accommodate both experimental crosses and association mapping populations within a versatile modeling framework. The software implements a mapping algorithm with separate detection and localization stages in a user-friendly manner. It accepts data in various common formats, has a flexible modeling environment, and summarizes results both graphically and numerically.
Digital Repository Service at National Institute of Oceanography (India)
Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.
The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...
Wang, Yuanjia; Chen, Huaihou
2012-12-01
We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.
Hyperspectral unmixing with spectral variability using a perturbed linear mixing model
Thouvenin, Pierre-Antoine; Tourneret, Jean-Yves
2015-01-01
Given a mixed hyperspectral data set, linear unmixing aims at estimating the reference spectral signatures composing the data - referred to as endmembers - their abundance fractions and their number. In practice, the identified endmembers can vary spectrally within a given image and can thus be construed as variable instances of reference endmembers. Ignoring this variability induces estimation errors that are propagated into the unmixing procedure. To address this issue, endmember variability estimation consists of estimating the reference spectral signatures from which the estimated endmembers have been derived as well as their variability with respect to these references. This paper introduces a new linear mixing model that explicitly accounts for spatial and spectral endmember variabilities. The parameters of this model can be estimated using an optimization algorithm based on the alternating direction method of multipliers. The performance of the proposed unmixing method is evaluated on synthetic and rea...
PON and WiMAX Convergence Network Planning Based on Mixed Integer Programming Model
Institute of Scientific and Technical Information of China (English)
Lv Miao; Chen Xue
2011-01-01
This article analyzes the characteristics of PON and WiMAX convergence network planning.Based on user coverage ratio,WiMAX channel allocation,cell radius,carrier-to-noise ratio threshold,and bandwidth constraint,we propose a mixed integer programming model solved by a Branch-Band and Heuristic Search method.Finally,the simulation result is given and analyzed.The planning method based on a mixed integer programming model can save 20 percentage of the overall planning cost,compared with the greedy algorithm.The relationship between the convergence network planning cost and frequency usage is also analyzed.The optimized planning result with the lowest cost can be acquired through the best frequency usage.
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Short communication: Alteration of priors for random effects in Gaussian linear mixed model
DEFF Research Database (Denmark)
Vandenplas, Jérémie; Christensen, Ole Fredslund; Gengler, Nicholas
2014-01-01
, multiple-trait predictions of lactation yields, and Bayesian approaches integrating external information into genetic evaluations) need to alter both the mean and (co)variance of the prior distributions and, to our knowledge, most software packages available in the animal breeding community do not permit......Linear mixed models, for which the prior multivariate normal distributions of random effects are assumed to have a mean equal to 0, are commonly used in animal breeding. However, some statistical analyses (e.g., the consideration of a population under selection into a genomic scheme breeding...... such alterations. Therefore, the aim of this study was to propose a method to alter both the mean and (co)variance of the prior multivariate normal distributions of random effects of linear mixed models while using currently available software packages. The proposed method was tested on simulated examples with 3...
Mixed finite element models for free vibrations of thin-walled beams
Noor, Ahmed K.; Peters, Jeanne M.; Min, Byung-Jin
1989-01-01
Simple, mixed finite element models are developed for the free vibration analysis of curved thin-walled beams with arbitrary open cross section. The analytical formulation is based on a Vlasov's type thin-walled beam theory with the effects of flexural-torsional coupling, transverse shear deformation and rotary inertia included. The fundamental unknowns consist of seven internal forces and seven generalized displacements of the beam. The element characteristic arrays are obtained by using a perturbed Lagrangian-mixed variational principle. Only C(sup o) continuity is required for the generalized displacements. The internal forces and the Lagrange multiplier are allowed to be discontinuous at interelement boundaries. Numerical results are presented to demonstrate the high accuracy and effectiveness of the elements developed. The standard of comparison is taken to be the solutions obtained by using 2-D plate/shell models for the beams.
Using Latent Mixed Markov Models for the choice of the best pharmacological treatment.
Reuter, Martin; Hennig, Juergen; Netter, Petra; Buehner, Markus; Hueppe, Michael
2004-05-15
The choice of the best pharmacological treatment for an individual patient is crucial to optimize convalescence. Due to their effects on pharmacokinetics variables like gender and age are important factors when the pharmacological regimen is planned. By means of an example from anaesthesiology the usefulness of Latent Mixed Markov Models for choosing the optimal anaesthetic considering patient characteristics is demonstrated. Latent Mixed Markov models allow to predict and compare the quality of recovery from anaesthesia for different patient groups (defined by age and gender and treated with different anaesthetic regimens) in a multivariate non-parametric approach. On the basis of observed symptoms immediately after surgery and a few days later the probabilities for the respective dynamic latent status (like health or illness) and the probabilities for transition from one status to another are estimated depending on latent class membership (patient group).
Neutrino mixing and CP violation phases in Zee-Babu model
Van Vien, Vo; Thu, Pham Ngoc
2014-01-01
We show that the neutrino mass matrix of the Zee-Babu model is able to fit the most recent data on neutrino masses and mixing with large $\\theta_{13}$ and provides %the values of the Dirac and Majorana CP violation phases. For the normal hierarchy, the Majorana phases ($\\al_{2 1}, \\al_{3 1}$) are equal to zero, while for the inverted pattern, one phase ($\\al_{3 1}$) takes the value $2 \\pi$. The Dirac phase ($\\de$) is predicted to either $0$ or $\\pi$. The effective mass governing neutrinoless double beta decay and the sum of neutrino masses are consistent with the recent analysis. The model gives some regions of the parameters of neutrino mixing angles in both normal and inverted neutrino mass hierarchy.
Indian Academy of Sciences (India)
Surendra P Verma
2000-03-01
This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling and analytical errors. Two typical cases (``Small errors'' and ``Large errors'') are illustrated for mixing of Sr isotopes. Similar examples can be formulated for the other radiogenic isotopic ratios. Actual isotopic data for sediment and basalt samples from the Cocos plate are also included to further illustrate the use of these equations. The isotopic compositions of the predicted mixtures can be used to constrain the origin of magmas in the central part of the Mexican Volcanic Belt. These examples show the need of high quality experimental data for them to be useful in geochemical modeling of magmatic processes.
TRACER-II: a complete computational model for mixing and propagation of vapor explosions
Energy Technology Data Exchange (ETDEWEB)
Bang, K.H. [School of Mechanical Engineering, Korea Maritime Univ., Pusan (Korea, Republic of); Park, I.G.; Park, G.C.
1998-01-01
A vapor explosion is a physical process in which very rapid energy transfer occurs between a hot liquid and a volatile, colder liquid when the two liquids come into a sudden contact. For the analyses of potential impacts from such explosive events, a computer program, TRACER-II, has been developed, which contains a complete description of mixing and propagation phases of vapor explosions. The model consists of fuel, fragmented fuel (debris), coolant liquid, and coolant vapor in two-dimensional Eulerian coordinates. The set of governing equations are solved numerically using finite difference method. The results of this numerical simulation of vapor explosions are discussed in comparison with the recent experimental data of FARO and KROTOS tests. When compared to some selected FARO and KROTOS data, the fuel-coolant mixing and explosion propagation behavior agree reasonably with the data, although the results are yet sensitive primarily to the melt breakup and fragmentation modeling. (author)
Directory of Open Access Journals (Sweden)
Hao Xu
2014-04-01
Full Text Available Tree height and diameter at breast height are two important forest factors. The best model from 23 height-diameter equations was selected as the basic model to fit the height-diameter relationships of Chinese fir with one level (sites or plots effects and nested two levels (nested effects of sites and plots Nonlinear Mixed Effects (NLME models. The best model was chosen by smaller Bias, RMSE and larger Radj2. Then the best random-effects combinations for the NLME models were determined by AIC, BIC and -2LL. The results showed that the basic model with three random effects parameters &Phi &Phi &Phi1 &Phi2 and &Phi3 was considered the best mixed model. The nested two levels NLME model considering heteroscedasticity structure (power function possessed with higher predictable accuracy and significantly improved model performance (LRT = 469.43, p<0.0001. The NLME model would be allowed for estimating accuracy the height-diameter relationships of Chinese fir and provided better height predictions than the models using only fixed-effects parameters.
Simultaneous optimal estimates of fixed effects and variance components in the mixed model
Institute of Scientific and Technical Information of China (English)
WU Mixia; WANG Songgui
2004-01-01
For a general linear mixed model with two variance components, a set of simple conditions is obtained, under which, (i) the least squares estimate of the fixed effects and the analysis of variance (ANOVA) estimates of variance components are proved to be uniformly minimum variance unbiased estimates simultaneously; (ii) the exact confidence intervals of the fixed effects and uniformly optimal unbiased tests on variance components are given; (iii) the exact probability expression of ANOVA estimates of variance components taking negative value is obtained.
Thermal entanglement in a mixed-spin Heisenberg XXZ model under a nonuniform external magnetic field
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The thermal entanglement in (1/2,1) mixed-spin Heisenberg XXZ model is investigated under an external nonuniform magnetic field. In the uniform magnetic field system,the critical magnetic field Bc and critical temperature Tc are increased by increasing the anisotropic parameter k. The degree of magnetic field b plays an important role in improving the critical temperature and enlarging the region of entan-glement in the nonuniform magnetic field system.
Spurious dianeutral mixing in a global ocean model using spherical centroidal voronoi tessellations
Zhao, Shimei; Liu, Yudi
2016-12-01
In order to quantitatively evaluate the spurious dianeutral mixing in a global ocean model MPAS-Ocean (Model for Prediction Across Scales) using a spherical centroidal voronoi tessellations developed jointly by the National Center for Atmospheric Research and the Los Alamos National Laboratory in the United States, we choose z* vertical coordinate system in MPAS-Ocean, in which all physical mixing processes, such as convection adjustment and explicit diffusion parameter schemes, are omitted, using a linear equation of state. By calculating the Reference Potential Energy (RPE), front revolution position, time rate of RPE change, probability density function distribution and dimensionless parameter χ, from the perspectives of resolution, viscosity, Horizontal Grid Reynolds Number (HGRN), ReΔ, and momentum transmission scheme, using two ideal cases, overflow and baroclinic eddy channel, we qualitatively analyze the simulation results by comparison with the three non-isopycnal models in Ilicak et al. (2012), i.e., MITGCM, MOM, and ROMS. The results show that the spurious dianeutral mixing in the MPAS-Ocean increases over time. The spurious dianeutral transport is proportional to the HGRN directly and is reduced by increasing the lateral viscosity or using a finer resolution to control HGRN. When the HGRN is less than 10, spurious transport is reduced significantly. When using the proper viscosity closure, MPAS-Ocean performs better than MITGCM and MOM, closely to ROMS, in the 2D case without rotation, and much better than the above-mentioned three ocean models under the condition of 3D space with rotation due to the cell area difference between the hexagon cell and the quadrilateral cell with the same resolution. Both the Zalesak (1979) flux corrected transport scheme and Leith closure in MPAS-Ocean play an excellent role in reducing spurious dianeutral mixing. The performance of Leith scheme is preferable to the condition of three-dimensional baroclinic eddy.
Flow and mixing of liquid steel in multi-strand tundish delta type – physical modelling
Directory of Open Access Journals (Sweden)
T. Merder
2015-01-01
Full Text Available The article presents the results of liquid steel flow and mixing in tundish when applying different equipment to modernize the tundish working zone. The six-strand continuous casting tundish of a trough-type was studied. Such tundish is an object with geometry adjusted to the conditions of particular CC machine, which is installed in one of a polish steel plant. The problems suggested in research were solved basing on physical model experiment.
A brief introduction to regression designs and mixed-effects modelling by a recent convert
Balling, Laura Winther
2008-01-01
This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable sele...
The Ghirlanda-Guerra identities for mixed p-spin model
Panchenko, Dmitry
2010-01-01
We show that, under the conditions known to imply the validity of the Parisi formula, if the generic Sherrington-Kirkpatrick Hamiltonian contains a $p$-spin term then the Ghirlanda-Guerra identities for the $p$th power of the overlap hold in a strong sense without averaging. This implies strong version of the extended Ghirlanda-Guerra identities for mixed $p$-spin models than contain terms for all even $p\\geq 2$ and $p=1.$
Validation of effective momentum and heat flux models for stratification and mixing in a water pool
Energy Technology Data Exchange (ETDEWEB)
Hua Li; Villanueva, W.; Kudinov, P. [Royal Institute of Technology (KTH), Div. of Nuclear Power Safety, Stockholm (Sweden)
2013-06-15
The pressure suppression pool is the most important feature of the pressure suppression system in a Boiling Water Reactor (BWR) that acts primarily as a passive heat sink during a loss of coolant accident (LOCA) or when the reactor is isolated from the main heat sink. The steam injection into the pool through the blowdown pipes can lead to short term dynamic phenomena and long term thermal transient in the pool. The development of thermal stratification or mixing in the pool is a transient phenomenon that can influence the pool's pressure suppression capacity. Different condensation regimes depending on the pool's bulk temperature and steam flow rates determine the onset of thermal stratification or erosion of stratified layers. Previously, we have proposed to model the effect of steam injection on the mixing and stratification with the Effective Heat Source (EHS) and the Effective Momentum Source (EMS) models. The EHS model is used to provide thermal effect of steam injection on the pool, preserving heat and mass balance. The EMS model is used to simulate momentum induced by steam injection in different flow regimes. The EMS model is based on the combination of (i) synthetic jet theory, which predicts effective momentum if amplitude and frequency of flow oscillations in the pipe are given, and (ii) model proposed by Aya and Nariai for prediction of the amplitude and frequency of oscillations at a given pool temperature and steam mass flux. The complete EHS/EMS models only require the steam mass flux, initial pool bulk temperature, and design-specific parameters, to predict thermal stratification and mixing in a pressure suppression pool. In this work we use EHS/EMS models implemented in containment thermal hydraulic code GOTHIC. The PPOOLEX experiments (Lappeenranta University of Technology, Finland) are utilized to (a) quantify errors due to GOTHIC's physical models and numerical schemes, (b) propose necessary improvements in GOTHIC sub-grid scale
Energy Technology Data Exchange (ETDEWEB)
Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong
2009-02-02
Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.
Computer modeling movement of biomass in the bioreactors with bubbling mixing
Kuschev, L. A.; Suslov, D. Yu; Alifanova, A. I.
2017-01-01
Recently in the Russian Federation there is an observation of the development of biogas technologies which are used in organic waste conversion of agricultural enterprises, consequently improving the ecological environment. To intensify the process and effective outstanding performance of the acquisition of biogas the application of systems of mixing of bubbling is used. In the case of bubbling mixing of biomass in the bioreactor two-phase portions consisting of biomass and bubbles of gas are formed. The bioreactor computer model with bubble pipeline has been made in a vertical spiral form forming a cone type turned upside down. With the help of computing program of OpenFVM-Flow, an evaluation experiment was conducted to determine the key technological parameters of process of bubbling mixing and to get a visual picture of biomass flows distribution in the bioreactor. For the experimental bioreactor the following equation of V=190 l, speed level, the biomass circulation, and the time of a single cycle of uax =0,029 m/s; QC =0,00087 m3/s, Δtbm .=159 s. In future, we plan to conduct a series of theoretical and experimental researches into the mixing frequency influence on the biogas acquisition process effectiveness.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Rayleigh-Taylor finger instability mixing in hydrodynamic shell convection models
Mocak, Miroslav
2010-01-01
Mixing processes in stars driven by composition gradients as a result of the Rayleigh-Taylor instability are not anticipated. They are supported only by hydrodynamic studies of stellar convection. We find that such mixing occurs below the bottom edge of convection zones in our multidimensional hydrodynamic shell convection models. It operates at interfaces created by off-center nuclear burning, where less dense gas with higher mean molecular weight is located above denser gas with a lower mean molecular weight. We discuss the mixing under various conditions with hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 Msun star, the core carbon flash in a 9.3 Msun star, and of oxygen burning shell in a star with a mass of 23 Msun. We simulate the hydrodynamic behavior of shell convection during various phases of stellar evolution with the Eulerian hydrodynamics code HERAKLES in two and three spatial dimensions. Initial models for this purpose are obtained by...
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
Andrews, Brett H; Schönrich, Ralph; Johnson, Jennifer A
2016-01-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the IMF, the SNIa delay time distribution, stellar yields, and mixing of stellar populations. Using flexCE, a new, flexible one-zone chemical evolution code, we investigate the effects of individual parameters and the trade-offs between them. Two of the most important parameters are the SFE and outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] that do not match the observed bimodality in this plane. A mix of one-zone models with variations in their inflow timescales and outflow mass-loading parameters, as motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the high- and low-alpha sequences b...
A Mathematical Modeling Study of Tracer Mixing in a Continuous Casting Tundish
Chen, Chao; Jonsson, Lage Tord Ingemar; Tilliander, Anders; Cheng, Guoguang; Jönsson, Pär Göran
2015-02-01
A mathematical model based on a water model was developed to study the tracer mixing in a single strand tundish. The mixing behavior of black ink and KCl solution was simulated by a mixed composition fluid model, and the data were validated by water modeling results. In addition, a model that solves the scalar transport equation (STE) without any physical properties of the tracer was studied and the results were compared to predictions using the density-coupled model. Furthermore, the mixing behaviors of different amounts of KCl tracers were investigated. Before the model was established, KCl tracer properties such as the KCl molecule diffusion (KMD), the water molecule self-diffusion (WSD) in KCl solution, and the KCl solution viscosity (KV) were evaluated. The RTD curve of 250 mL KCl for the KMD case was closer to the water modeling results than that of the case implemented with only density. Moreover, the ensemble average deviation of the RTD curves of the cases implemented with KMD + WSD, KMD + KV, and KMD + WSD + KV to the KMD case is less than 0.7 pct. Thus, the water self-diffusion and KV were neglected, while the KCl density and KMD were implemented in the current study. The flow pattern of black ink was similar to the STE result i.e., the fluid flowed upwards toward the top surface and formed a large circulating flow at the outlet nozzle. The flow behavior of the 100, 150, and 250 mL KCl cases exhibited a strong tendency to sink to the tundish bottom, and subsequently flow through the holes in the dam. Thereafter, it propagated toward the outlet nozzle. Regarding the KCl tracer amount, the tracer concentration propagated to the outlet nozzle much faster for the larger amount case than for the smaller amount cases. However, the flow pattern for the 50 mL KCl case was somewhat different. The fluid propagated to the top surface which acted like black ink during the initial injection, and subsequently the fluid flowed throughout the holes at a much slower pace
The use of mixed logit models to reflect heterogeneity in capture-recapture studies.
Coull, B A; Agresti, A
1999-03-01
We examine issues in estimating population size N with capture-recapture models when there is variable catchability among subjects. We focus on a logistic-normal mixed model, for which the logit of the probability of capture is an additive function of a random subject and a fixed sampling occasion parameter. When the probability of capture is small or the degree of heterogeneity is large, the log-likelihood surface is relatively flat and it is difficult to obtain much information about N. We also discuss a latent class model and a log-linear model that account for heterogeneity and show that the log-linear model has greater scope. Models assuming homogeneity provide much narrower intervals for N but are usually highly overly optimistic, the actual coverage probability being much lower than the nominal level.
A Nonlinear Model of Mix Coil Spring – Rubber for Vertical Suspension of Railway Vehicle
Directory of Open Access Journals (Sweden)
Dumitriu Mădălina
2016-03-01
Full Text Available The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring - rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components - the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.
Aoki, Yasunori; Nordgren, Rikard; Hooker, Andrew C
2016-03-01
As the importance of pharmacometric analysis increases, more and more complex mathematical models are introduced and computational error resulting from computational instability starts to become a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix. Roughly speaking, the method reparameterises the model with a linear combination of the original model parameters so that the Hessian matrix of the likelihood of the reparameterised model becomes close to an identity matrix. This approach will reduce the influence of computational error, for example rounding error, to the final computational result. We present numerical experiments demonstrating that the stabilisation of the computation using the proposed method can recover failed variance-covariance matrix computations, and reveal non-identifiability of the model parameters.
Marginal and mixed-effects models in the analysis of human papillomavirus natural history data.
Xue, Xiaonan; Gange, Stephen J; Zhong, Ye; Burk, Robert D; Minkoff, Howard; Massad, L Stewart; Watts, D Heather; Kuniholm, Mark H; Anastos, Kathryn; Levine, Alexandra M; Fazzari, Melissa; D'Souza, Gypsyamber; Plankey, Michael; Palefsky, Joel M; Strickler, Howard D
2010-01-01
Human papillomavirus (HPV) natural history has several characteristics that, at least from a statistical perspective, are not often encountered elsewhere in infectious disease and cancer research. There are, for example, multiple HPV types, and infection by each HPV type may be considered separate events. Although concurrent infections are common, the prevalence, incidence, and duration/persistence of each individual HPV can be separately measured. However, repeated measures involving the same subject tend to be correlated. The probability of detecting any given HPV type, for example, is greater among individuals who are currently positive for at least one other HPV type. Serial testing for HPV over time represents a second form of repeated measures. Statistical inferences that fail to take these correlations into account would be invalid. However, methods that do not use all the data would be inefficient. Marginal and mixed-effects models can address these issues but are not frequently used in HPV research. The current study provides an overview of these methods and then uses HPV data from a cohort of HIV-positive women to illustrate how they may be applied, and compare their results. The findings show the greater efficiency of these models compared with standard logistic regression and Cox models. Because mixed-effects models estimate subject-specific associations, they sometimes gave much higher effect estimates than marginal models, which estimate population-averaged associations. Overall, the results show that marginal and mixed-effects models are efficient for studying HPV natural history, but also highlight the importance of understanding how these models differ.
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase
Shin, Jimin; Lee, Chaeyoung
2015-04-01
Population stratification can produce spurious genetic associations in genome-wide association studies (GWASs). Mixed model methodology has been regarded useful for correcting population stratification. This study explored statistical power and false discovery rate (FDR) with the data simulated for dichotomous traits. Empirical FDRs and powers were estimated using fixed models with and without genomic control and using mixed models with and without reflecting loci linked to the candidate marker in genetic relationships. Population stratification with admixture degree ranged from 1% to 10% resulted in inflated FDRs from the fixed model analysis without genomic control and decreased power from the fixed model analysis with genomic control (Ppopulation stratification could not change FDR and power estimates from the mixed model analyses (P>0.05). We suggest that the mixed model methodology was useful to reduce spurious genetic associations produced by population stratification in GWAS, even with a high degree of admixture (10%). Copyright © 2015 Elsevier Inc. All rights reserved.