WorldWideScience

Sample records for model matching error

  1. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    Science.gov (United States)

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  2. Error-tolerant Tree Matching

    CERN Document Server

    Oflazer, K

    1996-01-01

    This paper presents an efficient algorithm for retrieving from a database of trees, all trees that match a given query tree approximately, that is, within a certain error tolerance. It has natural language processing applications in searching for matches in example-based translation systems, and retrieval from lexical databases containing entries of complex feature structures. The algorithm has been implemented on SparcStations, and for large randomly generated synthetic tree databases (some having tens of thousands of trees) it can associatively search for trees with a small error, in a matter of tenths of a second to few seconds.

  3. Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques

    KAUST Repository

    Efendiev, Y.

    2009-11-01

    The Markov chain Monte Carlo (MCMC) is a rigorous sampling method to quantify uncertainty in subsurface characterization. However, the MCMC usually requires many flow and transport simulations in evaluating the posterior distribution and can be computationally expensive for fine-scale geological models. We propose a methodology that combines coarse- and fine-scale information to improve the efficiency of MCMC methods. The proposed method employs off-line computations for modeling the relation between coarse- and fine-scale error responses. This relation is modeled using nonlinear functions with prescribed error precisions which are used in efficient sampling within the MCMC framework. We propose a two-stage MCMC where inexpensive coarse-scale simulations are performed to determine whether or not to run the fine-scale (resolved) simulations. The latter is determined on the basis of a statistical model developed off line. The proposed method is an extension of the approaches considered earlier where linear relations are used for modeling the response between coarse-scale and fine-scale models. The approach considered here does not rely on the proximity of approximate and resolved models and can employ much coarser and more inexpensive models to guide the fine-scale simulations. Numerical results for three-phase flow and transport demonstrate the advantages, efficiency, and utility of the method for uncertainty assessment in the history matching. Copyright 2009 by the American Geophysical Union.

  4. Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries

    CERN Document Server

    Santamaria, L; Ajith, P; Bruegmann, B; Dorband, N; Hannam, M; Husa, S; Moesta, P; Pollney, D; Reisswig, C; Seiler, J; Krishnan, B

    2010-01-01

    We present a new phenomenological gravitational waveform model for he inspiral and coalescence of non-precessing spinning black hole binaries. Our approach is based on a frequency domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of non-precessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational wave searches.

  5. Passport officers' errors in face matching.

    Directory of Open Access Journals (Sweden)

    David White

    Full Text Available Photo-ID is widely used in security settings, despite research showing that viewers find it very difficult to match unfamiliar faces. Here we test participants with specialist experience and training in the task: passport-issuing officers. First, we ask officers to compare photos to live ID-card bearers, and observe high error rates, including 14% false acceptance of 'fraudulent' photos. Second, we compare passport officers with a set of student participants, and find equally poor levels of accuracy in both groups. Finally, we observe that passport officers show no performance advantage over the general population on a standardised face-matching task. Across all tasks, we observe very large individual differences: while average performance of passport staff was poor, some officers performed very accurately--though this was not related to length of experience or training. We propose that improvements in security could be made by emphasising personnel selection.

  6. Hierarchical model of matching

    Science.gov (United States)

    Pedrycz, Witold; Roventa, Eugene

    1992-01-01

    The issue of matching two fuzzy sets becomes an essential design aspect of many algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems, etc. This paper introduces a new model of matching. Its principal features involve the following: (1) matching carried out with respect to the grades of membership of fuzzy sets as well as some functionals defined on them (like energy, entropy,transom); (2) concepts of hierarchies in the matching model leading to a straightforward distinction between 'local' and 'global' levels of matching; and (3) a distributed character of the model realized as a logic-based neural network.

  7. Error Correction Using Long Context Match for Smartphone Speech Recognition

    OpenAIRE

    梁, 原; Liang, Yuan; 岩野, 公司; Iwano, Koji; 篠田, 浩一; Shinoda, Koichi

    2015-01-01

    Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we u...

  8. PATTERN MATCHING IN MODELS

    Directory of Open Access Journals (Sweden)

    Cristian GEORGESCU

    2005-01-01

    Full Text Available The goal of this paper is to investigate how such a pattern matching could be performed on models,including the definition of the input language as well as the elaboration of efficient matchingalgorithms. Design patterns can be considered reusable micro-architectures that contribute to anoverall system architecture. Frameworks are also closely related to design patterns. Componentsoffer the possibility to radically change the behaviors and services offered by an application bysubstitution or addition of new components, even a long time after deployment. Software testing isanother aspect of reliable development. Testing activities mainly consist in ensuring that a systemimplementation conforms to its specifications.

  9. Error analysis for RADAR neighbor matching localization in linear logarithmic strength varying Wi-Fi environment.

    Science.gov (United States)

    Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  10. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  11. Stereo Matching in the Presence of Sub-Pixel Calibration Errors

    OpenAIRE

    Hirschmüller, Heiko; Gehrig, Stefan

    2009-01-01

    Stereo matching commonly requires rectified images that are computed from calibrated cameras. Since all under-lying parametric camera models are only approximations, calibration and rectification will never be perfect. Additionally, it is very hard to keep the calibration perfectly stable in application scenarios with large temperature changes and vibrations. We show that even small calibration errors of a quarter of a pixel are severely amplified on certain structures. We discuss a robotics ...

  12. Feature Matching in Time Series Modelling

    CERN Document Server

    Xia, Yingcun

    2011-01-01

    Using a time series model to mimic an observed time series has a long history. However, with regard to this objective, conventional estimation methods for discrete-time dynamical models are frequently found to be wanting. In the absence of a true model, we prefer an alternative approach to conventional model fitting that typically involves one-step-ahead prediction errors. Our primary aim is to match the joint probability distribution of the observable time series, including long-term features of the dynamics that underpin the data, such as cycles, long memory and others, rather than short-term prediction. For want of a better name, we call this specific aim {\\it feature matching}. The challenges of model mis-specification, measurement errors and the scarcity of data are forever present in real time series modelling. In this paper, by synthesizing earlier attempts into an extended-likelihood, we develop a systematic approach to empirical time series analysis to address these challenges and to aim at achieving...

  13. Dominant modes via model error

    Science.gov (United States)

    Yousuff, A.; Breida, M.

    1992-01-01

    Obtaining a reduced model of a stable mechanical system with proportional damping is considered. Such systems can be conveniently represented in modal coordinates. Two popular schemes, the modal cost analysis and the balancing method, offer simple means of identifying dominant modes for retention in the reduced model. The dominance is measured via the modal costs in the case of modal cost analysis and via the singular values of the Gramian-product in the case of balancing. Though these measures do not exactly reflect the more appropriate model error, which is the H2 norm of the output-error between the full and the reduced models, they do lead to simple computations. Normally, the model error is computed after the reduced model is obtained, since it is believed that, in general, the model error cannot be easily computed a priori. The authors point out that the model error can also be calculated a priori, just as easily as the above measures. Hence, the model error itself can be used to determine the dominant modes. Moreover, the simplicity of the computations does not presume any special properties of the system, such as small damping, orthogonal symmetry, etc.

  14. Measurement Error Models in Astronomy

    CERN Document Server

    Kelly, Brandon C

    2011-01-01

    I discuss the effects of measurement error on regression and density estimation. I review the statistical methods that have been developed to correct for measurement error that are most popular in astronomical data analysis, discussing their advantages and disadvantages. I describe functional models for accounting for measurement error in regression, with emphasis on the methods of moments approach and the modified loss function approach. I then describe structural models for accounting for measurement error in regression and density estimation, with emphasis on maximum-likelihood and Bayesian methods. As an example of a Bayesian application, I analyze an astronomical data set subject to large measurement errors and a non-linear dependence between the response and covariate. I conclude with some directions for future research.

  15. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    National Research Council Canada - National Science Library

    Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo

    2014-01-01

    ...) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs...

  16. Parikh Matching in the Streaming Model

    DEFF Research Database (Denmark)

    Lee, Lap-Kei; Lewenstein, Moshe; Zhang, Qin

    2012-01-01

    |-length count vector. In the streaming model one seeks space-efficient algorithms for problems in which there is one pass over the data. We consider Parikh matching in the streaming model. To make this viable we search for substrings whose Parikh-mappings approximately match the input vector. In this paper we...... present upper and lower bounds on the problem of approximate Parikh matching in the streaming model....

  17. Stability of the bipartite matching model

    CERN Document Server

    Bušić, Ana; Mairesse, Jean

    2010-01-01

    We consider the bipartite matching model of customers and servers introduced by Caldentey, Kaplan, and Weiss (Adv. Appl. Probab., 2009). Customers and servers play symmetrical roles. There is a finite set C resp. S, of customer, resp. server, classes. Time is discrete and at each time step, one customer and one server arrive in the system according to a joint probability measure on CxS, independently of the past. Also, at each time step, pairs of matched customer and server, if they exist, depart from the system. Authorized matchings are given by a fixed bipartite graph. A matching policy is chosen, which decides how to match when there are several possibilities. Customers/servers that cannot be matched are stored in a buffer. The evolution of the model can be described by a discrete time Markov chain. We study its stability under various admissible matching policies including: ML (Match the Longest), MS (Match the Shortest), FIFO (match the oldest), priorities. There exist natural necessary conditions for st...

  18. Error Concealment Based on Matching-Principles in MPEG-2 Image

    Institute of Scientific and Technical Information of China (English)

    HAOLuguo; WANGZhaohua; GUOHui; SUHansong

    2004-01-01

    The MPEG-2 compression algorithm is very sensitive to transmission errors due to the use of variable-length coding. Any errors can lead to noticeable degradation of image quality seriously, so that in part or entire slice information is lost until the next resynchronization point is reached. Error concealment (EC) methods offer one way of dealing with this problem. In this paper,two new algorithms, namely spatial EC based on edgematching and temporal EC based on block-matching, are presented to reconstruct the corrupted regions. According to the simulation results of experiments, the proposed methods can recover the high-quality MPEG-2 images.

  19. Role model and prototype matching

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    images and situation-specific conceptions of role models. Furthermore, the study underlined the positive effect of prolonged role-model contact, the importance of using several role models and that traditional school subjects catered more resistant prototype images than unfamiliar ones did......Previous research has found that young people’s prototypes of science students and scientists affect their inclination to choose tertiary STEM programs (Science, Technology, Engineering and Mathematics). Consequently, many recruitment initiatives include role models to challenge these prototypes....... The present study followed 15 STEM-oriented upper-secondary school students from university-distant backgrounds during and after their participation in an 18-months long university-based recruitment and outreach project involving tertiary STEM students as role models. The analysis focusses on how the students...

  20. Type I Error Rates, Coverage of Confidence Intervals, and Variance Estimation in Propensity-Score Matched Analyses

    National Research Council Canada - National Science Library

    Austin, Peter C

    2009-01-01

    ... the statistical significance of the treatment effect. We conducted a series of Monte Carlo simulations to examine the impact of ignoring the matched nature of the propensity-score matched sample on Type I error rates, coverage of confidence...

  1. Graphical models and point pattern matching.

    Science.gov (United States)

    Caetano, Tibério S; Caelli, Terry; Schuurmans, Dale; Barone, Dante A C

    2006-10-01

    This paper describes a novel solution to the rigid point pattern matching problem in Euclidean spaces of any dimension. Although we assume rigid motion, jitter is allowed. We present a noniterative, polynomial time algorithm that is guaranteed to find an optimal solution for the noiseless case. First, we model point pattern matching as a weighted graph matching problem, where weights correspond to Euclidean distances between nodes. We then formulate graph matching as a problem of finding a maximum probability configuration in a graphical model. By using graph rigidity arguments, we prove that a sparse graphical model yields equivalent results to the fully connected model in the noiseless case. This allows us to obtain an algorithm that runs in polynomial time and is provably optimal for exact matching between noiseless point sets. For inexact matching, we can still apply the same algorithm to find approximately optimal solutions. Experimental results obtained by our approach show improvements in accuracy over current methods, particularly when matching patterns of different sizes.

  2. Error Propagation in a System Model

    Science.gov (United States)

    Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)

    2015-01-01

    Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.

  3. Accurate recapture identification for genetic mark-recapture studies with error-tolerant likelihood-based match calling and sample clustering.

    Science.gov (United States)

    Sethi, Suresh A; Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick; Fuller, Angela; Hare, Matthew P

    2016-12-01

    Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark-recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark-recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark-recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark-recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark-recapture studies. Moderately sized SNP (64+) and MSAT (10-15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.

  4. An efficient algorithm for identifying matches with errors in multiple long molecular sequences.

    Science.gov (United States)

    Leung, M Y; Blaisdell, B E; Burge, C; Karlin, S

    1991-10-20

    An efficient algorithm is described for finding matches, repeats and other word relations, allowing for errors, in large data sets of long molecular sequences. The algorithm entails hashing on fixed-size words in conjunction with the use of a linked list connecting all occurrences of the same word. The average memory and run time requirement both increase almost linearly with the total sequence length. Some results of the program's performance on a database of Escherichia coli DNA sequences are presented.

  5. Errors in visuo-haptic and haptic-haptic location matching are stable over long periods of time.

    Science.gov (United States)

    Kuling, Irene A; Brenner, Eli; Smeets, Jeroen B J

    2016-05-01

    People make systematic errors when they move their unseen dominant hand to a visual target (visuo-haptic matching) or to their other unseen hand (haptic-haptic matching). Why they make such errors is still unknown. A key question in determining the reason is to what extent individual participants' errors are stable over time. To examine this, we developed a method to quantify the consistency. With this method, we studied the stability of systematic matching errors across time intervals of at least a month. Within this time period, individual subjects' matches were as consistent as one could expect on the basis of the variability in the individual participants' performance within each session. Thus individual participants make quite different systematic errors, but in similar circumstances they make the same errors across long periods of time. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Model error estimation in ensemble data assimilation

    Directory of Open Access Journals (Sweden)

    S. Gillijns

    2007-01-01

    Full Text Available A new methodology is proposed to estimate and account for systematic model error in linear filtering as well as in nonlinear ensemble based filtering. Our results extend the work of Dee and Todling (2000 on constant bias errors to time-varying model errors. In contrast to existing methodologies, the new filter can also deal with the case where no dynamical model for the systematic error is available. In the latter case, the applicability is limited by a matrix rank condition which has to be satisfied in order for the filter to exist. The performance of the filter developed in this paper is limited by the availability and the accuracy of observations and by the variance of the stochastic model error component. The effect of these aspects on the estimation accuracy is investigated in several numerical experiments using the Lorenz (1996 model. Experimental results indicate that the availability of a dynamical model for the systematic error significantly reduces the variance of the model error estimates, but has only minor effect on the estimates of the system state. The filter is able to estimate additive model error of any type, provided that the rank condition is satisfied and that the stochastic errors and measurement errors are significantly smaller than the systematic errors. The results of this study are encouraging. However, it remains to be seen how the filter performs in more realistic applications.

  7. A Comprehensive Trainable Error Model for Sung Music Queries

    CERN Document Server

    Birmingham, W P; 10.1613/jair.1334

    2011-01-01

    We propose a model for errors in sung queries, a variant of the hidden Markov model (HMM). This is a solution to the problem of identifying the degree of similarity between a (typically error-laden) sung query and a potential target in a database of musical works, an important problem in the field of music information retrieval. Similarity metrics are a critical component of query-by-humming (QBH) applications which search audio and multimedia databases for strong matches to oral queries. Our model comprehensively expresses the types of error or variation between target and query: cumulative and non-cumulative local errors, transposition, tempo and tempo changes, insertions, deletions and modulation. The model is not only expressive, but automatically trainable, or able to learn and generalize from query examples. We present results of simulations, designed to assess the discriminatory potential of the model, and tests with real sung queries, to demonstrate relevance to real-world applications.

  8. History Matching: Towards Geologically Reasonable Models

    DEFF Research Database (Denmark)

    Melnikova, Yulia; Cordua, Knud Skou; Mosegaard, Klaus

    This work focuses on the development of a new method for history matching problem that through a deterministic search finds a geologically feasible solution. Complex geology is taken into account evaluating multiple point statistics from earth model prototypes - training images. Further a functio...

  9. Error handling strategies in multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  10. Error Estimates of Theoretical Models: a Guide

    CERN Document Server

    Dobaczewski, J; Reinhard, P -G

    2014-01-01

    This guide offers suggestions/insights on uncertainty quantification of nuclear structure models. We discuss a simple approach to statistical error estimates, strategies to assess systematic errors, and show how to uncover inter-dependencies by correlation analysis. The basic concepts are illustrated through simple examples. By providing theoretical error bars on predicted quantities and using statistical methods to study correlations between observables, theory can significantly enhance the feedback between experiment and nuclear modeling.

  11. Error estimation and adaptive chemical transport modeling

    Directory of Open Access Journals (Sweden)

    Malte Braack

    2014-09-01

    Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.

  12. Matching models of left ventricle and systemic artery

    Institute of Scientific and Technical Information of China (English)

    柳兆荣; 吴驰

    1997-01-01

    To reveal how the matching models of the left ventricle and its afterload affect the pressure and flow in the aortic root, the differences between the measured pressure and flow waveforms and those determined by three kinds of matching model were compared. The results showed that, compared with the results by both matching models 1 and 2, the pressure and flow waveforms determined by matching model 3 established in this work were in the closest agreement with the corresponding experimental waveforms, therefore indicating that matching model 3 was a matching model that closely and rationally characterized the match between the left ventricle and the systemic artery.

  13. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    Science.gov (United States)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  14. Error model identification of inertial navigation platform based on errors-in-variables model

    Institute of Scientific and Technical Information of China (English)

    Liu Ming; Liu Yu; Su Baoku

    2009-01-01

    Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method are proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.

  15. Error Resilient Video Compression Using Behavior Models

    Directory of Open Access Journals (Sweden)

    Jacco R. Taal

    2004-03-01

    Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.

  16. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    is a realization of a continuous-discrete multivariate stochastic transfer function model. The proposed prediction error-methods are demonstrated for a SISO system parameterized by the transfer functions with time delays of a continuous-discrete-time linear stochastic system. The simulations for this case suggest......Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which...... computational resources. The identification method is suitable for predictive control....

  17. Strong solutions of semilinear matched microstructure models

    CERN Document Server

    Escher, Joachim

    2011-01-01

    The subject of this article is a matched microstructure model for Newtonian fluid flows in fractured porous media. This is a homogenized model which takes the form of two coupled parabolic differential equations with boundary conditions in a given (two-scale) domain in Euclidean space. The main objective is to establish the local well-posedness in the strong sense of the flow. Two main settings are investigated: semi-linear systems with linear boundary conditions and semi-linear systems with nonlinear boundary conditions. With the help of analytic semigoups we establish local well-posedness and investigate the long-time behaviour of the solutions in the first case: we establish global existence and show that solutions converge to zero at an exponential rate.

  18. Analysis of modeling errors in system identification

    Science.gov (United States)

    Hadaegh, F. Y.; Bekey, G. A.

    1986-01-01

    This paper is concerned with the identification of a system in the presence of several error sources. Following some basic definitions, the notion of 'near-equivalence in probability' is introduced using the concept of near-equivalence between a model and process. Necessary and sufficient conditions for the identifiability of system parameters are given. The effect of structural error on the parameter estimates for both deterministic and stochastic cases are considered.

  19. Correction Algorithm of Matching Error for DIBR%适用于DIBR的匹配误差校正算法

    Institute of Scientific and Technical Information of China (English)

    张玲; 邰国钦; 刘然; 谢辉; 许小艳

    2011-01-01

    Due to the variability in virtual visibility, the imprecise depth image and the inaccurate calculation, matching errors may occur in the virtual views synthesized by DIBR (Depth Image-Based Rendering) techniques. In order to solve this problem, a matching error correction algorithm named Zero-Cross Correction ( ZCC) is proposed based on the order matching constraint. ZCC determines the matchi?g error region by analyzing the mapping relations between the pixel points in the destination image and the corresponding matching points in the reference image, and it assigns the matching points of all points in the matching error region to the matching points of the starting point in the same region, thus successfully implementing the correction of matching error. Experimental results indicate that the proposed algorithm is effective in eliminating matching errors and that it can be applied as an additional error detection and correction algorithm to the postprocessing of novel views generated by DIBR because it is totally independent of the 3D image wraping in DIBR.%由于可见性变化、深度图像的不精确性以及计算的不精确等原因,采用基于深度图像绘制(DIBR)技术生成的虚拟视点视图中可能会存在匹配误差.为此,提出了一种适用于DIBR的匹配误差校正算法——零交叉校正(ZCC)算法.该算法建立在顺序匹配约束的基础上,通过分析目标图像像素点与参考图像上对应匹配点的映射关系来确定匹配误差区域,将区域内所有点的匹配点都赋值成起始点的匹配点,从而达到匹配误差校正的目的.实验表明,该算法可以有效地消除匹配误差.由于该算法与DIBR中的三维图像变换过程没有直接联系,因而它可以作为一种附加的误差检测与校正算法应用于DIBR的后处理过程中.

  20. Generalization error bounds for stationary autoregressive models

    CERN Document Server

    McDonald, Daniel J; Schervish, Mark

    2011-01-01

    We derive generalization error bounds for stationary univariate autoregressive (AR) models. We show that the stationarity assumption alone lets us treat the estimation of AR models as a regularized kernel regression without the need to further regularize the model arbitrarily. We thereby bound the Rademacher complexity of AR models and apply existing Rademacher complexity results to characterize the predictive risk of AR models. We demonstrate our methods by predicting interest rate movements.

  1. Spatial Error Metrics for Oceanographic Model Verification

    Science.gov (United States)

    2012-02-01

    quantitatively and qualitatively for this oceano - graphic data and successfully separates the model error into displacement and intensity components. This... oceano - graphic models as well, though one would likely need to make special modifications to handle the often-used nonuniform spacing between depth layers

  2. Improving Localization Accuracy: Successive Measurements Error Modeling

    Directory of Open Access Journals (Sweden)

    Najah Abu Ali

    2015-07-01

    Full Text Available Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a -order Gauss–Markov model to predict the future position of a vehicle from its past  positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter.

  3. Soft error mechanisms, modeling and mitigation

    CERN Document Server

    Sayil, Selahattin

    2016-01-01

    This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption an...

  4. A probabilistic model for reducing medication errors.

    Directory of Open Access Journals (Sweden)

    Phung Anh Nguyen

    Full Text Available BACKGROUND: Medication errors are common, life threatening, costly but preventable. Information technology and automated systems are highly efficient for preventing medication errors and therefore widely employed in hospital settings. The aim of this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or rare associations between medications and diseases. METHODS AND FINDINGS: Association rules of mining techniques are utilized for 103.5 million prescriptions from Taiwan's National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million medications by using ATC codes. Disease-Medication (DM and Medication-Medication (MM associations were computed by their co-occurrence and associations' strength were measured by the interestingness or lift values which were being referred as Q values. The DMQs and MMQs were used to develop the AOP model to predict the appropriateness of a given prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively. CONCLUSIONS: We successfully developed the AOP model as an efficient tool for automatic identification of uncommon or rare associations between disease-medication and medication-medication in prescriptions. The AOP model helps to reduce medication errors by alerting physicians, improving the patients' safety and the overall quality of care.

  5. Regression Model With Elliptically Contoured Errors

    CERN Document Server

    Arashi, M; Tabatabaey, S M M

    2012-01-01

    For the regression model where the errors follow the elliptically contoured distribution (ECD), we consider the least squares (LS), restricted LS (RLS), preliminary test (PT), Stein-type shrinkage (S) and positive-rule shrinkage (PRS) estimators for the regression parameters. We compare the quadratic risks of the estimators to determine the relative dominance properties of the five estimators.

  6. Modeling the probability distribution of positional errors incurred by residential address geocoding

    Directory of Open Access Journals (Sweden)

    Mazumdar Soumya

    2007-01-01

    Full Text Available Abstract Background The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Results Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m than 100%-matched automated geocoding (median error length = 168 m. The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Conclusion Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  7. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  8. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    Science.gov (United States)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  9. Multimodal correlation and intraoperative matching of virtual models in neurosurgery

    Science.gov (United States)

    Ceresole, Enrico; Dalsasso, Michele; Rossi, Aldo

    1994-01-01

    The multimodal correlation between different diagnostic exams, the intraoperative calibration of pointing tools and the correlation of the patient's virtual models with the patient himself, are some examples, taken from the biomedical field, of a unique problem: determine the relationship linking representation of the same object in different reference frames. Several methods have been developed in order to determine this relationship, among them, the surface matching method is one that gives the patient minimum discomfort and the errors occurring are compatible with the required precision. The surface matching method has been successfully applied to the multimodal correlation of diagnostic exams such as CT, MR, PET and SPECT. Algorithms for automatic segmentation of diagnostic images have been developed to extract the reference surfaces from the diagnostic exams, whereas the surface of the patient's skull has been monitored, in our approach, by means of a laser sensor mounted on the end effector of an industrial robot. An integrated system for virtual planning and real time execution of surgical procedures has been realized.

  10. Hierarchical Boltzmann simulations and model error estimation

    Science.gov (United States)

    Torrilhon, Manuel; Sarna, Neeraj

    2017-08-01

    A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

  11. Nonclassical measurements errors in nonlinear models

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir

    Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... of a households face. In this case an important policy parameter is the effect of income (reflecting the household budget) on the choice of travel mode. This paper deals with the consequences of measurement error in income (an explanatory variable) in discrete choice models. Since it is likely to give misleading...

  12. FMEA: a model for reducing medical errors.

    Science.gov (United States)

    Chiozza, Maria Laura; Ponzetti, Clemente

    2009-06-01

    Patient safety is a management issue, in view of the fact that clinical risk management has become an important part of hospital management. Failure Mode and Effect Analysis (FMEA) is a proactive technique for error detection and reduction, firstly introduced within the aerospace industry in the 1960s. Early applications in the health care industry dating back to the 1990s included critical systems in the development and manufacture of drugs and in the prevention of medication errors in hospitals. In 2008, the Technical Committee of the International Organization for Standardization (ISO), licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. Here we describe the main steps of the FMEA process and review data available on the application of this technique to laboratory medicine. A significant reduction of the risk priority number (RPN) was obtained when applying FMEA to blood cross-matching, to clinical chemistry analytes, as well as to point-of-care testing (POCT).

  13. Error propagation in energetic carrying capacity models

    Science.gov (United States)

    Pearse, Aaron T.; Stafford, Joshua D.

    2014-01-01

    Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.

  14. Nonparametric Bayesian Modeling for Automated Database Schema Matching

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, Erik M [ORNL; Laska, Jason A [ORNL

    2015-01-01

    The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.

  15. A Probabilistic Model for Reducing Medication Errors

    Science.gov (United States)

    Nguyen, Phung Anh; Syed-Abdul, Shabbir; Iqbal, Usman; Hsu, Min-Huei; Huang, Chen-Ling; Li, Hsien-Chang; Clinciu, Daniel Livius; Jian, Wen-Shan; Li, Yu-Chuan Jack

    2013-01-01

    Background Medication errors are common, life threatening, costly but preventable. Information technology and automated systems are highly efficient for preventing medication errors and therefore widely employed in hospital settings. The aim of this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or rare associations between medications and diseases. Methods and Finding(s) Association rules of mining techniques are utilized for 103.5 million prescriptions from Taiwan’s National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million medications by using ATC codes. Disease-Medication (DM) and Medication-Medication (MM) associations were computed by their co-occurrence and associations’ strength were measured by the interestingness or lift values which were being referred as Q values. The DMQs and MMQs were used to develop the AOP model to predict the appropriateness of a given prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively. Conclusions We successfully developed the AOP model as an efficient tool for automatic identification of uncommon or rare associations between disease-medication and medication-medication in prescriptions. The AOP model helps to reduce medication errors by alerting physicians, improving the patients’ safety and the overall quality of care. PMID:24312659

  16. An Efficient Low Complexity Low Latency Architecture for Matching of Data Encoded With Error Correcting Code Using a Cache Memory

    Directory of Open Access Journals (Sweden)

    Aswathi D

    2016-10-01

    Full Text Available An efficient architecture is introduced for the matching of data encoded with error correcting code using a cache memory is presented in brief. Using cache memory it reduces latency and complexity to an fine level. And this architecture further reduces the dynamic power without affecting the time. For the comparison of data, hamming distance along used to check whether the data match the data kept in main memory. Instead of butterfly formed weight accumulator(previous work here no other mechanism is presented for calculating hamming distance.

  17. Biomedical model fitting and error analysis.

    Science.gov (United States)

    Costa, Kevin D; Kleinstein, Steven H; Hershberg, Uri

    2011-09-20

    This Teaching Resource introduces students to curve fitting and error analysis; it is the second of two lectures on developing mathematical models of biomedical systems. The first focused on identifying, extracting, and converting required constants--such as kinetic rate constants--from experimental literature. To understand how such constants are determined from experimental data, this lecture introduces the principles and practice of fitting a mathematical model to a series of measurements. We emphasize using nonlinear models for fitting nonlinear data, avoiding problems associated with linearization schemes that can distort and misrepresent the data. To help ensure proper interpretation of model parameters estimated by inverse modeling, we describe a rigorous six-step process: (i) selecting an appropriate mathematical model; (ii) defining a "figure-of-merit" function that quantifies the error between the model and data; (iii) adjusting model parameters to get a "best fit" to the data; (iv) examining the "goodness of fit" to the data; (v) determining whether a much better fit is possible; and (vi) evaluating the accuracy of the best-fit parameter values. Implementation of the computational methods is based on MATLAB, with example programs provided that can be modified for particular applications. The problem set allows students to use these programs to develop practical experience with the inverse-modeling process in the context of determining the rates of cell proliferation and death for B lymphocytes using data from BrdU-labeling experiments.

  18. Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the parameters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Physical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.

  19. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    J.C. Brezet

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  20. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    S. Y. Kan

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  1. Error Models of the Analog to Digital Converters

    OpenAIRE

    Michaeli Linus; Šaliga Ján

    2014-01-01

    Error models of the Analog to Digital Converters describe metrological properties of the signal conversion from analog to digital domain in a concise form using few dominant error parameters. Knowledge of the error models allows the end user to provide fast testing in the crucial points of the full input signal range and to use identified error models for post correction in the digital domain. The imperfections of the internal ADC structure determine the error characteristics represented by t...

  2. Influence of errors in the dimensions of a switched parasitic array on gain and impedance match

    CSIR Research Space (South Africa)

    Mofolo, MRO

    2012-09-01

    Full Text Available of these variations on the antenna performance attributes (e.g. gain and impedance match) is estimated using a Monte Carlo simulation. The simulation results demonstrate that the combined effect of all variations in the structural parameters quantify the impact...

  3. Hybrid Models for Trajectory Error Modelling in Urban Environments

    Science.gov (United States)

    Angelatsa, E.; Parés, M. E.; Colomina, I.

    2016-06-01

    This paper tackles the first step of any strategy aiming to improve the trajectory of terrestrial mobile mapping systems in urban environments. We present an approach to model the error of terrestrial mobile mapping trajectories, combining deterministic and stochastic models. Due to urban specific environment, the deterministic component will be modelled with non-continuous functions composed by linear shifts, drifts or polynomial functions. In addition, we will introduce a stochastic error component for modelling residual noise of the trajectory error function. First step for error modelling requires to know the actual trajectory error values for several representative environments. In order to determine as accurately as possible the trajectories error, (almost) error less trajectories should be estimated using extracted nonsemantic features from a sequence of images collected with the terrestrial mobile mapping system and from a full set of ground control points. Once the references are estimated, they will be used to determine the actual errors in terrestrial mobile mapping trajectory. The rigorous analysis of these data sets will allow us to characterize the errors of a terrestrial mobile mapping system for a wide range of environments. This information will be of great use in future campaigns to improve the results of the 3D points cloud generation. The proposed approach has been evaluated using real data. The data originate from a mobile mapping campaign over an urban and controlled area of Dortmund (Germany), with harmful GNSS conditions. The mobile mapping system, that includes two laser scanner and two cameras, was mounted on a van and it was driven over a controlled area around three hours. The results show the suitability to decompose trajectory error with non-continuous deterministic and stochastic components.

  4. Sequential error concealment for video/images by weighted template matching

    DEFF Research Database (Denmark)

    Koloda, Jan; Østergaard, Jan; Jensen, Søren Holdt;

    2012-01-01

    In this paper we propose a novel spatial error concealment algorithm for video and images based on convex optimization. Block-based coding schemes in packet loss environment are considered. Missing macro blocks are sequentially reconstructed by filling them with a weighted set of templates...

  5. Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments.

    Science.gov (United States)

    Yan, Ying; Yi, Grace Y

    2016-07-01

    Covariate measurement error occurs commonly in survival analysis. Under the proportional hazards model, measurement error effects have been well studied, and various inference methods have been developed to correct for error effects under such a model. In contrast, error-contaminated survival data under the additive hazards model have received relatively less attention. In this paper, we investigate this problem by exploring measurement error effects on parameter estimation and the change of the hazard function. New insights of measurement error effects are revealed, as opposed to well-documented results for the Cox proportional hazards model. We propose a class of bias correction estimators that embraces certain existing estimators as special cases. In addition, we exploit the regression calibration method to reduce measurement error effects. Theoretical results for the developed methods are established, and numerical assessments are conducted to illustrate the finite sample performance of our methods.

  6. Pixel-level Matching Based Multi-hypothesis Error Concealment Modes for Wireless 3D H.264/MVC Communication

    Science.gov (United States)

    El-Shafai, Walid

    2015-09-01

    3D multi-view video (MVV) is multiple video streams shot by several cameras around a single scene simultaneously. Therefore it is an urgent task to achieve high 3D MVV compression to meet future bandwidth constraints while maintaining a high reception quality. 3D MVV coded bit-streams that are transmitted over wireless network can suffer from error propagation in the space, time and view domains. Error concealment (EC) algorithms have the advantage of improving the received 3D video quality without any modifications in the transmission rate or in the encoder hardware or software. To improve the quality of reconstructed 3D MVV, we propose an efficient adaptive EC algorithm with multi-hypothesis modes to conceal the erroneous Macro-Blocks (MBs) of intra-coded and inter-coded frames by exploiting the spatial, temporal and inter-view correlations between frames and views. Our proposed algorithm adapts to 3D MVV motion features and to the error locations. The lost MBs are optimally recovered by utilizing motion and disparity matching between frames and views on pixel-by-pixel matching basis. Our simulation results show that the proposed adaptive multi-hypothesis EC algorithm can significantly improve the objective and subjective 3D MVV quality.

  7. Model Reduction by Moment Matching for Linear Switched Systems

    DEFF Research Database (Denmark)

    Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal;

    2014-01-01

    A moment-matching method for the model reduction of linear switched systems (LSSs) is developed. The method is based based upon a partial realization theory of LSSs and it is similar to the Krylov subspace methods used for moment matching for linear systems. The results are illustrated by numeric...

  8. Anticipated growth and business cycles in matching models

    NARCIS (Netherlands)

    den Haan, W.J.; Kaltenbrunner, G.

    2009-01-01

    In a business cycle model that incorporates a standard matching framework, employment increases in response to news shocks, even though the wealth effect associated with the increase in expected productivity reduces labor force participation. The reason is that the matching friction induces

  9. Modeling human response errors in synthetic flight simulator domain

    Science.gov (United States)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  10. Model Adequacy Analysis of Matching Record Versions in Nosql Databases

    Directory of Open Access Journals (Sweden)

    E. V. Tsviashchenko

    2015-01-01

    Full Text Available The article investigates a model of matching record versions. The goal of this work is to analyse the model adequacy. This model allows estimating a user’s processing time distribution of the record versions and a distribution of the record versions count. The second option of the model was used, according to which, for a client the time to process record versions depends explicitly on the number of updates, performed by the other users between the sequential updates performed by a current client. In order to prove the model adequacy the real experiment was conducted in the cloud cluster. The cluster contains 10 virtual nodes, provided by DigitalOcean Company. The Ubuntu Server 14.04 was used as an operating system (OS. The NoSQL system Riak was chosen for experiments. In the Riak 2.0 version and later provide “dotted vector versions” (DVV option, which is an extension of the classic vector clock. Their use guarantees, that the versions count, simultaneously stored in DB, will not exceed the count of clients, operating in parallel with a record. This is very important while conducting experiments. For developing the application the java library, provided by Riak, was used. The processes run directly on the nodes. In experiment two records were used. They are: Z – the record, versions of which are handled by clients; RZ – service record, which contains record update counters. The application algorithm can be briefly described as follows: every client reads versions of the record Z, processes its updates using the RZ record counters, and saves treated record in database while old versions are deleted form DB. Then, a client rereads the RZ record and increments counters of updates for the other clients. After that, a client rereads the Z record, saves necessary statistics, and deliberates the results of processing. In the case of emerging conflict because of simultaneous updates of the RZ record, the client obtains all versions of that

  11. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model.

    Science.gov (United States)

    Parkinson, R J; Bezaire, M; Callaghan, J P

    2011-07-01

    This study examined errors introduced by a posture matching approach (3DMatch) relative to dynamic three-dimensional rigid link and EMG-assisted models. Eighty-eight lifting trials of various combinations of heights (floor, 0.67, 1.2 m), asymmetry (left, right and center) and mass (7.6 and 9.7 kg) were videotaped while spine postures, ground reaction forces, segment orientations and muscle activations were documented and used to estimate joint moments and forces (L5/S1). Posture matching over predicted peak and cumulative extension moment (p posture matching or EMG-assisted approaches (p = 0.7987). Posture matching over predicted cumulative (p posture matching provides a method to analyze industrial lifting exposures that will predict kinetic values similar to those of more sophisticated models, provided necessary corrections are applied. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. System modeling based measurement error analysis of digital sun sensors

    Institute of Scientific and Technical Information of China (English)

    WEI; M; insong; XING; Fei; WANG; Geng; YOU; Zheng

    2015-01-01

    Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.

  13. Money creation in a random matching model

    OpenAIRE

    Alexei Deviatov

    2004-01-01

    I study money creation in versions of the Trejos-Wright (1995) and Shi (1995) models with indivisible money and individual holdings bounded at two units. I work with the same class of policies as in Deviatov and Wallace (2001), who study money creation in that model. However, I consider an alternative notion of implementability–the ex ante pairwise core. I compute a set of numerical examples to determine whether money creation is beneficial. I find beneficial e?ects of money creation if indiv...

  14. A statistical model for point-based target registration error with anisotropic fiducial localizer error.

    Science.gov (United States)

    Wiles, Andrew D; Likholyot, Alexander; Frantz, Donald D; Peters, Terry M

    2008-03-01

    Error models associated with point-based medical image registration problems were first introduced in the late 1990s. The concepts of fiducial localizer error, fiducial registration error, and target registration error are commonly used in the literature. The model for estimating the target registration error at a position r in a coordinate frame defined by a set of fiducial markers rigidly fixed relative to one another is ubiquitous in the medical imaging literature. The model has also been extended to simulate the target registration error at the point of interest in optically tracked tools. However, the model is limited to describing the error in situations where the fiducial localizer error is assumed to have an isotropic normal distribution in R3. In this work, the model is generalized to include a fiducial localizer error that has an anisotropic normal distribution. Similar to the previous models, the root mean square statistic rms tre is provided along with an extension that provides the covariance Sigma tre. The new model is verified using a Monte Carlo simulation and a set of statistical hypothesis tests. Finally, the differences between the two assumptions, isotropic and anisotropic, are discussed within the context of their use in 1) optical tool tracking simulation and 2) image registration.

  15. Cognitive modelling of pilot errors and error recovery in flight management tasks

    NARCIS (Netherlands)

    Lüdtke, A.; Osterloh, J.P.; Mioch, T.; Rister, F.; Looije, R.

    2009-01-01

    This paper presents a cognitive modelling approach to predict pilot errors and error recovery during the interaction with aircraft cockpit systems. The model allows execution of flight procedures in a virtual simulation environment and production of simulation traces. We present traces for the inter

  16. PM-PM: PatchMatch with Potts Model for object segmentation and stereo matching.

    Science.gov (United States)

    Xu, Shibiao; Zhang, Feihu; He, Xiaofei; Shen, Xukun; Zhang, Xiaopeng

    2015-07-01

    This paper presents a unified variational formulation for joint object segmentation and stereo matching, which takes both accuracy and efficiency into account. In our approach, depth-map consists of compact objects, each object is represented through three different aspects: 1) the perimeter in image space; 2) the slanted object depth plane; and 3) the planar bias, which is to add an additional level of detail on top of each object plane in order to model depth variations within an object. Compared with traditional high quality solving methods in low level, we use a convex formulation of the multilabel Potts Model with PatchMatch stereo techniques to generate depth-map at each image in object level and show that accurate multiple view reconstruction can be achieved with our formulation by means of induced homography without discretization or staircasing artifacts. Our model is formulated as an energy minimization that is optimized via a fast primal-dual algorithm, which can handle several hundred object depth segments efficiently. Performance evaluations in the Middlebury benchmark data sets show that our method outperforms the traditional integer-valued disparity strategy as well as the original PatchMatch algorithm and its variants in subpixel accurate disparity estimation. The proposed algorithm is also evaluated and shown to produce consistently good results for various real-world data sets (KITTI benchmark data sets and multiview benchmark data sets).

  17. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  18. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  19. Performance Assessment of Hydrological Models Considering Acceptable Forecast Error Threshold

    Directory of Open Access Journals (Sweden)

    Qianjin Dong

    2015-11-01

    Full Text Available It is essential to consider the acceptable threshold in the assessment of a hydrological model because of the scarcity of research in the hydrology community and errors do not necessarily cause risk. Two forecast errors, including rainfall forecast error and peak flood forecast error, have been studied based on the reliability theory. The first order second moment (FOSM and bound methods are used to identify the reliability. Through the case study of the Dahuofang (DHF Reservoir, it is shown that the correlation between these two errors has great influence on the reliability index of hydrological model. In particular, the reliability index of the DHF hydrological model decreases with the increasing correlation. Based on the reliability theory, the proposed performance evaluation framework incorporating the acceptable forecast error threshold and correlation among the multiple errors can be used to evaluate the performance of a hydrological model and to quantify the uncertainties of a hydrological model output.

  20. Probe Error Modeling Research Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan

    2015-01-01

    Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.

  1. "Living in sin" and marriage : A matching model

    NARCIS (Netherlands)

    Sahib, PR; Gu, XH

    2002-01-01

    This paper develops a two sided matching model of premarital cohabitation and marriage in which premarital cohabitation serves as a period of learning. We solve for the optimal policy to be followed by individuals by treating the model as a three stage dynamic programming problem. We find that coupl

  2. "Living in sin" and marriage : a matching model

    NARCIS (Netherlands)

    Rao Sahib, P. Padma; Gu, X. Xinhua

    1999-01-01

    This paper develops a two sided matching model of premarital cohabitation and marriage in which premarital cohabitation serves as a period of learning. We solve for the optimal policy to be followed by individuals by treating the model as a three stage dynamic programming problem. We find that coupl

  3. "Living in sin" and marriage : A matching model

    NARCIS (Netherlands)

    Sahib, PR; Gu, XH

    This paper develops a two sided matching model of premarital cohabitation and marriage in which premarital cohabitation serves as a period of learning. We solve for the optimal policy to be followed by individuals by treating the model as a three stage dynamic programming problem. We find that

  4. "Living in sin" and marriage : a matching model

    NARCIS (Netherlands)

    Rao Sahib, P. Padma; Gu, X. Xinhua

    1999-01-01

    This paper develops a two sided matching model of premarital cohabitation and marriage in which premarital cohabitation serves as a period of learning. We solve for the optimal policy to be followed by individuals by treating the model as a three stage dynamic programming problem. We find that

  5. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.; Hanea, R.G.; Heemink, A.W.; Jansen, J.D.

    2010-01-01

    Gradient-based history matching algorithms can be used to adapt the uncertain parameters in a reservoir model using production data. They require, however, the implementation of an adjoint model to compute the gradients, which is usually an enormous programming effort. We propose a new approach to g

  6. Deterministic treatment of model error in geophysical data assimilation

    CERN Document Server

    Carrassi, Alberto

    2015-01-01

    This chapter describes a novel approach for the treatment of model error in geophysical data assimilation. In this method, model error is treated as a deterministic process fully correlated in time. This allows for the derivation of the evolution equations for the relevant moments of the model error statistics required in data assimilation procedures, along with an approximation suitable for application to large numerical models typical of environmental science. In this contribution we first derive the equations for the model error dynamics in the general case, and then for the particular situation of parametric error. We show how this deterministic description of the model error can be incorporated in sequential and variational data assimilation procedures. A numerical comparison with standard methods is given using low-order dynamical systems, prototypes of atmospheric circulation, and a realistic soil model. The deterministic approach proves to be very competitive with only minor additional computational c...

  7. Error Models of the Analog to Digital Converters

    Science.gov (United States)

    Michaeli, Linus; Šaliga, Ján

    2014-04-01

    Error models of the Analog to Digital Converters describe metrological properties of the signal conversion from analog to digital domain in a concise form using few dominant error parameters. Knowledge of the error models allows the end user to provide fast testing in the crucial points of the full input signal range and to use identified error models for post correction in the digital domain. The imperfections of the internal ADC structure determine the error characteristics represented by the nonlinearities as a function of the output code. Progress in the microelectronics and missing information about circuital details together with the lack of knowledge about interfering effects caused by ADC installation prefers another modeling approach based on the input-output behavioral characterization by the input-output error box. Internal links in the ADC structure cause that the input-output error function could be described in a concise form by suitable function. Modeled functional parameters allow determining the integral error parameters of ADC. Paper is a survey of error models starting from the structural models for the most common architectures and their linkage with the behavioral models represented by the simple look up table or the functional description of nonlinear errors for the output codes.

  8. Error Models of the Analog to Digital Converters

    Directory of Open Access Journals (Sweden)

    Michaeli Linus

    2014-04-01

    Full Text Available Error models of the Analog to Digital Converters describe metrological properties of the signal conversion from analog to digital domain in a concise form using few dominant error parameters. Knowledge of the error models allows the end user to provide fast testing in the crucial points of the full input signal range and to use identified error models for post correction in the digital domain. The imperfections of the internal ADC structure determine the error characteristics represented by the nonlinearities as a function of the output code. Progress in the microelectronics and missing information about circuital details together with the lack of knowledge about interfering effects caused by ADC installation prefers another modeling approach based on the input-output behavioral characterization by the input-output error box. Internal links in the ADC structure cause that the input-output error function could be described in a concise form by suitable function. Modeled functional parameters allow determining the integral error parameters of ADC. Paper is a survey of error models starting from the structural models for the most common architectures and their linkage with the behavioral models represented by the simple look up table or the functional description of nonlinear errors for the output codes.

  9. An error assessment of the kriging based approximation model using a mean square error

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Byeong Hyeon; Cho, Tae Min; Lee, Byung Chai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jung, Do Hyun [Korea Automotive Technology Institute, Chonan (Korea, Republic of)

    2006-08-15

    A Kriging model is a sort of approximation model and used as a deterministic model of a computationally expensive analysis or simulation. Although it has various advantages, it is difficult to assess the accuracy of the approximated model. It is generally known that a Mean Square Error (MSE) obtained from the kriging model can't calculate statistically exact error bounds contrary to a response surface method, and a cross validation is mainly used. But the cross validation also has many uncertainties. Moreover, the cross validation can't be used when a maximum error is required in the given region. For solving this problem, we first proposed a modified mean square error which can consider relative errors. Using the modified mean square error, we developed the strategy of adding a new sample to the place that the MSE has the maximum when the MSE is used for the assessment of the kriging model. Finally, we offer guidelines for the use of the MSE which is obtained from the kriging model. Four test problems show that the proposed strategy is a proper method which can assess the accuracy of the kriging model. Based on the results of four test problems, a convergence coefficient of 0.01 is recommended for an exact function approximation.

  10. Error Model of Curves in GIS and Digitization Experiment

    Institute of Scientific and Technical Information of China (English)

    GUO Tongde; WANG Jiayao; WANG Guangxia

    2006-01-01

    A stochastic error process of curves is proposed as the error model to describe the errors of curves in GIS. In terms of the stochastic process, four characteristics concerning the local error of curves, namely, mean error function, standard error function, absolute error function, and the correlation function of errors , are put forward. The total error of a curve is expressed by a mean square integral of the stochastic error process. The probabilistic meanings and geometric meanings of the characteristics mentioned above are also discussed. A scan digitization experiment is designed to check the efficiency of the model. In the experiment, a piece of contour line is digitized for more than 100 times and lots of sample functions are derived from the experiment. Finally, all the error characteristics are estimated on the basis of sample functions. The experiment results show that the systematic error in digitized map data is not negligible, and the errors of points on curves are chiefly dependent on the curvature and the concavity of the curves.

  11. Error rate information in attention allocation pilot models

    Science.gov (United States)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  12. Mask process matching using a model based data preparation solution

    Science.gov (United States)

    Dillon, Brian; Saib, Mohamed; Figueiro, Thiago; Petroni, Paolo; Progler, Chris; Schiavone, Patrick

    2015-10-01

    Process matching is the ability to precisely reproduce the signature of a given fabrication process while using a different one. A process signature is typically described as systematic CD variation driven by feature geometry as a function of feature size, local density or distance to neighboring structures. The interest of performing process matching is usually to address differences in the mask fabrication process without altering the signature of the mask, which is already validated by OPC models and already used in production. The need for such process matching typically arises from the expansion of the production capacity within the same or different mask fabrication facilities, from the introduction of new, perhaps more advanced, equipment to deliver same process of record masks and/or from the re-alignment of processes which have altered over time. For state-of-the-art logic and memory mask processes, such matching requirements can be well below 2nm and are expected to reduce below 1nm in near future. In this paper, a data preparation solution for process matching is presented and discussed. Instead of adapting the physical process itself, a calibrated model is used to modify the data to be exposed by the source process in order to induce the results to match the one obtained while running the target process. This strategy consists in using the differences among measurements from the source and target processes, in the calibration of a single differential model. In this approach, no information other than the metrology results is required from either process. Experimental results were obtained by matching two different processes at Photronics. The standard deviation between both processes was of 2.4nm. After applying the process matching technique, the average absolute difference between the processes was reduced to 1.0nm with a standard deviation of 1.3nm. The methods used to achieve the result will be described along with implementation considerations, to

  13. Performance analysis of FXLMS algorithm with secondary path modeling error

    Institute of Scientific and Technical Information of China (English)

    SUN Xu; CHEN Duanshi

    2003-01-01

    Performance analysis of filtered-X LMS (FXLMS) algorithm with secondary path modeling error is carried out in both time and frequency domain. It is shown firstly that the effects of secondary path modeling error on the performance of FXLMS algorithm are determined by the distribution of the relative error of secondary path model along with frequency.In case of that the distribution of relative error is uniform the modeling error of secondary path will have no effects on the performance of the algorithm. In addition, a limitation property of FXLMS algorithm is proved, which implies that the negative effects of secondary path modeling error can be compensated by increasing the adaptive filter length. At last, some insights into the "spillover" phenomenon of FXLMS algorithm are given.

  14. On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H. -Y.; Xie, S.; Klein, S. A.; Williams, K. D.; Boyle, J. S.; Bony, S.; Douville, H.; Fermepin, S.; Medeiros, B.; Tyteca, S.; Watanabe, M.; Williamson, D.

    2014-02-01

    The present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach. The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitudes comparable to the climate errors, and the impacts of initial conditions on the simulated ensemble mean errors are relatively small. This robust bias correspondence suggests that these systematic errors across different models likely are initiated by model parameterizations since the atmospheric large-scale states remain close to observations in the first 2–3 days. However, biases associated with model physics can have impacts on the large-scale states by day 5, such as zonal winds, 2-m temperature, and sea level pressure, and the analysis further indicates a good correspondence between short- and long-term biases for these large-scale states. Therefore, improving individual model parameterizations in the hindcast mode could lead to the improvement of most climate models in simulating their climate mean state and potentially their future projections.

  15. Equilibrium Price Dispersion in a Matching Model with Divisible Money

    NARCIS (Netherlands)

    Kamiya, K.; Sato, T.

    2002-01-01

    The main purpose of this paper is to show that, for any given parameter values, an equilibrium with dispersed prices (two-price equilibrium) exists in a simple matching model with divisible money presented by Green and Zhou (1998).We also show that our two-price equilibrium is unique in certain envi

  16. Simultaneous exact model matching with stability by output feedback

    Science.gov (United States)

    Kiritsis, Konstadinos H.

    2017-03-01

    In this paper, is studied the problem of simultaneous exact model matching by dynamic output feedback for square and invertible linear time invariant systems. In particular, explicit necessary and sufficient conditions are established which guarantee the solvability of the problem with stability and a procedure is given for the computation of dynamic controller which solves the problem.

  17. The effect of uncertainty and systematic errors in hydrological modelling

    Science.gov (United States)

    Steinsland, I.; Engeland, K.; Johansen, S. S.; Øverleir-Petersen, A.; Kolberg, S. A.

    2014-12-01

    The aims of hydrological model identification and calibration are to find the best possible set of process parametrization and parameter values that transform inputs (e.g. precipitation and temperature) to outputs (e.g. streamflow). These models enable us to make predictions of streamflow. Several sources of uncertainties have the potential to hamper the possibility of a robust model calibration and identification. In order to grasp the interaction between model parameters, inputs and streamflow, it is important to account for both systematic and random errors in inputs (e.g. precipitation and temperatures) and streamflows. By random errors we mean errors that are independent from time step to time step whereas by systematic errors we mean errors that persists for a longer period. Both random and systematic errors are important in the observation and interpolation of precipitation and temperature inputs. Important random errors comes from the measurements themselves and from the network of gauges. Important systematic errors originate from the under-catch in precipitation gauges and from unknown spatial trends that are approximated in the interpolation. For streamflow observations, the water level recordings might give random errors whereas the rating curve contributes mainly with a systematic error. In this study we want to answer the question "What is the effect of random and systematic errors in inputs and observed streamflow on estimated model parameters and streamflow predictions?". To answer we test systematically the effect of including uncertainties in inputs and streamflow during model calibration and simulation in distributed HBV model operating on daily time steps for the Osali catchment in Norway. The case study is based on observations from, uncertainty carefullt quantified, and increased uncertainties and systmatical errors are done realistically by for example removing a precipitation gauge from the network.We find that the systematical errors in

  18. The effect of model errors in variational assimilation

    Science.gov (United States)

    Wergen, Werner

    1992-08-01

    A linearized, one-dimensional shallow water model is used to investigate the effect of model errors in four-dimensional variational assimilation. A suitable initialization scheme for variational assimilation is proposed. Introducing deliberate phase speed errors in the model, the results from variational assimilation are compared to standard analysis/forecast cycle experiments. While the latter draws to the data and reflects the model errors only in the datavoid areas, variational assimilation with the model used as strong constraint is shown to distribute the model errors over the entire analysis domain. The implications for verification and diagnostics are discussed. Temporal weighting of the observations can reduce the errors towards the end of the assimilation period, but may deteriorate the subsequent forecasts. An extension to variational assimilation is proposed, which seeks not only to determine the initial state from the observations but also some of the tunable parameters of the model. The potentional usefulness of this approach for parameterization studies and for a separation of forecast errors into model- and analysis errors is discussed. Finally, variational assimilations with the model used as weak constraint are presented. While showing a good performance in the assimilation, forecasts can suffer severely if the extra term in the equations up to which the model is enforced are unable to compensate for the real model error. In the discussion, an overall appraisal of both assimilation methods is given.

  19. NASA Model of "Threat and Error" in Pediatric Cardiac Surgery: Patterns of Error Chains.

    Science.gov (United States)

    Hickey, Edward; Pham-Hung, Eric; Nosikova, Yaroslavna; Halvorsen, Fredrik; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Van Arsdell, Glen

    2017-04-01

    We introduced the National Aeronautics and Space Association threat-and-error model to our surgical unit. All admissions are considered flights, which should pass through stepwise deescalations in risk during surgical recovery. We hypothesized that errors significantly influence risk deescalation and contribute to poor outcomes. Patient flights (524) were tracked in real time for threats, errors, and unintended states by full-time performance personnel. Expected risk deescalation was wean from mechanical support, sternal closure, extubation, intensive care unit (ICU) discharge, and discharge home. Data were accrued from clinical charts, bedside data, reporting mechanisms, and staff interviews. Infographics of flights were openly discussed weekly for consensus. In 12% (64 of 524) of flights, the child failed to deescalate sequentially through expected risk levels; unintended increments instead occurred. Failed deescalations were highly associated with errors (426; 257 flights; p < 0.0001). Consequential errors (263; 173 flights) were associated with a 29% rate of failed deescalation versus 4% in flights with no consequential error (p < 0.0001). The most dangerous errors were apical errors typically (84%) occurring in the operating room, which caused chains of propagating unintended states (n = 110): these had a 43% (47 of 110) rate of failed deescalation (versus 4%; p < 0.0001). Chains of unintended state were often (46%) amplified by additional (up to 7) errors in the ICU that would worsen clinical deviation. Overall, failed deescalations in risk were extremely closely linked to brain injury (n = 13; p < 0.0001) or death (n = 7; p < 0.0001). Deaths and brain injury after pediatric cardiac surgery almost always occur from propagating error chains that originate in the operating room and are often amplified by additional ICU errors. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Dual Numbers Approach in Multiaxis Machines Error Modeling

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrdina

    2014-01-01

    Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

  1. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  2. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  3. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.

    2013-01-01

    A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.

  4. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    CERN Document Server

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  5. Bayesian modeling growth curves for quail assuming skewness in errors

    Directory of Open Access Journals (Sweden)

    Robson Marcelo Rossi

    2014-06-01

    Full Text Available Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.

  6. Correcting biased observation model error in data assimilation

    CERN Document Server

    Harlim, John

    2016-01-01

    While the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications, model error with nontrivial biases is unavoidable. A practical example is the error in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. As a consequence, many (in fact 99\\%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme which is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, we show positive results with two examples. The first example is des...

  7. Error Model and Accuracy Calibration of 5-Axis Machine Tool

    Directory of Open Access Journals (Sweden)

    Fangyu Pan

    2013-08-01

    Full Text Available To improve the machining precision and reduce the geometric errors for 5-axis machinetool, error model and calibration are presented in this paper. Error model is realized by the theory of multi-body system and characteristic matrixes, which can establish the relationship between the cutting tool and the workpiece in theory. The accuracy calibration was difficult to achieve, but by a laser approach-laser interferometer and laser tracker, the errors can be displayed accurately which is benefit for later compensation.

  8. Predictive error analysis for a water resource management model

    Science.gov (United States)

    Gallagher, Mark; Doherty, John

    2007-02-01

    SummaryIn calibrating a model, a set of parameters is assigned to the model which will be employed for the making of all future predictions. If these parameters are estimated through solution of an inverse problem, formulated to be properly posed through either pre-calibration or mathematical regularisation, then solution of this inverse problem will, of necessity, lead to a simplified parameter set that omits the details of reality, while still fitting historical data acceptably well. Furthermore, estimates of parameters so obtained will be contaminated by measurement noise. Both of these phenomena will lead to errors in predictions made by the model, with the potential for error increasing with the hydraulic property detail on which the prediction depends. Integrity of model usage demands that model predictions be accompanied by some estimate of the possible errors associated with them. The present paper applies theory developed in a previous work to the analysis of predictive error associated with a real world, water resource management model. The analysis offers many challenges, including the fact that the model is a complex one that was partly calibrated by hand. Nevertheless, it is typical of models which are commonly employed as the basis for the making of important decisions, and for which such an analysis must be made. The potential errors associated with point-based and averaged water level and creek inflow predictions are examined, together with the dependence of these errors on the amount of averaging involved. Error variances associated with predictions made by the existing model are compared with "optimized error variances" that could have been obtained had calibration been undertaken in such a way as to minimize predictive error variance. The contributions by different parameter types to the overall error variance of selected predictions are also examined.

  9. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  10. A Morphographemic Model for Error Correction in Nonconcatenative Strings

    CERN Document Server

    Bowden, T; Bowden, Tanya; Kiraz, George Anton

    1995-01-01

    This paper introduces a spelling correction system which integrates seamlessly with morphological analysis using a multi-tape formalism. Handling of various Semitic error problems is illustrated, with reference to Arabic and Syriac examples. The model handles errors vocalisation, diacritics, phonetic syncopation and morphographemic idiosyncrasies, in addition to Damerau errors. A complementary correction strategy for morphologically sound but morphosyntactically ill-formed words is outlined.

  11. Modelling interfacial cracking with non-matching cohesive interface elements

    Science.gov (United States)

    Nguyen, Vinh Phu; Nguyen, Chi Thanh; Bordas, Stéphane; Heidarpour, Amin

    2016-11-01

    Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these interfacial cracks usually employs compatible or matching cohesive interface elements. In this paper, incompatible or non-matching cohesive interface elements are proposed for interfacial fracture mechanics problems. They allow non-matching finite element discretisations of the opposite crack faces thus lifting the constraint on the compatible discretisation of the domains sharing the interface. The formulation is based on a discontinuous Galerkin method and works with both initially elastic and rigid cohesive laws. The proposed formulation has the following advantages compared to classical interface elements: (i) non-matching discretisations of the domains and (ii) no high dummy stiffness. Two and three dimensional quasi-static fracture simulations are conducted to demonstrate the method. Our method not only simplifies the meshing process but also it requires less computational demands, compared with standard interface elements, for problems that involve materials/solids having a large mismatch in stiffnesses.

  12. Parameter estimation and error analysis in environmental modeling and computation

    Science.gov (United States)

    Kalmaz, E. E.

    1986-01-01

    A method for the estimation of parameters and error analysis in the development of nonlinear modeling for environmental impact assessment studies is presented. The modular computer program can interactively fit different nonlinear models to the same set of data, dynamically changing the error structure associated with observed values. Parameter estimation techniques and sequential estimation algorithms employed in parameter identification and model selection are first discussed. Then, least-square parameter estimation procedures are formulated, utilizing differential or integrated equations, and are used to define a model for association of error with experimentally observed data.

  13. Estimating a marriage matching model with spillover effects.

    Science.gov (United States)

    Choo, Eugene; Siow, Aloysius

    2006-08-01

    We use marriage matching functions to study how marital patterns change when population supplies change. Specifically, we use a behavioral marriage matching function with spillover effects to rationalize marriage and cohabitation behavior in contemporary Canada. The model can estimate a couple's systematic gains to marriage and cohabitation relative to remaining single. These gains are invariant to changes in population supplies. Instead, changes in population supplies redistribute these gains between a couple. Although the model is behavioral, it is nonparametric. It can fit any observed cross-sectional marriage matching distribution. We use the estimated model to quantify the impacts of gender differences in mortality rates and the baby boom on observed marital behavior in Canada. The higher mortality rate of men makes men scarcer than women. We show that the scarceness of men modestly reduced the welfare of women and increased the welfare of men in the marriage market. On the other hand, the baby boom increased older men's net gains to entering the marriage market and lowered middle-aged women's net gains.

  14. Filtering multiscale dynamical systems in the presence of model error

    CERN Document Server

    Harlim, John

    2013-01-01

    In this review article, we report two important competing data assimilation schemes that were developed in the past 20 years, discuss the current methods that are operationally used in weather forecasting applications, and point out one major challenge in data assimilation community: "utilize these existing schemes in the presence of model error". The aim of this paper is to provide theoretical guidelines to mitigate model error in practical applications of filtering multiscale dynamical systems with reduced models. This is a prototypical situation in many applications due to limited ability to resolve the smaller scale processes as well as the difficulty to model the interaction across scales. We present simple examples to point out the importance of accounting for model error when the separation of scales are not apparent. These examples also elucidate the necessity of treating model error as a stochastic process in a nontrivial fashion for optimal filtering, in the sense that the mean and covariance estima...

  15. ASYMPTOTICS OF MEAN TRANSFORMATION ESTIMATORS WITH ERRORS IN VARIABLES MODEL

    Institute of Scientific and Technical Information of China (English)

    CUI Hengjian

    2005-01-01

    This paper addresses estimation and its asymptotics of mean transformation θ = E[h(X)] of a random variable X based on n iid. Observations from errors-in-variables model Y = X + v, where v is a measurement error with a known distribution and h(.) is a known smooth function. The asymptotics of deconvolution kernel estimator for ordinary smooth error distribution and expectation extrapolation estimator are given for normal error distribution respectively. Under some mild regularity conditions, the consistency and asymptotically normality are obtained for both type of estimators. Simulations show they have good performance.

  16. On Network-Error Correcting Convolutional Codes under the BSC Edge Error Model

    CERN Document Server

    Prasad, K

    2010-01-01

    Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error $p_e$($0\\leq p_e<0.5$). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small $p_e$ should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low $p_e$ and high $p_e$ regimes. For the low $p_e$ regime, convolutional codes with g...

  17. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    Directory of Open Access Journals (Sweden)

    Zhong Su

    2015-09-01

    Full Text Available A bell-shaped vibratory angular velocity gyro (BVG, inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement.

  18. Effect Of Oceanic Lithosphere Age Errors On Model Discrimination

    Science.gov (United States)

    DeLaughter, J. E.

    2016-12-01

    The thermal structure of the oceanic lithosphere is the subject of a long-standing controversy. Because the thermal structure varies with age, it governs properties such as heat flow, density, and bathymetry with important implications for plate tectonics. Though bathymetry, geoid, and heat flow for young (geoid, and heat flow data to an inverse model to determine lithospheric structure details. Though inverse models usually include the effect of errors in bathymetry, heat flow, and geoid, they rarely examine the effects of errors in age. This may have the effect of introducing subtle biases into inverse models of the oceanic lithosphere. Because the inverse problem for thermal structure is both ill-posed and ill-conditioned, these overlooked errors may have a greater effect than expected. The problem is further complicated by the non-uniform distribution of age and errors in age estimates; for example, only 30% of the oceanic lithosphere is older than 80 MY and less than 3% is older than 150 MY. To determine the potential strength of such biases, I have used the age and error maps of Mueller et al (2008) to forward model the bathymetry for half space and GDH1 plate models. For ages less than 20 MY, both models give similar results. The errors induced by uncertainty in age are relatively large and suggest that when possible young lithosphere should be excluded when examining the lithospheric thermal model. As expected, GDH1 bathymetry converges asymptotically on the theoretical result for error-free data for older data. The resulting uncertainty is nearly as large as that introduced by errors in the other parameters; in the absence of other errors, the models can only be distinguished for ages greater than 80 MY. These results suggest that the problem should be approached with the minimum possible number of variables. For example, examining the direct relationship of geoid to bathymetry or heat flow instead of their relationship to age should reduce uncertainties

  19. Deconvolution Estimation in Measurement Error Models: The R Package decon

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Wang

    2011-03-01

    Full Text Available Data from many scientific areas often come with measurement error. Density or distribution function estimation from contaminated data and nonparametric regression with errors in variables are two important topics in measurement error models. In this paper, we present a new software package decon for R, which contains a collection of functions that use the deconvolution kernel methods to deal with the measurement error problems. The functions allow the errors to be either homoscedastic or heteroscedastic. To make the deconvolution estimators computationally more efficient in R, we adapt the fast Fourier transform algorithm for density estimation with error-free data to the deconvolution kernel estimation. We discuss the practical selection of the smoothing parameter in deconvolution methods and illustrate the use of the package through both simulated and real examples.

  20. Model-based segmentation of medical imagery by matching distributions.

    Science.gov (United States)

    Freedman, Daniel; Radke, Richard J; Zhang, Tao; Jeong, Yongwon; Lovelock, D Michael; Chen, George T Y

    2005-03-01

    The segmentation of deformable objects from three-dimensional (3-D) images is an important and challenging problem, especially in the context of medical imagery. We present a new segmentation algorithm based on matching probability distributions of photometric variables that incorporates learned shape and appearance models for the objects of interest. The main innovation over similar approaches is that there is no need to compute a pixelwise correspondence between the model and the image. This allows for a fast, principled algorithm. We present promising results on difficult imagery for 3-D computed tomography images of the male pelvis for the purpose of image-guided radiotherapy of the prostate.

  1. Which forcing data errors matter most when modeling seasonal snowpacks?

    Science.gov (United States)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2014-12-01

    High quality forcing data are critical when modeling seasonal snowpacks and snowmelt, but their quality is often compromised due to measurement errors or deficiencies in gridded data products (e.g., spatio-temporal interpolation, empirical parameterizations, or numerical weather model outputs). To assess the relative impact of errors in different meteorological forcings, many studies have conducted sensitivity analyses where errors (e.g., bias) are imposed on one forcing at a time and changes in model output are compared. Although straightforward, this approach only considers simplistic error structures and cannot quantify interactions in different meteorological forcing errors (i.e., it assumes a linear system). Here we employ the Sobol' method of global sensitivity analysis, which allows us to test how co-existing errors in six meteorological forcings (i.e., air temperature, precipitation, wind speed, humidity, incoming shortwave and longwave radiation) impact specific modeled snow variables (i.e., peak snow water equivalent, snowmelt rates, and snow disappearance timing). Using the Sobol' framework across a large number of realizations (>100000 simulations annually at each site), we test how (1) the type (e.g., bias vs. random errors), (2) distribution (e.g., uniform vs. normal), and (3) magnitude (e.g., instrument uncertainty vs. field uncertainty) of forcing errors impact key outputs from a physically based snow model (the Utah Energy Balance). We also assess the role of climate by conducting the analysis at sites in maritime, intermountain, continental, and tundra snow zones. For all outputs considered, results show that (1) biases in forcing data are more important than random errors, (2) the choice of error distribution can enhance the importance of specific forcings, and (3) the level of uncertainty considered dictates the relative importance of forcings. While the relative importance of forcings varied with snow variable and climate, the results broadly

  2. Sensitivity analysis of geometric errors in additive manufacturing medical models.

    Science.gov (United States)

    Pinto, Jose Miguel; Arrieta, Cristobal; Andia, Marcelo E; Uribe, Sergio; Ramos-Grez, Jorge; Vargas, Alex; Irarrazaval, Pablo; Tejos, Cristian

    2015-03-01

    Additive manufacturing (AM) models are used in medical applications for surgical planning, prosthesis design and teaching. For these applications, the accuracy of the AM models is essential. Unfortunately, this accuracy is compromised due to errors introduced by each of the building steps: image acquisition, segmentation, triangulation, printing and infiltration. However, the contribution of each step to the final error remains unclear. We performed a sensitivity analysis comparing errors obtained from a reference with those obtained modifying parameters of each building step. Our analysis considered global indexes to evaluate the overall error, and local indexes to show how this error is distributed along the surface of the AM models. Our results show that the standard building process tends to overestimate the AM models, i.e. models are larger than the original structures. They also show that the triangulation resolution and the segmentation threshold are critical factors, and that the errors are concentrated at regions with high curvatures. Errors could be reduced choosing better triangulation and printing resolutions, but there is an important need for modifying some of the standard building processes, particularly the segmentation algorithms. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Fractionally Integrated Models With ARCH Errors

    OpenAIRE

    Hauser, Michael A.; Kunst, Robert M.

    1993-01-01

    Abstract: We introduce ARFIMA-ARCH models which simultaneously incorporate fractional differencing and conditional heteroskedasticity. We develop the likelihood function and a numerical estimation procedure for this model class. Two ARCH models - Engle- and Weiss-type - are explicitly treated and stationarity conditions are derived. Finite-sample properties of the estimation procedure are explored by Monte Carlo simulation. An application to the Standard & Poor 500 Index indicates existence o...

  4. General solution to diagonal model matching control of multiple-output-delay systems and its applications in adaptive scheme

    Institute of Scientific and Technical Information of China (English)

    Yingmin Jia

    2009-01-01

    This paper mainly studies the model matching problem of multiple-output-delay systems in which the reference model is assigned to a diagonal transfer function matrix.A new model matching controller structure is first developed,and then,it is shown that the controller is feasible if and only if the sets of Diophantine equations have common solutions.The obtained controller allows a parametric representation,which shows that an adaptive scheme can be used to tolerate parameter variations in the plants.The resulting adaptive law can guarantee the global stability of the closed-loop systems and the convergence of the output error.

  5. Effect of GPS errors on Emission model

    DEFF Research Database (Denmark)

    Lehmann, Anders; Gross, Allan

    n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...

  6. Estimation in the polynomial errors-in-variables model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Estimators are presented for the coefficients of the polynomial errors-in-variables (EV) model when replicated observations are taken at some experimental points. These estimators are shown to be strongly consistent under mild conditions.

  7. Reducing RANS Model Error Using Random Forest

    Science.gov (United States)

    Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng; Ling, Julia

    2016-11-01

    Reynolds-Averaged Navier-Stokes (RANS) models are still the work-horse tools in the turbulence modeling of industrial flows. However, the model discrepancy due to the inadequacy of modeled Reynolds stresses largely diminishes the reliability of simulation results. In this work we use a physics-informed machine learning approach to improve the RANS modeled Reynolds stresses and propagate them to obtain the mean velocity field. Specifically, the functional forms of Reynolds stress discrepancies with respect to mean flow features are trained based on an offline database of flows with similar characteristics. The random forest model is used to predict Reynolds stress discrepancies in new flows. Then the improved Reynolds stresses are propagated to the velocity field via RANS equations. The effects of expanding the feature space through the use of a complete basis of Galilean tensor invariants are also studied. The flow in a square duct, which is challenging for standard RANS models, is investigated to demonstrate the merit of the proposed approach. The results show that both the Reynolds stresses and the propagated velocity field are improved over the baseline RANS predictions. SAND Number: SAND2016-7437 A

  8. Cross-matching: A modified cross-correlation underlying threshold energy model and match-based depth perception

    Directory of Open Access Journals (Sweden)

    Takahiro eDoi

    2014-10-01

    Full Text Available Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye’s image can be matched to multiple parts of the other eye’s image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs, because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs, in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term ‘cross-matching’, represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS; this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth, and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in

  9. Quantifying model structural error: Efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model

    Science.gov (United States)

    Xu, Tianfang; Valocchi, Albert J.; Ye, Ming; Liang, Feng

    2017-05-01

    Groundwater model structural error is ubiquitous, due to simplification and/or misrepresentation of real aquifer systems. During model calibration, the basic hydrogeological parameters may be adjusted to compensate for structural error. This may result in biased predictions when such calibrated models are used to forecast aquifer responses to new forcing. We investigate the impact of model structural error on calibration and prediction of a real-world groundwater flow model, using a Bayesian method with a data-driven error model to explicitly account for model structural error. The error-explicit Bayesian method jointly infers model parameters and structural error and thereby reduces parameter compensation. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models (based on machine learning techniques) as a substitute for the computationally expensive groundwater model. We demonstrate that with explicit treatment of model structural error, the Bayesian method yields parameter posterior distributions that are substantially different from those derived using classical Bayesian calibration that does not account for model structural error. We also found that the error-explicit Bayesian method gives significantly more accurate prediction along with reasonable credible intervals. Finally, through variance decomposition, we provide a comprehensive assessment of prediction uncertainty contributed from parameter, model structure, and measurement uncertainty. The results suggest that the error-explicit Bayesian approach provides a solution to real-world modeling applications for which data support the presence of model structural error, yet model deficiency cannot be specifically identified or corrected.

  10. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters

    Science.gov (United States)

    Kuczera, George; Kavetski, Dmitri; Franks, Stewart; Thyer, Mark

    2006-11-01

    SummaryCalibration and prediction in conceptual rainfall-runoff (CRR) modelling is affected by the uncertainty in the observed forcing/response data and the structural error in the model. This study works towards the goal of developing a robust framework for dealing with these sources of error and focuses on model error. The characterisation of model error in CRR modelling has been thwarted by the convenient but indefensible treatment of CRR models as deterministic descriptions of catchment dynamics. This paper argues that the fluxes in CRR models should be treated as stochastic quantities because their estimation involves spatial and temporal averaging. Acceptance that CRR models are intrinsically stochastic paves the way for a more rational characterisation of model error. The hypothesis advanced in this paper is that CRR model error can be characterised by storm-dependent random variation of one or more CRR model parameters. A simple sensitivity analysis is used to identify the parameters most likely to behave stochastically, with variation in these parameters yielding the largest changes in model predictions as measured by the Nash-Sutcliffe criterion. A Bayesian hierarchical model is then formulated to explicitly differentiate between forcing, response and model error. It provides a very general framework for calibration and prediction, as well as for testing hypotheses regarding model structure and data uncertainty. A case study calibrating a six-parameter CRR model to daily data from the Abercrombie catchment (Australia) demonstrates the considerable potential of this approach. Allowing storm-dependent variation in just two model parameters (with one of the parameters characterising model error and the other reflecting input uncertainty) yields a substantially improved model fit raising the Nash-Sutcliffe statistic from 0.74 to 0.94. Of particular significance is the use of posterior diagnostics to test the key assumptions about the data and model errors

  11. A New Model for a Carpool Matching Service.

    Science.gov (United States)

    Xia, Jizhe; Curtin, Kevin M; Li, Weihong; Zhao, Yonglong

    2015-01-01

    Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined.

  12. A New Model for a Carpool Matching Service.

    Directory of Open Access Journals (Sweden)

    Jizhe Xia

    Full Text Available Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China to demonstrate how carpool teams can be determined.

  13. Multiscale measurement error models for aggregated small area health data.

    Science.gov (United States)

    Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin

    2016-08-01

    Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates.

  14. Error detection and rectification in digital terrain models

    Science.gov (United States)

    Hannah, M. J.

    1979-01-01

    Digital terrain models produced by computer correlation of stereo images are likely to contain occasional gross errors in terrain elevation. These errors typically result from having mismatched sub-areas of the two images, a problem which can occur for a variety of image- and terrain-related reasons. Such elevation errors produce undesirable effects when the models are further processed, and should be detected and corrected as early in the processing as possible. Algorithms have been developed to detect and correct errors in digital terrain models. These algorithms focus on the use of constraints on both the allowable slope and the allowable change in slope in local areas around each point. Relaxation-like techniques are employed in the iteration of the detection and correction phases to obtain best results.

  15. Identification of coefficients in platform drift error model

    Institute of Scientific and Technical Information of China (English)

    邓正隆; 徐松艳; 付振宪

    2002-01-01

    The identification of the coefficients in the drift error model of a floated gyro inertial nawgation plat-form was investigated by following the principle of the inertial navigation platform and using gyro and accelerom-eter output models, and a complete platform drift error model was established, with parameters as state varia-bles, thereby establishing the system state equation and observation equation. Since these two equations areboth nonlinear, the Extended Kalman Filter (EKF) was adopted. Then the problem of parameter identificationwas converted into a problem of state estimation. During the simulation, multi-position testing schemes were de-signed to motivated the parameters by gravity acceleration. Using these schemes, twenty-four error coefficientsof three gyros and six error coefficients of three accelerometers were identified, which showed the feasibility ofthis method.

  16. Assessment of errors and uncertainty patterns in GIA modeling

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Spada, G.

    During the last decade many efforts have been devoted to the assessment of global sea level rise and to the determination of the mass balance of continental ice sheets. In this context, the important role of glacial-isostatic adjustment (GIA) has been clearly recognized. Yet, in many cases only one...... "preferred" GIA model has been used, without any consideration of the possible errors involved. Lacking a rigorous assessment of systematic errors in GIA modeling, the reliability of the results is uncertain. GIA sensitivity and uncertainties associated with the viscosity models have been explored......, such as time-evolving shorelines and paleo-coastlines. In this study we quantify these uncertainties and their propagation in GIA response using a Monte Carlo approach to obtain spatio-temporal patterns of GIA errors. A direct application is the error estimates in ice mass balance in Antarctica and Greenland...

  17. Phase errors elimination in compact digital holoscope (CDH) based on a reasonable mathematical model

    Science.gov (United States)

    Wen, Yongfu; Qu, Weijuan; Cheng, Cheeyuen; Wang, Zhaomin; Asundi, Anand

    2015-03-01

    In the compact digital holoscope (CDH) measurement process, theoretically, we need to ensure the distances between the reference wave and object wave to the hologram plane exactly match. However, it is not easy to realize in practice due to the human factors. This can lead to a phase error in the reconstruction result. In this paper, the strict theoretical analysis of the wavefront interference is performed to demonstrate the mathematical model of the phase error and then a phase errors elimination method is proposed based on the advanced mathematical model, which has a more explicit physical meaning. Experiments are carried out to verify the performance of the presented method and the results indicate that it is effective and allows the operator can make operation more flexible.

  18. Discrete choice models with multiplicative error terms

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2009-01-01

    differences. We develop some properties of this type of model and show that in several cases the change from an additive to a multiplicative formulation, maintaining a specification of V, may lead to a large improvement in fit, sometimes larger than that gained from introducing random coefficients in V....

  19. Predictions from a model of global psychophysics about differences between perceptual and physical matches.

    Science.gov (United States)

    Steingrimsson, Ragnar; Luce, R Duncan

    2012-11-01

    A well-known phenomenon is that "matched" successive signals do not result in physical identity. This phenomenon has mostly been studied in terms of how much the second of two signals varies from the first, which is called the time-order error (TOE). Here, theoretical predictions led us to study the more general question of how much the matching signal differs from the standard signal, independent of the position of the matching signal as the first or second in a presentation. This we call non-equal matches (NEM). Using Luce's (Psychological Review, 109, 520-532, 2002, Psychological Review, 111, 446-454, 2004, Psychological Review, 115, 601, 2008, Psychological Review, 119, 373-387, 2012) global psychophysical theory, we predicted NEM when an intensity z is perceived to be "1 times a standard signal x." The theory predicts two different types of individual behaviors for the NEM, and these predictions were evaluated and confirmed in an experiment. We showed that the traditional definition of TOE precludes the observation, and thus the study, of the NEM phenomenon, and that the NEM effect is substantial enough to alter conclusions based on data that it affects. Furthermore, we demonstrated that the custom of averaging data over individuals clearly leads to quite misleading results. An important parameter in this modeling is a reference point that plays a central role in creating variability in the data, so that the key to obtaining regular data from respondents is to stabilize the reference point.

  20. Matching occupation and self: does matching theory adequately model children's thinking?

    Science.gov (United States)

    Watson, Mark; McMahon, Mary

    2004-10-01

    The present exploratory-descriptive cross-national study focused on the career development of 11- to 14-yr.-old children, in particular whether they can match their personal characteristics with their occupational aspirations. Further, the study explored whether their matching may be explained in terms of a fit between person and environment using Holland's theory as an example. Participants included 511 South African and 372 Australian children. Findings relate to two items of the Revised Career Awareness Survey that require children to relate personal-social knowledge to their favorite occupation. Data were analyzed in three stages using descriptive statistics, i.e., mean scores, frequencies, and percentage agreement. The study indicated that children perceived their personal characteristics to be related to their occupational aspirations. However, how this matching takes place is not adequately accounted for in terms of a career theory such as that of Holland.

  1. Background Error Correlation Modeling with Diffusion Operators

    Science.gov (United States)

    2013-01-01

    functions defined on the orthogonal curvilin- ear grid of the Navy Coastal Ocean Model (NCOM) [28] set up in the Monterrey Bay (Fig. 4). The number N...H2 = [1 1; 1−1], the HMs with order N = 2n, n= 1,2... can be easily constructed. HMs with N = 12,20 were constructed ” manually ” more than a century

  2. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  3. Bayesian modeling of measurement error in predictor variables

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; Glas, Cornelis A.W.

    2003-01-01

    It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between

  4. Forecasting the Euro exchange rate using vector error correction models

    NARCIS (Netherlands)

    Aarle, B. van; Bos, M.; Hlouskova, J.

    2000-01-01

    Forecasting the Euro Exchange Rate Using Vector Error Correction Models. — This paper presents an exchange rate model for the Euro exchange rates of four major currencies, namely the US dollar, the British pound, the Japanese yen and the Swiss franc. The model is based on the monetary approach of ex

  5. VQ-based model for binary error process

    Science.gov (United States)

    Csóka, Tibor; Polec, Jaroslav; Csóka, Filip; Kotuliaková, Kvetoslava

    2017-05-01

    A variety of complex techniques, such as forward error correction (FEC), automatic repeat request (ARQ), hybrid ARQ or cross-layer optimization, require in their design and optimization phase a realistic model of binary error process present in a specific digital channel. Past and more recent modeling approaches focus on capturing one or more stochastic characteristics with precision sufficient for the desired model application, thereby applying concepts and methods severely limiting the model applicability (eg in the form of modeled process prerequisite expectations). The proposed novel concept utilizing a Vector Quantization (VQ)-based approach to binary process modeling offers a viable alternative capable of superior modeling of most commonly observed small- and large-scale stochastic characteristics of a binary error process on the digital channel. Precision of the proposed model was verified using multiple statistical distances against the data captured in a wireless sensor network logical channel trace. Furthermore, the Pearson's goodness of fit test of all model variants' output was performed to conclusively demonstrate usability of the model for realistic captured binary error process. Finally, the presented results prove the proposed model applicability and its ability to far surpass the capabilities of the reference Elliot's model.

  6. Frequency-domain Model Matching PID Controller Design for Aero-engine

    Science.gov (United States)

    Liu, Nan; Huang, Jinquan; Lu, Feng

    2014-12-01

    The nonlinear model of aero-engine was linearized at multiple operation points by using frequency response method. The validation results indicate high accuracy of static and dynamic characteristics of the linear models. The improved PID tuning method of frequency-domain model matching was proposed with the system stability condition considered. The proposed method was applied to the design of PID controller of the high pressure rotor speed control in the flight envelope, and the control effects were evaluated by the nonlinear model. Simulation results show that the system had quick dynamic response with zero overshoot and zero steadystate error. Furthermore, a PID-fuzzy switching control scheme for aero-engine was designed, and the fuzzy switching system stability was proved. Simulations were studied to validate the applicability of the multiple PIDs fuzzy switching controller for aero-engine with wide range dynamics.

  7. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments and the rege......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...

  8. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    Directory of Open Access Journals (Sweden)

    Philip J Kellman

    Full Text Available Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert

  9. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    Science.gov (United States)

    Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and

  10. Comparative study and error analysis of digital elevation model interpolations

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-long; WU Wei; LIU Hong-bin

    2008-01-01

    Researchers in P.R.China commonly create triangulate irregular networks (TINs) from contours and then convert TINs into digital elevation models (DEMs). However, the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders. Taking a hilly region in southwestern China as a research area and using ArcGISTM software, we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions. The results show that different interpolation errors satisfy normal distributions, and large error exists near the structure line of the terrain. Furthermore, the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model (ANUDEM) is higher than that interpolated with TIN. The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.

  11. Accuracy of pitch matching significantly improved by live voice model.

    Science.gov (United States)

    Granot, Roni Y; Israel-Kolatt, Rona; Gilboa, Avi; Kolatt, Tsafrir

    2013-05-01

    Singing is, undoubtedly, the most fundamental expression of our musical capacity, yet an estimated 10-15% of Western population sings "out-of-tune (OOT)." Previous research in children and adults suggests, albeit inconsistently, that imitating a human voice can improve pitch matching. In the present study, we focus on the potentially beneficial effects of the human voice and especially the live human voice. Eighteen participants varying in their singing abilities were required to imitate in singing a set of nine ascending and descending intervals presented to them in five different randomized blocked conditions: live piano, recorded piano, live voice using optimal voice production, recorded voice using optimal voice production, and recorded voice using artificial forced voice production. Pitch and interval matching in singing were much more accurate when participants repeated sung intervals as compared with intervals played to them on the piano. The advantage of the vocal over the piano stimuli was robust and emerged clearly regardless of whether piano tones were played live and in full view or were presented via recording. Live vocal stimuli elicited higher accuracy than recorded vocal stimuli, especially when the recorded vocal stimuli were produced in a forced vocal production. Remarkably, even those who would be considered OOT singers on the basis of their performance when repeating piano tones were able to pitch match live vocal sounds, with deviations well within the range of what is considered accurate singing (M=46.0, standard deviation=39.2 cents). In fact, those participants who were most OOT gained the most from the live voice model. Results are discussed in light of the dual auditory-motor encoding of pitch analogous to that found in speech. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  12. A model for navigational errors in complex environmental fields.

    Science.gov (United States)

    Postlethwaite, Claire M; Walker, Michael M

    2014-12-21

    Many animals are believed to navigate using environmental signals such as light, sound, odours and magnetic fields. However, animals rarely navigate directly to their target location, but instead make a series of navigational errors which are corrected during transit. In previous work, we introduced a model showing that differences between an animal׳s 'cognitive map' of the environmental signals used for navigation and the true nature of these signals caused a systematic pattern in orientation errors when navigation begins. The model successfully predicted the pattern of errors seen in previously collected data from homing pigeons, but underestimated the amplitude of the errors. In this paper, we extend our previous model to include more complicated distortions of the contour lines of the environmental signals. Specifically, we consider the occurrence of critical points in the fields describing the signals. We consider three scenarios and compute orientation errors as parameters are varied in each case. We show that the occurrence of critical points can be associated with large variations in initial orientation errors over a small geographic area. We discuss the implications that these results have on predicting how animals will behave when encountering complex distortions in any environmental signals they use to navigate.

  13. Using visual analytics model for pattern matching in surveillance data

    Science.gov (United States)

    Habibi, Mohammad S.

    2013-03-01

    In a persistent surveillance system huge amount of data is collected continuously and significant details are labeled for future references. In this paper a method to summarize video data as a result of identifying events based on these tagged information is explained, leading to concise description of behavior within a section of extended recordings. An efficient retrieval of various events thus becomes the foundation for determining a pattern in surveillance system observations, both in its extended and fragmented versions. The patterns consisting of spatiotemporal semantic contents are extracted and classified by application of video data mining on generated ontology, and can be matched based on analysts interest and rules set forth for decision making. The proposed extraction and classification method used in this paper uses query by example for retrieving similar events containing relevant features, and is carried out by data aggregation. Since structured data forms majority of surveillance information this Visual Analytics model employs KD-Tree approach to group patterns in variant space and time, thus making it convenient to identify and match any abnormal burst of pattern detected in a surveillance video. Several experimental video were presented to viewers to analyze independently and were compared with the results obtained in this paper to demonstrate the efficiency and effectiveness of the proposed technique.

  14. A cumulative entropy method for distribution recognition of model error

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2015-02-01

    This paper develops a cumulative entropy method (CEM) to recognize the most suitable distribution for model error. In terms of the CEM, the Lévy stable distribution is employed to capture the statistical properties of model error. The strategies are tested on 250 experiments of axially loaded CFT steel stub columns in conjunction with the four national building codes of Japan (AIJ, 1997), China (DL/T, 1999), the Eurocode 4 (EU4, 2004), and United States (AISC, 2005). The cumulative entropy method is validated as more computationally efficient than the Shannon entropy method. Compared with the Kolmogorov-Smirnov test and root mean square deviation, the CEM provides alternative and powerful model selection criterion to recognize the most suitable distribution for the model error.

  15. Assessment of errors and uncertainty patterns in GIA modeling

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Spada, G.

    GIA modeling. GIA errors are also important in the far field of previously glaciated areas and in the time evolution of global indicators. In this regard we also account for other possible errors sources which can impact global indicators like the sea level history related to GIA. The thermal......During the last decade many efforts have been devoted to the assessment of global sea level rise and to the determination of the mass balance of continental ice sheets. In this context, the important role of glacial-isostatic adjustment (GIA) has been clearly recognized. Yet, in many cases only one...... in the literature. However, at least two major sources of errors remain. The first is associated with the ice models, spatial distribution of ice and history of melting (this is especially the case of Antarctica), the second with the numerical implementation of model features relevant to sea level modeling...

  16. Data Quality in Linear Regression Models: Effect of Errors in Test Data and Errors in Training Data on Predictive Accuracy

    Directory of Open Access Journals (Sweden)

    Barbara D. Klein

    1999-01-01

    Full Text Available Although databases used in many organizations have been found to contain errors, little is known about the effect of these errors on predictions made by linear regression models. The paper uses a real-world example, the prediction of the net asset values of mutual funds, to investigate the effect of data quality on linear regression models. The results of two experiments are reported. The first experiment shows that the error rate and magnitude of error in data used in model prediction negatively affect the predictive accuracy of linear regression models. The second experiment shows that the error rate and the magnitude of error in data used to build the model positively affect the predictive accuracy of linear regression models. All findings are statistically significant. The findings have managerial implications for users and builders of linear regression models.

  17. A priori discretization error metrics for distributed hydrologic modeling applications

    Science.gov (United States)

    Liu, Hongli; Tolson, Bryan A.; Craig, James R.; Shafii, Mahyar

    2016-12-01

    Watershed spatial discretization is an important step in developing a distributed hydrologic model. A key difficulty in the spatial discretization process is maintaining a balance between the aggregation-induced information loss and the increase in computational burden caused by the inclusion of additional computational units. Objective identification of an appropriate discretization scheme still remains a challenge, in part because of the lack of quantitative measures for assessing discretization quality, particularly prior to simulation. This study proposes a priori discretization error metrics to quantify the information loss of any candidate discretization scheme without having to run and calibrate a hydrologic model. These error metrics are applicable to multi-variable and multi-site discretization evaluation and provide directly interpretable information to the hydrologic modeler about discretization quality. The first metric, a subbasin error metric, quantifies the routing information loss from discretization, and the second, a hydrological response unit (HRU) error metric, improves upon existing a priori metrics by quantifying the information loss due to changes in land cover or soil type property aggregation. The metrics are straightforward to understand and easy to recode. Informed by the error metrics, a two-step discretization decision-making approach is proposed with the advantage of reducing extreme errors and meeting the user-specified discretization error targets. The metrics and decision-making approach are applied to the discretization of the Grand River watershed in Ontario, Canada. Results show that information loss increases as discretization gets coarser. Moreover, results help to explain the modeling difficulties associated with smaller upstream subbasins since the worst discretization errors and highest error variability appear in smaller upstream areas instead of larger downstream drainage areas. Hydrologic modeling experiments under

  18. Two Error Models for Calibrating SCARA Robots based on the MDH Model

    Directory of Open Access Journals (Sweden)

    Li Xiaolong

    2017-01-01

    Full Text Available This paper describes the process of using two error models for calibrating Selective Compliance Assembly Robot Arm (SCARA robots based on the modified Denavit-Hartenberg(MDH model, with the aim of improving the robot's accuracy. One of the error models is the position error model, which uses robot position errors with respect to an accurate robot base frame built before the measurement commenced. The other model is the distance error model, which uses only the robot moving distance to calculate errors. Because calibration requires the end-effector to be accurately measured, a laser tracker was used to measure the robot position and distance errors. After calibrating the robot and, the end-effector locations were measured again compensating the error models' parameters obtained from the calibration. The finding is that the robot's accuracy improved greatly after compensating the calibrated parameters.

  19. Direct cointegration testing in error-correction models

    NARCIS (Netherlands)

    F.R. Kleibergen (Frank); H.K. van Dijk (Herman)

    1994-01-01

    textabstractAbstract An error correction model is specified having only exact identified parameters, some of which reflect a possible departure from a cointegration model. Wald, likelihood ratio, and Lagrange multiplier statistics are derived to test for the significance of these parameters. The con

  20. Structure and Asymptotic theory for Nonlinear Models with GARCH Errors

    NARCIS (Netherlands)

    F. Chan (Felix); M.J. McAleer (Michael); M.C. Medeiros (Marcelo)

    2011-01-01

    textabstractNonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with li

  1. Calibrating Car-Following Model Considering Measurement Errors

    Directory of Open Access Journals (Sweden)

    Chang-qiao Shao

    2013-01-01

    Full Text Available Car-following model has important applications in traffic and safety engineering. To enhance the accuracy of model in predicting behavior of individual driver, considerable studies strive to improve the model calibration technologies. However, microscopic car-following models are generally calibrated by using macroscopic traffic data ignoring measurement errors-in-variables that leads to unreliable and erroneous conclusions. This paper aims to develop a technology to calibrate the well-known Van Aerde model. Particularly, the effect of measurement errors-in-variables on the accuracy of estimate is considered. In order to complete calibration of the model using microscopic data, a new parameter estimate method named two-step approach is proposed. The result shows that the modified Van Aerde model to a certain extent is more reliable than the generic model.

  2. Quality specifications for glucose meters: assessment by simulation modeling of errors in insulin dose.

    Science.gov (United States)

    Boyd, J C; Bruns, D E

    2001-02-01

    Proposed quality specifications for glucose meters allow results to be in error by 5-10% or more of the "true" concentration. Because meters are used as aids in the adjustment of insulin doses, we aimed to characterize the quantitative effect of meter error on the ability to identify the insulin dose appropriate for the true glucose concentration. Using Monte Carlo simulation, we generated random "true" glucose values within defined intervals. These values were converted to "measured" glucose values using mathematical models of glucose meters having defined imprecision (CV) and bias. For each combination of bias and imprecision, 10,000-20,000 true and measured glucose concentrations were matched with the corresponding insulin doses specified by selected insulin-dosing regimens. Discrepancies in prescribed doses were counted and their frequencies plotted in relation to bias and imprecision. For meters with a total analytical error of 5%, dosage errors occurred in approximately 8-23% of insulin doses. At 10% total error, 16-45% of doses were in error. Large errors of insulin dose (two-step or greater) occurred >5% of the time when the CV and/or bias exceeded 10-15%. Total dosage error rates were affected only slightly by choices of sliding scale among insulin dosage rules or by the range of blood glucose. To provide the intended insulin dosage 95% of the time required that both the bias and the CV of the glucose meter be <1% or <2%, depending on mean glucose concentrations and the rules for insulin dosing. Glucose meters that meet current quality specifications allow a large fraction of administered insulin doses to differ from the intended doses. The effects of such dosage errors on blood glucose and on patient outcomes require study.

  3. Structure and asymptotic theory for nonlinear models with GARCH errors

    Directory of Open Access Journals (Sweden)

    Felix Chan

    2015-01-01

    Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.

  4. Augmented GNSS differential corrections minimum mean square error estimation sensitivity to spatial correlation modeling errors.

    Science.gov (United States)

    Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco

    2014-06-11

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  5. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    Directory of Open Access Journals (Sweden)

    Nazelie Kassabian

    2014-06-01

    Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  6. Modeling Error in Quantitative Macro-Comparative Research

    Directory of Open Access Journals (Sweden)

    Salvatore J. Babones

    2015-08-01

    Full Text Available Much quantitative macro-comparative research (QMCR relies on a common set of published data sources to answer similar research questions using a limited number of statistical tools. Since all researchers have access to much the same data, one might expect quick convergence of opinion on most topics. In reality, of course, differences of opinion abound and persist. Many of these differences can be traced, implicitly or explicitly, to the different ways researchers choose to model error in their analyses. Much careful attention has been paid in the political science literature to the error structures characteristic of time series cross-sectional (TSCE data, but much less attention has been paid to the modeling of error in broadly cross-national research involving large panels of countries observed at limited numbers of time points. Here, and especially in the sociology literature, multilevel modeling has become a hegemonic – but often poorly understood – research tool. I argue that widely-used types of multilevel models, commonly known as fixed effects models (FEMs and random effects models (REMs, can produce wildly spurious results when applied to trended data due to mis-specification of error. I suggest that in most commonly-encountered scenarios, difference models are more appropriate for use in QMC.

  7. Prediction error, ketamine and psychosis: An updated model.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Fletcher, Paul C

    2016-11-01

    In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis. © The Author(s) 2016.

  8. Precise Asymptotics of Error Variance Estimator in Partially Linear Models

    Institute of Scientific and Technical Information of China (English)

    Shao-jun Guo; Min Chen; Feng Liu

    2008-01-01

    In this paper, we focus our attention on the precise asymptoties of error variance estimator in partially linear regression models, yi = xTi β + g(ti) +εi, 1 ≤i≤n, {εi,i = 1,... ,n } are i.i.d random errors with mean 0 and positive finite variance q2. Following the ideas of Allan Gut and Aurel Spataru[7,8] and Zhang[21],on precise asymptotics in the Baum-Katz and Davis laws of large numbers and precise rate in laws of the iterated logarithm, respectively, and subject to some regular conditions, we obtain the corresponding results in partially linear regression models.

  9. Improved Systematic Pointing Error Model for the DSN Antennas

    Science.gov (United States)

    Rochblatt, David J.; Withington, Philip M.; Richter, Paul H.

    2011-01-01

    New pointing models have been developed for large reflector antennas whose construction is founded on elevation over azimuth mount. At JPL, the new models were applied to the Deep Space Network (DSN) 34-meter antenna s subnet for corrections of their systematic pointing errors; it achieved significant improvement in performance at Ka-band (32-GHz) and X-band (8.4-GHz). The new models provide pointing improvements relative to the traditional models by a factor of two to three, which translate to approximately 3-dB performance improvement at Ka-band. For radio science experiments where blind pointing performance is critical, the new innovation provides a new enabling technology. The model extends the traditional physical models with higher-order mathematical terms, thereby increasing the resolution of the model for a better fit to the underlying systematic imperfections that are the cause of antenna pointing errors. The philosophy of the traditional model was that all mathematical terms in the model must be traced to a physical phenomenon causing antenna pointing errors. The traditional physical terms are: antenna axis tilts, gravitational flexure, azimuth collimation, azimuth encoder fixed offset, azimuth and elevation skew, elevation encoder fixed offset, residual refraction, azimuth encoder scale error, and antenna pointing de-rotation terms for beam waveguide (BWG) antennas. Besides the addition of spherical harmonics terms, the new models differ from the traditional ones in that the coefficients for the cross-elevation and elevation corrections are completely independent and may be different, while in the traditional model, some of the terms are identical. In addition, the new software allows for all-sky or mission-specific model development, and can utilize the previously used model as an a priori estimate for the development of the updated models.

  10. Stochastic modelling and analysis of IMU sensor errors

    Science.gov (United States)

    Zaho, Y.; Horemuz, M.; Sjöberg, L. E.

    2011-12-01

    The performance of a GPS/INS integration system is greatly determined by the ability of stand-alone INS system to determine position and attitude within GPS outage. The positional and attitude precision degrades rapidly during GPS outage due to INS sensor errors. With advantages of low price and volume, the Micro Electrical Mechanical Sensors (MEMS) have been wildly used in GPS/INS integration. Moreover, standalone MEMS can keep a reasonable positional precision only a few seconds due to systematic and random sensor errors. General stochastic error sources existing in inertial sensors can be modelled as (IEEE STD 647, 2006) Quantization Noise, Random Walk, Bias Instability, Rate Random Walk and Rate Ramp. Here we apply different methods to analyze the stochastic sensor errors, i.e. autoregressive modelling, Gauss-Markov process, Power Spectral Density and Allan Variance. Then the tests on a MEMS based inertial measurement unit were carried out with these methods. The results show that different methods give similar estimates of stochastic error model parameters. These values can be used further in the Kalman filter for better navigation accuracy and in the Doppler frequency estimate for faster acquisition after GPS signal outage.

  11. Application of variance components estimation to calibrate geoid error models.

    Science.gov (United States)

    Guo, Dong-Mei; Xu, Hou-Ze

    2015-01-01

    The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model.

  12. Error Modelling and Experimental Validation for a Planar 3-PPR Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2011-01-01

    In this paper, the positioning error of a 3-PPR planar parallel manipulator is studied with an error model and experimental validation. First, the displacement and workspace are analyzed. An error model considering both configuration errors and joint clearance errors is established. Using...... this model, the maximum positioning error was estimated for a U-shape PPR planar manipulator, the results being compared with the experimental measurements. It is found that the error distributions from the simulation is approximate to that of themeasurements....

  13. Error Modelling and Experimental Validation for a Planar 3-PPR Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2011-01-01

    In this paper, the positioning error of a 3-PPR planar parallel manipulator is studied with an error model and experimental validation. First, the displacement and workspace are analyzed. An error model considering both configuration errors and joint clearance errors is established. Using...... this model, the maximum positioning error was estimated for a U-shape PPR planar manipulator, the results being compared with the experimental measurements. It is found that the error distributions from the simulation is approximate to that of themeasurements....

  14. Accelerating Monte Carlo Markov chains with proxy and error models

    Science.gov (United States)

    Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan

    2015-12-01

    In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

  15. Audiovisual Matching in Speech and Nonspeech Sounds: A Neurodynamical Model

    Science.gov (United States)

    Loh, Marco; Schmid, Gabriele; Deco, Gustavo; Ziegler, Wolfram

    2010-01-01

    Audiovisual speech perception provides an opportunity to investigate the mechanisms underlying multimodal processing. By using nonspeech stimuli, it is possible to investigate the degree to which audiovisual processing is specific to the speech domain. It has been shown in a match-to-sample design that matching across modalities is more difficult…

  16. EMPIRICAL LIKELIHOOD FOR LINEAR MODELS UNDER m-DEPENDENT ERRORS

    Institute of Scientific and Technical Information of China (English)

    QinYongsong; JiangBo; LiYufang

    2005-01-01

    In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors. It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples.

  17. Bayesian network models for error detection in radiotherapy plans.

    Science.gov (United States)

    Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H

    2015-04-07

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  18. Fingerprint matching by thin-plate spline modelling of elastic deformations

    NARCIS (Netherlands)

    Bazen, Asker M.; Gerez, Sabih H.

    2003-01-01

    This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints according to the estimated model, the number of matching

  19. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  20. Multivariate DCC-GARCH Model: -With Various Error Distributions

    OpenAIRE

    Orskaug, Elisabeth

    2009-01-01

    In this thesis we have studied the DCC-GARCH model with Gaussian, Student's $t$ and skew Student's t-distributed errors. For a basic understanding of the GARCH model, the univariate GARCH and multivariate GARCH models in general were discussed before the DCC-GARCH model was considered. The Maximum likelihood method is used to estimate the parameters. The estimation of the correctly specified likelihood is difficult, and hence the DCC-model was designed to allow for two stage estim...

  1. Error Assessment in Modeling with Fractal Brownian Motions

    CERN Document Server

    Qiao, Bingqiang

    2013-01-01

    To model a given time series $F(t)$ with fractal Brownian motions (fBms), it is necessary to have appropriate error assessment for related quantities. Usually the fractal dimension $D$ is derived from the Hurst exponent $H$ via the relation $D=2-H$, and the Hurst exponent can be evaluated by analyzing the dependence of the rescaled range $\\langle|F(t+\\tau)-F(t)|\\rangle$ on the time span $\\tau$. For fBms, the error of the rescaled range not only depends on data sampling but also varies with $H$ due to the presence of long term memory. This error for a given time series then can not be assessed without knowing the fractal dimension. We carry out extensive numerical simulations to explore the error of rescaled range of fBms and find that for $0error of $\\langle|F(t+\\tau)-F(t)|\\rangle$. The e...

  2. An Emprical Point Error Model for Tls Derived Point Clouds

    Science.gov (United States)

    Ozendi, Mustafa; Akca, Devrim; Topan, Hüseyin

    2016-06-01

    The random error pattern of point clouds has significant effect on the quality of final 3D model. The magnitude and distribution of random errors should be modelled numerically. This work aims at developing such an anisotropic point error model, specifically for the terrestrial laser scanner (TLS) acquired 3D point clouds. A priori precisions of basic TLS observations, which are the range, horizontal angle and vertical angle, are determined by predefined and practical measurement configurations, performed at real-world test environments. A priori precision of horizontal (𝜎𝜃) and vertical (𝜎𝛼) angles are constant for each point of a data set, and can directly be determined through the repetitive scanning of the same environment. In our practical tests, precisions of the horizontal and vertical angles were found as 𝜎𝜃=±36.6𝑐𝑐 and 𝜎𝛼=±17.8𝑐𝑐, respectively. On the other hand, a priori precision of the range observation (𝜎𝜌) is assumed to be a function of range, incidence angle of the incoming laser ray, and reflectivity of object surface. Hence, it is a variable, and computed for each point individually by employing an empirically developed formula varying as 𝜎𝜌=±2-12 𝑚𝑚 for a FARO Focus X330 laser scanner. This procedure was followed by the computation of error ellipsoids of each point using the law of variance-covariance propagation. The direction and size of the error ellipsoids were computed by the principal components transformation. The usability and feasibility of the model was investigated in real world scenarios. These investigations validated the suitability and practicality of the proposed method.

  3. Modeling the growth of fingerprints improves matching for adolescents

    CERN Document Server

    Gottschlich, Carsten; Lorenz, Robert; Bernhardt, Stefanie; Hantschel, Michael; Munk, Axel

    2010-01-01

    We study the effect of growth on the fingerprints of adolescents, based on which we suggest a simple method to adjust for growth when trying to recover a juvenile's fingerprint in a database years later. Based on longitudinal data sets in juveniles' criminal records, we show that growth essentially leads to an isotropic rescaling, so that we can use the strong correlation between growth in stature and limbs to model the growth of fingerprints proportional to stature growth as documented in growth charts. The proposed rescaling leads to a 72% reduction of the distances between corresponding minutiae for the data set analyzed. These findings were corroborated by several verification tests. In an identification test on a database containing 3.25 million right index fingers at the Federal Criminal Police Office of Germany, the identification error rate of 20.8% was reduced to 2.1% by rescaling. The presented method is of striking simplicity and can easily be integrated into existing automated fingerprint identifi...

  4. Estimation in the polynomial errors-in-variables model

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Sanguo

    2002-01-01

    [1]Kendall, M. G., Stuart, A., The Advanced Theory of Statistics, Vol. 2, New York: Charles Griffin, 1979.[2]Fuller, W. A., Measurement Error Models, New York: Wiley, 1987.[3]Carroll, R. J., Ruppert D., Stefanski, L. A., Measurement Error in Nonlinear Models, London: Chapman & Hall, 1995.[4]Stout, W. F., Almost Sure Convergence, New York: Academic Press, 1974,154.[5]Petrov, V. V., Sums of Independent Random Variables, New York: Springer-Verlag, 1975, 272.[6]Zhang, S. G., Chen, X. R., Consistency of modified MLE in EV model with replicated observation, Science in China, Ser. A, 2001, 44(3): 304-310.[7]Lai, T. L., Robbins, H., Wei, C. Z., Strong consistency of least squares estimates in multiple regression, J. Multivariate Anal., 1979, 9: 343-362.

  5. A Model for Geometry-Dependent Errors in Length Artifacts.

    Science.gov (United States)

    Sawyer, Daniel; Parry, Brian; Phillips, Steven; Blackburn, Chris; Muralikrishnan, Bala

    2012-01-01

    We present a detailed model of dimensional changes in long length artifacts, such as step gauges and ball bars, due to bending under gravity. The comprehensive model is based on evaluation of the gauge points relative to the neutral bending surface. It yields the errors observed when the gauge points are located off the neutral bending surface of a bar or rod but also reveals the significant error associated with out-of-straightness of a bar or rod even if the gauge points are located in the neutral bending surface. For example, one experimental result shows a length change of greater than 1.5 µm on a 1 m ball bar with an out-of-straightness of 0.4 mm. This and other results are in agreement with the model presented in this paper.

  6. Approximation error in PDE-based modelling of vehicular platoons

    Science.gov (United States)

    Hao, He; Barooah, Prabir

    2012-08-01

    We study the problem of how much error is introduced in approximating the dynamics of a large vehicular platoon by using a partial differential equation, as was done in Barooah, Mehta, and Hespanha [Barooah, P., Mehta, P.G., and Hespanha, J.P. (2009), 'Mistuning-based Decentralised Control of Vehicular Platoons for Improved Closed Loop Stability', IEEE Transactions on Automatic Control, 54, 2100-2113], Hao, Barooah, and Mehta [Hao, H., Barooah, P., and Mehta, P.G. (2011), 'Stability Margin Scaling Laws of Distributed Formation Control as a Function of Network Structure', IEEE Transactions on Automatic Control, 56, 923-929]. In particular, we examine the difference between the stability margins of the coupled-ordinary differential equations (ODE) model and its partial differential equation (PDE) approximation, which we call the approximation error. The stability margin is defined as the absolute value of the real part of the least stable pole. The PDE model has proved useful in the design of distributed control schemes (Barooah et al. 2009; Hao et al. 2011); it provides insight into the effect of gains of local controllers on the closed-loop stability margin that is lacking in the coupled-ODE model. Here we show that the ratio of the approximation error to the stability margin is O(1/N), where N is the number of vehicles. Thus, the PDE model is an accurate approximation of the coupled-ODE model when N is large. Numerical computations are provided to corroborate the analysis.

  7. Identifying errors in dust models from data assimilation.

    Science.gov (United States)

    Pope, R J; Marsham, J H; Knippertz, P; Brooks, M E; Roberts, A J

    2016-09-16

    Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better understand the characteristics and sources of model error. Here we examine assimilation increments from Moderate Resolution Imaging Spectroradiometer AODs over northern Africa in the Met Office global forecast model. The model underpredicts (overpredicts) dust in light (strong) winds, consistent with (submesoscale) mesoscale processes lifting dust in reality but being missed by the model. Dust is overpredicted in the Sahara and underpredicted in the Sahel. Using observations of lighting and rain, we show that haboobs (cold pool outflows from moist convection) are an important dust source in reality but are badly handled by the model's convection scheme. The approach shows promise to serve as a useful framework for future model development.

  8. Adaptive Digital Calibration of Amplifier Finite Gain Effects and C-ratio Matching Errors for MASH Modulators

    Institute of Scientific and Technical Information of China (English)

    Feng Hui(冯晖); Lin Zhenghui

    2004-01-01

    Cascaded sigma-delta (MASH) modulators for higher order oversampled analog-to-digital conversion rely on precise matching of contributions from different quantizers to cancel lower order quantization noise from intermediate delta-sigma stages. This paper studies the effect of analog imperfections in the implementation, such as finite gain of the amplifiers and capacitor ratio mismatch, and presents an adaptive algorithm and implementation architectures for digital correction of such analog imperfections. Behavioral simulations on 1-1-1 oversampled converters demonstrate over 10dB improvements in signal-to-noise and over 20 dB improvements in dynamic range performance.

  9. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... for linearity is of particular interest as parameters of non-linear components vanish under the null. To solve the latter type of testing, we use the so-called sup tests, which here requires development of new (uniform) weak convergence results. These results are potentially useful in general for analysis...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...

  10. Error field and magnetic diagnostic modeling for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Sam A. [PPPL; Gates, David A. [PPPL; NEILSON, GEORGE H. [PPPL; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.

    2014-07-01

    The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (Β = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  11. Errors Made by Elementary Fourth Grade Students When Modelling Word Problems and the Elimination of Those Errors through Scaffolding

    Science.gov (United States)

    Ulu, Mustafa

    2017-01-01

    This study aims to identify errors made by primary school students when modelling word problems and to eliminate those errors through scaffolding. A 10-question problem-solving achievement test was used in the research. The qualitative and quantitative designs were utilized together. The study group of the quantitative design comprises 248…

  12. Influence of model errors in optimal sensor placement

    Science.gov (United States)

    Vincenzi, Loris; Simonini, Laura

    2017-02-01

    The paper investigates the role of model errors and parametric uncertainties in optimal or near optimal sensor placements for structural health monitoring (SHM) and modal testing. The near optimal set of measurement locations is obtained by the Information Entropy theory; the results of placement process considerably depend on the so-called covariance matrix of prediction error as well as on the definition of the correlation function. A constant and an exponential correlation function depending on the distance between sensors are firstly assumed; then a proposal depending on both distance and modal vectors is presented. With reference to a simple case-study, the effect of model uncertainties on results is described and the reliability and the robustness of the proposed correlation function in the case of model errors are tested with reference to 2D and 3D benchmark case studies. A measure of the quality of the obtained sensor configuration is considered through the use of independent assessment criteria. In conclusion, the results obtained by applying the proposed procedure on a real 5-spans steel footbridge are described. The proposed method also allows to better estimate higher modes when the number of sensors is greater than the number of modes of interest. In addition, the results show a smaller variation in the sensor position when uncertainties occur.

  13. Correction of placement error in EBL using model based method

    Science.gov (United States)

    Babin, Sergey; Borisov, Sergey; Militsin, Vladimir; Komagata, Tadashi; Wakatsuki, Tetsuro

    2016-10-01

    The main source of placement error in maskmaking using electron beam is charging. DISPLACE software provides a method to correct placement errors for any layout, based on a physical model. The charge of a photomask and multiple discharge mechanisms are simulated to find the charge distribution over the mask. The beam deflection is calculated for each location on the mask, creating data for the placement correction. The software considers the mask layout, EBL system setup, resist, and writing order, as well as other factors such as fogging and proximity effects correction. The output of the software is the data for placement correction. Unknown physical parameters such as fogging can be found from calibration experiments. A test layout on a single calibration mask was used to calibrate physical parameters used in the correction model. The extracted model parameters were used to verify the correction. As an ultimate test for the correction, a sophisticated layout was used for verification that was very different from the calibration mask. The placement correction results were predicted by DISPLACE, and the mask was fabricated and measured. A good correlation of the measured and predicted values of the correction all over the mask with the complex pattern confirmed the high accuracy of the charging placement error correction.

  14. Modeling L1-GPS Errors for an Enhanced Data Fusion with Lane Marking Maps for Road Automated Vehicles

    OpenAIRE

    2015-01-01

    International audience; This paper describes a method which models the time correlation errors of a standalone L1-GPS receiver by integrating front-view camera measurements map-matched with a lane marking map. An identification method of the parameters of the shaping model is presented and evaluated with real data. The observability of the augmented state vector is demonstrated according to an algebraic definition. A positioning solver based on extended Kalman filtering with measured input is...

  15. Topological quantum error correction in the Kitaev honeycomb model

    Science.gov (United States)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  16. Faculty Development: A Stage Model Matched to Blended Learning Maturation

    Science.gov (United States)

    Fetters, Michael L.; Duby, Tova Garcia

    2011-01-01

    Faculty development programs are critical to the implementation and support of curriculum innovation. In this case study, the authors present lessons learned from ten years of experience in faculty development programs created to support innovation in technology enhanced learning. Stages of curriculum innovation are matched to stages of faculty…

  17. Application of Convolution Perfectly Matched Layer in MRTD scattering model for non-spherical aerosol particles and its performance analysis

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Li, Hao; Yang, Bo; Jiang, Zidong; Liu, Lei; Chen, Ming

    2017-10-01

    The performance of absorbing boundary condition (ABC) is an important factor influencing the simulation accuracy of MRTD (Multi-Resolution Time-Domain) scattering model for non-spherical aerosol particles. To this end, the Convolution Perfectly Matched Layer (CPML), an excellent ABC in FDTD scheme, is generalized and applied to the MRTD scattering model developed by our team. In this model, the time domain is discretized by exponential differential scheme, and the discretization of space domain is implemented by Galerkin principle. To evaluate the performance of CPML, its simulation results are compared with those of BPML (Berenger's Perfectly Matched Layer) and ADE-PML (Perfectly Matched Layer with Auxiliary Differential Equation) for spherical and non-spherical particles, and their simulation errors are analyzed as well. The simulation results show that, for scattering phase matrices, the performance of CPML is better than that of BPML; the computational accuracy of CPML is comparable to that of ADE-PML on the whole, but at scattering angles where phase matrix elements fluctuate sharply, the performance of CPML is slightly better than that of ADE-PML. After orientation averaging process, the differences among the results of different ABCs are reduced to some extent. It also can be found that ABCs have a much weaker influence on integral scattering parameters (such as extinction and absorption efficiencies) than scattering phase matrices, this phenomenon can be explained by the error averaging process in the numerical volume integration.

  18. Modelling application for cognitive reliability and error analysis method

    Directory of Open Access Journals (Sweden)

    Fabio De Felice

    2013-10-01

    Full Text Available The automation of production systems has delegated to machines the execution of highly repetitive and standardized tasks. In the last decade, however, the failure of the automatic factory model has led to partially automated configurations of production systems. Therefore, in this scenario, centrality and responsibility of the role entrusted to the human operators are exalted because it requires problem solving and decision making ability. Thus, human operator is the core of a cognitive process that leads to decisions, influencing the safety of the whole system in function of their reliability. The aim of this paper is to propose a modelling application for cognitive reliability and error analysis method.

  19. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  20. Error modelling and experimental validation of a planar 3-PPR parallel manipulator with joint clearances

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2012-01-01

    This paper deals with the error modelling and analysis of a 3-PPR planar parallel manipulator with joint clearances. The kinematics and the Cartesian workspace of the manipulator are analyzed. An error model is established with considerations of both configuration errors and joint clearances. Usi...... this model, the upper bounds and distributions of the pose errors for this manipulator are established. The results are compared with experimental measurements and show the effectiveness of the error prediction model....

  1. A New Approach for Design of Model Matching Controllers for Time Delay Systems by Using GA Technique

    Directory of Open Access Journals (Sweden)

    K. K. D Priyanka

    2015-01-01

    Full Text Available Modeling of physical systems usually results in complex high order dynamic representation. The simulation and design of controller for higher order system is a difficult problem. Normally the cost and complexity of the controller increases with the system order. Hence it is desirable to approximate these models to reduced order model such that these lower order models preserves all salient features of higher order model. Lower order models simplify the understanding of the original higher order system. Modern controller design methods such as Model Matching Technique, LQG produce controllers of order at least equal to that of the plant, usually higher order. These control laws are may be too complex with regards to practical implementation and simpler designs are then sought. For this purpose, one can either reduce the order the plant model prior to controller design, or reduce the controller in the final stage, or both. In the present work, a controller is designed such that the closed loop system which includes a delay response(s matches with those of the chosen model with same time delay as close as possible. Based on desired model, a controller(of higher order is designed using model matching method and is approximated to a lower order one using Approximate Generalized Time Moments (AGTM / Approximate Generalized Markov Moments (AGMM matching technique and Optimal Pade Approximation technique. Genetic Algorithm (GA optimization technique is used to obtain the expansion points one which yields similar response as that of model, minimizing the error between the response of the model and that of designed closed loop system.

  2. Analysis and Correction of Systematic Height Model Errors

    Science.gov (United States)

    Jacobsen, K.

    2016-06-01

    The geometry of digital height models (DHM) determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC). Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3) has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP), but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM) digital surface model (DSM) or the new AW3D30 DSM, based on ALOS PRISM images, are

  3. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  4. Using Laser Scanners to Augment the Systematic Error Pointing Model

    Science.gov (United States)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  5. Modeling Approach of Regression Orthogonal Experiment Design for Thermal Error Compensation of CNC Turning Center

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. ...

  6. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  7. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    Science.gov (United States)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  8. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling

    DEFF Research Database (Denmark)

    Marinello, F.; Voltan, A.; Savio, E.

    2010-01-01

    This paper aimed at identifying the error sources that occur in dimensional measurements performed using atomic force microscopy. In particular, a set of characterization techniques for errors quantification is presented. The discussion on error sources is organized in four main categories......: scanning system, tip-surface interaction, environment, and data processing. The discussed errors include scaling effects, squareness errors, hysteresis, creep, tip convolution, and thermal drift. A mathematical model of the measurement system is eventually described, as a reference basis for errors...

  9. Errorless Establishment of a Match-to-Sample Form Discrimination in Preschool Children. I. A Modification of Animal Laboratory Procedures for Children, II. A Comparison of Errorless and Trial-and-Error Discrimination. Progress Report.

    Science.gov (United States)

    LeBlanc, Judith M.

    A sequence of studies compared two types of discrimination formation: errorless learning and trial-and-error procedures. The subjects were three boys and five girls from a university preschool. The children performed the experimental tasks at a typical match-to-sample apparatus with one sample window above and four match (response) windows below.…

  10. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    Science.gov (United States)

    Berry, Tyrus; Harlim, John

    2016-03-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consists of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.

  11. Error estimates for the Skyrme-Hartree-Fock model

    CERN Document Server

    Erler, J

    2014-01-01

    There are many complementing strategies to estimate the extrapolation errors of a model which was calibrated in least-squares fits. We consider the Skyrme-Hartree-Fock model for nuclear structure and dynamics and exemplify the following five strategies: uncertainties from statistical analysis, covariances between observables, trends of residuals, variation of fit data, dedicated variation of model parameters. This gives useful insight into the impact of the key fit data as they are: binding energies, charge r.m.s. radii, and charge formfactor. Amongst others, we check in particular the predictive value for observables in the stable nucleus $^{208}$Pb, the super-heavy element $^{266}$Hs, $r$-process nuclei, and neutron stars.

  12. Modelling Soft Error Probability in Firmware: A Case Study

    Directory of Open Access Journals (Sweden)

    DG Kourie

    2012-06-01

    Full Text Available This case study involves an analysis of firmware that controls explosions in mining operations. The purpose is to estimate the probability that external disruptive events (such as electro-magnetic interference could drive the firmware into a state which results in an unintended explosion. Two probabilistic models are built, based on two possible types of disruptive events: a single spike of interference, and a burst of multiple spikes of interference.The models suggest that the system conforms to the IEC 61508 Safety Integrity Levels, even under very conservative assumptions of operation.The case study serves as a platform for future researchers to build on when probabilistic modelling soft errors in other contexts.

  13. Scientist Role Models in the Classroom: How Important Is Gender Matching?

    Science.gov (United States)

    Conner, Laura D. Carsten; Danielson, Jennifer

    2016-01-01

    Gender-matched role models are often proposed as a mechanism to increase identification with science among girls, with the ultimate aim of broadening participation in science. While there is a great deal of evidence suggesting that role models can be effective, there is mixed support in the literature for the importance of gender matching. We used…

  14. A match-mismatch test of a stage model of behaviour change in tobacco smoking

    NARCIS (Netherlands)

    Dijkstra, A; Conijn, B; De Vries, H

    2006-01-01

    Aims An innovation offered by stage models of behaviour change is that of stage-matched interventions. Match-mismatch studies are the primary test of this idea but also the primary test of the validity of stage models. This study aimed at conducting such a test among tobacco smokers using the Social

  15. A match-mismatch test of a stage model of behaviour change in tobacco smoking

    NARCIS (Netherlands)

    Dijkstra, A; Conijn, B; De Vries, H

    2006-01-01

    Aims An innovation offered by stage models of behaviour change is that of stage-matched interventions. Match-mismatch studies are the primary test of this idea but also the primary test of the validity of stage models. This study aimed at conducting such a test among tobacco smokers using the Social

  16. Uncertainty and error in complex plasma chemistry models

    Science.gov (United States)

    Turner, Miles M.

    2015-06-01

    Chemistry models that include dozens of species and hundreds to thousands of reactions are common in low-temperature plasma physics. The rate constants used in such models are uncertain, because they are obtained from some combination of experiments and approximate theories. Since the predictions of these models are a function of the rate constants, these predictions must also be uncertain. However, systematic investigations of the influence of uncertain rate constants on model predictions are rare to non-existent. In this work we examine a particular chemistry model, for helium-oxygen plasmas. This chemistry is of topical interest because of its relevance to biomedical applications of atmospheric pressure plasmas. We trace the primary sources for every rate constant in the model, and hence associate an error bar (or equivalently, an uncertainty) with each. We then use a Monte Carlo procedure to quantify the uncertainty in predicted plasma species densities caused by the uncertainty in the rate constants. Under the conditions investigated, the range of uncertainty in most species densities is a factor of two to five. However, the uncertainty can vary strongly for different species, over time, and with other plasma conditions. There are extreme (pathological) cases where the uncertainty is more than a factor of ten. One should therefore be cautious in drawing any conclusion from plasma chemistry modelling, without first ensuring that the conclusion in question survives an examination of the related uncertainty.

  17. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... of the process in terms of stochastic and deter- ministic trends as well as stationary components. In particular, the behaviour of the cointegrating relations is described in terms of geo- metric ergodicity. Despite the fact that no deterministic terms are included, the process will have both stochastic trends...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  18. Accounting for model error due to unresolved scales within ensemble Kalman filtering

    CERN Document Server

    Mitchell, Lewis

    2014-01-01

    We propose a method to account for model error due to unresolved scales in the context of the ensemble transform Kalman filter (ETKF). The approach extends to this class of algorithms the deterministic model error formulation recently explored for variational schemes and extended Kalman filter. The model error statistic required in the analysis update is estimated using historical reanalysis increments and a suitable model error evolution law. Two different versions of the method are described; a time-constant model error treatment where the same model error statistical description is time-invariant, and a time-varying treatment where the assumed model error statistics is randomly sampled at each analysis step. We compare both methods with the standard method of dealing with model error through inflation and localization, and illustrate our results with numerical simulations on a low order nonlinear system exhibiting chaotic dynamics. The results show that the filter skill is significantly improved through th...

  19. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...

  20. MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Jung

    2016-06-01

    Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  1. Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing

    Science.gov (United States)

    Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.

    2016-06-01

    In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  2. Matching Heterogenous Open Innovation Strategies with Business Model Dimensions

    OpenAIRE

    Saebi, Tina; Foss, Nicolai Juul

    2014-01-01

    Research on open innovation suggests that companies benefit differentially from adopting open innovation strategies; however, it is unclear why this is so. One possible explanation is that companies' business models are not attuned to open strategies. Accordingly, we propose a contingency model of open business models by systematically linking open innovation strategies to core business model dimensions, notably the content, structure, and governance of transactions. We further illustrate a c...

  3. Evaluation of statistical models for forecast errors from the HBV model

    Science.gov (United States)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  4. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-04-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on the methane emissions estimated by an atmospheric inversion system. Synthetic methane observations, given by 10 different model outputs from the international TransCom-CH4 model exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the PYVAR-LMDZ-SACS inverse system to produce 10 different methane emission estimates at the global scale for the year 2005. The same set-up has been used to produce the synthetic observations and to compute flux estimates by inverse modelling, which means that only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg CH4 per year at the global scale, representing 5% of the total methane emissions. At continental and yearly scales, transport model errors have bigger impacts depending on the region, ranging from 36 Tg CH4 in north America to 7 Tg CH4 in Boreal Eurasian (from 23% to 48%. At the model gridbox scale, the spread of inverse estimates can even reach 150% of the prior flux. Thus, transport model errors contribute to significant uncertainties on the methane estimates by inverse modelling, especially when small spatial scales are invoked. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher resolution models. The analysis of methane estimated fluxes in these different configurations questions the consistency of transport model errors in current inverse systems. For future methane inversions, an improvement in the modelling of the atmospheric transport would make the estimations more accurate. Likewise, errors of the observation covariance matrix should be more consistently prescribed in future inversions in order to limit the impact of transport model errors on estimated methane

  5. Model-based shape matching of orthopaedic implants in RSA and fluoroscopy

    NARCIS (Netherlands)

    Prins, Anne Hendrik

    2015-01-01

    Model-based shape matching is commonly used, for example to measure the migration of an implant with Roentgen stereophotogrammetric analysis (RSA) or to measure implant kinematics with fluoroscopy. The aim of this thesis was to investigate the general usability of shape matching and to improve the r

  6. The Effectiveness of Contingency Model Training: A Review of the Validation of LEADER MATCH.

    Science.gov (United States)

    Fiedler, Fred E.; Mahar, Linda

    1979-01-01

    Twelve studies are reviewed which tested the effectiveness of LEADER MATCH, a new leadership training method based on Fiedler's Contingency Model. The performance evaluations of 423 trained leaders were compared to those of 484 controls. All studies yielded statistically significant results supporting LEADER MATCH training. (Editor/SJL)

  7. A Two-Sided Matching Decision Model Based on Uncertain Preference Sequences

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2015-01-01

    Full Text Available Two-sided matching is a hot issue in the field of operation research and decision analysis. This paper reviews the typical two-sided matching models and their limitations in some specific contexts, and then puts forward a new decision model based on uncertain preference sequences. In this model, we first design a data processing method to get preference ordinal value in uncertain preference sequence, then compute the preference distance of each matching pair based on these certain preference ordinal values, set the optimal objectives as maximizing matching number and minimizing total sum of preference distances of all the matching pairs under the lowest threshold constraint of matching effect, and then solve it with branch-and-bound algorithm. Meanwhile, we take two numeral cases as examples and analyze the different matching solutions with one-norm distance, two-norm distance, and positive-infinity-norm distance, respectively. We also compare our decision model with two other approaches, and summarize their characteristics on two-sided matching.

  8. Universal geometric error modeling of the CNC machine tools based on the screw theory

    Science.gov (United States)

    Tian, Wenjie; He, Baiyan; Huang, Tian

    2011-05-01

    The methods to improve the precision of the CNC (Computerized Numerical Control) machine tools can be classified into two categories: error prevention and error compensation. Error prevention is to improve the precision via high accuracy in manufacturing and assembly. Error compensation is to analyze the source errors that affect on the machining error, to establish the error model and to reach the ideal position and orientation by modifying the trajectory in real time. Error modeling is the key to compensation, so the error modeling method is of great significance. Many researchers have focused on this topic, and proposed many methods, but we can hardly describe the 6-dimensional configuration error of the machine tools. In this paper, the universal geometric error model of CNC machine tools is obtained utilizing screw theory. The 6-dimensional error vector is expressed with a twist, and the error vector transforms between different frames with the adjoint transformation matrix. This model can describe the overall position and orientation errors of the tool relative to the workpiece entirely. It provides the mathematic model for compensation, and also provides a guideline in the manufacture, assembly and precision synthesis of the machine tools.

  9. Statistical Inference for Partially Linear Regression Models with Measurement Errors

    Institute of Scientific and Technical Information of China (English)

    Jinhong YOU; Qinfeng XU; Bin ZHOU

    2008-01-01

    In this paper, the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors. Firstly,a bandwidth selection procedure is proposed, which is a combination of the difference-based technique and GCV method. Secondly, a goodness-of-fit test procedure is proposed,which is an extension of the generalized likelihood technique. Thirdly, a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares. Same as "Variable selection via nonconcave penalized like-lihood and its oracle properties" (J. Amer. Statist. Assoc., 96, 2001, 1348-1360), it is shown that the resulting estimator has an oracle property with a proper choice of regu-larization parameters and penalty function. Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures.

  10. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  11. Calibration of parallel kinematics machine using generalized distance error model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper focus on the accuracy enhancement of parallel kinematics machine through kinematics calibration. In the calibration processing, well-structured identification Jacobian matrix construction and end-effector position and orientation measurement are two main difficulties. In this paper, the identification Jacobian matrix is constructed easily by numerical calculation utilizing the unit virtual velocity method. The generalized distance errors model is presented for avoiding measuring the position and orientation directly which is difficult to be measured. At last, a measurement tool is given for acquiring the data points in the calibration processing.Experimental studies confirmed the effectiveness of method. It is also shown in the paper that the proposed approach can be applied to other typed parallel manipulators.

  12. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.

    2011-01-01

    Since the world's energy demand increases every year, the oil & gas industry makes a continuous effort to improve fossil fuel recovery. Physics-based petroleum reservoir modeling and closed-loop model-based reservoir management concept can play an important role here. In this concept measured data a

  13. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.

    2011-01-01

    Since the world's energy demand increases every year, the oil & gas industry makes a continuous effort to improve fossil fuel recovery. Physics-based petroleum reservoir modeling and closed-loop model-based reservoir management concept can play an important role here. In this concept measured data a

  14. A General Epipolar-Line Model between Optical and SAR Images and Used in Image Matching

    Directory of Open Access Journals (Sweden)

    Shuai Xing

    2014-02-01

    Full Text Available The search space and strategy are important for optical and SAR image matching. In this paper a general epipolar-line model has been proposed between linear array push-broom optical and SAR images. Then a dynamic approximate epipolar-line constraint model (DAELCM has been constructed and used to construct a new image matching algorithm with Harris operator and CRA. Experimental results have shown that the general epipolar-line model is valid and successfully used in optical and SAR image matching, and effectively limits the search space and decreased computation.

  15. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    Science.gov (United States)

    2013-09-30

    tracer concentration measurements are available; circles indicate a regular 19 × 37 spatial grid. Time-Varying Error Covariance Models: Extending...2013. (Wikle) Invited; Using quadratic nonlinear statistical emulators to facilitate ocean biogeochemical data assimilation, Institute for

  16. FUZZY MODEL OPTIMIZATION FOR TIME SERIES DATA USING A TRANSLATION IN THE EXTENT OF MEAN ERROR

    OpenAIRE

    Nurhayadi; ., Subanar; Abdurakhman; Agus Maman Abadi

    2014-01-01

    Recently, many researchers in the field of writing about the prediction of stock price forecasting, electricity load demand and academic enrollment using fuzzy methods. However, in general, modeling does not consider the model position to actual data yet where it means that error is not been handled optimally. The error that is not managed well can reduce the accuracy of the forecasting. Therefore, the paper will discuss reducing error using model translation. The error that will be reduced i...

  17. Error Modelling and Experimental Validation of a Planar 3-PPR Parallel Manipulator with Joint Clearances

    OpenAIRE

    Wu, Guanglei; Shaoping, Bai; Jørgen A., Kepler; Caro, Stéphane

    2012-01-01

    International audience; This paper deals with the error modelling and analysis of a 3-\\underline{P}PR planar parallel manipulator with joint clearances. The kinematics and the Cartesian workspace of the manipulator are analyzed. An error model is established with considerations of both configuration errors and joint clearances. Using this model, the upper bounds and distributions of the pose errors for this manipulator are established. The results are compared with experimental measurements a...

  18. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    NARCIS (Netherlands)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Gloor, E.; Houweling, S.; Kawa, S.R.; Krol, M.C.; Patra, P.K.; Prinn, R.G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-01-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, ar

  19. Fast Adaptation in Generative Models with Generative Matching Networks

    OpenAIRE

    Bartunov, Sergey; Vetrov, Dmitry P.

    2016-01-01

    Despite recent advances, the remaining bottlenecks in deep generative models are necessity of extensive training and difficulties with generalization from small number of training examples. Both problems may be addressed by conditional generative models that are trained to adapt the generative distribution to additional input data. So far this idea was explored only under certain limitations such as restricting the input data to be a single object or multiple objects representing the same con...

  20. Fourier transform based dynamic error modeling method for ultra-precision machine tool

    Science.gov (United States)

    Chen, Guoda; Liang, Yingchun; Ehmann, Kornel F.; Sun, Yazhou; Bai, Qingshun

    2014-08-01

    In some industrial fields, the workpiece surface need to meet not only the demand of surface roughness, but the strict requirement of multi-scale frequency domain errors. Ultra-precision machine tool is the most important carrier for the ultra-precision machining of the parts, whose errors is the key factor to influence the multi-scale frequency domain errors of the machined surface. The volumetric error modeling is the important bridge to link the relationship between the machine error and machined surface error. However, the available error modeling method from the previous research is hard to use to analyze the relationship between the dynamic errors of the machine motion components and multi-scale frequency domain errors of the machined surface, which plays the important reference role in the design and accuracy improvement of the ultra-precision machine tool. In this paper, a fourier transform based dynamic error modeling method is presented, which is also on the theoretical basis of rigid body kinematics and homogeneous transformation matrix. A case study is carried out, which shows the proposed method can successfully realize the identical and regular numerical description of the machine dynamic errors and the volumetric errors. The proposed method has strong potential for the prediction of the frequency domain errors on the machined surface, extracting of the information of multi-scale frequency domain errors, and analysis of the relationship between the machine motion components and frequency domain errors of the machined surface.

  1. Entropy Error Model of Planar Geometry Features in GIS

    Institute of Scientific and Technical Information of China (English)

    LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng

    2003-01-01

    Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.

  2. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    Science.gov (United States)

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  3. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    Directory of Open Access Journals (Sweden)

    K. R. Uthayan

    2015-01-01

    Full Text Available Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  4. An Activation-Based Model of Routine Sequence Errors

    Science.gov (United States)

    2015-04-01

    Occasionally, after completing a step, the screen cleared and the participants were interrupted to perform a simple arithmetic task; the interruption...accordance with the columnar data, the distribution of errors clusters around the +/-1 errors, and falls away in both directions as the error type gets...has been accessed in working memory, slowly decaying as time passes. Activation strength- ening is calculated according to: As = ln ( n ∑ j=1 t−dj

  5. Generalized multiplicative error models: Asymptotic inference and empirical analysis

    Science.gov (United States)

    Li, Qian

    This dissertation consists of two parts. The first part focuses on extended Multiplicative Error Models (MEM) that include two extreme cases for nonnegative series. These extreme cases are common phenomena in high-frequency financial time series. The Location MEM(p,q) model incorporates a location parameter so that the series are required to have positive lower bounds. The estimator for the location parameter turns out to be the minimum of all the observations and is shown to be consistent. The second case captures the nontrivial fraction of zero outcomes feature in a series and combines a so-called Zero-Augmented general F distribution with linear MEM(p,q). Under certain strict stationary and moment conditions, we establish a consistency and asymptotic normality of the semiparametric estimation for these two new models. The second part of this dissertation examines the differences and similarities between trades in the home market and trades in the foreign market of cross-listed stocks. We exploit the multiplicative framework to model trading duration, volume per trade and price volatility for Canadian shares that are cross-listed in the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX). We explore the clustering effect, interaction between trading variables, and the time needed for price equilibrium after a perturbation for each market. The clustering effect is studied through the use of univariate MEM(1,1) on each variable, while the interactions among duration, volume and price volatility are captured by a multivariate system of MEM(p,q). After estimating these models by a standard QMLE procedure, we exploit the Impulse Response function to compute the calendar time for a perturbation in these variables to be absorbed into price variance, and use common statistical tests to identify the difference between the two markets in each aspect. These differences are of considerable interest to traders, stock exchanges and policy makers.

  6. A Long-Term Memory Competitive Process Model of a Common Procedural Error

    Science.gov (United States)

    2013-08-01

    A novel computational cognitive model explains human procedural error in terms of declarative memory processes. This is an early version of a process ... model intended to predict and explain multiple classes of procedural error a priori. We begin with postcompletion error (PCE) a type of systematic

  7. Bayesian hierarchical error model for analysis of gene expression data

    National Research Council Canada - National Science Library

    Cho, HyungJun; Lee, Jae K

    2004-01-01

    .... Moreover, the same gene often shows quite heterogeneous error variability under different biological and experimental conditions, which must be estimated separately for evaluating the statistical...

  8. New mathematical model for error reduction of stressed lap

    Science.gov (United States)

    Zhao, Pu; Yang, Shuming; Sun, Lin; Shi, Xinyu; Liu, Tao; Jiang, Zhuangde

    2016-05-01

    Stressed lap, compared to traditional polishing methods, has high processing efficiency. However, this method has disadvantages in processing nonsymmetric surface errors. A basic-function method is proposed to calculate parameters for a stressed-lap polishing system. It aims to minimize residual errors and is based on a matrix and nonlinear optimization algorithm. The results show that residual root-mean-square could be >15% after one process for classical trefoil error. The surface period errors close to the lap diameter were removed efficiently, up to 50% material removal.

  9. Stochastic model error in the LANS-alpha and NS-alpha deconvolution models of turbulence

    CERN Document Server

    Olson, Eric

    2015-01-01

    This paper reports on a computational study of the model error in the LANS-alpha and NS-alpha deconvolution models of homogeneous isotropic turbulence. The focus is on how well the model error may be characterized by a stochastic force. Computations are also performed for a new turbulence model obtained as a rescaled limit of the deconvolution model. The technique used is to plug a solution obtained from direct numerical simulation of the incompressible Navier--Stokes equations into the competing turbulence models and to then compute the time evolution of the resulting residual. All computations have been done in two dimensions rather than three for convenience and efficiency. When the effective averaging length scale in any of the models is $\\alpha_0=0.01$ the time evolution of the root-mean-squared residual error grows as $\\sqrt t$. This growth rate is consistent with the hypothesis that the model error may be characterized by a stochastic force. When $\\alpha_0=0.20$ the residual error grows linearly. Linea...

  10. Allowing for model error in strong constraint 4D-Var

    Science.gov (United States)

    Howes, Katherine; Lawless, Amos; Fowler, Alison

    2016-04-01

    Four dimensional variational data assimilation (4D-Var) can be used to obtain the best estimate of the initial conditions of an environmental forecasting model, namely the analysis. In practice, when the forecasting model contains errors, the analysis from the 4D-Var algorithm will be degraded to allow for errors later in the forecast window. This work focusses on improving the analysis at the initial time by allowing for the fact that the model contains error, within the context of strong constraint 4D-Var. The 4D-Var method developed acknowledges the presence of random error in the model at each time step by replacing the observation error covariance matrix with an error covariance matrix that includes both observation error and model error statistics. It is shown that this new matrix represents the correct error statistics of the innovations in the presence of model error. A method for estimating this matrix using innovation statistics, without requiring prior knowledge of the model error statistics, is presented. The method is demonstrated numerically using a non-linear chaotic system with erroneous parameter values. We show that that the new method works to reduce the analysis error covariance when compared with a standard strong constraint 4D-Var scheme. We discuss the fact that an improved analysis will not necessarily provide a better forecast.

  11. Selecting Human Error Types for Cognitive Modelling and Simulation

    NARCIS (Netherlands)

    Mioch, T.; Osterloh, J.P.; Javaux, D.

    2010-01-01

    This paper presents a method that has enabled us to make a selection of error types and error production mechanisms relevant to the HUMAN European project, and discusses the reasons underlying those choices. We claim that this method has the advantage that it is very exhaustive in determining the re

  12. Assessment of errors and uncertainty patterns in GIA modeling

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Spada, G.

    , such as time-evolving shorelines and paleo-coastlines. In this study we quantify these uncertainties and their propagation in GIA response using a Monte Carlo approach to obtain spatio-temporal patterns of GIA errors. A direct application is the error estimates in ice mass balance in Antarctica and Greenland...

  13. Assessment of errors and uncertainty patterns in GIA modeling

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Spada, G.

    2012-01-01

    , such as time-evolving shorelines and paleo coastlines. In this study we quantify these uncertainties and their propagation in GIA response using a Monte Carlo approach to obtain spatio-temporal patterns of GIA errors. A direct application is the error estimates in ice mass balance in Antarctica and Greenland...

  14. Refractive-index-matched hydrogel materials for modeling flow-structure interactions

    CERN Document Server

    Byron, Margaret L

    2012-01-01

    In imaging-based studies of flow around solid objects, it is useful to have materials that are refractive-index-matched to the surrounding fluid. However, materials currently in use are usually rigid and matched to liquids that are either expensive or highly viscous. This does not allow for measurements at high Reynolds number, nor accurate modeling of flexible structures. This work explores the use of two hydrogels (agarose and polyacrylamide) as refractive-index-matched models in water. These hydrogels are inexpensive, can be cast into desired shapes, and have flexibility that can be tuned to match biological materials. The use of water as the fluid phase allows this method to be implemented immediately in many experimental facilities and permits investigation of high Reynolds number phenomena. We explain fabrication methods and present a summary of the physical and optical properties of both gels, and then show measurements demonstrating the use of hydrogel models in quantitative imaging.

  15. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  16. Exploring the Role Played by Error Correction and Models on Children's Reported Noticing and Output Production in a L2 Writing Task

    Science.gov (United States)

    Coyle, Yvette; Roca de Larios, Julio

    2014-01-01

    This article reports an empirical study in which we explored the role played by two forms of feedback--error correction and model texts--on child English as a foreign language learners' reported noticing and written output. The study was carried out with 11- and 12-year-old children placed in proficiency-matched pairs who engaged in a…

  17. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.

    Science.gov (United States)

    Qian, Y; Harris, N R

    2014-02-01

    This work describes a new approach to impedance matching for ultrasonic transducers. A single matching layer with high acoustic impedance of 16 MRayls is demonstrated to show a bandwidth of around 70%, compared with conventional single matching layer designs of around 50%. Although as a consequence of this improvement in bandwidth, there is a loss in sensitivity, this is found to be similar to an equivalent double matching layer design. Designs are calculated by using the KLM model and are then verified by FEA simulation, with very good agreement Considering the fabrication difficulties encountered in creating a high-frequency double matched design due to the requirement for materials with specific acoustic impedances, the need to accurately control the thickness of layers, and the relatively narrow bandwidths available for conventional single matched designs, the new approach shows advantages in that alternative (and perhaps more practical) materials become available, and offers a bandwidth close to that of a double layer design with the simplicity of a single layer design. The disadvantage is a trade-off in sensitivity. A typical example of a piezoceramic transducer matched to water can give a 70% fractional bandwidth (comparable to an ideal double matched design of 72%) with a 3dB penalty in insertion loss.

  18. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing.

    Science.gov (United States)

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-06-22

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  19. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-06-01

    Full Text Available A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1 feature extraction; (2 similarity measure; and matching, and (3 estimating exterior orientation parameters (EOPs of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  20. Error Threshold for Spatially Resolved Evolution in the Quasispecies Model

    Energy Technology Data Exchange (ETDEWEB)

    Altmeyer, S.; McCaskill, J. S.

    2001-06-18

    The error threshold for quasispecies in 1, 2, 3, and {infinity} dimensions is investigated by stochastic simulation and analytically. The results show a monotonic decrease in the maximal sustainable error probability with decreasing diffusion coefficient, independently of the spatial dimension. It is thereby established that physical interactions between sequences are necessary in order for spatial effects to enhance the stabilization of biological information. The analytically tractable behavior in an {infinity} -dimensional (simplex) space provides a good guide to the spatial dependence of the error threshold in lower dimensional Euclidean space.

  1. Keefektifan Model Kooperatif Tipe Make A Match dan Model CPS Terhadap Kemampuan Pemecahan Masalah dan Motivasi Belajar

    Directory of Open Access Journals (Sweden)

    Nur Fitri Amalia

    2013-12-01

    Full Text Available AbstrakTujuan penelitian ini adalah untuk mengetahui keefektifan model kooperatif tipe Make a Match dan model CPS terhadap kemampuan pemecahan masalah dan motivasi belajar sis-wa kelas X pada materi persamaan dan fungsi kuadrat. Populasi dalam penelitian ini adalah siswa kelas X SMA N 1 Subah tahun ajaran 2013/2014. Sampel dalam penelitian ini diam-bil dengan teknik random sampling, yaitu teknik pengambilan sampel dengan acak. Kelas X8 terpilih sebagai kelas eksperimen I dengan penerapan model kooperatif tipe Make a Match dan kelas X7 terpilih sebagai kelas eksperimen II dengan penerapan model CPS. Da-ta hasil penelitian diperoleh dengan tes dan pemberian angket untuk kemudian dianalisis menggunakan uji proporsi dan uji t. Hasil penelitian adalah (1 implementasi model koope-ratif tipe Make a Match efektif terhadap kemampuan pemecahan masalah; (2 implementasi model CPS efektif terhadap kemampuan pemecahan masalah; (3 implementasi model koo-peratif tipe Make a Match lebih baik daripada model CPS terhadap kemampuan pecahan masalah; (4 implementasi model CPS lebih baik daripada model kooperatif tipe Make a Match terhadap motivasi belajar.Kata Kunci:       Make A Match; CPS; Pemecahan Masalah; Motivasi  AbstractThe purpose of this study was to determine the effectiveness of cooperative models Make a Match and CPS to problem-solving ability and motivation of students of class X in the equation of matter and quadratic function. The population of this study was the tenth grade students of state senior high school 1 Subah academic year 2013/2014. The samples in this study were taken by random sampling technique, that is sampling techniques with random. Class X8 was selected as the experimental class I with the application of cooperative model make a Match and class X7 was selected as the experimental class II with the application of the CPS. The data were obtained with the administration of a questionnaire to test and then analyzed using the

  2. Reduction of wafer-edge overlay errors using advanced correction models, optimized for minimal metrology requirements

    Science.gov (United States)

    Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon

    2016-03-01

    In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.

  3. Color Matching for Fiber Blends Based on Stearns-Noechel Model

    Institute of Scientific and Technical Information of China (English)

    LI Rong; SONG Yang; GU Feng

    2006-01-01

    Prediction of the formula for matching a given color standard by blending pre-dyed fibers is of considerable importance to the textile industry. This kind of formulation suffers from a lack of computer-aided tool to assist the colorist attempting to find a good recipe to reproduce a target color. In this article a tristimulus color matching algorithm based on Stearns-Noechel model is proposed. This algorithm was run to predict recipes for 36 viscose blends. The maximum color difference is 0.97 CIELAB units. It is demonstrated that the algorithm can be used in color matching of fiber blends.

  4. Role model and prototype matching: Upper-secondary school students’ meetings with tertiary STEM students

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    -secondary school students from university-distant backgrounds during and after their participation in an 18-months long university-based recruitment and outreach project involving tertiary STEM students as role models. The analysis focusses on how the students’ meetings with the role models affected their thoughts...... concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype images and situation-specific conceptions of role models...

  5. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, D.

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  6. Statistical analysis-based error models for the Microsoft Kinect(TM) depth sensor.

    Science.gov (United States)

    Choo, Benjamin; Landau, Michael; DeVore, Michael; Beling, Peter A

    2014-09-18

    The stochastic error characteristics of the Kinect sensing device are presented for each axis direction. Depth (z) directional error is measured using a flat surface, and horizontal (x) and vertical (y) errors are measured using a novel 3D checkerboard. Results show that the stochastic nature of the Kinect measurement error is affected mostly by the depth at which the object being sensed is located, though radial factors must be considered, as well. Measurement and statistics-based models are presented for the stochastic error in each axis direction, which are based on the location and depth value of empirical data measured for each pixel across the entire field of view. The resulting models are compared against existing Kinect error models, and through these comparisons, the proposed model is shown to be a more sophisticated and precise characterization of the Kinect error distributions.

  7. Statistical Analysis-Based Error Models for the Microsoft Kinect™ Depth Sensor

    Science.gov (United States)

    Choo, Benjamin; Landau, Michael; DeVore, Michael; Beling, Peter A.

    2014-01-01

    The stochastic error characteristics of the Kinect sensing device are presented for each axis direction. Depth (z) directional error is measured using a flat surface, and horizontal (x) and vertical (y) errors are measured using a novel 3D checkerboard. Results show that the stochastic nature of the Kinect measurement error is affected mostly by the depth at which the object being sensed is located, though radial factors must be considered, as well. Measurement and statistics-based models are presented for the stochastic error in each axis direction, which are based on the location and depth value of empirical data measured for each pixel across the entire field of view. The resulting models are compared against existing Kinect error models, and through these comparisons, the proposed model is shown to be a more sophisticated and precise characterization of the Kinect error distributions. PMID:25237896

  8. Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.

    Science.gov (United States)

    Chilcott, J; Tappenden, P; Rawdin, A; Johnson, M; Kaltenthaler, E; Paisley, S; Papaioannou, D; Shippam, A

    2010-05-01

    Health policy decisions must be relevant, evidence-based and transparent. Decision-analytic modelling supports this process but its role is reliant on its credibility. Errors in mathematical decision models or simulation exercises are unavoidable but little attention has been paid to processes in model development. Numerous error avoidance/identification strategies could be adopted but it is difficult to evaluate the merits of strategies for improving the credibility of models without first developing an understanding of error types and causes. The study aims to describe the current comprehension of errors in the HTA modelling community and generate a taxonomy of model errors. Four primary objectives are to: (1) describe the current understanding of errors in HTA modelling; (2) understand current processes applied by the technology assessment community for avoiding errors in development, debugging and critically appraising models for errors; (3) use HTA modellers' perceptions of model errors with the wider non-HTA literature to develop a taxonomy of model errors; and (4) explore potential methods and procedures to reduce the occurrence of errors in models. It also describes the model development process as perceived by practitioners working within the HTA community. A methodological review was undertaken using an iterative search methodology. Exploratory searches informed the scope of interviews; later searches focused on issues arising from the interviews. Searches were undertaken in February 2008 and January 2009. In-depth qualitative interviews were performed with 12 HTA modellers from academic and commercial modelling sectors. All qualitative data were analysed using the Framework approach. Descriptive and explanatory accounts were used to interrogate the data within and across themes and subthemes: organisation, roles and communication; the model development process; definition of error; types of model error; strategies for avoiding errors; strategies for

  9. Bayesian modeling of measurement error in predictor variables using item response theory

    NARCIS (Netherlands)

    Fox, Gerardus J.A.; Glas, Cornelis A.W.

    2000-01-01

    This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved

  10. Bayesian modeling of measurement error in predictor variables using item response theory

    NARCIS (Netherlands)

    Fox, Jean-Paul; Glas, Cees A.W.

    2000-01-01

    This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved

  11. Making refractive error services sustainable: the International Eye Foundation model

    Directory of Open Access Journals (Sweden)

    Victoria M Sheffield

    2007-09-01

    Full Text Available The International Eye Foundation (IEF believes that the most effective strategy for making spectacles affordable and accessible is to integrate refractive error services into ophthalmic services and to run the refractive error service as a business – thereby making it sustainable. An optical service should be able to deal with high volumes of patients and generate enough revenue – not just to cover its own costs, but also to contribute to ophthalmic clinical services.

  12. The problem with total error models in establishing performance specifications and a simple remedy.

    Science.gov (United States)

    Krouwer, Jan S

    2016-08-01

    A recent issue in this journal revisited performance specifications since the Stockholm conference. Of the three recommended methods, two use total error models to establish performance specifications. It is shown that the most commonly used total error model - the Westgard model - is deficient, yet even more complete models fail to capture all errors that comprise total error. Moreover, total error models are often set at 95% of results, which leave 5% of results as unspecified. Glucose meter performance standards are used to illustrate these problems. The Westgard model is useful to asses assay performance but not to set performance specifications. Total error can be used to set performance specifications if the specifications include 100% of the results.

  13. Model-observer similarity, error modeling and social learning in rhesus macaques.

    Science.gov (United States)

    Monfardini, Elisabetta; Hadj-Bouziane, Fadila; Meunier, Martine

    2014-01-01

    Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.

  14. Modeling and Sensitivity Analysis of Navigation Parameter Errors for Airborne Synthetic Aperture Radar Stereo Geolocation

    Institute of Scientific and Technical Information of China (English)

    PANG Lei; ZHANG Jixian; YAN Qin

    2010-01-01

    For the high-resolution airborne synthetic aperture radar (SAR) stereo geolocation application, the final geolocation accuracy is influenced by various error parameter sources. In this paper, an airborne SAR stereo geolocation parameter error model,involving the parameter errors derived from the navigation system on the flight platform, has been put forward. Moreover, a kind of near-direct method for modeling and sensitivity analysis of navigation parameter errors is also given. This method directly uses the ground reference to calculate the covariance matrix relationship between the parameter errors and the eventual geolocation errors for ground target points. In addition, utilizing true flight track parameters' errors, this paper gave a verification of the method and a corresponding sensitivity analysis for airborne SAR stereo geolocation model and proved its efficiency.

  15. Wages, Training, and Job Turnover in a Search-Matching Model

    DEFF Research Database (Denmark)

    Rosholm, Michael; Nielsen, Michael Svarer

    1999-01-01

    In this paper we extend a job search-matching model with firm-specific investments in training developed by Mortensen (1998) to allow for different offer arrival rates in employment and unemployment. The model by Mortensen changes the original wage posting model (Burdett and Mortensen, 1998) in two...... aspects. First, it provides a link between the wage posting framework and the search-matching framework (eg. Pissarides, 1990). Second, it improves the correspondence between the theoretical characterization of the endogeneously derived earnings density and the empirically observed earnings density. We...

  16. Quantification of Transport Model Error Impacts on CO2 Inversions Using NASA's GEOS-5 GCM

    Science.gov (United States)

    Ott, L.; Pawson, S.; Weir, B.

    2014-12-01

    Remote sensing observations of CO2 offer the opportunity to reduce uncertainty in global carbon flux estimates. However, a number of studies have shown that inversion flux estimates are strongly influenced by errors in model transport. We will present results from modeling studies designed to quantify how such errors influence simulations of surface and column CO2 mixing ratios. These studies were conducted using the Goddard Earth Observing System, version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM) and the implementation of a suite of tracers associated with errors in boundary layer, convective, and large scale transport. Unlike traditional tagged tracers which are emitted by a certain process or region, error tracers are emitted as air parcels are transported through the atmosphere. The magnitude of error tracer emissions is based on previously published ensembles of AGCM simulations with perturbations to subgrid convective and boundary layer transport, and on comparisons of several reanalysis products to estimate errors in large scale wind fields. Transport error tracers are simulated with several different e-folding lifetimes (e.g. 1, 4, 10, and 30 day) to examine differences between transient and persistent model errors. This quantification of transport error is then used in an illustrative Bayesian synthesis inversion to demonstrate how transport errors influence surface CO2 mixing ratios and how this translates into inferred biosphere flux error.

  17. Modeling and analysis of local comprehensive minutia relation for fingerprint matching.

    Science.gov (United States)

    He, Xiaoguang; Tian, Jie; Li, Liang; He, Yuliang; Yang, Xin

    2007-10-01

    This paper introduces a robust fingerprint matching scheme based on the comprehensive minutia and the binary relation between minutiae. In the method, a fingerprint is represented as a graph, of which the comprehensive minutiae act as the vertex set and the local binary minutia relations provide the edge set. Then, the transformation-invariant and transformation-variant features are extracted from the binary relation. The transformation-invariant features are suitable to estimate the local matching probability, whereas the transformation-variant features are used to model the fingerprint rotation transformation with the adaptive Parzen window. Finally, the fingerprint matching is conducted with the variable bounded box method and iterative strategy. The experiments demonstrate that the proposed scheme is effective and robust in fingerprint alignment and matching.

  18. Spatial Distribution of the Errors in Modeling the Mid-Latitude Critical Frequencies by Different Models

    Science.gov (United States)

    Kilifarska, N. A.

    There are some models that describe the spatial distribution of greatest frequency yielding reflection from the F2 ionospheric layer (foF2). However, the distribution of the models' errors over the globe and how they depend on seasons, solar activity, etc., are unknown till this time. So the aim of the present paper is to compare the accuracy in describing the latitudinal and longitudinal variation of the mid-latitude maximum electron density, of CCIR, URSI, and a new created theoretical model. A comparison between the above mentioned models and all available from Boulder's data bank VI data (among 35 deg and 70 deg) have been made. Data for three whole years with different solar activity - 1976 (F_10.7 = 73.6), 1981 (F_10.7 = 20.6), 1983 (F_10.7 = 119.6) have been compared. The final results show that: 1. the areas with greatest and smallest errors depend on UT, season and solar activity; 2. the error distribution of CCIR and URSI models are very similar and are not coincident with these ones of theoretical model. The last result indicates that the theoretical model, described briefly bellow, may be a real alternative to the empirical CCIR and URSI models. The different spatial distribution of the models' errors gives a chance for the users to choose the most appropriate model, depending on their needs. Taking into account that the theoretical models have equal accuracy in region with many or without any ionosonde station, this result shows that our model can be used to improve the global mapping of the mid-latitude ionosphere. Moreover, if Re values of the input aeronomical parameters (neutral composition, temperatures and winds), are used - it may be expected that this theoretical model can be applied for Re or almost Re-time mapping of the main ionospheric parameters (foF2 and hmF2).

  19. Error Modeling and Analysis for InSAR Spatial Baseline Determination of Satellite Formation Flying

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Spatial baseline determination is a key technology for interferometric synthetic aperture radar (InSAR missions. Based on the intersatellite baseline measurement using dual-frequency GPS, errors induced by InSAR spatial baseline measurement are studied in detail. The classifications and characters of errors are analyzed, and models for errors are set up. The simulations of single factor and total error sources are selected to evaluate the impacts of errors on spatial baseline measurement. Single factor simulations are used to analyze the impact of the error of a single type, while total error sources simulations are used to analyze the impacts of error sources induced by GPS measurement, baseline transformation, and the entire spatial baseline measurement, respectively. Simulation results show that errors related to GPS measurement are the main error sources for the spatial baseline determination, and carrier phase noise of GPS observation and fixing error of GPS receiver antenna are main factors of errors related to GPS measurement. In addition, according to the error values listed in this paper, 1 mm level InSAR spatial baseline determination should be realized.

  20. How well can we forecast future model error and uncertainty by mining past model performance data

    Science.gov (United States)

    Solomatine, Dimitri

    2016-04-01

    Consider a hydrological model Y(t) = M(X(t), P), where X=vector of inputs; P=vector of parameters; Y=model output (typically flow); t=time. In cases when there is enough past data on the model M performance, it is possible to use this data to build a (data-driven) model EC of model M error. This model EC will be able to forecast error E when a new input X is fed into model M; then subtracting E from the model prediction Y a better estimate of Y can be obtained. Model EC is usually called the error corrector (in meteorology - a bias corrector). However, we may go further in characterizing model deficiencies, and instead of using the error (a real value) we may consider a more sophisticated characterization, namely a probabilistic one. So instead of rather a model EC of the model M error it is also possible to build a model U of model M uncertainty; if uncertainty is described as the model error distribution D this model will calculate its properties - mean, variance, other moments, and quantiles. The general form of this model could be: D = U (RV), where RV=vector of relevant variables having influence on model uncertainty (to be identified e.g. by mutual information analysis); D=vector of variables characterizing the error distribution (typically, two or more quantiles). There is one aspect which is not always explicitly mentioned in uncertainty analysis work. In our view it is important to distinguish the following main types of model uncertainty: 1. The residual uncertainty of models. In this case the model parameters and/or model inputs are considered to be fixed (deterministic), i.e. the model is considered to be optimal (calibrated) and deterministic. Model error is considered as the manifestation of uncertainty. If there is enough past data about the model errors (i.e. its uncertainty), it is possible to build a statistical or machine learning model of uncertainty trained on this data. Here the following methods can be mentioned: (a) quantile regression (QR

  1. A Generalized Process Model of Human Action Selection and Error and its Application to Error Prediction

    Science.gov (United States)

    2014-07-01

    Macmillan & Creelman , 2005). This is a quite high degree of discriminability and it means that when the decision model predicts a probability of...ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from Google Scholar. Macmillan, N. A., & Creelman , C. D. (2005). Detection

  2. Error Propagation in Equations for Geochemical Modeling of Radiogenic Isotopes in Two-Component Mixing

    Indian Academy of Sciences (India)

    Surendra P Verma

    2000-03-01

    This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling and analytical errors. Two typical cases (``Small errors'' and ``Large errors'') are illustrated for mixing of Sr isotopes. Similar examples can be formulated for the other radiogenic isotopic ratios. Actual isotopic data for sediment and basalt samples from the Cocos plate are also included to further illustrate the use of these equations. The isotopic compositions of the predicted mixtures can be used to constrain the origin of magmas in the central part of the Mexican Volcanic Belt. These examples show the need of high quality experimental data for them to be useful in geochemical modeling of magmatic processes.

  3. Development and estimation of a semi-compensatory model with flexible error structure

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Shiftan, Yoram; Bekhor, Shlomo

    -response model and the utility-based choice by alternatively (i) a nested-logit model and (ii) an error-component logit. In order to test the suggested methodology, the model was estimated for a sample of 1,893 ranked choices and respective threshold values from 631 students who participated in a web-based two......, a disadvantage of current semi-compensatory models versus compensatory models is their behaviorally non-realistic assumption of an independent error structure. This study proposes a novel semi-compensatory model incorporating a flexible error structure. Specifically, the model represents a sequence...

  4. FUZZY MODEL OPTIMIZATION FOR TIME SERIES DATA USING A TRANSLATION IN THE EXTENT OF MEAN ERROR

    Directory of Open Access Journals (Sweden)

    Nurhayadi

    2014-01-01

    Full Text Available Recently, many researchers in the field of writing about the prediction of stock price forecasting, electricity load demand and academic enrollment using fuzzy methods. However, in general, modeling does not consider the model position to actual data yet where it means that error is not been handled optimally. The error that is not managed well can reduce the accuracy of the forecasting. Therefore, the paper will discuss reducing error using model translation. The error that will be reduced is Mean Square Error (MSE. Here, the analysis is done mathematically and the empirical study is done by applying translation to fuzzy model for enrollment forecasting at the Alabama University. The results of this analysis show that the translation in the extent of mean error can reduce the MSE.

  5. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    Institute of Scientific and Technical Information of China (English)

    Qianjian GUO; Shuo FAN; Rufeng XU; Xiang CHENG; Guoyong ZHAO; Jianguo YANG

    2017-01-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools,spindle thermal error measurement,modeling and compensation of a two turntable five-axis machine tool are researched.Measurement experiment of heat sources and thermal errors are carried out,and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling.In order to analyze the influence of different heat sources on spindle thermal errors,an ANN (artificial neural network) model is presented,and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN,a new ABCNN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors.In order to test the prediction performance of ABC-NN model,an experiment system is developed,the prediction results of LSR (least squares regression),ANN and ABC-NN are compared with the measurement results of spindle thermal errors.Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN,and the residual error is smaller than 3 μm,the new modeling method is feasible.The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  6. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    Science.gov (United States)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-03-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  7. Error assessment of digital elevation models obtained by interpolation

    Directory of Open Access Journals (Sweden)

    Jean François Mas

    2009-10-01

    Full Text Available Son pocos los estudios enfocados en la evaluación de los errores inherentes a los modelos digitales de elevación (MDE. Por esta razón se evaluaron los errores de los MDE obtenidos por diferentes metodos de interpolación (ARC/INFO, IDRISI, ILWIS y NEW-MIEL y con diferentes resoluciones, con la finalidad de obtener una representación del relieve más precisa. Esta evaluación de los métodos de interpolación es crucial, si se tiene en cuenta que los MDE son la forma más efectiva de representación de la superficie terrestre para el análisis del terreno y que son ampliamente utilizados en ciencias ambientales. Los resultados obtenidos muestran que la resolución, el método de interpolación y los insumos (curvas de nivel solas o con datos de escurrimientos y puntos acotados influyen de manera importante en la magnitud de la cantidad de los errores generados en el MDE. En este estudio, que se llevó a cabo con base en curvas de nivel cada 50 m en una zona montañosa, la resolución más idónea fue de 30 m. El MDE con el menor error (Error Medio Cuadrático −EMC− de 7.3 m fue obtenido con ARC/INFO. Sin embargo, programas sin costo como NEWMIEL o ILWIS permitieron la obtención de resultados con un EMC de 10 m.

  8. A Frequency Matching Method for Generation of a Priori Sample Models from Training Images

    DEFF Research Database (Denmark)

    Lange, Katrine; Cordua, Knud Skou; Frydendall, Jan

    2011-01-01

    new images that share the same multi-point statistics as a given training image. The FMM proceeds by iteratively updating voxel values of an image until the frequency of patterns in the image matches the frequency of patterns in the training image; making the resulting image statistically......This paper presents a Frequency Matching Method (FMM) for generation of a priori sample models based on training images and illustrates its use by an example. In geostatistics, training images are used to represent a priori knowledge or expectations of models, and the FMM can be used to generate...... indistinguishable from the training image....

  9. Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation

    Directory of Open Access Journals (Sweden)

    B. Scherllin-Pirscher

    2011-05-01

    Full Text Available The utilization of radio occultation (RO data in atmospheric studies requires precise knowledge of error characteristics. We present results of an empirical error analysis of GPS radio occultation (RO bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature. We find very good agreement between data characteristics of different missions (CHAMP, GRACE-A, and Formosat-3/COSMIC (F3C. In the global mean, observational errors (standard deviation from "true" profiles at mean tangent point location agree within 0.3 % in bending angle, 0.1 % in refractivity, and 0.2 K in dry temperature at all altitude levels between 4 km and 35 km. Above ≈20 km, the observational errors show a strong seasonal dependence at high latitudes. Larger errors occur in hemispheric wintertime and are associated mainly with background data used in the retrieval process. The comparison between UCAR and WEGC results (both data centers have independent inversion processing chains reveals different magnitudes of observational errors in atmospheric parameters, which are attributable to different background fields used. Based on the empirical error estimates, we provide a simple analytical error model for GPS RO atmospheric parameters and account for vertical, latitudinal, and seasonal variations. In the model, which spans the altitude range from 4 km to 35 km, a constant error is adopted around the tropopause region amounting to 0.8 % for bending angle, 0.35 % for refractivity, 0.15 % for dry pressure, 10 m for dry geopotential height, and 0.7 K for dry temperature. Below this region the observational error increases following an inverse height power-law and above it increases exponentially. The observational error model is the same for UCAR and WEGC data but due to somewhat different error characteristics below about 10 km and above about 20 km some parameters have to be adjusted. Overall, the observational error model is easily applicable and

  10. Meta Modeling of Transmission Error for Spur, Helical and Planetary Gears for Wind Turbine Application

    OpenAIRE

    Irfan, Muhammad

    2013-01-01

    Detailed analysis of drive train dynamics requires accounting for the transmission error that arises in gears. However, the direct computation of the transmission error requires a 3-dimensional contact analysis with correct gear geometry, which is impractically computationally intense. Therefore, a simplified representation of the transmission error is desired, a so-called meta-model, is developed. The model is based on response surface method, and the coefficients of the angle-dependent tran...

  11. A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.

  12. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jianbing, E-mail: yijianbing8@163.com [College of Information Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China and College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000 (China); Yang, Xuan, E-mail: xyang0520@263.net; Li, Yan-Ran, E-mail: lyran@szu.edu.cn [College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518000 (China); Chen, Guoliang, E-mail: glchen@szu.edu.cn [National High Performance Computing Center at Shenzhen, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518000 (China)

    2015-10-15

    Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the

  13. Correction of approximation errors with Random Forests applied to modelling of aerosol first indirect effect

    Directory of Open Access Journals (Sweden)

    A. Lipponen

    2013-04-01

    Full Text Available In atmospheric models, due to their computational time or resource limitations, physical processes have to be simulated using reduced models. The use of a reduced model, however, induces errors to the simulation results. These errors are referred to as approximation errors. In this paper, we propose a novel approach to correct these approximation errors. We model the approximation error as an additive noise process in the simulation model and employ the Random Forest (RF regression algorithm for constructing a computationally low cost predictor for the approximation error. In this way, the overall simulation problem is decomposed into two separate and computationally efficient simulation problems: solution of the reduced model and prediction of the approximation error realization. The approach is tested for handling approximation errors due to a reduced coarse sectional representation of aerosol size distribution in a cloud droplet activation calculation. The results show a significant improvement in the accuracy of the simulation compared to the conventional simulation with a reduced model. The proposed approach is rather general and extension of it to different parameterizations or reduced process models that are coupled to geoscientific models is a straightforward task. Another major benefit of this method is that it can be applied to physical processes that are dependent on a large number of variables making them difficult to be parameterized by traditional methods.

  14. Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data.

    Science.gov (United States)

    Van Niel, Kimberly P; Austin, Mike P

    2007-01-01

    The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.

  15. Approaches for Stereo Matching

    Directory of Open Access Journals (Sweden)

    Takouhi Ozanian

    1995-04-01

    Full Text Available This review focuses on the last decade's development of the computational stereopsis for recovering three-dimensional information. The main components of the stereo analysis are exposed: image acquisition and camera modeling, feature selection, feature matching and disparity interpretation. A brief survey is given of the well known feature selection approaches and the estimation parameters for this selection are mentioned. The difficulties in identifying correspondent locations in the two images are explained. Methods as to how effectively to constrain the search for correct solution of the correspondence problem are discussed, as are strategies for the whole matching process. Reasons for the occurrence of matching errors are considered. Some recently proposed approaches, employing new ideas in the modeling of stereo matching in terms of energy minimization, are described. Acknowledging the importance of computation time for real-time applications, special attention is paid to parallelism as a way to achieve the required level of performance. The development of trinocular stereo analysis as an alternative to the conventional binocular one, is described. Finally a classification based on the test images for verification of the stereo matching algorithms, is supplied.

  16. Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model

    Directory of Open Access Journals (Sweden)

    B. Scherllin-Pirscher

    2011-05-01

    Full Text Available Due to the measurement principle of the radio occultation (RO technique, RO data are highly suitable for climate studies. Single RO profiles can be used to build climatological fields of different atmospheric parameters like bending angle, refractivity, density, pressure, geopotential height, and temperature. RO climatologies are affected by random (statistical errors, sampling errors, and systematic errors, yielding a total climatological error. Based on empirical error estimates, we provide a simple analytical error model for these error components, which accounts for vertical, latitudinal, and seasonal variations. The vertical structure of each error component is modeled constant around the tropopause region. Above this region the error increases exponentially, below the increase follows an inverse height power-law. The statistical error strongly depends on the number of measurements. It is found to be the smallest error component for monthly mean 10° zonal mean climatologies with more than 600 measurements per bin. Due to smallest atmospheric variability, the sampling error is found to be smallest at low latitudes equatorwards of 40°. Beyond 40°, this error increases roughly linearly, with a stronger increase in hemispheric winter than in hemispheric summer. The sampling error model accounts for this hemispheric asymmetry. However, we recommend to subtract the sampling error when using RO climatologies for climate research since the residual sampling error remaining after such subtraction is estimated to be 50 % of the sampling error for bending angle and 30 % or less for the other atmospheric parameters. The systematic error accounts for potential residual biases in the measurements as well as in the retrieval process and generally dominates the total climatological error. Overall the total error in monthly means is estimated to be smaller than 0.07 % in refractivity and 0.15 K in temperature at low to mid latitudes, increasing towards

  17. Revisiting Hartle's model using perturbed matching theory to second order: amending the change in mass

    CERN Document Server

    Reina, Borja

    2014-01-01

    Hartle's model describes the equilibrium configuration of a rotating isolated compact body in perturbation theory up to second order in General Relativity. The interior of the body is a perfect fluid with a barotropic equation of state, no convective motions and rigid rotation. That interior is matched across its surface to an asymptotically flat vacuum exterior. Perturbations are taken to second order around a static and spherically symmetric background configuration. Apart from the explicit assumptions, the perturbed configuration is constructed upon some implicit premises, in particular the continuity of the functions describing the perturbation in terms of some background radial coordinate. In this work we revisit the model within a modern general and consistent theory of perturbative matchings to second order, which is independent of the coordinates and gauges used to describe the two regions to be joined. We explore the matching conditions up to second order in full. The main particular result we presen...

  18. Development of an RTK-GPS Positioning Application with an Improved Position Error Model for Smartphones

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-09-01

    Full Text Available This study developed a smartphone application that provides wireless communication, NRTIP client, and RTK processing features, and which can simplify the Network RTK-GPS system while reducing the required cost. A determination method for an error model in Network RTK measurements was proposed, considering both random and autocorrelation errors, to accurately calculate the coordinates measured by the application using state estimation filters. The performance evaluation of the developed application showed that it could perform high-precision real-time positioning, within several centimeters of error range at a frequency of 20 Hz. A Kalman Filter was applied to the coordinates measured from the application, to evaluate the appropriateness of the determination method for an error model, as proposed in this study. The results were more accurate, compared with those of the existing error model, which only considered the random error.

  19. Development of an RTK-GPS positioning application with an improved position error model for smartphones.

    Science.gov (United States)

    Hwang, Jinsang; Yun, Hongsik; Suh, Yongcheol; Cho, Jeongho; Lee, Dongha

    2012-09-25

    This study developed a smartphone application that provides wireless communication, NRTIP client, and RTK processing features, and which can simplify the Network RTK-GPS system while reducing the required cost. A determination method for an error model in Network RTK measurements was proposed, considering both random and autocorrelation errors, to accurately calculate the coordinates measured by the application using state estimation filters. The performance evaluation of the developed application showed that it could perform high-precision real-time positioning, within several centimeters of error range at a frequency of 20 Hz. A Kalman Filter was applied to the coordinates measured from the application, to evaluate the appropriateness of the determination method for an error model, as proposed in this study. The results were more accurate, compared with those of the existing error model, which only considered the random error.

  20. Sensitivity to Estimation Errors in Mean-variance Models

    Institute of Scientific and Technical Information of China (English)

    Zhi-ping Chen; Cai-e Zhao

    2003-01-01

    In order to give a complete and accurate description about the sensitivity of efficient portfolios to changes in assets' expected returns, variances and covariances, the joint effect of estimation errors in means, variances and covariances on the efficient portfolio's weights is investigated in this paper. It is proved that the efficient portfolio's composition is a Lipschitz continuous, differentiable mapping of these parameters under suitable conditions. The change rate of the efficient portfolio's weights with respect to variations about riskreturn estimations is derived by estimating the Lipschitz constant. Our general quantitative results show thatthe efficient portfolio's weights are normally not so sensitive to estimation errors about means and variances .Moreover, we point out those extreme cases which might cause stability problems and how to avoid them in practice. Preliminary numerical results are also provided as an illustration to our theoretical results.

  1. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    Science.gov (United States)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  2. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    Energy Technology Data Exchange (ETDEWEB)

    Archer, B.R.; Bushong, S.C. (Baylor Univ., Houston, TX (USA). Coll. of Medicine); Wagner, L.K. (Texas Univ., Houston (USA). Dept. of Radiology); Johnston, D.A.; Almond, P.R. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA))

    1985-05-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications.

  3. Modeling Distance and Bandwidth Dependency of TOA-Based UWB Ranging Error for Positioning

    NARCIS (Netherlands)

    Bellusci, G.; Janssen, G.J.M.; Yan, J.; Tiberius, C.C.J.M.

    2009-01-01

    A statistical model for the range error provided by TOA estimation using UWB signals is given, based on UWB channel measurements between 3.1 and 10.6 GHz. The range error has been modeled as a Gaussian random variable for LOS and as a combination of a Gaussian and an exponential random variable for

  4. On the Influence of Weather Forecast Errors in Short-Term Load Forecasting Models

    OpenAIRE

    Fay, D; Ringwood, John; Condon, M.

    2004-01-01

    Weather information is an important factor in load forecasting models. This weather information usually takes the form of actual weather readings. However, online operation of load forecasting models requires the use of weather forecasts, with associated weather forecast errors. A technique is proposed to model weather forecast errors to reflect current accuracy. A load forecasting model is then proposed which combines the forecasts of several load forecasting models. This approach allows the...

  5. Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation

    Directory of Open Access Journals (Sweden)

    U. Foelsche

    2011-09-01

    Full Text Available The utilization of radio occultation (RO data in atmospheric studies requires precise knowledge of error characteristics. We present results of an empirical error analysis of GPS RO bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature. We find very good agreement between data characteristics of different missions (CHAMP, GRACE-A, and Formosat-3/COSMIC (F3C. In the global mean, observational errors (standard deviation from "true" profiles at mean tangent point location agree within 0.3% in bending angle, 0.1% in refractivity, and 0.2 K in dry temperature at all altitude levels between 4 km and 35 km. Above 35 km the increase of the CHAMP raw bending angle observational error is more pronounced than that of GRACE-A and F3C leading to a larger observational error of about 1% at 42 km. Above ≈20 km, the observational errors show a strong seasonal dependence at high latitudes. Larger errors occur in hemispheric wintertime and are associated mainly with background data used in the retrieval process particularly under conditions when ionospheric residual is large. The comparison between UCAR and WEGC results (both data centers have independent inversion processing chains reveals different magnitudes of observational errors in atmospheric parameters, which are attributable to different background fields used. Based on the empirical error estimates, we provide a simple analytical error model for GPS RO atmospheric parameters for the altitude range of 4 km to 35 km and up to 50 km for UCAR raw bending angle and refractivity. In the model, which accounts for vertical, latitudinal, and seasonal variations, a constant error is adopted around the tropopause region amounting to 0.8% for bending angle, 0.35% for refractivity, 0.15% for dry pressure, 10 m for dry geopotential height, and 0.7 K for dry temperature. Below this region the observational error increases following an inverse height power-law and above it increases

  6. Error Modeling and Compensation of Circular Motion on a New Circumferential Drilling System

    Directory of Open Access Journals (Sweden)

    Qiang Fang

    2015-01-01

    Full Text Available A new flexible circumferential drilling system is proposed to drill on the fuselage docking area. To analyze the influence of the circular motion error to the drilling accuracy, the nominal forward kinematic model is derived using Denavit-Hartenberg (D-H method and this model is further developed to model the kinematic errors caused by circular positioning error and synchronization error using homogeneous transformation matrices (HTM. A laser tracker is utilized to measure the circular motion error of the two measurement points at both sides. A circular motion compensation experiment is implemented according to the calculated positioning error and synchronization error. Experimental results show that the positioning error and synchronization error were reduced by 65.0% and 58.8%, respectively, due to the adopted compensation, and therefore the circular motion accuracy is substantially improved. Finally, position errors of the two measurement points are analyzed to have little influence on the measurement result and the validity of the proposed compensation method is proved.

  7. Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model

    Directory of Open Access Journals (Sweden)

    N. Rahpoe

    2013-10-01

    Full Text Available A comprehensive error characterization of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY limb ozone profiles has been established based upon SCIATRAN transfer model simulations. The study was carried out in order to evaluate the possible impact of parameter uncertainties, e.g. in albedo, stratospheric aerosol optical extinction, temperature, pressure, pointing, and ozone absorption cross section on the limb ozone retrieval. Together with the a posteriori covariance matrix available from the retrieval, total random and systematic errors are defined for SCIAMACHY ozone profiles. Main error sources are the pointing errors, errors in the knowledge of stratospheric aerosol parameters, and cloud interference. Systematic errors are of the order of 7%, while the random error amounts to 10–15% for most of the stratosphere. These numbers can be used for the interpretation of instrument intercomparison and validation of the SCIAMACHY V 2.5 limb ozone profiles in a rigorous manner.

  8. MODELING AND COMPENSATION TECHNIQUE FOR THE GEOMETRIC ERRORS OF FIVE-AXIS CNC MACHINE TOOLS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    One of the important trends in precision machining is the development of real-time error compensation technique.The error compensation for multi-axis CNC machine tools is very difficult and attractive.The modeling for the geometric error of five-axis CNC machine tools based on multi-body systems is proposed.And the key technique of the compensation-identifying geometric error parameters-is developed.The simulation of cutting workpiece to verify the modeling based on the multi-body systems is also considered.

  9. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form. By...

  10. An Evaluation of Latent Growth Models for Propensity Score Matched Groups

    Science.gov (United States)

    Leite, Walter L.; Sandbach, Robert; Jin, Rong; MacInnes, Jann W.; Jackman, M. Grace-Anne

    2012-01-01

    Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and…

  11. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form. By...... of one space robot arm system subjected to failures....

  12. Towards an integrated workflow for structural reservoir model updating and history matching

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Peters, E.; Wilschut, F.

    2011-01-01

    A history matching workflow, as typically used for updating of petrophysical reservoir model properties, is modified to include structural parameters including the top reservoir and several fault properties: position, slope, throw and transmissibility. A simple 2D synthetic oil reservoir produced by

  13. The match-mismatch model of emotion processing styles and emotion regulation strategies in fibromyalgia.

    NARCIS (Netherlands)

    Geenen, R.; Ooijen-van der Linden, L. van; Lumley, M.A.; Bijlsma, J.W.J.; Middendorp, H. van

    2012-01-01

    OBJECTIVE: Individuals differ in their style of processing emotions (e.g., experiencing affects intensely or being alexithymic) and their strategy of regulating emotions (e.g., expressing or reappraising). A match-mismatch model of emotion processing styles and emotion regulation strategies is propo

  14. Towards an integrated workflow for structural reservoir model updating and history matching

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Peters, E.; Wilschut, F.

    2011-01-01

    A history matching workflow, as typically used for updating of petrophysical reservoir model properties, is modified to include structural parameters including the top reservoir and several fault properties: position, slope, throw and transmissibility. A simple 2D synthetic oil reservoir produced by

  15. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    Directory of Open Access Journals (Sweden)

    Roque Calvo

    2016-09-01

    Full Text Available The development of an error compensation model for coordinate measuring machines (CMMs and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included.

  16. Using maximum topology matching to explore differences in species distribution models

    Science.gov (United States)

    Poco, Jorge; Doraiswamy, Harish; Talbert, Marian K.; Morisette, Jeffrey; Silva, Claudio

    2015-01-01

    Species distribution models (SDM) are used to help understand what drives the distribution of various plant and animal species. These models are typically high dimensional scalar functions, where the dimensions of the domain correspond to predictor variables of the model algorithm. Understanding and exploring the differences between models help ecologists understand areas where their data or understanding of the system is incomplete and will help guide further investigation in these regions. These differences can also indicate an important source of model to model uncertainty. However, it is cumbersome and often impractical to perform this analysis using existing tools, which allows for manual exploration of the models usually as 1-dimensional curves. In this paper, we propose a topology-based framework to help ecologists explore the differences in various SDMs directly in the high dimensional domain. In order to accomplish this, we introduce the concept of maximum topology matching that computes a locality-aware correspondence between similar extrema of two scalar functions. The matching is then used to compute the similarity between two functions. We also design a visualization interface that allows ecologists to explore SDMs using their topological features and to study the differences between pairs of models found using maximum topological matching. We demonstrate the utility of the proposed framework through several use cases using different data sets and report the feedback obtained from ecologists.

  17. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  18. Numerical study of an error model for a strap-down INS

    Science.gov (United States)

    Grigorie, T. L.; Sandu, D. G.; Corcau, C. L.

    2016-10-01

    The paper presents a numerical study related to a mathematical error model developed for a strap-down inertial navigation system. The study aims to validate the error model by using some Matlab/Simulink software models implementing the inertial navigator and the error model mathematics. To generate the inputs in the evaluation Matlab/Simulink software some inertial sensors software models are used. The sensors models were developed based on the IEEE equivalent models for the inertial sensorsand on the analysis of the data sheets related to real inertial sensors. In the paper are successively exposed the inertial navigation equations (attitude, position and speed), the mathematics of the inertial navigator error model, the software implementations and the numerical evaluation results.

  19. Thermal Error Modelling of the Spindle Using Neurofuzzy Systems

    OpenAIRE

    Jingan Feng; Xiaoqi Tang; Yanlei Li; Bao Song

    2016-01-01

    This paper proposes a new combined model to predict the spindle deformation, which combines the grey models and the ANFIS (adaptive neurofuzzy inference system) model. The grey models are used to preprocess the original data, and the ANFIS model is used to adjust the combined model. The outputs of the grey models are used as the inputs of the ANFIS model to train the model. To evaluate the performance of the combined model, an experiment is implemented. Three Pt100 thermal resistances are use...

  20. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  1. Addressing Conceptual Model Uncertainty in the Evaluation of Model Prediction Errors

    Science.gov (United States)

    Carrera, J.; Pool, M.

    2014-12-01

    Model predictions are uncertain because of errors in model parameters, future forcing terms, and model concepts. The latter remain the largest and most difficult to assess source of uncertainty in long term model predictions. We first review existing methods to evaluate conceptual model uncertainty. We argue that they are highly sensitive to the ingenuity of the modeler, in the sense that they rely on the modeler's ability to propose alternative model concepts. Worse, we find that the standard practice of stochastic methods leads to poor, potentially biased and often too optimistic, estimation of actual model errors. This is bad news because stochastic methods are purported to properly represent uncertainty. We contend that the problem does not lie on the stochastic approach itself, but on the way it is applied. Specifically, stochastic inversion methodologies, which demand quantitative information, tend to ignore geological understanding, which is conceptually rich. We illustrate some of these problems with the application to Mar del Plata aquifer, where extensive data are available for nearly a century. Geologically based models, where spatial variability is handled through zonation, yield calibration fits similar to geostatiscally based models, but much better predictions. In fact, the appearance of the stochastic T fields is similar to the geologically based models only in areas with high density of data. We take this finding to illustrate the ability of stochastic models to accommodate many data, but also, ironically, their inability to address conceptual model uncertainty. In fact, stochastic model realizations tend to be too close to the "most likely" one (i.e., they do not really realize the full conceptualuncertainty). The second part of the presentation is devoted to argue that acknowledging model uncertainty may lead to qualitatively different decisions than just working with "most likely" model predictions. Therefore, efforts should concentrate on

  2. Unravelling the Sources of Climate Model Errors in Subpolar Gyre Sea-Surface Temperatures

    Science.gov (United States)

    Rubino, Angelo; Zanchettin, Davide

    2017-04-01

    Climate model biases are systematic errors affecting geophysical quantities simulated by coupled general circulation models and Earth system models against observational targets. To this regard, biases affecting sea-surface temperatures (SSTs) are a major concern due to the crucial role of SST in the dynamical coupling between the atmosphere and the ocean, and for the associated variability. Strong SST biases can be detrimental for the overall quality of historical climate simulations, they contribute to uncertainty in simulated features of climate scenarios and complicate initialization and assessment of decadal climate prediction experiments. We use a dynamic linear model developed within a Bayesian hierarchical framework for a probabilistic assessment of spatial and temporal characteristics of SST errors in ensemble climate simulations. In our formulation, the statistical model distinguishes between local and regional errors, further separated into seasonal and non-seasonal components. This contribution, based on a framework developed for the study of biases in the Tropical Atlantic in the frame of the European project PREFACE, focuses on the subpolar gyre region in the North Atlantic Ocean, where climate models are typically affected by a strong cold SST bias. We will use results from an application of our statistical model to an ensemble of hindcasts with the MiKlip prototype system for decadal climate predictions to demonstrate how the decadal evolution of model errors toward the subpolar gyre cold bias is substantially shaped by a seasonal signal. We will demonstrate that such seasonal signal stems from the superposition of propagating large-scale seasonal errors originated in the Labrador Sea and of large-scale as well as mesoscale seasonal errors originated along the Gulf Stream. Based on these results, we will discuss how pronounced distinctive characteristics of the different error components distinguished by our model allow for a clearer connection

  3. A New Method for Identifying the Model Error of Adjustment System

    Institute of Scientific and Technical Information of China (English)

    TAO Benzao; ZHANG Chaoyu

    2005-01-01

    Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given.

  4. Removing Specification Errors from the Usual Formulation of Binary Choice Models

    Directory of Open Access Journals (Sweden)

    P.A.V.B. Swamy

    2016-06-01

    Full Text Available We develop a procedure for removing four major specification errors from the usual formulation of binary choice models. The model that results from this procedure is different from the conventional probit and logit models. This difference arises as a direct consequence of our relaxation of the usual assumption that omitted regressors constituting the error term of a latent linear regression model do not introduce omitted regressor biases into the coefficients of the included regressors.

  5. General expression of double ellipsoidal heat source model and its error analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to analyze the maximum power density error with different heat flux distribution parameter values for double ellipsoidal heat source model, a general expression of double ellipsoidal heat source model was derived from Goldak double ellipsoidal heat source model, and the error of maximum power density was analyzed under this foundation. The calculation error of thermal cycling parameters caused by the maximum power density error was compared quantitatively by numerical simulation. The results show that for guarantee the accuracy of welding numerical simulation, it is better to introduce an error correction coefficient into the Goldak double ellipsoidal heat source model expression. And, heat flux distribution parameter should get higher value for the higher power density welding methods.

  6. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    OpenAIRE

    2016-01-01

    Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main paramet...

  7. Modeling the probability distribution of positional errors incurred by residential address geocoding

    OpenAIRE

    Zimmerman, Dale L.; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard

    2007-01-01

    Background The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our stu...

  8. Macroscopic model and truncation error of discrete Boltzmann method

    Science.gov (United States)

    Hwang, Yao-Hsin

    2016-10-01

    A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.

  9. Maneuver Performance Assessment of the Cassini Spacecraft Through Execution-Error Modeling and Analysis

    Science.gov (United States)

    Wagner, Sean

    2014-01-01

    The Cassini spacecraft has executed nearly 300 maneuvers since 1997, providing ample data for execution-error model updates. With maneuvers through 2017, opportunities remain to improve on the models and remove biases identified in maneuver executions. This manuscript focuses on how execution-error models can be used to judge maneuver performance, while providing a means for detecting performance degradation. Additionally, this paper describes Cassini's execution-error model updates in August 2012. An assessment of Cassini's maneuver performance through OTM-368 on January 5, 2014 is also presented.

  10. Continuous-Discrete Time Prediction-Error Identification Relevant for Linear Model Predictive Control

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    model is realized from a continuous-discrete-time linear stochastic system specified using transfer functions with time-delays. It is argued that the prediction-error criterion should be selected such that it is compatible with the objective function of the predictive controller in which the model......A Prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space...

  11. Maneuver Performance Assessment of the Cassini Spacecraft Through Execution-Error Modeling and Analysis

    Science.gov (United States)

    Wagner, Sean

    2014-01-01

    The Cassini spacecraft has executed nearly 300 maneuvers since 1997, providing ample data for execution-error model updates. With maneuvers through 2017, opportunities remain to improve on the models and remove biases identified in maneuver executions. This manuscript focuses on how execution-error models can be used to judge maneuver performance, while providing a means for detecting performance degradation. Additionally, this paper describes Cassini's execution-error model updates in August 2012. An assessment of Cassini's maneuver performance through OTM-368 on January 5, 2014 is also presented.

  12. Model of Head-Positioning Error Due to Rotational Vibration of Hard Disk Drives

    Science.gov (United States)

    Matsuda, Yasuhiro; Yamaguchi, Takashi; Saegusa, Shozo; Shimizu, Toshihiko; Hamaguchi, Tetsuya

    An analytical model of head-positioning error due to rotational vibration of a hard disk drive is proposed. The model takes into account the rotational vibration of the base plate caused by the reaction force of the head-positioning actuator, the relationship between the rotational vibration and head-track offset, and the sensitivity function of track-following feedback control. Error calculated by the model agrees well with measured error. It is thus concluded that this model can predict the data transfer performance of a disk drive in read mode.

  13. Error-preceding brain activity reflects (mal-)adaptive adjustments of cognitive control: a modeling study.

    Science.gov (United States)

    Steinhauser, Marco; Eichele, Heike; Juvodden, Hilde T; Huster, Rene J; Ullsperger, Markus; Eichele, Tom

    2012-01-01

    Errors in choice tasks are preceded by gradual changes in brain activity presumably related to fluctuations in cognitive control that promote the occurrence of errors. In the present paper, we use connectionist modeling to explore the hypothesis that these fluctuations reflect (mal-)adaptive adjustments of cognitive control. We considered ERP data from a study in which the probability of conflict in an Eriksen-flanker task was manipulated in sub-blocks of trials. Errors in these data were preceded by a gradual decline of N2 amplitude. After fitting a connectionist model of conflict adaptation to the data, we analyzed simulated N2 amplitude, simulated response times (RTs), and stimulus history preceding errors in the model, and found that the model produced the same pattern as obtained in the empirical data. Moreover, this pattern is not found in alternative models in which cognitive control varies randomly or in an oscillating manner. Our simulations suggest that the decline of N2 amplitude preceding errors reflects an increasing adaptation of cognitive control to specific task demands, which leads to an error when these task demands change. Taken together, these results provide evidence that error-preceding brain activity can reflect adaptive adjustments rather than unsystematic fluctuations of cognitive control, and therefore, that these errors are actually a consequence of the adaptiveness of human cognition.

  14. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  15. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steven B.

    2013-07-23

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  16. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-09-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, Cɛ, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  17. Thermal Error Modelling of the Spindle Using Neurofuzzy Systems

    Directory of Open Access Journals (Sweden)

    Jingan Feng

    2016-01-01

    Full Text Available This paper proposes a new combined model to predict the spindle deformation, which combines the grey models and the ANFIS (adaptive neurofuzzy inference system model. The grey models are used to preprocess the original data, and the ANFIS model is used to adjust the combined model. The outputs of the grey models are used as the inputs of the ANFIS model to train the model. To evaluate the performance of the combined model, an experiment is implemented. Three Pt100 thermal resistances are used to monitor the spindle temperature and an inductive current sensor is used to obtain the spindle deformation. The experimental results display that the combined model can better predict the spindle deformation compared to BP network, and it can greatly improve the performance of the spindle.

  18. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions

    Science.gov (United States)

    Demissie, Yonas K.; Valocchi, Albert J.; Minsker, Barbara S.; Bailey, Barbara A.

    2009-01-01

    SummaryPhysically-based groundwater models (PBMs), such as MODFLOW, contain numerous parameters which are usually estimated using statistically-based methods, which assume that the underlying error is white noise. However, because of the practical difficulties of representing all the natural subsurface complexity, numerical simulations are often prone to large uncertainties that can result in both random and systematic model error. The systematic errors can be attributed to conceptual, parameter, and measurement uncertainty, and most often it can be difficult to determine their physical cause. In this paper, we have developed a framework to handle systematic error in physically-based groundwater flow model applications that uses error-correcting data-driven models (DDMs) in a complementary fashion. The data-driven models are separately developed to predict the MODFLOW head prediction errors, which were subsequently used to update the head predictions at existing and proposed observation wells. The framework is evaluated using a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study includes structural, parameter, and measurement uncertainties. In terms of bias and prediction uncertainty range, the complementary modeling framework has shown substantial improvements (up to 64% reduction in RMSE and prediction error ranges) over the original MODFLOW model, in both the calibration and the verification periods. Moreover, the spatial and temporal correlations of the prediction errors are significantly reduced, thus resulting in reduced local biases and structures in the model prediction errors.

  19. An Error Model for the Cirac-Zoller CNOT gate

    CERN Document Server

    Felloni, Sara

    2009-01-01

    In the framework of ion-trap quantum computing, we develop a characterization of experimentally realistic imperfections which may affect the Cirac-Zoller implementation of the CNOT gate. The CNOT operation is performed by applying a protocol of five laser pulses of appropriate frequency and polarization. The laser-pulse protocol exploits auxiliary levels, and its imperfect implementation leads to unitary as well as non-unitary errors affecting the CNOT operation. We provide a characterization of such imperfections, which are physically realistic and have never been considered before to the best of our knowledge. Our characterization shows that imperfect laser pulses unavoidably cause a leak of information from the states which alone should be transformed by the ideal gate, into the ancillary states exploited by the experimental implementation.

  20. Modeling and Error Analysis of a Superconducting Gravity Gradiometer.

    Science.gov (United States)

    1979-08-01

    gradioemetry. The lower bound of "nl ?~ 147 1 mmmin, I tR~ it -ao r -p’.., r- , -. UNCLASSIFIED SECURIT \\, CLASSIFICATIONI 0- THIS PAGE(47hen Dftf...02)[go - " A] " (4.67) The percent error 2 due to scale factor mismatch is 4g O " 1 gi (102( =~ ~-a2) )~2 ’ (a (4.68) since goz > rz i typically...ALP 92960p ( 10) ALP’#2-&LP)c 2*L *AN.1)+4*ALP 2 LOG(ALP).2.8.ALe92.tLOQ(hl4Pv+sALP92o𔄂.ALP) 4G ?.f(t4eA.ALP92.8.AeA iL.)LO(ALP)2AAL,,*2AAR).LA.1

  1. Approach for wideband direction-of-arrival estimation in the presence of array model errors

    Institute of Scientific and Technical Information of China (English)

    Chen Deli; Zhang Cong; Tao Huamin; Lu Huanzhang

    2009-01-01

    The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results.

  2. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations.

  3. Local and omnibus goodness-of-fit tests in classical measurement error models

    KAUST Repository

    Ma, Yanyuan

    2010-09-14

    We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.

  4. Multi-Modal Clique-Graph Matching for View-Based 3D Model Retrieval.

    Science.gov (United States)

    Liu, An-An; Nie, Wei-Zhi; Gao, Yue; Su, Yu-Ting

    2016-05-01

    Multi-view matching is an important but a challenging task in view-based 3D model retrieval. To address this challenge, we propose an original multi-modal clique graph (MCG) matching method in this paper. We systematically present a method for MCG generation that is composed of cliques, which consist of neighbor nodes in multi-modal feature space and hyper-edges that link pairwise cliques. Moreover, we propose an image set-based clique/edgewise similarity measure to address the issue of the set-to-set distance measure, which is the core problem in MCG matching. The proposed MCG provides the following benefits: 1) preserves the local and global attributes of a graph with the designed structure; 2) eliminates redundant and noisy information by strengthening inliers while suppressing outliers; and 3) avoids the difficulty of defining high-order attributes and solving hyper-graph matching. We validate the MCG-based 3D model retrieval using three popular single-modal data sets and one novel multi-modal data set. Extensive experiments show the superiority of the proposed method through comparisons. Moreover, we contribute a novel real-world 3D object data set, the multi-view RGB-D object data set. To the best of our knowledge, it is the largest real-world 3D object data set containing multi-modal and multi-view information.

  5. Highly porous thermal protection materials: Modelling and prediction of the methodical experimental errors

    Science.gov (United States)

    Cherepanov, Valery V.; Alifanov, Oleg M.; Morzhukhina, Alena V.; Budnik, Sergey A.

    2016-11-01

    The formation mechanisms and the main factors affecting the systematic error of thermocouples were investigated. According to the results of experimental studies and mathematical modelling it was established that in highly porous heat resistant materials for aerospace application the thermocouple errors are determined by two competing mechanisms provided correlation between the errors and the difference between radiation and conduction heat fluxes. The comparative analysis was carried out and some features of the methodical error formation related to the distances from the heated surface were established.

  6. Can pair-instability supernova models match the observations of superluminous supernovae?

    CERN Document Server

    Kozyreva, Alexandra

    2015-01-01

    An increasing number of so-called superluminous supernovae (SLSNe) are discovered. It is believed that at least some of them with slowly fading light curves originate in stellar explosions induced by the pair instability mechanism. Recent stellar evolution models naturally predict pair instability supernovae (PISNe) from very massive stars at wide range of metallicities (up to Z=0.006, Yusof et al. 2013). In the scope of this study we analyse whether PISN models can match the observational properties of SLSNe with various light curve shapes. Specifically, we explore the influence of different degrees of macroscopic chemical mixing in PISN explosive products on the resulting observational properties. We artificially apply mixing to the 250 Msun PISN evolutionary model from Kozyreva et al. (2014) and explore its supernova evolution with the one-dimensional radiation hydrodynamics code STELLA. The greatest success in matching SLSN observations is achieved in the case of an extreme macroscopic mixing, where all r...

  7. Output feedback model matching in linear impulsive systems with control feedthrough: a structural approach

    Science.gov (United States)

    Zattoni, Elena

    2017-01-01

    This paper investigates the problem of structural model matching by output feedback in linear impulsive systems with control feedthrough. Namely, given a linear impulsive plant, possibly featuring an algebraic link from the control input to the output, and given a linear impulsive model, the problem consists in finding a linear impulsive regulator that achieves exact matching between the respective forced responses of the linear impulsive plant and of the linear impulsive model, for all the admissible input functions and all the admissible sequences of jump times, by means of a dynamic feedback of the plant output. The problem solvability is characterized by a necessary and sufficient condition. The regulator synthesis is outlined through the proof of sufficiency, which is constructive.

  8. Results of the Medications at Transitions and Clinical Handoffs (MATCH) study: an analysis of medication reconciliation errors and risk factors at hospital admission.

    Science.gov (United States)

    Gleason, Kristine M; McDaniel, Molly R; Feinglass, Joseph; Baker, David W; Lindquist, Lee; Liss, David; Noskin, Gary A

    2010-05-01

    This study was designed to determine risk factors and potential harm associated with medication errors at hospital admission. Study pharmacist and hospital-physician medication histories were compared with medication orders to identify unexplained history and order discrepancies in 651 adult medicine service inpatients with 5,701 prescription medications. Discrepancies resulting in order changes were considered errors. Logistic regression was used to analyze the association of patient demographic and clinical characteristics including patients' number of pre-admission prescription medications, pharmacies, prescribing physicians and medication changes; and presentation of medication bottles or lists. These factors were tested after controlling for patient demographics, admitting service and severity of illness. Over one-third of study patients (35.9%) experienced 309 order errors; 85% of patients had errors originate in medication histories, and almost half were omissions. Cardiovascular agents were commonly in error (29.1%). If undetected, 52.4% of order errors were rated as potentially requiring increased monitoring or intervention to preclude harm; 11.7% were rated as potentially harmful. In logistic regression analysis, patient's age > or = 65 [odds ratio (OR), 2.17; 95% confidence interval (CI), 1.09-4.30] and number of prescription medications (OR, 1.21; 95% CI, 1.14-1.29) were significantly associated with errors potentially requiring monitoring or causing harm. Presenting a medication list (OR, 0.35; 95% CI, 0.19-0.63) or bottles (OR, 0.55; 95% CI, 0.27-1.10) at admission was beneficial. Over one-third of the patients in our study had a medication error at admission, and of these patients, 85% had errors originate in their medication histories. Attempts to improve the accuracy of medication histories should focus on older patients with a large number of medications. Primary care physicians and other clinicians should help patients utilize and maintain

  9. A novel data-driven approach to model error estimation in Data Assimilation

    Science.gov (United States)

    Pathiraja, Sahani; Moradkhani, Hamid; Marshall, Lucy; Sharma, Ashish

    2016-04-01

    Error characterisation is a fundamental component of Data Assimilation (DA) studies. Effectively describing model error statistics has been a challenging area, with many traditional methods requiring some level of subjectivity (for instance in defining the error covariance structure). Recent advances have focused on removing the need for tuning of error parameters, although there are still some outstanding issues. Many methods focus only on the first and second moments, and rely on assuming multivariate Gaussian statistics. We propose a non-parametric, data-driven framework to estimate the full distributional form of model error, ie. the transition density p(xt|xt-1). All sources of uncertainty associated with the model simulations are considered, without needing to assign error characteristics/devise stochastic perturbations for individual components of model uncertainty (eg. input, parameter and structural). A training period is used to derive the error distribution of observed variables, conditioned on (potentially hidden) states. Errors in hidden states are estimated from the conditional distribution of observed variables using non-linear optimization. The framework is discussed in detail, and an application to a hydrologic case study with hidden states for one-day ahead streamflow prediction is presented. Results demonstrate improved predictions and more realistic uncertainty bounds compared to a standard tuning approach.

  10. Error modeling and tolerance design of a parallel manipulator with full-circle rotation

    Directory of Open Access Journals (Sweden)

    Yanbing Ni

    2016-05-01

    Full Text Available A method for improving the accuracy of a parallel manipulator with full-circle rotation is systematically investigated in this work via kinematic analysis, error modeling, sensitivity analysis, and tolerance allocation. First, a kinematic analysis of the mechanism is made using the space vector chain method. Using the results as a basis, an error model is formulated considering the main error sources. Position and orientation error-mapping models are established by mathematical transformation of the parallelogram structure characteristics. Second, a sensitivity analysis is performed on the geometric error sources. A global sensitivity evaluation index is proposed to evaluate the contribution of the geometric errors to the accuracy of the end-effector. The analysis results provide a theoretical basis for the allocation of tolerances to the parts of the mechanical design. Finally, based on the results of the sensitivity analysis, the design of the tolerances can be solved as a nonlinearly constrained optimization problem. A genetic algorithm is applied to carry out the allocation of the manufacturing tolerances of the parts. Accordingly, the tolerance ranges for nine kinds of geometrical error sources are obtained. The achievements made in this work can also be applied to other similar parallel mechanisms with full-circle rotation to improve error modeling and design accuracy.

  11. Identification and estimation of nonlinear models using two samples with nonclassical measurement errors

    KAUST Repository

    Carroll, Raymond J.

    2010-05-01

    This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest - the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates - is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and a data application are presented to show the power of the approach.

  12. 3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, A; Fan, Zhun;

    2008-01-01

    The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generat...

  13. 3D CMM Strain-Gauge Triggering Probe Error Characteristics Modeling

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, Adam; Fan, Zhun;

    2008-01-01

    The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generat...

  14. Taking the Error Term of the Factor Model into Account: The Factor Score Predictor Interval

    Science.gov (United States)

    Beauducel, Andre

    2013-01-01

    The problem of factor score indeterminacy implies that the factor and the error scores cannot be completely disentangled in the factor model. It is therefore proposed to compute Harman's factor score predictor that contains an additive combination of factor and error variance. This additive combination is discussed in the framework of classical…

  15. Application of nonlinear color matching model to four-color ink-jet printing

    Institute of Scientific and Technical Information of China (English)

    苏小红; 张田文; 郭茂祖; 王亚东

    2002-01-01

    Through discussing the color-matching technology and its application in printing industry the conven-tional approaches commonly used in color-matching, and the difficulties in color-matching, a nonlinear colormatching model based on two-step learning is established by finding a linear model by learning pure-color datafirst and then a nonlinear modification model by learning mixed-color data. Nonlinear multiple-regression isused to fit the parameters of the modification model. Nonlinear modification function is discovered by BACONsystem by learning mixture data. Experiment results indicate that nonlinear color conversion by two-step learningcan further improve the accuracy when it is used for straightforward conversion from RGB to CMYK. An im-proved separation model based on GCR concept is proposed to solve the problem of gray balance and it can beused for three-to four-color conversion as well. The method proposed has better learning ability and faster print-ing speed than other historical approaches when it is applied to four-color ink-jet printing.

  16. Multiview road sign detection via self-adaptive color model and shape context matching

    Science.gov (United States)

    Liu, Chunsheng; Chang, Faliang; Liu, Chengyun

    2016-09-01

    The multiview appearance of road signs in uncontrolled environments has made the detection of road signs a challenging problem in computer vision. We propose a road sign detection method to detect multiview road signs. This method is based on several algorithms, including the classical cascaded detector, the self-adaptive weighted Gaussian color model (SW-Gaussian model), and a shape context matching method. The classical cascaded detector is used to detect the frontal road signs in video sequences and obtain the parameters for the SW-Gaussian model. The proposed SW-Gaussian model combines the two-dimensional Gaussian model and the normalized red channel together, which can largely enhance the contrast between the red signs and background. The proposed shape context matching method can match shapes with big noise, which is utilized to detect road signs in different directions. The experimental results show that compared with previous detection methods, the proposed multiview detection method can reach higher detection rate in detecting signs with different directions.

  17. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  18. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  19. Distortion Modeling and Error Robust Coding Scheme for H.26L Video

    Institute of Scientific and Technical Information of China (English)

    CHENChuan; YUSongyu; CHENGLianji

    2004-01-01

    Transmission of hybrid-coded video including motion compensation and spatial prediction over error prone channel results in the well-known problem of error propagation because of the drift in reference frames between encoder and decoder. The prediction loop propa-gates errors and causes substantial degradation in video quality. Especially in H.26L video, both intra and inter prediction strategies are used to improve compression efficiency, however, they make error propagation more serious. This work proposes distortion models for H.26L video to optimally estimate the overall distortion of decoder frame reconstruction due to quantization, error propagation, and error concealment. Based on these statistical distortion models, our error robust coding scheme only integrates the distinct distortion between intra and inter macroblocks into a rate-distortlon based framework to select suitable coding mode for each macroblock, and so,the cost in computation complexity is modest. Simulations under typical 3GPP/3GPP2 channel and Internet channel conditions have shown that our proposed scheme achieves much better performance than those currently used in H.26L. The error propagation estimation and effect at high fractural pixel-level prediction have also been tested. All the results have demonstrated that our proposed scheme achieves a good balance between compression efficiency and error robustness for H.26L video, at the cost of modest additional complexity.

  20. Model error analyses of photochemistry mechanisms using the BEATBOX/BOXMOX data assimilation toy model

    Science.gov (United States)

    Knote, C. J.; Eckl, M.; Barré, J.; Emmons, L. K.

    2016-12-01

    Simplified descriptions of photochemistry in the atmosphere ('photochemical mechanisms') necessary to reduce the computational burden of a model simulation contribute significantly to the overall uncertainty of an air quality model. Understanding how the photochemical mechanism contributes to observed model errors through examination of results of the complete model system is next to impossible due to cancellation and amplification effects amongst the tightly interconnected model components. Here we present BEATBOX, a novel method to evaluate photochemical mechanisms using the underlying chemistry box model BOXMOX. With BOXMOX we can rapidly initialize various mechanisms (e.g. MOZART, RACM, CBMZ, MCM) with homogenized observations (e.g. from field campaigns) and conduct idealized 'chemistry in a jar' simulations under controlled conditions. BEATBOX is a data assimilation toy model built upon BOXMOX which allows to simulate the effects of assimilating observations (e.g., CO, NO2, O3) into these simulations. In this presentation we show how we use the Master Chemical Mechanism (MCM, U Leeds) as benchmark for more simplified mechanisms like MOZART, use BEATBOX to homogenize the chemical environment and diagnose errors within the more simplified mechanisms. We present BEATBOX as a new, freely available tool that allows researchers to rapidly evaluate their chemistry mechanism against a range of others under varying chemical conditions.

  1. Influences of observation errors in eddy flux data on inverse model parameter estimation

    Directory of Open Access Journals (Sweden)

    G. Lasslop

    2008-09-01

    Full Text Available Eddy covariance data are increasingly used to estimate parameters of ecosystem models. For proper maximum likelihood parameter estimates the error structure in the observed data has to be fully characterized. In this study we propose a method to characterize the random error of the eddy covariance flux data, and analyse error distribution, standard deviation, cross- and autocorrelation of CO2 and H2O flux errors at four different European eddy covariance flux sites. Moreover, we examine how the treatment of those errors and additional systematic errors influence statistical estimates of parameters and their associated uncertainties with three models of increasing complexity – a hyperbolic light response curve, a light response curve coupled to water fluxes and the SVAT scheme BETHY. In agreement with previous studies we find that the error standard deviation scales with the flux magnitude. The previously found strongly leptokurtic error distribution is revealed to be largely due to a superposition of almost Gaussian distributions with standard deviations varying by flux magnitude. The crosscorrelations of CO2 and H2O fluxes were in all cases negligible (R2 below 0.2, while the autocorrelation is usually below 0.6 at a lag of 0.5 h and decays rapidly at larger time lags. This implies that in these cases the weighted least squares criterion yields maximum likelihood estimates. To study the influence of the observation errors on model parameter estimates we used synthetic datasets, based on observations of two different sites. We first fitted the respective models to observations and then added the random error estimates described above and the systematic error, respectively, to the model output. This strategy enables us to compare the estimated parameters with true parameters. We illustrate that the correct implementation of the random error standard deviation scaling with flux

  2. On the asymptotic ergodic capacity of FSO links with generalized pointing error model

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-09-11

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantize the effect of these two factors on FSO system performance, we need an effective mathematical model for them. Scintillations are typically modeled by the log-normal and Gamma-Gamma distributions for weak and strong turbulence conditions, respectively. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive the asymptotic ergodic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. © 2015 IEEE.

  3. Adjustment of measurements with multiplicative errors: error analysis, estimates of the variance of unit weight, and effect on volume estimation from LiDAR-type digital elevation models.

    Science.gov (United States)

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-10

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM.

  4. Fixing Geometric Errors on Polygonal Models: A Survey

    Institute of Scientific and Technical Information of China (English)

    Tao Ju

    2009-01-01

    Polygonal models are popular representations of 3D objects. The use of polygonal models in computational applications often requires a model to properly bound a 3D solid. That is, the polygonal model needs to be closed, manifold, and free of self-intersections. This paper surveys a sizeable literature for repairing models that do not satisfy this criteria, focusing on categorizing them by their methodology and capability. We hope to offer pointers to further readings for researchers and practitioners, and suggestions of promising directions for future research endeavors.

  5. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    Science.gov (United States)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  6. An automatic 3D CAD model errors detection method of aircraft structural part for NC machining

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2015-10-01

    Full Text Available Feature-based NC machining, which requires high quality of 3D CAD model, is widely used in machining aircraft structural part. However, there has been little research on how to automatically detect the CAD model errors. As a result, the user has to manually check the errors with great effort before NC programming. This paper proposes an automatic CAD model errors detection approach for aircraft structural part. First, the base faces are identified based on the reference directions corresponding to machining coordinate systems. Then, the CAD models are partitioned into multiple local regions based on the base faces. Finally, the CAD model error types are evaluated based on the heuristic rules. A prototype system based on CATIA has been developed to verify the effectiveness of the proposed approach.

  7. Understanding Y haplotype matching probability.

    Science.gov (United States)

    Brenner, Charles H

    2014-01-01

    The Y haplotype population-genetic terrain is better explored from a fresh perspective rather than by analogy with the more familiar autosomal ideas. For haplotype matching probabilities, versus for autosomal matching probabilities, explicit attention to modelling - such as how evolution got us where we are - is much more important while consideration of population frequency is much less so. This paper explores, extends, and explains some of the concepts of "Fundamental problem of forensic mathematics - the evidential strength of a rare haplotype match". That earlier paper presented and validated a "kappa method" formula for the evidential strength when a suspect matches a previously unseen haplotype (such as a Y-haplotype) at the crime scene. Mathematical implications of the kappa method are intuitive and reasonable. Suspicions to the contrary raised in rest on elementary errors. Critical to deriving the kappa method or any sensible evidential calculation is understanding that thinking about haplotype population frequency is a red herring; the pivotal question is one of matching probability. But confusion between the two is unfortunately institutionalized in much of the forensic world. Examples make clear why (matching) probability is not (population) frequency and why uncertainty intervals on matching probabilities are merely confused thinking. Forensic matching calculations should be based on a model, on stipulated premises. The model inevitably only approximates reality, and any error in the results comes only from error in the model, the inexactness of the approximation. Sampling variation does not measure that inexactness and hence is not helpful in explaining evidence and is in fact an impediment. Alternative haplotype matching probability approaches that various authors have considered are reviewed. Some are based on no model and cannot be taken seriously. For the others, some evaluation of the models is discussed. Recent evidence supports the adequacy of

  8. A mixture model for robust point matching under multi-layer motion.

    Directory of Open Access Journals (Sweden)

    Jiayi Ma

    Full Text Available This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers. Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation. We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion.

  9. On the Numerical Modelling and Error Compensation for General Gough-Stewart Platform

    Directory of Open Access Journals (Sweden)

    Eusebio Hernandez

    2014-11-01

    Full Text Available Parallel robots are specially designed to perform high-precision tasks. Nevertheless, manufacturing, assembling and control issues can reduce their capacity to perform adequately. Observing the acquired measurement data with high-precision devices - such as laser-based instruments - it is not surprising that the error data follows patterns or have a structure because, in many cases, the greatest error comes from a mechanical bias introduced by manufacturing issues. Even though we cannot determine with certainty where the error comes from, a pattern in the measured data suggests that it is feasible that it can be modelled and corrected - in a significant proportion - by purely software applications, without the need of disassembling or re-manufacturing any component. This work deals with the problem of finding a mathematical model which adequately fits the error data from the legs of a general Gough-Stewart platform. Hence, we obtain an expression which can be subtracted from the control parameters in order to compensate the inherent mechanical error in the legs. The purpose of this article is two-fold: 1 to present numerical results of the beneficial effects of the error compensation in the legs as well as in the end-effector, and 2 to introduce a numerical methodology to find a model for error compensation and to numerically simulate its effects. Numerical, graphical and statistical evidence of the error improvements, according this methodology, is provided.

  10. Accounting for covariate measurement error in a Cox model analysis of recurrence of depression.

    Science.gov (United States)

    Liu, K; Mazumdar, S; Stone, R A; Dew, M A; Houck, P R; Reynolds, C F

    2001-01-01

    When a covariate measured with error is used as a predictor in a survival analysis using the Cox model, the parameter estimate is usually biased. In clinical research, covariates measured without error such as treatment procedure or sex are often used in conjunction with a covariate measured with error. In a randomized clinical trial of two types of treatments, we account for the measurement error in the covariate, log-transformed total rapid eye movement (REM) activity counts, in a Cox model analysis of the time to recurrence of major depression in an elderly population. Regression calibration and two variants of a likelihood-based approach are used to account for measurement error. The likelihood-based approach is extended to account for the correlation between replicate measures of the covariate. Using the replicate data decreases the standard error of the parameter estimate for log(total REM) counts while maintaining the bias reduction of the estimate. We conclude that covariate measurement error and the correlation between replicates can affect results in a Cox model analysis and should be accounted for. In the depression data, these methods render comparable results that have less bias than the results when measurement error is ignored.

  11. Comparison Experiments of Different Model Error Schemes in Ensemble Kalman Filter Soil Moisture Assimilation

    Science.gov (United States)

    Nie, Suping; Zhu, Jiang; Luo, Yong

    2010-05-01

    The purpose of this study is to explore the performances of different model error scheme in soil moisture data assimilation. Based on the ensemble Kalman filter (EnKF) and the atmosphere-vegetation interaction model (AVIM), point-scale analysis results for three schemes, 1) covariance inflation (CI), 2) direct random disturbance (DRD), and 3) error source random disturbance (ESRD), are combined under conditions of different observational error estimations, different observation layers, and different observation intervals using a series of idealized experiments. The results shows that all these schemes obtain good assimilation results when the assumed observational error is an accurate statistical representation of the actual error used to perturb the original truth value, and the ESRD scheme has the least root mean square error (RMSE). Overestimation or underestimation of the observational errors can affect the assimilation results of CI and DRD schemes sensitively. The performances of these two schemes deteriorate obviously while the ESRD scheme keeps its capability well. When the observation layers or observation interval increase, the performances of both CI and DRD schemes decline evidently. But for the ESRD scheme, as it can assimilate multi-layer observations coordinately, the increased observations improve the assimilation results further. Moreover, as the ESRD scheme contains a certain amount of model error estimation functions in its assimilation process, it also has a good performance in assimilating sparse-time observations.

  12. Reporting error in weight and its implications for bias in economic models.

    Science.gov (United States)

    Cawley, John; Maclean, Johanna Catherine; Hammer, Mette; Wintfeld, Neil

    2015-12-01

    Most research on the economic consequences of obesity uses data on self-reported weight, which contains reporting error that has the potential to bias coefficient estimates in economic models. The purpose of this paper is to measure the extent and characteristics of reporting error in weight, and to examine its impact on regression coefficients in models of the healthcare consequences of obesity. We analyze data from the National Health and Nutrition Examination Survey (NHANES) for 2003-2010, which includes both self-reports and measurements of weight and height. We find that reporting error in weight is non-classical: underweight respondents tend to overreport, and overweight and obese respondents tend to underreport, their weight, with underreporting increasing in measured weight. This error results in roughly 1 out of 7 obese individuals being misclassified as non-obese. Reporting error is also correlated with other common regressors in economic models, such as education. Although it is a common misconception that reporting error always causes attenuation bias, comparisons of models that use self-reported and measured weight confirm that reporting error can cause upward bias in coefficient estimates. For example, use of self-reports leads to overestimates of the probability that an obese man uses a prescription drug, has a healthcare visit, or has a hospital admission. These findings underscore that models of the consequences of obesity should use measurements of weight, when available, and that social science datasets should measure weight rather than simply ask subjects to report their weight.

  13. Statistical analysis of error propagation from radar rainfall to hydrological models

    Directory of Open Access Journals (Sweden)

    D. Zhu

    2013-04-01

    Full Text Available This study attempts to characterise the manner with which inherent error in radar rainfall estimates input influence the character of the stream flow simulation uncertainty in validated hydrological modelling. An artificial statistical error model described by Gaussian distribution was developed to generate realisations of possible combinations of normalised errors and normalised bias to reflect the identified radar error and temporal dependence. These realisations were embedded in the 5 km/15 min UK Nimrod radar rainfall data and used to generate ensembles of stream flow simulations using three different hydrological models with varying degrees of complexity, which consists of a fully distributed physically-based model MIKE SHE, a semi-distributed, lumped model TOPMODEL and the unit hydrograph model PRTF. These models were built for this purpose and applied to the Upper Medway Catchment (220 km2 in South-East England. The results show that the normalised bias of the radar rainfall estimates was enhanced in the simulated stream flow and also the dominate factor that had a significant impact on stream flow simulations. This preliminary radar-error-generation model could be developed more rigorously and comprehensively for the error characteristics of weather radars for quantitative measurement of rainfall.

  14. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    OpenAIRE

    Wild, Oliver; Prather, Michael J.

    2006-01-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quant...

  15. Modeling data revisions : Measurement error and dynamics of "true" values

    NARCIS (Netherlands)

    Jacobs, Jan P. A. M.; van Norden, Simon

    2011-01-01

    Policy makers must base their decisions on preliminary and partially revised data of varying reliability. Realistic modeling of data revisions is required to guide decision makers in their assessment of current and future conditions. This paper provides a new framework with which to model data revis

  16. Modeling data revisions : Measurement error and dynamics of "true" values

    NARCIS (Netherlands)

    Jacobs, Jan P. A. M.; van Norden, Simon

    2011-01-01

    Policy makers must base their decisions on preliminary and partially revised data of varying reliability. Realistic modeling of data revisions is required to guide decision makers in their assessment of current and future conditions. This paper provides a new framework with which to model data revis

  17. Matching Matters!

    CERN Document Server

    Freitas, Ayres; Plehn, Tilman

    2016-01-01

    Effective Lagrangians are a useful tool for a data-driven approach to physics beyond the Standard Model at the LHC. However, for the new physics scales accessible at the LHC, the effective operator expansion is only relatively slowly converging at best. For tree-level processes, it has been found that the agreement between the effective Lagrangian and a range of UV-complete models depends sensitively on the appropriate definition of the matching. We extend this analysis to the one-loop level, which is relevant for electroweak precision data and Higgs decay to photons. We show that near the scale of electroweak symmetry breaking the validity of the effective theory description can be systematically improved through an appropriate matching procedure. In particular, we find a significant increase in accuracy when including suitable terms suppressed by the Higgs vacuum expectation value in the matching.

  18. Improved Topographic Models via Concurrent Airborne LIDAR and Dense Image Matching

    Science.gov (United States)

    Mandlburger, G.; Wenzel, K.; Spitzer, A.; Haala, N.; Glira, P.; Pfeifer, N.

    2017-09-01

    Modern airborne sensors integrate laser scanners and digital cameras for capturing topographic data at high spatial resolution. The capability of penetrating vegetation through small openings in the foliage and the high ranging precision in the cm range have made airborne LiDAR the prime terrain acquisition technique. In the recent years dense image matching evolved rapidly and outperforms laser scanning meanwhile in terms of the achievable spatial resolution of the derived surface models. In our contribution we analyze the inherent properties and review the typical processing chains of both acquisition techniques. In addition, we present potential synergies of jointly processing image and laser data with emphasis on sensor orientation and point cloud fusion for digital surface model derivation. Test data were concurrently acquired with the RIEGL LMS-Q1560 sensor over the city of Melk, Austria, in January 2016 and served as basis for testing innovative processing strategies. We demonstrate that (i) systematic effects in the resulting scanned and matched 3D point clouds can be minimized based on a hybrid orientation procedure, (ii) systematic differences of the individual point clouds are observable at penetrable, vegetated surfaces due to the different measurement principles, and (iii) improved digital surface models can be derived combining the higher density of the matching point cloud and the higher reliability of LiDAR point clouds, especially in the narrow alleys and courtyards of the study site, a medieval city.

  19. The Dynamic Modeling of Multiple Pairs of Spur Gears in Mesh, Including Friction and Geometrical Errors

    Directory of Open Access Journals (Sweden)

    Shengxiang Jia

    2003-01-01

    Full Text Available This article presents a dynamic model of three shafts and two pair of gears in mesh, with 26 degrees of freedom, including the effects of variable tooth stiffness, pitch and profile errors, friction, and a localized tooth crack on one of the gears. The article also details howgeometrical errors in teeth can be included in a model. The model incorporates the effects of variations in torsional mesh stiffness in gear teeth by using a common formula to describe stiffness that occurs as the gears mesh together. The comparison between the presence and absence of geometrical errors in teeth was made by using Matlab and Simulink models, which were developed from the equations of motion. The effects of pitch and profile errors on the resultant input pinion angular velocity coherent-signal of the input pinion's average are discussed by investigating some of the common diagnostic functions and changes to the frequency spectra results.

  20. Robust Modeling of Low-Cost MEMS Sensor Errors in Mobile Devices Using Fast Orthogonal Search

    Directory of Open Access Journals (Sweden)

    M. Tamazin

    2013-01-01

    Full Text Available Accessibility to inertial navigation systems (INS has been severely limited by cost in the past. The introduction of low-cost microelectromechanical system-based INS to be integrated with GPS in order to provide a reliable positioning solution has provided more wide spread use in mobile devices. The random errors of the MEMS inertial sensors may deteriorate the overall system accuracy in mobile devices. These errors are modeled stochastically and are included in the error model of the estimated techniques used such as Kalman filter or Particle filter. First-order Gauss-Markov model is usually used to describe the stochastic nature of these errors. However, if the autocorrelation sequences of these random components are examined, it can be determined that first-order Gauss-Markov model is not adequate to describe such stochastic behavior. A robust modeling technique based on fast orthogonal search is introduced to remove MEMS-based inertial sensor errors inside mobile devices that are used for several location-based services. The proposed method is applied to MEMS-based gyroscopes and accelerometers. Results show that the proposed method models low-cost MEMS sensors errors with no need for denoising techniques and using smaller model order and less computation, outperforming traditional methods by two orders of magnitude.

  1. A novel multitemporal insar model for joint estimation of deformation rates and orbital errors

    KAUST Repository

    Zhang, Lei

    2014-06-01

    Orbital errors, characterized typically as longwavelength artifacts, commonly exist in interferometric synthetic aperture radar (InSAR) imagery as a result of inaccurate determination of the sensor state vector. Orbital errors degrade the precision of multitemporal InSAR products (i.e., ground deformation). Although research on orbital error reduction has been ongoing for nearly two decades and several algorithms for reducing the effect of the errors are already in existence, the errors cannot always be corrected efficiently and reliably. We propose a novel model that is able to jointly estimate deformation rates and orbital errors based on the different spatialoral characteristics of the two types of signals. The proposed model is able to isolate a long-wavelength ground motion signal from the orbital error even when the two types of signals exhibit similar spatial patterns. The proposed algorithm is efficient and requires no ground control points. In addition, the method is built upon wrapped phases of interferograms, eliminating the need of phase unwrapping. The performance of the proposed model is validated using both simulated and real data sets. The demo codes of the proposed model are also provided for reference. © 2013 IEEE.

  2. Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable

    NARCIS (Netherlands)

    Elhorst, J. Paul

    2001-01-01

    This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the

  3. Statistical modeling and analysis of the influence of antenna polarization error on received power

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The problem of statistical modeling of antenna polarization error is studied and the statistical characteristics of antenna's received power are analyzed. A novel Stokes-vector-based method is presented to describe the conception of antenna's polarization purity. Statistical model of antenna's polarization error in polarization domain is then built up. When an antenna with polarization error of uniform distribution is illuminated by an arbitrary polarized incident field, the probability density of antenna's received power is derived analytically. Finally, a group of curves of deviation and standard deviation of received power are plotted numerically.

  4. On the Asymptotic Capacity of Dual-Aperture FSO Systems with a Generalized Pointing Error Model

    KAUST Repository

    Al-Quwaiee, Hessa

    2016-06-28

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantify the effect of these two factors on FSO system performance, we need an effective mathematical model for them. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive a generic expression of the asymptotic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. Finally, the asymptotic channel capacity formula are extended to quantify the FSO systems performance with selection and switched-and-stay diversity.

  5. Modelling soft error probability in firmware: A case study

    African Journals Online (AJOL)

    A rough and notional schematic of the components involved are supplied in ..... To date, this claim of potential electromagnetic interference is entirely a ... single spike case will illuminate the probabilistic model needed for the bursty case. For.

  6. Compliance Modeling and Error Compensation of a 3-Parallelogram Lightweight Robotic Arm

    DEFF Research Database (Denmark)

    2015-01-01

    This paper presents compliance modeling and error compensation for lightweight robotic arms built with parallelogram linkages, i.e., Π joints. The Cartesian stiffness matrix is derived using the virtual joint method. Based on the developed stiffness model, a method to compensate the compliance...... error is introduced, being illustrated with a 3-parallelogram robot in the application of pick-and-place operation. The results show that this compensation method can effectively improve the operation accuracy....

  7. Low Frequency Predictive Skill Despite Structural Instability and Model Error

    Science.gov (United States)

    2014-09-30

    suitable coarse-grained variables is a necessary but not sufficient condition for this predictive skill, and 4 elementary examples are given here...issue in contemporary applied mathematics is the development of simpler dynamical models for a reduced subset of variables in complex high...In this article I developed a new practical framework of creating a stochastically parameterized reduced model for slow variables of complex

  8. Role model and prototype matching: Upper-secondary school students’ meetings with tertiary STEM students

    Directory of Open Access Journals (Sweden)

    Eva Lykkegaard

    2016-04-01

    Full Text Available Previous research has found that young people’s prototypes of science students and scientists affect their inclination to choose tertiary STEM programs (Science, Technology, Engineering and Mathematics. Consequently, many recruitment initiatives include role models to challenge these prototypes. The present study followed 15 STEM-oriented upper-secondary school students from university-distant backgrounds during and after their participation in an 18-months long university-based recruitment and outreach project involving tertiary STEM students as role models. The analysis focusses on how the students’ meetings with the role models affected their thoughts concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype images and situation-specific conceptions of role models. Furthermore, the study underlined the positive effect of prolonged role-model contact, the importance of using several role models and that traditional school subjects catered more resistant prototype images than unfamiliar ones did.

  9. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    Science.gov (United States)

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  10. Error statistics of hidden Markov model and hidden Boltzmann model results

    Directory of Open Access Journals (Sweden)

    Newberg Lee A

    2009-07-01

    Full Text Available Abstract Background Hidden Markov models and hidden Boltzmann models are employed in computational biology and a variety of other scientific fields for a variety of analyses of sequential data. Whether the associated algorithms are used to compute an actual probability or, more generally, an odds ratio or some other score, a frequent requirement is that the error statistics of a given score be known. What is the chance that random data would achieve that score or better? What is the chance that a real signal would achieve a given score threshold? Results Here we present a novel general approach to estimating these false positive and true positive rates that is significantly more efficient than are existing general approaches. We validate the technique via an implementation within the HMMER 3.0 package, which scans DNA or protein sequence databases for patterns of interest, using a profile-HMM. Conclusion The new approach is faster than general naïve sampling approaches, and more general than other current approaches. It provides an efficient mechanism by which to estimate error statistics for hidden Markov model and hidden Boltzmann model results.

  11. Error statistics of hidden Markov model and hidden Boltzmann model results

    Science.gov (United States)

    Newberg, Lee A

    2009-01-01

    Background Hidden Markov models and hidden Boltzmann models are employed in computational biology and a variety of other scientific fields for a variety of analyses of sequential data. Whether the associated algorithms are used to compute an actual probability or, more generally, an odds ratio or some other score, a frequent requirement is that the error statistics of a given score be known. What is the chance that random data would achieve that score or better? What is the chance that a real signal would achieve a given score threshold? Results Here we present a novel general approach to estimating these false positive and true positive rates that is significantly more efficient than are existing general approaches. We validate the technique via an implementation within the HMMER 3.0 package, which scans DNA or protein sequence databases for patterns of interest, using a profile-HMM. Conclusion The new approach is faster than general naïve sampling approaches, and more general than other current approaches. It provides an efficient mechanism by which to estimate error statistics for hidden Markov model and hidden Boltzmann model results. PMID:19589158

  12. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Deepak Bhatt

    2012-07-01

    Full Text Available Micro Electro Mechanical System (MEMS-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches.

  13. Vertical mixing in atmospheric tracer transport models: error characterization and propagation

    Directory of Open Access Journals (Sweden)

    C. Gerbig

    2008-02-01

    Full Text Available Imperfect representation of vertical mixing near the surface in atmospheric transport models leads to uncertainties in modelled tracer mixing ratios. When using the atmosphere as an integrator to derive surface-atmosphere exchange from mixing ratio observations made in the atmospheric boundary layer, this uncertainty has to be quantified and taken into account. A comparison between radiosonde-derived mixing heights and mixing heights derived from ECMWF meteorological data during May–June 2005 in Europe revealed random discrepancies of about 40% for the daytime with insignificant bias errors, and much larger values approaching 100% for nocturnal mixing layers with bias errors also exceeding 50%. The Stochastic Time Inverted Lagrangian Transport (STILT model was used to propagate this uncertainty into CO2 mixing ratio uncertainties, accounting for spatial and temporal error covariance. Average values of 3 ppm were found for the 2 month period, indicating that this represents a large fraction of the overall uncertainty. A pseudo data experiment shows that the error propagation with STILT avoids biases in flux retrievals when applied in inversions. The results indicate that flux inversions employing transport models based on current generation meteorological products have misrepresented an important part of the model error structure likely leading to biases in the estimated mean and uncertainties. We strongly recommend including the solution presented in this work: better, higher resolution atmospheric models, a proper description of correlated random errors, and a modification of the overall sampling strategy.

  14. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... indicator simulation, we produce many realizations of model structure that are consistent with observed datasets and prior knowledge. Given estimates of model structural uncertainty, we incorporate hydrologic observations to evaluate the errors in hydrologic parameter or prediction errors that occur when...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...

  15. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  16. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    Science.gov (United States)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the

  17. Optimal control design that accounts for model mismatch errors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.J. [Sandia National Labs., Albuquerque, NM (United States); Hull, D.G. [Texas Univ., Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics

    1995-02-01

    A new technique is presented in this paper that reduces the complexity of state differential equations while accounting for modeling assumptions. The mismatch controls are defined as the differences between the model equations and the true state equations. The performance index of the optimal control problem is formulated with a set of tuning parameters that are user-selected to tune the control solution in order to achieve the best results. Computer simulations demonstrate that the tuned control law outperforms the untuned controller and produces results that are comparable to a numerically-determined, piecewise-linear optimal controller.

  18. Using multi-matching system based on a simplified deformable model of the human iris for iris recognition

    Institute of Scientific and Technical Information of China (English)

    MING Xing; XU Tao; WANG Zheng-xuan

    2004-01-01

    A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the validity of this method.

  19. On the modelling of excitations in geared systems by transmission errors

    Science.gov (United States)

    Velex, P.; Ajmi, M.

    2006-03-01

    This paper introduces an original theoretical approach to the modelling of pinion-gear excitations valid for three-dimensional models of single-stage geared transmissions. Shape deviations and errors on gears are considered and the associated equations of motion account for time-varying mesh stiffness, and also torsional, flexural and axial couplings. Starting from the instantaneous contact conditions between the teeth, the equations of motion are re-formulated in terms of quasi-static transmission errors under load and no-load transmission errors. The range of application of transmission error-based formulations is analysed and some new equations are proposed which make it possible to introduce rigorously meshing excitations via transmission errors. Using an extended finite element model of a spur and helical gear test rig, the dynamic results from the formulations based on transmission errors are compared with the reference solutions. Both sets of results are found to be in close agreement, thus validating the proposed theory. The paper concludes with a critical analysis of the interests and limitations concerning the concept of transmission errors as excitation terms in gear dynamics.

  20. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2014-01-01

    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  1. Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor.

    Science.gov (United States)

    Biagi, Lyvia; Ramkissoon, Charrise M; Facchinetti, Andrea; Leal, Yenny; Vehi, Josep

    2017-06-12

    Continuous glucose monitors (CGMs) are prone to inaccuracy due to time lags, sensor drift, calibration errors, and measurement noise. The aim of this study is to derive the model of the error of the second generation Medtronic Paradigm Veo Enlite (ENL) sensor and compare it with the Dexcom SEVEN PLUS (7P), G4 PLATINUM (G4P), and advanced G4 for Artificial Pancreas studies (G4AP) systems. An enhanced methodology to a previously employed technique was utilized to dissect the sensor error into several components. The dataset used included 37 inpatient sessions in 10 subjects with type 1 diabetes (T1D), in which CGMs were worn in parallel and blood glucose (BG) samples were analyzed every 15 ± 5 min Calibration error and sensor drift of the ENL sensor was best described by a linear relationship related to the gain and offset. The mean time lag estimated by the model is 9.4 ± 6.5 min. The overall average mean absolute relative difference (MARD) of the ENL sensor was 11.68 ± 5.07% Calibration error had the highest contribution to total error in the ENL sensor. This was also reported in the 7P, G4P, and G4AP. The model of the ENL sensor error will be useful to test the in silico performance of CGM-based applications, i.e., the artificial pancreas, employing this kind of sensor.

  2. Modeling the Error of the Medtronic Paradigm Veo Enlite Glucose Sensor

    Directory of Open Access Journals (Sweden)

    Lyvia Biagi

    2017-06-01

    Full Text Available Continuous glucose monitors (CGMs are prone to inaccuracy due to time lags, sensor drift, calibration errors, and measurement noise. The aim of this study is to derive the model of the error of the second generation Medtronic Paradigm Veo Enlite (ENL sensor and compare it with the Dexcom SEVEN PLUS (7P, G4 PLATINUM (G4P, and advanced G4 for Artificial Pancreas studies (G4AP systems. An enhanced methodology to a previously employed technique was utilized to dissect the sensor error into several components. The dataset used included 37 inpatient sessions in 10 subjects with type 1 diabetes (T1D, in which CGMs were worn in parallel and blood glucose (BG samples were analyzed every 15 ± 5 min Calibration error and sensor drift of the ENL sensor was best described by a linear relationship related to the gain and offset. The mean time lag estimated by the model is 9.4 ± 6.5 min. The overall average mean absolute relative difference (MARD of the ENL sensor was 11.68 ± 5.07% Calibration error had the highest contribution to total error in the ENL sensor. This was also reported in the 7P, G4P, and G4AP. The model of the ENL sensor error will be useful to test the in silico performance of CGM-based applications, i.e., the artificial pancreas, employing this kind of sensor.

  3. Surface layer independent model fitting by phase matching: theory and application to HD 49933 and HD 177153 (aka Perky)

    Science.gov (United States)

    Roxburgh, Ian W.

    2015-01-01

    Aims: Our aim is to describe the theory of surface layer independent model fitting by phase matching and to apply this to the stars HD 49933 observed by CoRoT, and HD 177153 (aka Perky) observed by Kepler. Methods: We use theoretical analysis, phase shifts, and model fitting. Results: We define the inner and outer phase shifts of a frequency set of a model star and show that the outer phase shifts are (almost) independent of degree ℓ, and that a function of the inner phase shifts (the phase function) collapses to an ℓ independent function of frequency in the outer layers. We then show how to use this result in a model fitting technique to find a best fit model to an observed frequency set by calculating the inner phase shifts of a model using the observed frequencies and determining the extent to which the phase function collapses to a single function of frequency in the outer layers. This technique does not depend on the radial order n assigned to the observed frequencies. We give two examples applying this technique to the frequency sets of HD 49933 observed by CoRoT and HD 177153 (aka Perky) observed by Kepler, for which measurements of angular diameters and bolometric fluxes are available. For HD 49933 we find a very wide range of models to be consistent with the data (all with convective core overshooting) - and conclude that the data is not precise enough to make any useful restrictions on the structure of this star. For HD 177153 our best fit models have no convective cores, masses in the range 1.15-1.17 M⊙, ages of 4.45-4.70 × 109 yr, Z in the range 0.021-0.024, XH = 0.71-0.72, Y = 0.256 - 0.266 and mixing length parameter α = 1.8. We compare our results to those of previous studies. We contrast the phase matching technique to that using the ratios of small to large separations, showing that it avoids the problem of correlated errors in separation ratio fitting and of assigning radial order n to the modes.

  4. Modeling And Analysis Of The Surface Roughness And Geometrical Error Using Taguchi And Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    DR.S.C.JAYSWAL

    2011-07-01

    Full Text Available This experimental work presents a technique to determine the better surface quality by controlling the surface roughness and geometrical error. In machining operations, achieving desired surface quality features of the machined product is really a challenging job. Because, these quality features are highly correlated and areexpected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects. Thus The four input process parameters such as spindle speed, depth of cut, feed rate, and stepover have been selected to minimize the surface roughness and geometrical error simultaneously by using the robustdesign concept of Taguchi L9(34 method coupled with Response surface concept. Mathematical models for surface roughness and geometrical error were obtained from response surface analysis to predict values of surface roughness and geometrical error. S/N ratio and ANOVA analyses were also performed to obtain for significant parameters influencing surface roughness and geometrical error.

  5. A hierarchical Bayes error correction model to explain dynamic effects

    NARCIS (Netherlands)

    D. Fok (Dennis); C. Horváth (Csilla); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)

    2004-01-01

    textabstractFor promotional planning and market segmentation it is important to understand the short-run and long-run effects of the marketing mix on category and brand sales. In this paper we put forward a sales response model to explain the differences in short-run and long-run effects of promotio

  6. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.

    Science.gov (United States)

    Nennig, Benoit; Perrey-Debain, Emmanuel; Ben Tahar, Mabrouk

    2010-12-01

    A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative silencer partially filled with a poroelastic foam is developed. The model takes into account the solid phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the presence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the fact that guided modes of the silencer have a composite nature containing both compressional and shear waves as opposed to classical mode matching methods in which only acoustic pressure waves are present. Results presented demonstrate good agreement with finite element calculations provided a sufficient number of modes are retained. In practice, it is found that the time for computing the transmission loss over a large frequency range takes a few minutes on a personal computer. This makes the present method a reliable tool for tackling dissipative silencers lined with poroelastic materials.

  7. Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system

    Science.gov (United States)

    Morawietz, Martin; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena

    2010-05-01

    A post-processor that accounts for the hydrologic uncertainty in a probabilistic streamflow forecast system is necessary to account for the uncertainty introduced by the hydrological model. In this study different variants of an autoregressive error model that can be used as a post-processor for short to medium range streamflow forecasts, are evaluated. The deterministic HBV model is used to form the basis for the streamflow forecast. The general structure of the error models then used as post-processor is a first order autoregressive model of the form dt = αdt-1 + σɛt where dt is the model error (observed minus simulated streamflow) at time t, α and σ are the parameters of the error model, and ɛt is the residual error described through a probability distribution. The following aspects are investigated: (1) Use of constant parameters α and σ versus the use of state dependent parameters. The state dependent parameters vary depending on the states of temperature, precipitation, snow water equivalent and simulated streamflow. (2) Use of a Standard Normal distribution for ɛt versus use of an empirical distribution function constituted through the normalized residuals of the error model in the calibration period. (3) Comparison of two different transformations, i.e. logarithmic versus square root, that are applied to the streamflow data before the error model is applied. The reason for applying a transformation is to make the residuals of the error model homoscedastic over the range of streamflow values of different magnitudes. Through combination of these three characteristics, eight variants of the autoregressive post-processor are generated. These are calibrated and validated in 55 catchments throughout Norway. The discrete ranked probability score with 99 flow percentiles as standardized thresholds is used for evaluation. In addition, a non-parametric bootstrap is used to construct confidence intervals and evaluate the significance of the results. The main

  8. Improved modeling of multivariate measurement errors based on the Wishart distribution.

    Science.gov (United States)

    Wentzell, Peter D; Cleary, Cody S; Kompany-Zareh, M

    2017-03-22

    The error covariance matrix (ECM) is an important tool for characterizing the errors from multivariate measurements, representing both the variance and covariance in the errors across multiple channels. Such information is useful in understanding and minimizing sources of experimental error and in the selection of optimal data analysis procedures. Experimental ECMs, normally obtained through replication, are inherently noisy, inconvenient to obtain, and offer limited interpretability. Significant advantages can be realized by building a model for the ECM based on established error types. Such models are less noisy, reduce the need for replication, mitigate mathematical complications such as matrix singularity, and provide greater insights. While the fitting of ECM models using least squares has been previously proposed, the present work establishes that fitting based on the Wishart distribution offers a much better approach. Simulation studies show that the Wishart method results in parameter estimates with a smaller variance and also facilitates the statistical testing of alternative models using a parameterized bootstrap method. The new approach is applied to fluorescence emission data to establish the acceptability of various models containing error terms related to offset, multiplicative offset, shot noise and uniform independent noise. The implications of the number of replicates, as well as single vs. multiple replicate sets are also described.

  9. Drivers of coupled model ENSO error dynamics and the spring predictability barrier

    Science.gov (United States)

    Larson, Sarah M.; Kirtman, Ben P.

    2017-06-01

    Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx^' } ) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx^' } to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx^' } is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2-3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.

  10. Drivers of coupled model ENSO error dynamics and the spring predictability barrier

    Science.gov (United States)

    Larson, Sarah M.; Kirtman, Ben P.

    2016-07-01

    Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx^' } ) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx^' } to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx^' } is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2-3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.

  11. Error and Uncertainty Analysis for Ecological Modeling and Simulation

    Science.gov (United States)

    2001-12-01

    Delfiner , 1999; Goovaerts, 1997; Journel and Huijbregts, 1978). These methods are based on the spatial variability theory, that is, spatial...mathematics on the sequential Gaussian simulation, the reader is referred to Chiles and Delfiner (1999) and Goovaerts (1997). 66 UI NRES...World Congress 2000. 7-12 August 2000, Kuala Lumpur Asia. (Ed. Barbara Koch). In press. Chiles, J.P. and P. Delfiner , 1999. Geostatistics: Modeling

  12. Experiments in Error Propagation within Hierarchal Combat Models

    Science.gov (United States)

    2015-09-01

    and variances of Blue MTTK, Red MTTK, and P[Blue Wins] by Experimental Design are statistically different (Wackerly, Mendenhall III and Schaeffer...2008). Although the data is not normally distributed, the t-test is robust to non-normality (Wackerly, Mendenhall III and Schaeffer 2008). There is...this is handled by transforming the predicted values with a natural logarithm (Wackerly, Mendenhall III and Schaeffer 2008). The model considers

  13. A Unified Process Model of Syntactic and Semantic Error Recovery in Sentence Understanding

    CERN Document Server

    Holbrook, J K; Mahesh, K; Holbrook, Jennifer K.; Eiselt, Kurt P.; Mahesh, Kavi

    1994-01-01

    The development of models of human sentence processing has traditionally followed one of two paths. Either the model posited a sequence of processing modules, each with its own task-specific knowledge (e.g., syntax and semantics), or it posited a single processor utilizing different types of knowledge inextricably integrated into a monolithic knowledge base. Our previous work in modeling the sentence processor resulted in a model in which different processing modules used separate knowledge sources but operated in parallel to arrive at the interpretation of a sentence. One highlight of this model is that it offered an explanation of how the sentence processor might recover from an error in choosing the meaning of an ambiguous word. Recent experimental work by Laurie Stowe strongly suggests that the human sentence processor deals with syntactic error recovery using a mechanism very much like that proposed by our model of semantic error recovery. Another way to interpret Stowe's finding is this: the human sente...

  14. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    Science.gov (United States)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  15. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    Science.gov (United States)

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  16. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    Science.gov (United States)

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  17. Error detection in GPS observations by means of Multi-process models

    DEFF Research Database (Denmark)

    Thomsen, Henrik F.

    2001-01-01

    The main purpose of this article is to present the idea of using Multi-process models as a method of detecting errors in GPS observations. The theory behind Multi-process models, and double differenced phase observations in GPS is presented shortly. It is shown how to model cycle slips in the Multi...

  18. Bayesian modeling of measurement error in predictor variables using item response theory

    NARCIS (Netherlands)

    Fox, Jean-Paul; Glas, Cees A.W.

    2003-01-01

    It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between t

  19. Neighboring extremal optimal control design including model mismatch errors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.J. [Sandia National Labs., Albuquerque, NM (United States); Hull, D.G. [Texas Univ., Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  20. Effect of assay measurement error on parameter estimation in concentration-QTc interval modeling.

    Science.gov (United States)

    Bonate, Peter L

    2013-01-01

    Linear mixed-effects models (LMEMs) of concentration-double-delta QTc intervals (QTc intervals corrected for placebo and baseline effects) assume that the concentration measurement error is negligible, which is an incorrect assumption. Previous studies have shown in linear models that independent variable error can attenuate the slope estimate with a corresponding increase in the intercept. Monte Carlo simulation was used to examine the impact of assay measurement error (AME) on the parameter estimates of an LMEM and nonlinear MEM (NMEM) concentration-ddQTc interval model from a 'typical' thorough QT study. For the LMEM, the type I error rate was unaffected by assay measurement error. Significant slope attenuation ( > 10%) occurred when the AME exceeded > 40% independent of the sample size. Increasing AME also decreased the between-subject variance of the slope, increased the residual variance, and had no effect on the between-subject variance of the intercept. For a typical analytical assay having an assay measurement error of less than 15%, the relative bias in the estimates of the model parameters and variance components was less than 15% in all cases. The NMEM appeared to be more robust to AME error as most parameters were unaffected by measurement error. Monte Carlo simulation was then used to determine whether the simulation-extrapolation method of parameter bias correction could be applied to cases of large AME in LMEMs. For analytical assays with large AME ( > 30%), the simulation-extrapolation method could correct biased model parameter estimates to near-unbiased levels.

  1. Neural-Based Pattern Matching for Selection of Biophysical Model Meteorological Forcings

    Science.gov (United States)

    Coleman, A. M.; Wigmosta, M. S.; Li, H.; Venteris, E. R.; Skaggs, R. J.

    2011-12-01

    matching method using neural-network based Self-Organizing Maps (SOM) and GIS-based spatial modeling. This method pattern matches long-term mean monthly meteorology at an individual site to a series of CLIGEN stations within a user-defined proximal distance. The time-series data signatures of the selected stations are competed against one another using a SOM-generated similarity metric to determine the closest pattern match to the spatially distributed PRISM meteorology at the site of interest. This method overcomes issues with topographic dispersion of meteorology stations and existence of microclimates where the nearest meteorology station may not be the most representative.

  2. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.

    Science.gov (United States)

    Kyle, Ryan P; Moodie, Erica E M; Klein, Marina B; Abrahamowicz, Michał

    2016-08-01

    Unbiased estimation of causal parameters from marginal structural models (MSMs) requires a fundamental assumption of no unmeasured confounding. Unfortunately, the time-varying covariates used to obtain inverse probability weights are often error-prone. Although substantial measurement error in important confounders is known to undermine control of confounders in conventional unweighted regression models, this issue has received comparatively limited attention in the MSM literature. Here we propose a novel application of the simulation-extrapolation (SIMEX) procedure to address measurement error in time-varying covariates, and we compare 2 approaches. The direct approach to SIMEX-based correction targets outcome model parameters, while the indirect approach corrects the weights estimated using the exposure model. We assess the performance of the proposed methods in simulations under different clinically plausible assumptions. The simulations demonstrate that measurement errors in time-dependent covariates may induce substantial bias in MSM estimators of causal effects of time-varying exposures, and that both proposed SIMEX approaches yield practically unbiased estimates in scenarios featuring low-to-moderate degrees of error. We illustrate the proposed approach in a simple analysis of the relationship between sustained virological response and liver fibrosis progression among persons infected with hepatitis C virus, while accounting for measurement error in γ-glutamyltransferase, using data collected in the Canadian Co-infection Cohort Study from 2003 to 2014.

  3. Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting

    Science.gov (United States)

    Li, Ming; Wang, Q. J.; Bennett, James C.; Robertson, David E.

    2016-09-01

    This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.

  4. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    Science.gov (United States)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  5. An empirical assessment of exposure measurement error and effect attenuation in bipollutant epidemiologic models.

    Science.gov (United States)

    Dionisio, Kathie L; Baxter, Lisa K; Chang, Howard H

    2014-11-01

    Using multipollutant models to understand combined health effects of exposure to multiple pollutants is becoming more common. However, complex relationships between pollutants and differing degrees of exposure error across pollutants can make health effect estimates from multipollutant models difficult to interpret. We aimed to quantify relationships between multiple pollutants and their associated exposure errors across metrics of exposure and to use empirical values to evaluate potential attenuation of coefficients in epidemiologic models. We used three daily exposure metrics (central-site measurements, air quality model estimates, and population exposure model estimates) for 193 ZIP codes in the Atlanta, Georgia, metropolitan area from 1999 through 2002 for PM2.5 and its components (EC and SO4), as well as O3, CO, and NOx, to construct three types of exposure error: δspatial (comparing air quality model estimates to central-site measurements), δpopulation (comparing population exposure model estimates to air quality model estimates), and δtotal (comparing population exposure model estimates to central-site measurements). We compared exposure metrics and exposure errors within and across pollutants and derived attenuation factors (ratio of observed to true coefficient for pollutant of interest) for single- and bipollutant model coefficients. Pollutant concentrations and their exposure errors were moderately to highly correlated (typically, > 0.5), especially for CO, NOx, and EC (i.e., "local" pollutants); correlations differed across exposure metrics and types of exposure error. Spatial variability was evident, with variance of exposure error for local pollutants ranging from 0.25 to 0.83 for δspatial and δtotal. The attenuation of model coefficients in single- and bipollutant epidemiologic models relative to the true value differed across types of exposure error, pollutants, and space. Under a classical exposure-error framework, attenuation may be

  6. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  7. MODELING OF MANUFACTURING ERRORS FOR PIN-GEAR ELEMENTS OF PLANETARY GEARBOX

    Directory of Open Access Journals (Sweden)

    Ivan M. Egorov

    2014-11-01

    Full Text Available Theoretical background for calculation of k-h-v type cycloid reducers was developed relatively long ago. However, recently the matters of cycloid reducer design again attracted heightened attention. The reason for that is that such devices are used in many complex engineering systems, particularly, in mechatronic and robotics systems. The development of advanced technological capabilities for manufacturing of such reducers today gives the possibility for implementation of essential features of such devices: high efficiency, high gear ratio, kinematic accuracy and smooth motion. The presence of an adequate mathematical model gives the possibility for adjusting kinematic accuracy of the reducer by rational selection of manufacturing tolerances for its parts. This makes it possible to automate the design process for cycloid reducers with account of various factors including technological ones. A mathematical model and mathematical technique have been developed giving the possibility for modeling the kinematic error of the reducer with account of multiple factors, including manufacturing errors. The errors are considered in the way convenient for prediction of kinematic accuracy early at the manufacturing stage according to the results of reducer parts measurement on coordinate measuring machines. During the modeling, the wheel manufacturing errors are determined by the eccentricity and radius deviation of the pin tooth centers circle, and the deviation between the pin tooth axes positions and the centers circle. The satellite manufacturing errors are determined by the satellite eccentricity deviation and the satellite rim eccentricity. Due to the collinearity, the pin tooth and pin tooth hole diameter errors and the satellite tooth profile errors for a designated contact point are integrated into one deviation. Software implementation of the model makes it possible to estimate the pointed errors influence on satellite rotation angle error and

  8. ANALISIS INFLASI DI SUMATERA UTARA: SUATU MODEL ERROR CORRECTION (ECM

    Directory of Open Access Journals (Sweden)

    Hafsyah Aprilia

    2012-06-01

    Full Text Available The research was conducted to determine the effect of economic variables that can explain the change or variation in the rate of inflation in the Consumer Price Index (CPI as the dependent variable. The explanatory variables (independent were used as controls are SBI, the nominal interest rate spread (SBI and the value of the rupiah against the U.S. dollar. Based on these results, according to the specific purpose of the model equations II, suggested economic actors can use SBI interest rate spread as an indicator of variations in the CPI inflation rate at intervals of 8 and 12 months, with a note that the obtained level of explanation has not shown that the optimal value

  9. Error Modeling and Design Optimization of Parallel Manipulators

    DEFF Research Database (Denmark)

    Wu, Guanglei

    challenges due to their highly nonlinear behaviors, thus, the parameter and performance analysis, especially the accuracy and stiness, are particularly important. Toward the requirements of robotic technology such as light weight, compactness, high accuracy and low energy consumption, utilizing optimization...... technique in the design procedure is a suitable approach to handle these complex tasks. As there is no unied design guideline for the parallel manipulators, the study described in this thesis aims to provide a systematic analysis for this type of mechanisms in the early design stage, focusing on accuracy...... analysis and design optimization. The proposed approach is illustrated with the planar and spherical parallel manipulators. The geometric design, kinematic and dynamic analysis, kinetostatic modeling and stiness analysis are also presented. Firstly, the study on the geometric architecture and kinematic...

  10. Why Is Rainfall Error Analysis Requisite for Data Assimilation and Climate Modeling?

    Science.gov (United States)

    Hou, Arthur Y.; Zhang, Sara Q.

    2004-01-01

    Given the large temporal and spatial variability of precipitation processes, errors in rainfall observations are difficult to quantify yet crucial to making effective use of rainfall data for improving atmospheric analysis, weather forecasting, and climate modeling. We highlight the need for developing a quantitative understanding of systematic and random errors in precipitation observations by examining explicit examples of how each type of errors can affect forecasts and analyses in global data assimilation. We characterize the error information needed from the precipitation measurement community and how it may be used to improve data usage within the general framework of analysis techniques, as well as accuracy requirements from the perspective of climate modeling and global data assimilation.

  11. Error Modeling and Sensitivity Analysis of a Five-Axis Machine Tool

    Directory of Open Access Journals (Sweden)

    Wenjie Tian

    2014-01-01

    Full Text Available Geometric error modeling and its sensitivity analysis are carried out in this paper, which is helpful for precision design of machine tools. Screw theory and rigid body kinematics are used to establish the error model of an RRTTT-type five-axis machine tool, which enables the source errors affecting the compensable and uncompensable pose accuracy of the machine tool to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for the accuracy improvement by suitable measures, that is, component tolerancing in design, manufacturing, and assembly processes, and error compensation. The sensitivity analysis method is proposed, and the sensitivities of compensable and uncompensable pose accuracies are analyzed. The analysis results will be used for the precision design of the machine tool.

  12. An attempt to lower sources of systematic measurement error using Hierarchical Generalized Linear Modeling (HGLM).

    Science.gov (United States)

    Sideridis, George D; Tsaousis, Ioannis; Katsis, Athanasios

    2014-01-01

    The purpose of the present studies was to test the effects of systematic sources of measurement error on the parameter estimates of scales using the Rasch model. Studies 1 and 2 tested the effects of mood and affectivity. Study 3 evaluated the effects of fatigue. Last, studies 4 and 5 tested the effects of motivation on a number of parameters of the Rasch model (e.g., ability estimates). Results indicated that (a) the parameters of interest and the psychometric properties of the scales were substantially distorted in the presence of all systematic sources of error, and, (b) the use of HGLM provides a way of adjusting the parameter estimates in the presence of these sources of error. It is concluded that validity in measurement requires a thorough evaluation of potential sources of error and appropriate adjustments based on each occasion.

  13. Performance of cumulant-based rank reduction estimator in presence of unexpected modeling errors

    Institute of Scientific and Technical Information of China (English)

    王鼎

    2015-01-01

    Compared with the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE based on fourth-order cumulants (referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival (DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding (DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error (MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.

  14. Measurement Error in Proportional Hazards Models for Survival Data with Long-term Survivors

    Institute of Scientific and Technical Information of China (English)

    Xiao-bing ZHAO; Xian ZHOU

    2012-01-01

    This work studies a proportional hazards model for survival data with "long-term survivors",in which covariates are subject to linear measurement error.It is well known that the na?ve estimators from both partial and full likelihood methods are inconsistent under this measurement error model.For measurement error models,methods of unbiased estimating function and corrected likelihood have been proposed in the literature.In this paper,we apply the corrected partial and full likelihood approaches to estimate the model and obtain statistical inference from survival data with long-term survivors.The asymptotic properties of the estimators are established.Simulation results illustrate that the proposed approaches provide useful tools for the models considered.

  15. Fast history matching of time-lapse seismic and production data for high resolution models

    Science.gov (United States)

    Jimenez Arismendi, Eduardo Antonio

    Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used

  16. Consistent Fundamental Matrix Estimation in a Quadratic Measurement Error Model Arising in Motion Analysis

    OpenAIRE

    Kukush, A.; Markovsky, I.; Van Huffel, S.

    2002-01-01

    Consistent estimators of the rank-deficient fundamental matrix yielding information on the relative orientation of two images in two-view motion analysis are derived. The estimators are derived by minimizing a corrected contrast function in a quadratic measurement error model. In addition, a consistent estimator for the measurement error variance is obtained. Simulation results show the improved accuracy of the newly proposed estimator compared to the ordinary total least-squares estimator.

  17. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  18. Identifiability of Gaussian Structural Equation Models with Same Error Variances

    CERN Document Server

    Peters, Jonas

    2012-01-01

    We consider structural equation models (SEMs) in which variables can be written as a function of their parents and noise terms (the latter are assumed to be jointly independent). Corresponding to each SEM, there is a directed acyclic graph (DAG) G_0 describing the relationships between the variables. In Gaussian SEMs with linear functions, the graph can be identified from the joint distribution only up to Markov equivalence classes (assuming faithfulness). It has been shown, however, that this constitutes an exceptional case. In the case of linear functions and non-Gaussian noise, the DAG becomes identifiable. Apart from few exceptions the same is true for non-linear functions and arbitrarily distributed additive noise. In this work, we prove identifiability for a third modification: if we require all noise variables to have the same variances, again, the DAG can be recovered from the joint Gaussian distribution. Our result can be applied to the problem of causal inference. If the data follow a Gaussian SEM w...

  19. High dimensional linear regression models under long memory dependence and measurement error

    Science.gov (United States)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the

  20. Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2012-01-01

    A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...... by using the concept and properties of the reciprocal systems. The results are further illustrated by two practical numerical examples: a model of CD player and a model of the atmospheric storm track....

  1. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  2. An MEG signature corresponding to an axiomatic model of reward prediction error.

    Science.gov (United States)

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-01

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data.

  3. mr: A C++ library for the matching and running of the Standard Model parameters

    Science.gov (United States)

    Kniehl, Bernd A.; Pikelner, Andrey F.; Veretin, Oleg L.

    2016-09-01

    We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the MS bar renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library.

  4. mr: a C++ library for the matching and running of the Standard Model parameters

    CERN Document Server

    Kniehl, Bernd A; Veretin, Oleg L

    2016-01-01

    We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the $\\overline{\\mathrm{MS}}$ renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library.

  5. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching

    Directory of Open Access Journals (Sweden)

    Zhou Yu

    2015-12-01

    Full Text Available This study proposes a model-based Synthetic Aperture Radar (SAR automatic target recognition algorithm. Scattering is computed offline using the laboratory-developed Bidirectional Analytic Ray Tracing software and the same system parameter settings as the Moving and Stationary Target Acquisition and Recognition (MSTAR datasets. SAR images are then created by simulated electromagnetic scattering data. Shape features are extracted from the measured and simulated images, and then, matches are searched. The algorithm is verified using three types of targets from MSTAR data and simulated SAR images, and it is shown that the proposed approach is fast and easy to implement with high accuracy.

  6. Modeling of Video Sequences by Gaussian Mixture: Application in Motion Estimation by Block Matching Method

    Directory of Open Access Journals (Sweden)

    Nsiri Benayad

    2010-01-01

    Full Text Available This article investigates a new method of motion estimation based on block matching criterion through the modeling of image blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices are estimated by the Expectation Maximization algorithm (EM which maximizes the log-likelihood criterion. The similarity between a block in the current image and the more resembling one in a search window on the reference image is measured by the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real images have given good results, and PSNR reached 3 dB.

  7. Active Magnetic Bearing Rotor Model Updating Using Resonance and MAC Error

    Directory of Open Access Journals (Sweden)

    Yuanping Xu

    2015-01-01

    Full Text Available Modern control techniques can improve the performance and robustness of a rotor active magnetic bearing (AMB system. Since those control methods usually rely on system models, it is important to obtain a precise rotor AMB analytical model. However, the interference fits and shrink effects of rotor AMB cause inaccuracy to the final system model. In this paper, an experiment based model updating method is proposed to improve the accuracy of the finite element (FE model used in a rotor AMB system. Modelling error is minimized by applying a numerical optimization Nelder-Mead simplex algorithm to properly adjust FE model parameters. Both the error resonance frequencies and modal assurance criterion (MAC values are minimized simultaneously to account for the rotor natural frequencies as well as for the mode shapes. Verification of the updated rotor model is performed by comparing the experimental and analytical frequency response. The close agreements demonstrate the effectiveness of the proposed model updating methodology.

  8. Admissibilities of linear estimator in a class of linear models with a multivariate t error variable

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper discusses admissibilities of estimators in a class of linear models,which include the following common models:the univariate and multivariate linear models,the growth curve model,the extended growth curve model,the seemingly unrelated regression equations,the variance components model,and so on.It is proved that admissible estimators of functions of the regression coefficient β in the class of linear models with multivariate t error terms,called as Model II,are also ones in the case that error terms have multivariate normal distribution under a strictly convex loss function or a matrix loss function.It is also proved under Model II that the usual estimators of β are admissible for p 2 with a quadratic loss function,and are admissible for any p with a matrix loss function,where p is the dimension of β.

  9. Rank-Defect Adjustment Model for Survey-Line Systematic Errors in Marine Survey Net

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper,the structure of systematic and random errors in marine survey net are discussed in detail and the adjustment method for observations of marine survey net is studied,in which the rank-defect characteristic is discovered first up to now.On the basis of the survey-line systematic error model,the formulae of the rank-defect adjustment model are deduced according to modern adjustment theory.An example of calculations with really observed data is carried out to demonstrate the efficiency of this adjustment model.Moreover,it is proved that the semi-systematic error correction method used at present in marine gravimetry in China is a special case of the adjustment model presented in this paper.

  10. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

     This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error......-correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...

  11. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

    2009-01-01

    This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error......-correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...

  12. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  13. Execution-Error Modeling and Analysis of the GRAIL Spacecraft Pair

    Science.gov (United States)

    Goodson, Troy D.

    2013-01-01

    The GRAIL spacecraft, Ebb and Flow (aka GRAIL-A and GRAIL-B), completed their prime mission in June and extended mission in December 2012. The excellent performance of the propulsion and attitude control subsystems contributed significantly to the mission's success. In order to better understand this performance, the Navigation Team has analyzed and refined the execution-error models for delta-v maneuvers. There were enough maneuvers in the prime mission to form the basis of a model update that was used in the extended mission. This paper documents the evolution of the execution-error models along with the analysis and software used.

  14. Incorporating experimental design and error into coalescent/mutation models of population history.

    Science.gov (United States)

    Knudsen, Bjarne; Miyamoto, Michael M

    2007-08-01

    Coalescent theory provides a powerful framework for estimating the evolutionary, demographic, and genetic parameters of a population from a small sample of individuals. Current coalescent models have largely focused on population genetic factors (e.g., mutation, population growth, and migration) rather than on the effects of experimental design and error. This study develops a new coalescent/mutation model that accounts for unobserved polymorphisms due to missing data, sequence errors, and multiple reads for diploid individuals. The importance of accommodating these effects of experimental design and error is illustrated with evolutionary simulations and a real data set from a population of the California sea hare. In particular, a failure to account for sequence errors can lead to overestimated mutation rates, inflated coalescent times, and inappropriate conclusions about the population. This current model can now serve as a starting point for the development of newer models with additional experimental and population genetic factors. It is currently implemented as a maximum-likelihood method, but this model may also serve as the basis for the development of Bayesian approaches that incorporate experimental design and error.

  15. A Monte-Carlo Bayesian framework for urban rainfall error modelling

    Science.gov (United States)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian

    2016-04-01

    Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data

  16. A flexible additive inflation scheme for treating model error in ensemble Kalman Filters

    Science.gov (United States)

    Sommer, Matthias; Janjic, Tijana

    2017-04-01

    Data assimilation algorithms require an accurate estimate of the uncertainty of the prior, background, field. However, the background error covariance derived from the ensemble of numerical model simulations does not adequately represent the uncertainty of it. This is partially due to the sampling error that arises from the use of a small number of ensemble members to represent the background error covariance. It is also partially a consequence of the fact that the model does not represent its own error. Several mechanisms have been introduced so far aiming at alleviating the detrimental e ffects of misrepresented ensemble covariances, allowing for the successful implementation of ensemble data assimilation techniques for atmospheric dynamics. One of the established approaches in ensemble data assimilation is additive inflation which perturbs each ensemble member with a sample from a given distribution. This results in a fixed rank of the model error covariance matrix. Here, a more flexible approach is suggested where the model error samples are treated as additional synthetic ensemble members which are used in the update step of data assimilation but are not forecast. In this way, the rank of the model error covariance matrix can be chosen independently of the ensemble. The eff ect of this altered additive inflation method on the performance of the filter is analyzed here in an idealised experiment. It is shown that the additional synthetic ensemble members can make it feasible to achieve convergence in an otherwise divergent setting of data assimilation. The use of this method also allows for a less stringent localization radius.

  17. On improving analytical models of cosmic reionization for matching numerical simulation

    CERN Document Server

    Kaurov, Alexander A

    2015-01-01

    The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emerged from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large scale statistical properties. These mock catalogs are...

  18. On the transferability of three water models developed by adaptive force matching

    CERN Document Server

    Hu, Hongyi; Wang, Feng

    2015-01-01

    Water is perhaps the most simulated liquid. Recently three water models have been developed following the adaptive force matching (AFM) method that provides excellent predictions of water properties with only electronic structure information as a reference. Compared to many other electronic structure based force fields that rely on fairly sophisticated energy expressions, the AFM water models use point-charge based energy expressions that are supported by most popular molecular dynamics packages. An outstanding question regarding simple force fields is whether such force fields provide reasonable transferability outside of their conditions of parameterization. A survey of three AFM water models, B3LYPD-4F, BLYPSP-4F, and WAIL are provided for simulations under conditions ranging from the melting point up to the critical point. By including ice-Ih configurations in the training set, the WAIL potential predicts the melting temperate, TM, of ice-Ih correctly. Without training for ice, BLYPSP-4F underestimates TM...

  19. High resolution modeling of CO2 over Europe: implications for representation errors of satellite retrievals

    Directory of Open Access Journals (Sweden)

    T. Koch

    2010-01-01

    Full Text Available Satellite retrievals for column CO2 with better spatial and temporal sampling are expected to improve the current surface flux estimates of CO2 via inverse techniques. However, the spatial scale mismatch between remotely sensed CO2 and current generation inverse models can induce representation errors, which can cause systematic biases in flux estimates. This study is focused on estimating these representation errors associated with utilization of satellite measurements in global models with a horizontal resolution of about 1 degree or less. For this we used simulated CO2 from the high resolution modeling framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a weather forecasting model at 10×10 km2 horizontal resolution. Sub-grid variability of column averaged CO2, i.e. the variability not resolved by global models, reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results indicate that orography plays an important role. Using sub-grid variability of orography and CO2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated that could explain about 50% of the spatial patterns in the systematic (bias or correlated error component of representation error in column and near-surface CO2 during day- and night-times. These findings give hints for a parameterization of representation error which would allow for the representation error to taken into account in inverse models or data assimilation systems.

  20. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    Science.gov (United States)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2016-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  1. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Science.gov (United States)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  2. Uncovering the Best Skill Multimap by Constraining the Error Probabilities of the Gain-Loss Model

    Science.gov (United States)

    Anselmi, Pasquale; Robusto, Egidio; Stefanutti, Luca

    2012-01-01

    The Gain-Loss model is a probabilistic skill multimap model for assessing learning processes. In practical applications, more than one skill multimap could be plausible, while none corresponds to the true one. The article investigates whether constraining the error probabilities is a way of uncovering the best skill assignment among a number of…

  3. A Hierarchical Bayes Error Correction Model to Explain Dynamic Effects of Price Changes

    NARCIS (Netherlands)

    D. Fok (Dennis); R. Paap (Richard); C. Horváth (Csilla); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThe authors put forward a sales response model to explain the differences in immediate and dynamic effects of promotional prices and regular prices on sales. The model consists of a vector autoregression rewritten in error-correction format which allows to disentangle the immediate

  4. A Percentile Regression Model for the Number of Errors in Group Conversation Tests.

    Science.gov (United States)

    Liski, Erkki P.; Puntanen, Simo

    A statistical model is presented for analyzing the results of group conversation tests in English, developed in a Finnish university study from 1977 to 1981. The model is illustrated with the findings from the study. In this study, estimates of percentile curves for the number of errors are of greater interest than the mean regression line. It was…

  5. Thermal Error Modeling of a Machine Tool Using Data Mining Scheme

    Science.gov (United States)

    Wang, Kun-Chieh; Tseng, Pai-Chang

    In this paper the knowledge discovery technique is used to build an effective and transparent mathematic thermal error model for machine tools. Our proposed thermal error modeling methodology (called KRL) integrates the schemes of K-means theory (KM), rough-set theory (RS), and linear regression model (LR). First, to explore the machine tool's thermal behavior, an integrated system is designed to simultaneously measure the temperature ascents at selected characteristic points and the thermal deformations at spindle nose under suitable real machining conditions. Second, the obtained data are classified by the KM method, further reduced by the RS scheme, and a linear thermal error model is established by the LR technique. To evaluate the performance of our proposed model, an adaptive neural fuzzy inference system (ANFIS) thermal error model is introduced for comparison. Finally, a verification experiment is carried out and results reveal that the proposed KRL model is effective in predicting thermal behavior in machine tools. Our proposed KRL model is transparent, easily understood by users, and can be easily programmed or modified for different machining conditions.

  6. Automated evolutionary restructuring of workflows to minimise errors via stochastic model checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    This paper presents a framework for the automated restructuring of workflows that allows one to minimise the impact of errors on a production workflow. The framework allows for the modelling of workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN) language...

  7. Uncovering the Best Skill Multimap by Constraining the Error Probabilities of the Gain-Loss Model

    Science.gov (United States)

    Anselmi, Pasquale; Robusto, Egidio; Stefanutti, Luca

    2012-01-01

    The Gain-Loss model is a probabilistic skill multimap model for assessing learning processes. In practical applications, more than one skill multimap could be plausible, while none corresponds to the true one. The article investigates whether constraining the error probabilities is a way of uncovering the best skill assignment among a number of…

  8. A Hierarchical Bayes Error Correction Model to Explain Dynamic Effects of Price Changes

    NARCIS (Netherlands)

    D. Fok (Dennis); R. Paap (Richard); C. Horváth (Csilla); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThe authors put forward a sales response model to explain the differences in immediate and dynamic effects of promotional prices and regular prices on sales. The model consists of a vector autoregression rewritten in error-correction format which allows to disentangle the immediate effec

  9. Modelling for registration of remotely sensed imagery when reference control points contain error

    Institute of Scientific and Technical Information of China (English)

    GE; Yong; Leung; Yee; MA; Jianghong; WANG; Jinfeng

    2006-01-01

    Reference control points (RCPs) used in establishing the regression model in the registration or geometric correction of remote sensing images are generally assumed to be "perfect". That is, the RCPs, as explanatory variables in the regression equation, are accurate and the coordinates of their locations have no errors. Thus ordinary least squares (OLS) estimator has been applied extensively to the registration or geometric correction of remotely sensed data. However, this assumption is often invalid in practice because RCPs always contain errors. Moreover, the errors are actually one of the main sources which lower the accuracy of geometric correction of an uncorrected image. Under this situation, the OLS estimator is biased. It cannot handle explanatory variables with errors and cannot propagate appropriately errors from the RCPs to the corrected image. Therefore, it is essential to develop new feasible methods to overcome such a problem. This paper introduces a consistent adjusted least squares (CALS) estimator and proposes relaxed consistent adjusted least squares (RCALS) estimator, with the latter being more general and flexible, for geometric correction or registration. These estimators have good capability in correcting errors contained in the RCPs, and in propagating appropriately errors of the RCPs to the corrected image with and without prior information.The objective of the CALS and proposed RCALS estimators is to improve the accuracy of measurement value by weakening the measurement errors. The conceptual arguments are substantiated by a real remotely sensed data. Compared to the OLS estimator, the CALS and RCALS estimators give a superior overall performance in estimating the regression coefficients and variance of measurement errors.

  10. Systematic Geometric Error Modeling for Workspace Volumetric Calibration of a 5-axis Turbine Blade Grinding Machine

    Institute of Scientific and Technical Information of China (English)

    Abdul Wahid Khan; Chen Wuyi

    2010-01-01

    A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine.This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process.Although its topology is RPPPR (P:prismatic;R:rotary),its design is quite distinct from the competitive machine tools.As error quantification is the only way to investigate,maintain and improve its accuracy,calibration is recommended for its performance assessment and acceptance testing.Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors ofworkpiece and cutting tool.39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume.Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.

  11. Accuracy of travel time distribution (TTD) models as affected by TTD complexity, observation errors, and model and tracer selection

    Science.gov (United States)

    Green, Christopher T.; Zhang, Yong; Jurgens, Bryant C.; Starn, J. Jeffrey; Landon, Matthew K.

    2014-01-01

    Analytical models of the travel time distribution (TTD) from a source area to a sample location are often used to estimate groundwater ages and solute concentration trends. The accuracies of these models are not well known for geologically complex aquifers. In this study, synthetic datasets were used to quantify the accuracy of four analytical TTD models as affected by TTD complexity, observation errors, model selection, and tracer selection. Synthetic TTDs and tracer data were generated from existing numerical models with complex hydrofacies distributions for one public-supply well and 14 monitoring wells in the Central Valley, California. Analytical TTD models were calibrated to synthetic tracer data, and prediction errors were determined for estimates of TTDs and conservative tracer (NO3−) concentrations. Analytical models included a new, scale-dependent dispersivity model (SDM) for two-dimensional transport from the watertable to a well, and three other established analytical models. The relative influence of the error sources (TTD complexity, observation error, model selection, and tracer selection) depended on the type of prediction. Geological complexity gave rise to complex TTDs in monitoring wells that strongly affected errors of the estimated TTDs. However, prediction errors for NO3− and median age depended more on tracer concentration errors. The SDM tended to give the most accurate estimates of the vertical velocity and other predictions, although TTD model selection had minor effects overall. Adding tracers improved predictions if the new tracers had different input histories. Studies using TTD models should focus on the factors that most strongly affect the desired predictions.

  12. The propagation of inventory-based positional errors into statistical landslide susceptibility models

    Science.gov (United States)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Glade, Thomas

    2016-12-01

    There is unanimous agreement that a precise spatial representation of past landslide occurrences is a prerequisite to produce high quality statistical landslide susceptibility models. Even though perfectly accurate landslide inventories rarely exist, investigations of how landslide inventory-based errors propagate into subsequent statistical landslide susceptibility models are scarce. The main objective of this research was to systematically examine whether and how inventory-based positional inaccuracies of different magnitudes influence modelled relationships, validation results, variable importance and the visual appearance of landslide susceptibility maps. The study was conducted for a landslide-prone site located in the districts of Amstetten and Waidhofen an der Ybbs, eastern Austria, where an earth-slide point inventory was available. The methodological approach comprised an artificial introduction of inventory-based positional errors into the present landslide data set and an in-depth evaluation of subsequent modelling results. Positional errors were introduced by artificially changing the original landslide position by a mean distance of 5, 10, 20, 50 and 120 m. The resulting differently precise response variables were separately used to train logistic regression models. Odds ratios of predictor variables provided insights into modelled relationships. Cross-validation and spatial cross-validation enabled an assessment of predictive performances and permutation-based variable importance. All analyses were additionally carried out with synthetically generated data sets to further verify the findings under rather controlled conditions. The results revealed that an increasing positional inventory-based error was generally related to increasing distortions of modelling and validation results. However, the findings also highlighted that interdependencies between inventory-based spatial inaccuracies and statistical landslide susceptibility models are complex. The

  13. Impact of transport and modelling errors on the estimation of methane sources and sinks by inverse modelling

    Science.gov (United States)

    Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric

    2013-04-01

    Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors

  14. Research on identifying the dynamic error model of strapdown gyro on 3-axis turntable

    Institute of Scientific and Technical Information of China (English)

    WANG Hai; REN Shun-qing; WANG Chang-hong

    2005-01-01

    The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system.In order to identify the dynamic error model coefficients accurately, the static erTor model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a threeaxis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.

  15. Exact sampling of the unobserved covariates in Bayesian spline models for measurement error problems.

    Science.gov (United States)

    Bhadra, Anindya; Carroll, Raymond J

    2016-07-01

    In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.

  16. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    Genotyping-by-sequencing (GBSeq) is becoming a cost-effective genotyping platform for species without available SNP arrays. GBSeq considers to sequence short reads from restriction sites covering a limited part of the genome (e.g., 5-10%) with low sequencing depth per individual (e.g., 5-10X per....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  17. Medication errors in the intensive care unit: literature review using the SEIPS model.

    Science.gov (United States)

    Frith, Karen H

    2013-01-01

    Medication errors in intensive care units put patients at risk for injury or death every day. Safety requires an organized and systematic approach to improving the tasks, technology, environment, and organizational culture associated with medication systems. The Systems Engineering Initiative for Patient Safety model can help leaders and health care providers understand the complicated and high-risk work associated with critical care. Using this model, the author combines a human factors approach with the well-known structure-process-outcome model of quality improvement to examine research literature. The literature review reveals that human factors, including stress, high workloads, knowledge deficits, and performance deficits, are associated with medication errors. Factors contributing to medication errors are frequent interruptions, communication problems, and poor fit of health information technology to the workflow of providers. Multifaceted medication safety interventions are needed so that human factors and system problems can be addressed simultaneously.

  18. An EOQ model for imperfect quality items with partial backordering under screening errors

    Directory of Open Access Journals (Sweden)

    Ehsan Sharifi

    2015-12-01

    Full Text Available In practice, when a lot size received, an inspection process is necessary to identify the defective items. In addition, the inspection process itself is not error-free and it may contain misclassification errors. In this paper, an economic order quantity model for imperfect quality items with partial backordering under screening errors is studied. The objective is to maximize the expected annual profit by optimizing the order size and the maximum number of backorder units. Also, the aim of this paper is to develop a general and practical model that is more realistic in the competitive commercial situations. For authenticity of the developed model, a case study and a numerical example are illustrated, and the sensitivity analysis is also carried out.

  19. VARYING COEFFICIENT MODELS FOR DATA WITH AUTO-CORRELATED ERROR PROCESS.

    Science.gov (United States)

    Chen, Zhao; Li, Runze; Li, Yan

    2015-04-01

    Varying coefficient model has been popular in the literature. In this paper, we propose a profile least squares estimation procedure to its regression coefficients when its random error is an auto-regressive (AR) process. We further study the asymptotic properties of the proposed procedure, and establish the asymptotic normality for the resulting estimate. We show that the resulting estimate for the regression coefficients has the same asymptotic bias and variance as the local linear estimate for varying coefficient models with independent and identically distributed observations. We apply the SCAD variable selection procedure (Fan and Li, 2001) to reduce model complexity of the AR error process. Numerical comparison and finite sample performance of the resulting estimate are examined by Monte Carlo studies. Our simulation results demonstrate the proposed procedure is much more efficient than the one ignoring the error correlation. The proposed methodology is illustrated by a real data example.

  20. The mean error estimation of TOPSIS method using a fuzzy reference models

    Directory of Open Access Journals (Sweden)

    Wojciech Sałabun

    2013-04-01

    Full Text Available The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS is a commonly used multi-criteria decision-making method. A number of authors have proposed improvements, known as extensions, of the TOPSIS method, but these extensions have not been examined with respect to accuracy. Accuracy estimation is very difficult because reference values for the obtained results are not known, therefore, the results of each extension are compared to one another. In this paper, the author propose a new method to estimate the mean error of TOPSIS with the use of a fuzzy reference model (FRM. This method provides reference values. In experiments involving 1,000 models, 28 million cases are simulated to estimate the mean error. Results of four commonly used normalization procedures were compared. Additionally, the author demonstrated the relationship between the value of the mean error and the nonlinearity of models and a number of alternatives.

  1. Biases in atmospheric CO2 estimates from correlated meteorology modeling errors

    Science.gov (United States)

    Miller, S. M.; Hayek, M. N.; Andrews, A. E.; Fung, I.; Liu, J.

    2015-03-01

    Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.5-7 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 2-22%. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is

  2. Matching theory

    CERN Document Server

    Plummer, MD

    1986-01-01

    This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.

  3. Pattern matching

    NARCIS (Netherlands)

    A. Hak (Tony); J. Dul (Jan)

    2009-01-01

    textabstractPattern matching is comparing two patterns in order to determine whether they match (i.e., that they are the same) or do not match (i.e., that they differ). Pattern matching is the core procedure of theory-testing with cases. Testing consists of matching an “observed pattern” (a pattern

  4. IMC-PID design based on model matching approach and closed-loop shaping.

    Science.gov (United States)

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.

  5. Heteroscedasticity and/or Autocorrelation Checks in Longitudinal Nonlinear Models with Elliptical and AR(1)Errors

    Institute of Scientific and Technical Information of China (English)

    Chun-Zheng CAO; Jin-Guan LIN

    2012-01-01

    The aim of this paper is to study the tests for variance heterogeneity and/or autocorrelation in nonlinear regression models with elliptical and AR(1) errors.The elliptical class includes several symmetric multivariate distributions such as normal,Student-t,power exponential,among others.Several diagnostic tests using score statistics and their adjustment are constructed.The asymptotic properties,including asymptotic chi-square and approximate powers under local alternatives of the score statistics,are studied.The properties of test statistics are investigated through Monte Carlo simulations.A data set previously analyzed under normal errors is reanalyzed under elliptical models to illustrate our test methods.

  6. Estimating numerical errors due to operator splitting in global atmospheric chemistry models: Transport and chemistry

    Science.gov (United States)

    Santillana, Mauricio; Zhang, Lin; Yantosca, Robert

    2016-01-01

    We present upper bounds for the numerical errors introduced when using operator splitting methods to integrate transport and non-linear chemistry processes in global chemical transport models (CTM). We show that (a) operator splitting strategies that evaluate the stiff non-linear chemistry operator at the end of the time step are more accurate, and (b) the results of numerical simulations that use different operator splitting strategies differ by at most 10%, in a prototype one-dimensional non-linear chemistry-transport model. We find similar upper bounds in operator splitting numerical errors in global CTM simulations.

  7. A Two-Warehouse Inventory Model with Imperfect Quality and Inspection Errors

    Directory of Open Access Journals (Sweden)

    Tie Wang

    2012-09-01

    Full Text Available In this study, we establish a new inventory model with two warehouses, imperfect quality and inspection errors simultaneously. The mathematical model by maximizing the annual total profit and the solution procedure are developed. As a byproduct, we correct some technical error in developing the optimal ordering policies in the above two papers. Morevoer, we find a mild condition satisfied by most common distributions to make the ETPU(y concavity. The Proposition 1 is used to determine the optimal solution of ETPU(y.

  8. Error analysis for momentum conservation in Atomic-Continuum Coupled Model

    Science.gov (United States)

    Yang, Yantao; Cui, Junzhi; Han, Tiansi

    2016-08-01

    Atomic-Continuum Coupled Model (ACCM) is a multiscale computation model proposed by Xiang et al. (in IOP conference series materials science and engineering, 2010), which is used to study and simulate dynamics and thermal-mechanical coupling behavior of crystal materials, especially metallic crystals. In this paper, we construct a set of interpolation basis functions for the common BCC and FCC lattices, respectively, implementing the computation of ACCM. Based on this interpolation approximation, we give a rigorous mathematical analysis of the error of momentum conservation equation introduced by ACCM, and derive a sequence of inequalities that bound the error. Numerical experiment is carried out to verify our result.

  9. Accounting for spatial correlation errors in the assimilation of GRACE into hydrological models through localization

    Science.gov (United States)

    Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.

    2017-10-01

    Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS

  10. Orientation Modeling for Amateur Cameras by Matching Image Line Features and Building Vector Data

    Science.gov (United States)

    Hung, C. H.; Chang, W. C.; Chen, L. C.

    2016-06-01

    With the popularity of geospatial applications, database updating is getting important due to the environmental changes over time. Imagery provides a lower cost and efficient way to update the database. Three dimensional objects can be measured by space intersection using conjugate image points and orientation parameters of cameras. However, precise orientation parameters of light amateur cameras are not always available due to their costliness and heaviness of precision GPS and IMU. To automatize data updating, the correspondence of object vector data and image may be built to improve the accuracy of direct georeferencing. This study contains four major parts, (1) back-projection of object vector data, (2) extraction of image feature lines, (3) object-image feature line matching, and (4) line-based orientation modeling. In order to construct the correspondence of features between an image and a building model, the building vector features were back-projected onto the image using the initial camera orientation from GPS and IMU. Image line features were extracted from the imagery. Afterwards, the matching procedure was done by assessing the similarity between the extracted image features and the back-projected ones. Then, the fourth part utilized line features in orientation modeling. The line-based orientation modeling was performed by the integration of line parametric equations into collinearity condition equations. The experiment data included images with 0.06 m resolution acquired by Canon EOS Mark 5D II camera on a Microdrones MD4-1000 UAV. Experimental results indicate that 2.1 pixel accuracy may be reached, which is equivalent to 0.12 m in the object space.

  11. Design considerations for case series models with exposure onset measurement error.

    Science.gov (United States)

    Mohammed, Sandra M; Dalrymple, Lorien S; Sentürk, Damla; Nguyen, Danh V

    2013-02-28

    The case series model allows for estimation of the relative incidence of events, such as cardiovascular events, within a pre-specified time window after an exposure, such as an infection. The method requires only cases (individuals with events) and controls for all fixed/time-invariant confounders. The measurement error case series model extends the original case series model to handle imperfect data, where the timing of an infection (exposure) is not known precisely. In this work, we propose a method for power/sample size determination for the measurement error case series model. Extensive simulation studies are used to assess the accuracy of the proposed sample size formulas. We also examine the magnitude of the relative loss of power due to exposure onset measurement error, compared with the ideal situation where the time of exposure is measured precisely. To facilitate the design of case series studies, we provide publicly available web-based tools for determining power/sample size for both the measurement error case series model as well as the standard case series model.

  12. Diagnosing Model Errors in Canopy-Atmosphere Exchange Using Empirical Orthogonal Functions

    Science.gov (United States)

    Drewry, D.; Albertson, J.

    2004-12-01

    Multi-layer canopy process models (MLCPMs) have been established as tools for estimating local-scale canopy-atmosphere scalar (carbon dioxide, heat and water vapor) exchange as well as testing hypotheses regarding the mechanistic functioning of complex vegetated land surfaces and the interactions between vegetation and the local microenvironment. These model frameworks are composed of a coupled set of component submodels relating radiation attenuation and absorption, photosynthesis, turbulent mixing, stomatal conductance, surface energy balance and soil and subsurface processes. Submodel formulations have been validated for a variety of ecosystems under varying environmental conditions. However, each submodel component requires parameter values that are known to vary seasonally as canopy structure changes, and over shorter periods characterized by shifts in the environmental regime. The temporal dependence of submodel parameters limits application of MLCPMs to short-term integrations for which a specific parameterization can be trusted. We present a novel application of empirical orthogonal function (EOF) analysis to the identification of the primary source of MLCPM error. Carbon dioxide (CO2) concentration profiles, a commonly collected and underutilized data source, are the observed quantity in this analysis. The technique relies on an ensemble of model runs transformed to EOF space to determine the characteristic patterns of model error associated with specific submodel parameters. These patterns provide a basis onto which error residual (modeled - measured) CO2 concentration profiles can be projected to identify the primary source of model error. Synthetic tests and application to field data collected at Duke Forest (North Carolina, USA) are presented.

  13. Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.

    Science.gov (United States)

    Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B

    2017-01-01

    In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.

  14. Factors influencing superimposition error of 3D cephalometric landmarks by plane orientation method using 4 reference points: 4 point superimposition error regression model.

    Directory of Open Access Journals (Sweden)

    Jae Joon Hwang

    Full Text Available Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT, evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23% by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model.

  15. Frequency Weighted Model Order Reduction Technique and Error Bounds for Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2014-01-01

    for whole frequency range. However, certain applications (like controller reduction require frequency weighted approximation, which introduce the concept of using frequency weights in model reduction techniques. Limitations of some existing frequency weighted model reduction techniques include lack of stability of reduced order models (for two sided weighting case and frequency response error bounds. A new frequency weighted technique for balanced model reduction for discrete time systems is proposed. The proposed technique guarantees stable reduced order models even for the case when two sided weightings are present. Efficient technique for frequency weighted Gramians is also proposed. Results are compared with other existing frequency weighted model reduction techniques for discrete time systems. Moreover, the proposed technique yields frequency response error bounds.

  16. Wide-aperture laser beam measurement using transmission diffuser: errors modeling

    Science.gov (United States)

    Matsak, Ivan S.

    2015-06-01

    Instrumental errors of measurement wide-aperture laser beam diameter were modeled to build measurement setup and justify its metrological characteristics. Modeled setup is based on CCD camera and transmission diffuser. This method is appropriate for precision measurement of large laser beam width from 10 mm up to 1000 mm. It is impossible to measure such beams with other methods based on slit, pinhole, knife edge or direct CCD camera measurement. The method is suitable for continuous and pulsed laser irradiation. However, transmission diffuser method has poor metrological justification required in field of wide aperture beam forming system verification. Considering the fact of non-availability of a standard of wide-aperture flat top beam modelling is preferred way to provide basic reference points for development measurement system. Modelling was conducted in MathCAD. Super-Lorentz distribution with shape parameter 6-12 was used as a model of the beam. Using theoretical evaluations there was found that the key parameters influencing on error are: relative beam size, spatial non-uniformity of the diffuser, lens distortion, physical vignetting, CCD spatial resolution and, effective camera ADC resolution. Errors were modeled for 90% of power beam diameter criteria. 12-order Super-Lorentz distribution was primary model, because it precisely meets experimental distribution at the output of test beam forming system, although other orders were also used. The analytic expressions were obtained analyzing the modelling results for each influencing data. Attainability of <1% error based on choice of parameters of expression was shown. The choice was based on parameters of commercially available components of the setup. The method can provide up to 0.1% error in case of using calibration procedures and multiple measurements.

  17. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  18. Research on Time-series Modeling and Filtering Methods for MEMS Gyroscope Random Drift Error

    Science.gov (United States)

    Wang, Xiao Yi; Meng, Xiu Yun

    2017-03-01

    The precision of MEMS gyroscope is reduced by random drift error. This paper applied time series analysis to model random drift error of MEMS gyroscope. Based on the model established, Kalman filter was employed to compensate for the error. To overcome the disadvantages of conventional Kalman filter, Sage-Husa adaptive filtering algorithm was utilized to improve the accuracy of filtering results and the orthogonal property of innovation in the process of filtering was utilized to deal with outliers. The results showed that, compared with conventional Kalman filter, the modified filter can not only enhance filter accuracy, but also resist to outliers and this assured the stability of filtering thus improving the performance of gyroscopes.

  19. On the Modeling of Error Functions as High Dimensional Landscapes for Weight Initialization in Learning Networks

    CERN Document Server

    Julius,; T., Sumana; Adityakrishna, C S

    2016-01-01

    Next generation deep neural networks for classification hosted on embedded platforms will rely on fast, efficient, and accurate learning algorithms. Initialization of weights in learning networks has a great impact on the classification accuracy. In this paper we focus on deriving good initial weights by modeling the error function of a deep neural network as a high-dimensional landscape. We observe that due to the inherent complexity in its algebraic structure, such an error function may conform to general results of the statistics of large systems. To this end we apply some results from Random Matrix Theory to analyse these functions. We model the error function in terms of a Hamiltonian in N-dimensions and derive some theoretical results about its general behavior. These results are further used to make better initial guesses of weights for the learning algorithm.

  20. Bayesian networks modeling for thermal error of numerical control machine tools

    Institute of Scientific and Technical Information of China (English)

    Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN

    2008-01-01

    The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.