Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2017-09-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
Modeling and analysis of magnetic dipoles in weak magnetic field
Institute of Scientific and Technical Information of China (English)
2008-01-01
The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.
Magnetic field screening effect in electroweak model
Bakry, A; Zhang, P M; Zou, L P
2014-01-01
It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.
Field modeling for transcranial magnetic stimulation
DEFF Research Database (Denmark)
Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B
2015-01-01
Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications...... of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii...
Heisenberg necklace model in a magnetic field
Tsvelik, A. M.; Zaliznyak, I. A.
2016-08-01
We study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J . We consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I =3 /2 ) present on the same sites. We find that the resulting necklace model has a characteristic energy scale, Λ ˜J1 /3(γI ) 2 /3 , at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. This energy scale is insensitive to a magnetic field B . For μBB >Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, √{2 }+1 .
Heisenberg Model in a Rotating Magnetic Field
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2005-01-01
We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.
Fifth generation lithospheric magnetic field model from CHAMP satellite measurements
Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle
2007-01-01
Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...
Negativity in the Extended Hubbard Model under External Magnetic Field
Institute of Scientific and Technical Information of China (English)
YANG Zhen; NING Wen-Qiang
2008-01-01
We exactly calculate the negativity,a measurement of entanglement,in the two-site extended Hubbard model with external magnetic field.Its behaviour at different temperatures is presented.The negativity reduces with the increasing temperature or with the increasing uniform external magnetic field.It is also found that a non-uniform external magnetic field can be used to modulate or to increase the negativity.
Modeling Magnetic Fields with FEMM 3.1
Gumbart, James
2003-03-01
FEMM (Finite Element Method Magnetics) 3.1, a freeware program, is useful for modeling problems involving magnets, currents and magnetic fields. The applications of such a program involve both education and upper-level research. The program interface is intuitive and robust. As an educational tool, this program is useful because it handles internally the complicated equations needed to be solved when working with magnetism in matter. Since most elementary applications of magnetism involve permanent magnets, this program enables the user to calculate field energies and forces between magnets and magnetic materials, which would otherwise be impossible to obtain. An analysis of a popular physics demonstration, that of a diamagnetic-assisted levitating magnet, will be used to illustrate these concepts in more detail. The sensitivity of the equilibrium points to the spacing of the diamagnetic plates and the position of the upper attracting magnet is well-reproduced in this simulation.
Magnetic field measurements of JT-60SA CS model coil
Energy Technology Data Exchange (ETDEWEB)
Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2015-01-15
Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.
Twelve-state Potts model in a magnetic field
Kassan-Ogly, F. A.; Filippov, B. N.; Proshkin, A. I.; Zarubin, A. V.
2015-02-01
In this work, we have obtained an exact solution to the one-dimensional modified 12-state Potts model using the Kramers-Wannier transfer matrix with allowance for the exchange interaction between nearest neighbors in an external magnetic field. Analytical expressions have been derived for the heat capacity, magnetization, magnetic susceptibility, magnetic entropy, and magnetocaloric effect as functions of temperature, magnitude and sign of exchange interaction, and the magnitude and direction of the magnetic field. The behavior of all of these parameters has been investigated in detail using numerical methods. The possibility of applying the results obtained to explain the observed magnetic properties of real cubic magnets with a NaCl structure and easy axes oriented along the [110] crystallographic directions has been discussed.
A Model of Mercury's Magnetospheric Magnetic Field with Dependence on Magnetic Activity
Korth, H.; Tsyganenko, N. A.; Johnson, C. L.; Philpott, L. C.; Anderson, B. J.; Solomon, S. C.; McNutt, R. L., Jr.
2015-12-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to characterize the planet's internal field and the structure of the magnetosphere. We present the first model of Mercury's magnetospheric magnetic field that includes a dependence on magnetic activity. The model consists of individual modules for magnetic fields of internal origin, approximated by a dipole of magnitude 190 nT RM3, where RM is Mercury's radius, offset northward by 479 km along the spin axis, and of external origin resulting from currents flowing on the magnetopause boundary and in the cross-tail current sheet. The magnetic field is confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft and dependent on magnetic activity. The cross-tail current is prescribed having a disk shape near the planet and extending into a sheet at larger distances. The magnitude of the tail current, which also depends on magnetic activity, is fit to minimize the root-mean-square residual between the model magnetic field and the field within the magnetosphere observed by MESSENGER. The model was fit separately for magnetic field observations within distinct levels of magnetic activity. Linear fits of model parameters versus magnetic activity allows continuous scaling of the model to magnetic activity. The magnetic field contribution from each module is shielded individually by a scalar potential function, which was fit to minimize the root-mean-square normal magnetic field component at the magnetopause. The resulting model reproduces the dependence of the magnetospheric size and tail current intensity on magnetic activity, and allows more accurate characterization of the internal field.
Up and down cascades: three-dimensional magnetic field model.
Blanter, E M; Shnirman, M G; Le Mouël, J L
2002-06-01
In our previous works we already have proposed a two-dimensional model of geodynamo. Now we use the same approach to build a three-dimensional self-excited geodynamo model that generates a large scale magnetic field from whatever small initial field, using the up and down cascade effects of a multiscale turbulent system of cyclones. The multiscale system of turbulent cyclones evolves in six domains of an equatorial cylindrical layer of the core. The appearance of new cyclones is realized by two cascades: a turbulent direct cascade and an inverse cascade of coupling of similar cyclones. The interaction between the different domains is effected through a direct cascade parameter which is essential for the statistics of the long-life symmetry breaking. Generation of the secondary magnetic field results from the interaction of the components of the primary magnetic field with the turbulent cyclones. The amplification of the magnetic field is due to the transfer of energy from the turbulent helical motion to the generated magnetic field. The model demonstrates a phase transition through the parameter characterizing this energy transfer. In the supercritical domain we obtain long-term intervals of constant polarity (chrons) and quick reversals; relevant time constants agree with paleomagnetic observations. Possible application of the model to the study of the geometrical structure of the geomagnetic field (and briefly other planetary fields) is discussed.
Ridley, Victoria A.; Holme, Richard
2016-03-01
We present new models of Jupiter's internal magnetic field and secular variation from all available direct measurements from three decades of spacecraft observation. A regularized minimum norm approach allows the creation of smooth, numerically stable models displaying a high degree of structure. External field from the magnetodisk is modeled iteratively for each orbit. Jupiter's inner magnetosphere is highly stable with time, with no evidence for variation with solar activity. We compare two spherical harmonic models, one assuming a field constant in time and a second allowing for linear time variation. Including secular variation improves data fit with fewer additional parameters than increasing field complexity. Our favored solution indicates a ˜0.012% yr-1 increase in Jupiter's dipole magnetic moment from 1973 to 2003; this value is roughly one quarter of that for Earth. Inaccuracies in determination of the planetary reference frame cannot explain all the observed secular variation. Should more structure be allowed in the solutions, we find the northern hemispherical configuration resembles recent models based on satellite auroral footprint locations, and there is also evidence of a possible patch of reversed polar flux seen at the expected depth of the dynamo region, resembling that found at Earth and with implications for the Jovian interior. Finally, using our preferred model, we infer flow dynamics at the top of Jupiter's dynamo source. Though highly speculative, the results produce several gyres with some symmetry about the equator, similar to those seen at Earth's core-mantle boundary, suggesting motion on cylinders aligned with the rotation axis.
Modeling HEDLA magnetic field generation experiments on laser facilities
Fatenejad, M.; Bell, A. R.; Benuzzi-Mounaix, A.; Crowston, R.; Drake, R. P.; Flocke, N.; Gregori, G.; Koenig, M.; Krauland, C.; Lamb, D.; Lee, D.; Marques, J. R.; Meinecke, J.; Miniati, F.; Murphy, C. D.; Park, H.-S.; Pelka, A.; Ravasio, A.; Remington, B.; Reville, B.; Scopatz, A.; Tzeferacos, P.; Weide, K.; Woolsey, N.; Young, R.; Yurchak, R.
2013-03-01
The Flash Center is engaged in a collaboration to simulate laser driven experiments aimed at understanding the generation and amplification of cosmological magnetic fields using the FLASH code. In these experiments a laser illuminates a solid plastic or graphite target launching an asymmetric blast wave into a chamber which contains either Helium or Argon at millibar pressures. Induction coils placed several centimeters away from the target detect large scale magnetic fields on the order of tens to hundreds of Gauss. The time dependence of the magnetic field is consistent with generation via the Biermann battery mechanism near the blast wave. Attempts to perform simulations of these experiments using the FLASH code have uncovered previously unreported numerical difficulties in modeling the Biermann battery mechanism near shock waves which can lead to the production of large non-physical magnetic fields. We report on these difficulties and offer a potential solution.
Post-processing scheme for modelling the lithospheric magnetic field
Directory of Open Access Journals (Sweden)
V. Lesur
2013-03-01
Full Text Available We investigated how the noise in satellite magnetic data affects magnetic lithospheric field models derived from these data in the special case where this noise is correlated along satellite orbit tracks. For this we describe the satellite data noise as a perturbation magnetic field scaled independently for each orbit, where the scaling factor is a random variable, normally distributed with zero mean. Under this assumption, we have been able to derive a model for errors in lithospheric models generated by the correlated satellite data noise. Unless the perturbation field is known, estimating the noise in the lithospheric field model is a non-linear inverse problem. We therefore proposed an iterative post-processing technique to estimate both the lithospheric field model and its associated noise model. The technique has been successfully applied to derive a lithospheric field model from CHAMP satellite data up to spherical harmonic degree 120. The model is in agreement with other existing models. The technique can, in principle, be extended to all sorts of potential field data with "along-track" correlated errors.
Error field and magnetic diagnostic modeling for W7-X
Energy Technology Data Exchange (ETDEWEB)
Lazerson, Sam A. [PPPL; Gates, David A. [PPPL; NEILSON, GEORGE H. [PPPL; OTTE, M.; Bozhenkov, S.; Pedersen, T. S.; GEIGER, J.; LORE, J.
2014-07-01
The prediction, detection, and compensation of error fields for the W7-X device will play a key role in achieving a high beta (Β = 5%), steady state (30 minute pulse) operating regime utilizing the island divertor system [1]. Additionally, detection and control of the equilibrium magnetic structure in the scrape-off layer will be necessary in the long-pulse campaign as bootstrapcurrent evolution may result in poor edge magnetic structure [2]. An SVD analysis of the magnetic diagnostics set indicates an ability to measure the toroidal current and stored energy, while profile variations go undetected in the magnetic diagnostics. An additional set of magnetic diagnostics is proposed which improves the ability to constrain the equilibrium current and pressure profiles. However, even with the ability to accurately measure equilibrium parameters, the presence of error fields can modify both the plasma response and diverter magnetic field structures in unfavorable ways. Vacuum flux surface mapping experiments allow for direct measurement of these modifications to magnetic structure. The ability to conduct such an experiment is a unique feature of stellarators. The trim coils may then be used to forward model the effect of an applied n = 1 error field. This allows the determination of lower limits for the detection of error field amplitude and phase using flux surface mapping. *Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.
Computational Models for Creating Homogeneous Magnetic Field Generation Systems
Directory of Open Access Journals (Sweden)
Gerlys M. Villalobos-Fontalvo
2013-11-01
Full Text Available It is increasingly common to use magnetic fields at the cellular level to assess their interaction with biological tissues. The stimulation is usually done with Helmholtz coils which generate a uniform magnetic field in the center of the system. However, assessing cellular behavior with different magnetic field characteristics can be a long and expensive process. For this, it can be used computational models to previously estimate the cellular behavior due to variety of field characteristics prior to in-vitro stimulation in a laboratory. In this paper, we present a methodology for the development of three computational models of homogeneous magnetic field generation systems for possible application in cell stimulation. The models were developed in the Ansys Workbench environment and it was evaluated the magnetic flux density behavior at different configurations. The results were validated with theoretical calculations from the Biot-Savart law. Validated models will be coupled to Ansys APDL environment in order to assess the harmonic response of the system.
TESTING GALACTIC MAGNETIC FIELD MODELS USING NEAR-INFRARED POLARIMETRY
Energy Technology Data Exchange (ETDEWEB)
Pavel, Michael D.; Clemens, D. P.; Pinnick, A. F., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu, E-mail: apinnick@bu.edu [Institute for Astrophysical Research Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States)
2012-04-10
This work combines new observations of NIR starlight linear polarimetry with previously simulated observations in order to constrain dynamo models of the Galactic magnetic field. Polarimetric observations were obtained with the Mimir instrument on the Perkins Telescope in Flagstaff, AZ, along a line of constant Galactic longitude (l = 150 Degree-Sign ) with 17 pointings of the 10' Multiplication-Sign 10' field of view between -75 Degree-Sign < b < 10 Degree-Sign , with more frequent pointings toward the Galactic midplane. A total of 10,962 stars were photometrically measured and 1116 had usable polarizations. The observed distribution of polarization position angles with Galactic latitude and the cumulative distribution function of the measured polarizations are compared to predicted values. While the predictions lack the effects of turbulence and are therefore idealized, this comparison allows significant rejection of A0-type magnetic field models. S0 and disk-even halo-odd magnetic field geometries are also rejected by the observations, but at lower significance. New predictions of spiral-type, axisymmetric magnetic fields, when combined with these new NIR observations, constrain the Galactic magnetic field spiral pitch angle to -6 Degree-Sign {+-} 2 Degree-Sign .
Model (1:10) of the Split-Field Magnet
1977-01-01
The photo shows Klaus Brand from the ISR BOM group with the working model of the Split-Field Magnet, while setting up the field measuring bench. The bench used Hall probes for which he had developed the electronics instrumentation (ISR-BOM Int. Note 12-01-1977). The SFM model made of mild steel with copper coils had been measured in the years 1969-1970. This new mapping campaign was related to the installation of a large calorimeter to one side of the magnet.
Constraining Galactic Magnetic Field Models with Starlight Polarimetry
Pavel, Michael D
2011-01-01
This paper provides testable predictions about starlight polarizations to constrain the geometry of the Galactic magnetic field, in particular the nature of the poloidal component. Galactic dynamo simulations and Galactic dust distributions from the literature are combined with a Stokes radiative transfer model to predict the observed polarizations and position angles of near-infrared starlight, assuming the light is polarized by aligned anisotropic dust grains. S0 and A0 magnetic field models and the role of magnetic pitch angle are all examined. All-sky predictions are made, and particular directions are identified as providing diagnostic power for discriminating among the models. Cumulative distribution functions of the normalized degree of polarization and plots of polarization position angle vs. Galactic latitude are proposed as tools for testing models against observations.
Mean-field approximation for the potts model of a diluted magnet in the external field
Semkin, S. V.; Smagin, V. P.
2016-07-01
The Potts model of a diluted magnet with an arbitrary number of states placed in the external field has been considered. Phase transitions of this model have been studied in the mean-field approximation, the dependence of the critical temperature on the external field and the density of magnetic atoms has been found, and the magnetic susceptibility has been calculated. An improved mean-field technique has been proposed, which provides more accurate account of the effects associated with nonmagnetic dilution. The influence of dilution on the first-order phase transition curve and the magnetization jump at the phase transition has been studied by this technique.
Magnetic field diffusion modeling of a small enclosed firing system
Energy Technology Data Exchange (ETDEWEB)
Warne, L.K.; Merewether, K.O.
1996-01-01
Intense magnetic fields exist in the immediate vicinity of a lightning strike (and near power lines). Conducting barriers increase the rise time (and thus decrease the rise rate) interior to the barrier, but typically do not prevent penetration of the magnetic field, since the lightning current fall time may be larger than the barrier diffusion time. Thus, substantial energy is present in the interior field, although the degradation of rise rate makes it more difficult to couple into electrical circuits. This report assesses the threat posed by the diffusive magnetic field to interior components and wire loops (where voltages are induced). Analytical and numerical bounding analyses are carried out on a pill box shaped conducting barrier to develop estimates for the worst case magnetic field threats inside the system. Worst case induced voltages and energies are estimated and compared with threshold charge voltages and energies on the output capacitor of the system. Variability of these quantities with respect to design parameters are indicated. The interior magnetic field and induced voltage estimates given in this report can be used as excitations for more detailed interior and component models.
DEFF Research Database (Denmark)
Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris
for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model......We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field....... Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available...
Pasrija, Kanika; Kumar, Sanjeev
2016-05-01
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.
Energy Technology Data Exchange (ETDEWEB)
Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)
2016-05-06
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.
Draping of the Interstellar Magnetic Field over the Heliopause - A Passive Field Model
Isenberg, Philip A; Mobius, Eberhard
2015-01-01
As the local interstellar plasma flows past our heliosphere, it is slowed and deflected around the magnetic obstacle of the heliopause. The interstellar magnetic field, frozen into this plasma, then becomes draped around the heliopause in a characteristic manner. We derive the analytical solution for this draped magnetic field in the limit of weak field intensity, assuming an ideal potential flow around the heliopause, which we model as a Rankine half-body. We compare the structure of the model magnetic field with observed properties of the IBEX ribbon and with in situ observations at the Voyager 1 spacecraft. We find reasonable qualitative agreement, given the idealizations of the model. This agreement lends support to the secondary ENA model of the IBEX ribbon and to the interpretation that Voyager 1 has crossed the heliopause. We also predict that the magnetic field measured by Voyager 2 after it crosses the heliopause will not be significantly rotated away from the direction of the undisturbed interstella...
Modelling the Hidden Magnetic Field of Low-Mass Stars
Lang, P; Morin, J; Donati, J-F; Jeffers, S; Vidotto, A A; Fares, R
2014-01-01
Zeeman-Doppler imaging is a spectropolarimetric technique that is used to map the large-scale surface magnetic fields of stars. These maps in turn are used to study the structure of the stars' coronae and winds. This method, however, misses any small-scale magnetic flux whose polarisation signatures cancel out. Measurements of Zeeman broadening show that a large percentage of the surface magnetic flux may be neglected in this way. In this paper we assess the impact of this 'missing flux' on the predicted coronal structure and the possible rates of spin down due to the stellar wind. To do this we create a model for the small-scale field and add this to the Zeeman-Doppler maps of the magnetic fields of a sample of 12 M dwarfs. We extrapolate this combined field and determine the structure of a hydrostatic, isothermal corona. The addition of small-scale surface field produces a carpet of low-lying magnetic loops that covers most of the surface, including the stellar equivalent of solar 'coronal holes' where the ...
Generalized Magnetic Field Effects in Burgers' Nanofluid Model
Rashidi, M. M.; Yang, Z.; Awais, Muhammad; Nawaz, Maria; Hayat, Tasawar
2017-01-01
Analysis has been conducted to present the generalized magnetic field effects on the flow of a Burgers' nanofluid over an inclined wall. Mathematical modelling for hydro-magnetics reveals that the term “σB02u/ρ” is for the Newtonian model whereas the generalized magnetic field term (as mentioned in Eq 4) is for the Burgers’ model which is incorporated in the current analysis to get the real insight of the problem for hydro-magnetics. Brownian motion and thermophoresis phenomenon are presented to analyze the nanofluidics for the non-Newtonian fluid. Mathematical analysis is completed in the presence of non-uniform heat generation/absorption. The constructed set of partial differential system is converted into coupled nonlinear ordinary differential system by employing the suitable transformations. Homotopy approach is employed to construct the analytical solutions which are shown graphically for sundr5y parameters including Deborah numbers, magnetic field, thermophoresis, Brownian motion and non-uniform heat generation/absorption. A comparative study is also presented showing the comparison of present results with an already published data. PMID:28045965
Modeling of particles orientation in magnetic field in drying magnetic coatings
Potanin, Andrei A.; Reynolds, George; J. Hirko, Ronald
2000-03-01
Filament coating is studied as a model of magnetic tape manufacturing. Freshly coated filament is driven through a solenoid magnet which orients particles. After drying the coated filament, its squareness is measured as a function of the magnet position, field and the filament speed during coating. Production and model mixes are tested, which differ in dispersion quality and drying rate. A mean-field model is used to describe orientation of particles in the coating. The model fits experiments with two parameters: particles mobility and a mean-field interaction coefficient. Well dispersed kneaded mix has higher mobility and weaker interactions than non-kneaded mixes. The model well agrees with the data for squareness decay with magnet separation from the mix deposition point, thereby providing a theoretical tool for finding proper magnet position on the production coating lines.
DEFF Research Database (Denmark)
Olsen, Nils
2015-01-01
of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...
Modelling the core magnetic field of the earth
Harrison, C. G. A.; Carle, H. M.
1982-01-01
It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.
Physical modelling of Czochralski crystal growth in horizontal magnetic field
Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter
2017-07-01
This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.
NOC model of the earth's main magnetic field
Institute of Scientific and Technical Information of China (English)
XU; Wenyao(徐文耀)
2003-01-01
The method of natural orthogonal components (NOC) is used to analyze the earth's main magnetic field IGRF 1900-2000, and the NOC model of the field is established. The first step of the analysis is to calculate eigen modes of the field from the Gauss coefficients of IGRF 1900-2000. Then the magnetic field for each epoch is expanded in a series at the basic function set constructed by the eigen modes, and the intensity coefficients of the eigen modes are calculated. Test of the convergency and stability of the NOC model shows that the model has very short series and much rapid convergency in comparison with the conventional spherical harmonic models of IGRF. Comparison of the eigen modes obtained from different IGRF model groups indicates that the low-degree eigen modes are rather stable, while the high-degree modes show a relatively large variability. The physical meaning of the eigen modes in the NOC model is discussed, and an interesting relationship is found between the spatial structure of the main field and its secular variation.
Kother, L. K.; Hammer, M. D.; Finlay, C. C.; Olsen, N.
2014-12-01
We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field data are utilized at all latitudes. Estimates of core and large-scale magnetospheric sources are removed from the satellite measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model regularization (either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices are implemented, accounting for the dependence of data error variances on quasi-dipole latitudes. Results show good consistency with the CM5 and MF7 models for spherical harmonic degrees up to n = 95. Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available. To illustrate this possibility, we present preliminary results from a case study combining satellite measurements and local airborne scalar magnetic measurements of the Norwegian coastline.
Antiferromagnetic Ising model in an imaginary magnetic field
Azcoiti, Vicente; Di Carlo, Giuseppe; Follana, Eduardo; Royo-Amondarain, Eduardo
2017-09-01
We study the two-dimensional antiferromagnetic Ising model with a purely imaginary magnetic field, which can be thought of as a toy model for the usual θ physics. Our motivation is to have a benchmark calculation in a system which suffers from a strong sign problem, so that our results can be used to test Monte Carlo methods developed to tackle such problems. We analyze here this model by means of analytical techniques, computing exactly the first eight cumulants of the expansion of the effective Hamiltonian in powers of the inverse temperature, and calculating physical observables for a large number of degrees of freedom with the help of standard multiprecision algorithms. We report accurate results for the free energy density, internal energy, standard and staggered magnetization, and the position and nature of the critical line, which confirm the mean-field qualitative picture, and which should be quantitatively reliable, at least in the high-temperature regime, including the entire critical line.
Magnetic fields in barred galaxies. V. Modelling NGC 1365
Moss, D; Englmaier, P; Shukurov, A; Beck, R; Sokoloff, D D; 10.1051/0004-6361:20066222
2009-01-01
We present a model of the global magnetic field in the barred galaxy NGC 1365 based jointly on the large-scale velocity field of interstellar gas fitted to HI and CO observations of this galaxy and on mean-field dynamo theory. The aim of the paper is to present a detailed quantitative comparison of a galactic dynamo model with independent radio observations. We consider several gas dynamical and nonlinear dynamo models that include plausible variations of parameters that are poorly known. Models of cosmic ray distribution in the galaxy are introduced to produce synthetic radio polarization maps allowing direct comparison with those observed at 3.5cm and 6.2cm. We show that the dynamo model is robust in that the most important magnetic features are controlled by the relatively well established properties of the density distribution and gas velocity field. The optimal agreement between the synthetic polarization maps and observations is obtained when a uniform cosmic ray distribution is adopted. We find some in...
Accounting for crustal magnetization in models of the core magnetic field
Jackson, Andrew
1990-01-01
The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.
Völlinger, C
2002-01-01
Superconducting magnets are obligatory today in order to provide the high magnetic fields that are needed for the acceleration of heavy particles in particle accelerators. The coils of such magnets are made of type II superconducting material and are exposed to a changing magnetic field which induces a so-called persistent current. Persistent currents are bipolar screening currents that do not decay, but persist due to the lack of resistivity in the superconductor. This way, they are the source of a superconductor magnetization in the coil which disturbs the field quality in the magnet aperture. In the framework of this thesis, a macroscopic superconductor model for the calculation of the magnetization of a thin superconducting cylinder of type II material has been developed. The model considers the dependency of the induced current density on the applied field as well as the local distribution of the magnetic induction within the superconductor. Both, the one-dimensional case of a homogeneous change of an ex...
On radial heliospheric magnetic fields: Voyager 2 observation and model
Wang, C.; Richardson, J. D.; Burlaga, L. F.; Ness, N. F.
2003-05-01
The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral. However, numerous examples of events where the HMF is oriented in near-radial directions for many hours have been reported on the basis of observations inside 5 AU from spacecraft such as ISEE-3 and Ulysses. The magnetic field data observed by Voyager 2 from launch in 1977 through the end of 1982 (i.e., between 1 and ˜10 AU) were searched for all instances of radial fields with durations of 6 hours or more. Radial fields of significant durations at large distances are unusual as the Parker spiral is very tightly wound. The radial HMF events in the inner heliosphere typically occur at times when the solar wind speed is declining gradually, while they tend to be associated with steady wind speeds at distances beyond ˜6 AU. The durations of these events appear to be independent of distance and solar cycle, with an average duration of ˜11 hours. They generally are not associated with interplanetary coronal mass ejections (ICMEs). Possible generation mechanisms of the radial field events related to speed variations near the Sun are investigated by use of a MHD model. We find that a noticeable low-speed plateau of limited duration in solar wind speed near the Sun can produce radial field events having durations of the order of 10 hours in the heliosphere as observed by Voyager 2.
BTA Magnet Field Map Archive and MAD Model
Energy Technology Data Exchange (ETDEWEB)
Glenn,J.W.
2008-04-01
This note publishes some and information that has resided in private files. The attached tables were provided by Joseph Skelly from his archives. They show magnetic field measurements versus excitation current for the Booster to AGS transfer line quadrupoles and dipoles based on field measurements [we believe] were done by the Magnet Division. Also given are Ed Blesser's fifth order fits of field versus current. The results are given in 'Tesla' or T-M/M. These tables are attached to provide an archive of this data. The MAD model of the BTA line does have the same values as shown in the attached fits so the transfer was correct. MAD uses as its 'gradient' for quads Tesla per meter normalized to rigidity [B-rho]. The model of the BTA line in use uses the T-M/M given in the tables divided by the length to give T M which is then normalized by Brho. Thus, the input to the model appears to be correct. The original model is also attached as part of a memo by Skelly describing it.
Thermal entanglement in a mixed-spin Heisenberg XXZ model under a nonuniform external magnetic field
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The thermal entanglement in (1/2,1) mixed-spin Heisenberg XXZ model is investigated under an external nonuniform magnetic field. In the uniform magnetic field system,the critical magnetic field Bc and critical temperature Tc are increased by increasing the anisotropic parameter k. The degree of magnetic field b plays an important role in improving the critical temperature and enlarging the region of entan-glement in the nonuniform magnetic field system.
Kunze, Kerstin E
2013-01-01
Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.
Two-jet astrosphere model: effect of azimuthal magnetic field
Golikov, E. A.; Izmodenov, V. V.; Alexashov, D. B.; Belov, N. A.
2017-01-01
Opher et al., Drake, Swisdak and Opher have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock (TS) and the heliopause. In this scenario, the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere. In this paper, we explore the two-jet scenario for a simplified astrosphere in which (1) the star is at rest with respect to the circumstellar medium, (2) radial magnetic field is neglected as compared with azimuthal component and (3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfvénic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter ε that is reciprocal of the Alfvénic Mach number at the inflow boundary. This parameter is proportional to stellar magnetic field. We present the numerical solution of the problem for various values of ε. Three first integrals of the governing ideal magnetohydrodynamic equations are presented, and we make use of them in order to get the plasma distribution in the jets. Simple relations between distances to the TS, astropause and the size of the jet are established. These relations allow us to determine the stellar magnetic field from the geometrical pattern of the jet-like astrosphere.
Magnetic Field Shear in Kinetic Models Steps Toward Understanding Magnetic Reconnection Drivers
Black, Carrie; Antiochos, Spiro; DeVore, Rick; Karpen, Judith
2015-11-01
In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the eruptive event resides in a strongly sheared magnetic. A pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field and a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. Here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.
Corrections to halo model in presence of primordial magnetic field
Varalakshmi, Cheera; Nigam, Rahul
2017-01-01
We study the role played by the primordial magnetic field in the process of structure formation in the early universe. We have compared the halo mass abundance in the presence and absence of the magnetic field. We derive a modified Press-Schechter formula in presence of another source for matter perturbation and use it to study how this extra source affects halo count. This other source is the magnetic field with a given power spectrum. We find the ranges for the magnetic field strength over which the field enhances the halo formation for a mass range for spectral index nb = -2.95. We found that for field strength less than or equal to B = 7.0 nG, which we call the cut-off field strength, the presence of magnetic field enhances halo formation at low mass scale while it disrupts for a stronger field. We further investigate the dependence of halo count on the spectral index of the magnetic field power spectrum. We observe that at the cut-off field strength, halo formation is disrupted for a spectral index larger than -2.9. We carry out similar investigation for the more generic ellipsoidal collapse where the mass function is given by the Sheth-Tormen formula. For this case we find the cut-off field strength is 5.5 nG.
DRAPING OF THE INTERSTELLAR MAGNETIC FIELD OVER THE HELIOPAUSE: A PASSIVE FIELD MODEL
Energy Technology Data Exchange (ETDEWEB)
Isenberg, Philip A.; Forbes, Terry G.; Möbius, Eberhard [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)
2015-06-01
As the local interstellar plasma flows past our heliosphere, it is slowed and deflected around the magnetic obstacle of the heliopause. The interstellar magnetic field, frozen into this plasma, then becomes draped around the heliopause in a characteristic manner. We derive the analytical solution for this draped magnetic field in the limit of weak field intensity, assuming an ideal potential flow around the heliopause, which we model as a Rankine half-body. We compare the structure of the model magnetic field with observed properties of the Interstellar Boundary Explorer (IBEX) ribbon and with in situ observations at the Voyager 1 spacecraft. We find reasonable qualitative agreement, given the idealizations of the model. This agreement lends support to the secondary ENA model of the IBEX ribbon and to the interpretation that Voyager 1 has crossed the heliopause. We also predict that the magnetic field measured by Voyager 2 after it crosses the heliopause will not be significantly rotated away from the direction of the undisturbed interstellar field.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.
2017-02-01
Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.
Zero-field-cooled/field-cooled magnetization study of Dendrimer model
Arejdal, M.; Bahmad, L.; Benyoussef, A.
2017-01-01
Being motivated by Dendrimer model with mixed spins σ=3 and S=7/2, we investigated the magnetic nanoparticle system in this study. We analyzed and discussed the ground-state phase diagrams and the stable phases. Then, we elaborated and explained the magnetic properties of the system by using Monte Carlo Simulations (MCS) in the framework of the Ising model. In this way, we determined the blocking temperature, which is deduced through studying the partial-total magnetization and susceptibility as a function of the temperature, and we established the effects of both the exchange coupling interaction and the crystal field on the hysteresis loop.
Use of along-track magnetic field differences in lithospheric field modelling
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils
2015-01-01
, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs....... Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation...
Magnetic field modeling with a set of individual localized coils.
Juchem, Christoph; Nixon, Terence W; McIntyre, Scott; Rothman, Douglas L; de Graaf, Robin A
2010-06-01
A set of generic, circular individual coils is shown to be capable of generating highly complex magnetic field distributions in a flexible fashion. Arbitrarily oriented linear field gradients can be generated in three-dimensional as well as sliced volumes at amplitudes that allow imaging applications. The multi-coil approach permits the simultaneous generation of linear MRI encoding fields and complex shim fields by the same setup, thereby reducing system complexity. The choice of the sensitive volume over which the magnetic fields are optimized remains temporally and spatially variable at all times. The restriction of the field synthesis to experimentally relevant, smaller volumes such as single slices directly translates into improved efficiency, i.e. higher magnetic field amplitudes and/or reduced coil currents. For applications like arterial spin labeling, signal spoiling and diffusion weighting, perfect linearity of the gradient fields is not required and reduced demands on accuracy can also be readily translated into improved efficiency. The first experimental realization was achieved for mouse head MRI with 24 coils that were mounted on the surface of a cylindrical former. Oblique linear field gradients of 20 kHz/cm (47 mT/m) were generated with a maximum current of 1.4A which allowed radial imaging of a mouse head. The potential of the new approach for generating arbitrary magnetic field shapes is demonstrated by synthesizing the more complex, higher order spherical harmonic magnetic field distributions X2-Y2, Z2 and Z2X. The new multi-coil approach provides the framework for the integration of conventional imaging and shim coils into a single multi-coil system in which shape, strength, accuracy and spatial coverage of the magnetic field can be specifically optimized for the application at hand.
Two-jet astrosphere model: effect of azimuthal magnetic field
Golikov, E A; Alexashov, D B; Belov, N A
2016-01-01
Opher et al. (2015), Drake et al. (2015) have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock and the heliopause. In this scenario the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere (e.g. Izmodenov and Alexashov, 2015). In this paper we explore the two-jet scenario for a simplified astrosphere in which 1) the star is at rest with respect to the circumstellar medium, 2) radial magnetic field is neglected as compared with azimuthal component, 3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfv\\'enic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter epsilon that is reciprocal of the Alfv\\'enic Mach...
An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field
DEFF Research Database (Denmark)
Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris;
We produce a new model of the global lithospheric magnetic field based on 3-component vector field observations at all latitudes from the CHAMP satellite using an equivalent source technique.......We produce a new model of the global lithospheric magnetic field based on 3-component vector field observations at all latitudes from the CHAMP satellite using an equivalent source technique....
Modelling of the surface emission of the low magnetic field magnetar SGR 0418+5729
Guillot, S.; Perna, R.; Rea, N.; Viganò, D.; Pons, J.A.
2015-01-01
We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further
Sixth generation lithospheric magnetic field model, MF6, from CHAMP satellite magnetic measurements
Maus, S.; Fan, Y.; Manoj, C.; Rother, M.; Rauberg, J.; Stolle, C.; Luhr, H.
2007-12-01
The CHAMP satellite continues to provide highly accurate magnetic field measurements with decreasing orbital altitudes (<350km) at solar minimum conditions. A promising new CHAMP data product has become available, which provides the total field with one order of magnitude smaller noise amplitudes. The product is inferred from suitably merged Fluxgate and Overhauser magnetometer data. While the low-noise Fluxgate measurements are used in the short-period range (<900sec, or <6000km wavelength), we take advantage of the high stability provided by the Overhauser for the longer periods. The new data set is used for generating an improved lithospheric magnetic field model (MF6). Although MF6 is still in production at the time of writing this abstract, we anticipate significant benefits in terms of resolving small- scale low-amplitude crustal features from the new data. Further improvements include a new correction for steady ocean circulation and an expansion to higher spherical harmonic degrees of the model.
The Sun's Global Photospheric and Coronal Magnetic Fields: Observations and Models
Directory of Open Access Journals (Sweden)
Duncan Mackay
2012-11-01
Full Text Available In this review, our present day understanding of the Sun’s global photospheric and coronal magnetic fields is discussed from both observational and theoretical viewpoints. Firstly, the large-scale properties of photospheric magnetic fields are described, along with recent advances in photospheric magnetic flux transport models. Following this, the wide variety of theoretical models used to simulate global coronal magnetic fields are described. From this, the combined application of both magnetic flux transport simulations and coronal modeling techniques to describe the phenomena of coronal holes, the Sun’s open magnetic flux and the hemispheric pattern of solar filaments is discussed. Finally, recent advances in non-eruptive global MHD models are described. While the review focuses mainly on solar magnetic fields, recent advances in measuring and modeling stellar magnetic fields are described where appropriate. In the final section key areas of future research are identified.
Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model
Loewe, M; Villavicencio, C; Zamora, R
2014-01-01
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field
DEFF Research Database (Denmark)
Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris
2015-01-01
are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic equivalent potential field sources (monopoles) arranged in an icosahedron grid at a depth of 100 km belowthe surface. The corresponding model parameters......We present a new technique for modelling the global lithospheric magnetic field at Earth’s surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009–2010 when...
Towards Integrated Design and Modeling of High Field Accelerator Magnets
Energy Technology Data Exchange (ETDEWEB)
Caspi, S.; Ferracin, P.
2006-06-01
The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.
Firpo, Marie-Christine; 10.1063/1.3562493
2011-01-01
The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possibl...
Tadesse, Tilaye; Wiegelmann, T.; Gosain, S.; Macneice, P.; Pevtsov, Alexei A.
2013-01-01
The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the ...
Tadesse, Tilaye; Gosain, S; MacNeice, P; Pevtsov, Alexei A
2013-01-01
The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the first time, synoptic maps of photospheric vector magnetic field synthesized from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. We solve the nonlinear force-free field equations using optimizatio...
Inverse Magnetic Catalysis in Nambu--Jona-Lasinio Model beyond Mean Field
Mao, Shijun
2016-01-01
We study inverse magnetic catalysis in the Nambu--Jona-Lasinio model beyond mean field approximation. The feed-down from mesons to quarks is embedded in an effective coupling constant at finite temperature and magnetic field. While the magnetic catalysis is still the dominant effect at low temperature, the meson dressed quark mass drops down with increasing magnetic field at high temperature due to the dimension reduction of the Goldstone mode in the Pauli-Villars regularization scheme.
Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field
Dudal, David; Mertens, Thomas G
2016-01-01
We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.
An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields
Särkimäki, Konsta; Decker, Joan; Varje, Jari; Kurki-Suonio, Taina
2016-01-01
Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasiticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.
Modeling and Characterization of Charged Particle Trajectories in an Oscillating Magnetic Field
Irawan, Dani; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar; Novitrian,
2015-01-01
A constant magnetic field has frequently been discussed and has been known that it can cause a charged particle to form interesting trajectories such as cycloid and helix in presence of electric field, but a changing magnetic field is rarely discussed. In this work, modeling and characterization of charged particle trajectories in oscillating magnetic field is reported. The modeling is performed using Euler method with speed corrector. The result shows that there are two types of trajectory patterns that will recur for every $180 n T_0$ ($n = 0, 1, 2, ..$) in increasing of magnetic field oscillation period, where $T_0$ is about $6.25\\times10^{-7}$ s.
An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field
DEFF Research Database (Denmark)
Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris
2014-01-01
are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid. The corresponding source values are estimated using an iteratively reweighted least squares algorithm......We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when...
Three-Dimensional Modeling of Guide-Field Magnetic Reconnection
Hesse, Michael
2005-01-01
The dissipation mechanism of guide field magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we analyze three-dimensional PIC simulations of guide-field magnetic reconnection. Specific emphasis will be on the question whether thermal-inertia processes, mediated by the electron pressure tensor, remain a viable dissipation mechanism in fully three-dimensional systems.
Effects of staggered magnetic field on entanglement in the anisotropic XY model
Sun, Z; Li, Y Q; Sun, Zhe; Wang, XiaoGuang; Li, You-Quan
2004-01-01
We investigate effects of staggered magnetic field on thermal entanglement in the anisotropic XY model. The analytic results of entanglement for the two-site cases are obtained. For the general case of even sites, we show that when the anisotropic parameter is zero, the entanglement in the XY model with a staggered magnetic field is the same as that with a uniform magnetic field.
Belenkaya, Elena S.; Kalegaev, Vladimir V.; Cowley, Stanley W. H.; Provan, Gabrielle; Blokhina, Marina S.; Barinov, Oleg G.; Kirillov, Alexander A.; Grigoryan, Maria S.
2016-07-01
The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the observations with three
Institute of Scientific and Technical Information of China (English)
QU Shao-Hua; YAO Kai-Lun; LIU Zu-Li; FU Hua-Hua
2005-01-01
@@ We investigate the magnetic transitions in a (La1-xBx)2/3Ca1/3MnO3 system, which consists of paramagnetic and ferromagnetic domains, based on a magnetic theoretical percolation model In the mean-field approximation,the resistance as a function of temperature and magnetic field has been derived analytically and simulated numerically. It is found that the dependence of the critical temperature on magnetic field is linear when applied magnetic field is not too strong. Our theoretical predications are in good agreement with recent experimental observations.
Lithium abundance and surface magnetic fields: new constraints in magnetic models of M dwarfs
MacDonald, James
2013-01-01
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. Torres (2013) has identified 4 prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. New constraints on the models of M dwarfs are now provided by measurements of lithium abundances. The key aspect of Li in terms of setting constraints on magnetic modeling is that Li burning starts at T = 2.5 MK, and temperatures of just such magnitude are associated with the base of the convection zone: magnetic inhibition of convective onset can shift this base slightly closer to the surface, i.e. to slightly lower temperatures, thereby reducing...
The spinning Astrid-2 satellite used for modeling the Earth's main magnetic field
DEFF Research Database (Denmark)
Merayo, José M.G.; Jørgensen, P.S.; Risbo, T.;
2002-01-01
, and therefore mapping of the Earth's magnetic field was possible. The spacecraft spins about a highly stable axis in space. This fact and the globally distributed data make the magnetic measurements well suited for the estimate of a magnetic field model at the spacecraft altitude (about 1000 km). This paper......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit in December 1998. Despite the fact that the primary science mission was auroral research, the magnetic instrument was designed to accomplish high-resolution and high-precision vector field magnetic measurements...... describes the initial analysis of the Astrid-2 magnetic data. As a result of the study of a single day (February 7, 1999), magnetically fairly quiet, it was possible to in-flight adjust the calibration of the magnetometer and find a magnetic field model fitting the scalar component of the measurements...
Hubrig, S; Schoeller, M; Briquet, M; Morel, T; De Cat, P
2011-01-01
In spite of recent detections of magnetic fields in a number of beta Cephei and slowly pulsating B (SPB) stars, their impact on stellar rotation, pulsations, and element diffusion is not sufficiently studied yet. The reason for this is the lack of knowledge of rotation periods, the magnetic field strength distribution and temporal variability, and the field geometry. New longitudinal field measurements of four beta Cephei and candidate beta Cephei stars, and two SPB stars were acquired with FORS2 at the VLT. These measurements allowed us to carry out a search for rotation periods and to constrain the magnetic field geometry for four stars in our sample.
Magnetic Field Modeling of Hot Channels in four Flare/CME Events
Liu, Tie; Su, Yingna
2017-08-01
We study the magnetic structure and 3D geometrical morphology of four active regions with sigmoidal hot channels which produced flare/CME events. Observational study has been done by Cheng & Ding (2016). Using the flux rope insertion method developed by van Ballegooijen (2004), we construct a series of magnetic field models of the four flare/CME events. Through comparing with non-potential coronal loops observed by SDO/AIA , we find that the critical stable model (i.e.,a magnetic field configuration at the boundary between stable and unstable states in parameter space) and the best-fit preflare model (unstable model) which best matches observations for every case, and we think that the real preflare magnetic field configuration may lie between the two models. Finally we calculate the magnetic energy free energy and magnetic helicity of the two selected models,and study the eruption mechanism.
Doh, Hyeonjin; Salk, Sung-Ho Suck
1996-01-01
Using the Hubbard model Hamiltonian in a mean field level, we examine the variation of antiferromagnetic strength with applied magnetic field. It is demonstrated that minima in the antiferromagnetic strength exist at the the even integer denominator values of rational number for magnetic flux per plaquette. The undulatory behavior of antiferromagnetic strength with the external magnetic field is found. It is seen to be related to the undulatory net statistical phase owing to the influence of ...
Magnetic field models and their application in optimal magnetic divertor design
Energy Technology Data Exchange (ETDEWEB)
Blommaert, M.; Reiter, D. [Institute of Energy and Climate Research (IEK-4), FZ Juelich GmbH, Juelich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Leuven (Belgium); Heumann, H. [TEAM CASTOR, INRIA Sophia Antipolis (France); Marandet, Y.; Bufferand, H. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Gauger, N.R. [TU Kaiserslautern, Chair for Scientific Computing, Kaiserslautern (Germany)
2016-08-15
In recent automated design studies, optimal design methods were introduced to successfully reduce the often excessive heat loads that threaten the divertor target surface. To this end, divertor coils were controlled to improve the magnetic configuration. The divertor performance was then evaluated using a plasma edge transport code and a ''vacuum approach'' for magnetic field perturbations. Recent integration of a free boundary equilibrium (FBE) solver allows to assess the validity of the vacuum approach. It is found that the absence of plasma response currents significantly limits the accuracy of the vacuum approach. Therefore, the optimal magnetic divertor design procedure is extended to incorporate full FBE solutions. The novel procedure is applied to obtain first results for the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under construction in the Tore Supra tokamak at CEA (Commissariat a l'Energie Atomique, France). The sensitivities and the related divertor optimization paths are strongly affected by the extension of the magnetic model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Ayuela, A. [Donostia International Physics Center (DIPC), P.O. Box 1072, 20018 San Sebastian/Donostia (Spain)]. E-mail: swxayfea@sw.ehu.es; Klein, D.J. [Department of Marine Science, Texas A and M University at Galveston, Galveston, TX 77553 (United States); March, N.H. [Donostia International Physics Center (DIPC), P.O. Box 1072, 20018 San Sebastian/Donostia (Spain) and Oxford University, Oxford (United Kingdom)]. E-mail: arubio@sc.ehu.es
2007-03-12
The critical line of an Ising antiferromagnet (AF) with short-range exchange interactions has been discussed fairly recently by Wang and Kim. Their results may prove appropriate to some insulating AFs. Here, because of possible relevance to metallic AFs such as FeNiCr alloys, we study the Ising model in the opposite limit in which the exchange interactions become infinite range. In particular, we present numerical results for the sublattice magnetizations m{sub A} and m{sub B} as a function of the temperature and applied field. Then, using the so-called smoothness postulate, the critical line of an AF with infinite-range interactions is obtained.
A model of Earth's magnetic field derived from 2 years of Swarm satellite constellation data
Olsen, Nils; Finlay, Christopher C.; Kotsiaros, Stavros; Tøffner-Clausen, Lars
2016-07-01
More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth's magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect of Swarm by including East-West magnetic intensity and vector field gradient information from the lower satellite pair. Along-track differences of the magnetic intensity as well as of the vector components provide further information concerning the North-South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n ≤ 6 and a linear time dependence for n=7-15, demonstrates the possibility to determine high-quality field models from only 2 years of Swarm data, thanks to the unique constellation aspect of Swarm. To account for the magnetic signature caused by ionospheric electric currents at polar latitudes we co-estimate, together with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time.
Model of Reconnection of Weakly Stochastic Magnetic Field and its Implications
Lazarian, A
2008-01-01
We discuss the model of magnetic field reconnection in the presence of turbulence introduced by us approximately ten years ago. The model does not require any plasma effects to be involved in order to make the reconnection fast. In fact, it shows that the degree of magnetic field stochasticity controls the reconnection. The turbulence in the model is assumed to be subAlfvenic, with the magnetic field only slightly perturbed. This ensures that the reconnection happens in generic astrophysical environments and the model does not appeal to any unphysical concepts, similar to the turbulent magnetic diffusivity concept, which is employed in the kinematic magnetic dynamo. The interest to that model has recently increased due to successful numerical testings of the model predictions. In view of this, we discuss implications of the model, including the first-order Fermi acceleration of cosmic rays, that the model naturally entails, bursts of reconnection, that can be associated with Solar flares, as well as, removal ...
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
Model of tunnelling through periodic array of quantum dots in a magnetic field
Institute of Scientific and Technical Information of China (English)
I.Yu.Popov; S.A.Osipov
2012-01-01
A two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered.The model of electron transport through the system based on the theory of self-adjoint extensions of symmetric operators is suggested.We obtain the formula for the transmission coefficient and investigate its dependence on the magnetic field.
Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite
DEFF Research Database (Denmark)
Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.
1999-01-01
and therefore the mapping of the Earth's magnetic field may be possible. The spinning of the spacecraft about a certain axis makes the stabilisation in space possible. This fact and the well distributed data over the globe makes the magnetic data well suited for the estimation of the magnetic field model...... at the spacecraft altitude (circa 1000km). Several methods for field modelling are presented in this paper with the assumption that the direction of the spin axis is nearly constant. In any case the orientation of the magnetometer is to bedetermined simultaneously with the instrument calibration and main field...
Investigation of the Potts model of a diluted magnet by local field averaging technique
Semkin, S. V.; Smagin, V. P.
2016-08-01
Averaging of the local interatomic interaction fields has been applied to the Potts model of a diluted magnet. A self-consistent equation for the magnetization and an equation for the phase transition temperature have been derived. The temperature and magnetic atom density dependences of the spontaneous magnetization have been found for the lattices with the coordination numbers 3 and 4 and various numbers of spin states.
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo
2017-04-15
Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.
Jiang, Chaowei
2015-01-01
In the solar corona, magnetic flux rope is believed to be a fundamental structure accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of magnetic field from boundary data is the primary way to obtain fully three-dimensional magnetic information of the corona. As a result, the ability of reliable recovering coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code (CESE-MHD-NLFFF, Jiang & Feng 2012) is examined with an analytical magnetic flux rope model proposed by Titov & Demoulin (1999), which consists of a bipolar magnetic configuration holding an semi-circular line-tied flux rope in force-free equilibrium. By using only the vector field in the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field is reconstructed with high accuracy. Especially, the magnetic topological interfaces formed between the flux rop...
Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite
DEFF Research Database (Denmark)
Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.;
1999-01-01
and therefore the mapping of the Earth's magnetic field may be possible. The spinning of the spacecraft about a certain axis makes the stabilisation in space possible. This fact and the well distributed data over the globe makes the magnetic data well suited for the estimation of the magnetic field model......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit last December 98. Despite the fact that its primary mission was the research of Auroral phenomena, the magnetic instrumentation has been designed to accomplish high resolution vector field magnetic measurements...... at the spacecraft altitude (circa 1000km). Several methods for field modelling are presented in this paper with the assumption that the direction of the spin axis is nearly constant. In any case the orientation of the magnetometer is to bedetermined simultaneously with the instrument calibration and main field...
Model of the Crustal Magnetic Field in the Martian Aurora Zone
Institute of Scientific and Technical Information of China (English)
TONG Dong-Sheng; CHEN Chu-Xin
2011-01-01
It is well known that aurorae are prominent on planets with a global magnetic field and occur where open magnetic Geld lines converge. The UV spectrometer used for investigating the characteristics of the atmosphere of Mars (SPICAM) on board the Mars Express made the first observation of auroral-type emission in the cusp region of the strong crustal magnetic field on Mars and found that the arc of the Martian aurora zone is very narrow in width, which obviously differs from that of other planets. Based on the observation, we put forward a model of a crustal magnetic field on the Martian aurora zone through the morphology of Martian aurorae. In the model, equivalent currents are proposed; the topology and magnitude of the magnetic field generated by these equivalent currents are consistent with that of the crustal magnetic field in the Martian aurora zone. The morphology of the Martian aurora zone generated through the model matches well with the observations made by the Mars Express orbiter.%It is well known that aurorae are prominent on planets with a global magnetic field and occur where open magnetic field lines converge.The UV spectrometer used for investigating the characteristics of the atmosphere of Mars (SPICAM) on board the Mars Express made the first observation of auroral-type emission in the cusp region of the strong crustal magnetic field on Mars and found that the arc of the Martian aurora zone is very narrow in width,which obviously differs from that of other planets.Based on the observation,we put forward a model of a crustal magnetic field on the Martian aurora zone through the morphology of Martian aurorae.In the model,equivalent currents are proposed;the topology and magnitude of the magnetic field generated by these equivalent currents are consistent with that of the crustal magnetic field in the Martian aurora zone.The morphology of the Martian aurora zone generated through the model matches well with the observations made by the Mars Express
A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation
Energy Technology Data Exchange (ETDEWEB)
Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu
2015-06-15
In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification.
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
A New Hermean Magnetic Field Model using a Modified Equivalent Source Dipole Method
Oliveira, Joana S.; Langlais, Benoit; Pais, M. Alexandra; Amit, Hagay; Thébault, Erwan
2017-04-01
Mercury is the only terrestrial planet, besides the Earth, that has a core dynamo which generates a global magnetic field. MESSENGER orbited Mercury from 2011 to 2015 and provided magnetic measurements which convey crucial information on the magnetic field environment of the planet. We use a local method based on Equivalent Source Dipole approach to model the internal field of Mercury. The method is especially well suited when measurements cover a limited fraction of the planet's surface. Dipoles are placed deep into the planet. Note that with this modeling scheme, we do not attempt to explicitly model the external field. As the planet is in spin-orbit resonance completing three sidereal days in two years, it takes three sidereal days (one solar day) for the Sun to cover all local longitudes. We therefore consider successive periods of one solar day. A dominantly axisymmetric field is found for each solar-day model showing a significant temporal variability. This could be due to some large-scale external field that appears as internal with respect to the spacecraft orbit. The changing altitude and latitude coverage of each model may also be invoked for this variability. We finally compute a 8-solar-day model, including all solar days during the MESSENGER mission, to describe the Hermean magnetic field. Maps of the field computed at 200 km altitude show a magnetic equator at 16°N latitude, and confirm the large-scale and close-to-axisymmetry structure of the internal magnetic field of Mercury. Our model is also in agreement with the magnetic equator crossings detected before. However, our magnetic equator latitude varies with the altitude to the planet. This is indicative that the dipole-offset hypothesis is over-simplified, and that dynamo modelers have to consider alternative models when attempting to model the Hermean dynamo.
Liu, Ming-Wei; Chen, Yuan; Song, Chuang-Chuang; Wu, You; Ding, Hai-Ling
2011-03-01
The effect of magnetic field h on the magnetic properties of the one-dimensional spin-1 ferromagnetic Heisenberg model is studied by the double-time Green's function method. The magnetization and susceptibility are obtained within the Callen approximation. The zero-field susceptibility is as a decreasing function of the temperature T. The magnetization m increases in the whole field region, but the susceptibility maximum χ(Tm) decreases. The position Tm of the susceptibility maximum is both solved analytically and fits well to be a power law Tm∼hγ at low fields and to be linear increasing at high fields. The height χ(Tm) decreases as a power law χ(Tm)∼h with h increasing. The exponents (γ,β) obtained in our results agree with the other theoretical results. Our results are roughly in agreement with the results obtained in the experiment of Ni(OH)(NO3)H2O.
Pradhan, S.; Taraphder, A.
2016-10-01
A spinless, extended Falicov-Kimball model in the presence of a perpendicular magnetic field is investigated employing a self-consistent mean-field theory in two dimensions. In the presence of the field the excitonic average Δ = is modified: the exciton responds in subtle different ways for different values of the magnetic flux. We examine the effects of Coulomb interaction and hybridization between the localized and itinerant electrons on the excitonic average, for rational values of the applied magnetic field. The excitonic average is found to get enhanced exponentially with the Coulomb interaction while it saturates at large hybridization. The orbital magnetic field suppresses the excitonic average in general, though a strong commensurability effect of the magnetic flux on the behaviour of the excitonic order parameter is observed.
Spherical cap modelling of Orsted magnetic field vectors over southern Africa
CSIR Research Space (South Africa)
Kotze, PB
2001-01-01
Full Text Available Vector magnetic field observations by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000, have been employed to derive a spherical cap harmonic model (Haines, 1985) over the southern African region between 10 degrees...
TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527
Energy Technology Data Exchange (ETDEWEB)
Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: jackie.davidson@uwa.edu.au [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)
2014-12-20
For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.
Universal conductivity in the boson Hubbard model in a magnetic field
Cha, Min-Chul; Girvin, S. M.
1993-01-01
The universal conductivity at the zero-temperature superconductor-insulator transition of the two-dimensional boson Hubbard model is studied for cases both with and without magnetic field by Monte Carlo simulations of the (2+1)-dimensional classical $XY$-model with disorder represented by random bonds correlated along the imaginary time dimension. The effect of magnetic field is characterized by the frustration $f$. From the scaling behavior of the stiffness, we determine the quantum dynamica...
Deconfinement Phase Transition with External Magnetic Field in the Friedberg—Lee Model
Mao, Shi-Jun
2016-11-01
The deconfinement phase transition with external magnetic field is investigated in the Friedberg-Lee model. In the frame of functional renormalization group, we extend the often used potential expansion method for continuous phase transitions to the first-order phase transition in the model. By solving the flow equations we find that, the magnetic field displays a catalysis effect and it becomes more difficult to break through the confinement in hot and dense medium.
Deconfinement Phase Transition with External Magnetic Field in Friedberg-Lee Model
Mao, Shijun
2015-01-01
The deconfinement phase transition with external magnetic field is investigated in the Friedberg-Lee model. In the frame of functional renormalization group, we extend the often used potential expansion method for continuous phase transitions to the first-order phase transition in the model. By solving the flow equations we find that, the magnetic field displays a catalysis effect and it becomes more difficult to break through the confinement in hot and dense medium.
Collisional transport across the magnetic field in drift-fluid models
Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul
2015-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum and pressures in drift-fluid turbulence models and thereby obviate the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model...
Collisional transport across the magnetic field in drift-fluid models
DEFF Research Database (Denmark)
Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry;
2016-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...... simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field...... located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport....
Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.
2014-06-01
The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of
Modeling the Sun’s Small-scale Global Photospheric Magnetic Field
Meyer, K. A.; Mackay, D. H.
2016-10-01
We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2.5 R ⊙, around 10-100 times less than that determined for typical Helioseismic and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray flux at Earth.
Oscillatory singularities in Bianchi models with magnetic fields
Liebscher, Stefan; Tchapnda, Sophonie Blaise
2012-01-01
An idea which has been around in general relativity for more than forty years is that in the approach to a big bang singularity solutions of the Einstein equations can be approximated by the Kasner map, which describes a succession of Kasner epochs. This is already a highly non-trivial statement in the spatially homogeneous case. There the Einstein equations reduce to ordinary differential equations and it becomes a statement that the solutions of the Einstein equations can be approximated by heteroclinic chains of the corresponding dynamical system. For a long time progress on proving a statement of this kind rigorously was very slow but recently there has been new progress in this area, particularly in the case of the vacuum Einstein equations. In this paper we generalize some of these results to the Einstein-Maxwell equations. It turns out that this requires new techniques since certain eigenvalues are in a less favourable configuration in the case with a magnetic field. The difficulties which arise in tha...
Design of the EuCARD High-Field Model Dipole Magnet FRESCA2
Milanese, A; Durante, M; Manil, P; Perez, J C; Rifflet, J M; de Rijk, G; Rondeaux, F
2012-01-01
This paper reports on the design of FRESCA2, a dipole magnet model wound with Nb3Sn Rutherford cable. This magnet is one of the deliverables of the High Field Magnets work package of the European FP7-EuCARD project. The nominal magnetic flux density of 13 Tesla in a 100 mm bore will make it suitable for upgrading the FRESCA cable test facility at CERN. The magnetic layout is based on a block coil, with four layers per pole. The mechanical structure is designed to provide adequate pre-stress, through the use of bladders, keys and an aluminum alloy shrinking cylinder.
Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L
2015-06-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM(3), where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5 RM ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.
Ring current Atmosphere interactions Model with Self-Consistent Magnetic field
Energy Technology Data Exchange (ETDEWEB)
2016-09-09
The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eV to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.
Modeling coronal magnetic field using spherical geometry: cases with several active regions
Tadesse, Tilaye; Olson, K; MacNeice, P J
2013-01-01
The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections(CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface(photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term...
DEFF Research Database (Denmark)
Olsen, Nils; Luhr, H.; Sabaka, T.J.;
2006-01-01
We have derived a model of the near-Earth magnetic field (up to spherical harmonic degree n= 50 for the static field, and up to n = 18 for the first time derivative) using more than 6.5 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C taken between...
Directory of Open Access Journals (Sweden)
V. Javor
2012-11-01
Full Text Available A comparison of different engineering models results for a lightning magnetic field of negative first strokes is presented in this paper. A new function for representing double-peaked channel-base current is used for lightning stroke modeling. This function includes the initial and subsidiary peak in a current waveform. For experimentally measured currents, a magnetic field is calculated for the three engineering models: transmission line (TL model, TL model with linear decay (MTLL, and TL model with exponential decay (MTLE.
Modeling the structure of magnetic fields in Neutron Stars: from the interior to the magnetosphere
Bucciantini, N; Del Zanna, L
2015-01-01
The phenomenology of the emission of pulsars and magnetars depends dramatically on the structure and properties of their magnetic field. In particular it is believed that the outbursting and flaring activity observed in AXPs and SRGs is strongly related to their internal magnetic field. Recent observations have moreover shown that charges are present in their magnetospheres supporting the idea that their magnetic field is tightly twisted in the vicinity of the star. In principle these objects offer a unique opportunity to investigate physics in a regime beyond what can be obtained in the laboratory. We will discuss the properties of equilibrium models of magnetized neutron stars, and we will show how internal and external currents can be related. These magnetic field configurations will be discussed considering also their stability, relevant for their origin and possibly connected to events like SNe and GRBs. We will also show what kind of deformations they induce in the star, that could lead to emission of g...
Kleimann, Jens; Röken, Christian; Fichtner, Horst
2017-03-01
A previously published analytical magnetohydrodynamic model for the local interstellar magnetic field in the vicinity of the heliopause (Röken et al. 2015) is extended from incompressible to compressible, yet predominantly subsonic flow, considering both isothermal and adiabatic equations of state. Exact expressions and suitable approximations for the density and the flow velocity are derived and discussed. In addition to the stationary induction equation, these expressions also satisfy the momentum balance equation along stream lines. The practical usefulness of the corresponding, still exact, analytical magnetic field solution is assessed by comparing it quantitatively to results from a fully self-consistent magnetohydrodynamic simulation of the interstellar magnetic field draping around the heliopause.
Directory of Open Access Journals (Sweden)
T. R. Sun
2012-08-01
Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (P_{d} enhancements. Taking three P_{d} enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component B_{z} can be efficiently predicted by the MHD model. The predicted B and B_{z} varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., B_{x} and B_{y}. In contrast, the limitations of T01 model in predicting responses to fast P_{d} enhancements are presented.
Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad
2017-02-01
The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.
Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field
DEFF Research Database (Denmark)
Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.
2006-01-01
Solar wind generated magnetic disturbances are currently one of the major obstacles for improving the accuracy in the determination of the magnetic field due to sources internal to the Earth. In the present study a global MHD model of solar wind magnetosphere interaction is used to obtain...... a physically consistent, divergence-free model of ionospheric, field-aligned and magnetospheric currents in a realistic magnetospheric geometry. The magnetic field near the Earth due to these currents is analyzed by estimating and comparing the contributions from the various parts of the system, with the aim....... At high latitudes the field-aligned component is of partidular interest in connection with internal field-modelling. In the attitude regime of 400-800 km (typical for low Earth orbit satellites) the ionospheric currents are found to contribute significantly to the disturbancance, and account for more than...
Particles deposition induced by the magnetic field in the coronary bypass graft model
Energy Technology Data Exchange (ETDEWEB)
Bernad, Sandor I., E-mail: sandor.bernad@upt.ro [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania); Totorean, Alin F. [Department of Mechanical Machines, Equipment and Transportation, Politehnica University of Timisoara, RO-300222 Timisoara (Romania); Vekas, Ladislau, E-mail: vekas.ladislau@gmail.com [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania)
2016-03-01
Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region. - Highlights: • Particularity of the particle targeting in the bypass graft anastomosis. • Hemodynamic characteristics influence about the particle deposition. • Particle accumulation induces changes of the flow field in the graft anastomosis. • Bypass graft geometries influence the particle deposition.
Determination of the Density of Energy States in a Quantizing Magnetic Field for Model Kane
Directory of Open Access Journals (Sweden)
G. Gulyamov
2016-01-01
Full Text Available For nonparabolic dispersion law determined by the density of the energy states in a quantizing magnetic field, the dependence of the density of energy states on temperature in quantizing magnetic fields is studied with the nonquadratic dispersion law. Experimental results obtained for PbTe were analyzed using the suggested model. The continuous spectrum of the energy density of states at low temperature is transformed into discrete Landau levels.
A Numerical Model for Accretion in Intermediate Polars with Dipolar Magnetic Fields
Isakova, P B; Bisikalo, D V
2016-01-01
A three-dimensional numerical model for an accretion process investigation in the magnetosphere of a white dwarf in magnetic cataclysmic variables is developed. The model assumes that the white dwarf has a dipole magnetic field with its symmetry axis inclined to the rotation axis. The model is based on the equations of modified MHD, that describe the mean flow parameters in the wave MHD turbulence. Diffusion of the magnetic field and radiative heating and cooling are taken into account. The suitability of the model is confirmed by modeling the accretion in a typical intermediate polar. The computations show that a magnetosphere forms around the accretor, with the accretion occurring via columns. The accretion columns have a curtain-like shape, and arc-shaped zones of energy release form on the surface of the white dwarf in the magnetic poles area as a result of the matter infall.
Modelling effect of magnetic field on material removal in dry electrical discharge machining
Abhishek, Gupta; Suhas, S. Joshi
2017-02-01
One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.
DEFF Research Database (Denmark)
Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.
2015-01-01
Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...
Limits for primordial magnetic fields
Caprini, Chiara
2011-01-01
A possible explanation for the origin of the magnetic fields observed today in matter structures is that they were generated in the primordial universe. After briefly revising the model of a primordial stochastic magnetic field and sketching the main features of its time evolution in the primordial plasma, we illustrate the current upper bounds on the magnetic field amplitude and spectral index from Cosmic Microwave Background observations and gravitational wave production. We conclude that a primordial magnetic field generated by a non-causal process such as inflation with a red spectrum seems to be favoured as a seed for the magnetic fields observed today in structures.
Particles deposition induced by the magnetic field in the coronary bypass graft model
Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau
2016-03-01
Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.
The BGS magnetic field candidate models for the 12th generation IGRF
2015-01-01
We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic ‘parent model’ derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model’s internal field time ...
A Model of the Earth's Magnetic Field From Two Years of Swarm Satellite Constellation Data
Olsen, N.; Finlay, C. C.; Kotsiaros, S.
2015-12-01
Two years of data from ESA's Swarm constellation mission are used to derive a model of the Earth's magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm satellites and alongtrack first differences we include the East-west magnetic gradient information provided by the lower Swarm satellite pair, thereby explicitly taking advantage of the constellation aspect of Swarm. We assess the spatial and temporal model resolution that can be obtained from two years of Swarm satellite data by comparison with other recent models that also include non-Swarm magnetic observations.
Consistent neutron star models with magnetic field dependent equations of state
Chatterjee, Debarati; Novak, Jerome; Oertel, Micaela
2014-01-01
We present a self-consistent model for the study of the structure of a neutron star in strong magnetic fields. Starting from a microscopic Lagrangian, this model includes the effect of the magnetic field on the equation of state, the interaction of the electromagnetic field with matter (magnetisation), and anisotropies in the energy-momentum tensor, as well as general relativistic aspects. We build numerical axisymmetric stationary models and show the applicability of the approach with one example quark matter equation of state (EoS) often employed in the recent literature for studies of strongly magnetised neutron stars. For this EoS, the effect of inclusion of magnetic field dependence or the magnetisation do not increase the maximum mass significantly in contrast to what has been claimed by previous studies.
Photometry and Multipolar Magnetic Field Modeling of Polars: BY Camelopardalis and FL Ceti
Directory of Open Access Journals (Sweden)
P. A. Mason
2015-02-01
Full Text Available We present new broad band optical photometry of two magnetic cataclysmic variable stars, the asynchronous polar BY Camelopardalis and the short period polar FL Ceti. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald Observatory with 3s and 1s integration times respectively. In an attempt to understand the observed complex changes in accretion flow geometry observed in BY Cam, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures. We investigate fields with increasing complexity including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry at various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are broadly consistent with optical photometry. FL Ceti is observed to have two very small accretion regions at the foot-points of the white dwarf’s magnetic field. Both accretion regions are visible at the same time in the high state and are about 100 degrees apart. MHD modeling using a dipole plus quadrupole field structure yields quite similar accretion regions as those observed in FL Ceti. We conclude that accretion flows calculated from MHD modeling of multi-polar magnetic fields produce synthetic light curves consistent with photometry of these magnetic cataclysmic variables.
A simple model for hydromagnetic instabilities in the presence of a constant magnetic field
Sandoval-Villalbazo, A; Arrieta, A
2005-01-01
In this paper we study a simple model consisting of a dilute fully ionized plasma in the presence of the gravitational and a constant magnetic field to analyze the propagation of hydromagnetic instabilities. In particular we show that the so called Jeans instability is in principle affected by the presence of the magnetic field. A brief discussion is made attempting to assess this influence in the stage of the evolution of the Universe where structures were formed. The most logical conclusion is that if magnetic fields existed in those times their magnitudes were too small to modify Jeans' mass. Our results places limits of the possible values of seed magnetic fields consistent with the formation structures in the Universe. These values are within the range of the results obtained by other authors.
THERMAL MODELS FOR THE FRESCA2 HIGH FIELD MAGNET
Pietrowicz, S
2012-01-01
This report presents the thermal studies and measurement that have been realized, at CEA Saclay, for the thermal design of the Fresca 2 magnet under development in EuCARD HFM program. The first part of the report is dedicated to the numerical study of the thermal behaviour of the Fresca 2 magnet in He II. The second part of the report concerns the experimental measurement on two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber.
Hood, Alan W
2011-01-01
This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulation...
Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A
Goncalves, Jose; Girart, Josep M
2008-01-01
Magnetic fields are believed to play a crucial role in the process of star formation. We compare high-angular resolution observations of the submillimeter polarized emission of NGC 1333 IRAS 4A, tracing the magnetic field around a low-mass protostar, with models of the collapse of magnetized molecular cloud cores. Assuming a uniform dust alignment efficiency, we computed the Stokes parameters and synthetic polarization maps from the model density and magnetic field distribution by integrations along the line-of-sight and convolution with the interferometric response. The synthetic maps are in good agreement with the data. The best-fitting models were obtained for a protostellar mass of 0.8 solar masses, of age 9e4 yr, formed in a cloud with an initial mass-to-flux ratio ~2 times the critical value. The magnetic field morphology in NGC 1333 IRAS 4A is consistent with the standard theoretical scenario for the formation of solar-type stars, where well-ordered, large-scale, rather than turbulent, magnetic fields ...
The BGS magnetic field candidate models for the 12th generation IGRF
Hamilton, Brian; Ridley, Victoria A.; Beggan, Ciarán D.; Macmillan, Susan
2015-05-01
We describe the candidate models submitted by the British Geological Survey for the 12th generation International Geomagnetic Reference Field. These models are extracted from a spherical harmonic `parent model' derived from vector and scalar magnetic field data from satellite and observatory sources. These data cover the period 2009.0 to 2014.7 and include measurements from the recently launched European Space Agency (ESA) Swarm satellite constellation. The parent model's internal field time dependence for degrees 1 to 13 is represented by order 6 B-splines with knots at yearly intervals. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals and by dependence on the 20-min Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterized. Satellite data are weighted by spatial density and by two different noise estimators: (a) by standard deviation along segments of the satellite track and (b) a larger-scale noise estimator defined in terms of a measure of vector activity at the geographically closest magnetic observatories to the sample point. Forecasting of the magnetic field secular variation beyond the span of data is by advection of the main field using core surface flows.
Collisional transport across the magnetic field in drift-fluid models
DEFF Research Database (Denmark)
Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry
2016-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...... altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence...... simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field...
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Comparison of the dipolar magnetic field generated by two Ising-like models
Peqini, Klaudio; Duka, Bejo
2015-04-01
We consider two Ising-like models named respectively the "domino" model and the Rikitake disk dynamo model. Both models are based on some collective interactions that can generate a dipolar magnetic field which reproduces the well-known features of the geomagnetic field: the reversals and secular variation (SV). The first model considers the resultant dipolar magnetic field as formed by the superposition of the magnetic fields generated by the dynamo elements called macrospins, while the second one, starting from the two-disk dynamo action, takes in consideration the collective interactions of several disk dynamo elements. We will apply two versions of each model: the short-range and the long-range coupled dynamo elements. We will study the statistical properties of the time series generated by the simulation of all models. The comparison of these results with the paleomagnetic data series and long series of SV enables us to conclude which of these Ising-like models better match with the geomagnetic field time series. Key words: geomagnetic field, domino model, Rikitake disk dynamo, dipolar moment
Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints
Jones, Shaela I; Uritsky, Vadim M
2015-01-01
The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in space physics. It provides energy for coronal heating, controls the release of coronal mass ejections (CMEs), and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field - an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints which could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.
The Role of Overlying Magnetic Field in Modeling Coronal Mass Ejections
Olmedo, Oscar; Zhang, J.
2009-05-01
Recent models and observations have revealed that the magnetic fields overlying active regions play an important role in the eruption or confinement of flux ropes due to the torus instability. Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs) but their initiation is still not clear. In this study the external magnetic field profile of the well-developed flux rope model as proposed by James Chen (see J.Chen 1989, 1996) is examined. This external magnetic field represents overlying coronal loops, that may be of bipolar or complex topology with footpoints assumed to originate from an active region, and it is assumed that the only magnetic field component that affects the flux rope evolution is the one that is perpendicular to the flux ropes major axis. In this type of flux rope model, it has been suggested that the flux ropes initiation is driven by poloidal flux injection either of photospheric or coronal origin. Several test profiles are investigated, such as a power law profile, and a polynomial profile that could be thought of as a summation of magnetic multipoles. The gradient index for the prescribed magnetic field profile is studied and it is found that above a critical value the flux rope is eruptive and below this value it is confined, in agreement with observations and simulations. Implications of the results are that the torus instability is the most likely candidate in driving the eruption of flux rope CMEs, and that the distribution of magnetic field has a significant effect on the initiation and acceleration of CMEs.
Edda Lína Gunnarsdóttir 1988
2012-01-01
The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...
A Model of Charge Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects
Lee, Chee Kong; Willard, Adam P
2016-01-01
In this letter we explore how the microscopic dynamics of charge transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a coarse-grained model of stochastic charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials.
Modeling multiband emissions from two young SNRs with a time-dependent magnetic field
Institute of Scientific and Technical Information of China (English)
Yun-Yong Tang; Zu-Cheng Dai; Li Zhang
2013-01-01
The nonthermal components in hard X-rays have been detected in two young supernova remnants (SNRs):SN 1006 and Kepler's SNR.Various theoretical models showed that the amplification of the magnetic field was crucial to explain their multiband emission properties.We investigate the evolution of the magnetic field and model the multiband emissions from these two young SNRs with a time-dependent injection model.The results indicate that (1) the radio and X-ray emissions are reproduced by synchrotron radiation of the injected electrons,while the γ-rays can be explained as inverse Compton scattering of the relativistic electrons and proton-proton interaction of the high-energy protons; and (2) the amplification of the magnetic field spontaneously happens with reasonable parameters.
Drift-diffusion model of normal glow discharge in an axial magnetic field
Surzhikov, S. T.
2016-12-01
A two-dimensional axisymmetrical computing model is formulated with using of which the mathematical modeling of the normal glow discharge in molecular hydrogen is fulfilled in an axial magnetic field with the induction B = 0.1 T in the pressure range p = 1.25-5 Torr and the current-source electromotive force E = 1-3 kV.
Quark matter under strong magnetic fields in the Nambu--Jona-Lasinio Model
Peres-Menezes, D; Avancini, S S; Martinez, A Perez; Providência, C
2008-01-01
In the present work we use the large-$N_c$ approximation to investigate quark matter described by the SU(2) Nambu--Jona-Lasinio model subject to a strong magnetic field. The Landau levels are filled in such a way that usual kinks appear in the effective mass and other related quantities. $\\beta$-equilibrium is also considered and the macroscopic properties of a magnetar described by this quark matter is obtained. Our study shows that the magnetar masses and radii are larger if the magnetic field increases but only very large fields ($\\ge 10^{18}$ G) affect the EoS in a non negligible way.
Institute of Scientific and Technical Information of China (English)
Erhan Albayrak
2013-01-01
The spin-1 Blume-Capel model with transverse Ω and longitudinal external magnetic fields h,in addition to a longitudinal random crystal field D,is studied in the mean-field approximation.It is assumed that the crystal field is either turned on with probability p or turned off with probability 1-p on the sites of a square lattice.Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ =-Ω/J and p at zero h.Thus,the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.
Utilizing neural networks in magnetic media modeling and field computation: A review
Directory of Open Access Journals (Sweden)
Amr A. Adly
2014-11-01
Full Text Available Magnetic materials are considered as crucial components for a wide range of products and devices. Usually, complexity of such materials is defined by their permeability classification and coupling extent to non-magnetic properties. Hence, development of models that could accurately simulate the complex nature of these materials becomes crucial to the multi-dimensional field-media interactions and computations. In the past few decades, artificial neural networks (ANNs have been utilized in many applications to perform miscellaneous tasks such as identification, approximation, optimization, classification and forecasting. The purpose of this review article is to give an account of the utilization of ANNs in modeling as well as field computation involving complex magnetic materials. Mostly used ANN types in magnetics, advantages of this usage, detailed implementation methodologies as well as numerical examples are given in the paper.
Utilizing neural networks in magnetic media modeling and field computation: A review.
Adly, Amr A; Abd-El-Hafiz, Salwa K
2014-11-01
Magnetic materials are considered as crucial components for a wide range of products and devices. Usually, complexity of such materials is defined by their permeability classification and coupling extent to non-magnetic properties. Hence, development of models that could accurately simulate the complex nature of these materials becomes crucial to the multi-dimensional field-media interactions and computations. In the past few decades, artificial neural networks (ANNs) have been utilized in many applications to perform miscellaneous tasks such as identification, approximation, optimization, classification and forecasting. The purpose of this review article is to give an account of the utilization of ANNs in modeling as well as field computation involving complex magnetic materials. Mostly used ANN types in magnetics, advantages of this usage, detailed implementation methodologies as well as numerical examples are given in the paper.
Gandhi, O P; Kang, G; Wu, D; Lazzi, G
2001-02-01
We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.
A Model of the Earth's Magnetic Field From Two Year of Swarm Satellite Constellation Data
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Tøffner-Clausen, Lars
More than two year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its...... Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm...
Estimation of a planetary magnetic field using a reduced magnetohydrodynamic model
Nabert, Christian; Heyner, Daniel; Glassmeier, Karl-Heinz
2017-03-01
Knowledge of planetary magnetic fields provides deep insights into the structure and dynamics of planets. Due to the interaction of a planet with the solar wind plasma, a rather complex magnetic environment is generated. The situation at planet Mercury is an example of the complexities occurring as this planet's field is rather weak and the magnetosphere rather small. New methods are presented to separate interior and exterior magnetic field contributions which are based on a dynamic inversion approach using a reduced magnetohydrodynamic (MHD) model and time-varying spacecraft observations. The methods select different data such as bow shock location information or magnetosheath magnetic field data. Our investigations are carried out in preparation for the upcoming dual-spacecraft BepiColombo mission set out to precisely estimate Mercury's intrinsic magnetic field. To validate our new approaches, we use THEMIS magnetosheath observations to estimate the known terrestrial dipole moment. The terrestrial magnetosheath provides observations from a strongly disturbed magnetic environment, comparable to the situation at Mercury. Statistical and systematic errors are considered and their dependence on the selected data sets are examined. Including time-dependent upstream solar wind variations rather than averaged conditions significantly reduces the statistical error of the estimation. Taking the entire magnetosheath data along the spacecraft's trajectory instead of only the bow shock location into account further improves accuracy of the estimated dipole moment.
The role of magnetic field for quiescence-outburst models in CVs
De Bianchi, S; Gaudenzi, S
2014-01-01
In this paper we present the elementary assumptions of our research on the role of the magnetic field in modelling the quiescence-outbursts cycle in Cataclysmic Variables (CVs). The behaviour of the magnetic field is crucial not only to integrate the disk instability model (Osaki 1974), but also to determine the cause and effect nexus among parameters affecting the behavior of complex systems. On the ground of our interpretation of the results emerging from the literature, we suggest that in models describing DNe outbursts, such as the disk instability model, the secondary instability model (Bath 1973) and the thermonuclear runaway model (Mitrofanov 1978), the role of the magnetic field is at least twofold. On the one hand, it activates a specific dynamic pathway for the accreting matter by channelling it. On the other hand, it could be indirectly responsible for switching a particular outburst modality. In order to represent these two roles of the magnetic field, we need to integrate the disk instability mod...
An equivalent source method for modelling the global lithospheric magnetic field
Kother, Livia; Hammer, Magnus D.; Finlay, Christopher C.; Olsen, Nils
2015-10-01
We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when it was at its lowest altitude and solar activity was quiet. All three components of the vector field data are utilized at all available latitudes. Estimates of core and large-scale magnetospheric sources are removed from the measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic equivalent potential field sources (monopoles) arranged in an icosahedron grid at a depth of 100 km below the surface. The corresponding model parameters are estimated using an iteratively reweighted least-squares algorithm that includes model regularization (either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices are implemented, accounting for the dependence of data variances on quasi-dipole latitude. The resulting equivalent source lithospheric field models show a degree correlation to MF7 greater than 0.7 out to spherical harmonic degree 100. Compared to the quadratic regularization approach, the entropy regularized model possesses notably lower power above degree 70 and a lower number of degrees of freedom despite fitting the observations to a very similar level. Advantages of our equivalent source method include its local nature, the possibility for regional grid refinement and the production of local power spectra, the ability to implement constraints and regularization depending on geographical position, and the ease of transforming the equivalent source values into spherical harmonics.
Neural mass modeling of power-line magnetic fields effects on brain activity
Directory of Open Access Journals (Sweden)
Julien eModolo
2013-04-01
Full Text Available Neural mass models are an appropriate framework to study brain activity, combining a high degree of biological realism while being mathematically tractable. These models have been used, with a certain success, to simulate brain electric (electroencephalography, EEG and metabolic (functional magnetic resonance imaging, fMRI activity. However, concrete applications of neural mass models have remained limited to date. Motivated by experimental results obtained in humans, we propose in this paper a neural mass model designed to study the interaction between power-line magnetic fields (60 Hz in North America and brain activity. The model includes pyramidal cells; dendrite-projecting, slow GABAergic neurons; soma-projecting, fast GABAergic neurons; and glutamatergic interneurons. A simple phenomenological model of interaction between the induced electric field and neuron membranes is also considered, along with a model of post-synaptic calcium concentration and associated changes in synaptic weights Simulated EEG signals are produced in a simple protocol, both in the absence and presence of a 60 Hz magnetic field. These results are discussed based on results obtained previously in humans. Notably, results highlight that 1 EEG alpha (8-12 Hz power can be modulated by weak membrane depolarizations induced by the exposure; 2 the level of input noise has a significant impact on EEG alpha power modulation; and 3 neural mass network size results in a different alpha rhythm modulation than when an individual neural mass is considered. Results obtained from the model shed new light on the effects of power-line magnetic fields on brain activity, and will provide guidance in future human experiments. This may represent a valuable contribution to international regulation agencies setting guidelines on magnetic field values to which the general public and workers can be exposed.
Maus, S.; Yin, F.; Lühr, H.; Manoj, C.; Rother, M.; Rauberg, J.; Michaelis, I.; Stolle, C.; Müller, R. D.
2008-07-01
The CHAMP satellite continues to provide highly accurate magnetic field measurements from decreasing orbital altitudes (<350 km) at solar minimum conditions. Using the latest 4 years (2004-2007) of readings from the CHAMP fluxgate magnetometer, including an improved scalar data product, we have estimated the lithospheric magnetic field to spherical harmonic degree 120, corresponding to 333 km wavelength resolution. The data were found to be sensitive to crustal field variations up to degree 150 (down to 266 km wavelength), but a clean separation of the lithospheric signal from ionospheric and magnetospheric noise sources was achieved only to degree 120. This new MF6 model is the first satellite-based magnetic model to resolve the direction of oceanic magnetic lineations, revealing the age structure of oceanic crust.
LETTER TO THE EDITOR: Model of the mixed state of type-II superconductors in high magnetic fields
Landau, I. L.; Ott, H. R.
2002-04-01
In superconductors with large values of the Ginzburg-Landau parameter κ, exposed to magnetic fields close to the upper critical field Hc2, the magnetic field is practically homogeneous across the sample and the density of supercurrents is negligibly small. In this case, there is no obvious reason for the formation of Abrikosov vortices, characteristic for the well known mixed state. We consider an alternative model for describing the mixed state for κ>>1 and magnetic fields close to Hc2. We argue that with decreasing magnetic field the traditional vortex structure is adopted via a first-order phase transition, revealed by discontinuities in the magnetization as well as the resistivity.
Beck, Rainer
2013-01-01
Most of the visible matter in the Universe is ionized, so that cosmic magnetic fields are quite easy to generate and due to the lack of magnetic monopoles hard to destroy. Magnetic fields have been measured in or around practically all celestial objects, either by in-situ measurements of spacecrafts or by the electromagnetic radiation of embedded cosmic rays, gas or dust. The Earth, the Sun, solar planets, stars, pulsars, the Milky Way, nearby galaxies, more distant (radio) galaxies, quasars and even intergalactic space in clusters of galaxies have significant magnetic fields, and even larger volumes of the Universe may be permeated by "dark" magnetic fields. Information on cosmic magnetic fields has increased enormously as the result of the rapid development of observational methods, especially in radio astronomy. In the Milky Way, a wealth of magnetic phenomena was discovered, which are only partly related to objects visible in other spectral ranges. The large-scale structure of the Milky Way's magnetic fie...
A Model of the Earth's Magnetic Field From Two Year of Swarm Satellite Constellation Data
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Tøffner-Clausen, Lars;
More than two year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its...... Earth-induced counterpart). We use data from geomagnetic quiet times and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC) frame. In addition to the magnetic field observations provided by each of the three Swarm...... satellites and alongtrack first differences we include the East-west magnetic gradient information provided by the lower Swarm satellite pair, thereby explicitly taking advantage of the constellation aspect of Swarm. We assess the spatial and temporal model resolution that can be obtained from two years...
Field and Thermal Characteristics of Magnetizing Fixture
Institute of Scientific and Technical Information of China (English)
2000-01-01
This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.
Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets
Popova, E.
2016-12-01
The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
A Comprehensive Model of the Near-Earth Magnetic Field. Phase 3
Sabaka, Terence J.; Olsen, Nils; Langel, Robert A.
2000-01-01
The near-Earth magnetic field is due to sources in Earth's core, ionosphere, magnetosphere, lithosphere, and from coupling currents between ionosphere and magnetosphere and between hemispheres. Traditionally, the main field (low degree internal field) and magnetospheric field have been modeled simultaneously, and fields from other sources modeled separately. Such a scheme, however, can introduce spurious features. A new model, designated CMP3 (Comprehensive Model: Phase 3), has been derived from quiet-time Magsat and POGO satellite measurements and observatory hourly and annual means measurements as part of an effort to coestimate fields from all of these sources. This model represents a significant advancement in the treatment of the aforementioned field sources over previous attempts, and includes an accounting for main field influences on the magnetosphere, main field and solar activity influences on the ionosphere, seasonal influences on the coupling currents, a priori characterization of ionospheric and magnetospheric influence on Earth-induced fields, and an explicit parameterization and estimation of the lithospheric field. The result of this effort is a model whose fits to the data are generally superior to previous models and whose parameter states for the various constituent sources are very reasonable.
Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils
Energy Technology Data Exchange (ETDEWEB)
Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)
2007-05-21
Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)
Reduction of Marine Magnetic Data for Modeling the Main Field of the Earth
Baldwin, R. T.; Ridgway, J. R.; Davis, W. M.
1992-01-01
The marine data set archived at the National Geophysical Data Center (NGDC) consists of shipborne surveys conducted by various institutes worldwide. This data set spans four decades (1953, 1958, 1960-1987), and contains almost 13 million total intensity observations. These are often less than 1 km apart. These typically measure seafloor spreading anomalies with amplitudes of several hundred nanotesla (nT) which, since they originate in the crust, interfere with main field modeling. The source for these short wavelength features are confined within the magnetic crust (i.e., sources above the Curie isotherm). The main field, on the other hand, is of much longer wavelengths and originates within the earth's core. It is desirable to extract the long wavelength information from the marine data set for use in modeling the main field. This can be accomplished by averaging the data along the track. In addition, those data which are measured during periods of magnetic disturbance can be identified and eliminated. Thus, it should be possible to create a data set which has worldwide data distribution, spans several decades, is not contaminated with short wavelengths of the crustal field or with magnetic storm noise, and which is limited enough in size to be manageable for the main field modeling. The along track filtering described above has proved to be an effective means of condensing large numbers of shipborne magnetic data into a manageable and meaningful data set for main field modeling. Its simplicity and ability to adequately handle varying spatial and sampling constraints has outweighed consideration of more sophisticated approaches. This filtering technique also provides the benefits of smoothing out short wavelength crustal anomalies, discarding data recorded during magnetically noisy periods, and assigning reasonable error estimates to be used in the least square modeling. A useful data set now exists which spans 1953-1987.
Fauve, S.
2009-04-01
I will first compare reversals of Earth's magnetic field known from palaeomagnetic data to the ones observed in a laboratory experiment for the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Despite major differences between the flow in Earth's core and in the experiment, both systems display reversals that share a lot of similar properties. I will understand them using a simple model in the framework of low dynamical system theory. Finally, I will discuss what can be learnt from numerical simulations.
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
SU(3) Polyakov linear-σ model in an external magnetic field
Tawfik, Abdel Nasser; Magdy, Niseem
2014-07-01
In the present work, we analyze the effects of an external magnetic field on the chiral critical temperature Tc of strongly interacting matter. In doing this, we can characterize the magnetic properties of the quantum chromodynamics (QCD) strongly interacting matter, the quark-gluon plasma (QGP). We investigate this in the framework of the SU(3) Polyakov linear sigma model (PLSM). To this end, we implement two approaches representing two systems, in which the Polyakov-loop potential added to PLSM is either renormalized or non-normalized. The effects of Landau quantization on the strongly interacting matter are conjectured to reduce the electromagnetic interactions between quarks. In this case, the color interactions will be dominant and increasing, which in turn can be achieved by increasing the Polyakov-loop fields. Obviously, each of them equips us with a different understanding about the critical temperature under the effect of an external magnetic field. In both systems, we obtain a paramagnetic response. In one system, we find that Tc increases with increasing magnetic field. In the other one, Tc significantly decreases with increasing magnetic field.
Modeling the current distribution in HTS tapes with transport current and applied magnetic field
Yazawa, Takashi; Rabbers, Jan-Jaap; Shevchenko, Oleg A.; Haken, ten Bennie; Kate, ten Herman H.J.; Maeda, Hideaki
1999-01-01
A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)2Sr2 Ca2Cu3Ox-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in te
Model for the effect of static magnetic fields on isolated neurons
del Moral, A.; Azanza, María J.
1992-08-01
A model which explains the effect of static magnetic fields on isolated neurons through Ca 2+ liberation from their binding sites at cell membrane, by a combined effect of lipid membrane molecules cooperative superdiamagnetism and electrostatic repulsion (Coulomb explosion) of Ca 2+ at both sides of the membrane, is developed.
Saglam, Murat
2010-01-01
This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…
The Juno Magnetic Field Investigation
DEFF Research Database (Denmark)
Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby
2017-01-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...
Modeling of the subgrid-scale term of the filtered magnetic field transport equation
Balarac, Guillaume; Kosovichev, Alexander; Brugière, Olivier; Wray, Alan; Mansour, Nagi
2010-01-01
Accurate subgrid-scale turbulence models are needed to perform realistic numerical magnetohydrodynamic (MHD) simulations of the subsurface flows of the Sun. To perform large-eddy simulations (LES) of turbulent MHD flows, three unknown terms have to be modeled. As a first step, this work proposes to use a priori tests to measure the accuracy of various models proposed to predict the SGS term appearing in the transport equation of the filtered magnetic field. It is proposed to evaluate the SGS ...
Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A
2011-01-01
We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...
Effect of interactions, disorder and magnetic field in the Hubbard model in two dimensions
Indian Academy of Sciences (India)
N Trivedi; P J H Denteneer; D Heidarian; R T Scaletar
2005-06-01
The effects of both interactions and Zeeman magnetic field in disordered electronic systems are explored in the Hubbard model on a square lattice. We investigate the thermodynamic (density, magnetization, density of states) and transport (conductivity) properties using determinantal quantum Monte Carlo and inhomogeneous Hartree Fock techniques. We find that at half filling there is a novel metallic phase at intermediate disorder that is sandwiched between a Mott insulator and an Anderson insulator. The metallic phase is highly inhomogeneous and coexists with antiferromagnetic long-range order. At quarter filling also the combined effects of disorder and interactions produce a conducting state which can be destroyed by applying a Zeeman field, resulting in a magnetic field-driven transition. We discuss the implication of our results for experiments.
Field-induced magnetization jumps and quantum criticality in the 2D J-Q model
Iaizzi, Adam; Sandvik, Anders
The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.
The BGS magnetic field candidate models for the 11th generation IGRF
Hamilton, B.; MacMillan, S.; Thomson, A.
2010-10-01
We describe the British Geological Survey's 11th generation International Geomagnetic Reference Field candidate models. These models are based on a 'parent model' consisting of a degree and order 60 spherical harmonic expansion of selected vector and scalar magnetic field data from satellite and observatory sources within the period 1999.0 to 2010.0. The parent model's internal field time dependence for degrees 1 to 13 is represented by linear spline with knots 400 days apart. The parent model's degree 1 external field time dependence is described by periodic functions for the annual and semi-annual signals, and by dependence on the 20-minute Vector Magnetic Disturbance index. Signals induced by these external fields are also parameterised. Satellite data are weighted according to two noise estimators. Firstly by standard deviation along segments of the satellite track and secondly a larger-scale noise estimator defined in terms of a vector activity measure at the geographically closest magnetic observatories to the sample point.
Magnetic field penetration into a 3D ordered Josephson medium and applicability of the bean model
Zelikman, M. A.
2014-11-01
The results of calculation of penetration of an external magnetic field into a 3D ordered Josephson medium, based on analysis of modification of the configuration in the direction of the decrease in its Gibbs potential, are reported. When the external field slightly exceeds the stability threshold, the Meissner configuration is transformed into a periodic sequence of linear vortices, which are parallel to the boundary of the medium and are located at a certain distance from it. There exists a critical value I C separating two possible regimes of penetration of the external magnetic field into the medium. For I > I C, for any value of the external field, a finite-length boundary current configuration appears, which completely compensates the external field in the bulk of the sample. At the sample boundary, the field decreases with increasing depth almost linearly. The values of the slope of the magnetic field dependence are rational fractions, which remain constant in finite intervals of I. When the value of I exceeds the upper boundary of such an interval, the slope increases and assumes the value of another rational fraction. If, however, I < I C, such a situation takes place only up to a certain value of external field H max. For higher values, the field penetrates into the medium to an infinite depth. These results lead to the conclusion that the Bean assumptions are violated and that Bean's model is inapplicable for analyzing the processes considered here.
Directory of Open Access Journals (Sweden)
Zhang Lei
2015-01-01
Full Text Available The paper gives detailed systematic researches on the mechanism and key factors of eddy-current losses in rotor magnets of high power-density permanent magnet synchronous motors(PMSMs. Firstly, this paper establishes quantitative mathematic model of eddy-current losses for surface-mounted PMSM based on eddy current field model and Maxwell equations. Then, a scaling index is put forward to weigh the key factors relevant to the eddy-current losses in magnets. At the same time, the principles of eddy-current losses in prototype PMSM are analyzed by the finite element analysis (FEA software. The contents researched in the paper have practical reference values for design and reliability analysis of PMSMs.
A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields
Jiang, J
2007-01-01
Increasing observations are becoming available about a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. It indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric alpha2-Omega dynamo model is set up to discuss the characteristics of the axisymmetric m=0 and the first non-axisymmetric m=1 modes and to provide further the theoretical bases to explain the active longitude, flip-flop and other non-axisymmetric phenomena. The model consists of a updated solar internal differential rotation, a turbulent diffusivity varied with depth and an alpha-effect working at the tachocline in rotating spherical systems. The difference between the alpha2-Omega and the alpha-Omega models and the conditions to favor the non-axisymmetric modes with the solar-like parameters are also presented.
Implementation of an offset-dipole magnetic field in a pulsar modelling code
Breed, M; Harding, A K; Johnson, T J
2014-01-01
The light curves of gamma-ray pulsars detected by the Fermi Large Area Telescope show great variety in profile shape and position relative to their radio profiles. Such diversity hints at distinct underlying magnetospheric and/or emission geometries for the individual pulsars. We implemented an offset-dipole magnetic field in an existing geometric pulsar modelling code which already includes static and retarded vacuum dipole fields. In our model, this offset is characterised by a parameter epsilon (with epsilon = 0 corresponding to the static dipole case). We constructed sky maps and light curves for several pulsar parameters and magnetic fields, studying the effect of an offset dipole on the resulting light curves. A standard two-pole caustic emission geometry was used. As an application, we compared our model light curves with Fermi data for the bright Vela pulsar.
Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image
Wang, Cuilan; Newman, Timothy; Gallagher, Dennis
2006-01-01
A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.
Bianchi Type-Ⅲ String Cosmological Model With Bulk Viscosity and Magnetic Field
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2006-01-01
@@ The Bianchi type-Ⅲ cosmological model for a cloud string in the presence of bulk viscosity and magnetic field are presented. To obtain the determinate model it is assumed that there is an equation of state ρ = kλ and the scalar of expansion is proportional to the shear scalar θ∝σ, which leads to a relation between metric potentials B = mCn. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start. In the absence of magnetic field, it reduces to the string model with bulk viscosity that was previously given in the literature.
Chiral phase transition in a planar four-Fermi model in a tilted magnetic field
Ramos, Rudnei O
2013-01-01
We study a planar four-Fermi Gross-Neveu model in the presence of a tilted magnetic field, with components parallel and perpendicular to the system's plane. We determine how this combination of magnetic field components, when applied simultaneously, affects the phase diagram of the model. It is shown that each component of the magnetic field causes a competing effect on the chiral symmetry in these fermionic systems. While the perpendicular component of the magnetic field tends to make the chiral symmetry breaking to become stronger, the effect of the parallel component of the field in these planar systems is to weaken the chiral symmetry. We show that this competing effect, when combined also with temperature and chemical potential, can lead to a rich phase diagram, with the emergence of multiple critical points and reentrant phase transitions. We also study how the presence of these multiple critical points and reentrant phases can manifest in the quantum Hall effect. Our results provide a possible way to p...
Simulation of field-temperature effects in magnetic media using anisotropic Preisach models
Energy Technology Data Exchange (ETDEWEB)
Adly, A.A. [Cairo Univ., Giza (Egypt); Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.
1998-07-01
Prediction of temperature effects on magnetic properties has always been a topic of wide interest. Studying these effects may be particularly crucial for estimating the reliability of magnetic recording media and/or proper electrical machine core designs when significant working temperature variations are expected. In this paper, simulation of field-temperature effects in magnetic media is proposed by using a 2-D anisotropic Preisach-type hysteresis model. A technique for solving the identification problem of this model is developed. Experimental testing of the proposed model has been carried out on two different thin film hard disk samples. Comparison between measured and computed values indicate that the suggested model can lead to good qualitative, as well as quantitative, simulation results.
Exciton condensation in an extended Falicov-Kimball model in the presence of orbital magnetic fields
Pradhan, Subhasree; Taraphder, A.
2016-12-01
We investigate the exciton condensation in the presence of an external, perpendicular magnetic field in a two-dimensional extended spinless Falicov-Kimball model involving itinerant (c) and localized (f) electrons in the half-filled limit, using self-consistent, mean-field approximations. On tuning the orbital magnetic field the excitonic averages Δi = are affected in several ways: the external field usually suppresses the excitonic average but we find that it is also possible to enhance excitonic response at some values of the magnetic field. We further examine the effect of Coulomb interaction and the f-electron hopping on the condensation of excitons for some rational values of the applied magnetic fields. The interband Coulomb interaction enhances Δ exponentially and the effect is more pronounced for low hybridization. The strength of excitonic average drops when f-electrons have a dispersion. This trend is independent of the relative sign of the c- and f-electron hopping; although the excitonic response is different for different parity of the c- and f-electrons.
Yang, Xiaobin; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo
2017-04-01
A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.
Energy Technology Data Exchange (ETDEWEB)
McCamey, Dane; Boehme, Christoph
2017-01-24
An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).
Effects of Magnetic Fields on Neutrino-dominated Accretion Model for Gamma-ray Bursts
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Many models of gamma-ray bursts suggest a common central engine: a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M⊙ s～l, the inner region of the disk is cooled by neutrino emission and large amounts of its binding energy are liberated, which could trigger the fireball. We improve the neutrinodominated accreting flows by including the effects of magnetic fields. We find that more than half of the liberated energy can be extracted directly by the large-scale magnetic fields in the disk, and it turns out that the temperature of the disk is a bit lower than the neutrino-dominated accreting flows without magnetic field. Therefore, the outflows are magnetically-dominated rather than neutrino dominated. In our model, the neutrino mechanism can fuel some GRBs (not the brightest ones), but cannot fuel X-ray flares. The magnetic processes (both BZ and electromagnetic luminosity from a disk) are viable mechanisms for most of GRBs and their following X-ray flares.
A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Kotsiaros, Stavros
2016-01-01
More than 2 years of magnetic field data taken by the three-satellite constellation mission Swarm are used to derive a model of Earth’s magnetic field and its time variation. This model is called SIFMplus. In addition to the magnetic field observations provided by each of the three Swarm satellites...... the North–South gradient. The SIFMplus model provides a description of the static lithospheric field that is very similar to models determined from CHAMP data, up to at least spherical harmonic degree n=75. Also the core field part of SIFMplus, with a quadratic time dependence for n≤6 and a linear time...... with the model of the core, lithospheric and large-scale magnetospheric fields, a magnetic potential that depends on quasi-dipole latitude and magnetic local time....
Three-dimensional model and simulation of vacuum arcs under axial magnetic fields
Wang, Lijun; Jia, Shenli; Zhou, Xin; Wang, Haijing; Shi, Zongqian
2012-01-01
In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.
Solar magnetic activity cycles, coronal potential field models and eruption rates
Petrie, G J D
2013-01-01
We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003-6 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the ...
SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES
Energy Technology Data Exchange (ETDEWEB)
Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States)
2013-05-10
We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.
Long periodically modulated Josephson contact in a magnetic field and correctness of the bean model
Zelikman, M. A.
2015-02-01
The distribution of vortices and the profile of a magnetic field penetrating into a long contact are calculated on the basis of analysis of a continuous modification of the configuration in the direction of a decrease in its Gibbs potential. The computer calculations based on the proposed method have shown that critical value I C exists in the interval 0.95-1.00, which separates two possible regimes of penetration of the external magnetic field into the contact. For I > I C , the calculation for any value of external field H e leads to a finite-length near-boundary current configuration, which completely compensates the external field in the bulk of the contact. If, however, I Bean model is inapplicable for the analysis of the processes considered here.
Abu-Labdeh, A M; MacIsaac, A B; De'Bell, K
2011-07-27
The effects of a uniform magnetic field on the phase diagram of the dipolar Heisenberg model with a dominant antiferromagnetic exchange interaction have been investigated. The model consists of a square lattice of classical spin vectors, where the spins interact through an antiferromagnetic exchange interaction of strength J and a dipole-dipole interaction of strength g. The spins couple to a magnetic surface anisotropy of strength κ and to an applied external magnetic field of strength H. The external field is applied perpendicular to the plane of the lattice. From extensive Monte Carlo simulations, representative magnetic phase diagrams have been determined as a function of the ratios κ/g and T/g, where T is temperature, and at three different ratios of H/g (H/g = 10, 20, 27). These results are compared to the previously investigated case of H/g = 0 and to analytic calculations for the ground state energies. The nature of the equilibrium phases and order of the phase boundaries separating them are considered and changes due to the strength of the applied field are highlighted.
Dynamical systems for modeling the evolution of the magnetic field of stars and Earth
Popova, H.
2016-02-01
The cycles of solar magnetic activity are connected with a solar dynamo that operates in the convective zone. Solar dynamo mechanism is based on the combined action of the differential rotation and the alpha-effect. Application of these concepts allows us to get an oscillating solution as a wave of the toroidal field propagating from middle latitudes to the equator. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the solar magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the convection zone of the star. It was shown the possibility of coexistence of quiasi-biennial and 22-year cycle. We obtained the different regimes (oscillations, vacillations, dynamo-bursts) depending on the value of the dynamo-number, the meridional circulation, and thickness of the convection zone. We discuss the features of these regimes and compare them with the observed features of evolution of the solar and geo magnetic fields. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
Energy Technology Data Exchange (ETDEWEB)
Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)
2016-02-10
We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.
Birotor dipole model for Saturn's inner magnetic field from CASSINI RPWS measurements and MAG data
Galopeau, Patrick H. M.
2016-10-01
The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR). These two periods were attributed to the northern and southern hemispheres respectively. The existence of a double period makes the study of the planetary magnetic field much more complicated and the building of a field model, based on the direct measurements of the MAG experiment from the magnetometers embarked on board Cassini, turns out to be uncertain. The first reason is the difficulty for defining a longitude system linked to the variable period, because the internal magnetic field measurements from MAG are not continuous. The second reason is the existence itself of two distinct periods which could imply the existence of a double rotation magnetic structure generated by Saturn's dynamo. However, the radio observations from the RPWS experiment allow a continuous and accurate follow-up of the rotation phase of the variable two periods, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz was performed in order to calculate the rotation phase of each Saturnian hemisphere. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to rotate around Saturn's axis at two different angular velocities; it is tilted and not centered. Then it is possible to fit the MAG data for each Cassini's revolution around the planet the periapsis of which is less than 5 Saturnian radii. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. Such a result can be used as a boundary condition for modelling and constraining the planetary dynamo.
Magnetic properties of a transverse spin- Ising model with random longitudinal field
Liang, Ya-Qiu; Wei, Guo-Zhu; Song, Guo-Li
2004-12-01
Within the framework of the effective-field theory with correlations, a spin- transverse Ising model in the longitudinal random-field on a honeycomb lattice is studied. The phase diagrams and the behavior of the tricritical point are examined. The possible re-entrance phenomena displayed by the system due to the competition effects that occur for the appropriate ranges of the random and transverse field are investigated. The longitudinal and transverse magnetizations, the longitudinal quadrupolar moments and internal energy are given numerically for a honeycomb lattice (z = 3).
Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations
Uritsky, V. M.; Davila, J. M.; Jones, S. I.
2015-12-01
Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.
Tsvetkov, Yu.; Filippov, S.; Frunze, A.
2013-12-01
Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.
Analytical results on the magnetization of the Hamiltonian Mean-Field model
Energy Technology Data Exchange (ETDEWEB)
Bachelard, R., E-mail: romain.bachelard@synchrotron-soleil.f [Synchrotron Soleil, L' Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette cedex (France); Chandre, C. [Centre de Physique Theorique, CNRS - Aix-Marseille Universites, Campus de Luminy, case 907, F-13288 Marseille cedex 09 (France); Ciani, A.; Fanelli, D. [Dipartimento di Energetica ' Sergio Stecco' , Universita di Firenze, via s. Marta 3, 50139 Firenze (Italy)] [Centro interdipartimentale per lo Studio delle Dinamiche Complesse - CSDC (Italy)] [INFN (Italy); Yamaguchi, Y.Y. [Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, 606-8501 Kyoto (Japan)
2009-11-09
The violent relaxation and the metastable states of the Hamiltonian Mean-Field model, a paradigmatic system of long-range interactions, is studied using a Hamiltonian formalism. Rigorous results are derived algebraically for the time evolution of selected macroscopic observables, e.g., the global magnetization. The high- and low-energy limits are investigated and the analytical predictions are compared with direct N-body simulations. The method we use enables us to re-interpret the out-of-equilibrium phase transition separating magnetized and (almost) unmagnetized regimes.
Magnetic fields in ring galaxies
Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R
2016-01-01
Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...
Microscopic modeling of magnetic-field effects on charge transport in organic semiconductors
Schellekens, A. J.; Wagemans, W.; Kersten, S. P.; Bobbert, P. A.; Koopmans, B.
2011-08-01
The stochastic Liouville equation is applied to the field of organic magnetoresistance to perform detailed microscopic calculations on the different proposed models. By adapting this equation, the influence of a magnetic field on the current in bipolaron, electron-hole pair, and triplet models is calculated. The simplicity and wide applicability of the stochastic Liouville equation makes it a powerful tool for interpreting experimental results on magnetoresistance measurements in organic semiconductors. New insights are gained on the influence of hopping rates and disorder on the magnetoresistance.
Testing Circuit Models for the Energies of Coronal Magnetic Field Configurations
Wheatland, M S
2003-01-01
Circuit models involving bulk currents and inductances are often used to estimate the energies of coronal magnetic field configurations, in particular configurations associated with solar flares. The accuracy of circuit models is tested by comparing calculated energies of linear force-free fields with specified boundary conditions with corresponding circuit estimates. The circuit models are found to provide reasonable (order of magnitude) estimates for the energies of the non-potential components of the fields, and to reproduce observed functional dependences of the energies. However, substantial departure from the circuit estimates is observed for large values of the force-free parameter, and this is attributed to the influence of the non-potential component of the field on the path taken by the current.
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.
2017-04-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Energy Technology Data Exchange (ETDEWEB)
Tzeferacos, P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Rigby, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bott, A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bell, A. R. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bingham, R. [Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom; Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom; Casner, A. [CEA, DAM, DIF, F-91297 Arpajon, France; Cattaneo, F. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Churazov, E. M. [Max Planck Institute for Astrophysics, D-85741 Garching, Germany; Space Research Institute (IKI), Moscow 117997, Russia; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Flocke, N. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Fiuza, F. [SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Forest, C. B. [Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Foster, J. [AWE, Aldermaston, Reading, West Berkshire, RG7 4PR, United Kingdom; Graziani, C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Koenig, M. [Laboratoire pour l' Utilisation de Lasers Intenses, UMR7605, CNRS CEA, Université Paris VI Ecole Polytechnique, France; Li, C. -K. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Meinecke, J. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Petrasso, R. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Park, H. -S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ryu, D. [Department of Physics, UNIST, Ulsan 689-798, South Korea; Ryutov, D. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Weide, K. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; White, T. G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Reville, B. [School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom; Miniati, F. [Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland; Schekochihin, A. A. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Gregori, G. [Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA; Lamb, D. Q. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637, USA
2017-03-22
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Ulrich, R. K.; Henney, C. J.; Schimpf, S.; Fossat, E.; Gelly, B.; Grec, G.; Loudagh, S.; Schmider, F.-X; Palle, P.; Regulo, C.
1993-01-01
It has been known since the work by Claverie et al. (1982) that integrated-sunlight velocities measured with the resonance scattering technique show variations with time scales of weeks to months. The cause can be understood in terms of the effects of solar activity as was pointed out by Edmunds & Gough (1983) and Andersen & Maltby (1983). The latter authors included a model calculation based on sunspot areas which showed good promise of being able to quantitatively reproduce the observed velocity shifts. We discuss in this paper a new modeling effort based on daily magnetograms obtained at the 150-ft tower on Mt. Wilson. This type of database is more quantitative than sunspot area. Similar maps of magnetically sensitive quantities will be measured on a continuous time base as part of several planned helioseismology experiments (from space with the Solar Oscillations Imagery/Michelson Doppler Imager (SOI/MDI) experiment on the Solar and Heliospheric Observatory (SOHO), see Scherrer et al. (1991) or with ground-based networks, see Hill & Leibacher (1991)). We discuss the correlations between various magnetically sensitive quantities and develop a new model for the effects of magnetic field on line profiles and surface brightness. From these correlations we integrate the line profile changes over the solar surface using observed magnetic field strengths measured at lambda 5250.2. The final output is a new model for the effects of magnetic fields on integrated sunlight velocities which we compare with daily offset velocities derived from the International Research on the Interior of the Sun (IRIS)-T instrument at the Observatorio del Teide.
Extending comprehensive models of the Earth's magnetic field with Orsted and CHAMP data
DEFF Research Database (Denmark)
Sabaka, T.J.; Olsen, Nils; Purucker, M.E.
2004-01-01
A new model of the quiet-time, near-Earth magnetic field has been derived using a comprehensive approach, which includes not only POGO and Magsat satellite data, but also data from the Orsted and CHAMP satellites. The resulting model shows great improvement over its predecessors in terms...... of completeness of sources, time span and noise reduction in parameters. With its well separated fields and extended time domain of 1960 to mid-2002, the model is able to detect the known sequence of geomagnetic jerks within this frame and gives evidence for an event of interest around 1997. Because all sources...... are coestimated in a comprehensive approach, intriguing north-south features typically filtered out with other methods are being discovered in the lithospheric representation of the model, such as the S Atlantic spreading ridge and Andean subduction zone lineations. In addition, this lithospheric field exhibits...
Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents
Pulkkinen, T. I.; Baker, D. N.; Walker, R. J.; Raeder, J.; Ashour-Abdalla, M.
1995-01-01
The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50 R(sub E) distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed.
Yadav, Umesh K.
2017-01-01
Ground state properties of spinless, extended Falicov-Kimball model (FKM) on a finite size triangular lattice with orbital magnetic field normal to the lattice are studied using numerical diagonalization and Monte-Carlo simulation methods. We show that the ground state configurations of localized electrons strongly depend on the magnetic field. Magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered regular phase except at density nf = 1 / 2 of localized electrons. It is proposed that magnetic field can be used as a new tool to produce segregated phase which was otherwise accessible only either with correlated hopping or with large on-site interactions.
Invariant models in the inversion of gravity and magnetic fields and their derivatives
Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni
2014-11-01
In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.
A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico
García-Abdeslem, Juan; Calmus, Thierry
2015-08-01
The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of ~ 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.
Model for straight and helical solar jets. I. Parametric studies of the magnetic field geometry
Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.
2015-01-01
Context. Jets are dynamic, impulsive, well-collimated plasma events developing at many different scales and in different layers of the solar atmosphere. Aims: Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Studying their dynamics can help us to better understand the processes acting in larger eruptive events (e.g., flares and coronal mass ejections) as well as mass, magnetic helicity, and energy transfer at all scales in the solar atmosphere. The relative simplicity of their magnetic geometry and topology, compared with larger solar active events, makes jets ideal candidates for studying the fundamental role of reconnection in energetic events. Methods: In this study, using our recently developed numerical solver ARMS, we present several parametric studies of a 3D numerical magneto-hydrodynamic model of solar-jet-like events. We studied the impact of the magnetic field inclination and photospheric field distribution on the generation and properties of two morphologically different types of solar jets, straight and helical, which can account for the observed so-called standard and blowout jets. Results: Our parametric studies validate our model of jets for different geometric properties of the magnetic configuration. We find that a helical jet is always triggered for the range of parameters we tested. This demonstrates that the 3D magnetic null-point configuration is a very robust structure for the energy storage and impulsive release characteristic of helical jets. In certain regimes determined by magnetic geometry, a straight jet precedes the onset of a helical jet. We show that the reconnection occurring during the straight-jet phase influences the triggering of the helical jet. Conclusions: Our results allow us to better understand the energization, triggering, and driving processes of straight and helical jets. Our model predicts the impulsiveness and energetics of jets in terms of the surrounding
Kraiger, Markus; Schnizer, Bernhard; Stollberger, Rudolf
2016-12-01
In the current paper a vertebral bone model is introduced that can be used for studying trabecular thinning and the formation of trabecular disconnections. Magnetostatic simulations are applied in MR-osteodensitometry to deduce the quality of trabecular bone from experimentally obtained susceptibility effects. The course of trabecular bone loss, which results in distinct interruptions and consequently severe mechanical impairment, is not assessable in the majority of such applied models. In the novel approach introduced here, analytical solutions of prolate ellipsoids were used to compute the disturbed magnetic fields within the proposed 3D model. The performed simulations focused on two variants of the vertebral model: an intact model and a pathological model accounting for microdamage. For both variants, magnetic resonance spectra were simulated for different bone volume fractions. Subsequently, resonance signals were obtained from the Fourier transform of the distribution with respect to time. The resonance time courses were analyzed through common signal models to estimate the relaxation time {{T}\\prime}2 of the corresponding free induction decay. Detailed computations revealed the significant contribution of the microdamage to the susceptibility effect. Further, when comparing the line broadening effect between the intact and disrupted models a contradictory outcome was found. The damaged osseous network for the lower bone fraction resulted in faster decay of the transverse magnetization. In conclusion, a significant contribution of trabecular disconnections to the susceptibility effect has been shown by the presented model. Future dedicated MRI experiments can explore the use of this effect to assess the integrity of cancellous bone.
Energy Technology Data Exchange (ETDEWEB)
Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)
2015-03-01
A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.
Mischenko, I.; Chuev, M.
2016-12-01
Principal difference of magnetic nanoparticles from the bulk matter which cannot be ignored when constructing upon them combined metamaterials and modern devices is the essential influence on their behavior thermal fluctuations of the environment. These disturbances lead to specific distributions of the particles characteristics and to stochastic reorientations of their magnetic moments. On the basis of quantum-mechanical representation of the particle possessing intrinsic magnetic anisotropy and being placed onto the external magnetic field we developed general approach to describe equilibrium magnetization curves and relaxation Mössbauer spectra of magnetic nanoparticles for diagnostics of magnetic nanomaterials in the whole temperature or external field ranges. This approach has universal character and may be applied not only to the systems under thermal equilibrium, but may in principle describe macroscopic dynamical phenomena such as magnetization reversal.
Critical Behavior of Gaussian Model on X Fractal Lattices in External Magnetic Fields
Institute of Scientific and Technical Information of China (English)
LI Ying; KONG Xiang-Mu; HUANG Jia-Yin
2003-01-01
Using the renormalization group method, the critical behavior of Gaussian model is studied in external magnetic fields on X fractal lattices embedded in two-dimensional and d-dimensional (d ＞ 2) Euclidean spaces, respectively. Critical points and exponents are calculated. It is found that there is long-range order at finite temperature for this model, and that the critical points do not change with the space dimensionality d (or the fractal dimensionality dr). It is also found that the critical exponents are very different from results of Ising model on the same lattices, and that the exponents on X lattices are different from the exact results on translationally symmetric lattices.
Solar magnetic activity cycles, coronal potential field models and eruption rates
Petrie, Gordon
2013-07-01
We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.
Saturn's Magnetic Field Model: Birotor Dipole From Cassini RPWS and MAG Experiments
Galopeau, P. H. M.
2016-12-01
The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. We believe that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining
Modeling electron transport in the presence of electric and magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David
2013-09-01
This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.
The BGS magnetic field candidate models for the 10th generation IGRF
Lesur, Vincent; Macmillan, Susan; Thomson, Alan
2005-12-01
In this paper we describe the derivation of the BGS candidate models for the 10th generation International Geomagnetic Reference Field. Our data set comprised quiet night-time data from the Èrsted and Champ satellites spanning 1999.2-2004.6 and observatory hourly means spanning 1999.0-2004.0. To improve the secular variation estimates for 2005.0-2010.0, predictions based on application of linear prediction filters to long series of observatory annual means were also used. These data were fitted by a spherical harmonic "parent" model with an internal field of maximum degree 36, a quadratic dependence on time up to degree 8, a linear dependence on time up to degree 12, an external field of maximum degree 2 with linear dependence on time, annual and semi-annual variations, and Dst dependence for degree 1 terms. Additionally for the external field, non-zonal degree 1 coefficients in the Geocentric Equatorial Inertial reference frame with annual variations and dependence on the Interplanetary Magnetic Field Y-component are included. The candidate models were then based, for the main field, on an extrapolation to 2005.0 of the truncated parent model, and for the secular variation, on its extrapolation to 2007.5. This latter set of coefficients was then used to generate a synthetic data set at the Earth's surface and this set was augmented with long term linear predictions of observatory annual means, to produce the final candidate secular variation model at 2007.5.
Blackman, Eric G
2015-01-01
Late-type main sequence stars exhibit an x-ray to bolometric flux that depends on the Corolis number $Co$ (product of convective turnover time and angular rotation speed) as $Co^{\\zeta}$ with $2\\le \\zeta \\le 3$ for $Co > 1$. Stars in the unsaturated regime also obey the Skumanich law--- their rotation speeds scale inversely with square root of their age. The associated stellar magnetic field strengths follow a similar decrease with age. While the connection between faster rotators, stronger fields, and higher activity has been well established observationally, a basic theory for the time evolution of x-ray luminosity, rotation, magnetic field and mass loss been lacking. Here we offer a minimalist model for the time evolution of these quantities built from combining a Parker wind with several new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the x-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of x-ray activity and mass loss saturation to dynamo...
Modelling of the Surface Emission of the Low-Magnetic Field Magnetar SGR 0418+5729
Guillot, Sebastien; Rea, Nanda; Vigano, Daniele; Pons, Jose
2015-01-01
We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6x10^12 G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. Nonetheless, the modelling allows us to place constraints on the system geometry (i.e. the angles $\\psi$ and $\\xi$ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the n...
Complete Form of Fermion Self-energy in NJL Model with External Magnetic Field
Shi, Song; Cui, Zhu-Fang; Xia, Yong-Hui; Zong, Hong-Shi
2016-01-01
In this paper, we aim to study the complete form of self-energy in fermion propagator within two-flavor NJL model in the case of finite temperature, chemical potential and external magnetic field. Through self-consistency analysis we prove that the self-energy is not simply proportional to dynamical mass in the presence of chemical potential, moreover, it could be more complicated after introducing external magnetic field. We find out the appropriate and complete form of self-energy and establish new gap equations. The numerical results show that the dynamical mass only has small quantitative modification rather than qualitative change by using these new gap equations, but the new self-energy does generate split in the dispersion relation with fixed momentum and Landau level.
Nonlinear Force-Free Magnetic Field Modeling of AR 10953: A Critical Assessment
De Rosa, Marc L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; Amari, T.; Canou, A.; McTiernan, J. M.; Régnier, S.; Thalmann, J. K.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M. C. M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.
2009-05-01
Nonlinear force-free field (NLFFF) modeling seeks to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have failed to arrive at consistent solutions when applied to (thus far, two) cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not available). One issue is that NLFFF models require consistent, force-free vector magnetic boundary data, and vector magnetogram data sampling the photosphere do not satisfy this requirement. Consequently, several problems have arisen that are believed to affect such modeling efforts. We use AR 10953 to illustrate these problems, namely: (1) some of the far-reaching, current-carrying connections are exterior to the observational field of view, (2) the solution algorithms do not (yet) incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is needed to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.
Kelley, Chris S; Naughton, James; Benson, Emma; Bradley, Ruth C; Lazarov, Vlado K; Thompson, Sarah M; Matthew, Jim A D
2014-01-22
A model of the magnetorefractive effect is developed for metallic oxides which allows the MRE to be used to study the magnetic dependence of their transport and phononic properties. This model is successfully applied to Fe3O4 and compared to experiments on a series of magnetite thin films of varying thickness (10, 18, 37, 64 and 110 nm) deposited on MgO(111) substrates. Reflection spectra were modelled as a function of film thickness, calculated from the Fresnel equations using an Fe3O4 dielectric function consisting of Drude, hopping, phononic and d-s transition conductivity processes. The reflectivity spectra of the different thickness films are reasonably reproduced by the model and reveal that the Fe3O4 18.5 μm phonon peak is shifted to a shorter wavelength in the thin films, approaching the bulk value for t > 110 nm. The MRE spectra are modelled by introducing a magnetic field dependence to the hopping and phononic terms, where previous models have considered the magnetic dependence to be on the Drude term only. In addition, the position of the Fe3O4 18.5 μm phonon peak was also found to shift in energy in the applied magnetic field by 0.05 μm. These results demonstrate the potential for using the MRE technique for probing the underlying magnetoelectronic properties of thin film oxides in a quick and non-destructive way.
Resonant magnetic fields from inflation
Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R
2012-01-01
We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The magnetic anisotropy field in thin films with in-plane uniaxial anisotropy can be deduced from the VSM magnetization curves measured in magnetic fields of constant magnitudes. This offers a new possibility of applying rotational magnetization curves to determine the firstand second-order anisotropy constant in these films. In this paper we report a theoretical derivation of rotational magnetization curve in hexagonal crystal system with easy-plane anisotropy based on the principle of the minimum total energy. This model is applied to calculate and analyze the rotational magnetization process for magnetic spherical particles with hexagonal easy-plane anisotropy when rotating the external magnetic field in the basal plane. The theoretical calculations are consistent with Monte Carlo simulation results. It is found that to well reproduce experimental curves, the effect of coercive force on the magnetization reversal process should be fully considered when the intensity of the external field is much weaker than that of the anisotropy field. Our research proves that the rotational magnetization curve from VSM measurement provides an effective access to analyze the in-plane anisotropy constant K3 in hexagonal compounds, and the suitable experimental condition to measure K3 is met when the ratio of the magnitude of the external field to that of the anisotropy field is around 0.2.
Institute of Scientific and Technical Information of China (English)
WANG AiMin; PANG Hua
2009-01-01
The magnetic anisotropy field in thin films with in-plane uniaxial anisotropy can be deduced from the VSM magnetization curves measured in magnetic fields of constant magnitudes. This offers a new possibility of applying rotational magnetization curves to determine the first- and second-order ani-aotropy constant in these films. In this paper we report a theoretical derivation of rotational magnetiza-tion curve in hexagonal crystal system with easy-plane anisotropy based on the principle of the minimum total energy. This model is applied to calculate and analyze the rotational magnetization process for magnetic spherical particles with hexagonal easy-plane anisotropy when rotating the external magnetic field in the basal plane. The theoretical calculations are consistent with Monte Carlo simulation results. It is found that to well reproduce experimental curves, the effect of coercive force on the magnetization reversal process should be fully considered when the intensity of the ex-ternal field is much weaker than that of the anisotropy field. Our research proves that the rotational magnetization curve from VSM measurement provides an effective access to analyze the in-plane anisotropy constant K3 in hexagonal compounds, and the suitable experimental condition to measure K3 is met when the ratio of the magnitude of the external field to that of the anisotropy field is around 0.2.
Analytic models of heterogenous magnetic fields for liquid metal flow simulations
Votyakov, E. V.; Kassinos, S. C.; Albets-Chico, X.
2009-01-01
A physically consistent approach is considered for defining an external magnetic field as needed in computational fluid dynamics problems involving magnetohydrodynamics (MHD). The approach results in simple analytical formulae that can be used in numerical studies where an inhomogeneous magnetic field influences a liquid metal flow. The resulting magnetic field is divergence and curl-free, and contains two components and parameters to vary. As an illustration, the following examples are consi...
Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model
Institute of Scientific and Technical Information of China (English)
SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian
2007-01-01
By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.
Zhang, Ming; Rassoul, Hamid; Qin, Gang
We present a model calculation of solar energetic particle propagation in a realistic 3-d Interplanetary magnetic field. The model includes essentially all the particle transport mechanisms: streaming along magnetic fields, convection with the solar wind, pitch-angle diffusion, magnetic focusing, cross-field diffusion, and adiabatic cooling with pitch-angle dependence. We solve a Fokker-Planck transport equation with simulation of stochastic processes in a fixed reference frame, in which an observer on a spacecraft is roughly stationary. For simplicity, as the first model calculation of this sort, we focus on high-energy E > 10 MeV solar energetic particles that are accelerated near the Sun and then released into interplanetary space. The source of solar energetic particles can be either solar flares or coronal mass ejections, both having limited coverage of latitude and longitude on the solar surface. We compute the particle flux and anisotropy profiles for various observation locations in interplanetary space up to 5 AU from the ecliptic to the poles. Our model calculation results can explain why we often see solar energetic particles reach an almost uniform reservoir in the inner heliosphere a few days after onset of a solar energetic particle event and then the intensities of particles in a broad range of particle energies decay uniformly everywhere. This phenomenon can happen without a need of particle diffusion barrier in the outer heliosphere. We will discuss what mechanism is behind the formation of such a reservoir and what role the cross-field diffusion plays in the transport of solar energetic particles.
Critical behavior of the Gaussian model on fractal lattices in external magnetic field
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For inhomogeneous lattices we generalize the classical Gaussian model, i.e. it is proposed that the Gaussian type distribution constant and the external magnetic field of site i in this model depend on the coordination number qi of site i, and that the relation bqi/bqj=qi/qj holds among bqi's, where bqi is the Gaussian type distribution constant of site i. Using the decimation real-space renormalization group following the spin-rescaling method, the critical points and critical exponents of the Gaussian model are calculated on some Koch type curves and a family of the diamond-type hierarchical (or DH) lattices. At the critical points, it is found that the nearest-neighbor interaction and the magnetic field of site i can be expressed in the form K*=bqi/qi and h*qi=0, respectively. It is also found that most critical exponents depend on the fractal dimensionality of a fractal system. For the family of the DH lattices, the results are identical with the exact results on translation symmetric lattices, and if the fractal dimensionality df=4, the Gaussian model and the mean field theories give the same results.
A Toy Model for Magnetic Field Configurations in Black Hole Accretion Discs
Institute of Scientific and Technical Information of China (English)
GE Zhao-Jiang; WANG Ding-Xiong; LEI Wei-Hua
2008-01-01
We discuss the feature of the magnetic field configuration arising from double counter oriented electric current-rings in the accretion disc around a Kerr black hole (BH). We discuss the relevant physical quantities corresponding to this configuration: (1) the power and torque transferred by the large-scale magnetic field, (2) the angular momentum and energy fluxes transferred from the BH to the inner disc, (3) the radiation flux from the disc. In addition, we discuss the possibility that the closed magnetic field anchored at the disc probably evolves to the open magnetic field, which is helpful to produce the jet from the disc.
Some exact results on the Potts model partition function in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Chang, S-C [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Shrock, Robert [C N Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 (United States)], E-mail: scchang@mail.ncku.edu.tw, E-mail: robert.shrock@stonybrook.edu
2009-09-25
We consider the Potts model in a magnetic field on an arbitrary graph G. Using a formula by F Y Wu for the partition function Z of this model as a sum over spanning subgraphs of G, we prove some properties of Z concerning factorization, monotonicity and zeros. A generalization of the Tutte polynomial is presented that corresponds to this partition function. In this context, we formulate and discuss two weighted graph-coloring problems. We also give a general structural result for Z for cyclic strip graphs.
Some exact results on the Potts model partition function in a magnetic field
Chang, Shu-Chiuan; Shrock, Robert
2009-09-01
We consider the Potts model in a magnetic field on an arbitrary graph G. Using a formula by F Y Wu for the partition function Z of this model as a sum over spanning subgraphs of G, we prove some properties of Z concerning factorization, monotonicity and zeros. A generalization of the Tutte polynomial is presented that corresponds to this partition function. In this context, we formulate and discuss two weighted graph-coloring problems. We also give a general structural result for Z for cyclic strip graphs.
Magnetization reversal in ultrashort magnetic field pulses
Bauer, M; Fassbender, J; Hillebrands, B
2000-01-01
We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...
Skyrme model study of proton and neutron properties in a strong magnetic field
He, Bing-Ran
2017-02-01
The proton and neutron properties in a uniform magnetic field are investigated. The Gell-Mann-Nishijima formula is shown to be satisfied for baryon states. It is found that with increasing magnetic field strength, the proton mass first decreases and then increases, while the neutron mass always increases. The ratio between magnetic moment of proton and neutron increases with the increase of the magnetic field strength. With increasing magnetic field strength, the size of proton first increases and then decreases, while the size of neutron always decreases. The present analysis implies that in the core part of the magnetar, the equation of state depend on the magnetic field, which modifies the mass limit of the magnetar.
Skyrme model study of proton and neutron properties in a strong magnetic field
He, Bing-Ran
2016-01-01
The proton and neutron properties in a uniform magnetic field are investigated. The Gell-Mann-Nishijima formula is shown to be satisfied for baryon states. It is found that with increasing magnetic field strength, the proton mass first decreases and then increases, while the neutron mass always increases. The ratio between magnetic moment of proton and neutron increases with the increase of the magnetic field strength. With increasing magnetic field strength, the size of proton first increases and then decreases, while the size of neutron always decreases. The present analyse implies that in the core part of the magnetar, the equation of state depend on the magnetic field, which modifies the mass limit of the magnetar.
SU(3) Polyakov Linear Sigma-Model in an External Magnetic Field
Tawfik, Abdel Nasser
2014-01-01
In the present work, we analyse the effects of an external magnetic field on the chiral critical temperature $T_c$ of strongly interacting matter. In doing this, we can characterize the magnetic properties of the quantum chromodynamics (QCD) strong interacting matter, the quark-gluon plasma (QGP). We investigate this in the framework of the SU(3) Polyakov linear sigma-model (PLSM). To this end, we implement two approaches representing two systems, in which the Polyakov-loop potential added to PLMS either renormalized or non-normalized. The effects of Landau quantization on the strongly interacting matter is conjectures to reduce the electromagnetic interactions between quarks. In this case, the color interactions will be dominant and increasing, which - in turn - can be achieved by increasing of the Polyakov-loop fields. Obviously, each of them equips us with a different understanding about the critical temperature under the effect of an external magnetic field. In both systems, we obtain a paramagnetic respo...
AlMuhammad, Anwar
2016-01-01
We use the $f^{2}FF$ model to study the generation of primordial magnetic fields (PMF) in the context of large field inflation (LFI), described by the potential, $V \\sim M \\phi^{p}$. We compute the magnetic and electric spectra for all possible values of the model parameters under de Sitter and power law expansion. We show that scale invariant PMF are not obtained in LFI to first order in the slow roll approximation, if we impose the constraint $V(\\phi=0)\\sim 0$. Alternatively, if these constraints are relaxed, the scale invariant PMF can be generated. The associated electric field energy can fall below the energy density of inflation, $\\rho_{\\rm{Inf}}$ for the ranges of comoving wavenumbers, $ k > 8 \\times 10^{-7} \\rm{Mpc^{-1}}$ and $ k > 4 \\times 10^{-6} \\rm{Mpc^{-1}}$ in de Sitter and power law (PL) expansion. Further, it can drop below $\\rho_{\\rm{Inf}}$ on the ranges, e-foldings $N > 51$, $p2.03$, $l_0 > 3 \\times 10^5 {M_{\\rm{Pl}}}^{-1} (H_i 2.8 \\times 10^{-3} M_{\\rm{Pl}}$. All of the above ranges fit wi...
Growth rates of dynamic dermal model exposed to laminar flow and magnetic fields
Directory of Open Access Journals (Sweden)
Luis Javier Martinez
Full Text Available Abstract Introduction Ongoing research in the use of electromagnetic stimulation as coadjuvant in fracture healing has led the authors to begin generating computer models in order to predict cellular growth changes when cells are electromagnetically stimulated. By generating these models, scientists will be able to better understand how electromagnetic fields affect cellular development. The experimental design integrated a cellular culture bioreactor along with an external magnetic stimulation system, which allowed for dermal models to be exposed to controlled magnetic fields. Methods Initially, it was necessary to analyze the static growth of Normal Human Skin Fibroblast (NHSF cells when they were exposed to Extremely Low Frequency – Electromagnetic Fields (ELF-EMFs. Using optimal conditions for the NHSF culture, from stimulation signal to scaffolding material, we were able to perform the dynamic flow stimulation experiments. Results The following systems were developed: (1 a bioreactor aimed at cellular tissue culture, and (2 Helmholtz coils capable of generating stimulation signals for the cultured tissue. The authors were able to appreciate the quantified values of cellular density diluted in all the experiment samples that were taken and overall, the irradiated samples displayed an average increase of 53% higher cellular density for the same amount of initial cellular seeding when the cells were exposed to a 1 mT, 60 Hz magnetic field signal. Conclusion ELF-EMF’s indeed alter NHSF cell growth rates and it is the challenge of the authors to continue investigating what cellular mechanisms are altered when cells are exposed to ELF-EMF’s.
Zhao, Pengcheng; Guo, Lixin; Shu, Panpan
2016-08-01
The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.
Stress Field of Straight Edge Dislocation in Magnetic Field
Institute of Scientific and Technical Information of China (English)
LIU Zhao-long; HU Hai-yun; FAN Tian-you
2007-01-01
To study the changes in mechanical properties of materials within magnetic fields and the motion of dislocations,stress fields of dislocation in magnetic field need to be calculated.The straight edge dislocation is of basic importance in various defects.The stress field of straight edge dislocation in an external static magnetic field is determined by the theory of elasticity and electrodynamics according to the Volterra dislocation model for continuous media.This reduces to the known stress field when the magnet field is zero.The results can be used for further study on the strain energy of dislocations and the interactions between dislocations in magnetic fields.
Berdyugina, Svetlana
2015-08-01
Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.
Institute of Scientific and Technical Information of China (English)
Fu Yuanyuan; Liu Qingsheng; Yang Tao
2004-01-01
Based on the CHAMP Magsat data set, spherical cap harmonic analysis was used to model the magnetic fields over China continent. The data set used in the analysis includes the 15′×15′ gridded values of the CHAMP anomaly fields (latitude φ=25°N to 50°N and longitude λ=78°E to 135°E). The pole of the cap is located at φ=35°N and λ=110°E with half-angle of 30°. The maximum index (Kmax) of the model is 30 and the total number of model coefficients is 961, which corresponds to the minimum wavelength at the earth's surface about 400 km. The root mean square (RMS) deviations between the calculated and observed values are ～ 4 nT for ΔX, ～ 3 nT for ΔY and ～ 3.5 nT for ΔZ, respectively. Results show that positive anomalies are found mainly at the Tarim basin with ～6- 8 nT, the Yangtze platform and North China platform with ～4 nT, and the Songliao basin with ～4-6 nT. In contrast, negative anomaly is mainly located in the Tibet orogenic belt with the amplitude ～ (-6)-(-8) nT. Upward continuation of magnetic anomalies was used to semi-quantitatively separate the magnetic anomalies in different depths of crust. The magnetic anomalies at the earth's surface are from -6 to 10 nT for upper crust, middle crust -27 to 42 nT and lower crust -12 to 18 nT, respectively. The strikes of the magnetic anomalies for the upper crust are consistent with those for the middle crust, but not for the lower crust. The high positive magnetic anomalies mainly result from the old continental nucleus and diastrophic block (e.g. middle Sichuan continental nucleus, middle Tarim basin continental nucleus, Junggar diastrophic block and Qaidam diastrophic block). The amplitudes of the magnetic anomalies of the old continental nucleus and diastrophic block are related to evolution of deep crust. These results improve our understanding of the crustal structure over China continent.
Modelling of the surface emission of the low magnetic field magnetar SGR 0418+5729
Guillot, S.; Perna, R.; Rea, N.; Viganò, D.; Pons, J. A.
2015-10-01
We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6 {× 10^{12}}{ G} estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ˜6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.
Energy Technology Data Exchange (ETDEWEB)
Breil, J; Maire, P-H; Nicolai, P; Schurtz, G [CELIA, Universite Bordeaux I, CNRS, CEA, 351 cours de la Liberation, 33405 Talence (France)], E-mail: breil@celia.u-bordeaux1.fr
2008-05-15
In laser produced plasmas large self-generated magnetic fields have been measured. The classical formulas by Braginskii predict that magnetic fields induce a reduction of the magnitude of the heat flux and its rotation through the Righi-Leduc effect. In this paper a second order tensorial diffusion method used to correctly solve the Righi-Leduc effect in multidimensional code is presented.
Model-free analysis for large proteins at high magnetic field strengths.
Chang, Shou-Lin; Hinck, Andrew P; Ishima, Rieko
2007-08-01
Protein backbone dynamics is often characterized using model-free analysis of three sets of (15)N relaxation data: longitudinal relaxation rate (R1), transverse relaxation rate (R2), and (15)N-{H} NOE values. Since the experimental data is limited, a simplified model-free spectral density function is often used that contains one Lorentzian describing overall rotational correlation but not one describing internal motion. The simplified spectral density function may be also used in estimating the overall rotational correlation time, by making the R2/R1 largely insensitive to internal motions, as well as used as one of the choices in the model selection protocol. However, such approximation may not be valid for analysis of relaxation data of large proteins recorded at high magnetic field strengths since the contribution to longitudinal relaxation from the Lorentzian describing the overall rotational diffusion of the molecule is comparably small relative to that describing internal motion. Here, we quantitatively estimate the errors introduced by the use of the simplified spectral density in model-free analysis for large proteins at high magnetic field strength.
Constraining the dipolar magnetic field of M82 X-2 by the accretion model
Chen, Wen-Cong
2016-01-01
Recently, ultraluminous X-ray source (ULX) M82 X-2 has been identified to be an accreting neutron star, which has a $P=1.37$ s spin period, and is spinning up at a rate $\\dot{P}=-2.0\\times 10^{-10}~\\rm s\\,s^{-1}$. Interestingly, its isotropic X-ray luminosity $L_{\\rm iso}=1.8\\times 10^{40}~\\rm erg\\,s^{-1}$ during outbursts is 100 times the Eddington limit for a $1.4~\\rm M_{\\odot}$ neutron star. In this Letter, based on the standard accretion model we attempt to constrain the dipolar magnetic field of the pulsar in ULX M82 X-2. Our calculations indicate that the accretion rate at the magnetospheric radius must be super-Eddington during outbursts. To support such a super-Eddington accretion, a relatively high multipole field ($\\ga 10^{13}$ G) near the surface of the accretor is invoked to produce an accreting gas column. However, our constraint shows that the surface dipolar magnetic field of the pulsar should be in the range of $1.0-3.5\\times 10^{12}$ G. Therefore, our model supports that the neutron star in U...
Thermodynamic geometry of a kagome Ising model in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Mirza, B., E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Talaei, Z., E-mail: zs_talaie@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2013-02-15
We derived the thermodynamic curvature of the Ising model on a kagome lattice under the presence of an external magnetic field. The curvature was found to have a singularity at the critical point. We focused on the zero field case to derive thermodynamic curvature and its components near the criticality. According to standard scaling, scalar curvature R behaves as |β−β{sub c}|{sup α−2} for α>0 where β is the inverse temperature and α is the critical exponent of specific heat. In the model considered here in which α is zero, we found that R behaves as |β−β{sub c}|{sup α−1}.
Regional magnetic anomaly fields: 3D Taylor polynomial and surface spline models
Feng, Yan; Jiang, Yong; Jiang, Yi; Li, Zheng; Jiang, Jin; Liu, Zhong-Wei; Ye, Mei-Chen; Wang, Hong-Sheng; Li, Xiu-Ming
2016-03-01
We used data from 1960.0, 1970.0, 1980.0, 1990.0, and 2000.0 to study the geomagnetic anomaly field over the Chinese mainland by using the three-dimensional Taylor polynomial (3DTP) and the surface spline (SS) models. To obtain the pure anomaly field, the main field and the induced field of the ionospheric and magnetospheric fields were removed from measured data. We also compared the SS model anomalies and the data obtained with Kriging interpolation (KI). The geomagnetic anomaly distribution over the mainland was analyzed based on the SS and 3DTP models by transferring all points from 1960.0-1990.0 to 2000.0. The results suggest that the total intensity F anomalies estimated based on the SS and KI for each year are basically consistent in distribution and intensity. The anomalous distributions in the X-, Y-, and Z-direction and F are mainly negative. The 3DTP model anomalies suggest that the intensity in the X-direction increases from -100 nT to 0 nT with longitude, whereas the intensity in the Y-direction decreases from 400 nT to 20 nT with longitude and over the eastern mainland is almost negative. The intensity in the Z-direction and F are very similar and in most areas it is about -50nT and higher in western Tibet. The SS model anomalies overall reflect the actual distribution of the magnetic field anomalies; however, because of the uneven distribution of measurements, it yields several big anomalies. Owing to the added altitude term, the 3DTP model offers higher precision and is consistent with KI.
Raman, Priya; Weberski, Justin; Cheng, Matthew; Shchelkanov, Ivan; Ruzic, David N.
2016-10-01
High Power Impulse Magnetron Sputtering (HiPIMS) is one of the recent developments in the field of magnetron sputtering technology that is capable of producing high performance, high quality thin films. Commercial implementation of HiPIMS technology has been a huge challenge due to its lower deposition rates compared to direct current Magnetron Sputtering. The cylindrically symmetric "TriPack" magnet pack for a 10 cm sputter magnetron that was developed at the Center for Plasma Material Interactions was able to produce higher deposition rates in HiPIMS compared to conventional pack HiPIMS for the same average power. The "TriPack" magnet pack in HiPIMS produces superior substrate uniformity without the need of substrate rotation in addition to producing higher metal ion fraction to the substrate when compared to the conventional pack HiPIMS [Raman et al., Surf. Coat. Technol. 293, 10 (2016)]. The films that are deposited using the "TriPack" magnet pack have much smaller grains compared to conventional pack DC and HiPIMS films. In this paper, the reasons behind the observed increase in HiPIMS deposition rates from the TriPack magnet pack along with a modified particle flux model is discussed.
A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field
Heiss, W. D.; Nazmitdinov, R. G.
1997-01-01
A model for quantum dots is proposed, in which the motion of a few electrons in a three-dimensional harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is studied. The spectrum and the wave functions are obtained by solving the classical problem. The ground state of the Fermi-system is obtained by minimizing the total energy with regard to the confining frequencies. From this a dependence of the equilibrium shape of the quantum dot on the e...
Long-range magnetic fields in the ground state of the Standard Model plasma
Boyarsky, Alexey; Shaposhnikov, Mikhail
2012-01-01
In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.
Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma
Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail
2012-09-01
In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.
Gunár, S.; Mackay, D. H.
2016-07-01
Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.
Magnetic field of a combined plasma trap
Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.
2012-06-01
This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
Reconnection of Magnetic Fields
Birn, J.; Priest, E. R.
2007-01-01
Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.
Janssen, Lukas; Andrade, Eric C.; Vojta, Matthias
2016-12-01
The Heisenberg-Kitaev model is a paradigmatic model to describe the magnetism in honeycomb-lattice Mott insulators with strong spin-orbit coupling, such as A2IrO3 (A =Na , Li ) and α -RuCl3 . Here, we study in detail the physics of the Heisenberg-Kitaev model in an external magnetic field. Using a combination of Monte Carlo simulations and spin-wave theory, we map out the classical phase diagram for different directions of the magnetic field. Broken SU(2) spin symmetry renders the magnetization process rather complex, with sequences of phases and metamagnetic transitions. In particular, we find various large-unit-cell and multi-Q phases including a vortex-crystal phase for a field in the [111 ] direction. We also discuss quantum corrections in the high-field phase.
Solar wind driven empirical forecast models of the time derivative of the ground magnetic field
Directory of Open Access Journals (Sweden)
Wintoft Peter
2015-01-01
Full Text Available Empirical models are developed to provide 10–30-min forecasts of the magnitude of the time derivative of local horizontal ground geomagnetic field (|dBh/dt| over Europe. The models are driven by ACE solar wind data. A major part of the work has been devoted to the search and selection of datasets to support the model development. To simplify the problem, but at the same time capture sudden changes, 30-min maximum values of |dBh/dt| are forecast with a cadence of 1 min. Models are tested both with and without the use of ACE SWEPAM plasma data. It is shown that the models generally capture sudden increases in |dBh/dt| that are associated with sudden impulses (SI. The SI is the dominant disturbance source for geomagnetic latitudes below 50° N and with minor contribution from substorms. However, at occasions, large disturbances can be seen associated with geomagnetic pulsations. For higher latitudes longer lasting disturbances, associated with substorms, are generally also captured. It is also shown that the models using only solar wind magnetic field as input perform in most cases equally well as models with plasma data. The models have been verified using different approaches including the extremal dependence index which is suitable for rare events.
Considerations on a Cost Model for High-Field Dipole Arc Magnets for FCC
AUTHOR|(CDS)2078700; Durante, Maria; Lorin, Clement; Martinez, Teresa; Ruuskanen, Janne; Salmi, Tiina; Sorbi, Massimo; Tommasini, Davide; Toral, Fernando
2017-01-01
In the frame of the European Circular Collider (EuroCirCol), a conceptual design study for a post-Large Hadron Collider (LHC) research infrastructure based on an energy-frontier 100 TeV circular hadron collider [1]–[3], a cost model for the high-field dipole arc magnets is being developed. The aim of the cost model in the initial design phase is to provide the basis for sound strategic decisions towards cost effective designs, in particular: (A) the technological choice of superconducting material and its cost, (B) the target performance of Nb3Sn superconductor, (C) the choice of operating temperature (D) the relevant design margins and their importance for cost, (E) the nature and extent of grading, and (F) the aperture’s influence on cost. Within the EuroCirCol study three design options for the high field dipole arc magnets are under study: cos − θ [4], block [5], and common-coil [6]. Here, in the advanced design phase, a cost model helps to (1) identify the cost drivers and feed-back this informati...
Critical behavior of the Gaussian model on fractal lattices in external magnetic field
Institute of Scientific and Technical Information of China (English)
孔祥木; 林振权; 朱建阳
2000-01-01
For inhomogeneous lattices we generalize the classical Gaussian model, i. e. it is pro-posed that the Gaussian type distribution constant and the external magnetic field of site / in this model depend on the coordination number q, of site i, and that the relation bq1/bq1 = q1/q1 holds among bq1s, where bq1 is the Gaussian type distribution constant of site /. Using the decimation real-spacerenormalization group following the spin-rescaling method, the critical points and critical exponents of the Gaussian model are calculated on some Koch type curves and a family of the diamond-type hierar-chical (or DH) lattices. At the critical points, it is found that the nearest-neighbor interaction and the magnetic field of site i can be expressed in the form K’ = bq1/q1 and hq =0, respectively. it is also found that most critical exponents depend on the fractal dimensionality of a fractal system. For the family of the DH lattices, the results are identical with the exact results on translation symmetric lattices,
Korth, H.; Tsyganenko, N. A.; Johnson, C. L.; Philpott, L. C.; Anderson, B. J.; Al Asad, M.; Solomon, S. C.; McNutt, R. L., Jr.
2014-12-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field that is confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The model consists of individual modules for magnetic fields of internal origin, approximated by a dipole of magnitude 190 nT RM3, where RM is Mercury's radius, offset northward by 479 km along the spin axis, and of external origin resulting from currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is prescribed having a disk shape near the planet and extending into a Harris sheet at larger distances. The magnitude of the tail current is fit to minimize the root mean square residual between the magnetic field within the magnetosphere observed by MESSENGER and the model field. The magnetic field contribution from each module is shielded individually by a scalar potential function consisting of Cartesian harmonic expansions with linear and non-linear coefficients, which are fit to minimize the root-mean-square normal magnetic field component at the magnetopause. The resulting model resembles the observed magnetic field better than the previously developed paraboloid model in regions that are close to the magnetopause, i.e., at northern high latitudes and on the dayside. It will allow more accurate characterization of crustal magnetization, which may be observed during low-altitude orbits in the final months of the MESSENGER mission.
DEFF Research Database (Denmark)
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent;
Almost one year of data from ESA's Swarm constellation mission are used to derive a model of the Earth’s magnetic field and its time variation (secular variation). The model describes contributions from the core and lithosphere as well as large-scale contributions from the magnetosphere (and its......) frame. In addition to the magnetic field observations provided by each of the three Swarm satellites we include the East-west magnetic gradient information provided by the lower Swarm satellite pair, thereby explicitly taking advantage of the constellation aspect of Swarm. We assess the spatial...... Earth-induced counterpart). We use data from geomagnetic quiet times (Kp less than 2o, time change of Dst-index less than 2 nT/hr) and dark regions (sun below horizon) and co-estimate the Euler angles describing the rotation between the vector magnetometer instrument frame and the North-East-Center (NEC...
Kronberg, Philipp P
2016-01-01
Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.
The Early Universe $f^{2}FF$ Model of Primordial Magnetic Field in Natural Inflation
AlMuhammad, Anwar S
2015-01-01
We study the simple gauge invariant model ${f^2}FF$ as a way to generate primordial magnetic fields (PMF) in Natural Inflation (NI). We compute both magnetic and electric spectra generated by the ${f^2}FF$ model in NI for different values of model parameters and find that both de Sitter and power law expansion lead to the same results at sufficiently large number of e-foldings. We also find that the necessary scale invariance property of the PMF cannot be obtained in NI in first order of slow roll limits under the constraint of inflationary potential, $V\\left( 0 \\right) \\simeq 0$. Furthermore, if this constraint is relaxed to achieve scale invariance, then the model suffers from the backreaction problem for almost all values of model parameters. We show that there is a narrow range of the height of the potential $\\Lambda $ around ${\\Lambda _{\\min }} \\approx 0.00874{M_{{\\rm{Pl}}}}$ and of the co-moving wave number $k$ around ${k_{\\min }} \\sim 0.0173{\\rm{Mp}}{{\\rm{c}}^{ - 1}}$, at which the problem of backreact...
Indian Academy of Sciences (India)
J. O. Stenflo
2008-03-01
Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.
Development of specialized modelling tools for crystal growth processes with magnetic fields
Rudevics, A.; Muiznieks, A.; Nacke, B.
2007-06-01
The present paper is devoted to some aspects of the development of specialized software for the modelling of crystal growth processes with magnetic fields. Due to the complexity of the mathematical models for such processes, the modern technology of software design and implementation has to be used. Our experience in numerical modelling of crystal growth processes has shown that such approach facilitates the development of complex software systems. It involves the so-called object-oriented design and programming as well as the use of powerful software libraries in order to benefit from its functionality. To illustrate the programs created by our group, some examples are briefly described in this paper. Figs 7, Refs 13.
Valori, Gherardo; Pariat, Etienne; Anfinogentov, Sergey; Chen, Feng; Georgoulis, Manolis K.; Guo, Yang; Liu, Yang; Moraitis, Kostas; Thalmann, Julia K.; Yang, Shangbin
2016-11-01
Magnetic helicity is a conserved quantity of ideal magneto-hydrodynamics characterized by an inverse turbulent cascade. Accordingly, it is often invoked as one of the basic physical quantities driving the generation and structuring of magnetic fields in a variety of astrophysical and laboratory plasmas. We provide here the first systematic comparison of six existing methods for the estimation of the helicity of magnetic fields known in a finite volume. All such methods are reviewed, benchmarked, and compared with each other, and specifically tested for accuracy and sensitivity to errors. To that purpose, we consider four groups of numerical tests, ranging from solutions of the three-dimensional, force-free equilibrium, to magneto-hydrodynamical numerical simulations. Almost all methods are found to produce the same value of magnetic helicity within few percent in all tests. In the more solar-relevant and realistic of the tests employed here, the simulation of an eruptive flux rope, the spread in the computed values obtained by all but one method is only 3 %, indicating the reliability and mutual consistency of such methods in appropriate parameter ranges. However, methods show differences in the sensitivity to numerical resolution and to errors in the solenoidal property of the input fields. In addition to finite volume methods, we also briefly discuss a method that estimates helicity from the field lines' twist, and one that exploits the field's value at one boundary and a coronal minimal connectivity instead of a pre-defined three-dimensional magnetic-field solution.
Nonlinear Force-Free Magnetic Field Modeling of the Solar Corona: A Critical Assessment
De Rosa, M. L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; McTiernan, J. M.; Régnier, S.; Thalmann, J.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.
2008-12-01
Nonlinear force-free field (NLFFF) modeling promises to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have so far failed to arrive at consistent solutions when applied to cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not been available). It is our view that the lack of robust results indicates an endemic problem with the NLFFF modeling process, and that this process will likely continue to fail until (1) more of the far-reaching, current-carrying connections are within the observational field of view, (2) the solution algorithms incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is found to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.
Modelling of plasma response to 3D external magnetic field perturbations in EAST
Yang, Xu; Sun, Youwen; Liu, Yueqiang; Gu, Shuai; Liu, Yue; Wang, Huihui; Zhou, Lina; Guo, Wenfeng
2016-11-01
Sustained mitigation and/or suppression of type-I edge localized modes (ELMs) has been achieved in EAST high-confinement plasmas, utilizing the resonant magnetic perturbation (RMP) fields produced by two rows of magnetic coils located just inside the vacuum vessel. Systematic toroidal modelling of the plasma response to these RMP fields with various coil configurations (with dominant toroidal mode number n = 1, 2, 3, 4) in EAST is, for the first time, carried out by using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), with results reported here. In particular, the plasma response is computed with varying coil phasing (the toroidal phase difference of the coil currents) between the upper and lower rows of coils, from 0 to 360°. Four figures of merit, constructed based on the MARS-F computations, are used to determine the optimal coil phasing. The modelled results, taking into account the plasma response, agree well with the experimental observations in terms of the coil phasing for both the mitigated and the suppressed ELM cases in EAST experiments. This study provides a crucial confirmation of the role of the plasma edge peeling response in ELM control, complementing similar studies carried out for other tokamak devices.
del Moral, A.; Azanza, María J.
2015-03-01
A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate ("frequency"), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD-CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD-CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B0 ≅0.2-15 mT) AC-MF of frequency fM=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation.
Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona
Thalmann, J K; Wiegelmann, T
2013-01-01
The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region corona, has been substantiated by high-resolution observations only recently. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. 2013 (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on vector SDO/HMI magnetograms. We deliver estimates of the free magnetic energy associated to a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the active-region corona being heated by field line braiding. We were able to assess the coronal free energy appropriately by using vector field measurements and attribute the lower energy...
Ma, Nancy
2003-01-01
Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.
A New Method for Modeling the Coronal Magnetic Field with STEREO and Submerged Dipoles
Sandman, A. W.; Aschwanden, M. J.
2011-06-01
Recent magnetic modeling efforts have shown substantial misalignment between theoretical models and observed coronal loop morphology as observed by STEREO/EUVI, regardless of the type of model used. Both potential field and non-linear force-free field (NLFFF) models yielded overall misalignment angles of 20 - 40 degrees, depending on the complexity of the active region (Sandman et al., Solar Phys. 259, 1, 2009; DeRosa et al., Astrophys. J. 696, 1780, 2009) We demonstrate that with new, alternative forward-fitting techniques, we can achieve a significant reduction in the misalignment angles compared with potential field source surface (PFSS) models and NLFFF models. Fitting a series of submerged dipoles to the field directions of stereoscopically triangulated loops in four active regions (30 April, 9 May, 19 May, and 11 December 2007), we find that 3 - 5 dipoles per active region yield misalignment angles of ˜ 11° - 18°, a factor of two smaller than those given by previously established extrapolation methods. We investigate the spatial and temporal variation of misalignment angles with subsets of loops for each active region, as well as loops observed prior to and following a flare and filament eruption, and find that the spatial variation of median misalignment angles within an active region (up to 75%) exceeds the temporal variation associated with the flare (up to 40%). We also examine estimates of the stereoscopic error of our analysis. The corrected values yield a residual misalignment of 7° - 13°, which is attributed to the non-potentiality due to currents in the active regions.
High field superconducting magnets
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
A model of the AGS based on stepwise ray-tracing through the measured field maps of the main magnets
Energy Technology Data Exchange (ETDEWEB)
Dutheil Y.; Meot, F.; Tsoupas, N.
2012-05-20
Two-dimensional mid-plane magnetic field maps of two of the main AGS magnets were produced, from Hall probe measurements, for a series of different current settings. The analysis of these data yielded the excitation functions [1] and the harmonic coefficients [2] of the main magnets which have been used so far in all the models of the AGS. The constant increase of the computation power makes it possible today to directly use a stepwise raytracing through these measured field maps with a reasonable computation time. We describe in detail how these field maps have allowed the generation of models of the 6 different types of AGS main magnets, and how they are being handled with the Zgoubi ray-tracing code [3]. We give and discuss a number of results obtained regarding both beam and spin dynamics in the AGS, and we provide comparisons with other numerical and analytical modelling methods.
Tsvetkov, Yu. P.; Brekhov, O. M.; Bondar, T. N.; Filippov, S. V.; Petrov, V. G.; Tsvetkova, N. M.; Frunze, A. Kh.
2014-03-01
Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ˜30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ˜30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.
Magnetic field reversals and galactic dynamos
2012-01-01
We argue that global magnetic field reversals similar to those observed in the Milky Way occur quite frequently in mean-field galactic dynamo models that have relatively strong, random, seed magnetic fields that are localized in discrete regions. The number of reversals decreases to zero with reduction of the seed strength, efficiency of the galactic dynamo and size of the spots of the seed field. A systematic observational search for magnetic field reversals in a representative sample of spi...
Valori, Gherardo; Anfinogentov, Sergey; Chen, Feng; Georgoulis, Manolis K; Guo, Yang; Liu, Yang; Moraitis, Kostas; Thalmann, Julia K; Yang, Shangbin
2016-01-01
Magnetic helicity is a conserved quantity of ideal magneto-hydrodynamics characterized by an inverse turbulent cascade. Accordingly, it is often invoked as one of the basic physical quantities driving the generation and structuring of magnetic fields in a variety of astrophysical and laboratory plasmas. We provide here the first systematic comparison of six existing methods for the estimation of the helicity of magnetic fields known in a finite volume. All such methods are reviewed, benchmarked, and compared with each other, and specifically tested for accuracy and sensitivity to errors. To that purpose, we consider four groups of numerical tests, ranging from solutions of the three-dimensional, force-free equilibrium, to magneto-hydrodynamical numerical simulations. Almost all methods are found to produce the same value of magnetic helicity within few percent in all tests. In the more solar-relevant and realistic of the tests employed here, the simulation of an eruptive flux rope, the spread in the computed ...
Using Experiment and Computer Modeling to Determine the Off-Axis Magnetic Field of a Solenoid
Lietor-Santos, Juan Jose
2014-01-01
The study of the ideal solenoid is a common topic among introductory-based physics textbooks and a typical current arrangement in laboratory hands-on experiences where the magnetic field inside a solenoid is determined at different currents and at different distances from its center using a magnetic probe. It additionally provides a very simple…
DFT modelling of the effect of strong magnetic field on Aniline molecule
Atci, H; Huseyinoglu, M; Arikan, B; Siddiki, A
2016-01-01
Aniline is an organic compound with the stoichiometric expression $C_{6}H_{5}NH_{2}$; consisting of a phenyl structure attached to an amino group. It is colorless, but it slowly oxidizes and resinifies in air, giving a red-brown tint to aged samples. Until now, there are only few researches on Aniline considering low magnetic fields. In this work, we study Aniline molecule under different high magnetic fields using density functional theory methods including independent particle and interacting particle approaches. We obtain charge density distrubitions, energy dispersions, dipol moments and forces as functions of position and magnetic field. Our numerical results show that magnetic field affects electron density of the considered molecule. As a result, it is observed that there are strong fluctuations in energy dispersion.
One-electron singular spectral features of the 1D Hubbard model at finite magnetic field
Carmelo, J. M. P.; Čadež, T.
2017-01-01
The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k , ω)-plane singular features of the σ = ↑ , ↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.
Energy Technology Data Exchange (ETDEWEB)
Shi, Chang-Sheng; Zhang, Shuang-Nan [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Xiang-Dong, E-mail: zhangsn@ihep.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093 (China)
2015-11-10
We re-estimate the surface magnetic fields of neutron stars (NSs) in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. In particular, a new torque model is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead to divergent results for any fastness parameter. The inferred surface magnetic fields of these NSs for the two compressed magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed magnetosphere radius leads to unique solutions near spin equilibrium in all cases, unlike other models that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the infalling accretion plasma is considered. The estimated surface magnetic fields for NSs BeXBs in the Large Magellanic Cloud, the Small Magellanic Cloud and the Milk Way are between the quantum critical field and the maximum “virial” value by the spin equilibrium condition.
Zhang, Song; Rajamani, Rajesh
2016-11-01
This paper develops analytical sensing principles for estimation of circumferential size of a cylindrical surface using magnetic sensors. An electromagnet and magnetic sensors are used on a wearable band for measurement of leg size. In order to enable robust size estimation during rough real-world use of the wearable band, three estimation algorithms are developed based on models of the magnetic field variation over a cylindrical surface. The magnetic field models developed include those for a dipole and for a uniformly magnetized cylinder. The estimation algorithms used include a linear regression equation, an extended Kalman filter and an unscented Kalman filter. Experimental laboratory tests show that the size sensor in general performs accurately, yielding sub-millimeter estimation errors. The unscented Kalman filter yields the best performance that is robust to bias and misalignment errors. The size sensor developed herein can be used for monitoring swelling due to fluid accumulation in the lower leg and a number of other biomedical applications.
Indoor localization using magnetic fields
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field
Mao, Shijun
2016-01-01
We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.
A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3
DEFF Research Database (Denmark)
Sabaka, T.J.; Olsen, Nils; Langel, R.A.
2002-01-01
The near-Earth magnetic field is caused by sources in the Earth's core, ionosphere, magnetosphere, lithosphere and from coupling currents between the ionosphere and the magnetosphere, and between hemispheres. Traditionally, the main field (low degree internal field) and magnetospheric field have......, and includes an accounting for main field influences on the magnetosphere, main field and solar activity influences on the ionosphere, seasonal influences on the coupling currents, a priori characterization of the influence of the ionosphere and the magnetosphere on Earth-induced fields, and an explicit...
Yadav, Umesh K.
2017-07-01
Combined effects of correlated electron hopping, electron correlations and orbital magnetic field are studied on ground state properties of spinless Falicov-Kimball model (FKM). Results are obtained for finite size triangular lattice with periodic boundary conditions using numerical diagonalization and Monte-Carlo simulation techniques. It is found that the ground state configurations of electrons strongly depend on correlated electron hopping, onsite Coulomb interaction and orbital magnetic field. Several interesting configurations e.g. regular, segregated, axial and diagonal striped and hexagonal phases are found with change in correlated hopping and magnetic field. Study of density of states reveals that magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered phase. These results are applicable to the systems of recent interest like GdI2, NaTiO2 and MgV2O4 and can also be seen experimentally in cold atomic set up.
Directory of Open Access Journals (Sweden)
Hao Wang
2016-01-01
Full Text Available Hysteresis characteristics of grain-oriented electrical steel were studied through the hysteresis loop. Existing hysteresis fitting simulation methods were summarized, and new Fe-3% Si grain-oriented electrical steel hysteresis loop model was proposed. Undetermined coefficients of the magnetic field intensity and magnetic flux density were determined by both the fixed angle method and the least squares method, and the hysteresis loop model was validated with high fitting degree by experimental data.
Magnetic fields during galaxy mergers
Rodenbeck, Kai
2016-01-01
Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...
Near-Field Magnetic Dipole Moment Analysis
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Magnetic fields in diffuse media
Pino, Elisabete; Melioli, Claudio
2015-01-01
This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
Analytical Newtonian models of finite thin disks in a magnetic field
Cardona-Rueda, Edinson
2013-01-01
Axially symmetric Newtonian thin disks of finite extension in presence of magnetic field are studied based on the well-known Morgan-Morgan solutions. The source of the magnetic field is constructed separating the equation corresponding to the Ampere's law of electrodinamic in spheroidal oblate coordinates. This produces two associated Legendre equations of first order for the magnetic potential and hence that can be expressed as a series of associated Legendre functions of the same order. The discontinuity of its normal derivate across the disk allows us interpreter the source of the magnetic field as a ringlike current distribution extend on the plane of the disk. We also study the motion of charged test particles around of the disks. In particular we analysis the circular speed curves or rotation curve for equatorial circular orbits of particles both inside and outside the disk. The stability of the orbits is analyzed for radial perturbation using a extension of the Rayleigh criterion.
Theory and modeling of the magnetic field measurement in LISA PathFinder
Diaz-Aguilo, M; Lobo, A
2009-01-01
The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels does not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing t...
Wang, Qian; Hua, Ning; Tang, Xue-Zheng; Lu, Hong; Ma, Ping; Tang, Fa-Kuan
2010-08-01
This paper constructs a concentric ellipsoid torso-heart model by boundary element method and investigates the impacts of model structures on the cardiac magnetic fields generated by both equivalent primary source-a current dipole and volume currents. Then by using the simulated magnetic fields based on the torso-heart model as input, the cardiac current sources-an array of current dipoles by optimal constrained linear inverse method are constructed. Next, the current dipole array reconstruction considering boundaries are compared with that in an unbounded homogeneous medium. Furthermore, the influence of random noise on reconstruction is also considered and the reconstructing effect is judged by several reconstructing parameters.
Quantum spin Hall effect in a square-lattice model under a uniform magnetic field
Institute of Scientific and Technical Information of China (English)
Guo Huai-Ming; Feng Shi-Ping
2012-01-01
We study a toy square-lattice model under a uniform magnetic field.Using the Landauer-Büttiker formula,we calculate the transport properties of the system on a two-terminal,a four-terminal and a six-terminal device.We find that the quantum spin Hall (QSH) effect appears in energy ranges where the spin-up and spin-down subsystems have different filling factors.We also study the robustness of the resulting QSH effect and find that it is robust when the Fermi levels of both spin subsystems are far away from the energy plateaus but is fragile when the Fermi level of any spin subsystem is near the energy plateaus.These results provide an example of the QSH effect with a physical origin other than time-reversal (TR) preserving spin-orbit coupling (SOC).
El-Amin, Mohamed
2017-08-28
In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including waternanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.
Directory of Open Access Journals (Sweden)
L.Canová
2006-01-01
Full Text Available The generalized Fisher super-exchange antiferromagnetic model with uniaxial crystal-field anisotropy is exactly investigated using an extended mapping technique. An exact relation between partition function of the studied system and that of the standard zero-field spin-1/2 Ising model on the corresponding lattice is obtained applying the decoration-iteration transformation. Consequently, exact results for all physical quantities are derived for arbitrary spin values S of decorating atoms. Particular attention is paid to the investigation of the effect of crystal-field anisotropy and external longitudinal magnetic field on magnetic properties of the system under investigation. The most interesting numerical results for ground-state and finite-temperature phase diagrams, thermal dependences of the sublattice magnetization and other thermodynamic quantities are discussed.
Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps
Leka, KD
2011-01-01
Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in ...
Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin
2017-06-01
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.
Modelling the gravity and magnetic field anomalies of the Chicxulub crater
Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.
1993-01-01
The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.
Phase Transition in the Higgs Model of Scalar Fields with Electric and Magnetic Charges
Laperashvili, L V
2001-01-01
Using a one-loop renormalization group improvement for the effective potential in the Higgs model of electrodynamics with electrically and magnetically charged scalar fields, we argue for the existence of a triple (critical) point in the phase diagram ($\\lambda_{run}, g_{run}^4$), where $\\lambda_{run}$ is the renormalised running selfinteraction constant of the Higgs scalar monopoles and $g_{run}$ is their running magnetic charge. This triple point is a boundary point of three first-order phase transitions in the dual sector of the Higgs scalar electrodynamics: The "Coulomb" and two confinement phases meet together at this critical point. Considering the arguments for the one-loop approximation validity in the region of parameters around the triple point A we have obtained the following triple point values of the running couplings: $(\\lambda_{(A)}, g^2_{(A)})\\approx(-13.4; 18.6)$, which are independent of the electric charge influence and two-loop corrections to $g^2_{run}$ with high accuracy of deviations. A...
Modelling the gravity and magnetic field anomalies of the Chicxulub crater
Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.
1993-01-01
The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.
Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey
2015-04-01
Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites
Extension of the standard cosmological model: anisotropy, rotation, and magnetic field
Demia'nski, M
2007-01-01
We show that the difference between the theoretically expected and measured by WMAP amplitude of the quadrupole fluctuations of CMB can be related to the impact of the anisotropic curvature of the homogeneous universe dominated by the dark energy. In such universe the matter expansion becomes practically isotropic just after the period of inflation and only at small redshifts the anisotropic expansion is generated again by the curvature. For the simplest model we found that the required deviations from the spatially flat universe are small, $\\Omega_K=1-\\Omega_m- \\Omega_\\Lambda \\leq 10^{-4}$. For such models the correlations of large scale perturbations and distortions of their Gaussianity are possible. Such models are also compatible with existence of a homogeneous magnetic field and matter rotation which contribute to the low $\\ell$ anisotropy and can be considered as ``hidden parameters'' of the model. Their influence can be observed as, for example, the Faraday rotation of the CMB and light of the farthest...
The two-dimensional 4-state Potts model in a magnetic field
Berche, Bertrand; Shchur, Lev
2013-01-01
We present a solution of the non-linear renormalization group equations leading to the dominant and subdominant singular behaviours of physical quantities (free energy density, correlation length, internal energy, specific heat, magnetization, susceptibility and magnetocaloric coefficient) at the critical temperature in a non- vanishing magnetic field. The solutions i) lead to exact cancellation of logarithmic corrections in universal amplitude ratios and ii) prove recently proposed relations among logarithmic exponents.
MODEL OF RECONNECTION OF WEAKLY STOCHASTIC MAGNETIC FIELD AND ITS IMPLICATIONS
Directory of Open Access Journals (Sweden)
A. Lazarian
2009-01-01
Full Text Available We discuss the model of magnetic eld reconnection in the presence of turbulence introduced by us ten years ago. The model does not require any plasma e ects to be involved in order to make the reconnection fast. In fact, it shows that the degree of magnetic eld stochasticity controls the reconnection. The turbulence in the model is assumed to be sub-Alfv nic, with the magnetic eld only slightly perturbed. This ensures that the reconnection happens in generic astrophysical environments and the model does not appeal to any unphysical concepts, similar to the turbulent magnetic di usivity concept, which is employed in the kinematic magnetic dynamo. The interest to that model has recently increased due to successful numerical testings of the model predictions. In view of this, we discuss implications of the model, including the rst-order Fermi acceleration of cosmic rays, that the model naturally entails, bursts of reconnection, that can be associated with Solar ares, as well as, removal of magnetic ux during star-formation.
Kiyan, I N; Vorozhtsov, S B
2002-01-01
The Cyclotron Analytic Model Program (CAMP) written in C++ with the use of Visual C++ is described. The program is intended for the mean magnetic field calculation of the isochronous cyclotron with allowance for flutter. The program algorithm was developed on the basis of the paper 'Calculation of Isochronous Fields for Sector-Focused Cyclotrons', by M.M.Gordon (Particle Accelerators. 1983. V.13). The accuracy of the calculations, performed with this program, was tested with the use of maps of isochronous magnetic fields of different cyclotrons with the azimuthally varying fields - AVF cyclotrons, in which the ion beams were produced. The calculation by CAMP showed that the isochronous mean magnetic field curve for the measured magnetic field, in which the ion beam was produced, exactly corresponded to the curve of the isochronous mean magnetic field, calculated with the allowance for flutter for all the AVF cyclotrons that were considered. As is evident from the calculations, this program can be used for cal...
Carpio, J A
2016-01-01
We use the Jansson-Farrar JF12 magnetic field configuration in the context of point source searches by correlating the Telescope Array ultra-high energy cosmic ray data and the IceCube-40 neutrino candidates. As expected, we have found no correlations, thus, we devote this paper to the study of the effect of different magnetic field hypotheses on the minimum neutrino source flux strength required for a $5\\sigma$ discovery and the derived $90\\%$ CL upper limits. In this study we present a comparison between the JF12 field, that includes a combination of regular and random field components, and the standard turbulent magnetic field used in previous correlation analyses. For a wider perspective, we also incorporate in our comparison the cases of no magnetic field and the JF12 regular component alone and consider different power law indices $\\alpha=2,\\alpha=2.3$ for the neutrino point source flux. Collaterally, a novel parameterisation of the JF12 random component is introduced. We have observed that the discover...
Magnetic Field Topology in Jets
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Large-U limit of a Hubbard model in a magnetic field: Chiral spin interactions and paramagnetism
Sen, Diptiman; Chitra, R.
1995-01-01
We consider the large-U limit of the one-band Hubbard model at half-filling on a nonbipartite two-dimensional lattice. An external magnetic field can induce a three-spin chiral interaction at order 1/U2. We discuss situations in which, at low temperatures, the chiral term may have a larger effect than the Pauli coupling of electron spins to a magnetic field. We present a model that explicitly demonstrates this. The ground state is a singlet with a gap; hence the spin susceptibility is zero while the chiral susceptibility is finite and paramagnetic.
Directory of Open Access Journals (Sweden)
V.V. Kudryashov
2010-01-01
Full Text Available Motion of a classical particle in 3-dimensional Lobachevsky and Riemann spaces is studied in the presence of an external magnetic field which is analogous to a constant uniform magnetic field in Euclidean space. In both cases three integrals of motions are constructed and equations of motion are solved exactly in the special cylindrical coordinates on the base of the method of separation of variables. In Lobachevsky space there exist trajectories of two types, finite and infinite in radial variable, in Riemann space all motions are finite and periodical. The invariance of the uniform magnetic field in tensor description and gauge invariance of corresponding 4-potential description is demonstrated explicitly. The role of the symmetry is clarified in classification of all possible solutions, based on the geometric symmetry group, SO(3,1 and SO(4 respectively.
Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.
Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank
2010-12-01
Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration. Copyright © 2010 Wiley-Liss, Inc.
A model of basement structure from magnetic anomalies of the Bombay High oil-field west of India
Digital Repository Service at National Institute of Oceanography (India)
Rao, D.G.
-122 111 Elsevier Science Publishers B.V., Amsterdam A model of basement structure from magnetic anomalies of the Bombay High Oil-Field west of India D. Gopala Rao National Institute of Oceanography, Dona Paula, Goa 403 004, India (Revision accepted....5 kin LOWER MIOCENE LIMESTONE REFLECTOR (FROM SEISMIC DATA) ~',r V,,- v • - ~'¥¥YYYVV . ..... \\[~~'vvwvwyvvvvWvvvv " ":" ":'wv ..... I"'T .... L CLAY/CLAYSTONE ~ OBSERVED MAGNETIC ANOMALIES SHALE ~ THEORETICAL MAOHETIC ANOMALIES LIMESTONE...
Magnetic field switchable dry adhesives.
Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo
2015-02-01
A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.
Sutherland, Michael Stephen
2010-12-01
The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise
Maus, S.; Manoj, C.; Rauberg, J.; Michaelis, I.; Lühr, H.
2010-10-01
The International Geomagnetic Reference Field (IGRF) is updated every five years based on candidate model submissions by research institutions worldwide. In the call for the 11th generation of IGRF, candidates were requested for the definitive main field in 2005, the predicted main field in 2010, and the predicted secular variation from 2010 to 2015. The NOAA/NGDC candidate models for IGRF-11 were produced from parent models parameterized in the same way as the 6th generation of our Pomme magnetic model. All models were based on CHAMP satellite measurements, while Ørsted satellite measurements were used for model validation. The internal field in Pomme-6 is described by a 2nd degree Taylor time series of spherical harmonic expansion coefficients of a scalar magnetic potential. Magnetic fields of ionospheric origin are avoided by careful data selection. Instead of co-estimating magnetospheric fields, we subtract a magnetospheric field model estimated previously from a more extensive data set covering all local times. From comparison with Örsted measurements and general considerations of magnetic field predictability, we attribute a root mean square (RMS) uncertainty of 1.3 nT to our candidate model for the main field in 2005, 2.5 nT to the predicted main field in 2010 and 26 nT/a to the predicted secular variation from 2010 to 2015.
Demagnetizing fields in active magnetic regenerators
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders
2014-01-01
is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also......A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....
Kuramitsu, Y.; Ohnishi, N.; Sakawa, Y.; Morita, T.; Tanji, H.; Ide, T.; Nishio, K.; Gregory, C. D.; Waugh, J. N.; Booth, N.; Heathcote, R.; Murphy, C.; Gregori, G.; Smallcombe, J.; Barton, C.; Dizière, A.; Koenig, M.; Woolsey, N.; Matsumoto, Y.; Mizuta, A.; Sugiyama, T.; Matsukiyo, S.; Moritaka, T.; Sano, T.; Takabe, H.
2016-03-01
A model experiment of magnetic field amplification (MFA) via the Richtmyer-Meshkov instability (RMI) in supernova remnants (SNRs) was performed using a high-power laser. In order to account for very-fast acceleration of cosmic rays observed in SNRs, it is considered that the magnetic field has to be amplified by orders of magnitude from its background level. A possible mechanism for the MFA in SNRs is stretching and mixing of the magnetic field via the RMI when shock waves pass through dense molecular clouds in interstellar media. In order to model the astrophysical phenomenon in laboratories, there are three necessary factors for the RMI to be operative: a shock wave, an external magnetic field, and density inhomogeneity. By irradiating a double-foil target with several laser beams with focal spot displacement under influence of an external magnetic field, shock waves were excited and passed through the density inhomogeneity. Radiative hydrodynamic simulations show that the RMI evolves as the density inhomogeneity is shocked, resulting in higher MFA.
Energy Technology Data Exchange (ETDEWEB)
Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)
2009-06-21
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
Relativistic models of magnetars: the twisted-torus magnetic field configuration
Ciolfi, R; Gualtieri, L; Pons, J A
2009-01-01
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.
Koskela, J. S.; Virtanen, I. I.; Mursula, K.
2015-12-01
The solar coronal magnetic field forms an important link between the underlying source in the solar photosphere and the heliospheric magnetic field (HMF). The coronal field has traditionally been calculated from the photospheric observations using various magnetic field models between the photosphere and the corona, in particular the potential field source surface (PFSS) model. Despite its simplicity, the predictions of the PFSS model generally agree quite well with the heliospheric observations and match very well with the predictions of more elaborate models. We make here a detailed comparison between the predictions of the PFSS model with the HMF field observed at 1 AU. We use the photospheric field measured at the Wilcox Solar Observatory, SDO/HMI, SOHO/MDI and SOLIS, and the heliospheric magnetic field measurements at 1 AU collected within the OMNI 2 dataset. This database covers the solar cycles 21-24. We use different source surface distances and different numbers of harmonic components for the PFSS model. We find an optimum polarity match between the coronal field and the HMF for source surface distance of 3.5 Rs. Increasing the number of harmonic components beyond the quadrupole does not essentially improve polarity agreement, indicating that the large scale structure of the HMF at 1 AU is responsible for the agreement while the small scale structure is greatly modified between corona and 1 AU. We also discuss the solar cycle evolution of polarity match and find that the PFSS model prediction is most reliable during the declining phase of the solar cycle. We also find large differences in match percentage between northern and southern hemispheres during the times of systematic southward shift of the heliospheric current sheet (the Bashful ballerina).
Inoue, S; Kusano, K
2016-01-01
We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region(AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains multiple-flux-tube system, {\\it e.g.}, a large flux tube, both of whose footpoints are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the later are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the oth...
Evolution of Neutron Star Magnetic Fields
Indian Academy of Sciences (India)
Dipankar Bhattacharya
2002-03-01
This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.
Oksala, M E; Krticka, J; Townsend, R H D; Wade, G A; Prvak, M; Mikulasek, Z; Silvester, J; Owocki, S P
2015-01-01
The initial success of the Rigidly Rotating Magnetosphere (RRM) model application to the B2Vp star sigma OriE by Townsend, Owocki & Groote (2005) triggered a renewed era of observational monitoring of this archetypal object. We utilize high-resolution spectropolarimetry and the magnetic Doppler imaging (MDI) technique to simultaneously determine the magnetic configuration, which is predominately dipolar, with a polar strength Bd = 7.3-7.8 kG and a smaller non-axisymmetric quadrupolar contribution, as well as the surface distribution of abundance of He, Fe, C, and Si. We describe a revised RRM model that now accepts an arbitrary surface magnetic field configuration, with the field topology from the MDI models used as input. The resulting synthetic Ha emission and broadband photometric observations generally agree with observations, however, several features are poorly fit. To explore the possibility of a photospheric contribution to the observed photometric variability, the MDI abundance maps were used to ...
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
Zilles, Anne
2017-03-01
The SLAC T-510 experiment was designed to compare controlled laboratory measurements of radio emission of particle showers to predictions using particle-level simulations, which are relied upon in ultra-high-energy cosmic-ray air shower detection. Established formalisms for the simulation of radio emission physics, the "endpoint" formalism and the "ZHS" formalism, lead to results which can be explained by a superposition of magnetically induced transverse current radiation and charge-excess radiation due to the Askaryan effect. Here, we present the results of Geant4 simulations for the SLAC T-510 experiment, taking into account the details of the experimental setup (beam energy, target geometry and material, magnetic field configuration, and refraction effects) and their comparison to measured data with respect to e.g. signal polarisation, linearity with magnetic field, and angular distribution. We find that the microscopic calculations reproduce the measurements within uncertainties and describe the data well.
Using coronal seismology to estimate the magnetic field strength in a realistic coronal model
Chen, Feng
2015-01-01
Coronal seismology is extensively used to estimate properties of the corona, e.g. the coronal magnetic field strength are derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. From the simulation of the corona above an active region we synthesise extreme ultraviolet (EUV) emission from the model corona. From this we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5s and a damping tim...
Force-free Field Modeling of Twist and Braiding-induced Magnetic Energy in an Active-region Corona
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.
2014-01-01
The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.
Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona
Energy Technology Data Exchange (ETDEWEB)
Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Tiwari, S. K.; Wiegelmann, T., E-mail: julia.thalmann@uni-graz.at [Max Plank Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany)
2014-01-01
The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.
Campanelli, Leonardo
2015-01-01
[Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...
Béghin, Christian
2015-02-01
This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.
Schober, Jennifer; Schleicher, Dominik; Federrath, Christoph; Klessen, Ralf; Banerjee, Robi
2012-02-01
The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus it is expected to depend crucially on the nature of the turbulence. In this paper, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(ℓ)proportional ℓ([symbol see text])V}, where ℓ and v(ℓ) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_{crit}, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence ([symbol see text] = 1/3), we find that the critical magnetic Reynolds number is Rm(crit) (K) ≈ 110 and for Burgers turbulence ([symbol see text] = 1/2) Rm(crit)(B) ≈ 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Γ proportional Re((1-[symbol see text])/(1+[symbol see text])) in the limit of infinite magnetic Prandtl number. For decreasing magnetic Prandtl number (down to Pm >/~ 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB approximation, which becomes invalid for a magnetic Prandtl number of about unity.
SCUPOL Magnetic Field Analysis
Poidevin, Frederick; Kowal, Grzegorz; Pino, Elisabete de Gouveia Dal; Magalhaes, Antonio-Mario
2013-01-01
We present an extensive analysis of the 850 microns polarization maps of the SCUPOL Catalog produced by Matthews et al. (2009), focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from 2D synthetic maps of dust emission polarization produced with 3D MHD numerical simulations scaled to the S106, OMC-2/3, W49 and DR21 molecular clouds polarization maps. For these specific regions the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfv\\`en and sonic Mach numbers, are consistent within a factor 1 to 2 with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher (1999). Constraints on the values of the inclination angle of the mean magnetic field with respect to the LOS are also given. The values obtained from th...
Landim, C.; Lemire, P.
2016-07-01
We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.
Webers, Wigor A.
2007-03-01
The inverse theory of potential fields shows that the correspondence between the internal magnetic field of the Earth and its field sources is unique when the potential field is known in all points of the three-dimensional space including all points of the source region (cp., e.g. Diesselhorst, H., 1939. Magnetische Felder und Kräfte. Johann Ambrosius Barth Verlag, Leipzig). Thus, to determine the sources of the field it is not sufficient to know the potential field in the space external to the sources. Moreover, field models derived from finite sets of potential field observations emphasize different source properties because of measurement errors. In this study, I argue that improved internal field models can be developed from multi-altitude magnetic observations by imposing more effective constraints on the poorly conditioned downward continuation problem. In particular, the convergence behaviour of spherical harmonic field models can be used to improve the downward continuation of the higher truncation index terms. A high quality approximation of the field continuation is essential when the field models are interpreted for relatively small field contributions such as from the lithospheric sources. The relations between the potential field and its sources including the problems of potential field continuations - upward and downward - are governed by the theory of ill-posed inverse problems (cp., e.g. Anger, G., 1990. Inverse Problems in Differential Equations. Akademie/Plenum Press, Berlin/London; Anger, G., Gorenflo, R., Jochmann, H., Moritz, H., Webers, W. (Eds.), 1993. Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine. Akademie, Berlin; Huestis, S.P., Parker, R.L., 1979. Upward and downward continuations as inverse problems. Geophys. J. R. Astr. Soc. 57, 171-188; Rösler, R., 1981. Über die Fehlerfortpflanzung bei Potentialfeldtransformationen. Gerlands Beitr. Gephys. 90, 47-57).
Magnetic Fields: Visible and Permanent.
Winkeljohn, Dorothy R.; Earl, Robert D.
1983-01-01
Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)
McCubbin, A. J.; Smith, S. P.; Ferraro, N. M.; Callen, J. D.; Meneghini, O.
2012-10-01
Understanding the torque applied by resonant and non-resonant magnetic perturbations and its effect on rotation is essential to predict confinement and stability in burning plasmas. Non-axisymmetric 3D fields produced in the DIII-D tokamak apply a torque to the plasma, which can be evaluated through its effect on the plasma rotation. One explanation for this torque is Neoclassical Toroidal Viscosity (NTV) acting through non-resonant field components [1]. We have developed a software framework in which magnetic perturbations calculated by the state of the art two fluid MHD code M3D-C1 can be used in NTV calculations. For discharges with applied external magnetic fields in DIII-D, the experimentally determined torques will be analyzed and compared with NTV models.[4pt] [1] J.D. Callen, Nucl. Fusion 51, 094026 (2011).
Magnetic Properties of Transverse Ising Model under a Time Oscillating Longitudinal Field
Institute of Scientific and Technical Information of China (English)
SHI Xiao-Ling; WANG Li; WEI Guo-Zhu
2011-01-01
A transverse Ising spin system, in the presence of time-dependent longitudinal field, is studied by the effective-field theory (EFT). The effective-field equations of motion of the average magnetization are given for the simple cubic lattice (Z = 6) and the honeycomb lattice (Z = 3). The Liapunov exponent λ is calculated for discussing the stability of the magnetization and it is used to determine the phase boundary. The dynamic phase transition diagrams in ho/ZJ - Γ/ZJ plane and in ho/ZJ - T/ZJ plane have been drawn, and there is no dynamical tricritical point on the dynamic phase transition boundary. The effect of the thermal fluctuations upon the dynamic phase boundary has been discussed.
Energy Technology Data Exchange (ETDEWEB)
Cimpan, Emil
2004-09-15
This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the
Tadesse, Tilaye; MacNeice, Peter
2014-01-01
The solar coronal magnetic field produces solar activity, including extremely energetic solar flares and coronal mass ejections (CMEs). Knowledge of the structure and evolution of the magnetic field of the solar corona is important for investigating and understanding the origins of space weather. Although the coronal field remains difficult to measure directly, there is considerable interest in accurate modeling of magnetic fields in and around sunspot regions on the Sun using photospheric vector magnetograms as boundary data. In this work, we investigate effects of the size of the domain chosen for coronal magnetic field modeling on resulting model solution. We apply spherical Optimization procedure to vector magnetogram data of Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) with four Active Region observed on 09 March 2012 at 20:55UT. The results imply that quantities like magnetic flux density, electric current density and free magnetic energy density of ARs of interest are...
Magnetic fields and rotation of spiral galaxies
Battaner, E; Florido, E
1998-01-01
We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.
Korotkov, V. S.; Krasnoperov, E. P.; Kartamyshev, A. A.
2017-09-01
During the pulsed field magnetization of a high-T c annulus in liquid nitrogen the shielding current drops abruptly, providing rapid penetration of the magnetic flux into the hole of the superconductor. After the break of current the trapped field in the hole is small and negative although the body of the annulus remains highly magnetized. In the present work the current breaking effect is investigated both experimentally and numerically. The influence of the pulse parameter on the shielding current evolution during the break is researched. A simple model for the qualitative description of this process is proposed. The model shows the development of heating localized on the inhomogeneity of the high-temperature superconductor annulus providing the formation of a high resistive channel with temperature near to T c. The appearance of this hot channel leads to the rapid reduction of the shielding current and presents a new scenario of flux jump at high temperature.
Model for the orientation, magnetic field, and temperature dependence of the specific heat of CeCu6
Edelstein, A. S.
1988-03-01
The results of a model calculation of the orientation, magnetic field, and temperature dependence of the specific heat C of CeCu6 are found to be in good agreement with the single-crystal data of Amato et al. The model incorporates both the Kondo and crystal-field effects. It is suggested that the low-temperature Wilson's ratio C/Tχ, where χ is the susceptibility, may not change in an applied field H and that both C/T and χ at low temperatures as a function of H may be proportional to the many-body density of states at the energy μH.
Energy Technology Data Exchange (ETDEWEB)
Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain)
2015-04-01
The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the match of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.
Quark matter under strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Peres Menezes, Debora [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Laercio Lopes, Luiz [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Campus VIII, Centro Federal de Educacao Tecnologica de Minas Gerais, Varginha, MG (Brazil)
2016-02-15
We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)
Helical Magnetic Fields in AGN Jets
Indian Academy of Sciences (India)
Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen
2014-09-01
We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.
Numerical Simulation of Level Magnetic Field
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.
The HMI Magnetic Field Pipeline
Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team
2009-05-01
The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu
Energy Technology Data Exchange (ETDEWEB)
Inoue, S. [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen Germany (Germany); Hayashi, K.; Kusano, K., E-mail: inoue@mps.mpg.de [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)
2016-02-20
We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.
Modeling the Rise of Fibril Magnetic Fields in Fully Convective Stars
Weber, Maria A.; Browning, Matthew K.
2016-08-01
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M ⊙ main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.
MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields
Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.
2007-05-01
In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.
Elias, V; Miransky, V A; Shovkovy, I A
1996-01-01
The infrared dynamics in the (3+1)--dimensional supersymmetric and non--supersymmetric Nambu--Jona--Lasinio model in a constant magnetic field is studied. It is shown that while at strong coupling the dynamics in these two models is essentially different, the models become equivalent at weak coupling. In particular, at weak coupling, as the strength of the magnetic field goes to infinity, both the supersymmetric and non--supersymmetric Nambu--Jona--Lasinio models with N_c colors become equivalent to the (1+1)--dimensional Gross-Neveu model with the number of colors \\tilde{N}_c=N_c|eB|S/2\\pi, where S is the area in the plane perpendicular to the magnetic field {\\bf B}. The relevance of these results for cosmological models based on superymmetric dynamics is pointed out.
A ferromagnetic model for the action of electric and magnetic fields in cryopreservation.
Kobayashi, Atsuko; Kirschvink, Joseph L
2014-04-01
Recent discussions in the literature have questioned the ability of electromagnetic exposure to inhibit ice crystal formation in supercooled water. Here we note that strong electric fields are able to disrupt the surface boundary layer of inert air on the surface of materials, promoting higher rates of heat transport. We also note that most biological tissues contain ferromagnetic materials, both biologically precipitated magnetite (Fe3O4) as well as environmental contaminants that get accidentally incorporated into living systems. Although present at trace levels, the number density of these particulates is high, and they have extraordinarily strong interactions with weak, low-frequency magnetic fields of the sort involved in claims of electromagnetic cryopreservation. Magnetically-induced mechanical oscillation of these particles provides a plausible mechanism for the disruption of ice-crystal nucleation in supercooled water.
An Intergalactic Magnetic Field from Quasar Outflows
Furlanetto, S; Furlanetto, Steven; Loeb, Abraham
2001-01-01
Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function magnetic field strength at different redshifts. We find that by a redshift z ~ 3, about 5-80% of the IGM volume is filled by magnetic fields with an energy density > 10% of the mean thermal energy density of a photo-ionized IGM (at ~ 10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the fields observed in these systems without a need for further dynamo amplification.
SU(3) Polyakov linear-sigma model: bulk and shear viscosity of QCD matter in finite magnetic field
Tawfik, Abdel Nasser; Hussein, T M
2016-01-01
Due to off-center relativistic motion of the charged spectators and the local momentum-imbalance of the participants, a short-lived huge magnetic field is likely generated, especially in relativistic heavy-ion collisions. In determining the temperature dependence of bulk and shear viscosities of the QCD matter in vanishing and finite magnetic field, we utilize mean field approximation to the SU($3$) Polyakov linear-sigma model (PLSM). We compare between the results from two different approaches; Green-Kubo correlation and Boltzmann master equation with Chapman-Enskog expansion. We find that both approaches have almost identical results, especially in the hadron phase. In the temperature dependence of bulk and shear viscosities relative to thermal entropy at the critical temperature, there is a rapid decrease in the chiral phase-transition and in the critical temperature with increasing magnetic field. As the magnetic field strength increases, a peak appears at the critical temperature ($T_c$). This can be und...
Rogers, Adam
2016-01-01
A wealth of X-ray and radio observations has revealed in the past decade a growing diversity of neutron stars (NSs) with properties spanning orders of magnitude in magnetic field strength and ages, and with emission processes explained by a range of mechanisms dictating their radiation properties. However, serious difficulties exist with the magneto-dipole model of isolated neutron star fields and their inferred ages, such as a large range of observed braking indices ($n$, with values often $<$3) and a mismatch between the neutron star and associated supernova remnant (SNR) ages. This problem arises primarily from the assumptions of a constant magnetic field with $n$=3, and an initial spin period that is much smaller than the observed current period. It has been suggested that a solution to this problem involves magnetic field evolution, with some NSs having magnetic fields buried within the crust by accretion of fall-back supernova material following their birth. In this work we explore a parametric pheno...
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
Soto-Aquino, D.; Rinaldi, C.
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.
Vestibular stimulation by magnetic fields
Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.
2015-01-01
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662
Institute of Scientific and Technical Information of China (English)
LIN ZhenQuan; KONG XiangMu; JIN JinShuang; YANG ZhanRu
2001-01-01
The Gaussian spin model with periodic interactions on the diamond-type hierarchical lattices is constructed by generalizing that with uniform interactions on translationally invariant lattices according to a class of substitution sequences. The Gaussian distribution constants and imposed external magnetic fields are also periodic depending on the periodic characteristic of the interaction bonds. The critical behaviors of this generalized Gaussian model in external magnetic fields are studied by the exact renormalization-group approach and spin rescaling method. The critical points and all the critical exponents are obtained. The critical behaviors are found to be determined by the Gaussian distribution constants and the fractal dimensions of the lattices. When all the Gaussian distribution constants are the same, the dependence of the critical exponents on the dimensions of the lattices is the same as that of the Gaussian model with uniform interactions on translationally invariant lattices.
Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus
2014-10-01
In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.
CM5: A pre-Swarm magnetic field model based upon the comprehensive modeling approach
DEFF Research Database (Denmark)
Sabaka, T.; Olsen, Nils; Tyler, Robert
2014-01-01
We have developed a model based upon the very successful Comprehensive Modeling (CM) approach using recent CHAMP, Ørsted, SAC-C and observatory hourly-means data from September 2000 to the end of 2013. This CM, called CM5, was derived from the algorithm that will provide a consistent line of Level...
Magnetic response to applied electrostatic field in external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)
2014-04-15
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)
Magnetic response to applied electrostatic field in external magnetic field
Adorno, T C; Shabad, A E
2014-01-01
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.
Schober, Jennifer; Federrath, Christoph; Klessen, Ralf; Banerjee, Robi
2011-01-01
The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus is expected to depend crucially on the nature of turbulence. In this work, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB-approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence (theta=1/3), we find that the critical magnetic Reynolds number is approximately 110 and for Burger...
BPS vortices in the Abelian Maxwell-Carroll-Field-Jackiw-Higgs model with fractional magnetic fl ux
Energy Technology Data Exchange (ETDEWEB)
Casana, Rodolfo; Lazar, Guillermo [Universidade Federal do Maranhao, Sao Luis (Brazil)
2013-07-01
Full text: In the last years investigations of field theories involving the spontaneous breaking of Lorentz symmetry have been studied in framework of Standard Model Extension. In this context we study the existence of Abrikosov - Nielsen - Olesen - like BPS vortices. Specifically, we analyze Maxwell-Higgs model supplemented by Lorentz violating (LV) terms in both sectors. The LV term in the Higgs sector is CPT-even whereas the gauge sector includes the Carroll-Field-Jackiw term which is CPT-odd. An important consequence due to LV term introduced in the Higgs sector is the fractionalization of the magnetic flux. Among other effects, LV coefficients rule the amplitude and spatial extension of the topological defect. Under appropriated coordinate rescaling and field redefinition BPS equations are similar to the ones of Maxwell - Chern - Simons - Higgs (MCSH) model. The difference appears in Gauss's law which contains a parameter dependent only in Higgs's LV coefficients. The Carroll-Field-Jackiw parameter couples the magnetic and electric sectors such as happens in models containing the Chern-Simons term, hence the BPS vortices are electrically charged. We emphasize that Lorentz-violating theories are somewhat equivalent to generalized Maxwell-Higgs models -in the context of effective field theories which could describe vortex configurations in continuous dielectric media. (author)
Modeling the Rise of Fibril Magnetic Fields in Fully Convective Stars
Weber, Maria A
2016-01-01
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the Solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFT). Here, we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 solar-mass, main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting loca...
Tofani, S; Ossola, P; d'Amore, G; Gandhi, O P
1995-01-01
We have used the impedance method to calculate the induced electric (E) fields and current densities (J) for the spatially varying vector magnetic fields due to a hair dryer. In this method, applicable for low-frequency exposures where the quasi-static approximation may be made, the biological body or the exposed parts thereof are represented by a three-dimensional (3-D) network of impedances whose individual values are obtained from the electrical properties sigma, epsilon r for the various tissues. We have measured the 3-D variations of the 50-Hz magnetic fields from a typical hair dryer and found that the various components correlate well with those for a helical coil. The non-uniform magnetic fields thus obtained are used to calculate the induced E and J with a resolution of 1.31 cm for the model of the head and neck. The induced E values are compared with the fields endogenous to the body and the minimum detectable E-field limits based on the cellular thermal noise model proposed by Weaver and Astumian (1990, 1992).
Probing into Magnetic Field and Initial Period of Neutron Star
Institute of Scientific and Technical Information of China (English)
BAI Hua; PENG Qiu-He
2004-01-01
Using the hybrid model and the neutrino jet rocket model, we calculate the magnetic fields and the initial periods of 72 pulsars. We probe into the possible connection among magnetic field, initial period, and initial quantum number.
Cao, Gaoqing
2016-01-01
We study the inhomogeneous solitonic modulation of chiral condensate within the effective Nambu--Jona-Lasinio model when a constant external magnetic field is present. The self-consistent Pauli-Villars regularization scheme is adopted to manipulate the ultraviolet divergence encountered in the thermodynamic quantities. In order to determine the chiral restoration lines efficiently, a new kind of Ginzburg-Landau expansion approach is proposed here. At zero temperature, we find that both the upper and lower boundaries of the solitonic modulation oscillate with the magnetic field in the $\\mu$--$B$ phase diagram which is actually the de Hass-van Alphan (dHvA) oscillation. It is very interesting to find out how the tricritical Lifshitz point $(T_L,\\mu_L)$ evolves with the magnetic field: There are also dHvA oscillations in the $T_L$--$B$ and $\\mu_L$--$B$ curves, though the tricritical temperature $T_L$ increases monotonically with the magnetic field.
Model of THz Magnetization Dynamics
Bocklage, Lars
2016-01-01
Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997
Observing and modelling the poloidal and toroidal magnetic fields of the global dynamo
Cameron, Robert; Duvall, Thomas; Schüssler, Manfred; Schunker, Hannah
2017-08-01
The large scale solar dynamo is a cycle where poloidal flux is generated from toroidal flux, and toroidal flux is generated from poloidal flux. The toroidal and poloidal fields can be inferred from observations, and the Babcock-Leighton model shows how differential rotation and flux emergence explain the observed evolution of the fields.
Petruk, O.; Bandiera, R.; Beshley, V.; Orlando, S.; Miceli, M.
2017-09-01
Polarized radio emission has been mapped with great detail in several Galactic supernova remnants (SNRs), but has not yet been exploited to the extent it deserves. We have developed a method to model maps of the Stokes parameters for shell-like SNRs during their Sedov evolution phase. At first, three-dimensional structure of an SNR has been computed, by modelling the distribution of the magnetohydrodynamic parameters and of the accelerated particles. The generation and dissipation of the turbulent component of magnetic field everywhere in SNR are also considered taking into account its interaction with accelerated particles. Then, in order to model the emission, we have used a generalization of the classical synchrotron theory, valid for the case in which the magnetic field has ordered and disordered components. Finally, two-dimensional projected maps have been derived, for different orientations of SNR and of interstellar magnetic field with respect to the observer. An important effect to consider is the Faraday rotation of the polarization planes inside the SNR interior. In this paper, we present details of the model, and describe general properties of the images.
Abou-Hamad, Edy
2011-09-01
Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.
Warm inflation in presence of magnetic fields
Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia
2013-01-01
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.
The MAVEN Magnetic Field Investigation
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
Realistic Modeling of Interaction of Quiet-Sun Magnetic Fields with the Chromosphere
Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.
2017-08-01
High-resolution observations and 3D MHD simulations reveal intense interaction between the convection zone dynamics and the solar atmosphere on subarcsecond scales. To investigate processes of the dynamical coupling and energy exchange between the subsurface layers and the chromosphere we perform 3D radiative MHD modeling for a computational domain that includes the upper convection zone and the chromosphere, and investigate the structure and dynamics for different intensity of the photospheric magnetic flux. For comparison with observations, the simulation models have been used to calculate synthetic Stokes profiles of various spectral lines. The results show intense energy exchange through small-scale magnetized vortex tubes rooted below the photosphere, which provide extra heating of the chromosphere, initiate shock waves, and small-scale eruptions.
Tarrío-Saavedra, Javier; González, Cécilia Galindo; Naya, Salvador; López-Beceiro, Jorge
2017-01-01
This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension. PMID:28081239
Chernodub, M. N.
2011-04-01
Using an extended Nambu-Jona-Lasinio model as a low-energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 1016T) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum is made of a new type of vortices which are topological defects in the charged vector condensates. The superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in pure QED.
Thebault, E.; Vervelidou, F.
2012-04-01
The spatial resolution of all available data monitoring the Earth's lithospheric magnetic field range from thousands to few kilometers at the regional spatial scale. The data type and measurement platforms covering these various wavelengths are in general different. For instance, Low Earth Orbiting satellites, such as CHAMP and the forthcoming SWARM, measure the vector field and are sensitive to large-scale and deep lithospheric magnetic field structures, while aeromagnetic and marine data or grids, like the World Digital Magnetic Anomaly Map (WDMAM), which are mostly scalar, in general fetch better shallow and small spatial scale signals. For quantitative geophysical interpretations, there is therefore a need for methodologies allowing for the reconstruction of the full magnetic field spectrum. During the last decades, various methodologies have been proposed in an effort to merge all kinds of magnetic data available over particular regions. We first briefly review the methods proposed by the scientific community and will more specifically focus on new progresses in developing the Revised Spherical Cap modeling approach. In particular, we will discuss the concept of spectrum with this formalism and its applicability in the framework of geomagnetism. Since a regional modeling approach can only be applied on high quality data we then propose some strategies to first obtain a better signal to noise ratio in satellite data and second to better account for its nature. We will illustrate our conclusions with issues faced with the data processing of single satellite missions such as CHAMP. Finally, we discuss how a constellation such as the Swarm mission will alleviate some of, so far, unresolved problems and how important it is to have the metadata information about the aeromagnetic and marine anomaly data.
Yao, Li
2006-01-01
This thesis concerns the modified and improved, time-stepping, dynamic reluctance mesh (DRM) modelling technique for machines and its application to multiple machine systems with their control algorithms. Improvements are suggested which enable the stable solution of the resulting complex non-linear equations. The concept of finite element (FE) derived, overlap-curves has been introduced to facilitate the evaluation of the air-gap reluctances linking the teeth on the rotor to those on the sta...
Anomalous spin excitation spectrum of the Heisenberg model in a magnetic field.
Syljuåsen, Olav F; Lee, Patrick A
2002-05-20
Making the assumption that high-energy fermions exist in the two dimensional spin- 1/2 Heisenberg antiferromagnet, we present predictions based on the pi-flux ansatz for the dynamic structure factor when the antiferromagnet is subject to a uniform magnetic field. The main result is the presence of gapped excitations in a momentum region near (pi,pi) with energy lower than that at (pi,pi). This is qualitatively different from spin-wave theory predictions and may be tested by experiments or by quantum Monte Carlo.
Glatzmaier, Gary
2013-01-01
This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accura
DEFF Research Database (Denmark)
Gillet, N.; Jault, D.; Finlay, Chris
2013-01-01
, which force the expansions in the spatial and time domains to converge but also hinder the calculation of reliable second-order statistics. To tackle this issue, we propose a stochastic approach that integrates, through time covariance functions, some prior information on the time evolution...... of the geomagnetic field. We consider the time series of spherical harmonic coefficients as realizations of a continuous and differentiable stochastic process. Our specific choice of process, such that it is not twice differentiable, mainly relies on two properties of magnetic observatory records (time spectra...
DEFF Research Database (Denmark)
Gillet, Nicolas; Jault, D.; Finlay, Chris
2013-01-01
, which force the expansions in the spatial and time domains to converge, but also hinders the calculation of reliable second order statistics. To tackle this issue, we propose a stochastic approach that integrates, through time covariance functions, some prior information on the time evolution...... of the geomagnetic field. We consider the time series of spherical harmonic coefficients as realizations of a continuous and differentiable stochastic process. Our specific choice of process, such that it is not twice differentiable, mainly relies on two properties of magnetic observatory records (time spectra...
Orbit stability in billiards in magnetic field
Kovács, Z
1997-01-01
We study the stability properties of orbits in dispersing billiards in a homogeneous magnetic field by using a modified formalism based on the Bunimovich-Sinai curvature (horocycle method). We identify simple periodic orbits that can be stabilized by the magnetic field in the four-disk model and the square-lattice Lorentz gas. The stable orbits can play a key role in determining the transport properties of these models.
Modeling of Gamma-Ray Pulsar Light Curves with Force-Free Magnetic Field
Bai, Xue-Ning
2009-01-01
(Abridged) Gamma-ray emission from pulsars has long been modeled using a vacuum dipole field. This approximation ignores changes in the field structure caused by the magnetospheric plasma and strong plasma currents. We present the first results of gamma-ray pulsar light curve modeling using the more realistic field taken from 3D force-free magnetospheric simulations. Having the geometry of the field, we apply several prescriptions for the location of the emission zone, comparing the light curves to observations. We find that the conventional two-pole caustic model fails to produce double-peak pulse profiles, mainly because the size of the polar cap in force-free magnetosphere is larger than the vacuum field polar cap. The conventional outer-gap model is capable of producing only one peak under general conditions, because a large fraction of open field lines does not cross the null charge surface. We propose a novel "annular gap" model, where the high-energy emission originates from a thin layer on the open fi...
Barnes, G.; Leka, K. D.; Longcope, D. W.
2003-05-01
The complexity of the coronal magnetic field extrapolated from a Magnetic Charge Topology (MCT) model, is examined for pre-event signatures unique to solar energetic phenomena. Although extensive use has been made of quantities measured at the photosphere, it is important to consider the magnetic field in the corona, where (for example) the hard X-ray signatures of energy release in solar flares are observed. By quantifying the inferred coronal magnetic topology we are no longer limited to considering solely the magnetic state of the photosphere. MCT is applied to temporally sampled photospheric magnetic data from the U. Hawai`i Imaging Vector Magnetograph, for 24 flare-event and flare-quiet epochs from seven active regions. We outline the methodology employed for automating the application of MCT to large data sets of complex active regions: partitioning the observed Bz at the photosphere, assigning a charge to each partition, and using this charge distribution to extrapolate the field in the corona. From the resulting field we compute the connectivity matrix ψ ij, the location of null points and the intersection of separatrix surfaces, i.e. separator field lines. Parameters are constructed to describe, for example, the magnetic connectivities, the magnetic flux in those connections, and the number of separators. Examining particular events results in no obvious trends in the magnitude and temporal evolution of the parameters just prior to flare events. Thus, we employ the same quantitative statistical approach outlined in Leka and Barnes [this session], i.e. applying discriminant analysis and Hotelling's T2-test, and ranking all four-variable discriminant functions as a proxy for a single all-variable discriminant function. We present those parameters which consistently appear in the best combinations, indicating that they may play an important role in defining a pre-event coronal state. This work was performed under Air Force Office of Scientific Research
Solar Force-free Magnetic Fields
Wiegelmann, Thomas
2012-01-01
The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundar...
Dolginov, Sh. SH.
1986-01-01
The Russell et al. (1984) claim that gas dynamic modeling allows a determination of interplanetary and magnetosheath field configurations resembling the Mars 3 magnetic field observations during the January 21, 1972 encounter, and their proposal of a draped magnetic field pattern model for these data, are presently disputed. Extensive use is made of Martian magnetic field analyses undertaken by Dolginov between 1973 and 1984, which are held to prove the existence of an intrinsic Martian magnetic field. Russell replies that the Russell et al. analysis of the variation in the Mars 2, 3, and 5 data suggests the presence of both zero-level and sensor polarity errors in these data. The rejection of an intrinsic Martian magnetic field is accordingly reaffirmed, pending the availability of less ambiguous data.
Probing Magnetic Fields of Early Galaxies
Kohler, Susanna
2017-06-01
How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about
2008-01-01
The exact partition function of the two-dimensional nearest neighbour Ising model pertaining to square lattices is derived for N sites in the case of a non-vanishing magnetic field.When the magnetic field is zero,the partition functions estimated from the present analysis are identical with those arising from Onsager's exact solution.
Mean-field and Monte Carlo studies of the magnetization-reversal transition in the Ising model
Energy Technology Data Exchange (ETDEWEB)
Misra, Arkajyoti [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India)]. E-mail: arko@cmp.saha.ernet.in; Chakrabarti, Bikas K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India)]. E-mail: bikas@cmp.saha.ernet.in
2000-06-16
Detailed mean-field and Monte Carlo studies of the dynamic magnetization-reversal transition in the Ising model in its ordered phase under a competing external magnetic field of finite duration have been presented here. An approximate analytical treatment of the mean-field equations of motion shows the existence of diverging length and time scales across this dynamic transition phase boundary. These are also supported by numerical solutions of the complete mean-field equations of motion and the Monte Carlo study of the system evolving under Glauber dynamics in both two and three dimensions. Classical nucleation theory predicts different mechanisms of domain growth in two regimes marked by the strength of the external field, and the nature of the Monte Carlo phase boundary can be comprehended satisfactorily using the theory. The order of the transition changes from a continuous to a discontinuous one as one crosses over from coalescence regime (stronger field) to a nucleation regime (weaker field). Finite-size scaling theory can be applied in the coalescence regime, where the best-fit estimates of the critical exponents are obtained for two and three dimensions. (author)
Computation of magnetic fields in hysteretic media
Energy Technology Data Exchange (ETDEWEB)
Adly, A.A.; Mayergoyz, I.D.; Gomez, R.D.; Burke, E.R. (Univ. of Maryland, College Park, MD (United States))
1993-11-01
A newly developed vector Preisach-type model of hysteresis is applied to the computation of static magnetic fields in media with hysteresis. Time stepping technique is used to trace the time evolution of local magnetic fields which form the history of magnetizing process. At each time step, the magnetostatic problem is formulated in terms of an integral equation and an efficient iterative algorithm is employed for solving this problem. The technique has been used to simulate some magnetic recording processes. Sample results of these simulations are given in the paper.
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Zhao, Hongbo; Engelbrecht, Jan R.
2000-03-01
At the Mean Field level (G. Murthy and R. Shankar, J. Phys. Condens. Matter, 7) (1995), the frustration due to an external field first makes the uniform BCS ground state unstable to an incommensurate (qne0) superconducting state and then to a spin-polarized Fermi Liquid state. Our interest is how fluctuations modify this picture, as well as the normal state of this system which has a quantum critical point. We use the Fluctuation-Exchange Approximation for the 2D Attractive Hubbard Model, to study this system beyond the Mean-Field level. Earlier work in zero field has shown that this numerical method successfully captures the critical scaling of the KT superconducting transition upon cooling in the normal state. Here we investigate how the pair-breaking external field modifies this picture, and the development of incommensurate pairing.
Low Cost Magnetic Field Controller
Malafronte, Alexandre A
2005-01-01
The Physics Institute of the University of São Paulo (IFUSP) is building a continuous wave (cw) racetrack microtron. This machine has several dipole magnets, like the first and second stage recirculators, and a number of smaller ones in the transport line. These magnets must produce very stable magnetic fields to allow the beam to recirculate along very precise orbits and paths. Furthermore, the fields must be reproducible with great accuracy to allow an easier setup of the machine, though the effects of hysteresis tend to jeopardize the reproducibility. If the magnetic field is chosen by setting the current in the coils, temperature effects over the magnet and power supply tend to change the field. This work describes an inexpensive magnetic field controller that allows a direct measure of the magnetic field through an Hall probe. It includes a microcontroller running a feedback algorithm to control the power supply, in order to keep the field stable and reproducible. The controller can also execu...
Surzhikov, S. T.
2017-08-01
The drift-diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift-diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5-5 Torr at a current source voltage of 200-500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.
Gao, Xu-Dong; Zhang, Shuang-Nan; Yi, Shu-Xu; Xie, Yi; Fu, Jian-Ning
2016-06-01
We explain some phenomena existing generally in the timing residuals: amplitude and sign of the second derivative of a pulsar's spin-frequency (ddot{ν }), some sophisticated residual patterns, which also change with the time span of data segments. The sample is taken from Hobbs et al., in which the pulsar's spin-frequency and its first derivative have been subtracted from the timing solution fitting. We first classify the timing residual patterns into different types based on the sign of ddot{ν }. Then we use the magnetic field oscillation model developed in our group to fit successfully the different kinds of timing residuals with the Markov Chain Monte Carlo method. Finally, we simulate the spin evolution over 20 years for a pulsar with typical parameters and analyse the data with the conventional timing solution fitting. By choosing different segments of the simulated data, we find that most of the observed residual patterns can be reproduced successfully. This is the first time that the observed residual patterns are fitted by a model and reproduced by simulations with very few parameters. From the distribution of the different residual patterns in the P-dot{P} diagram, we argue that (1) a single magnetic field oscillation mode exists commonly in all pulsars throughout their lifetimes; (2) there may be a transition period over the lifetimes of pulsars, in which multiple magnetic field oscillation modes exist.
Static magnetic fields enhance turbulence
Pothérat, Alban
2015-01-01
More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...
Hyperon Stars in Strong Magnetic Fields
Gomes, R O; Vasconcellos, C A Z
2013-01-01
We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.
Origin of cosmic magnetic fields
Rees, M. J.
2006-06-01
The first significant cosmic fields, and the seed field for galactic dynamos probably developed after the formation of the first non-linear structures. The history of star formation and the intergalactic medium is controlled, at least in part, by how and when galaxies and their precursors acquired their fields. The amplification of fields behind shocks, and the diffusivity of the magnetic flux, are crucial to the interpretation of radio sources, gamma ray burst afterglows, and other energetic cosmic phenomena. The build-up of magnetic fields is an important aspect of the overall cosmogonic process.
Magnetic Field Control of Combustion Dynamics
Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.
2016-08-01
Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.
Analytical Model of Fast Magnetic Reconnection with a Large Guide Field
Simakov, Andrei N; Zocco, A
2010-01-01
Analytical theory of fast magnetic reconnection with a large guide field is presented for the first time. We confirm that two distinct reconnection regimes are possible depending on whether the diffusion region thickness $\\delta$ is larger or smaller than the sound gyroradius $\\rho_s$. The reconnection is slow or Sweet-Parker-like for $\\delta \\gtrsim \\rho_s$, and fast otherwise. In the fast regime, however, we find that ion viscosity $\\mu$ plays a critical role. In particular, for $\\delta < \\rho_s$ the diffusion region thickness is proportional to $Ha^{-1}$ with $Ha \\propto 1/\\sqrt{\\eta \\mu}$ the Hartmann number, and the reconnection rate is proportional to $Pr^{-1/2}$ with $Pr = \\mu/\\eta$ the Prandtl number and $\\eta$ the resistivity. If the perpendicular ion viscosity is employed for $\\mu$ the reconnection rate becomes independent of both plasma $\\beta$ and collision frequencies and therefore potentially fast.
Worm algorithms for the 3-state Potts model with magnetic field and chemical potential
Delgado, Ydalia; Gattringer, Christof
2012-01-01
We discuss worm algorithms for the 3-state Potts model with external field and chemical potential. The complex phase problem of this system can be overcome by using a flux representation where the new degrees of freedom are dimer and monomer variables. Working with this representation we discuss two different generalizations of the conventional Prokof'ev-Svistunov algorithm suitable for Monte Carlo simulations of the model at arbitrary chemical potential and evaluate their performance.
Meijs, J.W.H.; Bosch, F.G.C.; Peters, M.J.; Lopes da silva, F.H.
1987-01-01
The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the
Akram, Safia; Nadeem, S.
2014-05-01
In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters.
Electric-field guiding of magnetic skyrmions
Energy Technology Data Exchange (ETDEWEB)
Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.
2015-10-01
We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.
Magnetic field in the primitive solar nebula
Levy, E. H.
1978-01-01
Carbonaceous chondrites have apparently been magnetized in their early history in magnetic fields with intensities of 0.1 to 10 G, but the origin of the magnetizing field has remained obscured. It is suggested that the magnetic field recorded in the remanence of carbonaceous chondrites may have been produced by a self-excited hydromagnetic dynamo in the gaseous preplanetary nebula from which the solar system is thought to have formed. Recently computed models for the evolution of the preplanetary nebula, consisting of turbulent and differentially rotating gaseous disks with characteristic radial scales of several AU, are used to demonstrate the feasibility of this hypothesis. The maximum field intensity that might be realized by the dynamo production process is estimated to be as high as 1 to 10 G, taking into account two dynamical mechanisms that limit the strength of the field (the Coriolis force and ambipolar diffusion).
Magnetic field evolution in neutron stars
Castillo, F.; Reisenegger, A.; Valdivia, J. A.
2017-07-01
Neutron stars contain the strongest magnetic fields known in the Universe. Using numerical simulations restricted to axially symmetric geometry, we study the long-term evolution of the magnetic field in the interior of an isolated neutron star under the effect of ambipolar diffusion, i.e. the drift of the magnetic field and the charged particles relative to the neutrons. We model the stellar interior as an electrically neutral fluid composed of neutrons, protons and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. We show that, in the restricted case of pure ambipolar diffusion, neglecting weak interactions, the magnetic fields evolves towards a stable MHD equilibria configuration, in the timescales analytically expected.
Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence
2015-09-01
Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115-121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958-1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251-317 (1996); and F. Mottez, Phys. Plasmas 10, 1541-1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20
Energy Technology Data Exchange (ETDEWEB)
Dorville, Nicolas, E-mail: nicolas.dorville@lpp.polytechnique.fr; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence [LPP, Ecole Polytechnique, CNRS, UPMC, Université Paris Sud, Palaiseau (France)
2015-09-15
Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115–121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958–1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251–317 (1996); and F. Mottez, Phys. Plasmas 10, 1541–1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present
Measuring Earth's Magnetic Field Simply.
Stewart, Gay B.
2000-01-01
Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)
1975-01-01
The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.
What Are Electric and Magnetic Fields? (EMF)
... take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible lines of ... humans. AC electric power produces electric and magnetic fields that create weak electric currents in humans. Being exposed to some kinds ...
Polarized radiation diagnostics of stellar magnetic fields
Mathys, Gautier
The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the
The Juno Magnetic Field Investigation
Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.
2017-02-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of
The Juno Magnetic Field Investigation
Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.;
2017-01-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through
Magnetic-Field Hazards Bibliography.
1985-09-01
produced during pulsed- magnetic-field therapy for non-union of the tibia." Med. Biol. Eng. Comput., Vol. 20, pp. 501-511 (1982). 32. Miller, D. A...Phenum Publishing Co. (1983). 40. Topper, R. F., "Electromagnetic shielding feasibility study," ASD -TDR-63-194 (Armour Research Foundation, Chicago...mammalian cells by strong magnetic fields (1976). 93. Malins, D. C., and Collier, T. K., "Xenobiotic interactions in aquatic organisms-effects on
Magnetic fields in early protostellar disk formation
González-Casanova, Diego F; Lazarian, Alexander
2016-01-01
We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...
Energy Technology Data Exchange (ETDEWEB)
Gendron, Frederic; Pritchard, Ben; Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY (United States); Paez-Hernandez, Dayan; Bolvin, Helene [Laboratoire de Physique et de Chimie Quantiques, Universite Toulouse 3 (France); Notter, Francois-Paul [Laboratoire de Chimie Quantique, Universite de Strasbourg (France)
2014-06-23
The electronic structure and magnetic properties of neptunyl(VI), NpO{sub 2}{sup 2+}, and two neptunyl complexes, [NpO{sub 2}(NO{sub 3}){sub 3}]{sup -} and [NpO{sub 2}Cl{sub 4}]{sup 2-}, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal-field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin-orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g-factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g-factors were calculated for the ground and excited states. For [NpO{sub 2}Cl{sub 4}]{sup 2-}, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn-Sham DFT with standard functionals can produce reasonable g-factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Instability of strong magnetic field and neutrino magnetic dipole moment
Lee, Hyun Kyu
2016-01-01
Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...
Institute of Scientific and Technical Information of China (English)
侯登录; 姜恩永; 白海力
2002-01-01
Zero-field-cooled (ZFC) magnetization, field-cooled (FC) magnetization, ac magnetic susceptibility and majorhysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from5 to 160 K. An empirical model is proposed to calculate the measured ZFC magnetization. The result indicates that thecalculated ZFC magnetization compares well with the measured one. Based on the generalized Preisach model, boththe ZFC and FC curves are reproduced by numerical simulations. The critical temperature and critical exponents aredetermined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinityof the point of phase transition.
QCD thermodynamics and magnetization in nonzero magnetic field
Tawfik, Abdel Nasser; Ezzelarab, Nada; Shalaby, Asmaa G
2016-01-01
In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter is studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both models are fairly suited to describe the degrees of freedom in the hadronic phase. The partonic ones are only accessible by the second model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are not affected by the hadron-quark phase-transition. Furthermore, raising the magnetic field strength increases the thermodynamic quantities, especially in the hadronic phase but reduces the critical temperature, i.e. inverse magnetic catalysis.
Alignment of magnetic uniaxial particles in a magnetic field: Simulation
Energy Technology Data Exchange (ETDEWEB)
Golovnia, O.A., E-mail: golovnya@imp.uran.ru [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Popov, A.G [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Sobolev, A.N. [South Ural State University (National Research University), av. Lenina, 76, 454080 Chelyabinsk (Russian Federation); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)
2014-09-01
The numerical investigations of the process of alignment of magnetically uniaxial Nd–Fe–B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient. - Highlights: • We simulate the magnetic alignment of ensemble of Nd–Fe–B spherical uniaxial particles. • Anisotropic particles as a combination of spherical particles are constructed. • Influence of the particle shape anisotropy and friction on the alignment is analyzed. • We compare calculated and experimental data on field dependence of magnetic alignment. • The results render the experimental dependence.
Intergalactic Magnetic Fields from Quasar Outflows
Furlanetto, S; Furlanetto, Steven; Loeb, Abraham
2001-01-01
Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-al...
The CMS Magnetic Field Map Performance
Klyukhin, VI; Sarycheva, L I; Klyukhin, V I; Ball, A; Gaddi, A; Amapane, N; Gerwig, H; Andreev, V; Cure, B; Mulders, M; Loveless, R; Karimaki, V; Popescu, S; Herve, A
2010-01-01
The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...
Magnetic fields in spiral galaxies
Beck, Rainer
2015-12-01
Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with
Nanometric alternating magnetic field generator.
Espejo, A P; Tejo, F; Vidal-Silva, N; Escrig, J
2017-07-05
In this work we introduce an alternating magnetic field generator in a cylindrical nanostructure. This field appears due to the rotation of a magnetic domain wall located at some position, generating a magnetic region that varies its direction of magnetization alternately, thus inducing an alternating magnetic flux in its vicinity. This phenomenon occurs due to the competition between a spin-polarized current and a magnetic field, which allows to control both the angular velocity and the pinning position of the domain wall. As proof of concept, we study the particular case of a diameter-modulated nanowire with a spin-polarized current along its axis and the demagnetizing field produced by its modulation. This inhomogeneous field allows one to control the angular velocity of the domain wall as a function of its position along the nanowire allowing frequencies in the GHz range to be achieved. This generator could be used in telecommunications for devices in the range of radiofrequencies or, following Faraday's induction law, could also induce an electromotive force and be used as a movable alternate voltage source in future nanodevices.
Vikhrev, V. V.; Baronova, E. O.
2006-01-01
Pinch dynamics is described, which takes into account generation of turbulent magnetic fields. Turbulent/chaotic magnetic fields (TMF) appear due to MHD and kinetic instabilities. It is shown, that TMF arises near the moment of maximal compression and essentially affects plasma dynamics at the expansion stage.
A Holographic Bound on Cosmic Magnetic Fields
McInnes, Brett
2015-01-01
Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.
EIT waves and coronal magnetic field diagnostics
Institute of Scientific and Technical Information of China (English)
CHEN PengFei
2009-01-01
Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.
Nasseri, S. Ali; Moretti, Simone; Martinez, Eduardo; Serpico, Claudio; Durin, Gianfranco
2017-03-01
Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work.
Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.
2017-08-01
We investigate the role of AGN feedback in turbulent heating of galaxy clusters. X-ray measurements of the Perseus Cluster intracluster medium (ICM) by the Hitomi Mission found a velocity dispersion measure of σ ˜ 164 km/s, indicating a large-scale turbulent energy of approximately 4% of the thermal energy. If this energy is transferred to small scales via a turbulent cascade and dissipated as heat, radiative cooling can be offset and the cluster can remain in the observed thermal equilibrium. Using 3D ideal MHD simulations and a plane-parallel model of the ICM, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. Hydrodynamic instabilities shred the bubbles apart before they can excite sufficiently strong g-modes. We examine the role of a large-scale magnetic field which is able to drape around these rising bubbles, preserving them from instabilities. We show that a helical magnetic field geometry is able to better preserve bubbles, driving stronger g-modes; however, the production of turbulence is still inefficient. Magnetic tension acts to stabilize g-modes, preventing the nonlinear transition to turbulence. In addition, the magnetic tension force acts along the field lines to suppress the formation of small-scale vortices. These two effects halt the turbulent cascade. Our work shows that ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. In addition, other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible to account for observed feedback in galaxy clusters.
Directory of Open Access Journals (Sweden)
T. Sarris
2006-10-01
Full Text Available In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a function of the radial coordinate L in a dipolar magnetosphere; these calculations are then compared to the symmetric, electromagnetic radial diffusion coefficients for compressional, poloidal perturbations in the Earth's magnetosphere. In the model the amplitude of the perturbation fields can be adjusted to represent realistic states of magnetospheric activity. Similarly, the azimuthal modulation of the fields can be adjusted to represent different azimuthal modes of fluctuations and the contribution to radial diffusion from each mode can be quantified. Two simulations of quiet-time magnetospheric variability are performed: in the first simulation, diffusion due to poloidal perturbations of mode number m=1 is calculated; in the second, the diffusion rates from multiple-mode (m=0 to m=8 perturbations are calculated. The numerical calculations of the diffusion coefficients derived from the particle orbits are found to agree with the corresponding theoretical estimates of the diffusion coefficient within a factor of two.
Mustafa, M.; Khan, Junaid Ahmad
2015-07-01
Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.
Directory of Open Access Journals (Sweden)
G. Palma
2015-06-01
Full Text Available Motivated by the numerical simulation of systems which display quantum phase transitions, we present a novel application of the meron-cluster algorithm to simulate the quantum antiferromagnetic Heisenberg model coupled to an external uniform magnetic field both in one and in two dimensions. In the infinite volume limit and at zero temperature we found numerical evidence that supports a quantum phase transition very close to the critical values B_c=2 and B_c = 4 for the system in one and two dimensions, respectively. For the one dimensional system, we have compared the numerical data obtained with analytical predictions for the magnetization density as a function of the external field obtained by scaling-behaviour analysis and Bethe Ansatz techniques. Since there is no analytical solution for the two dimensional case, we have compared our results with the magnetization density obtained by scaling relations for small lattice sizes and with the approximated thermodynamical limit at zero temperature guessed by scaling relations. Moreover, we have compared the numerical data with other numerical simulations performed by using different algorithms in one and two dimensions, like the directed loop method. The numerical data obtained are in perfect agreement with all these previous results, which confirms that the meron-algorithm is reliable for quantum Monte Carlo simulations and applicable both in one and two dimensions. Finally, we have computed the integrated autocorrelation time to measure the efficiency of the meron algorithm in one dimension.
Hassan, Ali Saif M; Joag, Pramod S
2010-01-01
We investigate how thermal quantum discord $(QD)$ and classical correlations $(CC)$ of a two qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behaviour of $QD$ differs in many unexpected ways from thermal entanglement $(EN)$. For the nonuniform case, $(B_1= - B_2)$ we find that $QD$ and $CC$ are equal for all values of $(B_1=-B_2)$ and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which $QD$ and $CC$ are equal. The specification of this class and the corresponding conditions is completely general and apply to any quantum system in a state in this class and satisfying these conditions. We further find the relative contributions of $QD$ and $CC$ can be controlled easily by changing the relative magnitudes of $B_1$ and $B_2$.
Studies of Solar Vector Magnetic Field
Institute of Scientific and Technical Information of China (English)
WANG Jingxiu
2011-01-01
In this article, we report a few advances in the studies based on the solar vector magnetic field observations which were carried out mainly with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station in the 1990s. （1） We developed necessary methodology and concepts in vector magnetogram analysis （Wang et al. 1996）. For the first time, we proposed to use the photospheric free magnetic energy to quantify the major flare productivity of solar active regions （ARs）, and it had been proved to be the best parameter in representing the major flare activity. （2） We revealed that there was always a dominant sense of magnetic shear in a given AR （Wang 1994）, which was taken as the premise of the helicity calculation in ARs; we made the first quantitative estimation of magnetic helicity evolution in ARs （Wang 1996）. （3） We identified the first group of evidence of magnetic reconnection in the lower solar atmosphere with vector magnetic field observations and proposed a two-step reconnection flare model to interpret the observed association of flux cancellation and flares （Wang and Shi 1993）. Efforts to quantify the major flare productivity of super active regions with vector magnetic field observations have been also taken.
Magnetic Field Generation in Stars
Ferrario, Lilia; Zrake, Jonathan
2015-01-01
Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...
Magnetic Fields in a Sample of Nearby Spiral Galaxies
Van Eck, Cameron; Shukurov, Anvar; Fletcher, Andrew
2014-01-01
Both observations and modelling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media (ISM) of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and ISM parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit noticeable degree of correlation, suggesting a universal behaviour of the degree of order in galactic magnetic fields. We also compare the p...
Lionello, Roberto; Downs, Cooper; Linker, Jon A; Mikić, Zoran
2014-01-01
Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. (2007) developed a sophisticated, 1D, time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al. (2014), which incorporates turbulent dissipation of Alfv\\'en waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional ...
High-Field Superconducting Magnets Supporting PTOLEMY
Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam
2013-10-01
The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.
Magnetic Field Amplification in Young Galaxies
Schober, Jennifer; Klessen, Ralf S
2013-01-01
The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...
Impact of an L5 Magnetograph on Nonpotential Solar Global Magnetic Field Modeling
Mackay, Duncan H.; Yeates, Anthony R.; Bocquet, Francois-Xavier
2016-07-01
We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%-40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.
Galactic magnetic fields and hierarchical galaxy formation
Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton
2015-01-01
A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...
Inference of magnetic fields in inhomogeneous prominences
Milic, Ivan; Atanackovic, Olga
2016-01-01
Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D...
Where is magnetic anisotropy field pointing to?
Gutowski, Marek W
2013-01-01
The desired result of magnetic anisotropy investigations is the determination of value(s) of various anisotropy constant(s). This is sometimes difficult, especially when the precise knowledge of saturation magnetization is required, as it happens in ferromagnetic resonance (FMR) studies. In such cases we usually resort to `trick' and fit our experimental data to the quantity called \\emph{anisotropy field}, which is strictly proportional to the ratio of the searched anisotropy constant and saturation magnetization. Yet, this quantity is scalar, simply a number, and is therefore of little value for modeling or simulations of the magnetostatic or micromagnetic structures. Here we show how to `translate' the values of magnetic anisotropy constants into the complete vector of magnetic anisotropy field. Our derivation is rigorous and covers the most often encountered cases, from uniaxial to cubic anisotropy.
Scaling and universality in the two-dimensional Ising model with a magnetic field.
Mangazeev, Vladimir V; Dudalev, Michael Yu; Bazhanov, Vladimir V; Batchelor, Murray T
2010-06-01
The scaling function of the two-dimensional Ising model on the square and triangular lattices is obtained numerically via Baxter's variational corner transfer-matrix approach. The use of Aharony-Fisher nonlinear scaling variables allowed us to perform calculations sufficiently away from the critical point and to confirm all predictions of the scaling and universality hypotheses. Our results are in excellent agreement with quantum field theory calculations of Fonseca and Zamolodchikov as well as with many previously known exact and numerical calculations, including susceptibility results by Barouch, McCoy, Tracy, and Wu.
Bootstrapping the Coronal Magnetic Field with STEREO
Aschwanden, Markus J.
2010-05-01
The 3D coronal magnetic field obtained from stereoscopically triangulated loops has been compared with standard photospheric magnetogram extrapolations. We found a large misalignment of 20-40 deg, depending on the complexity of an AR (Sandman et al. 2009; DeRosa et al. 2009). These studies prove that the magnetic field in the photosphere is not force-free and fundamentally cannot reproduce the coronal magnetic field. Bootstrapping with coronal loop 3D geometries are required to improve modeling of the coronal field. Such coronal field bootstrapping methods are currently developed using stereoscopically triangulated loops from STEREO/EUVI and preliminary results show already a significantly reduced misalignment of 10-20 deg.
Critical Magnetic Field Determination of Superconducting Materials
Energy Technology Data Exchange (ETDEWEB)
Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.
2011-11-04
Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.
Estimate of the anisotropy field in isotropic SmCo 2:17 magnets with the Stoner-Wohlfarth CLC model
Energy Technology Data Exchange (ETDEWEB)
De Campos, M F [PUVR- Universidade Federal Fluminense, Av dos Trabalhadores 420, Vila Santa Cecilia, Volta Redonda, RJ, 27255-125 (Brazil); Romero, S A [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Landgraf, F J G [Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Missell, F P, E-mail: fmissell@yahoo.com, E-mail: mcampos@metal.eeimvr.uff.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, 95070-560 Brazil (Brazil)
2011-07-06
The Callen-Liu-Cullen (CLC) modification of the Stoner-Wohlfarth model was found able to describe properly the hysteresis curves of isotropic Sm(CoFeCuZr)z magnets. The SW-CLC model uses three parameters, and all of them have physical meaning. One of the parameters is related to the saturation magnetization, another to the anisotropy field, and another is 1/d, which evaluates the interaction between grains or particles. The model was applied for several magnets, indicating an anisotropy field of 6-7 T, which is compatible with other methods for anisotropy field determination. The model also gives insight into the abnormal temperature dependence of the coercivity found in SmCo 2:17 magnets. For compositions with a low z, the parameter 1/d is significant. These compositions with a low z are those showing the most abnormal coercivity behavior with temperature.
Directory of Open Access Journals (Sweden)
Eric Beaugnon
2008-01-01
Full Text Available A new mechanism based on the effect of local magnetic forces on diffusing ions around a growing ferromagnetic precipitate is proposed. A 3D simulation based only on physical parameters is undertaken in which main assumption is of interface limited growth controlled by the effect of both curvature and local magnetic field distortion. Although usually neglected in magnetic field effect mechanisms, it is shown that these local magnetic forces acting on a single paramagnetic ion can change markedly affect the growth process and induce strong shape anisotropy.
Magnetic Fields in Spiral Galaxies
Beck, Rainer
2015-01-01
Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...
Effect of zero magnetic field on cardiovascular system and microcirculation
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling "ARFA" has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
Institute of Scientific and Technical Information of China (English)
Yan Shi-Lei; Zhu Hai-Xia
2006-01-01
This paper studies the critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume-Capel model (BCM) in the presence of an applied field within the effective field theory. The trajectory of tricritical point, reentrant transitions and degenerate patterns of anisotropy are obtained both for the bond and the anisotropy dilutions. The global phase diagrams demonstrate unusually reentrant phenomena. The temperature dependences of magnetization curves undergo remarkable spin glass behaviour at low temperatures, and transform from ferromagnetism to paramagnetism at high temperature in applied fields. Temperature dependence of magnetic susceptibility curve is in qualitative agreement with experimental result.
Directory of Open Access Journals (Sweden)
Robert Kavet
Full Text Available The Trans Bay Cable (TBC is a ±200-kilovolt (kV, 400 MW 85-km long High Voltage Direct Current (DC buried transmission line linking Pittsburg, CA with San Francisco, CA (SF beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable's path; these included the San Francisco-Oakland Bay Bridge (BB, the Richmond-San Rafael Bridge (RSR, the Benicia-Martinez Bridge (Ben and an area in San Pablo Bay (SP in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable's contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing were virtually identical to the measured values. The
Kavet, Robert; Wyman, Megan T; Klimley, A Peter
2016-01-01
The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable's path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia-Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable's contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The modeling
Directory of Open Access Journals (Sweden)
Alina Bey
Full Text Available Repetitive transcranial magnetic stimulation (rTMS holds promise as a non-invasive therapy for the treatment of neurological disorders such as depression, schizophrenia, tinnitus, and epilepsy. Complex interdependencies between stimulus duration, frequency and intensity obscure the exact effects of rTMS stimulation on neural activity in the cortex, making evaluation of and comparison between rTMS studies difficult. To explain the influence of rTMS on neural activity (e.g. in the motor cortex, we use a neuronal network model. The results demonstrate that the model adequately explains experimentally observed short term effects of rTMS on the band power in common frequency bands used in electroencephalography (EEG. We show that the equivalent local field potential (eLFP band power depends on stimulation intensity rather than on stimulation frequency. Additionally, our model resolves contradictions in experiments.
Magnetic field amplification in turbulent astrophysical plasmas
Federrath, Christoph
2016-01-01
Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...
The Magnetic Field of Solar Spicules
Centeno, R; Ramos, A Asensio
2009-01-01
Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.
Institute of Scientific and Technical Information of China (English)
徐晨; 刘桂雄; 张沛强
2009-01-01
Magnet can self-levitate in magnetic fluid. Exact data of self-levitation is the key of validating theoretical model and achieving controllable levitation by getparms magnetic force. The magnetic field distribution is unique existence. The levitating magnets position model Hz can derive from the field intensity model in magnetic fluid field Hf. The Hz and magnet displacement r have the relation of one-to-one correspondence,which can be adopted to locate the magnet position in magnetic fluid. The relation of levitation position and magnetic field distribution is pointwise calibrated in holl detection test to verify the theoretical model r-Hz. The results show that the test data and theoretical curve match perfectly. the self-levitation height,43.13±0.05 mm,is acquired by test equipment. Comparing to the theoretical result 43.34 mm,it can draw a conclusion that the levitating magnets position model Hz is correct and effective in levitation height prediction.%永磁体在磁流体中能够自悬浮,准确获取悬浮位置信息是验证理论模型、调节各种影响磁场力的参数以实现悬浮位置可控的关键.磁场分布具有唯一性原理,通过磁场分布模型计算推导,可以得出永磁体悬浮位置模型HZ.该模型与永磁体位移r具有唯一对应关系.利用这种对应关系即可对磁流体中的永磁体进行定位.采用霍尔检测方法逐点测量磁场与永磁体位置之间关系,验证解析模型.结果表明试验与理论曲线匹配度好.在试验中测量得到悬浮位置为43.13±0.05 mm,与根据模型计算结果43.34 mm非常吻合,证明永磁体悬浮位置模型应用于悬浮高度预测中是正确有效的.
Schmid, Gernot; Hirtl, Rene
2016-06-01
The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the
Changlani, Hitesh; Kumar, Krishna; Clark, Bryan; Fradkin, Eduardo
Frustrated spin systems in two dimensions provide a fertile ground for discovering exotic states of matter, often with topologically non-trivial properties. In this work, we investigate the possible existence of a chiral spin liquid state in the spin 1/2 XXZ model on the frustrated kagome lattice in the presence of a magnetic field. This model is equivalent to a hard-core bosonic one with density-density interactions at finite filling fraction. Motivated by previous field theoretic predictions utilizing a Chern-Simons theory adapted for this lattice, we focus our attention to understanding the XY limit for the 2/3 magnetization plateau (equivalent to a system of hard-core bosons at 1/6 filling with weak nearest-neighbor repulsive interactions). Performing exact or accurate numerical computations, and based on energetics and construction of minimally entangled states and associated modular matrices, we provide evidence for such a spin liquid. We study the nature of this phase and examine its stability to additional interactions. We acknowledge support from the SciDAC program under Award Number DE-FG02-12ER46875.
Opening the cusp. [using magnetic field topology
Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.
1991-01-01
This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.
Convective intensification of magnetic fields in the quiet Sun
Bushby, P J; Proctor, M R E; Weiss, N O
2008-01-01
Kilogauss-strength magnetic fields are often observed in intergranular lanes at the photosphere in the quiet Sun. Such fields are stronger than the equipartition field $B_e$, corresponding to a magnetic energy density that matches the kinetic energy density of photospheric convection, and comparable with the field $B_p$ that exerts a magnetic pressure equal to the ambient gas pressure. We present an idealised numerical model of three-dimensional compressible magnetoconvection at the photosphere, for a range of values of the magnetic Reynolds number. In the absence of a magnetic field, the convection is highly supercritical and is characterised by a pattern of vigorous, time-dependent, ``granular'' motions. When a weak magnetic field is imposed upon the convection, magnetic flux is swept into the convective downflows where it forms localised concentrations. Unless this process is significantly inhibited by magnetic diffusion, the resulting fields are often much greater than $B_e$, and the high magnetic pressur...
Magnetic fields of neutron stars
Reisenegger, Andreas
2013-01-01
Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...
Inference of magnetic fields in inhomogeneous prominences
Milić, I.; Faurobert, M.; Atanacković, O.
2017-01-01
Context. Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. Aims: We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. Methods: We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D slab model. Results: We find that differences between input and the inferred magnetic field vector are non-negligible. Namely, we almost universally find that the inferred field is weaker and more horizontal than the input field. Conclusions: Spatial inhomogeneities and radiative transfer have a strong effect on scattering line polarization in the optically thick lines. In real-life situations, ignoring these effects could lead to a serious misinterpretation of spectropolarimetric observations of chromospheric objects such as prominences.
Jiang, Chaowei; Wu, S T; Hu, Qiang
2012-01-01
We apply a data-driven MHD model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element (CESE) scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma $\\beta$. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the {\\it Solar Dynamic Observatory (SDO)} around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and t...
Energy Technology Data Exchange (ETDEWEB)
Mohammadpourfard, M., E-mail: Mohammadpour@azaruniv.edu [Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz 53751-71379 (Iran, Islamic Republic of); Aminfar, H., E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Khajeh, K., E-mail: khajeh.k.2005@gmail.com [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2014-04-01
In this paper, the concentration polarization phenomena in a two dimensional tube under steady state conditions containing ferrofluid (blood and 4 vol% Fe{sub 3}O{sub 4}) is reported in the presence of non-uniform magnetic field. Lumen-wall model has been used for solving the mass transport equation. Hemodynamics parameters such as flow rate, viscosity, wall shear stress (WSS) and the macromolecules surface concentration which accumulate on the blood vessel wall, influenced the formation and progression of atherosclerosis disease. Effective parameters on the low density lipoprotein (LDL) surface concentration (LSC) such as: the wall filtration velocity, inlet Reynolds number and WSS under applied non-uniform magnetic field have been examined. Numerical solution of governing equations of the flow field have been obtained by using the single-phase model and the control volume technique. Magnetic field is generated by an electric current going through a thin and straight wire oriented perpendicular to the tube. Results show WSS in the vicinity of magnetic field source increased and LSC decreased along the wall. - Highlights: • In this paper the concentration polarization phenomena of blood flow is reported in the presence of non-uniform magnetic field. • In presence of non-uniform magnetic field LSC will decrease along the wall due to the increasing the velocity gradients near the magnetic source. • When non-uniform magnetic field intensity increases, LSC along the wall becomes lower. • Non-uniform magnetic field can affects the flow more in low Reynolds numbers.
A deep dynamo generating Mercury's magnetic field.
Christensen, Ulrich R
2006-12-21
Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.
Martin, Matthew; McBride, Ryan; Greenly, John
2012-10-01
Recent experiments on the Z machine at Sandia National Laboratories have demonstrated the measurement of magnetic fields inside an imploding cylindrical liner. The aspect ratio six beryllium liner had a two micron thick aluminum radiographic tracer layer on its inner surface and was driven with approximately 20MA of current over a 100ns rise time. B-dot probes were placed at varying radial positions inside the liner and a time-dependent magnetic field was measured. We compare the results of these experiments to simulations performed with the multi-physics ALEGRA code. These simulations suggest that the measured magnetic field is due to flux frozen into the release from the liner's inner surface. In short pulse mode, the surface magnetic pressure drives a shock into the liner. This shock has a magnetic component which is then frozen into the release wave formed when the shock reaches the liner's free inner surface. Simulations suggest this magnetized low density release then flows past the B-dot probe and is the source of the measured magnetic field. We demonstrate how these experimental measurements could be utilized to infer the amount of magnetic field at the shock front just before it releases into the vacuum. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Zero magnetic field type magnetic field sensor. Reijikaigata jikai sensor
Energy Technology Data Exchange (ETDEWEB)
Sonoda, T.; Ueda, R. (Kyushu Institute of Technology, Fukuoka (Japan))
1990-11-20
It is shown in this paper that a new type of sensor with excellent characteristics can be made by demagnetizing the sensor core toward a zero field state and then detecting an unknown field to be detected by the demagnetizing current. The core operates equivalently in a zero magnetic field so that the detection sensitivity is determined by the coil constant including the number of turns of the solenoid for demagnetization required to offset the field to be detected. Therefore the detection sensitivity does not depend on its configuration and magnetization characteristics and does not depend on the temperature. It is thereby considered that these characteristics can largely reduce such problems at present as the aging deterioration of magnetic materials or the quality control accompanied by manufacturing. In addition, the following points have been clarified: (1) The upper limit of the detectable range does not exist in principle. (2) The accuracy of the detection is 0.02% to the full scale 20kA/m. (3) The magnetization property required to the core used as a sensor is that it has a rectangular B-H loop which is as sharp as possible. 14 refs., 13 figs., 2 tabs.
Fast Reconnection of Weak Magnetic Fields
Zweibel, Ellen G.
1998-01-01
Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.
2007-01-01
An explicit expression for the partition function of two-dimensional nearest neighbour Ising models in the presence of a magnetic field is derived by a systematic enumeration of all the spin configurations pertaining to a square lattice of sixteen sites. The critical temperature is shown to be in excellent agreement with the reported values while the corresponding dimensionless magnetic field is obtained as 0.004.
Magnetic field studies of massive main sequence stars
Schoeller, M; Ilyin, I; Kharchenko, N V; Briquet, M; Langer, N; Oskinova, L M
2011-01-01
We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar phy...
Extracting Spectral Index of Intergalactic Magnetic Field from Radio Polarizations
Tiwari, Prabhakar
2015-01-01
We explain the large scale correlations in radio polarization in terms of the correlations of primordial/source magnetic field. The radio waves are dominantly produced by the synchrotron mechanism and hence their polarization angle is deemed to be correlated with the magnetic field of the radio source. The primordial intergalactic magnetic field seeds the source magnetic field and hence it is possible that during the source evolution the correlations of primordial magnetic field survived. We model the intergalactic magnetic field in all $3D$ space and fit its correlations with JVAS/CLASS radio polarization alignments. We find that the radio polarization alignments are best fitted with the magnetic field spectral index given by $-2.43\\pm 0.02$. We show that primordial magnetic field correlation provides a good explanation of the observed radio polarization alignment.
Gilmore, M. S.
1999-01-01
Measurements recently supplied by the MGS Magnetometer/Electron Reflectometer (MAG/ER) on MGS can be applied to test theories of the origin of the martian crustal dichotomy. Strong (+/- 1500 nT) magnetic anomalies are observed in the Martian crust. The observations can be summarized as follows: 1) strong crustal magnetic sources are generally confined to the southern highlands, although weaker (approx. 40 nT) anomalies were observed during close periapsis; 2) strong magnetic anomalies are absent in the vicinity of Hellas and Argyre; 3) the anomalies in the region 0 deg to 90 deg S, 120 deg to 240 deg west have a linear geometry, strike generally east west for 1000s km, and show several reversals. This latter point has led to the suggestion that some form of lateral plate tectonics may have been operative in the southern highlands of Mars. These observations have led previous workers to hypothesize that the magnetic anomalies were present prior to and were destroyed by the formation of Hellas and Argyre. As such large impacts are confined to the era of heavy bombardment, this places the time of formation of large magnetic anomalies prior to approx. 3.9 Ga. One obvious extension of this is that the northern lowlands lack significant anomalies because they were erased by impacts and/or the northern lowlands represent crust completely reheated above the Curie temperature. Preliminary observations of the distributions of the large crustal magnetic anomalies show that many of them extend continuously over the highland lowland boundary. This occurs particularly north of the boundary between 30 deg W and 270 deg W, corresponding to northern Arabia, but also occurs in southern Elysium (approx. 10 deg S, 200 deg) and the SW portion of Tharsis (approx. 15 deg S, 140 deg). This suggests that, in these areas, Noachian crust containing the greater than 3.9 Ga magnetic signature, lies beneath the northern highlands. This geometry can be used to test models for the formation of
Primordial Magnetic Fields and Causality
Durrer, R; Durrer, Ruth; Caprini, Chiara
2003-01-01
In this letter we discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much stronger suppressed than usually assumed and that a helical component is even suppressed even more than the parity even part. We show that due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in galaxies and clusters, but they cannot leave any detectable imprint on the cosmic microwave background.
Anisotropic Harper-Hofstadter-Mott model: Competition between condensation and magnetic fields
Hügel, Dario; Strand, Hugo U. R.; Werner, Philipp; Pollet, Lode
2017-08-01
We derive the reciprocal cluster mean-field method to study the strongly interacting bosonic Harper-Hofstadter-Mott model. The system exhibits a rich phase diagram featuring band insulating, striped superfluid, and supersolid phases. Furthermore, for finite hopping anisotropy, we observe gapless uncondensed liquid phases at integer fillings, which are analyzed by exact diagonalization. The liquid phases at fillings ν =1 ,3 exhibit the same band fillings as the fermionic integer quantum Hall effect, while the phase at ν =2 is C T -symmetric with zero charge response. We discuss how these phases become gapped on a quasi-one-dimensional cylinder, leading to a quantized Hall response, which we characterize by introducing a suitable measure for nontrivial many-body topological properties. Incompressible metastable states at fractional filling are also observed, indicating competing fractional quantum Hall phases. The combination of reciprocal cluster mean-field and exact diagonalization yields a promising method to analyze the properties of bosonic lattice systems with nontrivial unit cells in the thermodynamic limit.
Magnetic Field Amplification via Protostellar Disc Dynamos
Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira
2015-01-01
We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.
A holographic bound on cosmic magnetic fields
Directory of Open Access Journals (Sweden)
Brett McInnes
2015-03-01
Full Text Available Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark–gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description in terms of a thermal asymptotically AdS black hole. We show that holography imposes an upper bound on the intensity of magnetic fields (≈3.6×1018gauss at the hadronization temperature in these circumstances; this is above, but not far above, the values expected in some models of cosmic magnetogenesis.
Magnetic fields during high redshift structure formation
Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S
2012-01-01
We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.
Magnetic Field Effect Transistors
1990-07-01
apparent damage to either the Ultem 1000 (polyetherimide) or Kapton substrates. The resistivity of the palladium films (ɘ.1 um) suggests that the... Ultem 1000 is similar to that of bulk palladium. Film thickness was determined from XES and WDS, and the correlation of the data to model scattering...calculations are good. Scratches through the films on Kapten and Ultem 1000 did not reveal the presence of any obvious damage to the polyimide films and
A note on the infrared behavior of the compactified Ginzburg--Landau model in a magnetic field
Linhares, C A; Souza, M L; 10.1209/0295-5075/96/31002
2011-01-01
We consider the Euclidean large-$N$ Ginzburg--Landau model in $D$ dimensions, $d$ ($d\\leq D$) of them being compactified. For D=3, the system can be supposed to describe, in the cases of d=1, d=2, and d=3, respectively, a superconducting material in the form of a film, of an infinitely long wire having a rectangular cross-section and of a brick-shaped grain. We investigate the fixed-point structure of the model, in the presence of an external magnetic field. An infrared-stable fixed points is found, which is independent of the number of compactified dimensions. This generalizes previous work for type-II superconducting films
Magnetic Field Strengths in Photodissociation Regions
Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A
2015-01-01
We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...
AlMuhammad, Anwar Saleh
2016-01-01
Large scale magnetic fields seem to be present in almost all astrophysical systems and scales from planets to superclusters of galaxies and in very low density intergalactic media. The upper limit of primordial magnetic fields (PMF) has been set by recent observations by the Planck observatory (2015) to be of the order of a few nG. The simple model ${f^2}FF$ used to generate the PMF during the inflation era. It is based on the breaking of conformal symmetry of electromagnetism during inflation. It is attractive because it is stable under perturbations and leads to a scale invariant PMF. However, it may suffer from two problems: Backreaction and strong coupling. In the first case, the electromagnetic energy may exceed the energy of inflation, ${\\rho _{{\\rm{Inf}}}}$. In the second case, the effective electric charges become excessively large if we want to retrieve the standard electromagnetism at the end of inflation. In this research, we investigate the generation of PMF under three different models of inflati...
Lepping, R. P.; Berdichevsky, D. B.; Wu, C.-C.
2017-02-01
We examine the average magnetic field magnitude (| B | ≡ B) within magnetic clouds (MCs) observed by the Wind spacecraft from 1995 to July 2015 to understand the difference between this B and the ideal B-profiles expected from using the static, constant-α, force-free, cylindrically symmetric model for MCs of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990, denoted here as the LJB model). We classify all MCs according to an assigned quality, Q0 (= 1, 2, 3, for excellent, good, and poor). There are a total of 209 MCs and 124 when only Q0 = 1, 2 cases are considered. The average normalized field with respect to the closest approach (CA) is stressed, where we separate cases into four CA sets centered at 12.5 %, 37.5 %, 62.5 %, and 87.5 % of the average radius; the averaging is done on a percentage-duration basis to treat all cases the same. Normalized B means that before averaging, the B for each MC at each point is divided by the LJB model-estimated B for the MC axis, B0. The actual averages for the 209 and 124 MC sets are compared to the LJB model, after an adjustment for MC expansion ( e.g. Lepping et al. in Ann. Geophys. 26, 1919, 2008). This provides four separate difference-relationships, each fitted with a quadratic ( Quad) curve of very small σ. Interpreting these Quad formulae should provide a comprehensive view of the variation in normalized B throughout the average MC, where we expect external front and rear compression to be part of its explanation. These formulae are also being considered for modifying the LJB model. This modification will be used in a scheme for forecasting the timing and magnitude of magnetic storms caused by MCs. Extensive testing of the Quad formulae shows that the formulae are quite useful in correcting individual MC B-profiles, especially for the first {≈ }1/3 of these MCs. However, the use of this type of B correction constitutes a (slight) violation of the force-free assumption used in the original LJB MC model.
Chiral transition with magnetic fields
Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian
2014-01-01
We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...
Magnetic Fields of Neutron Stars
Indian Academy of Sciences (India)
Sushan Konar
2017-09-01
This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.
Primordial magnetic fields from the string network
Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi
2016-08-01
Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.
Lightning Magnetic Field Measurements around Langmuir Laboratory
Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.
2010-12-01
In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.
Magnetic fields in spiral galaxies
Krause, Marita
2015-03-01
The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).
Primordial Magnetic Fields that Last?
Carroll, S M; Carroll, Sean M.; Field, George B.
1998-01-01
The magnetic fields we observe in galaxies today may have their origins in the very early universe. While a number of mechanisms have been proposed which lead to an appreciable field amplitude at early times, the subsequent evolution of the field is of crucial importance, especially whether the correlation length of the field can grow as large as the size of a protogalaxy. This talk is a report on work in progress, in which we consider the fate of one specific primordial field scenario, driven by pseudoscalar effects near the electroweak phase transition. We argue that such a scenario has a number of attractive features, although it is still uncertain whether a field of appropriate size can survive until late times.
Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field
Institute of Scientific and Technical Information of China (English)
Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei
2004-01-01
A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.
Strbak, Oliver; Balejcikova, Lucia; Baciak, Ladislav; Kovac, Jozef; Masarova-Kozelova, Marta; Krafcik, Andrej; Dobrota, Dusan; Kopcansky, Peter
2017-09-01
Various pathological processes including neurodegenerative disorders are associated with the accumulation of iron, while it is believed that a precursor of iron accumulation is ferritin. Physiological ferritin is due to low relaxivity, which results in only weak detection by magnetic resonance imaging (MRI) techniques. On the other hand, pathological ferritin is associated with disrupted iron homeostasis and structural changes in the mineral core, and should increase the hypointensive artefacts in MRI. On the basis of recent findings in respect to the pathological ferritin structure, we prepared the magnetoferritin particles as a possible pathological ferritin model system. The particles were characterised with dynamic light scattering, as well as with superconducting quantum interference device measurements. With the help of low-field (0.2 T) and high-field (4.7 T) MRI standard T 2-weighted protocols we found that it is possible to clearly distinguish between native ferritin as a physiological model system, and magnetoferritin as a pathological model system. Surprisingly, the T 2-weighted short TI inversion recovery protocol at low-field system showed the optimum contrast differentiation. Such findings are highly promising for exploiting the use of iron accumulation as a noninvasive diagnostics tool of pathological processes, where the magnetoferritin particles could be utilised as MRI iron quantification calibration samples.
Tawfik, Abdel Nasser; Magdy, Niseem
2015-01-01
Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to d