WorldWideScience

Sample records for model lsm hydrometeorological

  1. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of land surfaces...

  2. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of...

  3. What do you do when the binomial cannot value real options? The LSM model

    Directory of Open Access Journals (Sweden)

    S. Alonso

    2014-12-01

    Full Text Available The Least-Squares Monte Carlo model (LSM model has emerged as the derivative valuation technique with the greatest impact in current practice. As with other options valuation models, the LSM algorithm was initially posited in the field of financial derivatives and its extension to the realm of real options requires considering certain questions which might hinder understanding of the algorithm and which the present paper seeks to address. The implementation of the LSM model combines Monte Carlo simulation, dynamic programming and statistical regression in a flexible procedure suitable for application to valuing nearly all types of corporate investments. The goal of this paper is to show how the LSM algorithm is applied in the context of a corporate investment, thus contributing to the understanding of the principles of its operation.

  4. Modeling of precipitation and Cr depletion profiles of Inconel 600 during heat treatments and LSM procedure

    Energy Technology Data Exchange (ETDEWEB)

    Bao Gang [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Shinozaki, Kenji [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan)]. E-mail: kshino@hiroshima-u.ac.jp; Inkyo, Muneyuki [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Miyoshi, Tomohisa [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Yamamoto, Motomichi [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Mahara, Yoichi [Babcock-Hitachi K.K., 3-36 Takara-machi, Kure, Hiroshima (Japan); Watanabe, Hiroshi [Babcock-Hitachi K.K., 3-36 Takara-machi, Kure, Hiroshima (Japan)

    2006-08-10

    A model based on the thermodynamic and kinetic was conducted to simulate the Cr depletion profiles near the grain boundary in Inconel 600 during the heat treatments and laser surface melting (LSM) process using Thermo-Calc and Dictra code. Based on the good agreement of Cr concentration distribution during heat treatments measured by experiments, the microsegregation of Cr induced by cellular microstructure formed during the LSM process was also modeled. The Cr depletion profile was evaluated using the Cr depletion area below the critical Cr concentration for intergranular cracking/intergranular stress corrosion cracking (IGC/IGSCC) susceptibility (8 mass%). Comparing with the result of Streicher test, the Cr depletion area calculated showed good coherence with the IGC/IGSCC susceptibility. The sample after SR + LTS treatment with the largest Cr depletion area showed the worst IGC/IGSCC resistance, while, the sample after LSM process with the smaller Cr depletion area showed the excellent IGC/IGSCC resistance.

  5. Representing vegetation processes in hydrometeorological simulations using the WRF model

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund

    For accurate predictions of weather and climate, it is important that the land surface and its processes are well represented. In a mesoscale model the land surface processes are calculated in a land surface model (LSM). These pro-cesses include exchanges of energy, water and momentum between...... data and the default vegetation data in WRF were further used in high-resolution simulations over Denmark down to cloud-resolving scale (3 km). Results from two spatial resolutions were compared to investigate the inuence of parametrized and resolved convec-tion. The simulations using the parametrized...

  6. Box photosynthesis modeling results for WRF/CMAQ LSM

    Data.gov (United States)

    U.S. Environmental Protection Agency — Box Photosynthesis model simulations for latent heat and ozone at 6 different FLUXNET sites. This dataset is associated with the following publication: Ran, L., J....

  7. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    Science.gov (United States)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  8. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...

  9. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    Directory of Open Access Journals (Sweden)

    Alibek Issakhov

    2014-01-01

    Full Text Available This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm. Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions.

  10. Developing the Model for the GIS Applications in National Hydro-Meteorological Service in Poland

    Science.gov (United States)

    Kubacka, D.; Barszczynska, M.; Madej, P.

    2003-04-01

    historic data access. These layers are also sufficient for a hydro-meteorological situation visualisations suitable for the country and division maps. The existing data and thematic layers were used to develop an Internet service providing the information concerning the hydro-meteorological posts. It also allowed presenting the results of the numerical weather forecast model in the Internet. It is planned to perform the visualisation of the hydro-meteorological phenomena in the monthly IMWM bulletin.

  11. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Directory of Open Access Journals (Sweden)

    E. Picciotti

    2013-05-01

    Full Text Available Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative mbox{integrated} decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5

  12. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Science.gov (United States)

    Picciotti, E.; Marzano, F. S.; Anagnostou, E. N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Cazac, V.; Pace, R.; Cinque, G.; Bernardini, L.; De Sanctis, K.; Di Fabio, S.; Montopoli, M.; Anagnostou, M. N.; Telleschi, A.; Dimitriou, E.; Stella, J.

    2013-05-01

    Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative integrated decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps

  13. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    Science.gov (United States)

    Peters-Lidard, Christa D.

    2011-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling

  14. EDgE multi-model hydro-meteorological seasonal hindcast experiments over Europe

    Science.gov (United States)

    Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Oldrich; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel

    2017-04-01

    Extreme hydrometeorological events (e.g., floods, droughts and heat waves) caused serious damage to society and infrastructures over Europe during the past decades. Developing a seamless and skillful operational seasonal forecasting system of these extreme events is therefore a key tool for short-term decision making at local and regional scales. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the skill of a newly created large multi-model hydro-meteorological ensemble for predicting extreme events over the Pan-EU domain at a higher resolution 5×5 km2. Two state-of-the-art seasonal prediction systems were chosen for this project. Two models from the North American MultiModel ensemble (NMME) with 22 realizations, and two models provided by the ECMWF with 30 realizations. All models provide daily forcings (P, Ta, Tmin, Tmax) of the the Pan-EU at 1°. Downscaling has been carried out with the MTCLIM algorithm (Bohn et al. 2013) and external drift Kriging using elevation as drift to induce orographic effects. In this project, four high-resolution seamless hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the common hindcast period of 1993-2012 resulting in an ensemble size of 208 realizations. Key indicators are focussing on six terrestrial Essential Climate Variables (tECVs): river runoff, soil moisture, groundwater recharge, precipitation, potential evapotranspiration, and snow water equivalent. Impact Indicators have been co-designed with stakeholders in Norway (hydro-power), UK (water supply), and Spain (river basin authority) to provide an improved information for decision making. The Indicators encompass diverse information such as the occurrence of high and low streamflow percentiles (floods, and hydrological drought) and lower percentiles of top soil moisture (agricultural drought) among others. Preliminary results evaluated at study sites in Norway

  15. Advancing hydrometeorological prediction capabilities through standards-based cyberinfrastructure development: The community WRF-Hydro modeling system

    Science.gov (United States)

    gochis, David; Parodi, Antonio; Hooper, Rick; Jha, Shantenu; Zaslavsky, Ilya

    2013-04-01

    The need for improved assessments and predictions of many key environmental variables is driving a multitude of model development efforts in the geosciences. The proliferation of weather and climate impacts research is driving a host of new environmental prediction model development efforts as society seeks to understand how climate does and will impact key societal activities and resources and, in turn, how human activities influence climate and the environment. This surge in model development has highlighted the role of model coupling as a fundamental activity itself and, at times, a significant bottleneck in weather and climate impacts research. This talk explores some of the recent activities and progress that has been made in assessing the attributes of various approaches to the coupling of physics-based process models for hydrometeorology. One example modeling system that is emerging from these efforts is the community 'WRF-Hydro' modeling system which is based on the modeling architecture of the Weather Research and Forecasting (WRF). An overview of the structural components of WRF-Hydro will be presented as will results from several recent applications which include the prediction of flash flooding events in the Rocky Mountain Front Range region of the U.S. and along the Ligurian coastline in the northern Mediterranean. Efficient integration of the coupled modeling system with distributed infrastructure for collecting and sharing hydrometeorological observations is one of core themes of the work. Specifically, we aim to demonstrate how data management infrastructures used in the US and Europe, in particular data sharing technologies developed within the CUAHSI Hydrologic Information System and UNIDATA, can interoperate based on international standards for data discovery and exchange, such as standards developed by the Open Geospatial Consortium and adopted by GEOSS. The data system we envision will help manage WRF-Hydro prediction model data flows, enabling

  16. Forecasting Flood Hazard on Real Time: Implementation of a New Surrogate Model for Hydrometeorological Events in an Andean Watershed.

    Science.gov (United States)

    Contreras Vargas, M. T.; Escauriaza, C. R.; Westerink, J. J.

    2017-12-01

    In recent years, the occurrence of flash floods and landslides produced by hydrometeorological events in Andean watersheds has had devastating consequences in urban and rural areas near the mountains. Two factors have hindered the hazard forecast in the region: 1) The spatial and temporal variability of climate conditions, which reduce the time range that the storm features can be predicted; and 2) The complexity of the basin morphology that characterizes the Andean region, and increases the velocity and the sediment transport capacity of flows that reach urbanized areas. Hydrodynamic models have become key tools to assess potential flood risks. Two-dimensional (2D) models based on the shallow-water equations are widely used to determine with high accuracy and resolution, the evolution of flow depths and velocities during floods. However, the high-computational requirements and long computational times have encouraged research to develop more efficient methodologies for predicting the flood propagation on real time. Our objective is to develop new surrogate models (i.e. metamodeling) to quasi-instantaneously evaluate floods propagation in the Andes foothills. By means a small set of parameters, we define storms for a wide range of meteorological conditions. Using a 2D hydrodynamic model coupled in mass and momentum with the sediment concentration, we compute on high-fidelity the propagation of a flood set. Results are used as a database to perform sophisticated interpolation/regression, and approximate efficiently the flow depth and velocities in critical points during real storms. This is the first application of surrogate models to evaluate flood propagation in the Andes foothills, improving the efficiency of flood hazard prediction. The model also opens new opportunities to improve early warning systems, helping decision makers to inform citizens, enhancing the reslience of cities near mountain regions. This work has been supported by CONICYT/FONDAP grant

  17. Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project

    Directory of Open Access Journals (Sweden)

    A. Hally

    2015-03-01

    Full Text Available The e-Science environment developed in the framework of the EU-funded DRIHM project was used to demonstrate its ability to provide relevant, meaningful hydrometeorological forecasts. This was illustrated for the tragic case of 4 November 2011, when Genoa, Italy, was flooded as the result of heavy, convective precipitation that inundated the Bisagno catchment. The Meteorological Model Bridge (MMB, an innovative software component developed within the DRIHM project for the interoperability of meteorological and hydrological models, is a key component of the DRIHM e-Science environment. The MMB allowed three different rainfall-discharge models (DRiFt, RIBS and HBV to be driven by four mesoscale limited-area atmospheric models (WRF-NMM, WRF-ARW, Meso-NH and AROME and a downscaling algorithm (RainFARM in a seamless fashion. In addition to this multi-model configuration, some of the models were run in probabilistic mode, thus giving a comprehensive account of modelling errors and a very large amount of likely hydrometeorological scenarios (> 1500. The multi-model approach proved to be necessary because, whilst various aspects of the event were successfully simulated by different models, none of the models reproduced all of these aspects correctly. It was shown that the resulting set of simulations helped identify key atmospheric processes responsible for the large rainfall accumulations over the Bisagno basin. The DRIHM e-Science environment facilitated an evaluation of the sensitivity to atmospheric and hydrological modelling errors. This showed that both had a significant impact on predicted discharges, the former being larger than the latter. Finally, the usefulness of the set of hydrometeorological simulations was assessed from a flash flood early-warning perspective.

  18. The effect of background hydrometeorological conditions on the sensitivity of evapotranspiration to model parameters: analysis with measurements from an Italian alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Montaldo

    2003-01-01

    Full Text Available Recent developments have made land-surface models (LSMs more complex through the inclusion of more processes and controlling variables, increasing numbers of parameters and uncertainty in their estimates. To overcome these uncertainties, prior to applying a distributed LSM over the whole Toce basin (Italian Alps, a field campaign was carried out at an experimental plot within the basin before exploring the skill and parameter importance (sensitivity using the TOPLATS model, an existing LSM. In the summer and autumn of 1999, which included both wet (atmosphere controlled and dry (soil controlled periods, actual evapotranspiration estimates were performed using Bowen ratio and, for a short period, eddy correlation methods. Measurements performed with the two methods are in good agreement. The calibrated LSM predicts actual evapotranspiration quite well over the whole observation period. A sensitivity analysis of the evapotranspiration to model parameters was performed through the global multivariate technique during both wet and dry periods of the campaign. This approach studies the influence of each parameter without conditioning on certain values of the other variables. Hence, all parameters are varied simultaneously using, for instance, a uniform sampling strategy through a Monte Carlo simulation framework. The evapotranspiration is highly sensitive to the soil parameters, especially during wet periods. However, the evapotranspiration is also sensitive to some vegetation parameters and, during dry periods, wilting point is the most critical for evapotranspiration predictions. This result confirms the importance of correct representation of vegetation properties which, in water-limited conditions, control evapotranspiration. Keywords: evapotranspiration, sensitivity analysis, land surface model, eddy correlation, Alpine basin

  19. Impacts of weighting climate models for hydro-meteorological climate change studies

    Science.gov (United States)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  20. Modeling detailed hydro-meteorological surfaces and runoff response in large diverse watersheds

    International Nuclear Information System (INIS)

    Byrne, J.; Kienzle, S.W.; MacDonald, R.J.

    2008-01-01

    An understanding of local variability in climatic conditions over complex terrain is imperative to making accurate assessments of impacts from climate change on fresh water ecosystems (Daly, 2006). The derivation of representative spatial data in diverse environments poses a significant challenge to the modelling community. This presentation describes the current status of a long term ongoing hydro-climate model development program. We are developing a gridded hydroclimate dataset for diverse watersheds using SimGrid (Larson, 2008; Lapp et al., 2005; Sheppard, 1996), a model that applies the Mountain Climate Model (MTCLIM; Hungerford et al., 1989) to simulate hydro-climatic conditions over diverse terrain. The model uses GIS based terrain categories (TC) classified by slope, aspect, elevation, and soil water storage. SimGrid provides daily estimates of solar radiation, air temperature, relative humidity, precipitation, snowpack and soil water storage over space. Earlier versions of the model have been applied in the St. Mary (Larson, 2008) and upper Oldman basins (Lapp et al., 2005), giving realistic estimates of hydro-climatic variables. The current study demonstrates improvements to the estimation of temperature, precipitation, snowpack, soil water storage and runoff from the basin. Soil water storage data for the upper drainage were derived with GIS and included in SimGrid to estimate soil water flux over the time period. These changes help improve the estimation of spatial climatic variability over the basin while accounting for topographical influence. In further work we will apply spatial hydro-climatic surfaces from the SimGrid model to assess the hydrologic response to environmental change for watersheds in Canada and beyond. (author)

  1. Future intensification of hydro-meteorological extremes: downscaling using the weather research and forecasting model

    Science.gov (United States)

    El-Samra, R.; Bou-Zeid, E.; Bangalath, H. K.; Stenchikov, G.; El-Fadel, M.

    2017-12-01

    A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model's ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.

  2. Spatiotemporal variability of water and energy fluxes: TERENO- prealpine hydrometeorological data analysis and inverse modeling with GEOtop and PEST

    Science.gov (United States)

    Soltani, M.; Kunstmann, H.; Laux, P.; Mauder, M.

    2016-12-01

    In mountainous and prealpine regions echohydrological processes exhibit rapid changes within short distances due to the complex orography and strong elevation gradients. Water- and energy fluxes between the land surface and the atmosphere are crucial drivers for nearly all ecosystem processes. The aim of this research is to analyze the variability of surface water- and energy fluxes by both comprehensive observational hydrometeorological data analysis and process-based high resolution hydrological modeling for a mountainous and prealpine region in Germany. We particularly focus on the closure of the observed energy balance and on the added value of energy flux observations for parameter estimation in our hydrological model (GEOtop) by inverse modeling using PEST. Our study area is the catchment of the river Rott (55 km2), being part of the TERENO prealpine observatory in Southern Germany, and we focus particularly on the observations during the summer episode May to July 2013. We present the coupling of GEOtop and the parameter estimation tool PEST, which is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. Estimation of the surface energy partitioning during the data analysis process revealed that the latent heat flux was considered as the main consumer of available energy. The relative imbalance was largest during nocturnal periods. An energy imbalance was observed at the eddy-covariance site Fendt due to either underestimated turbulent fluxes or overestimated available energy. The calculation of the simulated energy and water balances for the entire catchment indicated that 78% of net radiation leaves the catchment as latent heat flux, 17% as sensible heat, and 5% enters the soil in the form of soil heat flux. 45% of the catchment aggregated precipitation leaves the catchment as discharge and 55% as evaporation. Using the developed GEOtop-PEST interface, the hydrological model is calibrated by comparing

  3. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    Science.gov (United States)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  4. Future intensification of hydro-meteorological extremes: downscaling using the weather research and forecasting model

    KAUST Repository

    El-Samra, R.

    2017-02-15

    A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model’s ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.

  5. Regional model simulation of the hydrometeorological effects of the Fucino Lake on the surrounding region

    Directory of Open Access Journals (Sweden)

    B. Tomassetti

    Full Text Available The drainage of the Fucino Lake of central Italy was completed in 1873, and this possibly caused significant climatic changes over the Fucino basin. In this paper we discuss a set of short-term triple-nested regional model simulations of the meteorological effects of the Fucino Lake on the surrounding region. We find that the model simulates realistic lake-breeze circulations and their response to background winds. The simulations indicate that the lake affects the temperature of the surrounding basin in all seasons and precipitation in the cold season, when cyclonic perturbations move across the region. Some effects of the lake also extend over areas quite far from the Fucino basin. Our results support the hypothesis that the drainage of the lake might have significantly affected the climate of the lake basin. However, longer simulations and further development in some aspects of the model are needed, in order to provide a more statistically robust evaluation of the simulated lake-effects.

    Key words. Hydrology (anthropogenic effects – Meteorology and atmospheric dynamics (climatology; mesoscale meteorology

  6. Appraisal of Weather Research and Forecasting Model Downscaling of Hydro-meteorological Variables and their Applicability for Discharge Prediction: Prognostic Approach for Ungauged Basin

    Science.gov (United States)

    Srivastava, P. K.; Han, D.; Rico-Ramirez, M. A.; Bray, M.; Islam, T.; Petropoulos, G.; Gupta, M.

    2015-12-01

    Hydro-meteorological variables such as Precipitation and Reference Evapotranspiration (ETo) are the most important variables for discharge prediction. However, it is not always possible to get access to them from ground based measurements, particularly in ungauged catchments. The mesoscale model WRF (Weather Research & Forecasting model) can be used for prediction of hydro-meteorological variables. However, hydro-meteorologists would like to know how well the downscaled global data products are as compared to ground based measurements and whether it is possible to use the downscaled data for ungauged catchments. Even with gauged catchments, most of the stations have only rain and flow gauges installed. Measurements of other weather hydro-meteorological variables such as solar radiation, wind speed, air temperature, and dew point are usually missing and thus complicate the problems. In this study, for downscaling the global datasets, the WRF model is setup over the Brue catchment with three nested domains (D1, D2 and D3) of horizontal grid spacing of 81 km, 27 km and 9 km are used. The hydro-meteorological variables are downscaled using the WRF model from the National Centers for Enviromental Prediction (NCEP) reanalysis datasets and subsequently used for the ETo estimation using the Penman Monteith equation. The analysis of weather variables and precipitation are compared against the ground based datasets, which indicate that the datasets are in agreement with the observed datasets for complete monitoring period as well as during the seasons except precipitation whose performance is poorer in comparison to the measured rainfall. After a comparison, the WRF estimated precipitation and ETo are then used as a input parameter in the Probability Distributed Model (PDM) for discharge prediction. The input data and model parameter sensitivity analysis and uncertainty estimation are also taken into account for the PDM calibration and prediction following the Generalised

  7. LSM-YSZ Reactions in Different Atmospheres

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Hagen, Anke

    2009-01-01

    results in a decomposition of the formed La- and Sr-zirconates. The de-stabilisation of the LSM-YSZ interface under long-term annealing at 1,000 °C originates mainly from the inter-diffusion across the interface. Under reduced P(O2), the Mn diffusion from LSM into YSZ is enhanced. High P(O2) (0.21 atm...

  8. Evaluation of regional-scale water level simulations using various river routing schemes within a hydrometeorological modelling framework for the preparation of the SWOT mission

    Science.gov (United States)

    Häfliger, V.; Martin, E.; Boone, A. A.; Habets, F.; David, C. H.; Garambois, P. A.; Roux, H.; Ricci, S. M.; Thévenin, A.; Berthon, L.; Biancamaria, S.

    2014-12-01

    The ability of a regional hydrometeorological model to simulate water depth is assessed in order to prepare for the SWOT (Surface Water and Ocean Topography) mission that will observe free surface water elevations for rivers having a width larger than 50/100 m. The Garonne river (56 000 km2, in south-western France) has been selected owing to the availability of operational gauges, and the fact that different modeling platforms, the hydrometeorological model SAFRAN-ISBA-MODCOU and several fine scale hydraulic models, have been extensively evaluated over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes with time varying parameters, are tested using predetermined hydraulic parameters. The results show that the variable flow velocity scheme is advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between water level computations and in situ observations led to root mean square errors of 50-60 cm for the improved Muskingum method and 40-50 cm for the kinematic-diffusive wave method, in the downstream Garonne river. The error is larger than the anticipated SWOT resolution, showing the potential of the mission to improve knowledge of the continental water cycle. Discharge computations are also shown to be comparable to those obtained with high-resolution hydraulic models over two reaches. However, due to the high variability of river parameters (e.g. slope and river width), a robust averaging method is needed to compare the hydraulic model outputs and the regional model. Sensitivity tests are finally performed in order to have a better understanding of the mechanisms which control the key hydrological processes. The results give valuable information about the linearity, Gaussianity and symetry of the model, in order to prepare the assimilation of river heights in the model.

  9. Development of Self-made LSM Software using in Neuroscience

    Science.gov (United States)

    Doronin, Maxim; Makovkin, Sergey; Popov, Alexander

    2017-07-01

    One of the main and modern visualization method in neuroscience is two-photon microscopy. However, scientists need to upgrade their microscopy system so regular because they are interested to get more specific data. Self-developed microscopy system allows to modify the construction of microscope in not-complicated manner depending on specialized experimental models and scientific tasks. Earlier we reported about building of self-made laser scanning microscope (LSM) using in neuroscience both for in vivo and in vitro experiments. Here we will report how to create software AMAScan for LSM controlling in MATLAB. The work was performed with financial support of the government represented by the Ministry of Education and Science of the Russian Federation, the unique identifier of the project is RFMEFI58115X0016, the agreement on granting a subsidy №14.581.21.0016 dated 14.10.2015.

  10. Conformation of LSM/YSZ and LSM ceramic films obtained by the citrate and solid mixture techniques; Conformacao de filmes ceramicos de LSM e LSM/YSZ obtidos pelas tecnicas citratos e mistura de solidos

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R.; Vargas, R.A.; Andreoli, M.; Seo, E.S.M., E-mail: rchiba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de SOFC - Insumos e Componentes

    2009-07-01

    In this work, the ceramic films of LSM/YSZ (strontium-doped lanthanum manganite/Yttria-stabilized zirconia) and LSM used as cathodes of the solid oxide fuel cells (SOFC) are conformed by the wet powder spraying technique. The composite LSM/YSZ was obtained by the solid mixture technique and LSM by the citrate technique. For the formation of the LSM/YSZ and LSM ceramic films was necessary the preparation of dispersed ceramic suspensions for the deposition in YSZ substrate, used as electrolyte of the CaCOS. These powders were conformed using an aerograph for the deposition of the LSM/YSZ and LSM thin films of approximately 40 microns. The half-cells had been characterized by X-ray diffractometry (XRD), identifying the phases hexagonal (LSM) and cubica (YSZ). And electronic scanning electron microscopy (SEM) was used to evaluate the adherence and porosity of the ceramic films according to the characteristics of the cathode. (author)

  11. Combined use of local and global hydrometeorological data with regional and global hydrological models in the Magdalena - Cauca river basin, Colombia

    Science.gov (United States)

    Rodriguez, Erasmo; Sanchez, Ines; Duque, Nicolas; Lopez, Patricia; Kaune, Alexander; Werner, Micha; Arboleda, Pedro

    2017-04-01

    The Magdalena Cauca Macrobasin (MCMB) in Colombia, with an area of about 257,000 km2, is the largest and most important water resources system in the country. With almost 80% of the Colombian population (46 million people) settled in the basin, it is the main source of water for demands including human consumption, agriculture, hydropower generation, industrial activities and ecosystems. Despite its importance, the basin has witnessed enormous changes in land-cover and extensive deforestation during the last three decades. To make things more complicated, the MCMB currently lacks a set of tools to support planning and decision making processes at scale of the whole watershed. Considering this, the MCMB has been selected as one of the six different regional case studies in the eartH2Observe research project, in which hydrological and meteorological reanalysis products are being validated for the period 1980-2012. The combined use of the hydrological and meteorological reanalysis data, with local hydrometeorological data (precipitation, temperature and streamflow) provided by the National Hydrometeorological Agency (IDEAM), has given us the opportunity to implement and test three hydrological models (VIC, WFLOW and a Water Balance Model based on the Budyko framework) at the basin scale. Additionally, results from the global models in the eartH2Observe hydrological reanalysis have been used to evaluate their performance against the observed streamflow data. This paper discusses the comparison between streamflow observations and simulations from the global hydrological models forced with the WFDEI data, and regional models forced with a combination of observed and meteorological reanalysis data, in the whole domain of the MCMB. For the three regional models analysed results show good performances for some sub-basins and poor performances for others. This can be due to the smoothing of the precipitation fields, interpolated from point daily rainfall data, the effect of

  12. Hydrometeorological daily recharge assessment model (DREAM) for the Western Mountain Aquifer, Israel: Model application and effects of temporal patterns

    Science.gov (United States)

    Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Navon, S.; Frumkin, A.; Morin, E.

    2010-05-01

    Recharge is a critical issue for water management. Recharge assessment and the factors affecting recharge are of scientific and practical importance. The purpose of this study was to develop a daily recharge assessment model (DREAM) on the basis of a water balance principle with input from conventional and generally available precipitation and evaporation data and demonstrate the application of this model to recharge estimation in the Western Mountain Aquifer (WMA) in Israel. The WMA (area 13,000 km2) is a karst aquifer that supplies 360-400 Mm3 yr-1 of freshwater, which constitutes 20% of Israel's freshwater and is highly vulnerable to climate variability and change. DREAM was linked to a groundwater flow model (FEFLOW) to simulate monthly hydraulic heads and spring flows. The models were calibrated for 1987-2002 and validated for 2003-2007, yielding high agreement between calculated and measured values (R2 = 0.95; relative root-mean-square error = 4.8%; relative bias = 1.04). DREAM allows insights into the effect of intra-annual precipitation distribution factors on recharge. Although annual precipitation amount explains ˜70% of the variability in simulated recharge, analyses with DREAM indicate that the rainy season length is an important factor controlling recharge. Years with similar annual precipitation produce different recharge values as a result of temporal distribution throughout the rainy season. An experiment with a synthetic data set exhibits similar results, explaining ˜90% of the recharge variability. DREAM represents significant improvement over previous recharge estimation techniques in this region by providing near-real-time recharge estimates that can be used to predict the impact of climate variability on groundwater resources at high temporal and spatial resolution.

  13. Sputtered Layered Synthetic Microstruture (LSM) Dispersion Elements

    Science.gov (United States)

    Barbee, Troy W.

    1981-10-01

    The opportunities offered by engineered synthetic multilayer dispersion elements for x-rays have been recognized since the earliest days of x-ray diffraction analysis. In this paper, application of sputter deposition tehnology to the synthesis of Layered Synthetic Microstructure (LSM's) of sufficient quality or use as x-ray dispersion elements is discussed. It will be shown that high efficiency, controllble bandwidth dispersion elements, with d spacings varying from 15 Å to 180 Å, may be synthesized onto both mechanically stiff and flexible substrtes. Multilayer component materials include tungten, niobium, molybdenum, titanium, vanadium, and silicon layers separated by carbon layers. Experimental observations of peak reflectivity in first order, integrated reflectivity in first order, and diffraction performance at selected photon energies in the range, 100 to 15000 eV, will be reported and compared to theory. Emphasis is placed on results giving information concerning limiting structural characteristics of these LSM's. It will be shown that the observed behavior is in accord with theory, both kinematic and dynamic regimes being clearly observed. In addition, the mosaic spread of these LSM's is not detectable, indicatig that they are perfect structures. A consistent explanation of these experimental results indicates that roughness at the interfaces between constituent layers is the structural characteristic currently limiting diffracting behavior.

  14. The Mexican hydro-meteorological disasters and climate network (redesclim) as model on outreach decision makers on disaster public policy in Mexico.

    Science.gov (United States)

    Welsh-Rodriguez, C. M.; Rodriguez-Estevez, J. M., Sr.; Romo-Aguilar, M. D. L.; Brito-Castillo, L.; Salinas-Prieto, A.; Gonzalez-Sosa, E.; Pérez-Campuzano, E.

    2017-12-01

    REDESCLIM was designed and develop in 2011 due to a public call from The Science and Technology Mexican Council (CONACYT); CONACYT lead the activities for its organization and development among the academic community. REDESCLIM was created to enhance the capacity of response to hydro-meteorological disasters and climate events through an integrative effort of researchers, technologists, entrepreneurs, politicians and society. Brief summary of our objectives: 1) Understand the causes of disasters, to reduce risks to society and ecosystems 2) Support research and interdisciplinary assessment of the physical processes in natural and social phenomena to improve understanding of causes and impacts 3) Strengths collaboration with academic, government, private and other interdisciplinary networks from Mexico and other countries 4) Build human capacity and promote the development of skills 5) Recommend strategies for climate hazard prevention, mitigation and response, especially for hazard with the greatest impacts in Mexico, such as hurricanes, floods, drought, wild fires and other extremes events. We provide a continues communication channel on members research results to provide scientific information that could be used for different proposes, specificaly for decision makers who are dealing with ecological and hydro meteorological problems that can result in disasters, and provide a services menu based on the members scientific projects, publications, teaching courses, in order to impact public policy as final result. http://www.redesclim.org.mx. So far we have some basic results: Fiver national meetings (participants from 35 countries around the world), 7 Workshops and seminars (virtual and in-person), Climatic data platforms ( http://clicom.mex.cicese.mx, http://clicom-mex.cicese.mx/malla, http://atlasclimatico.unam.mx/REDESCLIM2/ ), climate change scenarios for the general public at http://escenarios.inecc.gob.mx, 14 seed projects, one model to hurricane simulation

  15. Hydrological now- and forecasting : Integration of operationally available remotely sensed and forecasted hydrometeorological variables into distributed hydrological models

    NARCIS (Netherlands)

    Schuurmans, J.M.

    2008-01-01

    Keywords: hydrology, models, soil moisture, rainfall, radar, rain gauge, remote sensing, evapotranspiration, forecasting, numerical weather prediction, Netherlands, Langbroekerwetering, Lopikerwaard. Computer simulation models are an important tool for hydrologists. With these models they can

  16. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    Science.gov (United States)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  17. Multiparameter models in the management of the development of territories, taking into account the influence of hydrometeorological factors

    Science.gov (United States)

    Istomin, E. P.; Popov, N. N.; Sokolov, A. G.; Fokicheva, A. A.

    2018-01-01

    The article considers the geoinformation management of the territory as a way to manage the organizational and technical systems and territories distributed in space. The article describes the main factors for the development and implementation of management decisions, requirements for the territorial management system and the structure of knowledge and data. Mathematical one-parameter and multiparameter models of risk assessment of management decisions applied to the natural and climatic potential of the development of the territory were considered.

  18. The FRX-C/LSM compression experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Siemon, R.E.; Taggart, D.P.

    1989-01-01

    After two years of preparation, hardware for high-power FRC compression heating studies is now being installed onto FRX-C/LSM. FRCs will be formed and translated out of the θ-pinch source, and into a compressor where the external B-field will be increased from 0.4 to 2 T in 55 μs. The compressed FRC can then be translated into a third stage for further study. A principal experimental goal is to study FRC confinement at the high energy density, n(T/sub e/ + T/sub i/) ≤ 1.0 /times/ 10 22 keV/m 3 , associated with the large external field. Experiments are scheduled to begin in April. 11 refs., 5 figs

  19. The TERENO-preAlpine Observatory: A Research Infrastructure for Hydrometeorological Observation and -Modeling across Compartments and Scales

    Science.gov (United States)

    Kunstmann, H.; Beck, C.; Brosy, C.; Chwala, C.; Emeis, S.; Fersch, B.; Garvelmann, J.; Gasche, R.; Jahn, C.; Junkermann, W.; Keis, F.; Kiese, R.; Krieg, R.; Mauder, M.; Ralf, M.; Neidl, F.; Philipp, A.; Schäfer, K.; Schmid, H. P. E.; Völksch, I.; Warscher, M.; Werhahn, J.; Wolf, B.; Senatore, A.; Rödiger, T.

    2015-12-01

    The improved understanding of the interlinked atmospheric and terrestrial hydrological processes requires concerted and compartment-crossing observation and -modeling efforts. Through the TERENO preAlpine Observatory, located in the southern Bavarian region of Germany, comprehensive technical infrastructure is being established to allow joint analyses of water-, energy- and nutrient fluxes. The observatory extends from the Ammergau mountains in the South till Lake Ammersee in the North. The observatory is designated as an international research platform, open for participation and integration. The technical infrastructure consists of a multitude of precipitation gauges at different altitudes, an X-band radar, and a set of commercial microwave radio links allowing to derive line integrated precipitation estimates, numerous snow monitoring stations, a SnowPack Analyzer, neutron based SnowFox devices, as well as a snow melt lysimeter and time-lapse photography. For the quantification of the combined water and energy fluxes, three eddy covariance systems including four-component net-radiometers and soil-heat flux instrumentation are operated. Soil moisture patterns and dynamics are measured with a wireless sensor network consisting of 55 in-situ soil moisture profiles, a cosmic ray probe probe and 36 precision weighing vegetated lysimeters at different locations and altitudes. Groundwater dynamics and hydrogeochemical composition of the two main local aquifers are monitored at five observation wells as well as streamflow at three weirs at various cross sections. Additionally, stable water isotopes are analyzed. The operational monitoring is complemented by intensive measurement campaigns, like the ScaleX campaign in June and July 2015 for which we present first results. Here, additional remote sensing measurements of atmospheric wind, humidity and temperature profiles are performed, which are complemented by micro-light aircraft- and UAV-based remote sensing for three

  20. Multifractal Conceptualisation of Hydro-Meteorological Extremes

    Science.gov (United States)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2009-04-01

    Hydrology and more generally sciences involved in water resources management, technological or operational developments face a fundamental difficulty: the extreme variability of hydro-meteorological fields. It clearly appears today that this variability is a function of the observation scale and yield hydro-meteorological hazards. Throughout the world, the development of multifractal theory offers new techniques for handling such non-classical variability over wide ranges of time and space scales. The resulting stochastic simulations with a very limited number of parameters well reproduce the long range dependencies and the clustering of rainfall extremes often yielding fat tailed (i.e., an algebraic type) probability distributions. The goal of this work was to investigate the ability of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we discuss how to evaluate the uncertainty in the empirical or semi-analytical multifractal outcomes. We consider three main aspects of the evaluation, such as the scaling adequacy, the multifractal parameter estimation error and the quantile estimation error. We first use the multiplicative cascade model to generate long series of multifractal data. The simulated samples had to cover the range of the universal multifractal parameters widely available in the scientific literature for the rainfall and river discharges. Using these long multifractal series and their sub-samples, we defined a metric for parameter estimation error. Then using the sets of estimated parameters, we obtained the quantile values for a range of excedance probabilities from 5% to 0.01%. Plotting the error bars on a quantile plot enable an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of such concept on its application to a large database (more than 16000 selected stations over USA and

  1. Central Asian Snow Cover from Hydrometeorological Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Asian Snow Cover from Hydrometeorological Surveys data are based on observations made by personnel for three river basins: Amu Darya, Sir Darya, and...

  2. Comparison of the Degradation of the Polarization Resistance of Symmetrical LSM-YSZ Cells, with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura; Nielsen, Jimmi; Hjelm, Johan

    2009-01-01

    Impedance spectra of a symmetrical cell with SOFC cathodes (LSM-YSZ/YSZ/LSM-YSZ) and an anode supported planar SOFC (Ni-YSZ/YSZ/LSM-YSZ) were collected at OCV at 650{degree sign}C in air (cathode) and humidified (4%) hydrogen (anode), over 155 hours. The impedance was affected by degradation over...

  3. Effect of Aging on the Electrochemical Performance of LSM-YSZ Cathodes

    DEFF Research Database (Denmark)

    Baqué, L. C.; Jørgensen, Peter Stanley; Zhang, Wei

    2015-01-01

    resistance shows no clear tendency with aging time, while the ionic conductivity decreases up to ∼79%. Accordingly, the electrochemically active thickness contracts from 60–135 μm to 45–60 μm. The changes observed in the cathode transport and electrochemical properties are mostly explained by the evolution......Investigations of degradation mechanisms of solid oxide fuel cells are crucial for achieving a widespread commercialization of the technology. In this work, electrochemical impedance spectroscopy (EIS) was applied for studying the aging effect on LSM-YSZ cathodes exposed to humidified air at 900°C...... for up to 3000 h. EIS spectra were fitted by a transmission line model for estimating relevant parameters associated with the LSM/YSZ charge transfer reaction and the oxide ion conduction through the YSZ network. For the reference non-aged sample, the ionic conductivity values are the expected ones...

  4. ICT-based hydrometeorology science and natural disaster societal impact assessment

    Science.gov (United States)

    Parodi, A.; Clematis, A.; Craig, G. C.; Kranzmueller, D.

    2009-09-01

    In the Lisbon strategy, the 2005 European Council identified knowledge and innovation as the engines of sustainable growth and stated that it is essential to build a fully inclusive information society. In parallel, the World Conference on Disaster Reduction (Hyogo, 2005), defined among its thematic priorities the improvement of international cooperation in hydrometeorology research activities. This was recently confirmed at the joint press conference of the Center for Research on Epidemiology of Disasters (CRED) with the United Nations International Strategy for Disaster Reduction (UNISDR) Secretariat, held on January 2009, where it was noted that flood and storm events are among the natural disasters that most impact human life. Hydrometeorological science has made strong progress over the last decade at the European and worldwide level: new modelling tools, post processing methodologies and observational data are available. Recent European efforts in developing a platform for e-science, like EGEE (Enabling Grids for E-sciencE), SEE-GRID-SCI (South East Europe GRID e-Infrastructure for regional e-Science), and the German C3-Grid, provide an ideal basis for the sharing of complex hydrometeorological data sets and tools. Despite these early initiatives, however, the awareness of the potential of the Grid technology as a catalyst for future hydrometeorological research is still low and both the adoption and the exploitation have astonishingly been slow, not only within individual EC member states, but also on a European scale. With this background in mind, the goal of the Distributed Research Infrastructure for Hydro-Meteorology Study (DRIHMS) project is the promotion of the Grid culture within the European hydrometeorological research community through the diffusion of a Grid platform for e-collaboration in this earth science sector: the idea is to further boost European research excellence and competitiveness in the fields of hydrometeorological research and Grid

  5. Study of the formation of secondary phases in the composite LSM/YSZ; Estudo da formacao de fases secundarias no composito LSM/YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ranieri Andrade

    2007-07-01

    The composite of strontium-doped lanthanum manganite (La{sub 1-x}SrxMnO{sub 3} - LSM) and Yttria-stabilized zirconia (ZrO{sub 2}/Y{sub 2}O{sub 3} - YSZ), is indicated as cathode of the Solid Oxide Fuel Cells (SOFC). It presents better acting as cathode due to the Triple Phase Boundary (TPB) formed in the interface area between the cathode and the electrolyte. For the temperatures up to 1100 deg C, LSM and YSZ can react producing lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7} - LZO) and strontium zirconate (SrZrO{sub 3} - SZO). In this sense, the present work intends to contribute in the study of the formation of phases LZO and SZO, studying different massic proportions between LSM and YSZ with sintering temperatures varying between 1000 deg C and 1400 deg C. For the obtention of the precursory powders the co-precipitation routes were adopted to obtain YSZ and conventional powder mixture for the preparation of LSM. The composite LSM/YSZ, studied in this work, is prepared with two concentrations of Sr for LSM (30 mol por cent - LSM7 and 40 mol por cent - LSM6) and one concentration of Yttria for YSZ (10 mol por cent). The results obtained by X-ray fluorescence showed that the routes adopted for synthesis of powders were effective in the obtention of the compositions LSM6, LSM7 and YSZ, with close values to the stoichiometric. The studied massic proportions were: 50 por cent of LSM and 50 por cent of YSZ (1:1), 25 por cent of LSM and 75 por cent of YSZ (1:3), and 75 por cent of LSM and 25 por cent of YSZ (3:1). Such proportions of mixtures were conformed and submitted at different conditions of temperatures and times of sintering: 1000 deg C, 1200 deg C, 1300 deg C, 1350 deg C and 1400 deg C for 4 and 8 hours. The values of medium size of the particles and the specific surface area values for the mixture of LSM6/YSZ and LSM7/YSZ, are of the same order of largeness after the mixture in a attrition mill and in different massic proportions. Secondary phases like LZO and

  6. The diagnosis and forecast system of hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas

    Science.gov (United States)

    Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina

    2017-04-01

    The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.

  7. Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes

    Directory of Open Access Journals (Sweden)

    Soojun Kim

    2015-01-01

    Full Text Available The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data.

  8. ICT-infrastructures for hydrometeorology science and natural disaster societal impact assessment: the DRIHMS project

    Science.gov (United States)

    Parodi, A.; Craig, G. C.; Clematis, A.; Kranzlmueller, D.; Schiffers, M.; Morando, M.; Rebora, N.; Trasforini, E.; D'Agostino, D.; Keil, K.

    2010-09-01

    Hydrometeorological science has made strong progress over the last decade at the European and worldwide level: new modeling tools, post processing methodologies and observational data and corresponding ICT (Information and Communication Technology) technologies are available. Recent European efforts in developing a platform for e-Science, such as EGEE (Enabling Grids for E-sciencE), SEEGRID-SCI (South East Europe GRID e-Infrastructure for regional e-Science), and the German C3-Grid, have demonstrated their abilities to provide an ideal basis for the sharing of complex hydrometeorological data sets and tools. Despite these early initiatives, however, the awareness of the potential of the Grid technology as a catalyst for future hydrometeorological research is still low and both the adoption and the exploitation have astonishingly been slow, not only within individual EC member states, but also on a European scale. With this background in mind and the fact that European ICT-infrastructures are in the progress of transferring to a sustainable and permanent service utility as underlined by the European Grid Initiative (EGI) and the Partnership for Advanced Computing in Europe (PRACE), the Distributed Research Infrastructure for Hydro-Meteorology Study (DRIHMS, co-Founded by the EC under the 7th Framework Programme) project has been initiated. The goal of DRIHMS is the promotion of the Grids in particular and e-Infrastructures in general within the European hydrometeorological research (HMR) community through the diffusion of a Grid platform for e-collaboration in this earth science sector: the idea is to further boost European research excellence and competitiveness in the fields of hydrometeorological research and Grid research by bridging the gaps between these two scientific communities. Furthermore the project is intended to transfer the results to areas beyond the strict hydrometeorology science as a support for the assessment of the effects of extreme

  9. Functional characterization of duck LSm14A in IFN-β induction.

    Science.gov (United States)

    Hua, Kexin; Li, Huilin; Chen, Huanchun; Foda, Mohamed Frahat; Luo, Rui; Jin, Hui

    2017-11-01

    Human LSm14A is a key component of processing body (P-body) assembly that mediates interferon-β (IFN-β) production by sensing viral RNA or DNA. To the best of our knowledge, we are the first to report duck LSm14A (duLSm14A) cloning from duck embryo fibroblasts (DEFs). Full-length duLSm14A encoded 461 amino acids and was highly homologous with chicken and swan goose sequences. More interestingly, the duLSm14A mRNA was extensively expressed in all the studied tissues. In DEFs, duLSm14A was localized in the cytoplasm as P-body-like dots. Expression of duLSm14A induced IFN-β through the activation of interferon regulatory factor-1 and nuclear factor-κB in DEFs. Furthermore, knockdown of duLSm14A by small interfering RNA notably decreased poly(I:C)- or duck reovirus-induced IFN-β production. The present study results indicate that the duLSm14A is an essential sensor that mediates duck innate immunity against viral infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France

    Directory of Open Access Journals (Sweden)

    T. Paris Anguela

    2008-12-01

    Full Text Available Spatial and temporal variations of soil moisture strongly affect flooding, erosion, solute transport and vegetation productivity. Its characterization, offers an avenue to improve our understanding of complex land surface-atmosphere interactions. In this paper, soil moisture dynamics at soil surface (first centimeters and root-zone (up to 1.5 m depth are investigated at three spatial scales: local scale (field measurements, 8×8 km2 (hydrological model and 25×25 km2 scale (ERS scatterometer in a French watershed. This study points out the quality of surface and root-zone soil moisture data for SIM model and ERS scatterometer for a three year period. Surface soil moisture is highly variable because is more influenced by atmospheric conditions (rain, wind and solar radiation, and presents RMSE up to 0.08 m3 m−3. On the other hand, root-zone moisture presents lower variability with small RMSE (between 0.02 and 0.06 m3 m−3. These results will contribute to satellite and model verification of moisture, but also to better application of radar data for data assimilation in future.

  11. Hydro-Meteorology Research and ICT at CIMA Foundation: DEWETRA and DRIHMS experiences. (Invited)

    Science.gov (United States)

    Parodi, A.; Boni, G.; Ferraris, L.; Rudari, R.; Siccardi, F.

    2010-12-01

    The mitigation of the effects of natural disasters can be achieved through the identification, analysis and understanding of the causes and of the underlying hydrological, meteorological, and chemical processes. This is why research at CIMA Foundation is particularly devoted to the observation of the environment using the most advanced remote sensing technologies currently available and to the reproduction of observed phenomena with numerical modeling approaches. To achieve its goals, research at CIMA Foundation is driven by Civil Protection applications and focuses on several topics, going from predictability of meteorological extremes to modelling and prediction of floods, through collection and observation of hydrometeorological variables, data fusion and data assimilation. In this framework, CIMA Foundation has designed, on behalf of the Italian Civil Protection Department, Dewetra which is a real-time integrated system for risk forecasting, monitoring and prevention. Dewetra HW and SW architecture is fully compliant with the requirement of a flexible Decision Support System, which through a multi-layer Graphical User Interface (GUI) can provide decision makers with high resolution and rapid refresh information of the expected and observed risk. This combination of research and operational expertises in hydrometeorology and intensive use of new technologies has brought CIMA Foundation closer to the ICT community. Under the motto of “Hydrometeorology and ICT: two worlds that should talk more together” the FP7 DRIHMS (Distributed Research Infrastructure for Hydro-Meteorology Study) aims to optimize the application of ICT technologies (including computer intensive frameworks for data sharing and new approaches for achieving model interoperability) in the study and comprehension of hydrometeorological processes. The main ideas of DEWETRA and DRIHMS will be discussed in this talk.

  12. Study of the formation of secondary phases in the composite LSM/YSZ

    International Nuclear Information System (INIS)

    Rodrigues, Ranieri Andrade

    2007-01-01

    The composite of strontium-doped lanthanum manganite (La 1-x SrxMnO 3 - LSM) and Yttria-stabilized zirconia (ZrO 2 /Y 2 O 3 - YSZ), is indicated as cathode of the Solid Oxide Fuel Cells (SOFC). It presents better acting as cathode due to the Triple Phase Boundary (TPB) formed in the interface area between the cathode and the electrolyte. For the temperatures up to 1100 deg C, LSM and YSZ can react producing lanthanum zirconate (La 2 Zr 2 O 7 - LZO) and strontium zirconate (SrZrO 3 - SZO). In this sense, the present work intends to contribute in the study of the formation of phases LZO and SZO, studying different massic proportions between LSM and YSZ with sintering temperatures varying between 1000 deg C and 1400 deg C. For the obtention of the precursory powders the co-precipitation routes were adopted to obtain YSZ and conventional powder mixture for the preparation of LSM. The composite LSM/YSZ, studied in this work, is prepared with two concentrations of Sr for LSM (30 mol por cent - LSM7 and 40 mol por cent - LSM6) and one concentration of Yttria for YSZ (10 mol por cent). The results obtained by X-ray fluorescence showed that the routes adopted for synthesis of powders were effective in the obtention of the compositions LSM6, LSM7 and YSZ, with close values to the stoichiometric. The studied massic proportions were: 50 por cent of LSM and 50 por cent of YSZ (1:1), 25 por cent of LSM and 75 por cent of YSZ (1:3), and 75 por cent of LSM and 25 por cent of YSZ (3:1). Such proportions of mixtures were conformed and submitted at different conditions of temperatures and times of sintering: 1000 deg C, 1200 deg C, 1300 deg C, 1350 deg C and 1400 deg C for 4 and 8 hours. The values of medium size of the particles and the specific surface area values for the mixture of LSM6/YSZ and LSM7/YSZ, are of the same order of largeness after the mixture in a attrition mill and in different massic proportions. Secondary phases like LZO and SZO were not found in the analysis for

  13. SET UP OF THE NEW AUTOMATIC HYDROMETEOROLOGICAL NETWORK IN HUNGARY

    Directory of Open Access Journals (Sweden)

    J. NAGy

    2013-03-01

    Full Text Available The Hungarian Meteorological Service (OMSZ and General Directorate of Water Management (OVF in Hungary run conventional precipitation measurement networks consisting of at least 1000 stations. OMSZ automated its synoptic and climatological network in 90’s and now more than 100 automatic stations give data every 1-10 minutes via GPRS channel. In 2007 the experts from both institutions determined the requirements of a common network. The predecessor in title of OVF is general Directorate for Water and Environment gave a project proposal in 2008 for establishment of a new hydrometeorological network based on common aims for meteorology and hydrology. The new hydrometeorological network was set up in 2012 financed by KEOP project. This network has got 141 weighing precipitation gauges, 118 temperature - humidity sensors and 25 soil moisture and soil temperature instruments. Near by Tisza-Lake two wind sensors have been installed. The network is operated by OMSZ and OVF together. OVF and its institutions maintain the stations itself and support the electricity. OMSZ operates data collection and transmission, maintaines and calibrates the sensors. Using precipitation data of enhanced network the radar precipitation field quality may be more precise, which are input of run-off model. Thereby the time allowance may be increased in flood-control events. Based on soil moisture and temperature water balance in soil may be modelled and forecast can be produced in different conditions. It is very important task in drought and inland water conditions. Considering OMSZ investment project in which new Doppler dual polarisation radar and 14 disdrometers will be installed, the precipitation estimation may be improved since 2015.

  14. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  15. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... in the serial resistance and the high and low frequency cathode arcs. On the basis of these results and reports within literature a mechanism for the effect of moisture was proposed, which attribute to moisture the role of participating in an enhanced removal of manganese from the LSM/YSZ interface and thus...

  16. Joint System of the National Hydrometeorology for disaster prevention

    Science.gov (United States)

    Lim, J.; Cho, K.; Lee, Y. S.; Jung, H. S.; Yoo, H. D.; Ryu, D.; Kwon, J.

    2014-12-01

    Hydrological disaster relief expenditure accounts for as much as 70 percent of total expenditure of disasters occurring in Korea. Since the response to and recovery of disasters are normally based on previous experiences, there have been limitations when dealing with ever-increasing localized heavy rainfall with short range in the era of climate change. Therefore, it became necessary to establish a system that can respond to a disaster in advance through the analysis and prediction of hydrometeorological information. Because a wide range of big data is essential, it cannot be done by a single agency only. That is why the three hydrometeorology-related agencies cooperated to establish a pilot (trial) system at Soemjingang basin in 2013. The three governmental agencies include the National Emergency Management Agency (NEMA) in charge of disaster prevention and public safety, the National Geographic Information Institute (NGII under Ministry of Land, Infrastructure and Transport) in charge of geographical data, and the Korea Meteorological Administration (KMA) in charge of weather information. This pilot system was designed to be able to respond to disasters in advance through providing a damage prediction information for flash flood to public officers for safety part using high resolution precipitation prediction data provided by the KMA and high precision geographic data by NGII. To produce precipitation prediction data with high resolution, the KMA conducted downscaling from 25km×25km global model to 3km×3km local model and is running the local model twice a day. To maximize the utility of weather prediction information, the KMA is providing the prediction information for 7 days with 1 hour interval at Soemjingang basin to monitor and predict not only flood but also drought. As no prediction is complete without a description of its uncertainty, it is planned to continuously develop the skills to improve the uncertainty of the prediction on weather and its impact

  17. Diagnosis of GLDAS LSM based aridity index and dryland identification for socioeconomic aspect of water resources management

    Science.gov (United States)

    Ghazanfari, S.; Pande, S.; Hashemy, M.; Naseri M., M.

    2012-04-01

    Water resources scarcity plays an important role in socioeconomic aspect of livelihood pattern in dryland areas. Hydrological perspective of aridity is required for social and economic coping Strategies. Identification of dryland areas is crucial to guide policy aimed at intervening in water stressed areas and addressing its perennial livelihood or food insecurity. Yet, prevailing aridity indices are beset with methodological limitations that restrict their use in delineating drylands and, might be insuffient for decision making frameworks. Palmer's Drought Severity index (PDSI) reports relative soil moisture deviations from long term means, which does not allow cross comparisons, while UNEP's aridity index, the ratio of annual evaporative demand to rainfall supply, ignores site specific soil and vegetation characteristics that are needed for appropriate water balance assessment. We propose to refine UNEP's aridity index by accounting for site specific soil and vegetation to partition precipitation into competing demands of evaporation and runoff. We create three aridity indices at a 1 x 1 degree spatial resolution based on 3 decades of soil moisture time series from three GLDAS Land Surface Models (LSM's): VIC, MOSAIC and NOAH. We compare each LSM model aridity map with the UNEP aridity map which was created based on LSM data forcing. Our approach is to extract the first Eigen function from Empirical Orthogonal Function (EOF) analysis that represents the dominant spatial template of soil moisture conditions of the three LSM's. Frequency of non-exceedence of this dominant soil moisture mode for a location by all other locations is used as our proposed aridity index. The EOF analysis reveals that the first Eigen function explains, respectively, 33%, 43% and 47% of the VIC, NOAH and MOSAIC models. The temporal coefficients associated with the first OF (Orthogonal Function) for all three LSMS clearly show seasonality with a discrete jump in trend around the year 1999

  18. The hydro-meteorological chain in Piemonte region, North Western Italy - analysis of the HYDROPTIMET test cases

    Directory of Open Access Journals (Sweden)

    D. Rabuffetti

    2005-01-01

    Full Text Available The HYDROPTIMET Project, Interreg IIIB EU program, is developed in the framework of the prediction and prevention of natural hazards related to severe hydro-meteorological events and aims to the optimisation of Hydro-Meteorological warning systems by the experimentation of new tools (such as numerical models to be used operationally for risk assessment. The objects of the research are the mesoscale weather phenomena and the response of watersheds with size ranging from 102 to 103 km2. Non-hydrostatic meteorological models are used to catch such phenomena at a regional level focusing on the Quantitative Precipitation Forecast (QPF. Furthermore hydrological Quantitative Discharge Forecast (QDF are performed by the simulation of run-off generation and flood propagation in the main rivers of the territory. In this way observed data and QPF are used, in a real-time configuration, for one-way forcing of the hydrological model that works operationally connected to the Piemonte Region Alert System. The main hydro-meteorological events that affected Piemonte Region in the last years are analysed, these are the HYDROPTIMET selected test cases of 14–18 November 2002 and 23–26 November 2002. The results obtained in terms of QPF and QDF offer a basis to evaluate the sensitivity of the whole hydro-meteorological chain to the uncertainties in the numerical simulations. Different configurations of non-hydrostatic meteorological models are also evaluated.

  19. Evaluation of the hydro-meteorological chain in Piemonte Region, north western Italy - analysis of two HYDROPTIMET test cases

    Directory of Open Access Journals (Sweden)

    D. Rabuffetti

    2005-01-01

    Full Text Available The HYDROPTIMET Project, Interreg IIIB EU program, is developed in the framework of the prediction and prevention of natural hazards related to severe hydro-meteorological events and aims to the optimisation of Hydro-Meteorological warning systems by the experimentation of new tools (such as numerical models to be used operationally for risk assessment. The object of the research are the Mesoscale weather phenomena and the response of watersheds with size ranging from 102 to 103 km2. Non-hydrostatic meteorological models are used to catch such phenomena at a regional level focusing on the Quantitative Precipitation Forecast (QPF. Furthermore hydrological Quantitative Discharge Forecast (QDF are performed by the simulation of run-off generation and flood propagation in the main rivers of the interested territory. In this way observed data and QPF are used, in a real-time configuration, for one-way forcing of the hydrological model that works operationally connected to the Piemonte Region Alert System. The main hydro-meteorological events that interested Piemonte Region in the last years are studied, these are the HYDROPTIMET selected test cases of 14-18 November 2002 and 23-26 November 2002. The results obtained in terms of QPF and QDF offer a sound basis to evaluate the sensitivity of the whole hydro-meteorological chain to the uncertainties in the numerical simulations. Different configurations of non-hydrostatic meteorological models are also analysed.

  20. Remotely Sensed Nightlights to Map Societal Exposure to Hydrometeorological Hazards

    Directory of Open Access Journals (Sweden)

    Agnes Jane Soto Gómez

    2015-09-01

    Full Text Available This study used remotely sensed maps of nightlights to investigate the etiology of increasing disaster losses from hydrometeorological hazards in a data-scarce area. We explored trends in the probability of occurrence of hazardous events (extreme rainfall and exposure of the local population as components of risk. The temporal variation of the spatial distribution of exposure to hydrometeorological hazards was studied using nightlight satellite imagery as a proxy. Temporal (yearly and spatial (1 km resolution make them more useful than official census data. Additionally, satellite nightlights can track informal (unofficial human settlements. The study focused on the Samala River catchment in Guatemala. The analyses of disasters, using DesInventar Disaster Information Management System data, showed that fatalities caused by hydrometeorological events have increased. Such an increase in disaster losses can be explained by trends in both: (i catchment conditions that tend to lead to more frequent hydrometeorological extremes (more frequent occurrence of days with wet conditions; and (ii increasing human exposure to hazardous events (as observed by amount and intensity of nightlights in areas close to rivers. Our study shows the value of remote sensing data and provides a framework to explore the dynamics of disaster risk when ground data are spatially and temporally limited.

  1. Hydrometeorological and Statistical Analyses of Heavy Rainfall in Midwestern USA

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Smith, J. A.; Krajewski, W. F.

    2012-01-01

    During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which raise...

  2. Use of a scenario-neutral approach to identify the key hydro-meteorological attributes that impact runoff from a natural catchment

    Science.gov (United States)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2017-11-01

    Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific

  3. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Walker, Robert; Traulsen, Marie Lund

    2015-01-01

    that were both reversible and dependent on the direction of the applied potential (Figure 1). The spectral changes were assigned to changes in the LSM electronic structure and specifically to changes in the relative oxide concentration in LSM’s near surface region. Ex situ ToF-SIMS depth profiles were......For decades strontium doped lanthanum manganite (LSM) electrodes have been the material of choice for cathodes in high temperature solid oxide fuel cells (SOFCs). LSM has relatively high electrical conductivity at high temperatures and has mechanical properties that are well matched to yttria...... stabilized zirconia (YSZ), a common electrolyte material. Recently, LSM electrodes have been employed in lower temperature (300-500 °C) electrochemical gas purification applications. Several studies have attributed the electrochemical activation of LSM electrodes to changes in the surface stoichiometry under...

  4. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...

  5. Classification of engineering and hydrometeorological survey results regarding channel processes

    Directory of Open Access Journals (Sweden)

    Kondratiev A.N.

    2016-12-01

    Full Text Available according to the author the profile of maximum possible erosion is considered as the results of engineering and hydrometeorological surveys in part of channel processes in modern normative documents. The article presents the classification of results to sediment processes: selecting target set of profiles of maximum erosion, maximum erosion profile in a given target, part of the profile, erosion in the plan, the demonstration of safety of erosion or lack of erosion.

  6. The Effect of Hydro-meteorological Emergencies on Internal Migration

    OpenAIRE

    Robalino, Juan; Jimenez, José; Chacon, Adriana

    2013-01-01

    We estimate the effect of hydro-meteorological emergencies on internal migration in Costa Rica between 1995 and 2000. Nationwide, we find that an increase of one emergency in a canton significantly increases average migration rates from that canton, after controlling for several social, economic, climatic and demographic factors in both the canton of origin and destination. Moreover, when we separately analyze landslides and floods, we find that both increase migration. However, we also find ...

  7. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjelm, Johan

    2014-01-01

    It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustr......It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore......, it was illustrated through a literature review on SOFC electrodes that porous electrode theory not only describes the classic LSM:YSZ SOFC cathode well, but SOFC electrodes in general. The extensive impedance spectroscopy study of LSM:YSZ cathodes consisted of measurements on cathodes with three different sintering...... temperatures and hence different microstructures and varying degrees of LSM/YSZ solid state interactions. LSM based composite cathodes, where YSZ was replaced with CGO was also studied in order to acquire further knowledge on the chemical compatibility between LSM and YSZ. All impedance measurements were...

  8. Electrochemical performances of LSM/YSZ composite electrode for high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Kyu-Sung Sim; Ki-Kwang Bae; Chang-Hee Kim; Ki-Bae Park

    2006-01-01

    The (La 0.8 Sr 0.2 ) 0.95 MnO 3 /Yttria-stabilized Zirconia composite electrodes were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvano-dynamic and galvano-static polarization method. For this study, the LSM perovskites were fabricated in powders by the co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composite electrodes were deposited on 8 mol% YSZ electrolyte disks by screen printing method, followed by sintering at temperature above 1100 C. From the experimental results, it is concluded that the electrochemical properties of pure and composite electrodes are closely related to their micro-structure and operating temperature. (authors)

  9. Improved oxidation resistance of ferritic steels with LSM coating for high temperature electrochemical applications

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    The effect of single layer La0.85Sr0.15MnO3−δ (LSM) coatings on high temperature oxidation behaviour of four commercial chromia-forming steels, Crofer 22 APU, Crofer 22 H, E-Brite and AL 29-4C, is studied. The samples were oxidized for 140–1000 h at 1123 K in flowing simulated ambient air (air + 1......% H2O) and oxygen and corrosion kinetics monitored by mass increase of the materials over time. The oxide scale microstructure and chemical composition are investigated by scanning electron microscopy/energy-dispersive spectroscopy. The kinetic data obey a parabolic rate law. The results show...... that the LSM coating acts as an oxygen transport barrier that can significantly reduce the corrosion rate....

  10. Highlights of advances in the field of hydrometeorological research brought about by the DRIHM project

    Science.gov (United States)

    Caumont, Olivier; Hally, Alan; Garrote, Luis; Richard, Évelyne; Weerts, Albrecht; Delogu, Fabio; Fiori, Elisabetta; Rebora, Nicola; Parodi, Antonio; Mihalović, Ana; Ivković, Marija; Dekić, Ljiljana; van Verseveld, Willem; Nuissier, Olivier; Ducrocq, Véronique; D'Agostino, Daniele; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea

    2015-04-01

    The FP7 DRIHM (Distributed Research Infrastructure for Hydro-Meteorology, http://www.drihm.eu, 2011-2015) project intends to develop a prototype e-Science environment to facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in Hydro-Meteorology Research (HMR). As the project comes to its end, this presentation will summarize the HMR results that have been obtained in the framework of DRIHM. The vision shaped and implemented in the framework of the DRIHM project enables the production and interpretation of numerous, complex compositions of hydrometeorological simulations of flood events from rainfall, either simulated or modelled, down to discharge. Each element of a composition is drawn from a set of various state-of-the-art models. Atmospheric simulations providing high-resolution rainfall forecasts involve different global and limited-area convection-resolving models, the former being used as boundary conditions for the latter. Some of these models can be run as ensembles, i.e. with perturbed boundary conditions, initial conditions and/or physics, thus sampling the probability density function of rainfall forecasts. In addition, a stochastic downscaling algorithm can be used to create high-resolution rainfall ensemble forecasts from deterministic lower-resolution forecasts. All these rainfall forecasts may be used as input to various rainfall-discharge hydrological models that compute the resulting stream flows for catchments of interest. In some hydrological simulations, physical parameters are perturbed to take into account model errors. As a result, six different kinds of rainfall data (either deterministic or probabilistic) can currently be compared with each other and combined with three different hydrological model engines running either in deterministic or probabilistic mode. HMR topics which are allowed or facilitated by such unprecedented sets of hydrometerological forecasts

  11. Determination of strontium and lanthanum zirconates in YPSZ-LSM mixtures for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Escobedo, Claudia Alicia [Centro de Investigacion e Innovacion Tecnologica del IPN, Cda. Cecati s/n, Col. Sta. Catarina, CP 02250, Azcapotzalco, D.F. (Mexico); Munoz-Saldana, Juan [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, pdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Bolarin-Miro, Ana Maria; Sanchez-de Jesus, Felix [Centro de Investigaciones en Materiales y Metalurgia, Universidad Autonoma del Estado de Hidalgo, CU, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, CP 42184, Hidalgo (Mexico)

    2008-05-15

    Mixtures of 3% yttria- and partially-stabilized zirconia with LSM{sub x} (strontium-doped lanthanum manganite, x = 0, 0.15 and 0.2) were prepared and heat treated at temperatures between 1000 and 1300 C to recreate the cathode-electrolyte interface interactions taking place during preparation and operation of solid oxide fuel cells (SOFC). Such interactions include the formation of La{sub 2}Zr{sub 2}O{sub 7} and SrZrO{sub 3}, which are undesirable for SOFC. The effect of the manganese oxidation number on the mechanosynthesis of LSM during zirconate formation is also discussed. A quantitative analysis of zirconate formation by X-ray diffraction and Rietveld refinement was undertaken. Formation of lanthanum and strontium zirconates was completely avoided at temperatures as high as 1300 C by synthesizing lanthanum manganites from MnO{sub 2} doped with 15 at.% of Sr. Finally, in the presence of LSM, monoclinic phase content was diminished to less than 1.5 mol% after heat treatment at 1300 C. (author)

  12. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2009-01-01

    An electrochemical study of SOFC cathode degradation, due to poisoning by chromium oxide vapours, was performed applying 3-electrode set-ups. The cathode materials comprised LSM/YSZ and LSCF/CGO composites, whereas the electrolyte material was 8YSZ. The degradation of the cathode performance...... was investigated as a function of time under a current load of 0.2 or 0.4 A cm-2 and in the presence of Cr2O3 at 850 and 750 °C in air, dry or water saturated at room temperature, and compared to that of non-Cr exposed reference specimens tested under, otherwise, the same conditions. This involved continuous...... from 300 to 2,970 h. Both LSM/YSZ and LSCF/CGO cathodes were sensitive to chromium poisoning; LSCF/CGO cathodes to a lesser extent than LSM/YSZ. Humid air aggravated the degradation of the cathode performance. Post-mortem electron microscopic investigations revealed several Cr-containing compounds...

  13. Hybrid Wavelet De-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series

    Science.gov (United States)

    WANG, D.; Wang, Y.; Zeng, X.

    2017-12-01

    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.

  14. Towards A Grid Infrastructure For Hydro-Meteorological Research

    Directory of Open Access Journals (Sweden)

    Michael Schiffers

    2011-01-01

    Full Text Available The Distributed Research Infrastructure for Hydro-Meteorological Study (DRIHMS is a coordinatedaction co-funded by the European Commission. DRIHMS analyzes the main issuesthat arise when designing and setting up a pan-European Grid-based e-Infrastructure for researchactivities in the hydrologic and meteorological fields. The main outcome of the projectis represented first by a set of Grid usage patterns to support innovative hydro-meteorologicalresearch activities, and second by the implications that such patterns define for a dedicatedGrid infrastructure and the respective Grid architecture.

  15. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    Science.gov (United States)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service

  16. An Extended-range Hydrometeorological Ensemble Prediction System for Alpine Catchments in Switzerland

    Science.gov (United States)

    Monhart, Samuel; Bogner, Konrad; Spirig, Christoph; Bhend, Jonas; Liniger, Mark A.; Zappa, Massimiliano; Schär, Christoph

    2017-04-01

    In recent years meteorological ensemble prediction systems have increasingly be used to feed hydrological models in order to provide probabilistic streamflow forecasts. Such hydrological ensemble prediction systems (HEPS) have been analyzed for different lead times from short-term to seasonal predictions and are used for different applications. Especially at longer lead times both such forecasts exhibit systematic biases which can be removed by applying bias correction techniques to both the meteorological and/or the hydrological output. However, it is still an open question if pre- or post-processing techniques or both should be applied. We will present first results of the analysis of pre- and post-processed extended-range hydrometeorological forecasts. In a first step the performance of bias corrected and downscaled (using quantile mapping) extended-range meteorological forecasts provided by the ECMWF is assessed for approximately 1000 ground observation sites across Europe. Generally, bias corrected meteorological forecasts show positive skill in terms of CRPSS up to three (two) weeks for weekly mean temperature (precipitation) compared to climatological forecasts. For the Alpine region the absolute skill is generally lower but the relative gain in skill resulting from the bias correction is larger. These pre-processed meteorological forecasts of one year of ECMWF extended-range forecasts and corresponding hindcasts are used to feed a hydrological model for a selected catchment in the Alpine area in Switzerland. Furthermore, different post-processing techniques are tested to correct the resulting streamflow forecasts. This will allow to determine the relative effect of pre- and post-processing of extended-range hydrometeorological predictions in Alpine catchments. Future work will include the combination of these corrected streamflow forecasts with electricity price forecasts to optimize the operations and revenues of hydropower systems in the Alps.

  17. Utilizing Satellite-derived Precipitation Products in Hydrometeorological Applications

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Teng, W. L.; Kempler, S. J.; Huffman, G. J.

    2012-12-01

    Each year droughts and floods happen around the world and can cause severe property damages and human casualties. Accurate measurement and forecast are important for preparedness and mitigation efforts. Through multi-satellite blended techniques, significant progress has been made over the past decade in satellite-based precipitation product development, such as, products' spatial and temporal resolutions as well as timely availability. These new products are widely used in various research and applications. In particular, the TRMM Multi-satellite Precipitation Analysis (TMPA) products archived and distributed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) provide 3-hourly, daily and monthly near-global (50° N - 50° S) precipitation datasets for research and applications. Two versions of TMPA products are available, research (3B42, 3B43, rain gauge adjusted) and near-real-time (3B42RT). At GES DISC, we have developed precipitation data services to support hydrometeorological applications in order to maximize the TRMM mission's societal benefits. In this presentation, we will present examples of utilizing TMPA precipitation products in hydrometeorological applications including: 1) monitoring global floods and droughts; 2) providing data services to support the USDA Crop Explorer; 3) support hurricane monitoring activities and research; and 4) retrospective analog year analyses to improve USDA's world agricultural supply and demand estimates. We will also present precipitation data services that can be used to support hydrometeorological applications including: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC; 3) Simple Subset Wizard (http://disc.sci.gsfc.nasa.gov/SSW/ ) for data subsetting and format conversion; 4) Data

  18. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation.

    Science.gov (United States)

    Fernandéz-Taboada, Enrique; Moritz, Sören; Zeuschner, Dagmar; Stehling, Martin; Schöler, Hans R; Saló, Emili; Gentile, Luca

    2010-04-01

    Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.

  19. Hydrometeorological Hazards: Monitoring, Forecasting, Risk Assessment, and Socioeconomic Responses

    Science.gov (United States)

    Wu, Huan; Huang, Maoyi; Tang, Qiuhong; Kirschbaum, Dalia B.; Ward, Philip

    2017-01-01

    Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes,tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards and societies vulnerability to them differ between regions. Severe storms, strong winds, floods, and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. For example, in addition to causing injuries, deaths, and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, andincrease propagation of mosquito-borne diseases.

  20. Hydrometeorological Hazards: Monitoring, Forecasting, Risk Assessment, and Socioeconomic Responses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan [University of Maryland, College Park, MD, USA; NASA Goddard Space Flight Center, Greenbelt, MD, USA; Huang, Maoyi [Pacific Northwest National Laboratory, Richland, WA, USA; Tang, Qiuhong [Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Kirschbaum, Dalia B. [NASA Goddard Space Flight Center, Greenbelt, MD, USA; Ward, Philip [Vrije Universiteit, Amsterdam, Netherlands

    2016-01-01

    Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes, tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards, and society’s vulnerability to them, differs between regions. Severe storms, strong winds, floods and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. For example, in addition to causing injuries, deaths and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, and increase propagation of mosquito-borne diseases.

  1. Radiation monitoring of the Slovak Hydrometeorological Institute - Present and future

    International Nuclear Information System (INIS)

    Melicherova, T.

    2008-01-01

    Network for air radioactivity monitoring was developed in the frame Slovak Hydrometeorological Institute (SHMI) since 1963. There are data available for many years for beta radioactivity of the air particulate and deposition. At present network consist from 26 monitoring points for measurement of dose rate and 3 monitoring points for aerosol monitors. Measuring instrument are placed in the professional stations of the selected parts of Slovakia. They are regularly verified and calibrated in the Slovak Institute for Metrology. Radiation monitoring in the SHMI is one part of the Environmental monitoring of Slovakia. All activities and operation of this system are financed from governmental budget of the Environmental monitoring. All information about this system are available on the web page http://enviroportal.sk/ in the part 'Informacny system monitoringu'. (authors)

  2. Radiation monitoring of the Slovak Hydrometeorological Institute - Present and future

    International Nuclear Information System (INIS)

    Melicherova, T.

    2009-01-01

    Network for air radioactivity monitoring was developed in the frame Slovak Hydrometeorological Institute (SHMI) since 1963. There are data available for many years for beta radioactivity of the air particulate and deposition. At present network consist from 26 monitoring points for measurement of dose rate and 3 monitoring points for aerosol monitors. Measuring instrument are placed in the professional stations of the selected parts of Slovakia. They are regularly verified and calibrated in the Slovak Institute for Metrology. Radiation monitoring in the SHMI is one part of the Environmental monitoring of Slovakia. All activities and operation of this system are financed from governmental budget of the Environmental monitoring. All information about this system are available on the web page http://enviroportal.sk/ in the part 'Informacny system monitoringu'. (authors)

  3. Hydro-meteorological extreme events in the 18th century in Portugal

    Science.gov (United States)

    Fragoso, Marcelo; João Alcoforado, Maria; Taborda, João Paulo

    2013-04-01

    The present work is carried out in the frame of the KLIMHIST PROJECT ("Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources, 17th-19th century)", and is devoted to the study of hydro-meteorological extreme events during the last 350 years, in order to understand how they have changed in time and compare them with current analogues. More specifically, the results selected to this presentation will focus on some hydro-meteorological extreme events of the 18th century, like severe droughts, heavy precipitation episodes and windstorms. One of the most noteworthy events was the winterstorm Bárbara (3rd to 6th December 1739), already studied in prior investigations (Taborda et al, 2004; Pfister et al, 2010), a devastating storm with strong impacts in Portugal caused by violent winds and heavy rainfall. Several other extreme events were detected by searching different documentary archives, including individual, administrative and ecclesiastic sources. Moreover, a more detailed insight to the 1783-1787 period will be made with regard the Lisbon region, taking into consideration the availability of information for daily meteorological observations as well as documentary evidences, like descriptions from Gazeta de Lisboa, the periodic with more continuous publication in the 18thcentury. Key-words: Instrumental data, Documentary data, Extreme events, Klimhist Project, Portugal References Pfister, C., Garnier, E., Alcoforado, M.J., Wheeler, D. Luterbacher, J. Nunes, M.F., Taborda, J.P. (2010) The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe, Climatic Change, 101, 1-2, 281-310 Taborda, JP; Alcoforado, MJ and Garcia, JC (2004) O Clima do Sul de Portugal no Séc.XVIII, Centro de Estudos Geográficos, Área de de Investigação de Geo-Ecologia, relatório no 2

  4. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Traulsen, Marie Lund; Norrman, Kion

    2015-01-01

    electrical polarizations. Raman spectra recorded during polarization showed shifts in spectral intensities that were both reversible and dependent on the applied potential. Spectral changes were assigned to changes in the LSM electronic structure that resulted from changing oxide concentrations in the near......Polarization induced changes in LSM electrode composition were investigated by utilizing in operando Raman spectroscopy and post mortem TOF-SIMS depth profiling. Experiments were conducted on cells with 160 nm thick (La0.85Sr0.15)0.9MnO3±δ thin film electrodes in 10% O2 at 700 °C under various......-surface region. Ex situ TOF-SIMS depth profiles were recorded through the LSM electrodes and revealed distinct compositional changes throughout the electrodes. The electrode elements and impurities separated into well-defined layers that were more stratified for stronger applied polarizations. The mechanism...

  5. Vodacom and MTN’s brand positioning based on the perceptions of a group of LSM seven to ten respondents

    Directory of Open Access Journals (Sweden)

    Hennie Mentz

    2013-02-01

    Full Text Available This article investigates Vodacom and MTN’s brand positioning based on the perceptions of a group of LSM seven to ten respondents who are principal estate agents in Gauteng. An empirical study was conducted. The profile of the sample in terms of access to telecommunication-related services confirmed that of individuals in the LSM seven to ten groups with a skew towards LSM ten. As a minimum requirement for the target market brands in the category should be strongly associated with the statements market leader, local brand, technologically sophisticated brand, trusted brand, South African brand and prestigious/upmarket brand. At an overall level, Vodacom has established a more favourable brand positioning compared to MTN. However, both Vodacom and MTN have failed to establish a personal brand relationship with the target market.

  6. Performance of a solid oxide fuel cell with cathode containing a functional layer of LSM/YSZ film; Desempenho de uma celula a combustivel de oxido solido com catodo contendo uma camada funcional de filme LSM/YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Filipe Oliveira; Domingues, Rosana Z.; Brant, Marcia C.; Silva, Charles L.; Matencio, Tulio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica]. E-mail: filipequiufmg@ufmg.br

    2008-07-01

    Performance of a SOFC may be evaluated by using the AC-Impedance and measuring power (P V x I). The objective of this study was to compare the performance of a fuel cell with LSM as a cathode and another one containing an additional functional composite film LSM/YSZ between the LSM and YSZ. Also it was studied variation in second cell resistance and power according to the temperature, hydrogen flux and operation time. For both cells platinum was used as anode. At 800 deg C was observed, in open current circuit, when the composite layer was introduced a decrease in resistance and high power. These results show an improvement of SOFC cathode performance with the introduction of composite LSM/YSZ layer. The maximum performance of the cell was achieved with 100 mL/min hydrogen flow at 800 deg C. The experiments also showed a performance improvement at 850 deg C. The cell behavior was stable during 318 hours of test. (author)

  7. Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF

    Energy Technology Data Exchange (ETDEWEB)

    Rembelski, D.; Viricelle, J.P.; Rieu, M. [ENSMSE, Centre SPIN, departement PRESSIC, 42023 Saint-Etienne (France); Combemale, L. [ICB, 21078 Dijon (France)

    2012-04-15

    Four cathode materials for single chamber solid oxide fuel cell (SC-SOFC) [La{sub 0.8}Sr{sub 0.2}MnO{sub 3-{delta}} (LSM), Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF), Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (SSC), and La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF)] were investigated regarding their chemical stability, electrical conductivity, catalytic activity, and polarization resistance under air and methane/air atmosphere. Electrolyte-supported fuel cells, with Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}} (CGO) electrolyte and a Ni-CGO anode, were tested in several methane/air mixtures with each cathode materials between 625 and 725 C. These single cells were not optimized but only designed to compare the four studied cathodes. The decrease of methane-to-oxygen ratio from 2 to 0.67 strongly increased the performance of fuel cells for all cathode materials but the effect of temperature was not always significant. Cells with SSC, BSCF, and LSCF have shown a maximum power density about 20 mW cm{sup -2} while the cell with LSM has given only 5 mW cm{sup -2}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. FRC [field-reversed configuration] translation studies on FRX-C/LSM

    International Nuclear Information System (INIS)

    Rej, D.; Barnes, G.; Baron, M.

    1989-01-01

    In preparation for upcoming compression-heating experiments, field-reversed configurations (FRCs) have been translated out of the FRX-C/LSM θ-pinch source, and into the 0.4-m-id, 6.7-m-long translation region formerly used on FRX-C/T. Unlike earlier experiments FRCs are generated without magnetic tearing in the larger FRX-C/LSM source (nominal coil id = 0.70 m, length = 2 m); larger, lower-energy-density FRCs are formed: r/sub s/ ≅ 0.17 m, B/sub ext/ ≅ 0.35 T, ≅ 7 /times/ 10 20 m/sup /minus/3/ and T/sub e/ + T/sub i/ ≅ 400 eV. An initial 3-mtorr D 2 pressure is introduced by either static or puff fill. Asymmetric fields from auxiliary end coils (used for non-tearing formation) provide the accelerating force on the FRC, thereby eliminating the need for a conical θ-pinch coil. An important feature is the abrupt 44% decrease in the flux-conserving wall radius at the transition between the θ-pinch and translation region, similar to that in the compressor. In this paper we review a variety of issues addressed by the recent translation experiments: translation dynamics; translation through a modulated magnetic field; stabilization of the n = 2 rotational instability by weak helical quadrupole fields; and confinement properties. Results from internal magnetic field measurements in translating FRCs may be found in a companion paper. 10 refs., 5 figs

  9. Using the Iterative Input variable Selection (IIS) algorithm to assess the relevance of ENSO teleconnections patterns on hydro-meteorological processes at the catchment scale

    Science.gov (United States)

    Beltrame, Ludovica; Carbonin, Daniele; Galelli, Stefano; Castelletti, Andrea

    2014-05-01

    Population growth, water scarcity and climate change are three major factors making the understanding of variations in water availability increasingly important. Therefore, reliable medium-to-long range forecasts of streamflows are essential to the development of water management policies. To this purpose, recent modelling efforts have been dedicated to seasonal and inter-annual streamflow forecasts based on the teleconnection between "at-site" hydro-meteorological processes and low frequency climate fluctuations, such as El Niño Southern Oscillation (ENSO). This work proposes a novel procedure for first detecting the impact of ENSO on hydro-meteorological processes at the catchment scale, and then assessing the potential of ENSO indicators for building medium-to-long range statistical streamflow prediction models. Core of this procedure is the adoption of the Iterative Input variable Selection (IIS) algorithm that is employed to find the most relevant forcings of streamflow variability and derive predictive models based on the selected inputs. The procedure is tested on the Columbia (USA) and Williams (Australia) Rivers, where ENSO influence has been well-documented, and then adopted on the unexplored Red River basin (Vietnam). Results show that IIS outcomes on the Columbia and Williams Rivers are consistent with the results of previous studies, and that ENSO indicators can be effectively used to enhance the streamflow forecast models capabilities. The experiments on the Red River basin show that the ENSO influence is less pronounced, inducing little effects on the basin hydro-meteorological processes.

  10. Peran LSM Dalam Resolusi Konflik Tapal Batas Antara Nagari Sumpur Dengan Nagari Bungo Tanjuang, Kabupaten Tanah Datar

    Directory of Open Access Journals (Sweden)

    Sri Rahmadani

    2015-12-01

    Full Text Available The Third parties in the resolution of conflictwas expected to change the behavior of the parties in conflict, even pushed the parties toward an agreement to end the conflict. NGO as the third party is seen independent and can be fair in the resolution of conflict, can do some attempts to encourage the parties in conflict toward an agreement.One example of conflict involving NGO in an effort to resolve the boundary conflicts between Nagari Sumpur and Nagari Bungo Tanjuang, regency of Tanah Datar. Assignment NGO as mediator in resolution of conflict after several attempts taken by the government. This article explained the various efforts and achievement has done by NGO as mediator resolution of conflict both nagari until the formation of representative group become key success in mediation. In addition in this article is also explained the reason NGO that has not been able to achieve an aggrement in resolution of conflict both nagari. Pihak ketiga dalam resolusi konflik diharapkan dapat merubah perilaku para pihak yang berkonflik, bahkan mendorong para pihak menuju kesepakatan untuk mengakhiri konflik. LSM sebagai pihak ketiga dipandang independen dan dapat bersikap adil dalam resolusi konflik, dapat melakukan beberapa upaya untuk mendorong pihak yang berkonflik menuju kesepakatan. Salah satu contoh konflik yang melibatkan LSM dalam penyelesaiannya adalah konflik tapal batas antara Nagari Sumpur dengan Nagari Bungo Tanjuang, Kabupaten Tanah Datar. Penunjukan LSM sebagai mediator dalam penyelesaian konflik setelah beberapa upaya yang ditempuh oleh beberapa pihak dari pemerintahan. Tulisan ini memaparkan berbagai upaya dan pencapaian yang telah dilakukan LSM sebagai mediator penyelesaian konflik kedua nagari hingga terbentuknya perwakilan kelompok yang menjadi kunci keberhasilan dalam mediasi. Selain itu dalam tulisan ini juga memaparkan alasan LSM yang belum mampu mencapai kesepakatan dalam penyelesaian konflik kedua nagari.

  11. Assessment extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea

    Science.gov (United States)

    Dvornikov, Anton; Martyanov, Stanislav; Ryabchenko, Vladimir; Eremina, Tatjana; Isaev, Alexey; Sein, Dmitry

    2017-04-01

    Extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea, are estimated paying a special attention to the area of the future construction of nuclear power plant (NPP) "Hanhikivi-1" (24° 16' E, 64° 32' N). To produce these estimates, long-term observations and results from numerical models of water and ice circulation and wind waves are used. It is estimated that the average annual air temperature in the vicinity of the station is +3° C, summer and winter extreme temperature is equal to 33.3° C and -41.5° C, respectively. Model calculations of wind waves have shown that the most dangerous (in terms of the generation of wind waves in the NPP area) is a north-west wind with the direction of 310°. The maximum height of the waves in the Gulf of Bothnia near the NPP for this wind direction with wind velocity of 10 m/s is 1.2-1.4 m. According to the model estimates, the highest possible level of the sea near the NPP is 248 cm, the minimum level, -151 cm, respectively for the western and eastern winds. These estimates are in good agreement with observations on the sea level for the period 1922-2015 at the nearest hydrometeorological station Raahe (Finland). In order to assess the likely impact of the NPP on the marine environment numerical experiments for the cold (2010) and warm year (2014) have been carried out. These calculations have shown that permanent release of heat into the marine environment from the operating NPP for the cold year (2010) will increase the temperature in the upper layer of 0-250m zone by 10°C in winter - spring and by 8°C in summer - early autumn, and in the bottom layer of 0-250m zone by 5°C in winter - spring and 3°C in summer - early autumn. For the warm year (2014), these temperature changes are smaller. Ice cover in both cases will disappear in two - kilometer vicinity of the NPP. These effects should be taken into account when assessing local climate changes in the future

  12. An End-to-End System to Enable Quick, Easy and Inexpensive Deployment of Hydrometeorological Stations

    Science.gov (United States)

    Celicourt, P.; Piasecki, M.

    2014-12-01

    The high cost of hydro-meteorological data acquisition, communication and publication systems along with limited qualified human resources is considered as the main reason why hydro-meteorological data collection remains a challenge especially in developing countries. Despite significant advances in sensor network technologies which gave birth to open hardware and software, low-cost (less than $50) and low-power (in the order of a few miliWatts) sensor platforms in the last two decades, sensors and sensor network deployment remains a labor-intensive, time consuming, cumbersome, and thus expensive task. These factors give rise for the need to develop a affordable, simple to deploy, scalable and self-organizing end-to-end (from sensor to publication) system suitable for deployment in such countries. The design of the envisioned system will consist of a few Sensed-And-Programmed Arduino-based sensor nodes with low-cost sensors measuring parameters relevant to hydrological processes and a Raspberry Pi micro-computer hosting the in-the-field back-end data management. This latter comprises the Python/Django model of the CUAHSI Observations Data Model (ODM) namely DjangODM backed by a PostgreSQL Database Server. We are also developing a Python-based data processing script which will be paired with the data autoloading capability of Django to populate the DjangODM database with the incoming data. To publish the data, the WOFpy (WaterOneFlow Web Services in Python) developed by the Texas Water Development Board for 'Water Data for Texas' which can produce WaterML web services from a variety of back-end database installations such as SQLite, MySQL, and PostgreSQL will be used. A step further would be the development of an appealing online visualization tool using Python statistics and analytics tools (Scipy, Numpy, Pandas) showing the spatial distribution of variables across an entire watershed as a time variant layer on top of a basemap.

  13. Enhancing the applicability of Kohonen Self-Organizing Map (KSOM) estimator for gap-filling in hydrometeorological timeseries data

    Science.gov (United States)

    Nanda, Trushnamayee; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2017-06-01

    The Kohonen Self-Organizing Map (KSOM) estimator is prescribed as a useful tool for infilling the missing data in hydrometeorology. However, in this study, when the performance of the KSOM estimator is tested for gap-filling in the streamflow, rainfall, evapotranspiration (ET), and temperature timeseries data, collected from 30 gauging stations in India under missing data situations, it is felt that the KSOM modeling performance could be further improved. Consequently, this study tries to answer the research questions as to whether the length of record of the historical data and its variability has any effect on the performance of the KSOM? Whether inclusion of temporal distribution of timeseries data and the nature of outliers in the KSOM framework enhances its performance further? Subsequently, it is established that the KSOM framework should include the coefficient of variation of the datasets for determination of the number of map units, without considering it as a single value function of the sample data size. This could help to upscale and generalize the applicability of KSOM for varied hydrometeorological data types.

  14. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds

    Science.gov (United States)

    Bogaard, Thom; Greco, Roberto

    2018-01-01

    Many shallow landslides and debris flows are precipitation initiated. Therefore, regional landslide hazard assessment is often based on empirically derived precipitation intensity-duration (ID) thresholds and landslide inventories. Generally, two features of precipitation events are plotted and labeled with (shallow) landslide occurrence or non-occurrence. Hereafter, a separation line or zone is drawn, mostly in logarithmic space. The practical background of ID is that often only meteorological information is available when analyzing (non-)occurrence of shallow landslides and, at the same time, it could be that precipitation information is a good proxy for both meteorological trigger and hydrological cause. Although applied in many case studies, this approach suffers from many false positives as well as limited physical process understanding. Some first steps towards a more hydrologically based approach have been proposed in the past, but these efforts received limited follow-up.Therefore, the objective of our paper is to (a) critically analyze the concept of precipitation ID thresholds for shallow landslides and debris flows from a hydro-meteorological point of view and (b) propose a trigger-cause conceptual framework for lumped regional hydro-meteorological hazard assessment based on published examples and associated discussion. We discuss the ID thresholds in relation to return periods of precipitation, soil physics, and slope and catchment water balance. With this paper, we aim to contribute to the development of a stronger conceptual model for regional landslide hazard assessment based on physical process understanding and empirical data.

  15. Hydrometeorological threshold conditions for debris flow initiation in Norway

    Directory of Open Access Journals (Sweden)

    N. K. Meyer

    2012-10-01

    Full Text Available Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN. For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day−1. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day−1. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold.

  16. A large set of potential past, present and future hydro-meteorological time series for the UK

    Directory of Open Access Journals (Sweden)

    B. P. Guillod

    2018-01-01

    Full Text Available Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM driven by observed or projected sea surface temperature (SST and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM. Sets of 100 time series are generated for each of (i a historical baseline (1900–2006, (ii five near-future scenarios (2020–2049 and (iii five far-future scenarios (2070–2099. The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5 and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5 models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months and shorter-duration high precipitation (1–30 days, the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09 but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and

  17. A large set of potential past, present and future hydro-meteorological time series for the UK

    Science.gov (United States)

    Guillod, Benoit P.; Jones, Richard G.; Dadson, Simon J.; Coxon, Gemma; Bussi, Gianbattista; Freer, James; Kay, Alison L.; Massey, Neil R.; Sparrow, Sarah N.; Wallom, David C. H.; Allen, Myles R.; Hall, Jim W.

    2018-01-01

    Hydro-meteorological extremes such as drought and heavy precipitation can have large impacts on society and the economy. With potentially increasing risks associated with such events due to climate change, properly assessing the associated impacts and uncertainties is critical for adequate adaptation. However, the application of risk-based approaches often requires large sets of extreme events, which are not commonly available. Here, we present such a large set of hydro-meteorological time series for recent past and future conditions for the United Kingdom based on weather@home 2, a modelling framework consisting of a global climate model (GCM) driven by observed or projected sea surface temperature (SST) and sea ice which is downscaled to 25 km over the European domain by a regional climate model (RCM). Sets of 100 time series are generated for each of (i) a historical baseline (1900-2006), (ii) five near-future scenarios (2020-2049) and (iii) five far-future scenarios (2070-2099). The five scenarios in each future time slice all follow the Representative Concentration Pathway 8.5 (RCP8.5) and sample the range of sea surface temperature and sea ice changes from CMIP5 (Coupled Model Intercomparison Project Phase 5) models. Validation of the historical baseline highlights good performance for temperature and potential evaporation, but substantial seasonal biases in mean precipitation, which are corrected using a linear approach. For extremes in low precipitation over a long accumulation period ( > 3 months) and shorter-duration high precipitation (1-30 days), the time series generally represents past statistics well. Future projections show small precipitation increases in winter but large decreases in summer on average, leading to an overall drying, consistently with the most recent UK Climate Projections (UKCP09) but larger in magnitude than the latter. Both drought and high-precipitation events are projected to increase in frequency and intensity in most regions

  18. First results from the NEWS-G direct dark matter search experiment at the LSM

    Science.gov (United States)

    Arnaud, Q.; Asner, D.; Bard, J.-P.; Brossard, A.; Cai, B.; Chapellier, M.; Clark, M.; Corcoran, E. C.; Dandl, T.; Dastgheibi-Fard, A.; Dering, K.; Di Stefano, P.; Durnford, D.; Gerbier, G.; Giomataris, I.; Gorel, P.; Gros, M.; Guillaudin, O.; Hoppe, E. W.; Kamaha, A.; Katsioulas, I.; Kelly, D. G.; Martin, R. D.; McDonald, J.; Muraz, J.-F.; Mols, J.-P.; Navick, X.-F.; Papaevangelou, T.; Piquemal, F.; Roth, S.; Santos, D.; Savvidis, I.; Ulrich, A.; Vazquez de Sola Fernandez, F.; Zampaolo, M.

    2018-01-01

    New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of Ne + CH4 (0.7%) at 3.1 bars for a total exposure of 9.6 kg · days. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-GeV/c2 mass region. We exclude cross-sections above 4.4 ×10-37cm2 at 90% confidence level (C.L.) for a 0.5 GeV/c2 WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.

  19. Analysis of impacts on hydrometeorological extremes in the Senegal River Basin from REMO RCM

    Energy Technology Data Exchange (ETDEWEB)

    Galiano, Sandra Garcia; Osorio, Juan Diego Giraldo [Technical Univ. of Cartagena, Dept. of Thermal Engineering and Fluids, Cartagena (Spain)

    2010-06-15

    West Africa is highly vulnerable to climate variability. The precipitation latitudinal gradient determines agricultural activities. The cultivated area of the Sahel is a densely populated region, whereas flood recession agriculture is practiced in the Senegal River Valley. The present study analyses both spatial-temporal rainfall patterns of the REMO Regional Climate Model (RCM) and observed rainfall data, focusing in particular on extreme hydro-meteorological phenomena. An analysis of simulated daily rainfall data was performed to determine the frequency and magnitude of length of dry spells, as well as the extreme rainfall events. A projected annual decrease in rainfall on horizon 2050 could be explained by two factors: the decrease in the percentage of rainy days on both west and north sides of the basin, and the decrease of precipitation amount for rainy days in the southern basin. Finally, an increase in the frequency of dry spell in the monsoon season by 2050 is projected. Such findings are significant in a framework of strategies for water resources management and planning at basin scale, in order to build adaptive capacity. (orig.)

  20. Identification and diagnosis of spatiotemporal hydrometeorological structure of heavy precipitation induced floods in Southeast Asia

    Science.gov (United States)

    Lu, M.; Hao, X.; Devineni, N.

    2017-12-01

    Extreme floods have a long history of being an important cause of death and destruction worldwide. It is estimated by Munich RE and Swiss RE that floods and severe storms dominate all other natural hazards globally in terms of average annual property loss and human fatalities. The top 5 most disastrous floods in the period from 1900 to 2015, ranked by economic damage, are all in the Asian monsoon region. This study presents an interdisciplinary approach integrating hydrometeorology, atmospheric science and state-of-the-art space-time statistics and modeling to investigate the association between the space-time characteristics of floods, precipitation and atmospheric moisture transport in a statistical and physical framework, using tropical moisture export dataset and curve clustering algorithm to study the source-to-destination features; explore the teleconnected climate regulations on the moisture formation process at different timescales (PDO, ENSO and MJO), and study the role of the synoptic-to-large atmospheric steering on the moisture transport and convergence.

  1. Visualizing the structural evolution of LSM/xYSZ composite cathodes for SOFC by in-situ neutron diffraction.

    Science.gov (United States)

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-06-05

    Thermal stability of composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO(3-δ) (LSM) and (Y2O3)(x)(ZrO2)(1-x) (xYSZ, x = 3, 6, 8 and 10), is determined using in-situ neutron diffraction. Thanks to the most advanced high flux neutron source, our work highlights the visualization of the phase evolutions in heterogeneous material systems at high temperatures, along with the analysis of the diffusion activities of transition metal ions that reveal the reaction mechanism and kinetics. It is found that the tetragonal-to-cubic phase transition in YSZ at T > 900°C leads to a heterogeneous redistribution of Mn ions. The subsequent reaction of LSM and YSZ occurring at T > 1100°C is revealed as a three-stage kinetic process, yielding La2Zr2O7, SrZrO3 and MnO. The diffusion activities of Y, Mn and La ions in the heterogeneous systems at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM is found strongly correlated to ions' behaviors as functions of temperature.

  2. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    Science.gov (United States)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of

  3. The North American Monsoon GPS Hydrometeorological Network 2017: A New Look at an Old Problem

    Science.gov (United States)

    Adams, D. K.

    2017-12-01

    Quantifying moisture recycling and determining water vapor source regions for deep convective precipitation have been problematic, particular in tropical continental regions. More than an academic concern, modeling convective precipitation, from cloud-resolving to global climate models, depends critically on properly representing atmospheric water vapor transport, its vertical distribution, as well as surface latent heat flux contributions. The North American Monsoon region, given its complex topography, proximity to warm oceans, striking vegetation "green up" and oftentimes subtle dynamical forcing is particular challenging in this regard. Recent studies, employing modeling and observational approaches, give a prominent role for moisture recycling in fomenting deep convective precipitation. Likewise, these studies argue for the increased importance of transport from the Gulf of Mexico/Central America and the Atlantic Ocean, relative to the Pacific Ocean/Gulf of California. In this presentation, we critically review these studies which served to motivate the NAM GPS Hydrometeorological Network 2017, detailed here. This bi-national (Mexico-US) 3-month campaign to examine water vapor source regions, and specifically, land-surface water vapor fluxes consists of 10 experimental GPS meteorological sites as well as TLALOCNet and Suominet GPS sites in the Mexican states of Sonora, Chihuahua, Sinaloa, and Baja California and in Arizona and New Mexico. Near Rayón Sonora, inside the larger regional GPSmet array, a 30km eddy covariance flux tower triangular array, with collocated GPSmet, measures continuous energy fluxes and precipitable water vapor. Preliminary results examining the local flux contribution in the triangular array to total precipitable water vapor measured are presented. Further research is then outlined.

  4. Trend Analysis of Hydro-meteorological variables in the coastal area ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT; This paper presents the application of Mann-Kendall trend test and Standard. Anomaly index onhydro-meteorological variables in the coastal area of Lagos state in order to determine the nature of trend and level of significance. The hydro-meteorological data such as air temperature, relative humidity, wind ...

  5. EXTREME HYDRO-METEOROLOGICAL PHENOMENA ON THE HYDROGRAPHICAL BASIN OF TIMIŞ RIVER (1965-2009

    Directory of Open Access Journals (Sweden)

    ANDREEA MIHAELA ARBA

    2013-04-01

    Full Text Available Extreme hydro-meteorological phenomena on the hydrographical basin of Timiş river (1965-2009. The study of extreme hydro-meteorological phenomena or of the climatic and hydrological risks involve a wide range of issues, which should start with the climatic and hydrological data and should end with the monitoring of the risk factors, in order to pass from the diagnosis analysis to the prognosis one. We intended to draw up such a comprehensive study as well because it combines the classical methodology (field research, deductive, inductive, historical methods with the specific methodology of the Geographical Informational Systems (G.I.S.. To analyse the hydro-meteorological phenomena on the basin, we used the climatic and hydrological data collected on the field from 6 meteorological stations and from 5 hydrometric stations, during a common period of 45 years (1965-2009. The extreme hydro-meteorological phenomena which were identified on the basin and which were analysed in the study herein are: the extreme temperatures, the periods with pluviometric surplus, the heavy rains, the drought and dryness phenomena, as well as the floods.

  6. "Normal" liver stiffness measure (LSM) values are higher in both lean and obese individuals: a population-based study from a developing country.

    Science.gov (United States)

    Das, Kausik; Sarkar, Rajib; Ahmed, Sk Mahiuddin; Mridha, Asit R; Mukherjee, Partha S; Das, Kshaunish; Dhali, Gopal K; Santra, Amal; Chowdhury, Abhijit

    2012-02-01

    The liver stiffness measure (LSM) needs to be explored in ethnically and anthropometrically diverse healthy subjects (to derive an acceptable normal range) and also in patients with liver disease. In view of this objective, LSM was performed by transient elastography (TE) using FibroScan in 437 healthy subjects with normal alanine aminotransferase (ALT) levels, recruited from a free-living population of the Birbhum Population Project (BIRPOP; www.shds.in), a Health and Demographic Surveillance System (HDSS), and from 274 patients with liver disease attending the Hepatology Clinic of the School of Digestive and Liver Diseases (SDLD; Institute of Post Graduate Medical Education & Research [IPGME&R], Kolkata, India) including 188 with nonalcoholic fatty liver disease (NAFLD) and 86 with chronic hepatitis of viral and other etiologies. Liver biopsy was performed in 125 patients. The range of normal values for LSM, defined by 5th and 95th percentile values in healthy subjects, was 3.2 and 8.5 kPa, respectively. Healthy subjects with a lower body mass index (BMI; < <18.5 kg/m(2)) had a higher LSM compared with subjects who had a normal BMI; this LSM value was comparable to that of obese subjects (6.05 ± 1.78 versus 5.51 ± 1.59 and 6.60 ± 1.21, P = 0.016 and 0.349, respectively). Liver disease patients without histologic fibrosis had significantly higher LSM values compared with healthy subjects (7.52 ± 5.49 versus 5.63 ± 1.64, P < 0.001). Among the histologic variables, stage of fibrosis was the only predictor for LSM. LSM did not correlate with inflammatory activity and ALT in both NAFLD and chronic hepatitis groups. LSM varies between 3.2 and 8.5 kPa in healthy subjects of South Asian origin. Both lean and obese healthy subjects have higher LSM values compared with subjects with normal BMI. Liver stiffness begins to increase even before fibrosis appears in patients with liver disease. Copyright © 2011 American Association for the Study of Liver Diseases.

  7. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2013-01-01

    Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month. The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive action based on the forecast.

  8. Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Directory of Open Access Journals (Sweden)

    F. Fundel

    2013-01-01

    Full Text Available Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month.

    The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive

  9. Linking non-culturable (qPCR) and culturable enterococci densities with hydrometeorological conditions

    Science.gov (United States)

    Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Shively, Dawn A.; Nevers, Meredith B.

    2010-01-01

    Quantitative polymerase chain reaction (qPCR) measurement of enterococci has been proposed as a rapid technique for assessment of beach water quality, but the response of qPCR results to environmental conditions has not been fully explored. Culture-based E. coli and enterococci have been used in empirical predictive models to characterize their responses to environmental conditions and to increase monitoring frequency and efficiency. This approach has been attempted with qPCR results only in few studies. During the summer of 2006, water samples were collected from two southern Lake Michigan beaches and the nearby river outfall (Burns Ditch) and were analyzed for enterococci by culture-based and non-culture-based (i.e., qPCR) methods, as well as culture-based E. coli. Culturable enterococci densities (log CFU/100 ml) for the beaches were significantly correlated with enterococci qPCR cell equivalents (CE) (R = 0.650, P N = 32). Enterococci CE and CFU densities were highest in Burns Ditch relative to the beach sites; however, only CFUs were significantly higher (P R = 0.565, P N = 32). Culturable E. coli and enterococci densities were significantly correlated (R = 0.682, P N = 32). Regression analyses suggested that enterococci CFU could be predicted by lake turbidity, Burns Ditch discharge, and wind direction (adjusted R2 = 0.608); enterococci CE was best predicted by Burns Ditch discharge and log-transformed lake turbidity × wave height (adjusted R2 = 0.40). In summary, our results show that analytically, the qPCR method compares well to the non-culture-based method for measuring enterococci densities in beach water and that both these approaches can be predicted by hydrometeorological conditions. Selected predictors and model results highlight the differences between the environmental responses of the two method endpoints and the potentially high variance in qPCR results

  10. Dynamic behavior of impurities and native components in model LSM microelectrodes on YSZ

    DEFF Research Database (Denmark)

    Norrman, Kion; Hansen, Karin Vels; Jacobsen, Torben

    2015-01-01

    behavior of the native components (La, Sr, Mn) and selected impurities (Si, K, Na) both laterally and in-depth. Manganese was found to be especially mobile and showed both segregation onto the electrolyte as a result of temperature and polarization and dissolution into the electrolyte below...

  11. Hydro-meteorological causes of floods on the Upper and Central Danube River in the years 1895, 1897 and 1899

    Science.gov (United States)

    Garaj, Marcel

    2017-04-01

    Historical climatology and hydrology are uprising scientific disciplines. They stay at the intersection of natural and socio-economic sciences. The main objective is to reconstruct the temporal and spatial aspects of the extreme situations which occurred in the past. It can improve hydro-meteorological modelling, predictions and future scenarios if historical data are included. This paper studies the hydro-meteorological causes of selected floods on the Upper and Central Danube River basin at the end of the 19th century. The main objective was to analyse the temperature conditions and precipitation amounts in the researched area based on data from meteorological and hydrological yearbooks from the Austro-Hungarian Monarchy. The analysis of the meteorological causes of a winter flood in 1895 is based on precipitation amount maps and mean monthly air temperature maps for winter 1894/1895. Graphs of the duration of the snow cover and snow depths for the Salzburg and Kremsmünster stations in March 1895 are also presented. Deviations in the mean daily air temperature from the long term averages (1881 - 1910, 1961 - 1990) are analysed at two selected stations, i.e., Kremsmünster and Höhenpeissenberg. The flood wave from 17 April 1895 had a peak discharge of 15 200 m3.s-1 at the Orsova - Turnu Severin station. The analysis of the summer floods in 1897 and 1899 is based on monthly precipitation maps for the specific months with particular rainfall episodes. There are also graphs of deviations in the cumulative precipitation from the long term averages at the Kremsmünster station in July 1897 and September 1899. In Bratislava, the peak discharge of the July 1897 flood wave reached 10 140 m3.s-1 and the September 1899 flood exceeded that with a peak discharge of 10 870 m3.s-1 and a water stage of 970 cm.

  12. Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal

    2010-03-01

    Full Text Available Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc. on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI – and multiscale hydrological droughts, through the Standardized Flow Index (SFI. Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow. Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990 to short hot and dry periods (2003. Results show that the ranking of drought events depends highly

  13. LSm14A Plays a Critical Role in Antiviral Immune Responses by Regulating MITA Level in a Cell-Specific Manner.

    Science.gov (United States)

    Liu, Tian-Tian; Yang, Qing; Li, Mi; Zhong, Bo; Ran, Yong; Liu, Li-Li; Yang, Yan; Wang, Yan-Yi; Shu, Hong-Bing

    2016-06-15

    Viral infection triggers induction of antiviral cytokines and effectors, which are critical mediators of innate antiviral immune response. It has been shown that the processing body-associated protein LSm14A is involved in the induction of antiviral cytokines in cell lines but in vivo evidence is lacking. By generating LSm14A-deficient mice, in this study, we show that LSm14A plays a critical and specific role in the induction of antiviral cytokines in dendritic cells (DCs) but not in macrophages and fibroblasts. Induction of antiviral cytokines triggered by the DNA viruses HSV-1 and murid herpesvirus 68 and the RNA virus vesicular stomatitis virus but not Sendai virus was impaired in Lsm14a(-/-) DCs, which is correlated to the functions of the adaptor protein MITA/STING in the antiviral signaling pathways. LSm14A deficiency specifically downregulated MITA/STING level in DCs by impairing its nuclear mRNA precursor processing and subsequently impaired antiviral innate and adaptive immune responses. Our findings reveal a nuclear mRNA precursor processing and cell-specific regulatory mechanism of antiviral immune responses. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a Ba......O-Pt-Al2O3 layer. The impedance analysis revealed that modification with the NOx adsorbents, either by impregnating the BaO into the electrode or by adding a BaO-Pt-Al2O3 layer on top of the electrode significantly enhanced the electrode activity. This activity enhancement was mainly due to the decrease...... in the resistance of the low-frequency processes, which were ascribed to adsorption, diffusion, and transfer of O2 species and NOx species at or near the triple phase boundary (TPB) region and the formation of the reaction intermediate NO2. The BaO impregnation improved the adsorption of NOx on the LSM...

  15. Documentary evidence of economic character as a source for the study of hydrometeorological extremes

    Science.gov (United States)

    Chromá, K.; Brázdil, R.; Valášek, H.

    2009-04-01

    Various human activities, such as agriculture, forestry and water management, have always been influenced by climate variability and hydrometeorological extremes. From this reason historical economic records often include information about contemporaneous weather as well as descriptions of its impacts. This study deals with the interpretation of hydrometeorological extremes for the territory of Moravia (eastern part of the Czech Republic) derived from taxation records and reports of domain and estate administrators. Information obtained reflects the occurrence of floods, convective storms (including hailstorms), windstorms, late spring and early autumn frosts. Based on data from eight domains or estates, frequency series of floods and convective storms (including hailstorms) were compiled for the period 1650-1849. Detail analysis of disastrous weather event from 10 August 1694 in the Pernštejn domain is used to demonstrate the potential of such data for the study of hydrometeorological extremes and their impacts on human activity. Another example is analysis of data about tax reduction due to hailstorm damage on agriculture crops in Moravia in the period 1896-1906.

  16. Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    Gadolinium-doped cerium oxide (CGO) and lanthanum strontium manganate (LSM) are electro-ceramics materials with high potential for several electrochemical applications such as solid Oxide Fuel Cell (SOFC), gas separation membranes, and flue gas purification devices. Especially for novel...... electrochemical flue gas purification devices, multilayer structures with alternating porous layers of CGO and a LSM/CGO mixture are used to achieve specific functional requirements. In a manufacturing process of such ceramic multilayer devices, co-firing is one of the critical steps as many defects...

  17. Synthesis of modified calcium aluminate with lanthanum manganite (LSM) for possible use in solid oxide fuel cell (SOFC); Sintese de aluminato de calcio modificado com manganita de lantanio (LSM) para possivel utilizacao em celula combustivel de oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, F.C.T.; Jurado, J.; Sousa, V.C. de, E-mail: faili.cintia@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Departamento de Materiais; Cava, S.S. [Universidade Federal de Pelotas, RS (Brazil)

    2016-07-01

    The fuel cells solid oxide (SOFC) is made up of three basic elements: two electrodes, the anode and cathode and a conductive electrolyte ions. The objective of this work consists of calcium aluminate synthesis modified LSM in a 1: 1 by combustion synthesis method with a view to its use as a cathode in SOFC. The characterization of the post was carried out by the methods of XRD, TEM and EIS. After heat treatment at 1200°C/4 hours it was possible to obtain Ca0.5Sr1.5MnO4 and CaMnO2.56 phases. The material showed a semiconductor characteristics because with increasing temperature the electrical resistance value tends to decrease obtaining electrical conductivity greater than 10-6S / cm featuring an extrinsic semiconductor with an activation energy of 0.12. Therefore, with an activation energy value within the range of materials used for a SOFC cathodes. (author)

  18. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  19. Supporting Hydrometeorological Research and Applications with Global Precipitation Measurement (GPM) Products and Services

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2016-01-01

    Precipitation is an important dataset in hydrometeorological research and applications such as flood modeling, drought monitoring, etc. On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data. The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). GPM products currently available include the following:1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products2. Goddard Profiling Algorithm (GPROF) GMI and partner products (Level-2 and Level-3)3. GPM dual-frequency precipitation radar and their combined products (Level-2 and Level-3)4. Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final run)GPM data can be accessed through a number of data services (e.g., Simple Subset Wizard, OPeNDAP, WMS, WCS, ftp, etc.). A newly released Unified User Interface or UUI is a single interface to provide users seamless access to data, information and services. For example, a search for precipitation products will not only return TRMM and GPM products, but also other global precipitation products such as MERRA (Modern Era Retrospective-Analysis for Research and Applications), GLDAS (Global Land Data Assimilation Systems), etc.New features and capabilities have been recently added in GIOVANNI to allow exploring and inter-comparing GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) half-hourly and monthly precipitation

  20. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    Science.gov (United States)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is

  1. Synthesis of modified calcium aluminate with lanthanum manganite (LSM) for possible use in solid oxide fuel cell (SOFC)

    International Nuclear Information System (INIS)

    Veiga, F.C.T.; Jurado, J.; Sousa, V.C. de

    2016-01-01

    The fuel cells solid oxide (SOFC) is made up of three basic elements: two electrodes, the anode and cathode and a conductive electrolyte ions. The objective of this work consists of calcium aluminate synthesis modified LSM in a 1: 1 by combustion synthesis method with a view to its use as a cathode in SOFC. The characterization of the post was carried out by the methods of XRD, TEM and EIS. After heat treatment at 1200°C/4 hours it was possible to obtain Ca0.5Sr1.5MnO4 and CaMnO2.56 phases. The material showed a semiconductor characteristics because with increasing temperature the electrical resistance value tends to decrease obtaining electrical conductivity greater than 10-6S / cm featuring an extrinsic semiconductor with an activation energy of 0.12. Therefore, with an activation energy value within the range of materials used for a SOFC cathodes. (author)

  2. Nuclear LSm8 affects number of cytoplasmic processing bodies via controlling cellular distribution of Like-Sm proteins

    Czech Academy of Sciences Publication Activity Database

    Novotný, Ivan; Podolská, Kateřina; Blažíková, Michaela; Valášek, Leoš Shivaya; Svoboda, Petr; Staněk, David

    2012-01-01

    Roč. 23, č. 19 (2012), s. 3776-3785 ISSN 1059-1524 R&D Projects: GA AV ČR KAN200520801; GA ČR GA204/07/0133; GA ČR GAP305/10/2215; GA ČR GAP302/11/1910; GA ČR(CZ) GBP305/12/G034 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50520514; CEZ:AV0Z50200510 Institutional support: RVO:68378050 ; RVO:68378041 ; RVO:61388971 Keywords : P-bodies * LSm proteins * mRNA degradation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.604, year: 2012

  3. Dealing with uncertainties in impact studies of climate change on hydrometeorological series over Segura River Basin (Spain)

    Science.gov (United States)

    Garcia Galiano, S. G.; Garcia Cardenas, R.; Tetay Botia, C.; Giraldo Osorio, J.; Erena Arrabal, M.; Baille, A.

    2011-12-01

    The Segura River Basin (SRB) located in the South East of Spain, is affected by recurrent drought and water scarcity episodes. This basin presents the lowest percentage of renewable water resources of all the Spanish basins. Intensive reforestation has been carried out in the region, to halt desertification and erosion, which added to climate change and variability, do not allow the default assumption of stationarity in the water resources systems. Therefore, the study of effects in hydrometeorological series should be addressed by nonstationary probabilistic models that allow describing the time evolution of their probability distribution functions (PDFs). In the present work, the GAMLSS (Generalized Additive Models for Location, Scale and Shaper) approach is applied to identify of spatio-temporal trends in observed precipitation (P) and potential evapotranspiration (PET), at basin scale. Several previous studies have addressed the potential impacts of climate change in water supply systems, focusing on the sensitivity analysis of runoff to climate. Considering the use of a conceptual hydrological model with few parameters, the impacts on runoff and its trend from historical data, are assessed. The conclusions of this study represent a breakthrough in the development of methodologies to understand and anticipate the impacts on water resources systems, in the light of current and future climate conditions, considering hydroclimatic non-stationarity. These findings are expected to contribute to the management of conditions of water resources scarcity and droughts, such as the observed in the SRB, as support to decision-making process by stakeholders.

  4. Application of Hydrometeorological Information for Short-term and Long-term Water Resources Management over Ungauged Basin in Korea

    Science.gov (United States)

    Kim, Ji-in; Ryu, Kyongsik; Suh, Ae-sook

    2016-04-01

    In 2014, three major governmental organizations that are Korea Meteorological Administration (KMA), K-water, and Korea Rural Community Corporation have been established the Hydrometeorological Cooperation Center (HCC) to accomplish more effective water management for scarcely gauged river basins, where data are uncertain or non-consistent. To manage the optimal drought and flood control over the ungauged river, HCC aims to interconnect between weather observations and forecasting information, and hydrological model over sparse regions with limited observations sites in Korean peninsula. In this study, long-term forecasting ensemble models so called Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, provided by KMA was used in order to produce drought outlook. Glosea5 ensemble model prediction provides predicted drought information for 1 and 3 months ahead with drought index including Standardized Precipitation Index (SPI3) and Palmer Drought Severity Index (PDSI). Also, Global Precipitation Measurement and Global Climate Observation Measurement - Water1 satellites data products are used to estimate rainfall and soil moisture contents over the ungauged region.

  5. ICT approaches to integrating institutional and non-institutional data services for better understanding of hydro-meteorological phenomena

    Directory of Open Access Journals (Sweden)

    T. Bedrina

    2012-06-01

    Full Text Available It is widely recognised that an effective exploitation of Information and Communication Technologies (ICT is an enabling factor to achieve major advancements in Hydro-Meteorological Research (HMR. Recently, a lot of attention has been devoted to the use of ICT in HMR activities, e.g. in order to facilitate data exchange and integration, to improve computational capabilities and consequently model resolution and quality. Nowadays, ICT technologies have demonstrated that it is possible to extend monitoring networks by integrating sensors and other sources of data managed by volunteer's communities. These networks are constituted by peers that span a wide portion of the territory in many countries. The peers are "location aware" in the sense that they provide information strictly related with their geospatial location. The coverage of these networks, in general, is not uniform and the location of peers may follow random distribution. The ICT features used to set up the network are lightweight and user friendly, thus, permitting the peers to join the network without the necessity of specialised ICT knowledge. In this perspective it is of increasing interest for HMR activities to elaborate of Personal Weather Station (PWS networks, capable to provide almost real-time, location aware, weather data.

    Moreover, different big players of the web arena are now providing world-wide backbones, suitable to present on detailed map location aware information, obtained by mashing up data from different sources. This is the case, for example, with Google Earth and Google Maps.

    This paper presents the design of a mashup application aimed at aggregating, refining and visualizing near real-time hydro-meteorological datasets. In particular, we focused on the integration of instant precipitation depths, registered either by widespread semi-professional weather stations and official ones. This sort of information has high importance and usefulness in

  6. ICT approaches to integrating institutional and non-institutional data services for better understanding of hydro-meteorological phenomena

    Science.gov (United States)

    Bedrina, T.; Parodi, A.; Quarati, A.; Clematis, A.

    2012-06-01

    It is widely recognised that an effective exploitation of Information and Communication Technologies (ICT) is an enabling factor to achieve major advancements in Hydro-Meteorological Research (HMR). Recently, a lot of attention has been devoted to the use of ICT in HMR activities, e.g. in order to facilitate data exchange and integration, to improve computational capabilities and consequently model resolution and quality. Nowadays, ICT technologies have demonstrated that it is possible to extend monitoring networks by integrating sensors and other sources of data managed by volunteer's communities. These networks are constituted by peers that span a wide portion of the territory in many countries. The peers are "location aware" in the sense that they provide information strictly related with their geospatial location. The coverage of these networks, in general, is not uniform and the location of peers may follow random distribution. The ICT features used to set up the network are lightweight and user friendly, thus, permitting the peers to join the network without the necessity of specialised ICT knowledge. In this perspective it is of increasing interest for HMR activities to elaborate of Personal Weather Station (PWS) networks, capable to provide almost real-time, location aware, weather data. Moreover, different big players of the web arena are now providing world-wide backbones, suitable to present on detailed map location aware information, obtained by mashing up data from different sources. This is the case, for example, with Google Earth and Google Maps. This paper presents the design of a mashup application aimed at aggregating, refining and visualizing near real-time hydro-meteorological datasets. In particular, we focused on the integration of instant precipitation depths, registered either by widespread semi-professional weather stations and official ones. This sort of information has high importance and usefulness in decision support systems and Civil

  7. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    Science.gov (United States)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  8. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    International Nuclear Information System (INIS)

    Steinbach, G; Pawlak, K; Garab, G; Pomozi, I; Tóth, E A; Molnár, A; Matkó, J

    2014-01-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316–25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM. (paper)

  9. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM).

    Science.gov (United States)

    Steinbach, G; Pawlak, K; Pomozi, I; Tóth, E A; Molnár, A; Matkó, J; Garab, G

    2014-02-24

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples-e.g. cells and tissues-measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the 'conventional' imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  10. Long-range hydrometeorological ensemble predictions of drought parameters

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2012-06-01

    Low streamflow as consequence of a drought event affects numerous aspects of life. Economic sectors that may be impacted by drought are, e.g. power production, agriculture, tourism and water quality management. Numerical models have increasingly been used to forecast low-flow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the low-flow indices duration, severity and magnitude, with a forecast lead-time of one month, to assess their potential usefulness for predictions. The ECMWF VarEPS 5 member reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification shows that, compared to peak flow, probabilistic low-flow forecasts are skillful for longer lead-times, low-flow index forecasts could also be beneficially included in a decision-making process. The results suggest monthly runoff forecasts are useful for accessing the risk of hydrological droughts.

  11. Hydro-meteorological variability in the greater Ganges-Brahmaputra-Meghna basins

    Science.gov (United States)

    Chowdhury, Rashed; Ward, Neil

    2004-10-01

    The flows of the Ganges, Brahmaputra and Meghna (GBM) are highly seasonal, and heavily influenced by monsoon rainfall. As a result, these rivers swell to their banks and often overflow during the monsoon months. This is most pronounced in the downstream regions, particularly in Bangladesh, which is the lowest riparian country. The objective of this paper is to study this hydro-meteorological variability in the greater GBM regions, including the headwater regions in India and their role in streamflows in Bangladesh, and explore the large-scale oceanic factors affecting this hydro-meteorological variability. Global precipitation data, Bangladesh rainfall and streamflow records have been analysed and related to large-scale climate patterns, including upstream rainfall, regional atmospheric circulation and patterns of sea-surface temperature.The findings have quantified how the streamflows of these rivers in Bangladesh are highly correlated with the rainfall in the upper catchments with typically a lag of about 1 month. Therefore, streamflows in Bangladesh could be reasonably estimated for 1 to 3 months in advance (especially for the Ganges and Brahmaputra rivers) by employing simple correlation, if rainfall data from countries further up are available on a real-time and continuous basis. In the absence of rainfall data, streamflow forecasts are still possible from unusually warm or cold sea-surface temperatures in the tropics. The study concludes that hydro-meteorological information flow between Bangladesh and other neighbouring countries is essential for developing a knowledge base for evaluating the potential implications of seasonal streamflow forecast in the GBM basins in Bangladesh.

  12. Overview of Hydrometeorologic Forecasting Procedures at BC Hydro

    Science.gov (United States)

    McCollor, D.

    2004-12-01

    Energy utility companies must balance production from limited sources with increasing demand from industrial, business, and residential consumers. The utility planning process requires a balanced, efficient, and effective distribution of energy from source to consumer. Therefore utility planners must consider the impact of weather on energy production and consumption. Hydro-electric companies should be particularly tuned to weather because their source of energy is water, and water supply depends on precipitation. BC Hydro operates as the largest hydro-electric company in western Canada, managing over 30 reservoirs within the province of British Columbia, and generating electricity for 1.6 million people. BC Hydro relies on weather forecasts of watershed precipitation and temperature to drive hydrologic reservoir inflow models and of urban temperatures to meet energy demand requirements. Operations and planning specialists in the company rely on current, value-added weather forecasts for extreme high-inflow events, daily reservoir operations planning, and long-term water resource management. Weather plays a dominant role for BC Hydro financial planners in terms of sensitive economic responses. For example, a two percent change in hydropower generation, due in large part to annual precipitation patterns, results in an annual net change of \\50 million in earnings. A five percent change in temperature produces a \\5 million change in yearly earnings. On a daily basis, significant precipitation events or temperature extremes involve potential profit/loss decisions in the tens of thousands of dollars worth of power generation. These factors are in addition to environmental and societal costs that must be considered equally as part of a triple bottom line reporting structure. BC Hydro water resource managers require improved meteorological information from recent advancements in numerical weather prediction. At BC Hydro, methods of providing meteorological forecast data

  13. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Chua, Vivien P.; Li, Cheng; Brindha, K.

    2018-02-01

    Assessment of historical hydro-meteorological drought is important to develop a robust drought monitoring and prediction system. This study aims to assess the historical hydro-meteorological drought of the Johor River Basin (JRB) from 1975 to 2010, an important basin for the population of southern Peninsular Malaysia and Singapore. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were selected to represent the meteorological and hydrological droughts, respectively. Four absolute homogeneity tests were used to assess the rainfall data from 20 stations, and two stations were flagged by these tests. Results indicate the SPI duration to be comparatively low (3 months), and drier conditions occur over the upper JRB. The annual SSI had a strong decreasing trend at 95% significance level, showing that human activities such as reservoir construction and agriculture (oil palm) have a major influence on streamflow in the middle and lower basin. In addition, moderate response rate of SSI to SPI was found, indicating that hydrological drought could also have occurred in normal climate condition. Generally, the El Niño-Southern Oscillation and Madden Julian Oscillation have greater impacts on drought events in the basin. Findings of this study could be beneficial for future drought projection and water resources management.

  14. The Trans-African Hydro-Meteorological Observatory: Leapfrogging in water and climate science

    Science.gov (United States)

    Van De Giesen, N.; Hut, R.; Andreini, M.; Selker, J. S.

    2012-12-01

    The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is a multi-national initiative to design, build, and operate 20,000 hydro-meteorological measurement stations in sub-Saharan Africa. Design, Education, and Operation are the three main lines along which the initiative is being developed. The Design line follows a set of rules that serves easy deployment and reliable, low maintenance operation, such as absence of moving parts and cavities, self- and cross calibration of sensors, and low cost (€ 200-300 per station). Some first results are improved raingauges (disdrometers) and pyrgeometers. Much of the project revolves around Education. Stations will be deployed at secondary schools and their data will be integrated in the environmental science curriculum. Collaboration with schools will improve the students' awareness of the processes that govern their physical environment and create a generation of scientists and technicians with hands-on environmental monitoring experience. Finally, the Operation line focuses on the development of a financially sustainable network. Raw data will be made available for scientific use but value added products will be produced to finance maintenance and operation. Estimated total costs for establishing the network will be in the order of US 20 million, whereas operational costs will be around US 2 million per year. The presentation will focus on recent activities, specifically concerning crowd sourcing activities at African universities, and an open invitation to contribute to TAHMO.

  15. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis

    Science.gov (United States)

    Chen, Lu; Singh, Vijay P.

    2018-02-01

    Frequency analysis of hydrometeorological and hydrological extremes is needed for the design of hydraulic and civil infrastructure facilities as well as water resources management. A multitude of distributions have been employed for frequency analysis of these extremes. However, no single distribution has been accepted as a global standard. Employing the entropy theory, this study derived five generalized distributions for frequency analysis that used different kinds of information encoded as constraints. These distributions were the generalized gamma (GG), the generalized beta distribution of the second kind (GB2), and the Halphen type A distribution (Hal-A), Halphen type B distribution (Hal-B) and Halphen type inverse B distribution (Hal-IB), among which the GG and GB2 distribution were previously derived by Papalexiou and Koutsoyiannis (2012) and the Halphen family was first derived using entropy theory in this paper. The entropy theory allowed to estimate parameters of the distributions in terms of the constraints used for their derivation. The distributions were tested using extreme daily and hourly rainfall data. Results show that the root mean square error (RMSE) values were very small, which indicated that the five generalized distributions fitted the extreme rainfall data well. Among them, according to the Akaike information criterion (AIC) values, generally the GB2 and Halphen family gave a better fit. Therefore, those general distributions are one of the best choices for frequency analysis. The entropy-based derivation led to a new way for frequency analysis of hydrometeorological extremes.

  16. A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1 – Part 1: Model description

    Directory of Open Access Journals (Sweden)

    Y. Masutomi

    2016-11-01

    Full Text Available Crop growth and agricultural management can affect climate at various spatial and temporal scales through the exchange of heat, water, and gases between land and atmosphere. Therefore, simulation of fluxes for heat, water, and gases from agricultural land is important for climate simulations. A land surface model (LSM combined with a crop growth model (CGM, called an LSM-CGM combined model, is a useful tool for simulating these fluxes from agricultural land. Therefore, we developed a new LSM-CGM combined model for paddy rice fields, the MATCRO-Rice model. The main objective of this paper is to present the full description of MATCRO-Rice. The most important feature of MATCRO-Rice is that it can consistently simulate latent and sensible heat fluxes, net carbon uptake by crop, and crop yield by exchanging variables between the LSM and CGM. This feature enables us to apply the model to a wide range of integrated issues.

  17. The Effect of Electrical Polarization on Electronic Structure in LSM Electrodes: An Operando XAS, RIXS and XES Study

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Carvalho, H.W.P.; Zielke, Philipp

    2017-01-01

    in the Mn K edge energy towards lower energies. The shift is assigned to a decrease in the average Mn oxidation state, which based on Kβ XES changes from 3.4 at open circuit voltage to 3.2 at −800 mV applied potential. Furthermore, RIXS rendered pronounced changes in the population of the Mn 3d orbitals...... (RIXS) at the Mn K-edge. The study of polarization induced changes in the electronic properties and structure has been carried out at 500°C in 10–20% O2 with electrical polarization applied in the range from −850 mV to 800 mV. Cathodic polarizations in the range −600 mV to −850 mV induced a shift......, due to filling of the Mn d-orbitals during the cathodic polarization. Overall, the study experimentally links the electrical polarization of LSM electrodes to the structural and electronic properties of Mn - these properties are expected to be of major importance for the electrocatalytic performance...

  18. ISTSOS, SENSOR OBSERVATION MANAGEMENT SYSTEM: A REAL CASE APPLICATION OF HYDRO-METEOROLOGICAL DATA FOR FLOOD PROTECTION

    Directory of Open Access Journals (Sweden)

    M. Cannata

    2014-01-01

    Full Text Available istSOS (Istituto scienze della Terra Sensor Observation Service is an implementation of the Sensor Observation Service standard from Open Geospatial Consortium (OGC. The development of istSOS started in 2009 in order to provide a simple implementation of the Sensor Observation Service (SOS standard for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland. istSOS is entirely written in Python and is based on reliable open source software like PostgreSQL/PostGIS and Apache/mod_wsgi. The authors during this presentation want to illustrate the latest software enhancements together with a real case in a production environment. Latest software enhancement includes the development of a RESTful service and of a Web-based graphical user interface that allows hydrologists a better interaction with measurements. This includes the ability of new services creation, addition of new sensors and relative metadata, visualization and manipulation of stored observations, registration of new measures and setting of system properties like observable properties and data quality codes. The study will show a real case application of the system for the provision of data to interregional partners and to a hydrological model for lake level forecasting and flooding hazard assessment. The hydrological model uses a combination of WPS (Web Processing Service and SOS for the generation of model input data. This system is linked with a dedicated geo-portal used by the civil protection for the management, alert and protection of population and assets of the Locarno area (Verbano Lake flooding. Practical considerations and technical issues will be presented and discussed.

  19. Istsos, Sensor Observation Management System: a Real Case Application of Hydro-Meteorological Data for Flood Protection

    Science.gov (United States)

    Cannata, M.; Antonovic, M.; Molinari, M.; Pozzoni, M.

    2013-01-01

    istSOS (Istituto scienze della Terra Sensor Observation Service) is an implementation of the Sensor Observation Service standard from Open Geospatial Consortium (OGC). The development of istSOS started in 2009 in order to provide a simple implementation of the Sensor Observation Service (SOS) standard for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland). istSOS is entirely written in Python and is based on reliable open source software like PostgreSQL/PostGIS and Apache/mod_wsgi. The authors during this presentation want to illustrate the latest software enhancements together with a real case in a production environment. Latest software enhancement includes the development of a RESTful service and of a Web-based graphical user interface that allows hydrologists a better interaction with measurements. This includes the ability of new services creation, addition of new sensors and relative metadata, visualization and manipulation of stored observations, registration of new measures and setting of system properties like observable properties and data quality codes. The study will show a real case application of the system for the provision of data to interregional partners and to a hydrological model for lake level forecasting and flooding hazard assessment. The hydrological model uses a combination of WPS (Web Processing Service) and SOS for the generation of model input data. This system is linked with a dedicated geo-portal used by the civil protection for the management, alert and protection of population and assets of the Locarno area (Verbano Lake flooding). Practical considerations and technical issues will be presented and discussed.

  20. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: III. Role of volatile boron species on LSM/YSZ and LSCF

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiao Dong; Templeton, Jared W.; Zhu, Zihua; Chou, Y. S.; Maupin, Gary D.; Lu, Zigui; Brow, R. K.; Stevenson, Jeffry W.

    2010-09-02

    Boron oxide is a key component to tailor the softening temperature and viscosity of the sealing glass for solid oxide fuel cells. The primary concern regarding the use of boron containing sealing glasses is the volatility of boron species, which possibly results in cathode degradation. In this paper, we report the role of volatile boron species on the electrochemical performance of LSM/YSZ and LSCF cathodes at various SOFC operation temperatures. The transport rate of boron, ~ 3.24×10-12 g/cm2•sec was measured at 750°C with air saturated with 2.8% moisture. A reduction in power density was observed in cells with LSM/YSZ cathodes after introduction of the boron source to the cathode air stream. Partial recovery of the power density was observed after the boron source was removed. Results from post-test secondary ion mass spectroscopy (SIMS) analysis the partial recovery in power density correlated with partil removal of the deposited boron by the clean air stream. The presence of boron was also observed in LSCF cathodes by SIMS analysis, however the effect of boron on the electrochemical performance of LSCF cathode was negligible. Coverage of triple phase boundaries in LSM/YSZ was postulated as the cause for the observed reduction in electrochemical performance.

  1. Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751–1900 AD

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Chromá, Kateřina; Valášek, H.; Dolák, L.

    2012-01-01

    Roč. 8, č. 2 (2012), s. 467-481 ISSN 1814-9324 Institutional support: RVO:67179843 Keywords : documentary evidence * hydrometeorological extremes * tax alleviation * flood * hailstorm * torrential rain Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.556, year: 2012

  2. Uncertainty in solid precipitation and snow depth prediction for Siberia using the Noah and Noah-MP land surface models

    Science.gov (United States)

    Suzuki, Kazuyoshi; Zupanski, Milija

    2018-01-01

    In this study, we investigate the uncertainties associated with land surface processes in an ensemble predication context. Specifically, we compare the uncertainties produced by a coupled atmosphere-land modeling system with two different land surface models, the Noah- MP land surface model (LSM) and the Noah LSM, by using the Maximum Likelihood Ensemble Filter (MLEF) data assimilation system as a platform for ensemble prediction. We carried out 24-hour prediction simulations in Siberia with 32 ensemble members beginning at 00:00 UTC on 5 March 2013. We then compared the model prediction uncertainty of snow depth and solid precipitation with observation-based research products and evaluated the standard deviation of the ensemble spread. The prediction skill and ensemble spread exhibited high positive correlation for both LSMs, indicating a realistic uncertainty estimation. The inclusion of a multiple snowlayer model in the Noah-MP LSM was beneficial for reducing the uncertainties of snow depth and snow depth change compared to the Noah LSM, but the uncertainty in daily solid precipitation showed minimal difference between the two LSMs. The impact of LSM choice in reducing temperature uncertainty was limited to surface layers of the atmosphere. In summary, we found that the more sophisticated Noah-MP LSM reduces uncertainties associated with land surface processes compared to the Noah LSM. Thus, using prediction models with improved skill implies improved predictability and greater certainty of prediction.

  3. The Trans-African Hydro-Meteorological Observatory: Early results from the crowd sourcing competition

    Science.gov (United States)

    van de Giesen, Nick; Hilkhuijsen, Tanja; Hut, Rolf; Andreini, Marc; Selker, John

    2013-04-01

    The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an international initiative with the objective to develop, build, and operate 20,000 hydro-meteorological measurement stations in sub-Saharan Africa. TAHMO tries to integrate science with education. At the same time, we try to make the initiative financially sustainable by developing and rolling out viable business development. Estimated total costs for establishing the network will be in the order of US 20 million, whereas operational costs will be around US 2 million per year. The stations need to be designed in accordance to a set of rules that serves easy deployment and operation, such as absence of moving parts and cavities, self- and cross calibration of sensors, and low cost (€ 200-300 per station). There are some promising first results in this respect. The presentation will focus on recent activities, specifically concerning crowd sourcing activities at African universities. This competition (http://tahmo.info/sensor-design-competition) consists of two rounds. The first round is open to any academic or research group in Africa and asks for the design of an innovative robust sensor in line with the TAHMO design criteria. The top twenty teams with the best designs will receive a "Maker Package" that will allow them to build and test the sensors. The final top ten design teams will meet in Nairobi in August 2013 to tinker and collaborate for one week and to integrate the sensors into a standard weather station. The deadline for the first round is 1 March 2013 and the results from this round will be presented.

  4. Linking Hydro-Meteorological Hazards, Climate and Food Security: an Initiative of International Scientific Community

    Science.gov (United States)

    Ismail-Zadeh, A.; Beer, T.

    2013-05-01

    Humans face climatic and hydro-meteorological hazards on different scales in time and space. In particular natural hazards can have disastrous impact in the short term (flood) and in the long term (drought) as they affect human life and health as well as impacting dramatically on the sustainable development of society. They represent a pending danger for vulnerable lifelines, infrastructure and the agricultural systems that depend on the water supply, reservoirs, pipelines, and power plants. Developed countries are affected, but the impact is disproportionate within the developing world. Extreme natural events such as extreme floods or prolonged drought can change the life and economic development of developing nations and stifle their development for decades. The beginning of the XX1st century has been marked by a significant number of natural disasters, such as floods, severe storms, wildfires, hurricanes, and tsunamis. Extreme natural events cause devastation resulting in loss of human life, large environmental damage, and partial or total loss of infrastructure that, in the longer time, will affect the potential for agricultural recovery. Recent catastrophic events of the early 21st century (e.g. floods in Pakistan and Thailand, the 2011 Tohoku earthquake and tsunami) remind us once again that there is a strong coupling between complex solid Earth, oceanic, and atmospheric processes and that even developed countries such as Japan are subject to agricultural declines as a result of disastrous hydro-meteorological events. Scientific community recognizes that communication between the groups of experts of various international organizations dealing with natural hazards and their activity in disaster risk reduction and food security needs to be strengthened. Several international scientific unions and intergovernmental institutions set up a consortium of experts to promote studies of weather, climate and their interaction with agriculture, food and their socio

  5. Family archives as a source of information about past hydrometeorological extremes in Southern Moravia (Czech Republic)

    Science.gov (United States)

    Chromá, Kateřina

    2014-05-01

    Meteorological and hydrological extremes (hydrometeorological extremes - HMEs) cause great material damage or even loss of human lives in the present time, as well as it was in the past. For the study of their temporal and spatial variability in periods with only natural forcing factors in comparison with those combining also anthropogenic effects it is essential to have the longest possible series of HMEs. In the Czech Lands (recently the Czech Republic), systematic meteorological and hydrological observations started generally in the latter half of the 19th century. Therefore, in order to create long-term series of such extremes, it is necessary to search for other sources of information. There exist different types of documentary evidence used in historical climatology and hydrology, represented by various sources such as annals, chronicles, diaries, private letters, newspapers etc. Besides them, institutional documentary evidence (of economic and administrative character) has particular importance (e.g. taxation records). Documents in family archives represent further promising source of data related to HMEs. The documents kept by the most important lord families in Moravia (e.g. Liechtensteins, Dietrichsteins) are located in Moravian Land Archives in Brno. Besides data about family members, industrial and agricultural business, military questions, travelling and social events, they contain direct or indirect information about HMEs. It concerns descriptions of catastrophic phenomena on the particular demesne (mainly with respect to damage) as well as correspondence related to tax reductions (i.e. they can overlap with taxation records of particular estates). This contribution shows the potential of family archives as a source of information about HMEs, up to now only rarely used, which may extend our knowledge about them. Several examples of such documents are presented. The study is a part of the research project "Hydrometeorological extremes in Southern

  6. Are extreme hydro-meteorological events a prerequisite for extreme water quality impacts? Exploring climate impacts on inland and coastal waters

    Science.gov (United States)

    Michalak, A. M.; Balaji, V.; Del Giudice, D.; Sinha, E.; Zhou, Y.; Ho, J. C.

    2017-12-01

    Questions surrounding water sustainability, climate change, and extreme events are often framed around water quantity - whether too much or too little. The massive impacts of extreme water quality impairments are equally compelling, however. Recent years have provided a host of compelling examples, with unprecedented harmful algal blooms developing along the West coast, in Utah Lake, in Lake Erie, and off the Florida coast, and huge hypoxic dead zones continuing to form in regions such as Lake Erie, the Chesapeake Bay, and the Gulf of Mexico. Linkages between climate change, extreme events, and water quality impacts are not well understood, however. Several factors explain this lack of understanding, including the relative complexity of underlying processes, the spatial and temporal scale mismatch between hydrologists and climatologists, and observational uncertainty leading to ambiguities in the historical record. Here, we draw on a number of recent studies that aim to quantitatively link meteorological variability and water quality impacts to test the hypothesis that extreme water quality impairments are the result of extreme hydro-meteorological events. We find that extreme hydro-meteorological events are neither always a necessary nor a sufficient condition for the occurrence of extreme water quality impacts. Rather, extreme water quality impairments often occur in situations where multiple contributing factors compound, which complicates both attribution of historical events and the ability to predict the future incidence of such events. Given the critical societal importance of water quality projections, a concerted program of uncertainty reduction encompassing observational and modeling components will be needed to examine situations where extreme weather plays an important, but not solitary, role in the chain of cause and effect.

  7. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  8. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  9. Impacts of hydrometeorological extremes in the Bohemian-Moravian Highlands in 1706–1889 as derived from taxation records

    Czech Academy of Sciences Publication Activity Database

    Dolák, Lukáš; Brázdil, Rudolf; Valášek, H.

    2015-01-01

    Roč. 120, č. 4 (2015), s. 465-488 ISSN 1212-0014 R&D Projects: GA ČR(CZ) GA13-19831S Institutional support: RVO:67179843 Keywords : historical climatology * ice-age * documentary * vulnerability * temperatures * europe * winter * hydrometeorological extremes * tax ation records * damage * impacts * Bohemian-Moravian Highlands Subject RIV: EH - Ecology, Behaviour Impact factor: 0.415, year: 2015

  10. Radioactivity monitoring network of slovak hydrometeorological institute and its activity within the framework of nuclear emergency information system

    International Nuclear Information System (INIS)

    Slovak hydrometeorological institute (SHMI) radioactivity monitoring network is a part of nuclear radiation early warning system. This paper describes the aim and the structure of the monitoring system. Paper presents a short description of radioactivity monitoring network of SHMI and its connection with Austrian and German systems. It provides national means for the monitoring of the radiological effects of nuclear accident and for informing government departments and the public.(J.K.) 2 figs

  11. ISTSOS, SENSOR OBSERVATION MANAGEMENT SYSTEM: A REAL CASE APPLICATION OF HYDRO-METEOROLOGICAL DATA FOR FLOOD PROTECTION

    OpenAIRE

    Cannata, M.; Antonovic, M.; Molinari, M.; Pozzoni, M.

    2014-01-01

    istSOS (Istituto scienze della Terra Sensor Observation Service) is an implementation of the Sensor Observation Service standard from Open Geospatial Consortium (OGC). The development of istSOS started in 2009 in order to provide a simple implementation of the Sensor Observation Service (SOS) standard for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland). istSOS is entirely written in Python and is based on reliable open s...

  12. Pre- and post-processing of hydro-meteorological ensembles for the Norwegian flood forecasting system in 145 basins.

    Science.gov (United States)

    Jahr Hegdahl, Trine; Steinsland, Ingelin; Merete Tallaksen, Lena; Engeland, Kolbjørn

    2016-04-01

    Probabilistic flood forecasting has an added value for decision making. The Norwegian flood forecasting service is based on a flood forecasting model that run for 145 basins. Covering all of Norway the basins differ in both size and hydrological regime. Currently the flood forecasting is based on deterministic meteorological forecasts, and an auto-regressive procedure is used to achieve probabilistic forecasts. An alternative approach is to use meteorological and hydrological ensemble forecasts to quantify the uncertainty in forecasted streamflow. The hydrological ensembles are based on forcing a hydrological model with meteorological ensemble forecasts of precipitation and temperature. However, the ensembles of precipitation are often biased and the spread is too small, especially for the shortest lead times, i.e. they are not calibrated. These properties will, to some extent, propagate to hydrological ensembles, that most likely will be uncalibrated as well. Pre- and post-processing methods are commonly used to obtain calibrated meteorological and hydrological ensembles respectively. Quantitative studies showing the effect of the combined processing of the meteorological (pre-processing) and the hydrological (post-processing) ensembles are however few. The aim of this study is to evaluate the influence of pre- and post-processing on the skill of streamflow predictions, and we will especially investigate if the forecasting skill depends on lead-time, basin size and hydrological regime. This aim is achieved by applying the 51 medium-range ensemble forecast of precipitation and temperature provided by the European Center of Medium-Range Weather Forecast (ECMWF). These ensembles are used as input to the operational Norwegian flood forecasting model, both raw and pre-processed. Precipitation ensembles are calibrated using a zero-adjusted gamma distribution. Temperature ensembles are calibrated using a Gaussian distribution and altitude corrected by a constant gradient

  13. Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems

    Science.gov (United States)

    Tsekouras, Georgios; Ioannou, Christos; Efstratiadis, Andreas; Koutsoyiannis, Demetris

    2013-04-01

    The drawbacks of conventional energy sources including their negative environmental impacts emphasize the need to integrate renewable energy sources into energy balance. However, the renewable sources strongly depend on time varying and uncertain hydrometeorological processes, including wind speed, sunshine duration and solar radiation. To study the design and management of hybrid energy systems we investigate the stochastic properties of these natural processes, including possible long-term persistence. We use wind speed and sunshine duration time series retrieved from a European database of daily records and we estimate representative values of the Hurst coefficient for both variables. We conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. To this we use the Castalia software system which performs multivariate stochastic simulation. Using these time series as input, we perform stochastic simulation of an autonomous hypothetical hybrid renewable energy system and optimize its performance using genetic algorithms. For the system design we optimize the sizing of the system in order to satisfy the energy demand with high reliability also minimizing the cost. While the simulation scale is the daily, a simple method allows utilizing the subdaily distribution of the produced wind power. Various scenarios are assumed in order to examine the influence of input parameters, such as the Hurst coefficient, and design parameters such as the photovoltaic panel angle.

  14. The Trans-African Hydro-Meteorological Observatory: Recent progress and planned activities

    Science.gov (United States)

    van de Giesen, N.; Hut, R.; Pieron, M.; Andreini, M.; Selker, J.

    2012-04-01

    The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an initiative to develop, deploy, and operate 20,000 measurement stations in sub-Saharan Africa. Until recently, the activities have been limited but the project is now moving ahead and has developed activities in Zambia and Ghana. Design, Education, and Operation are the three main lines along which the initiative has been developing. Design follows a set of rules that serve easy deployment and operation, such as absence of moving parts and cavities, self- and cross calibration of sensors, and low cost (€ 200-300 per station). Education is central to the success of the project. The idea is that stations will be deployed at high schools and that educational material will be developed for the science curriculum. This approach will ensure good social embedding and acceptance as well as help create a generation of scientists and technicians with hands-on environmental monitoring experience. Operation focuses on the long-term financial sustainability of the network. Raw data will be made available for scientific use but value added products will be produced to financed maintenance and operation. The main purposes of the presentation are to provide details on recent developments, broaden the number of institutes involved and, especially, open discussion on further development of the initiative.

  15. New York Urban Hydro-Meteorological Testbed (NY-uHMT)

    Science.gov (United States)

    Norouzi, H.; Bah, A.

    2017-12-01

    It is well known that heat waves kill more persons, on average, than any other extreme weather event in the United States. New York City experiences much adversity due to inclement weather. Exploring climate variation in New Yorker City will help scientists and local government to detect and forecast extreme weather hazards and gather more localized temperature data within the five boroughs. Ground based weather stations are widely used to provide real time data to the public to prevent disasters. The New York urban Hydro-meteorological Testbed (NY-uHMT) is a hydro meteorological network that is used to investigate climate change in the New York City area. It is composed of twenty autonomous weather stations that will gather information on air temperature, relative humidity, rainfall and soil moisture properties around the densely populated NYC area. For each station, the data is stored on a Campbell Scientific CR200x data logger and can be accessed remotely using the LoggerNet software, or by direct connection using an RS-232 cable. Real-time weather data is acquired every fifteen minutes. The data is then periodically sampled and graphed through MATLAB code to be broadcasted on the uHMT website and is available at no charge to the public. We anticipate the results will show that the temperature, humidity, precipitation and soil moisture will vary from location to location depending on the magnitude of urbanization to the area.

  16. Seasonality Effects on Nonlinear Properties of Hydrometeorological Records: A New Method of Data Analysis

    Science.gov (United States)

    Livina, V. N.; Ashkenazy, Y.; Bunde, A.; Havlin, S.

    2007-12-01

    Climatic time series in general, and hydrological time series in particular, exhibit pronounced annual periodicity. This periodicity and its corresponding harmonics affect the nonlinear properties of the relevant time series (i.e., the long-range volatility correlations and width of multifractal spectrum) and thus have to be filtered out before studying fractal and volatility properties. We compare several filtering techniques (one of them proposed here) and find that in order to eliminate the periodicity effect on the nonlinear properties of the time series (i.e., the volatility and multifractal properties) it is necessary to filter out the seasonal standard deviation in addition to the filtering of the seasonal mean. The obtained results indicate weak volatility correlations (weak nonlinearity) in the river data, and this can be seen using different filterings approaches. [1] Livina~V.~N., Y.~Ashkenazy, A.~Bunde, and S.~Havlin, Seasonality effects on nonlinear properties of hydrometeorological records, in Extremes, Trends, and Correlations in Hydrology and Climate (ed. by J.P.Kropp & H.-J.Schellnhuber), Springer, Berlin, submitted.

  17. Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks.

    Science.gov (United States)

    Thacker, Scott; Kelly, Scott; Pant, Raghav; Hall, Jim W

    2018-01-01

    Infrastructure adaptation measures provide a practical way to reduce the risk from extreme hydrometeorological hazards, such as floods and windstorms. The benefit of adapting infrastructure assets is evaluated as the reduction in risk relative to the "do nothing" case. However, evaluating the full benefits of risk reduction is challenging because of the complexity of the systems, the scarcity of data, and the uncertainty of future climatic changes. We address this challenge by integrating methods from the study of climate adaptation, infrastructure systems, and complex networks. In doing so, we outline an infrastructure risk assessment that incorporates interdependence, user demands, and potential failure-related economic losses. Individual infrastructure assets are intersected with probabilistic hazard maps to calculate expected annual damages. Protection measure costs are integrated to calculate risk reduction and associated discounted benefits, which are used to explore the business case for investment in adaptation. A demonstration of the methodology is provided for flood protection of major electricity substations in England and Wales. We conclude that the ongoing adaptation program for major electricity assets is highly cost beneficial. © 2017 Society for Risk Analysis.

  18. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    Science.gov (United States)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-04-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in

  19. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    KAUST Repository

    Attada, Raju

    2018-04-17

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  20. Effect of Co3O4 and CeO2 Infiltration on the Activity of a LSM15/GDC10 Highly Porous Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    . The effect of the infiltration on the electrochemical properties and catalytic activity of the reactor was investigated by electrochemical impedance spectroscopy (EIS) and gas analysis. Figure 1 shows the SEM cross-section micrograph of the electrochemical reactor made of 11 alternating layers of electrode...... matter, which lead to the formation of ozone in urban and regional areas [1]. The electrocatalytic activity of a porous electrochemical reactor, made of La0.85Sr0.15MnO3±δ (LSM) as electrode and Ce0.9Gd0.1O1.95 (GDC) as electrolyte, was studied for the electrochemical oxidation of propene (C3H6), a major...... (LSM) and electrolyte (GDC). Figure 2 shows the Nyquist plot of the impedance spectra of Co3O4 infiltrated backbone recorded at OCP with 10% O2 and 10% O2 + 1000 ppm C3H6, 2 L/h, 400 °C. [1] R. Atkinson, Atmospheric Chemistry of VOCs and NOx, Atmos Environ. 34 (2000) 2063; [Formula]...

  1. NLDAS Mosaic Land Surface Model L4 Hourly 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the Mosaic land-surface model (LSM) for Phase 2 of the North American Land Data...

  2. NLDAS VIC Land Surface Model L4 Hourly 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the VIC land-surface model (LSM) for Phase 2 of the North American Land Data Assimilation...

  3. NLDAS Noah Land Surface Model L4 Monthly 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the Noah land-surface model (LSM) for Phase 2 of the North American Land Data Assimilation...

  4. NLDAS Mosaic Land Surface Model L4 Monthly Climatology 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This monthly climatology data set contains a series of land surface parameters simulated from the Mosaic land-surface model (LSM) for Phase 2 of the North American...

  5. NLDAS Mosaic Land Surface Model L4 Monthly 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the Mosaic land-surface model (LSM) for Phase 2 of the North American Land Data...

  6. NLDAS VIC Land Surface Model L4 Monthly 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the VIC land-surface model (LSM) for Phase 2 of the North American Land Data Assimilation...

  7. NLDAS Noah Land Surface Model L4 Monthly Climatology 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This monthly climatology data set contains a series of land surface parameters simulated from the Noah land-surface model (LSM) for Phase 2 of the North American...

  8. NLDAS VIC Land Surface Model L4 Monthly Climatology 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: This data set contains a series of land surface parameters simulated from the VIC land-surface model (LSM) for Phase 2 of the North American Land Data...

  9. NLDAS Noah Land Surface Model L4 Hourly 0.125 x 0.125 degree V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the Noah land-surface model (LSM) for Phase 2 of the North American Land Data Assimilation...

  10. A prediction model for the grade of liver fibrosis using magnetic resonance elastography.

    Science.gov (United States)

    Mitsuka, Yusuke; Midorikawa, Yutaka; Abe, Hayato; Matsumoto, Naoki; Moriyama, Mitsuhiko; Haradome, Hiroki; Sugitani, Masahiko; Tsuji, Shingo; Takayama, Tadatoshi

    2017-11-28

    Liver stiffness measurement (LSM) has recently become available for assessment of liver fibrosis. We aimed to develop a prediction model for liver fibrosis using clinical variables, including LSM. We performed a prospective study to compare liver fibrosis grade with fibrosis score. LSM was measured using magnetic resonance elastography in 184 patients that underwent liver resection, and liver fibrosis grade was diagnosed histologically after surgery. Using the prediction model established in the training group, we validated the classification accuracy in the independent test group. First, we determined a cut-off value for stratifying fibrosis grade using LSM in 122 patients in the training group, and correctly diagnosed fibrosis grades of 62 patients in the test group with a total accuracy of 69.3%. Next, on least absolute shrinkage and selection operator analysis in the training group, LSM (r = 0.687, P prediction model. This prediction model applied to the test group correctly diagnosed 32 of 36 (88.8%) Grade I (F0 and F1) patients, 13 of 18 (72.2%) Grade II (F2 and F3) patients, and 7 of 8 (87.5%) Grade III (F4) patients in the test group, with a total accuracy of 83.8%. The prediction model based on LSM, ICGR15, and platelet count can accurately and reproducibly predict liver fibrosis grade.

  11. Water cycle research associated with the CaPE hydrometeorology project (CHymP

    Science.gov (United States)

    Duchon, Claude E.

    1993-01-01

    One outgrowth of the Convection and Precipitation/Electrification (CaPE) experiment that took place in central Florida during July and August 1991 was the creation of the CaPE Hydrometeorology Project (CHymP). The principal goal of this project is to investigate the daily water cycle of the CaPE experimental area by analyzing the numerous land and atmosphere in situ and remotely sensed data sets that were generated during the 40-days of observations. The water cycle comprises the atmospheric branch. In turn, the atmospheric branch comprises precipitation leaving the base of the atmospheric volume under study, evaporation and transpiration entering the base, the net horizontal fluxes of water vapor and cloud water through the volume and the conversion of water vapor to cloud water and vice-versa. The sum of these components results in a time rate of change in the water and liquid water (or ice) content of the atmospheric volume. The components of the land branch are precipitation input to and evaporation and transpiration output from the surface, net horizontal fluxes of surface and subsurface water, the sum of which results in a time rate of change in surface and subsurface water mass. The objective of CHymP is to estimate these components in order to determine the daily water budget for a selected area within the CaPE domain. This work began in earnest in the summer of 1992 and continues. Even estimating all the budget components for one day is a complex and time consuming task. The discussions below provides a short summary of the rainfall quality assessment procedures followed by a plan for estimating the horizontal moisture flux.

  12. Exploring probabilistic tools for the development of a platform for Quantitative Risk Assessment (QRA) of hydro-meteorological hazards in Europe

    Science.gov (United States)

    Zumpano, V.; Hussin, H. Y.; Breinl, K.

    2012-04-01

    Mass-movements and floods are hydro-meteorological hazards that can have catastrophic effects on communities living in mountainous areas prone to these disastrous events. Environmental, climate and socio-economic changes are expected to affect the tempo-spatial patterns of hydro-meteorological hazards and associated risks in Europe. These changes and their effects on the occurrence of future hazards need to be analyzed and modeled using probabilistic hazard and risk assessment methods in order to assist stakeholders in disaster management strategies and policy making. Quantitative Risk Assessment (QRA) using probabilistic methods can further calculate damage and losses to multi-hazards and determine the uncertainties related to all the probabilistic components of the hazard and the vulnerability of the elements at risk. Therefore, in order to develop an effective platform that can quantitatively calculate the risk of mass-movements and floods in several European test sites, an extensive inventory and analysis has been carried out of the available tools and software related to the probabilistic risk assessment of single and multi-hazards. The tools have been reviewed based on whether they are open source and freely available, their required input data, the availability and type of hazard and vulnerability modules, transparency of methods used, their validation and calibration techniques, the inclusion of uncertainties and their state of the art. The analysis also specially focused on the applicability of the tools to European study areas. The findings showed that assumptions and simplifications are made when assessing and quantifying the hazards. The interaction between multiple hazards, like cascading effects are not assessed in most tools and some consider the hazard and vulnerability as qualitative components, rather than quantitative ones. This analysis of hazard and risk assessment tools and software will give future developers and experts a better overview of

  13. Hydro-meteorological risk reduction through land restoration in Rangárvellir, Iceland - an overview of the HydroResilience project

    Science.gov (United States)

    Finger, David C.; Pétursdóttir, Þórunn; Halldórsson, Guðmundur

    2017-04-01

    Ecosystems that are in equilibrium provide vital resources to local inhabitants, including protection from naturally occurring disasters. Natural vegetation cover has been optimized over many years to retain a maximum of rainfall runoff by increasing the field capacity (FC) of the soil cover, securing water availability during droughts and reducing the flood risk during heavy precipitation events. In this presentation we will present the HydroResilience project, which will assess the effects of ecosystem restoration on the runoff dynamics of rainfall water in Rangárvellir, a restoration area in southern Iceland. The Rangárvellir area presents ideal conditions for such investigations. Dramatic deforestation during the last millennium and year round livestock grazing along with devastating ash depositions during volcanic eruptions and a harsh sub-polar oceanic climate have led to severe degradation in Rangárvellir. Since the beginning of the 20th century diverse restoration measures have been implemented making Rangárvellir an ideal case study to investigate the effects of restoration on hydro-meteorological risk reduction. In this project we will assess and quantify the evolution of water resources in Rangárvellir by assessing the runoff dynamics in the main rivers of Rangárvellir under four main scenarios: i) present conditions, ii) degraded conditions as was the case 100 years ago, iii) under hypothetical fully restored ecosystems and, finally, iv) under conditions of a scenario developed in collaboration with local stakeholder groups to optimize socio-ecological benefits. For this purpose the dynamics of the relevant hydrological processes in the area (incl. river runoff, ground water table, snow cover duration, and soil moisture dynamics) will be reconstructed using hydrological models to run the above mentioned scenarios. The scientific findings and conclusion of this project will generate valuable insights on the effects of land restoration on hydro-meteorological

  14. NLDAS VIC Land Surface Model L4 Monthly Climatology 0.125 x 0.125 degree V002 (NLDAS_VIC0125_MC) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: This data set contains a series of land surface parameters simulated from the VIC land-surface model (LSM) for Phase 2 of the North American Land Data...

  15. NLDAS Mosaic Land Surface Model L4 Monthly Climatology 0.125 x 0.125 degree V002 (NLDAS_MOS0125_MC) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This monthly climatology data set contains a series of land surface parameters simulated from the Mosaic land-surface model (LSM) for Phase 2 of the North American...

  16. NLDAS Noah Land Surface Model L4 Hourly 0.125 x 0.125 degree V002 (NLDAS_NOAH0125_H) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the Noah land-surface model (LSM) for Phase 2 of the North American Land Data Assimilation...

  17. NLDAS Mosaic Land Surface Model L4 Hourly 0.125 x 0.125 degree V002 (NLDAS_MOS0125_H) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a series of land surface parameters simulated from the Mosaic land-surface model (LSM) for Phase 2 of the North American Land Data...

  18. Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751–1900 AD

    Directory of Open Access Journals (Sweden)

    H. Valášek

    2012-03-01

    Full Text Available Historical written records associated with tax relief at ten estates located in south-eastern Moravia (Czech Republic are used for the study of hydrometeorological extremes and their impacts during the period 1751–1900 AD. At the time, the taxation system in Moravia allowed farmers to request tax relief if their crop yields had been negatively affected by hydrological and meteorological extremes. The documentation involved contains information about the type of extreme event and the date of its occurrence, while the impact on crops may often be derived. A total of 175 extreme events resulting in some kind of damage are documented for 1751–1900, with the highest concentration between 1811 and 1860 (74.9% of all events analysed. The nature of events leading to damage (of a possible 272 types include hailstorm (25.7%, torrential rain (21.7%, flood (21.0%, followed by thunderstorm, flash flood, late frost and windstorm. The four most outstanding events, affecting the highest number of settlements, were thunderstorms with hailstorms (25 June 1825, 20 May 1847 and 29 June 1890 and flooding of the River Morava (mid-June 1847. Hydrometeorological extremes in the 1816–1855 period are compared with those occurring during the recent 1961–2000 period. The results obtained are inevitably influenced by uncertainties related to taxation records, such as their temporal and spatial incompleteness, the limits of the period of outside agricultural work (i.e. mainly May–August and the purpose for which they were originally collected (primarily tax alleviation, i.e. information about hydrometeorological extremes was of secondary importance. Taxation records constitute an important source of data for historical climatology and historical hydrology and have a great potential for use in many European countries.

  19. Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751-1900 AD

    Science.gov (United States)

    Brázdil, R.; Chromá, K.; Valášek, H.; Dolák, L.

    2012-03-01

    Historical written records associated with tax relief at ten estates located in south-eastern Moravia (Czech Republic) are used for the study of hydrometeorological extremes and their impacts during the period 1751-1900 AD. At the time, the taxation system in Moravia allowed farmers to request tax relief if their crop yields had been negatively affected by hydrological and meteorological extremes. The documentation involved contains information about the type of extreme event and the date of its occurrence, while the impact on crops may often be derived. A total of 175 extreme events resulting in some kind of damage are documented for 1751-1900, with the highest concentration between 1811 and 1860 (74.9% of all events analysed). The nature of events leading to damage (of a possible 272 types) include hailstorm (25.7%), torrential rain (21.7%), flood (21.0%), followed by thunderstorm, flash flood, late frost and windstorm. The four most outstanding events, affecting the highest number of settlements, were thunderstorms with hailstorms (25 June 1825, 20 May 1847 and 29 June 1890) and flooding of the River Morava (mid-June 1847). Hydrometeorological extremes in the 1816-1855 period are compared with those occurring during the recent 1961-2000 period. The results obtained are inevitably influenced by uncertainties related to taxation records, such as their temporal and spatial incompleteness, the limits of the period of outside agricultural work (i.e. mainly May-August) and the purpose for which they were originally collected (primarily tax alleviation, i.e. information about hydrometeorological extremes was of secondary importance). Taxation records constitute an important source of data for historical climatology and historical hydrology and have a great potential for use in many European countries.

  20. Hydrometeorological conditions preceding wildfire, and the subsequent burning of a fen watershed in Fort McMurray, Alberta, Canada

    Science.gov (United States)

    Elmes, Matthew C.; Thompson, Dan K.; Sherwood, James H.; Price, Jonathan S.

    2018-01-01

    The destructive nature of the ˜ 590 000 ha Horse river wildfire in the Western Boreal Plain (WBP), northern Alberta, in May of 2016 motivated the investigation of the hydrometeorological conditions that preceded the fire. Historical climate and field hydrometeorological data from a moderate-rich fen watershed were used to (a) identify whether the spring 2016 conditions were outside the range of natural variability for WBP climate cycles, (b) explain the observed patterns in burn severity across the watershed, and (c) identify whether fall and winter moisture signals observed in peatlands and lowland forests in the region are indicative of wildfire. Field hydrometeorological data from the fen watershed confirmed the presence of cumulative moisture deficits prior to the fire. Hydrogeological investigations highlighted the susceptibility of fen and upland areas to water table and soil moisture decline over rain-free periods (including winter), due to the watershed's reliance on supply from localized flow systems originating in topographic highs. Subtle changes in topographic position led to large changes in groundwater connectivity, leading to greater organic soil consumption by fire in wetland margins and at high elevations. The 2016 spring moisture conditions measured prior to the ignition of the fen watershed were not illustrated well by the Drought Code (DC) when standard overwintering procedures were applied. However, close agreement was found when default assumptions were replaced with measured duff soil moisture recharge and incorporated into the overwintering DC procedure. We conclude that accumulated moisture deficits dating back to the summer of 2015 led to the dry conditions that preceded the fire. The infrequent coinciding of several hydrometeorological conditions, including low autumn soil moisture, a modest snowpack, lack of spring precipitation, and high spring air temperatures and winds, ultimately led to the Horse river wildfire spreading widely and

  1. Hydrometeorological hazards basin "El Salado", with detailed analysis of the micro "El Zarco" and "Tamarindos" in the municipality of Puerto Vallarta, Jalisco

    Science.gov (United States)

    Núñez Gutiérrez, M.

    2013-05-01

    In recent years, there has been a change in regard to the hazard of flooding in the basin environment "Salting" specifically in watersheds of streams "El Zarco" and "Tamarind", located in the area of Township north of Puerto Vallara, Jalisco, lately it has become precipitation, of a cyclonic convective having with it, but short-lived intensive storms, and coupled with the growth of the metropolitan area of Puerto Vallarta, which has clogged up the drainage outlet sea water stored on site until it disappears evapotranspiration. Hydrometeorological analysis is performed based on the triangulation method where hydrometric records are used, by the weather station of "The Desembocada" of Puerto Vallarta, which is the only one authorized by the CNA, however the main source that handles official values of the weather stations in the Mexican Republic, is the database ERIC III (Rapid Information Extractor climatological version III), and in their weather stations precipitation data and temperature average, minimum and maximum monthly are available. This is combined with probabilistic methods, based on the exploration of the probability distribution function (FDP) with the method of small distributions where methods are used Pearson's chi-square, Student t, Fisher F, for smaller data less than 30 years and the functions of discrete or continuous probability to estimate rainfall intensity also used digital terrain models with sufficient mapping for elevations, precipitation, temperature (SIG).;

  2. Hydrometeorological and Epidemiological Time Markers for Urban Malaria in Niamey, Niger (Invited)

    Science.gov (United States)

    Williams, E.

    2010-12-01

    This study is concerned with the seasonal evolution of malaria in Niamey, Niger. This capital city in the Sahel of West Africa is burdened with 100,000 cases of malaria annually. Approximately fifty clinics distributed throughout the city document presumed malaria cases with weekly resolution, enabling the study of time series for malaria development as the wet season evolves. A remarkable feature of these time series is the abrupt increase in reported cases (by factors of 2-5) in a single week, occurring synchronously over the entire city. This study explores the hypothesis that this abrupt increase in malaria is caused by an earlier abrupt increase in the total area of standing water, sustained for the remainder of the wet season and available for the laying of mosquito eggs and larvae, followed by the abrupt increase in the population of anopheles mosquitoes. Prior to this special event, the surface rainfall from storm events disappears by evaporation within 1-2 days or less, and any eggs or larvae present do not survive to adults. The abrupt onset in sustained standing water is often caused by a single mesoscale convective system whose overall distribution of rainfall is roughly uniform over the scale of the city (~10 km), and whose new surface water bumps up the ambient nighttime relative humidity over the 80% mark. This threshold value has long been recognized as the most typical screen-level value of relative humidity over tropical oceans, implying that nighttime land surfaces with only a few percent coverage of standing water behave thermodynamically as ocean surfaces. Hydrometeorological and epidemiological observations from seven wet seasons (2004-2010) in Niamey are examined to explore the working hypothesis. The calendar dates for onset of standing water (t0) in hourly relative humidity data, and the onset (t2) of malaria in weekly clinic reports, vary by as much as one month from season to season, depending on the history of the rainfall in the wet

  3. Towards a cross-platform software framework to support end-to-end hydrometeorological sensor network deployment

    Science.gov (United States)

    Celicourt, P.; Sam, R.; Piasecki, M.

    2016-12-01

    Global phenomena such as climate change and large scale environmental degradation require the collection of accurate environmental data at detailed spatial and temporal scales from which knowledge and actionable insights can be derived using data science methods. Despite significant advances in sensor network technologies, sensors and sensor network deployment remains a labor-intensive, time consuming, cumbersome and expensive task. These factors demonstrate why environmental data collection remains a challenge especially in developing countries where technical infrastructure, expertise and pecuniary resources are scarce. In addition, they also demonstrate the reason why dense and long-term environmental data collection has been historically quite difficult. Moreover, hydrometeorological data collection efforts usually overlook the (critically important) inclusion of a standards-based system for storing, managing, organizing, indexing, documenting and sharing sensor data. We are developing a cross-platform software framework using the Python programming language that will allow us to develop a low cost end-to-end (from sensor to publication) system for hydrometeorological conditions monitoring. The software framework contains provision for sensor, sensor platforms, calibration and network protocols description, sensor programming, data storage, data publication and visualization and more importantly data retrieval in a desired unit system. It is being tested on the Raspberry Pi microcomputer as end node and a laptop PC as the base station in a wireless setting.

  4. Studying the hydrological cycle in the Iberian Peninsula using the LEAFHYDRO LSM: Influence of groundwater dynamics on soil moisture and land-atmosphere coupling. Impacts of artificial water extraction in the regional water cycle, including land-surface f

    Science.gov (United States)

    Martinez, A.; Miguez-Macho, G.

    2012-04-01

    We perform long-term (10 year) simulations over the Iberian Peninsula at 2.5 km resolution with the LEAFHYDRO LSM, which includes groundwater dynamics and river routing. Atmospheric forcing comes from ERA-interim and a regional high-resolution analysis of precipitation over Spain and Portugal. The model simulates the coupled evolution of the groundwater, land surface (soil moisture and vegetation) and river reservoirs and we validate the simulation with all available observations of river flow and water table depth. In an experiment, we impose an artificial water extraction rate from the groundwater reservoir based on observations and estimations of irrigation withdrawals and we investigate the impact on the regional water cycle. The extraction rates induce a depression of the water table that over the years becomes quite significant and that matches observed decreasing rates of water table levels. The depressed water table discontinues groundwater input into rivers and the stream flow is diminished notably, in particular during the dry summer. Moreover, in areas with semiarid climate where the water table was naturally relatively shallow and connected to soil moisture and vegetation, which include most of the agricultural areas inland Spain, the depression of the water table has a significant impact on soil moisture and land-surface fluxes, with a decrease of root zone soil water availability and evapotranspiration and increasing water stress for the vegetation. The land hydrology alteration is more pronounced in the summer when there is an absence of precipitation, and as the model shows, through the induced changes in land-surface fluxes can potentially have a noticeably impact on the regional climate.

  5. The Operational Hydro-meteorological Ensemble Prediction System at Meteo-France and its representation interface for the French Service for Flood Prediction (SCHAPI) : description and undergoing developments.

    Science.gov (United States)

    Rousset-Regimbeau, F.; Martin, E.; Thirel, G.; Habets, F.; Coustau, M.; Roquelaure, S.; De Saint Aubin, C.; Ardilouze, C.

    2012-04-01

    The coupled physically-based hydro-meteorological model SAFRAN-ISBA-MODCOU (SIM) is developed at Meteo-France for many years. This fully distributed catchment model is used in a pre-operational mode since 2005 for producing mid-range ensemble streamflow forecasts based on the 51-member 10-day ECMWF EPS. Improvements have been made during the past few years.. First, a statistical adaptation has been performed to improve the meteorological ensemble predictions from the ECMWF. It has been developped over a 3-year archive, and assessed over a 1-year period. Its impact on the performance of the streamflow forecasts has been calculated over 8 months of predictions. Then, a past discharges assimilation system has been implemented in order to improve the initial states of these ensemble streamflow forecasts. It has been developped in the framework of a Phd thesis, and it is now evaluated in real-time conditions. Moreover, an improvement of the physics of the ISBA model (the exponential profile of the hydraulic conductivity in the soil) was implemented. Finally, this system provides ensemble 10-day streamflow prediction to the French National Service for Flood Prediction (SCHAPI). A collaboration between Meteo-France and SCHAPI led to the development of a new website. This website shows the streamflow predictions for about 200 selected river stations over France (selected regarding their interest for flood warning) , as well as alerts for high flows (two levels of high flows corresponding to the levels of risk of the French flood warning system). It aims at providing to the French hydrological forecaters a real-time tool for mid-range flood awareness.

  6. Hamiltonian approach to the lattice massive Schwinger model

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1996-01-01

    The authors consider the limit e 2 /m 2 much-lt 1 of the lattice massive Schwinger model, i.e., the lattice massive QED in two space-time dimensions, up to lowest order in the effective coupling constant e 2 /m 2 . Here, m is the fermion mass parameter and e is the electron charge. They compare their lattice QED model with the analogous continuous space and lattice space models, (CSM and LSM), which do not take account of the zero momentum mode, z.m.m., of the vector potential. The difference is that (due to extra z.m.m. degree of freedom) to every eigenstate of the CSM and LSM there corresponds a family of eigenstates of the authors lattice QED with the parameter λ. They restrict their consideration to small values of the parameter λ. Then, the energies of the particle states of their lattice QED and LSM do coincide (in their approximation). In the infinite periodicity length limit the Hamiltonian of the authors lattice QED (as well as the Hamiltonian of the LSM) possesses two different Hilbert spaces of eigenfunctions. Thus, in this limit the authors lattice QED model (as well as LSM) describes something like two connected, but different, worlds

  7. Hydrometeorological extremes at the Veselí nad Moravou estate (Czech Republic) in the period 1794-1850 derived from documentary evidence of the economic character

    Science.gov (United States)

    Chromá, Kateřina

    2010-05-01

    Hydrometeorological extremes influenced always human activities (agriculture, forestry, water management) and caused losses of human lives and great material damage. Systematic meteorological and hydrological observations in the Czech Lands (recent Czech Republic) started generally in the latter half of the 19th century. In order to create long-term series of hydrometeorological extremes, it is necessary to search for other sources of information for their study before 1850. Such direct and indirect information about hydrometeorological extremes is included in documentary evidence (e.g. chronicles, memoirs, diaries, early visual weather observations, newspapers, economic sources etc.). Documentary evidence of economic character belongs to the most important sources, especially documents related to taxation records. Damage to agricultural crops on the fields or damage to hay on meadows due to the hydrological and meteorological phenomena has been a good reason for the abatement of tax duty. Based on the official correspondence of the estate of Veselí nad Moravou (southern Moravia), archival information about taxation from the Moravian Land Archives in Brno was excerpted. Based on it, 46 hydrometeorological extremes which occurred between the years 1794 and 1850 were selected and further analysed. Because of fields and meadows of the above estate were located along the Morava River, reports of damage due to floods were the most frequent, followed by damage due to torrential rains and hailstorms.

  8. Integrating Local Experiential and Hydrometeorological Data to Understand Knowledge Uncertainties and to Build Resilience to Flooding in Two Puerto Rican Communities.

    Science.gov (United States)

    Ramsey, M.; Nytch, C. J.; Branoff, B.

    2016-12-01

    Socio-hydrological studies that explore feedbacks between social and biophysical processes related to flood risk can help managers identify strategies that increase a community's freshwater security. However, knowledge uncertainty due to coarse spatio-temporal coverage of hydrological monitoring data, missing riverine discharge and precipitation records, assumptions of flood risk models, and effects of urbanization, can limit the ability of these studies to isolate hydrological responses to social drivers of flooding and a changing climate. Local experiential knowledge can provide much needed information about 1) actual flood spatio-temporal patterns, 2) human impacts and perceptions of flood events, and 3) mechanisms to validate flood risk studies and understand key social elements of the system. We addressed these knowledge gaps by comparing the location and timing of flood events described in resident interviews and resident drawn maps (total = 97) from two San Juan communities with NOAA and USGS precipitation and riverine discharge data archives, and FEMA flood maps. Analyses of five focal flood events revealed 1) riverine monitoring data failed to record a major flood event caused by localized blockage of the river, 2) residents did not mention multiple extreme riverine discharge events, 3) resident and FEMA flood maps matched closely but resident maps provided finer spatial information about frequency of flooding, and 4) only a small percentage of residents remembered the dates of flood events. Local knowledge provided valuable social data about flood impacts on human economic and physical/psychological wellbeing, perceptions about factors causing flooding, and what residents use as sources of flood information. A simple mechanism or tool for residents to record their flood experiences in real-time will address the uncertainties in local knowledge and improve social memory. The integration of local experiential knowledge with simulated and empirical hydro-meteorological

  9. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    Science.gov (United States)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  10. Evaluating LSM-Based Water Budgets Over a West African Basin Assisted with a River Routing Scheme

    Science.gov (United States)

    Getirana, Augusto C. V.; Boone, Aaron; Peugeot, Christophe

    2014-01-01

    Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Oum River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region,a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005-08 AMMA field campaign period during which rainfall and stream flow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily stream flow at five gauges within the basin. Results demonstrate that the RRS simulates stream flow at all gauges with relative errors varying from -22% to 3% and Nash-Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the sub-basin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated stream flows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

  11. In situ ToF-SIMS monitoring of SOFC cathodes - A case study of La0.74Sr0.17Mn1.01O2.9 model electrodes

    Science.gov (United States)

    Rohnke, M.; Schaepe, K.; Bachmann, A.-K.; Laenger, M.; Janek, J.

    2017-11-01

    The modelling of electrode kinetics of solid oxide fuel cells is challenging, as the electrodes can change their composition and microstructure during operation at high temperature. Here we present results from in situ studies, applying time of flight secondary ion mass spectrometry (ToF-SIMS) to investigate compositional surface changes of lanthanum strontium manganate (LSM) model electrodes. Geometrically well-defined LSM electrodes with the composition La0.74Sr0.17Mn1.01O2.9 were deposited as thin films on yttria stabilised zirconia (YSZ) single crystals by pulsed laser deposition. As counter electrode, a porous platinum electrode was applied on the backside of the solid electrolyte. The electrochemical polarisation experiments were carried out inside the ToF-SIMS analysis chamber at 430 °C, and the ToF-SIMS measurements were performed - in contrast to former work - for the first time during electrical polarisation at elevated temperatures. By applying either a cathodic or anodic potential to the LSM cathode, enrichment or depletion of the different metallic constituents on both, the LSM and free YSZ surface, and within the LSM near surface region, were observed. After polarisation, the system relaxes towards the thermodynamic equilibrium state. Already after the first heat treatment, diffusion of manganese and strontium from the LSM electrode onto the free YSZ surface is observed. The concomitant spreading of the three-phase boundary seems to be one reason for electrode activation after polarisation.

  12. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  13. Local adaptive capacity as an alternative approach in dealing with hydrometeorological risk at Depok Peri-Urban City

    Science.gov (United States)

    Fitrinitia, I. S.; Junadi, P.; Sutanto, E.; Nugroho, D. A.; Zubair, A.; Suyanti, E.

    2018-03-01

    Located in a tropical area, cities in Indonesia are vulnerable to hydrometeorological risks such as flood and landslide and thus become prone to the climate change effects. Moreover, peri-urban cities had double burden as the consequences of main city spill over and also lack of urban facilities in overcoming the disaster. In another perspective, the city has many alternative resources to recover, so its create urban resiliency. Depok city becomes a case study of this research regarding with its development following the impact of Jakarta growth. This research purposes to capture how the local city dwellers could anticipate and adaptive with flood and landslide with their own mitigation version. Through mix method and spatial analysis using GIS techniques, it derives the two comparison approach, the normative and alternative that had been done by the city dwellers. It uses a spatial analysis to have a big picture of Depok and its environmental changing. It also divided into 4 local group of communities as a representative of city dwellers regarding the characteristic of a settlement with their level of risk. The result found type or characteristic of settlement which influenced the local adaptive capacity, from the establishment of infrastructure, health fulfillment and social livelihood with different kind of methods.

  14. Nature-based solutions for hydro-meteorological risk reduction and nutrient removal in the Nordic and Arctic regions

    Science.gov (United States)

    Bring, Arvid; Kalantari, Zahra

    2017-04-01

    Natural ecological functions provide essential and fundamental benefits to mankind, but can also be actively employed in nature-based solutions to specific challenges in society. For example, water-related ecosystem services have a role in such societal benefits as flood protection, erosion control, and excess nutrient removal. Ecosystem services may be produced and consumed in different locations, and research has recently attempted to formalize this discrepancy in identifying service providing areas (SPAs), service benefitting areas (SBAs), and service connecting areas (SCAs). However, in terms of water-related services, there is a lack of formal evaluation of how SPAs, SBAs, and SCAs are related to hydrological measures such as discharge, flood recurrence, excess nutrient removal, etc. We seek to map SPAs, SBAs and SCAs for a number of key ecosystem services in the Nordic and Arctic region though established ecological definitions (typically, based on land use) and evaluate the findings alongside metrics of hydrological connectivity (river networks), provisioning areas (runoff generating areas), and benefitting areas (river stretches where water flow is moderated). We make use of extensive GIS analysis using both high-resolution land cover data and river network maps. In the end, the results are expected to contribute to identifying how water-related ecosystem services can be employed as nature-based solutions for hydro-meteorological risk reduction and nutrient removal in a changing climate in the Nordic and Arctic regions.

  15. Hydrometeorological extremes and their impacts derived from taxation records for south-eastern Moravia (Czech Republic) in the period 1751-1900

    Science.gov (United States)

    Chromá, K.; Brázdil, R.; Valášek, H.; Dolák, L.

    2012-04-01

    Hydrometeorological extremes always influenced human activities and caused great material damage or even loss of human lives. In the Czech Lands (recently the Czech Republic), systematic meteorological and hydrological observations started generally in the latter half of the 19th century. In order to create long-term series of hydrometeorological extremes, it is necessary to search for other sources of information for their study before 1850. In this study, written records associated with tax relief at ten estates located in south-eastern Moravia are used for the study of hydrometeorological extremes and their impacts during the period 1751-1900. The taxation system in Moravia allowed farmers to request tax relief if their crop yields had been negatively affected by hydrological and meteorological extremes. The documentation involved contains information about the type of extreme event and the date of its occurrence, and the impacts on crops may often be derived. A total of 175 extreme events resulting in some kind of damage is documented for 1751-1900, with the highest concentration between 1811 and 1860. The nature of events leading to damage (of a possible 272 types) include hailstorm (25.7%), torrential rain (21.7%), and flood (21.0%), followed by thunderstorm, flash flood, late frost and windstorm. The four most outstanding events, affecting the highest number of settlements, were thunderstorms with hailstorms (25 June 1825, 20 May 1847 and 29 June 1890) and flooding of the River Morava (mid-June 1847). Hydrometeorological extremes in the 1816-1855 period are compared with those occurring during the recent 1961-2000 period. The results obtained are inevitably influenced by uncertainties related to taxation records, such as their temporal and spatial incompleteness, the limits of the period of outside agricultural work (i.e. mainly May-August) and the purpose for which they were originally collected (primarily tax alleviation, i.e. information about

  16. Soil Moisture Data Assimilation in the NASA Land Information System for Local Modeling Applications and Improved Situational Awareness

    Science.gov (United States)

    Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.

    2014-01-01

    As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model

  17. Effects of Seasonal Land Surface Conditions on Hydrometeorological Dynamics in South-western North America

    Science.gov (United States)

    2015-09-21

    SECURITY CLASSIFICATION OF: Arid and semiarid landscapes in regions with seasonal precipitation experience dramatic changes that alter land surface...semiarid landscapes in regions with seasonal precipitation experience dramatic changes that alter land surface conditions, including soil moisture...aerial vehicle data acquisition and high performance computing-based hydrologic modeling designed to capture, account for and predict seasonal variations

  18. Extreme hydrometeorological events in the Peruvian Central Andes during austral summer and their relationship with the large-scale circulation

    Science.gov (United States)

    Sulca, Juan C.

    In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.

  19. Spatiotemporal variability of hydrometeorological extremes and their impacts in the Jihlava region in the 1650-1880 period

    Science.gov (United States)

    Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Reznickova, Ladislava

    2017-04-01

    Different documentary evidence (taxation records, chronicles, insurance reports etc.) and secondary sources (peer-reviewed papers, historical literature, newspapers) are used for reconstruction of hydrometeorological extremes (HMEs) in the former Jihlava region in the 1651-1880 period. The study describes the system of tax alleviation in Moravia, presents assessment of the impacts of HMEs with regard to physical-geographical characteristic of area studied, presents up to now non-utilized documentary evidence (early fire and hail damage insurance claims) and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 500 HMEs were analysed for the 19 estates (past basic economic units) in the region. Thunderstorm in 1651 in Rančířov (the Jihlava estate), which caused damage on the fields and meadows, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Together with floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. The paper shows that particularly archival records, preserved in the Moravian Land Archives in Brno and other district archives, represent a unique source of data contributing to the better understanding of extreme events and their impacts in the past.

  20. Hydro-meteorological controls on the CO2 exchange variation in a mixed forest in the southern Italian Alps

    Science.gov (United States)

    Sottocornola, M.; Cavagna, M.; Zampedri, R.; Gianelle, D.

    2012-12-01

    We report about nine years (2003-2011) of eddy-covariance measurements of CO2 fluxes from the Lavarone mixed forest in the southern Italian Alps at 1350 m asl. This is a 110 years old humid forest, with an annual average air temperature of 7 °C and annual precipitation of about 1150 mm. The forest canopy peaks at around 32 m high and is dominated by fir (Abies alba), spruce (Picea abies) and some beech (Fagus sylvatica), with a LAI of about 9. A correlation coefficient analysis between the CO2 fluxes and hydro-meteorological variables measured at the same site indicates that the main drivers explaining the inter-annual variation in the CO2 fluxes are vapour pressure deficit (VPD) and precipitation, with higher CO2 uptake in more humid conditions. This result is partially surprising since Lavarone is a humid forest and in an ecosystem with high humidity, other drivers were expected to be more important than hydrological parameters. This suggests that the Lavarone forest has a very conservative strategy, closing the stomata as soon as humidity decreases just below an optimum threshold. The same analysis at a monthly time step indicates that during the growing season the Lavarone forest shows the same mechanisms as at the annual time step, stressing the role of VPD as an environmental driver, explaining both NEE and GEP. On the other hand, during the late winter and early spring, an higher CO2 sink is associated with higher air temperature and higher VPD. Among those studied, 2009 is an anomalous year, having experienced very high air temperatures and high and frequent precipitation, that triggered the highest GEP and highest net CO2 sink (lowest NEE). The climate change scenarios for the Alps agree about an increase of temperatures, but disagree on the future precipitation. If together with higher temperatures, the Alps will experience higher precipitation as well, the Lavarone and similar forest will likely increase their CO2 uptake.

  1. Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula

    Science.gov (United States)

    Corella, J. P.; Benito, G.; Rodriguez-Lloveras, X.; Brauer, A.; Valero-Garcés, B. L.

    2014-06-01

    We present an annual reconstruction of extreme rainfall events interpreted from detrital layers and turbidites interbedded within a varved sediment record since the 14th century in Montcortés Lake (NE Spain, 1027 m a.s.l.). Clastic microfacies intercalated within the biochemical calcite varves were characterized and their depositional dynamics interpreted using high-resolution geochemical and sedimentological analyses. Annual number of detrital layers was compared against instrumental records of extreme daily rainfalls providing minimum rainfall thresholds and return periods associated to the identified types of clastic microfacies. Non-continuous detrital layers were deposited during rainfall events higher than 80 mm (>2-year return period) while graded detrital layers and turbidites were associated with higher magnitude rainfall events (>90 mm and >4-year return period). The frequency distribution of extreme hydro-meteorological events is not stationary and its pattern coincides with historical floods from the nearby Segre River. High frequency of heavy rainfalls occurred during the periods AD 1347-1400 and AD 1844-1894. A lower frequency of heavy rainfall was found during the periods AD 1441-1508, 1547-1592, 1656-1712, 1765-1822 and 1917-2012. The 20th century stands out as the longest interval within the studied period of very low number of extreme rainfall events. Variability in extreme rainfall events prior to the 20th century is in phase with solar activity, suggesting a mechanistic link in mid-latitude atmospheric circulation patterns that ceased during the 20th century.

  2. Hydrometeorological extremes reconstructed from documentary evidence for the Jihlava region in the 17th-19th centuries

    Science.gov (United States)

    Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Belinova, Monika; Reznickova, Ladislava

    2016-04-01

    Different documentary evidence (taxation records, chronicles, insurance reports etc.) is used for reconstruction of hydrometeorological extremes (HMEs) in the Jihlava region (central part of the recent Czech Republic) in the 17th-19th centuries. The aim of the study is description of the system of tax alleviation in Moravia, presentation of utilization of early fire and hail damage insurance claims and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 400 HMEs were analysed for the 16 estates (past basic economic units). Late frost on 16 May 1662 on the Nove Mesto na Morave estate, which destroyed whole cereals and caused damage in the forests, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Moreover, floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. Archival records, preserved in the Moravian Land Archives in Brno and other district archives, create a unique source of data contributing to the better understanding of extreme events and their impacts.

  3. Forensic hydro-meteorological analysis of an extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany.

    Science.gov (United States)

    Bronstert, Axel; Agarwal, Ankit; Boessenkool, Berry; Crisologo, Irene; Fischer, Madlen; Heistermann, Maik; Köhn-Reich, Lisei; López-Tarazón, José Andrés; Moran, Thomas; Ozturk, Ugur; Reinhardt-Imjela, Christian; Wendi, Dadiyorto

    2018-02-28

    The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. Copyright © 2018. Published by Elsevier B.V.

  4. Improved Analyses and Forecasts of Snowpack, Runoff and Drought through Remote Sensing and Land Surface Modeling in Southeastern Europe

    Science.gov (United States)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Kobold, M.; Zagar, M.; Knoblauch, H.; Staudinger, M.; Mecklenburg, S.; Lehning, M.; Schweizer, J.; Balint, G.; Cacic, I.; Houser, P.; Pozzi, W.

    2008-12-01

    European hydrometeorological services and research centers are faced with increasing challenges from extremes of weather and climate that require significant investments in new technology and better utilization of existing human and natural resources to provide improved forecasts. Major advances in remote sensing, observation networks, data assimilation, numerical modeling, and communications continue to improve our ability to disseminate information to decision-makers and stake holders. This paper identifies gaps in current technologies, key research and decision-maker teams, and recommends means for moving forward through focused applied research and integration of results into decision support tools. This paper reports on the WaterNet - NASA Water Cycle Solutions Network contacts in Europe and summarizes progress in improving water cycle related decision-making using NASA research results. Products from the Hydrologic Sciences Branch, Goddard Space Flight Center, NASA, Land Information System's (LIS) Land Surface Models (LSM), the SPoRT, CREW , and European Space Agency (ESA), and Joint Research Center's (JRC) natural hazards products, and Swiss Federal Institute for Snow and Avalanche Research's (SLF), and others are discussed. They will be used in collaboration with the ESA and the European Commission to provide solutions for improved prediction of water supplies and stream flow, and droughts and floods, and snow avalanches in the major river basins serviced by EARS, ZAMG, SLF, Vituki Consult, and other European forecast centers. This region of Europe includes the Alps and Carpathian Mountains and is an area of extreme topography with abrupt 2000 m mountains adjacent to the Adriatic Sea. These extremes result in the highest precipitation ( > 5000 mm) in Europe in Montenegro and low precipitation of 300-400 mm at the mouth of the Danube during droughts. The current flood and drought forecasting systems have a spatial resolution of 9 km, which is currently being

  5. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    Science.gov (United States)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the

  6. Twentieth-Century Hydrometeorological Reconstructions to Study the Multidecadal Variations of the Water Cycle Over France

    Science.gov (United States)

    Bonnet, R.; Boé, J.; Dayon, G.; Martin, E.

    2017-10-01

    Characterizing and understanding the multidecadal variations of the continental hydrological cycle is a challenging issue given the limitation of observed data sets. In this paper, a new approach to derive twentieth century hydrological reconstructions over France with an hydrological model is presented. The method combines the results of long-term atmospheric reanalyses downscaled with a stochastic statistical method and homogenized station observations to derive the meteorological forcing needed for hydrological modeling. Different methodological choices are tested and evaluated. We show that using homogenized observations to constrain the results of statistical downscaling help to improve the reproduction of precipitation, temperature, and river flows variability. In particular, it corrects some unrealistic long-term trends associated with the atmospheric reanalyses. Observationally constrained reconstructions therefore constitute a valuable data set to study the multidecadal hydrological variations over France. Thanks to these reconstructions, we confirm that the multidecadal variations previously noted in French river flows have mainly a climatic origin. Moreover, we show that multidecadal variations exist in other hydrological variables (evapotranspiration, snow cover, and soil moisture). Depending on the region, the persistence from spring to summer of soil moisture or snow anomalies generated during spring by temperature and precipitation variations may explain river flows variations in summer, when no concomitant climate variations exist.

  7. Hydrometeorological extremes and their impacts, as derived from taxation records for south-eastern Moravia, Czech Republic, AD 1751-1900

    Science.gov (United States)

    Brázdil, R.; Chromá, K.; Valášek, H.; Dolák, L.

    2011-12-01

    Historical written records associated with tax relief at ten estates located in south-eastern Moravia (Czech Republic) are used for the study of hydrometeorological extremes and their impacts during the period AD 1751-1900. At the time, the taxation system in Moravia allowed farmers to request tax relief if their crop yields had been negatively affected by hydrological and meteorological extremes. The documentation involved contains information about the type of extreme event and the date of its occurrence, while the impact on crops may often be derived. A total of 175 extreme events resulting in some kind of damage is documented for 1751-1900, with the highest concentration between 1811 and 1860 (74.9% of all events analysed). The nature of events leading to damage (of a possible 272 types) include hailstorm (25.7%), torrential rain (21.7%), and flood (21.0%), followed by thunderstorm, flash flood, late frost and windstorm. The four most outstanding events, affecting the highest number of settlements, were thunderstorms with hailstorms (25 June 1825, 20 May 1847 and 29 June 1890) and flooding of the River Morava (mid-June 1847). Hydrometeorological extremes in the 1816-1855 period are compared with those occurring during the recent 1961-2000 period. The results obtained are inevitably influenced by uncertainties related to taxation records, such as their temporal and spatial incompleteness, the limits of the period of outside agricultural work (i.e. mainly May-August) and the purpose for which they were originally collected (primarily tax alleviation, i.e. information about hydrometeorological extremes was of secondary importance). Taxation records constitute an important source of data for historical climatology and historical hydrology and have a great potential for use in many European countries.

  8. Earthquake statistics in a Block Slider Model and a fully dynamic Fault Model

    Directory of Open Access Journals (Sweden)

    D. Weatherley

    2004-01-01

    Full Text Available We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991, a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM of Mora and Place (1994. We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.

  9. Real time data acquisition of commercial microwave link networks for hydrometeorological applications

    Science.gov (United States)

    Chwala, C.; Keis, F.; Kunstmann, H.

    2015-11-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted- and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to one second. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real time transfer to our data base. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine skiing resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of one second. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  10. Real-time data acquisition of commercial microwave link networks for hydrometeorological applications

    Science.gov (United States)

    Chwala, Christian; Keis, Felix; Kunstmann, Harald

    2016-03-01

    The usage of data from commercial microwave link (CML) networks for scientific purposes is becoming increasingly popular, in particular for rain rate estimation. However, data acquisition and availability is still a crucial problem and limits research possibilities. To overcome this issue, we have developed an open-source data acquisition system based on the Simple Network Management Protocol (SNMP). It is able to record transmitted and received signal levels of a large number of CMLs simultaneously with a temporal resolution of up to 1 s. We operate this system at Ericsson Germany, acquiring data from 450 CMLs with minutely real-time transfer to our database. Our data acquisition system is not limited to a particular CML hardware model or manufacturer, though. We demonstrate this by running the same system for CMLs of a different manufacturer, operated by an alpine ski resort in Germany. There, the data acquisition is running simultaneously for four CMLs with a temporal resolution of 1 s. We present an overview of our system, describe the details of the necessary SNMP requests and show results from its operational application.

  11. Modeling of Reservoir Inflow for Hydropower Dams Using Artificial ...

    African Journals Online (AJOL)

    The stream flow at the three hydropower reservoirs in Nigeria were modeled using hydro-meteorological parameters and Artificial Neural Network (ANN). The model revealed positive relationship between the observed and the modeled reservoir inflow with values of correlation coefficient of 0.57, 0.84 and 0.92 for Kainji, ...

  12. Hydro-meteorological processes on the Qinghai - Tibet Plateau observed from space

    Science.gov (United States)

    Menenti, Massimo; Colin, Jerome; Jia, Li; D'Urso, Guido; Foken, Thomas; Immerzeel, Walter; Jha, Ramakar; Liu, Qinhuo; Liu, Changming; Ma, Yaoming; Sobrino, Jose Antonio; Yan, Guangjian; Pelgrum, Henk; Porcu, Federico; Wang, Jian; Wang, Jiemin; Shen, Xueshun; Su, Zhongbo; Ueno, Kenichi

    2014-05-01

    The Qinghai - Tibet Plateau is characterized by a significant intra-annual variability and spatial heterogeneity of surface conditions. Snow and vegetation cover, albedo, surface temperature and wetness change very significantly during the year and from place to place. The influence of temporal changes on convective events and the onset of the monsoon has been documented by ground based measurements of land - atmosphere exchanges of heat and water. The state of the land surface over the entire Plateau can be determined by space observation of surface albedo, temperature, snow and vegetation cover and soil moisture. Fully integrated use of satellite and ground observations is necessary to support water resources management in SE Asia and to clarify the roles of the interactions between the land surface and the atmosphere over the Tibetan Plateau in the Asian monsoon system. New or significantly improved algorithms have been developed and evaluated against ground measurements. Variables retrieved include land surface properties, rain rate, aerosol optical depth, water vapour, snow cover and water equivalent, soil moisture and lake level. The three years time series of gap-free daily and hourly evaporation derived from geostationary data collected by the FY-2D satellite was a major achievement. The hydrologic modeling system has been implemented and applied to the Qinghai Tibet Plateau and the headwaters of the major rivers in South and East Asia. Case studies on response of atmospheric circulation and specifically of convective activity to land surface conditions have been completed and the controlling land surface conditions and processes have been documented. Two new drought indicators have been developed: Normalized Temperature Anomaly Index (NTAI) and Normalized Vegetation Anomaly Index (NVAI). Case study in China and India showed that these indicators capture effectively drought severity and evolution. A new method has been developed for monitoring and early

  13. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivate research to better constrain the hydrological balance in alpine valleys. There is an outstanding need to better understand the impact of the pronounced tropical hygric seasonality on energy and water budgets within pro-glacial valleys that channel glacier runoff to stream flow. This paper presents a novel embedded network installed in the glacierized Llanganuco valley of the Cordillera Blanca (9°S) comprising eight low-cost, discrete temperature and humidity microloggers ranging from 3470 to 4740 masl and an automatic weather station at 3850 masl. Data are aggregated into distinct dry and wet periods sampled from two full annual cycles (2004-2006) to explore patterns of diurnal and seasonal variability. The magnitude of diurnal solar radiation varies little within the valley between the dry and wet periods, while wet season near-surface air temperatures are cooler. Seasonally characteristic diurnal fluctuations in lapse rate partially regulate convection and humidity. Steep lapse rates during the wet season afternoon promote up-slope convection of warm, moist air and nocturnal rainfall events. Standardized grass reference evapotranspiration (ET0) was estimated using the FAO-56 algorithm of the United Nations Food and Agriculture Organization and compared with estimates of actual ET from the process-based BROOK90 model that incorporates more realistic vegetation parameters. Comparisons of composite diurnal cycles of ET for the wet and dry periods suggest about twice the daily ET0 during the dry period, attributed primarily to the 500% higher vapor pressure deficit and 20% higher daily total solar irradiance. Conversely, the near absence of rainfall during the dry season diminishes actual ET below that of the wet season by two orders of magnitude. Nearly cloud-free daylight conditions are critical for ET during the wet season. We found significant variability of ET with elevation

  14. Numerical Modeling of the Side Flow in Tape Casting of a Non-Newtonian Fluid

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2013-01-01

    in the tape casting process is modeled numerically with ANSYS FLUENT in combination with an Ostwald-de Waele power law constitutive equation. Based on rheometer experiments, the constants in the Ostwald-de Waele power law are identified for the considered LSM material and applied in the numerical modeling...

  15. Evaluation of forest snow processes models (SnowMKIP2)

    Science.gov (United States)

    Nick Rutter; Richard Essery; John Pomeroy; Nuria Altimir; Kostas Andreadis; Ian Baker; Alan Barr; Paul Bartlett; Aaron Boone; Huiping Deng; Herve Douville; Emanuel Dutra; Kelly Elder; others

    2009-01-01

    Thirty-three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation...

  16. A COUPLED LAND-SURFACE AND DRY DEPOSITION MODEL AND COMPARISON TO FIELD MEASUREMENTS OF SURFACE HEAT, MOISTURE, AND OZONE FLUXES

    Science.gov (United States)

    We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...

  17. The development and evaluation of new runoff parameterization representations coupled with Noah Land Surface Model

    Science.gov (United States)

    Zheng, Z.; Zhang, W.; Xu, J.

    2011-12-01

    As a key component of the global water cycle, runoff plays an important role in earth climate system by affecting the land surface water and energy balance. Realistic runoff parameterization within land surface model (LSM) is significant for accurate land surface modeling and numerical weather and climate prediction. Hence, optimization and refinement of runoff formulation in LSM can further improve model predictive capability of surface-to-atmosphere fluxes which influences the complex interactions between the land surface and atmosphere. Moreover, the performance of runoff simulation in LSM would essential to drought and flood prediction and warning. In this study, a new runoff parameterization named XXT (Xin'anjiang x TOPMODEL) was developed by introducing the water table depth into the soil moisture storage capacity distribution curve (SMSCC) from Xin'anjiang model for surface runoff calculation improvement and then integrating with a TOPMODEL-based groundwater scheme. Several studies had already found a strong correlation between the water table depth and land surface processes. In this runoff parameterization, the dynamic variation of surface and subsurface runoff calculation is connected in a systematic way through the change of water table depth. The XXT runoff parameterization was calibrated and validated with datasets both from observation and Weather Research & Forecasting model (WRF) outputs, the results with high Nash-efficiency coefficient indicated that it has reliable capability of runoff simulation in different climate regions. After model test, the XXT runoff parameterization is coupled with the unified Noah LSM 3.2 instead of simple water balance model (SWB) in order to alleviate the runoff simulating bias which may lead to poor energy partition and evaporation. The impact of XXT is investigated through application of a whole year (1998) simulation at surface flux site of Champaign, Illinois (40.01°N, 88.37°W). The results show that Noah

  18. Studying the Aspects of Knowledge Creation in the LAB Studio Model

    Directory of Open Access Journals (Sweden)

    Kari-Pekka Heikkinen

    2016-06-01

    Full Text Available The organisations of higher education are constantly changing. Universities, colleges, private schools and online universities refine their pedagogical methods and learning models in a competitive market. This article is a study on whether one such model helps students to gain new knowledge. A study of the LAB studio model (LSM, which is a pedagogical model developing connections between working-life based problems and the recognition and development of business-related prototypes and start-up companies, is presented. The LSM, theoretically grounded in a constructivist view of learning with a project-based education at its core, has the key goal of educating entrepreneurial competences in higher education. Based on the case study, comprisinga literature review of knowledge creation and a survey, the qualitative results analysis suggests that LSM offers a promising support for knowledge creation. The results lead to the conclusion that LSM provides support especially for the various modes of the SECI model, such as socialisation and internalisation, and seems to support organisational knowledge creation aspects as well.

  19. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Zhongbo

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park

  20. The Rofental: a high Alpine research basin (1890–3770 m a.s.l. in the Ötztal Alps (Austria with over 150 years of hydrometeorological and glaciological observations

    Directory of Open Access Journals (Sweden)

    U. Strasser

    2018-01-01

    Full Text Available A comprehensive hydrometeorological and glaciological data set is presented, originating from a multitude of glaciological, meteorological, hydrological and laser scanning recordings at research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria. The data sets span a period of 150 years and hence represent a unique time series of rich high-altitude mountain observations. Their collection was originally initiated to support scientific investigation of the glaciers Hintereisferner, Kesselwandferner and Vernagtferner. Annual mass balance, glacier front variation, flow velocities and photographic records of the status of these glaciers were recorded. Later, additional measurements of meteorological and hydrological variables were undertaken, and over time a number of autonomous weather stations and runoff gauges were brought into operation; the available data now comprise records of temperature, relative humidity, short- and longwave radiation, wind speed and direction, air pressure, precipitation, and river water levels. Since 2001, a series of distributed (airborne and terrestrial laser scans is available, along with associated digital surface models. In 2016 a permanent terrestrial laser scanner was installed on Im hintern Eis (3244 m a.s.l. to continuously observe almost the entire area of Hintereisferner. The data and research undertaken at the sites of investigation in the Rofental area enable combined research of cryospheric, atmospheric and hydrological processes in complex terrain, and support the development of several state-of-the-art glacier mass balance and hydroclimatological models. The institutions taking part in the Rofental research framework promote their site in several international research initiatives. In INARCH (International Network for Alpine Research Catchment Hydrology, http://words.usask.ca/inarch, all original research data sets are now provided to the scientific community according to the

  1. The Rofental: a high Alpine research basin (1890-3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations

    Science.gov (United States)

    Strasser, Ulrich; Marke, Thomas; Braun, Ludwig; Escher-Vetter, Heidi; Juen, Irmgard; Kuhn, Michael; Maussion, Fabien; Mayer, Christoph; Nicholson, Lindsey; Niedertscheider, Klaus; Sailer, Rudolf; Stötter, Johann; Weber, Markus; Kaser, Georg

    2018-01-01

    A comprehensive hydrometeorological and glaciological data set is presented, originating from a multitude of glaciological, meteorological, hydrological and laser scanning recordings at research sites in the Rofental (1891-3772 m a.s.l., Ötztal Alps, Austria). The data sets span a period of 150 years and hence represent a unique time series of rich high-altitude mountain observations. Their collection was originally initiated to support scientific investigation of the glaciers Hintereisferner, Kesselwandferner and Vernagtferner. Annual mass balance, glacier front variation, flow velocities and photographic records of the status of these glaciers were recorded. Later, additional measurements of meteorological and hydrological variables were undertaken, and over time a number of autonomous weather stations and runoff gauges were brought into operation; the available data now comprise records of temperature, relative humidity, short- and longwave radiation, wind speed and direction, air pressure, precipitation, and river water levels. Since 2001, a series of distributed (airborne and terrestrial) laser scans is available, along with associated digital surface models. In 2016 a permanent terrestrial laser scanner was installed on Im hintern Eis (3244 m a.s.l.) to continuously observe almost the entire area of Hintereisferner. The data and research undertaken at the sites of investigation in the Rofental area enable combined research of cryospheric, atmospheric and hydrological processes in complex terrain, and support the development of several state-of-the-art glacier mass balance and hydroclimatological models. The institutions taking part in the Rofental research framework promote their site in several international research initiatives. In INARCH (International Network for Alpine Research Catchment Hydrology, http://words.usask.ca/inarch), all original research data sets are now provided to the scientific community according to the Creative Commons Attribution

  2. The Interplay Between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models

    Science.gov (United States)

    Koster, Rindal D.; Milly, P. C. D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  3. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    2017-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  4. Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow

    NARCIS (Netherlands)

    Zheng, Donghai; van der Velde, R.; Su, Zhongbo; Wang, X.; Wen, J.; Booij, Martijn J.; Hoekstra, Arjen Ysbert; Chen, Y.

    2015-01-01

    This is the first part of a study focusing on evaluating the performance of the Noah land surface model (LSM) in simulating surface water and energy budgets for the high-elevation source region of the Yellow River (SRYR). A comprehensive dataset is utilized that includes in situ micrometeorological

  5. An Intercomparison of ERS-Scat, AMSR-E Soil Moisture Observations with Model Simulations over France

    NARCIS (Netherlands)

    Rudiger, C.; Calvet, J.C.; Gruhier, C.; Holmes, T.R.H.; de Jeu, R.A.M.; Wagner, W.W.

    2009-01-01

    This paper presents a study undertaken in preparation of the work leading up to the assimilation of Soil Moisture and Ocean Salinity (SMOS) observations into the land surface model (LSM) Interaction Soil Biosphere Atmosphere (ISBA) at Météo-France. This study consists of an intercomparison

  6. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  7. Using the Maximum Entropy Principle as a Unifying Theory Characterization and Sampling of Multi-Scaling Processes in Hydrometeorology

    Science.gov (United States)

    2015-08-20

    ocean freshwater fluxes derived from sea surface salinity provides independent estimates of ocean ET for cross-validation of the MEP modeled ET. (a...Paper 6.00 8.00 7.00 9.00 5.00 V. Nieves, J. Wang, J. K. Willis. A conceptual model of ocean freshwater flux derived from sea surface salinity ...Surface Heat Fluxes 6 Ocean freshwater flux-sea surface salinity model 9 Surface carbon flux-carbon dioxide concentration model 10 3

  8. Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with observed Groundwater data assimilation

    OpenAIRE

    Singh, Raj Shekhar

    2014-01-01

    Modeling groundwater is challenging: it is not readily visible and is difficult to measure, with limited sets of observations available. Even though groundwater models can reproduce water table and head variations, considerable drift in modeled land surface states can nonetheless result from partially known geologic structure, errors in the input forcing fields, and imperfect Land Surface Model (LSM) parameterizations. These models frequently have biased results that are very different from o...

  9. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology

    Science.gov (United States)

    2012-01-25

    An MEP model for remote sensing of evapotranspiration (invited talk), AGU Fall Meeting, San Francisco, 2010. 6. Nieves, V., E. Wood, J. Wang, and R...corresponding field variables; (2) developing a model of evapotranspiration (ET) over the land surfaces using the Principle of Maximum Entropy Production (MEP...scaling moments and geometric mean of the incremental process |z1 – z2|, , where Z is the partition function (normalization factor), ?0 is determined

  10. Forecast Informed Reservoir Operations: Bringing Science and Decision-Makers Together to Explore Use of Hydrometeorological Forecasts to Support Future Reservoir Operations

    Science.gov (United States)

    Ralph, F. M.; Jasperse, J.

    2017-12-01

    Forecast Informed Reservoir Operations (FIRO) is a proposed strategy that is exploring inorporation of improved hydrometeorological forecasts of land-falling atmospheric rivers on the U.S. West Coast into reservoir operations. The first testbed for this strategy is Lake Mendocino, which is located in the East Fork of the 1485 mi2 Russian River Watershed in northern California. This project is guided by the Lake Mendocino FIRO Steering Committee (SC). The SC is an ad hoc committee that consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current or improved technology and scientific understanding can be utilized to improve water supply reliability, enhance flood mitigation and support recovery of listed salmon for the Russian River of northern California. In 2015, the SC created a detailed work plan, which included a Preliminary Viability Assessment, which has now been completed. The SC developed a vision that operational efficiency would be improved by using forecasts to inform decisions about releasing or storing water. FIRO would use available reservoir storage in an efficient manner by (1) better forecasting inflow (or lack of inflow) with enhanced technology, and (2) adapting operation in real time to meet the need for storage, rather than making storage available just in case it is needed. The envisioned FIRO strategy has the potential to simultaneously improve water supply reliability, flood protection, and ecosystem outcomes through a more efficient use of existing infrastructure while requiring minimal capital improvements in the physical structure of the dam. This presentation will provide an overview of the creation of the FIRO SC and how it operates, and describes the lessons learned through this partnership. Results in the FIRO Preliminary Viability Assessment will be summarized and next steps described.

  11. International Severe Weather and Flash Flood Hazard Early Warning Systems—Leveraging Coordination, Cooperation, and Partnerships through a Hydrometeorological Project in Southern Africa

    Directory of Open Access Journals (Sweden)

    Robert Jubach

    2016-06-01

    Full Text Available Climate, weather and water hazards do not recognize national boundaries. Transboundary/regional programs and cooperation are essential to reduce the loss of lives and damage to livelihoods when facing these hazards. The development and implementation of systems to provide early warnings for severe weather events such as cyclones and flash floods requires data and information sharing in real time, and coordination among the government agencies at all levels. Within a country, this includes local, municipal, provincial-to-national levels as well as regional and international entities involved in hydrometeorological services and Disaster Risk Reduction (DRR. Of key importance are the National Meteorological and Hydrologic Services (NMHSs. The NMHS is generally the authority solely responsible for issuing warnings for these hazards. However, in many regions of the world, the linkages and interfaces between the NMHS and other agencies are weak or non-existent. Therefore, there is a critical need to assess, strengthen, and formalize collaborations when addressing the concept of reducing risk and impacts from severe weather and floods. The U.S. Agency for International Development/Office of U.S. Foreign Disaster Assistance; the United Nations World Meteorological Organization (WMO; the WMO Southern Africa Regional Specialized Meteorological Center, hosted by the South African Weather Service; the U.S. National Oceanic and Atmospheric Administration/National Weather Service and the Hydrologic Research Center (a non-profit corporation are currently implementing a project working with Southern Africa NMHSs on addressing this gap. The project aims to strengthen coordination and collaboration mechanisms from national to local levels. The project partners are working with the NMHSs to apply and implement appropriate tools and infrastructure to enhance currently operational severe weather and flash flood early warning systems in each country in support of

  12. UC Irvine CHRS Real-time Global Satellite Precipitation Monitoring System (G-WADI PERSIANN-CCS GeoServer) for Hydrometeorological Applications

    Science.gov (United States)

    Sorooshian, S.; Hsu, K. L.; Gao, X.; Imam, B.; Nguyen, P.; Braithwaite, D.; Logan, W. S.; Mishra, A.

    2015-12-01

    The G-WADI Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) GeoServer has been successfully developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California Irvine in collaboration with the UNESCO's International Hydrological Programme (IHP) and a number of its international centers. The system employs state-of-the-art technologies in remote sensing and artificial intelligence to estimate precipitation globally from satellite imagery in real-time and high spatiotemporal resolution (4km, hourly). It offers graphical tools and data service to help the user in emergency planning and management for natural disasters related to hydrological processes. The G-WADI PERSIANN-CCS GeoServer has been upgraded with new user-friendly functionalities. The precipitation data generated by the GeoServer is disseminated to the user community through support provided by ICIWaRM (The International Center for Integrated Water Resources Management), UNESCO and UC Irvine. Recently a number of new applications for mobile devices have been developed by our students. The RainMapper has been available on App Store and Google Play for the real-time PERSIANN-CCS observations. A global crowd sourced rainfall reporting system named iRain has also been developed to engage the public globally to provide qualitative information about real-time precipitation in their location which will be useful in improving the quality of the PERSIANN-CCS data. A number of recent examples of the application and use of the G-WADI PERSIANN-CCS GeoServer information will also be presented.

  13. LSM Microelectrodes: Kinetics and Surface Composition

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Jacobsen, Torben

    2015-01-01

    Lanthanum strontium manganite microelectrodes with the nominal composition of (La0.75Sr0.25)0.95MnO3 and a thickness of ca 500 nm was electrochemically characterized in situ at temperatures from 660 to 850◦C using a controlled atmosphere high temperature scanning probe microscope. Impedance...... electron microscopy were performed to observe electrical, chemical and structural changes on the microelectrodes. © 2015 The Electrochemical Society....

  14. Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring

    Science.gov (United States)

    Restrepo-Estrada, Camilo; de Andrade, Sidgley Camargo; Abe, Narumi; Fava, Maria Clara; Mendiondo, Eduardo Mario; de Albuquerque, João Porto

    2018-02-01

    Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison made with real streamflow measurements. This is a significant improvement on the respective values of 39% and 58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-warning systems.

  15. Informing the operations of water reservoirs over multiple temporal scales by direct use of hydro-meteorological data

    Science.gov (United States)

    Denaro, Simona; Anghileri, Daniela; Giuliani, Matteo; Castelletti, Andrea

    2017-05-01

    Water reservoir systems may become more adaptive and reliable to external changes by enlarging the information sets used in their operations. Models and forecasts of future hydro-climatic and socio-economic conditions are traditionally used for this purpose. Nevertheless, the identification of skillful forecasts and models might be highly critical when the system comprises several processes with inconsistent dynamics (fast and slow) and disparate levels of predictability. In these contexts, the direct use of observational data, describing the current conditions of the water system, may represent a practicable and zero-cost alternative. This paper contrasts the relative contribution of state observations and perfect forecasts of future water availability in improving multipurpose water reservoirs operation over short- and long-term temporal scales. The approach is demonstrated on the snow-dominated Lake Como system, operated for flood control and water supply. The Information Selection Assessment (ISA) framework is adopted to retrieve the most relevant information to be used for conditioning the operations. By explicitly distinguishing between observational dataset and future forecasts, we quantify the relative contribution of current water system state estimates and perfect streamflow forecasts in improving the lake regulation with respect to both flood control and water supply. Results show that using the available observational data capturing slow dynamic processes, particularly the snow melting process, produces a 10% improvement in the system performance. This latter represents the lower bound of the potential improvement, which may increase to the upper limit of 40% in case skillful (perfect) long-term streamflow forecasts are used.

  16. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  17. Changes in hydro-meteorological conditions over tropical West Africa (1980-2015) and links to global climate

    Science.gov (United States)

    Ndehedehe, Christopher E.; Awange, Joseph L.; Agutu, Nathan O.; Okwuashi, Onuwa

    2018-03-01

    The role of global sea surface temperature (SST) anomalies in modulating rainfall in the African region has been widely studied and is now less debated. However, their impacts and links to terrestrial water storage (TWS) in general, have not been studied. This study presents the pioneer results of canonical correlation analysis (CCA) of TWS derived from both global reanalysis data (1980-2015) and GRACE (Gravity Recovery and Climate Experiment) (2002-2014) with SST fields. The main issues discussed include, (i) oceanic hot spots that impact on TWS over tropical West Africa (TWA) based on CCA, (ii) long term changes in model and global reanalysis data (soil moisture, TWS, and groundwater) and the influence of climate variability on these hydrological indicators, and (iii) the hydrological characteristics of the Equatorial region of Africa (i.e., the Congo basin) based on GRACE-derived TWS, river discharge, and precipitation. Results of the CCA diagnostics show that El-Niño Southern Oscillation related equatorial Pacific SST fluctuations is a major index of climate variability identified in the main portion of the CCA procedure that indicates a significant association with long term TWS reanalysis data over TWA (r = 0.50, ρ < 0.05). Based on Mann-Kendall's statistics, the study found fairly large long term declines (ρ < 0.05) in TWS and soil moisture (1982 - 2015), mostly over the Congo basin, which coincided with warming of the land surface and the surrounding oceans. Meanwhile, some parts of the Sahel show significant wetting (rainfall, soil moisture, groundwater, and TWS) trends during the same period (1982-2015) and aligns with the ongoing narratives of rainfall recovery in the region. Results of singular spectral analysis and regression confirm that multi-annual changes in the Congo River discharge explained a considerable proportion of variability in GRACE-hydrological signal over the Congo basin (r = 0.86 and R2 = 0.70, ρ < 0.05). Finally, leading

  18. Use of agent-based modelling in emergency management under a range of flood hazards

    Directory of Open Access Journals (Sweden)

    Tagg Andrew

    2016-01-01

    Full Text Available The Life Safety Model (LSM was developed some 15 years ago, originally for dam break assessments and for informing reservoir evacuation and emergency plans. Alongside other technological developments, the model has evolved into a very useful agent-based tool, with many applications for a range of hazards and receptor behaviour. HR Wallingford became involved in its use in 2006, and is now responsible for its technical development and commercialisation. Over the past 10 years the model has been applied to a range of flood hazards, including coastal surge, river flood, dam failure and tsunami, and has been verified against historical events. Commercial software licences are being used in Canada, Italy, Malaysia and Australia. A core group of LSM users and analysts has been specifying and delivering a programme of model enhancements. These include improvements to traffic behaviour at intersections, new algorithms for sheltering in high-rise buildings, and the addition of monitoring points to allow detailed analysis of vehicle and pedestrian movement. Following user feedback, the ability of LSM to handle large model ‘worlds’ and hydrodynamic meshes has been improved. Recent developments include new documentation, performance enhancements, better logging of run-time events and bug fixes. This paper describes some of the recent developments and summarises some of the case study applications, including dam failure analysis in Japan and mass evacuation simulation in England.

  19. Exploring hydro-meteorological drought patterns over the Greater Horn of Africa (1979-2014) using remote sensing and reanalysis products

    Science.gov (United States)

    Awange, J. L.; Khandu; Schumacher, M.; Forootan, E.; Heck, B.

    2016-08-01

    Spatio-temporal patterns of hydrological droughts over the Greater Horn of Africa (GHA) are explored based on total water storage (TWS) changes derived from time-variable gravity field solutions of Gravity Recovery And Climate Experiment (GRACE, 2002-2014), together with those simulated by Modern Retrospective Analysis for Research Application (MERRA, 1980-2014). These hydrological extremes are then related to meteorological drought events estimated from observed monthly precipitation products of Global Precipitation Climatology Center (GPCC, 1979-2010) and Tropical Rainfall Measuring Mission (TRMM, 1998-2014). The major focus of this contribution lies on the application of spatial Independent Component Analysis (sICA) to extract distinguished regions with similar rainfall and TWS with similar overall trend and seasonality. Rainfall and TWS are used to estimate Standard Precipitation Indices (SPIs) and Total Storage Deficit Indices (TSDIs), respectively that are employed to characterize frequency and intensity of hydro-meteorological droughts over GHA. Significant positive (negative) changes in monthly rainfall over Ethiopia (Sudan) between 2002 and 2010 leading to a significant increase in TWS over the central GHA region were noted in both MERRA and GRACE TWS (2002-2014). However, these trends were completely reversed in the long-term (1980-2010) records of rainfall (GPCC) and TWS (MERRA). The four independent hydrological sub-regions extracted based on the sICA (i.e., Lake Victoria Basin, Ethiopia-Sudanese border, South Sudan, and Tanzania) indicated fairly distinct temporal patterns that matched reasonably well between precipitation and TWS changes. While meteorological droughts were found to be consistent with most previous studies in all sub-regions, their impacts are clearly observed in the TWS changes resulting in multiple years of extreme hydrological droughts. Correlations between SPI and TSDI were found to be significant over Lake Victoria Basin, South

  20. Human impacts of hydrometeorological extremes in the Bohemian-Moravian Highlands derived from documentary sources in the 18th-19th centuries

    Science.gov (United States)

    Dolák, Lukáš; Brázdil, Rudolf; Valášek, Hubert

    2014-05-01

    The extent of damage caused by hydrometeorological events or extremes (HME) has risen up in the entire world in the last few years. Especially the floods, flash floods, torrential rains and hailstorms are the most typical and one of the most frequent kind of natural disasters in the central Europe. Catastrophes are a part of human history and people were forced to cope with their consequences (e. g. material damage, economical losses, impacts on agriculture and society or losses of human lives). This paper analyses the human impacts of HME in the Bohemian-Moravian Highlands (central part of the Czech Republic) on the basis of documentary sources from the 18th-19th centuries. The paper presents various negative impacts of natural disasters on lives and property and subsequent inconveniences of Czech peasants. The preserved archival documents of estates or domains became the primary sources of data (e. g. taxation reliefs, damaged records, reports of afflicted farmers, administrative correspondence etc.). Particularly taxation reliefs relate to taxation system in the Czech lands during the 17th-19th centuries allowing to farmers to ask for tax alleviation when their crops were significantly damaged by any HME. These archival documents are a highly valuable source for the study of human impacts of natural disasters. Devastating consequences of these extremes affected individual farmers much more than the aristocracy. Floods caused inundations of farmer's fields, meadows, houses and farm buildings, washed away the arable land with crops, caused losses of cattle, clogged the land with gravel and mud and destroyed roads, bridges or agricultural equipment. Afflicted fields became worthless and it took them many years to become became fertile again. Crop was also damaged by hailstorms, droughts or late/early frosts. All these events led to lack of food and seeds in the following year and it meant the decrease of living standard, misery and poverty of farmers. Acquired

  1. Decays of open charmed mesons in the extended Linear Sigma Model

    Directory of Open Access Journals (Sweden)

    Eshraim Walaa I.

    2014-01-01

    Full Text Available We enlarge the so-called extended linear Sigma model (eLSM by including the charm quark according to the global U(4r × U(4l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark appear.We compute the (OZI dominant strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.

  2. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter

    2011-01-01

    reservoir level variation. Because of its easy accessibility and immediate availability, radar altimetry lends itself to being used in real-time hydrological applications. As an impartial source of information about the hydrological system that can be updated in real time, the modeling approach described......Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote...... and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time radar altimetry measurements over reservoirs. We present a lumped, conceptual, river basin water balance modeling...

  3. On the potential application of land surface models for drought monitoring in China

    Science.gov (United States)

    Zhang, Liang; Zhang, Huqiang; Zhang, Qiang; Li, Yaohui; Zhao, Jianhua

    2017-05-01

    The potential of using land surface models (LSMs) to monitor near-real-time drought has not been fully assessed in China yet. In this study, we analyze the performance of such a system with a land surface model (LSM) named the Australian Community Atmosphere Biosphere Land Exchange model (CABLE). The meteorological forcing datasets based on reanalysis products and corrected by observational data have been extended to near-real time for semi-operational trial. CABLE-simulated soil moisture (SM) anomalies are used to characterize drought spatial and temporal evolutions. One outstanding feature in our analysis is that with the same meteorological data, we have calculated a range of drought indices including Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI). We have assessed the similarity among these indices against observed SM over a number of regions in China. While precipitation is the dominant factor in the drought development, relationships between precipitation, evaporation, and soil moisture anomalies vary significantly under different climate regimes, resulting in different characteristics of droughts in China. The LSM-based trial system is further evaluated for the 1997/1998 drought in northern China and 2009/2010 drought in southwestern China. The system can capture the severities and temporal and spatial evolutions of these drought events well. The advantage of using a LSM-based drought monitoring system is further demonstrated by its potential to monitor other consequences of drought impacts in a more physically consistent manner.

  4. Use of MLCM3 Software for Flash Flood Modeling and Forecasting

    Directory of Open Access Journals (Sweden)

    Inna Pivovarova

    2018-01-01

    Full Text Available Accurate and timely flash floods forecasting, especially, in ungauged and poorly gauged basins, is one of the most important and challenging problems to be solved by the international hydrological community. In changing climate and variable anthropogenic impact on river basins, as well as due to low density of surface hydrometeorological network, flash flood forecasting based on “traditional” physically based, or conceptual, or statistical hydrological models often becomes inefficient. Unfortunately, most of river basins in Russia are poorly gauged or ungauged; besides, lack of hydrogeological data is quite typical. However, the developing economy and population safety necessitate issuing warnings based on reliable forecasts. For this purpose, a new hydrological model, MLCM3 (Multi-Layer Conceptual Model, 3 rd generation has been developed in the Russian State Hydrometeorological University. The model showed good results in more than 50 tested basins.

  5. Regional drought assessment using a distributed hydrological model coupled with Standardized Runoff Index

    Directory of Open Access Journals (Sweden)

    H. Shen

    2015-05-01

    Full Text Available Drought assessment is essential for coping with frequent droughts nowadays. Owing to the large spatio-temporal variations in hydrometeorology in most regions in China, it is very necessary to use a physically-based hydrological model to produce rational spatial and temporal distributions of hydro-meteorological variables for drought assessment. In this study, the large-scale distributed hydrological model Variable Infiltration Capacity (VIC was coupled with a modified standardized runoff index (SRI for drought assessment in the Weihe River basin, northwest China. The result indicates that the coupled model is capable of reasonably reproducing the spatial distribution of drought occurrence. It reflected the spatial heterogeneity of regional drought and improved the physical mechanism of SRI. This model also has potential for drought forecasting, early warning and mitigation, given that accurate meteorological forcing data are available.

  6. Assessment of post-fire changes of hydrological regime of watersheds based on the analysis of remote sensing data and standard hydrometeorological observations

    Science.gov (United States)

    Semenova, Olga; Mikheeva, Anna; Nesterova, Natalia; Lebedeva, Luidmila

    2016-04-01

    Forest fires are regular at large territories of Siberia. Fire occurrence is expected to increase in the future due to climate change and anthropogenic influence. Though there are many studies on vegetation and landscapes transformation after fire the analysis of associated hydrological and geomorphologic changes in permafrost environments in Russia are rare. Broadening our previous study on fire impact on hydrology in remote area of the Baikal region (Semenova et al., 2015a, b; Lebedeva et al., 2014) the following objectives for this study were set up: i) describe changes in streamflow after extensive 2003 forest fire in several middle-size river basins in Siberian permafrost zone ii) assess change in sediment flux after the fire in the same catchments iii) attribute found responses to dominating landscapes and the level of vegetation disturbance and other factors, iv) analyze the mechanisms of those changes using the analysis of ground and remote sensing data. Following severe drought 2002-2003 extensive fires occurred in spring and summer of 2003 in the southeast part of Russia when more than 20 million ha were affected by disaster. Vast remote regions in Transbaikal region lack any special observations on fire impact of 2003 on hydrological regime of disturbed areas. Therefore hydrological data on water and suspended sediment flow from standard network of Russian Hydrometeorological Service was used combined with remote sensing data analysis to assess post-fire changes. Six watersheds in the upstreams of the Vitim River located at the Vitim Plateau are chosen for this study. In our analysis we used daily river discharge data for 6 gauges and 10-days average suspended sediment discharge for 3 gauges. Semenova et al. (2015a, b) detected short-term impact of fire on runoff manifested in significant increase (up to 40-50 %) of summer flow after the fire. The analysis of suspended sediment data revealed that the impact of fire on sediment flow regime can be traced

  7. A real time hyperelastic tissue model.

    Science.gov (United States)

    Zhong, Hualiang; Peters, Terry

    2007-06-01

    Real-time soft tissue modeling has a potential application in medical training, procedure planning and image-guided therapy. This paper characterizes the mechanical properties of organ tissue using a hyperelastic material model, an approach which is then incorporated into a real-time finite element framework. While generalizable, in this paper we use the published mechanical properties of pig liver to characterize an example application. Specifically, we calibrate the parameters of an exponential model, with a least-squares method (LSM) using the assumption that the material is isotropic and incompressible in a uniaxial compression test. From the parameters obtained, the stress-strain curves generated from the LSM are compared to those from the corresponding computational model solved by ABAQUS and also to experimental data, resulting in mean errors of 1.9 and 4.8%, respectively, which are considerably better than those obtained when employing the Neo-Hookean model. We demonstrate our approach through the simulation of a biopsy procedure, employing a tetrahedral mesh representation of human liver generated from a CT image. Using the material properties along with the geometric model, we develop a nonlinear finite element framework to simulate the behaviour of liver during an interventional procedure with a real-time performance achieved through the use of an interpolation approach.

  8. Performance Tests of Snow-Related Variables Over the Tibetan Plateau and Himalayas Using a New Version of NASA GEOS-5 Land Surface Model that Includes the Snow Darkening Effect

    Science.gov (United States)

    Yasunari, Tppei J.; Lau, K.-U.; Koster, Randal D.; Suarez, Max; Mahanama, Sarith; Dasilva, Arlindo M.; Colarco, Peter R.

    2011-01-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GO CART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3 ; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [Ion.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1

  9. Understanding Hydroclimatic Extremes in Changing Monsoon Climates with Daily Bias Correction of CMIP5 Regional Climate Models over South Asia

    Science.gov (United States)

    Hasan, M. A.; Islam, A. S.; Akanda, A. S. S.

    2015-12-01

    The assessment of hydroclimatic and hydrometeorological extremes in changing climates has gathered special attention in the latest IPCC 5thAssessment Report (AR5). In monsoon regions such as South Asia, hydrologic modeling (i.e., stream flow assessment, water budget analysis, etc.) needs to incorporate such extremes to simulate retrospective and future scenarios. For information of past and future climate, Regional Climate Models (RCMs) are preferred over global models due to their higher resolution and dynamic downscaling capabilities. Although the models perform well in representing the mean climate, they still possess significant biases, especially in daily hydrometeorological extremes over monsoon regions. Therefore, modification and correction of RCM results while preserving the extremes are crucial for hydrologic modeling in changing monsoon climates such as in South Asia. In this context, we generate a gridded observed product that preserve the hydroclimatic and hydrometeorological extremes for the Ganges-Brahmaputra-Meghna (GBM) basin region in South Asia. A recent approach to bias correction is also proposed for correcting regional climate data in currently available future projections. The 30 year dataset (1971-2010) is used for comparing hydroclimatic and hydrometeorological extremes with APHRODITE and ERA-Interim Reanalysis products. The assessment has revealed that the new gridded data set provides much accurate maximum rainfall intensity, number of dry days, number of wet days and number of rainy days with greater than 500mm rainfall than any other available gridded data products. Using the gridded data sets, bias correctionis applied on CMIP5 multi-model historical datasets to evaluate RCM data performance over the region, which show great improvement in regional climate data for future hydrologic modeling scenarios and analyzing impacts of climate extremes.

  10. Computer modelling of technogenic thermal pollution zones in large water bodies

    Science.gov (United States)

    Parshakova, Ya N.; Lyubimova, T. P.

    2018-01-01

    In the present work, the thermal pollution zones created due to discharge of heated water from thermal power plants are investigated using the example of the Permskaya Thermal Power Plant (Permskaya TPP or Permskaya GRES), which is one of the largest thermal power plants in Europe. The study is performed for different technological and hydrometeorological conditions. Since the vertical temperature distribution in such wastewater reservoirs is highly inhomogeneous, the computations are performed in the framework of 3D model.

  11. Interactive Modelling of Shapes Using the Level-Set Method

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2002-01-01

    In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations that are ......In this paper, we propose a technique for intuitive, interactive modelling of {3D} shapes. The technique is based on the Level-Set Method which has the virtue of easily handling changes to the topology of the represented solid. Furthermore, this method also leads to sculpting operations...... which are suitable for shape modelling are proposed. However, normally these would result in tools that would a ect the entire model. To facilitate local changes to the model, we introduce a windowing scheme which constrains the {LSM} to a ect only a small part of the model. The {LSM} based sculpting...... tools have been incorporated in our sculpting system which also includes facilities for volumetric {CSG} and several techniques for visualization....

  12. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input

  13. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input

  14. The use of radar in hydrological modeling in the Czech Republic – case studies of flash floods

    Directory of Open Access Journals (Sweden)

    M. Šálek

    2006-01-01

    Full Text Available Flash flood induced by severe convection is the hydrometeorological phenomenon that is very difficult to forecast. However, the implementation of radar measurements, especially radar-based Quantitative Precipitation Estimate (QPE and/or radar-based quantitative Precipitation Nowcast (QPN can improve this situation. If the radar is able to capture the development of severe convection and can produce reasonably accurate QPE in short time intervals (e.g. 10 min, then it can be used also with hydrological model. A hydrological model named Hydrog was used for investigation of simulation and possible forecasts of two flash floods that took place in the Czech Republic in 2002 and 2003. The precipitation input consisted of mean-field-bias-adjusted or original radar 10-min estimates along with quantitative precipitation nowcasts up to 2 h based on COTREC method (extrapolation. Taking into account all the limited predictability of the severe convection development and the errors of the radar-based precipitation estimates, the aim of the simulations was to find out to what extend the hydrometeorological prediction system, specifically tuned for these events, was able to forecast a the flash floods. As assumed, the hydrometeorological simulations of the streamflow forecasts lagged behind the actual development but there is still some potential for successful warning, especially for areas where the flood hits lately.

  15. Use of Geostationary Satellite Data to Force Land Surface Schemes within Atmospheric Mesoscale Models

    Science.gov (United States)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott R.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The technique has been employed on a semi-operational basis at the GHCC within the PSU/NCAR MM5. Assimilation has been performed on a grid centered over the Southeastern US since November 1998. Results from the past year show that assimilation of the satellite data reduces both the bias and RMSE for simulations of surface air temperature and relative humidity. These findings are based on comparison of assimilation runs with a control using the simple 5-layer soil model available in MM5. A significant development in the past several months was the inclusion of the detailed Oregon State University land surface model (OSU/LSM) as an option within MM5. One of our working hypotheses has been that the assimilation technique, although simple, may provide better short-term forecasts than a detailed LSM that requires significant number initialized parameters. Preliminary results indicate that the assimilation out performs the OSU/LSM

  16. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  17. Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of hydrometeorological extremes over East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; Roberts, Jason B.; Hoell. Andrew,; Funk, Chris; Robertson, Franklin R.; Kirtmann, Benjamin

    2016-01-01

    The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food and water insecure areas of the world, is evaluated using deterministic, categorical, and probabilistic evaluation methods. The skill is estimated for all three primary growing seasons: March–May (MAM), July–September (JAS), and October–December (OND). It is found that the precipitation forecast skill in this region is generally limited and statistically significant over only a small part of the domain. In the case of MAM (JAS) [OND] season it exceeds the skill of climatological forecasts in parts of equatorial EA (Northern Ethiopia) [equatorial EA] for up to 2 (5) [5] months lead. Temperature forecast skill is generally much higher than precipitation forecast skill (in terms of deterministic and probabilistic skill scores) and statistically significant over a majority of the region. Over the region as a whole, temperature forecasts also exhibit greater reliability than the precipitation forecasts. The NMME ensemble forecasts are found to be more skillful and reliable than the forecast from any individual model. The results also demonstrate that for some seasons (e.g. JAS), the predictability of precipitation signals varies and is higher during certain climate events (e.g. ENSO). Finally, potential room for improvement in forecast skill is identified in some models by comparing homogeneous predictability in individual NMME models with their respective forecast skill.

  18. Land surface model evaluation using a new soil moisture dataset from Kamennaya Steppe, Russia

    Science.gov (United States)

    Atkins, T.; Robock, A.; Speranskaya, N.

    2004-12-01

    The land surface affects the atmosphere through the transfer of energy and moisture and serves as the lower boundary in numerical weather prediction and climate models. To obtain good forecasts, these models must therefore accurately portray the land surface. Actual in situ measurements are vital for testing and developing these models. It is with this in mind that we have obtained a dataset of soil moisture, soil temperature and meteorological measurements from Kamennaya Steppe, Russia. The meteorological dataset spans the time period 1965-1991, while the soil moisture dataset runs from 1956-1991. The soil moisture dataset contains gravimetric volumetric total soil moisture measurements for 10 layers taken from forest, agricultural and grassland soils. The meteorological dataset contains 3-hourly measurements of precipitation, temperature, wind speed, pressure and relative humidity. We obtained longwave and shortwave radiation data from standard formulae. The data will be made available to the public via the Rutgers University Center for Environmental Prediction Global Soil Moisture Data Bank. Soil temperature is important in determining the timing, duration and intensity of runoff and snowmelt, particularly at the beginning and end of the winter when the ground is only partially frozen. Soil temperature can in turn be affected by the vertical distribution of roots. The soil temperature data are for 1969-1991. The data are daily averaged for every 20 cm to 1.2 meters in depth. These data are used to investigate the natural sensitivity of soil temperature to vegetation type and root distribution. We also use the temperature data, as well as water balance and snowfall data to test the sensitivity of the Noah land surface model (LSM) soil temperature to vertical root distribution, and what effect that has on the hydrology of the site. In addition to soil temperature data, we also have soil moisture data for several vegetation types. We compare the soil moisture time

  19. A critical assessment of the JULES land surface model hydrology for humid tropical environments

    Science.gov (United States)

    Zulkafli, Z.; Buytaert, W.; Onof, C.; Lavado, W.; Guyot, J. L.

    2013-03-01

    Global land surface models (LSMs) such as the Joint UK Land Environment Simulator (JULES) are originally developed to provide surface boundary conditions for climate models. They are increasingly used for hydrological simulation, for instance to simulate the impacts of land use changes and other perturbations on the water cycle. This study investigates how well such models represent the major hydrological fluxes at the relevant spatial and temporal scales - an important question for reliable model applications in poorly understood, data-scarce environments. The JULES-LSM is implemented in a 360 000 km2 humid tropical mountain basin of the Peruvian Andes-Amazon at 12-km grid resolution, forced with daily satellite and climate reanalysis data. The simulations are evaluated using conventional discharge-based evaluation methods, and by further comparing the magnitude and internal variability of the basin surface fluxes such as evapotranspiration, throughfall, and surface and subsurface runoff of the model with those observed in similar environments elsewhere. We find reasonably positive model efficiencies and high correlations between the simulated and observed streamflows, but high root-mean-square errors affecting the performance in smaller, upper sub-basins. We attribute this to errors in the water balance and JULES-LSM's inability to model baseflow. We also found a tendency to under-represent the high evapotranspiration rates of the region. We conclude that strategies to improve the representation of tropical systems to be (1) addressing errors in the forcing and (2) incorporating local wetland and regional floodplain in the subsurface representation.

  20. A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model

    Directory of Open Access Journals (Sweden)

    F. Hossain

    2004-01-01

    Full Text Available This study presents a simple and efficient scheme for Bayesian estimation of uncertainty in soil moisture simulation by a Land Surface Model (LSM. The scheme is assessed within a Monte Carlo (MC simulation framework based on the Generalized Likelihood Uncertainty Estimation (GLUE methodology. A primary limitation of using the GLUE method is the prohibitive computational burden imposed by uniform random sampling of the model's parameter distributions. Sampling is improved in the proposed scheme by stochastic modeling of the parameters' response surface that recognizes the non-linear deterministic behavior between soil moisture and land surface parameters. Uncertainty in soil moisture simulation (model output is approximated through a Hermite polynomial chaos expansion of normal random variables that represent the model's parameter (model input uncertainty. The unknown coefficients of the polynomial are calculated using limited number of model simulation runs. The calibrated polynomial is then used as a fast-running proxy to the slower-running LSM to predict the degree of representativeness of a randomly sampled model parameter set. An evaluation of the scheme's efficiency in sampling is made through comparison with the fully random MC sampling (the norm for GLUE and the nearest-neighborhood sampling technique. The scheme was able to reduce computational burden of random MC sampling for GLUE in the ranges of 10%-70%. The scheme was also found to be about 10% more efficient than the nearest-neighborhood sampling method in predicting a sampled parameter set's degree of representativeness. The GLUE based on the proposed sampling scheme did not alter the essential features of the uncertainty structure in soil moisture simulation. The scheme can potentially make GLUE uncertainty estimation for any LSM more efficient as it does not impose any additional structural or distributional assumptions.

  1. Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2012-01-01

    Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...... interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...

  2. Approximating a retarded-advanced differential equation that models human phonation

    Science.gov (United States)

    Teodoro, M. Filomena

    2017-11-01

    In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.

  3. An evaluation of interface capturing methods in a VOF based model for multiphase flow of a non-Newtonian ceramic in tape casting

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper Henri

    2014-01-01

    The aim of the present study is to evaluate the different interface capturing methods as well as to find the best approach for flow modeling of the ceramic slurry in the tape casting process. The conventional volume of fluid (VOF) method with three different interpolation methods for interface ca...... it is used to investigate the flow of a La0.85Sr0.15MnO3 (LSM) ceramic slurry modeled with the Ostwald de Waele power law. Results of the modeling are compared with corresponding experimental data and good agreement is found. © 2013 Elsevier Inc. All rights reserved....

  4. KydroSAT: a Ku/Ka band synthetic aperture radar space mission concept for high-resolution mapping of hydrometeorological parameters

    Science.gov (United States)

    Mori, Saverio; Marzano, Frank S.; Pierdicca, Nazzareno; Bombaci, Ornella; Giancristofaro, Domenico; Macelloni, Giovanni; Lemmetyinem, Juha; Giudici, Davide; Poghosyan, Armen

    2017-10-01

    Spaceborne X-band synthetic aperture radars (SARs) represent a well-established tool for Earth remote sensing at very high spatial resolution (order of meters). Until now, SAR has not been exploited for hydrological cycle modelling and numerical weather forecast, however, there are scientific evidences that at X band and beyond: i) atmospheric precipitation in liquid and ice phase affect SAR imagery and its intensity can be retrieved, ii) snow areal extent and mass (water-equivalent) can be detected and estimated. KydroSAT mission concept foresees a miniaturised fully-digital SAR at Ku and Ka band (KydroSAR), specifically devoted to detecting and estimating atmospheric precipitation and surface snow; its baseline includes dual-polarization capability, high orbit duty cycle (>75%), flexible ground resolution (5-150 m), and a large variable swath (50-150 km), doubled with formation of two minisatellites both carrying a KydroSAR. Moreover, the mission concept foresees the along-track convoy with the COSMO-SkyMed and SAOCOM SAR platforms, allowing the observation of the same scene at L, X, Ku and Ka bands. The challenging requirements of this architecture require the development of new technologies such as Digital Beam Forming and Direct Digital to RF Conversion. In order to exploit the synergic approach of the KydroSAT convoy for precipitation, in this work we will simulate and discuss the SAR response at X, Ku and Ka bands of the same scene, using the SAR forward model described in Mori et al. (2017). Subsequently, an example retrieval of Snow Equivalent Water (SWE) by Ku-SAR will be given.

  5. Elaboration, characterisation and modelling of screen-printed La0.8Sr0.2MnO{sub 3} cathodes for Solid Oxide Fuel Cell; Elaboration, caracterisation et modelisation de cathode serigraphiee, La0.8Sr0.2MnO3, pour pile a combustible SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Caillol, N.

    2006-03-15

    The properties of LSM screen-printed cathodes on YSZ electrolytes and the modelling of oxygen reduction have been studied. A bibliographic review of published works on LSM and LSM/YSZ interface reveals the lack of consensus over the mechanism proposed between oxygen and LSM. The different theoretic models possible and their associated kinetic laws are presented to serve as the basis for the kinetic modelling. Microstructural characterizations proved the adaptability of the screen-printing technique for making electrodes. The layers are stable in time and well reproducible. Their microstructure is homogenous and regular with a porosity of 0.6. Physico-chemical characterizations were carried out. Infra-red spectrometry analysis and thermo-programmed desorption have shown the existence of different kinds of oxygen-adsorbed species on LSM powder. A calorimetric study has revealed a change in the quantity of heat released during oxygen adsorption as a function of temperature. By XPS analysis on screen-printed layers, important strontium segregation was observed depending on pressure, temperature and polarisation conditions. From electrochemical characterizations made by impedance spectroscopy, three resistive contributions have been identified. Only the low frequency contribution, which is the only pressure sensitive contribution, was considered to correspond to an electrode phenomenon. Following a methodical study of the different modelling hypothesis, a mechanism for the cathodic reaction was obtained. The proposed model is complex. It is composed of three conductivity paths running in parallel (two surface paths and one bulk path). These paths involve two different oxygen species and their preponderance depends on pressure, temperature and polarisation conditions. A study of water vapour influence completes this work, to understand its impact on the cathode electrical performance. The benefits brought by water vapour are not linked to a direct catalytic effect, as it

  6. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau

    Science.gov (United States)

    Gao, Yanhong; Li, Kai; Chen, Fei; Jiang, Yingsha; Lu, Chungu

    2015-09-01

    The Tibetan Plateau (TP) region experiences strong land-atmosphere interactions, and as an elevated heating source, significantly influences the formation of the Asian monsoon. Those interactions are not well represented in current land-surface models (LSMs), partly due to difficulties in representing heterogeneities in soil structures in LSM. Simulations using the Noah with multiparameterization options (Noah-MP) LSM are employed to assess the relative importance of parameterizing vertical soil heterogeneity, organic matter, and soil rhizosphere and their impacts on seasonal evolution of soil temperature, soil moisture, and surface energy and water budgets at the sparsely vegetated Amdo site located in central TP. The LSM spin-up time at the central TP depends on the complexity of the model physics, ranging from 4 years with simplest soil physics to 30 years with the addition of organic matter and spare to dense rhizosphere parameterization in Noah-MP. Representing layered soil texture and organic matter does not improve low biases in topsoil moisture. Reducing the saturated conductivity from the mucilage in the rhizosphere produces better results. Surface sensible and latent heat fluxes are better simulated in the monsoon season as well. Adding layered soil texture and organic matter in Noah-MP retard the thawing in deep soil layers, and the rhizosphere effect delays thawing even more in the transient season. Uncertainties in soil initialization significantly affect deep-soil temperature and moisture, but uncertainties in atmospheric forcing conditions mainly affect topsoil variables and consequently the surface energy fluxes. Differing land-surface physics cause 36% uncertainty in the accumulated evapotranspiration and subsurface runoff.

  7. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China

    Science.gov (United States)

    Zhou, Chao; Yin, Kunlong; Cao, Ying; Ahmed, Bayes; Li, Yuanyao; Catani, Filippo; Pourghasemi, Hamid Reza

    2018-03-01

    Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps were prepared initially, and the relationship between these factors and each landslide type was analyzed using the information value model. Later, the unimportant factors were selected and eliminated using the information gain ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling (LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the separated modeling of each landslide type have significantly increased the prediction accuracy. The machine learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study area.

  8. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2013-05-01

    Full Text Available Most land surface hydrological models (LSHMs consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2 and the atmospheric part of the RCM MM5 (45 × 45 km2. The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both

  9. Drought modeling - A review

    Science.gov (United States)

    Mishra, Ashok K.; Singh, Vijay P.

    2011-06-01

    SummaryIn recent years droughts have been occurring frequently, and their impacts are being aggravated by the rise in water demand and the variability in hydro-meteorological variables due to climate change. As a result, drought hydrology has been receiving much attention. A variety of concepts have been applied to modeling droughts, ranging from simplistic approaches to more complex models. It is important to understand different modeling approaches as well as their advantages and limitations. This paper, supplementing the previous paper ( Mishra and Singh, 2010) where different concepts of droughts were highlighted, reviews different methodologies used for drought modeling, which include drought forecasting, probability based modeling, spatio-temporal analysis, use of Global Climate Models (GCMs) for drought scenarios, land data assimilation systems for drought modeling, and drought planning. It is found that there have been significant improvements in modeling droughts over the past three decades. Hybrid models, incorporating large scale climate indices, seem to be promising for long lead-time drought forecasting. Further research is needed to understand the spatio-temporal complexity of droughts under climate change due to changes in spatio-temporal variability of precipitation. Applications of copula based models for multivariate drought characterization seem to be promising for better drought characterization. Research on decision support systems should be advanced for issuing warnings, assessing risk, and taking precautionary measures, and the effective ways for the flow of information from decision makers to users need to be developed. Finally, some remarks are made regarding the future outlook for drought research.

  10. Advances in land modeling of KIAPS based on the Noah Land Surface Model

    Science.gov (United States)

    Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi

    2017-08-01

    As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.

  11. Modeling degradation in SOEC impedance spectra

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Knibbe, Ruth

    2013-01-01

    Solid oxide cell (SOC) performance is limited by various processes. One way to investigate these processes is by electrochemical impedance spectroscopy. In order to quantify and characterize the processes, an equivalent circuit can be used to model the SOC impedance spectra (IS). Unfortunately......, the optimal equivalent circuit is often unknown and to complicate matters further, several processes contribute to the SOC impedance - making detailed process characterization difficult. In this work we analyze and model a series of IS measured during steam electrolysis operation of an SOC. During testing......, degradation is only observed in the Ni/YSZ electrode and not in the electrolyte or the LSM/YSZ electrode. A batch fit of the differences between the IS shows that a modified Gerischer element provides a better fit to the Ni/YSZ electrode impedance than the frequently used RQ element - albeit neither...

  12. Performance tests of snow-related variables over the Tibetan Plateau and Himalayas using a new version of NASA GEOS-5 land surface model that includes the snow darkening effect

    Science.gov (United States)

    Yasunari, T. J.; Lau, W. K.; Koster, R. D.; Suarez, M.; Mahanama, S. P.; da Silva, A.; Colarco, P. R.

    2011-12-01

    The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [lon.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1) was

  13. Integrating a Linear Signal Model with Groundwater and Rainfall time-series on the Characteristic Identification of Groundwater Systems

    Science.gov (United States)

    Chen, Yu-Wen; Wang, Yetmen; Chang, Liang-Cheng

    2017-04-01

    Groundwater resources play a vital role on regional supply. To avoid irreversible environmental impact such as land subsidence, the characteristic identification of groundwater system is crucial before sustainable management of groundwater resource. This study proposes a signal process approach to identify the character of groundwater systems based on long-time hydrologic observations include groundwater level and rainfall. The study process contains two steps. First, a linear signal model (LSM) is constructed and calibrated to simulate the variation of underground hydrology based on the time series of groundwater levels and rainfall. The mass balance equation of the proposed LSM contains three major terms contain net rate of horizontal exchange, rate of rainfall recharge and rate of pumpage and four parameters are required to calibrate. Because reliable records of pumpage is rare, the time-variant groundwater amplitudes of daily frequency (P ) calculated by STFT are assumed as linear indicators of puamage instead of pumpage records. Time series obtained from 39 observation wells and 50 rainfall stations in and around the study area, Pintung Plain, are paired for model construction. Second, the well-calibrated parameters of the linear signal model can be used to interpret the characteristic of groundwater system. For example, the rainfall recharge coefficient (γ) means the transform ratio between rainfall intention and groundwater level raise. The area around the observation well with higher γ means that the saturated zone here is easily affected by rainfall events and the material of unsaturated zone might be gravel or coarse sand with high infiltration ratio. Considering the spatial distribution of γ, the values of γ decrease from the upstream to the downstream of major rivers and also are correlated to the spatial distribution of grain size of surface soil. Via the time-series of groundwater levels and rainfall, the well-calibrated parameters of LSM have

  14. Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam

    DEFF Research Database (Denmark)

    Ngo, Long le; Madsen, Henrik; Rosbjerg, Dan

    2007-01-01

    . This paper proposes to optimise the control strategies for the Hoa Binh reservoir operation by applying a combination of simulation and optimisation models. The control strategies are set up in the MIKE 11 simulation model to guide the releases of the reservoir system according to the current storage level......, the hydro-meteorological conditions, and the time of the year. A heuristic global optimisation tool, the shuffled complex evolution (SCE) algorithm, is adopted for optimising the reservoir operation. The optimisation puts focus on the trade-off between flood control and hydropower generation for the Hoa...

  15. A multivariate conditional model for streamflow prediction and spatial precipitation refinement

    Science.gov (United States)

    Liu, Zhiyong; Zhou, Ping; Chen, Xiuzhi; Guan, Yinghui

    2015-10-01

    The effective prediction and estimation of hydrometeorological variables are important for water resources planning and management. In this study, we propose a multivariate conditional model for streamflow prediction and the refinement of spatial precipitation estimates. This model consists of high dimensional vine copulas, conditional bivariate copula simulations, and a quantile-copula function. The vine copula is employed because of its flexibility in modeling the high dimensional joint distribution of multivariate data by building a hierarchy of conditional bivariate copulas. We investigate two cases to evaluate the performance and applicability of the proposed approach. In the first case, we generate one month ahead streamflow forecasts that incorporate multiple predictors including antecedent precipitation and streamflow records in a basin located in South China. The prediction accuracy of the vine-based model is compared with that of traditional data-driven models such as the support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS). The results indicate that the proposed model produces more skillful forecasts than SVR and ANFIS. Moreover, this probabilistic model yields additional information concerning the predictive uncertainty. The second case involves refining spatial precipitation estimates derived from the tropical rainfall measuring mission precipitationproduct for the Yangtze River basin by incorporating remotely sensed soil moisture data and the observed precipitation from meteorological gauges over the basin. The validation results indicate that the proposed model successfully refines the spatial precipitation estimates. Although this model is tested for specific cases, it can be extended to other hydrometeorological variables for predictions and spatial estimations.

  16. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    Science.gov (United States)

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  18. Data Management needs in Hydrometeorological Institutes

    Science.gov (United States)

    Roschier, T.; Eriksson, P.

    2009-09-01

    Impacts of weather to the societies are growing due Climate Change. Also Societal Infrastructure is getting more vulnerable to weather. Therefore it is needed to improve weather services. The services itself must be easier to use and have more information, but it is important to have more accurate forecasts. When the forecasting time step is getting shorter and as well the forecasting grid denser, it is needed to have more observations with shorter time interval. When the observation data amount is growing, it is needed to have data management to take care of securing quality and archiving the data as well maintaining the observation networks. The use of the observation data can be divided into two categories: operational and climatolo0gical use. For operational use the latency (collecting data from station to the database and ready to use) is the most critical value, for example in Flash Flood cases. Another important issue is to have Real-Time Quality Control to get rid off false information from broken sensors. For climatological usage the quality and consistency of the data are the most important values. For both uses the reliability of the data flow from station to database is highly important. There are many tools and ways how to solve data management issues, so this study tries to draw the overall picture of the data management challenges and give general requirements and suggestions how to handle the issue.

  19. Analysis of Nigerian Hydrometeorological Data | Dike | Nigerian ...

    African Journals Online (AJOL)

    Missing records were determined by the mass curve analysis for rainfall and regression analysis for runoff involving runoff data at neighbouring site. Tests on time homogeneity, showed that the annual rainfall records at Port Harcourt, Enugu and Lokoja were stationary and random, the annual runoff records of River Niger at ...

  20. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques.

    Science.gov (United States)

    Choubin, Bahram; Darabi, Hamid; Rahmati, Omid; Sajedi-Hosseini, Farzaneh; Kløve, Bjørn

    2018-02-15

    Suspended sediment load (SSL) modelling is an important issue in integrated environmental and water resources management, as sediment affects water quality and aquatic habitats. Although classification and regression tree (CART) algorithms have been applied successfully to ecological and geomorphological modelling, their applicability to SSL estimation in rivers has not yet been investigated. In this study, we evaluated use of a CART model to estimate SSL based on hydro-meteorological data. We also compared the accuracy of the CART model with that of the four most commonly used models for time series modelling of SSL, i.e. adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron (MLP) neural network and two kernels of support vector machines (RBF-SVM and P-SVM). The models were calibrated using river discharge, stage, rainfall and monthly SSL data for the Kareh-Sang River gauging station in the Haraz watershed in northern Iran, where sediment transport is a considerable issue. In addition, different combinations of input data with various time lags were explored to estimate SSL. The best input combination was identified through trial and error, percent bias (PBIAS), Taylor diagrams and violin plots for each model. For evaluating the capability of the models, different statistics such as Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE) and percent bias (PBIAS) were used. The results showed that the CART model performed best in predicting SSL (NSE=0.77, KGE=0.8, PBIAS<±15), followed by RBF-SVM (NSE=0.68, KGE=0.72, PBIAS<±15). Thus the CART model can be a helpful tool in basins where hydro-meteorological data are readily available. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  2. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  3. Impact of Land Surface and Forcing Parameters on the Spin-up Behaviour of Noah Land Surface Model over the Indian Sub-Continent

    Science.gov (United States)

    Bhattacharya, A.; Satyanarayana, A. N. V.; Mandal, M.

    2018-01-01

    In the present study, an attempt is made to understand the influence of land surface parameters (such as soil moisture conditions, soil type and vegetation type) and forcing parameters on the model spin-up behaviour of a land surface model (LSM), namely Noah LSM, over the Indian sub-continent. The work presented here primarily aims to understand the optimum initial conditions to achieve the least spin-up time over the subtropical conditions that exist over the region of interest. The study is presented in three major parts. In the first part, a multivariate statistical analysis, namely principle component analysis is employed to investigate how parameters such as precipitation, air temperature, soil moisture, radiation components as well as various parameters that characterize soil and vegetation types influence the model spin-up. The second part deals with the study of the impact of soil and vegetation parameters in different seasons on the model spin-up behaviour. Finally, the third part looks into the influence of initial soil moisture condition and precipitation forcing on the spin-up behaviour of the model in different seasons to obtain the optimum initial conditions for the minimum spin-up time of the model. From the study, it is seen that the soil and vegetation type, as well as the soil moisture content influence the model spin-up significantly. The present study reports that the experiments initialized just before a continuous rainfall event has the least spin-up unless the initial soil is saturated.

  4. Toward a space-time scale framework for the study of everyday life activity's adaptation to hazardous hydro-meteorological conditions: Learning from the June 15th, 2010 flash flood event in Draguignan (France)

    Science.gov (United States)

    Ruin, Isabelle; Boudevillain, Brice; Creutin, Jean-Dominique; Lutoff, Céline

    2013-04-01

    environmental perturbations requires an integrated approach, sensitive to the spatial and temporal dynamics of geophysical hazards and responses to them. Such integrated approaches of the Coupled Human and Natural System have been more common in the environmental change arena than in risk studies. Nevertheless, examining interactions between routine activity-travel patterns and hydro-meteorological dynamics in the context of flash flood event resulted in developing a space-time scale approach that brought new insights to vulnerability and risk studies. This scaling approach requires suitable data sets including information about the meteorological and local flooding dynamics, the perception of environmental cues, the changes in individuals' activity-travel patterns and the social interactions at the place and time where the actions were performed. Even if these types of data are commonly collected in various disciplinary research contexts, they are seldom collected all together and in the context of post-disaster studies. This paper describes the methodological developments of our approach and applies our data collection method to the case of the June 15th, 2010 flash flood events in the Draguignan area (Var, France). This flash flood event offers a typical example to study the relation between the flood dynamics and the social response in the context of a sudden degradation of the environment.

  5. Significance of predictive models/risk calculators for HBV-related hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DONG Jing

    2015-06-01

    Full Text Available Hepatitis B virus (HBV-related hepatocellular carcinoma (HCC is a major public health problem in Southeast Asia. In recent years, researchers from Hong Kong and Taiwan have reported predictive models or risk calculators for HBV-associated HCC by studying its natural history, which, to some extent, predicts the possibility of HCC development. Generally, risk factors of each model involve age, sex, HBV DNA level, and liver cirrhosis. This article discusses the evolution and clinical significance of currently used predictive models for HBV-associated HCC and assesses the advantages and limits of risk calculators. Updated REACH-B model and LSM-HCC model show better negative predictive values and have better performance in predicting the outcomes of patients with chronic hepatitis B (CHB. These models can be applied to stratified screening of HCC and, meanwhile, become an assessment tool for the management of CHB patients.

  6. Science-Grade Observing Systems as Process Observatories: Mapping and Understanding Nonlinearity and Multiscale Memory with Models and Observations

    Science.gov (United States)

    Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.

    2015-12-01

    Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.

  7. What model resolution is required in climatological downscaling over complex terrain?

    Science.gov (United States)

    El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem

    2018-05-01

    This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.

  8. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel

    2017-01-01

    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  9. Expansion of the Real-Time SPoRT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    Science.gov (United States)

    Case, Jonathan L; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.

  10. Real-time remote sensing driven river basin modeling using radar altimetry

    Directory of Open Access Journals (Sweden)

    S. J. Pereira-Cardenal

    2011-01-01

    Full Text Available Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models.

    In this study, we evaluate the potential of informing a river basin model with real-time radar altimetry measurements over reservoirs. We present a lumped, conceptual, river basin water balance modeling approach based entirely on RS and reanalysis data: precipitation was obtained from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA, temperature from the European Centre for Medium-Range Weather Forecast's (ECMWF Operational Surface Analysis dataset and reference evapotranspiration was derived from temperature data. The Ensemble Kalman Filter was used to assimilate radar altimetry (ERS2 and Envisat measurements of reservoir water levels. The modeling approach was applied to the Syr Darya River Basin, a snowmelt-dominated basin with large topographical variability, several large reservoirs and scarce hydrometeorological data that is located in Central Asia and shared between 4 countries with conflicting water management interests.

    The modeling approach was tested over a historical period for which in-situ reservoir water levels were available. Assimilation of radar altimetry data significantly improved the performance of the hydrological model. Without assimilation of radar altimetry data, model performance was limited, probably because of the size and complexity of the model domain, simplifications inherent in model design, and the uncertainty of RS and reanalysis data. Altimetry data assimilation reduced the mean absolute error of the simulated reservoir water levels from 4.7 to 1.9 m, and

  11. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    Science.gov (United States)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  12. Validating modeled soil moisture with in-situ data for agricultural drought monitoring in West Africa

    Science.gov (United States)

    McNally, A.; Yatheendradas, S.; Jayanthi, H.; Funk, C. C.; Peters-Lidard, C. D.

    2011-12-01

    The declaration of famine in Somalia on July 21, 2011 highlights the need for regional hydroclimate analysis at a scale that is relevant for agropastoral drought monitoring. A particularly critical and robust component of such a drought monitoring system is a land surface model (LSM). We are currently enhancing the Famine Early Warning Systems Network (FEWS NET) monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System (FLDAS). Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following question: How can Noah be best parameterized to accurately simulate hydroclimate variables associated with crop performance? Parameter value testing and validation is done by comparing modeled soil moisture against fortuitously available in-situ soil moisture observations in the West Africa. Direct testing and application of the FLDAS over African agropastoral locations is subject to some issues: [1] In many regions that are vulnerable to food insecurity ground based measurements of precipitation, evapotranspiration and soil moisture are sparse or non-existent, [2] standard landcover classes (e.g., the University of Maryland 5 km dataset), do not include representations of specific agricultural crops with relevant parameter values, and phenologies representing their growth stages from the planting date and [3] physically based land surface models and remote sensing rain data might still need to be calibrated or bias-corrected for the regions of interest. This research aims to address these issues by focusing on sites in the West African countries of Mali, Niger, and Benin where in-situ rainfall and soil moisture measurements are available from the African Monsoon Multidisciplinary Analysis (AMMA). Preliminary results from model experiments over Southern Malawi, validated with Normalized Difference Vegetation Index (NDVI) and maize yield data, show that the

  13. Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region)

    Science.gov (United States)

    Rizza, Umberto; Miglietta, Mario Marcello; Mangia, Cristina; Ielpo, Pierina; Morichetti, Mauro; Iachini, Chiara; Virgili, Simone; Passerini, Giorgio

    2018-03-01

    The Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate a severe Saharan dust outbreak event that took place over Southern Italy in March 2016. Numerical experiments have been performed applying a physics-based dust emission model, with soil properties generated from three different Land Surface Models, namely Noah, RUC and Noah-MP. The model performance in reproducing the severe desert dust outbreak is analysed using an observational dataset of aerosol and desert dust features that includes optical properties from satellite and ground-based sun-photometers, and in-situ particulate matter mass concentration (PM) data. The results reveal that the combination of the dust emission model with the RUC Land Surface Model significantly over-predicts the emitted mineral dust; on the other side, the combination with Noah or Noah-MP Land Surface Model (LSM) gives better results, especially for the daily averaged PM10.

  14. Groundwater Withdrawals under Drought: Reconciling GRACE and Models in the United States High Plains Aquifer

    Science.gov (United States)

    Nie, W.; Zaitchik, B. F.; Kumar, S.; Rodell, M.

    2017-12-01

    Advanced Land Surface Models (LSM) offer a powerful tool for studying and monitoring hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use, if the process is represented at all. GRACE, meanwhile, detects the total change in water storage, including change due to human activities, but does not resolve the source of these changes. Here we examine recent groundwater declines in the US High Plains Aquifer (HPA), a region that is heavily utilized for irrigation and that is also affected by episodic drought. To understand observed decline in groundwater (well observation) and terrestrial water storage (GRACE) during a recent multi-year drought, we modify the Noah-MP LSM to include a groundwater pumping irrigation scheme. To account for seasonal and interannual variability in active irrigated area we apply a monthly time-varying greenness vegetation fraction (GVF) dataset to the model. A set of five experiments were performed to study the impact of irrigation with groundwater withdrawal on the simulated hydrological cycle of the HPA and to assess the importance of time-varying GVF when simulating drought conditions. The results show that including the groundwater pumping irrigation scheme in Noah-MP improves model agreement with GRACE mascon solutions for TWS and well observations of groundwater anomaly in the southern HPA, including Texas and Kansas, and that accounting for time-varying GVF is important for model realism under drought. Results for the HPA in Nebraska are mixed, likely due to misrepresentation of the recharge process. This presentation will highlight the value of the GRACE constraint for model development, present estimates of the relative contribution of climate variability and irrigation to declining TWS in the HPA under drought, and identify opportunities to integrate GRACE-FO with models for water resource monitoring in heavily

  15. Computational fluid dynamics modeling of mass-transfer behavior in a bioreactor for hairy root culture. II. Analysis of ultrasound-intensified process.

    Science.gov (United States)

    Liu, Rui; Sun, Wei; Liu, Chun-Zhao

    2011-01-01

    Recently, cichoric acid production from hairy roots of Echinacea purpurea was significantly improved by ultrasound stimulation in an airlift bioreactor. In this article, the possible mechanism on ultrasound-intensified hairy root culture of E. purpurea in the bioreactor was elucidated with the help of computational fluid dynamics (CFD) simulation, membrane permeability detection, dissolved oxygen concentration detection, confocal laser-scanning microscopy (LSM) observation, and phenylalanine ammonium lyase (PAL) activity analysis. The CFD model developed in Part I was used to simulate the hydrodynamics and oxygen mass transfer in hairy root bioreactor culture stimulated by ultrasound. A dynamic mesh model combined with a changing Schmidt number method was used for the simulation of the ultrasound field. Simulation results and experimental data illustrated that ultrasound intensified oxygen mass transfer in the hairy root clump, which subsequently stimulated root growth and cichoric acid biosynthesis. Ultrasound increased the hairy root membrane permeability, and a high root membrane permeability of 0.359 h(-1) was observed at the bottom region in the bioreactor. LSM observation showed that the change in the membrane permeability recovered to normal in the further culture after ultrasound stimulation. PAL activity in the hairy roots was stimulated by ultrasound increase and was correlated well to cichoric acid accumulation in the hairy roots of E. purpurea. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  16. A real options-based CCS investment evaluation model: Case study of China's power generation sector

    International Nuclear Information System (INIS)

    Zhu, Lei; Fan, Ying

    2011-01-01

    Highlights: → This paper establishes a carbon captures and storage (CCS) investment evaluation model. → The model is based on real options theory and solved by the Least Squares Monte Carlo (LSM) method. → China is taken as a case study to evaluate the effects of regulations on CCS investment. → The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. -- Abstract: This paper establishes a carbon capture and storage (CCS) investment evaluation model based on real options theory considering uncertainties from the existing thermal power generating cost, carbon price, thermal power with CCS generating cost, and investment in CCS technology deployment. The model aims to evaluate the value of the cost saving effect and amount of CO 2 emission reduction through investing in newly-built thermal power with CCS technology to replace existing thermal power in a given period from the perspective of power generation enterprises. The model is solved by the Least Squares Monte Carlo (LSM) method. Since the model could be used as a policy analysis tool, China is taken as a case study to evaluate the effects of regulations on CCS investment through scenario analysis. The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. Thus, there is an important trade off for policy makers between reducing greenhouse gas emissions and protecting the interests of power generation enterprises. The research presented would be useful for CCS technology evaluation and related policy-making.

  17. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements

    KAUST Repository

    Niu, Guo-Yue

    2011-06-24

    This first paper of the two-part series describes the objectives of the community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah-MP). The Noah-MP\\'s performance is evaluated at various local sites using high temporal frequency data sets, and results show the advantages of using multiple optional schemes to interpret the differences in modeling simulations. The second paper focuses on ensemble evaluations with long-term regional (basin) and global scale data sets. The enhanced conceptual realism includes (1) the vegetation canopy energy balance, (2) the layered snowpack, (3) frozen soil and infiltration, (4) soil moisture-groundwater interaction and related runoff production, and (5) vegetation phenology. Sample local-scale validations are conducted over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site, the W3 catchment of Sleepers River, Vermont, and a French snow observation site. Noah-MP shows apparent improvements in reproducing surface fluxes, skin temperature over dry periods, snow water equivalent (SWE), snow depth, and runoff over Noah LSM version 3.0. Noah-MP improves the SWE simulations due to more accurate simulations of the diurnal variations of the snow skin temperature, which is critical for computing available energy for melting. Noah-MP also improves the simulation of runoff peaks and timing by introducing a more permeable frozen soil and more accurate simulation of snowmelt. We also demonstrate that Noah-MP is an effective research tool by which modeling results for a given process can be interpreted through multiple optional parameterization schemes in the same model framework. Copyright © 2011 by the American Geophysical Union.

  18. Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model

    Science.gov (United States)

    Gelati, Emiliano; Decharme, Bertrand; Calvet, Jean-Christophe; Minvielle, Marie; Polcher, Jan; Fairbairn, David; Weedon, Graham P.

    2018-04-01

    Physically consistent descriptions of land surface hydrology are crucial for planning human activities that involve freshwater resources, especially in light of the expected climate change scenarios. We assess how atmospheric forcing data uncertainties affect land surface model (LSM) simulations by means of an extensive evaluation exercise using a number of state-of-the-art remote sensing and station-based datasets. For this purpose, we use the CO2-responsive ISBA-A-gs LSM coupled with the CNRM version of the Total Runoff Integrated Pathways (CTRIP) river routing model. We perform multi-forcing simulations over the Euro-Mediterranean area (25-75.5° N, 11.5° W-62.5° E, at 0.5° resolution) from 1979 to 2012. The model is forced using four atmospheric datasets. Three of them are based on the ERA-Interim reanalysis (ERA-I). The fourth dataset is independent from ERA-Interim: PGF, developed at Princeton University. The hydrological impacts of atmospheric forcing uncertainties are assessed by comparing simulated surface soil moisture (SSM), leaf area index (LAI) and river discharge against observation-based datasets: SSM from the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects (ESA-CCI), LAI of the Global Inventory Modeling and Mapping Studies (GIMMS), and Global Runoff Data Centre (GRDC) river discharge. The atmospheric forcing data are also compared to reference datasets. Precipitation is the most uncertain forcing variable across datasets, while the most consistent are air temperature and SW and LW radiation. At the monthly timescale, SSM and LAI simulations are relatively insensitive to forcing uncertainties. Some discrepancies with ESA-CCI appear to be forcing-independent and may be due to different assumptions underlying the LSM and the remote sensing retrieval algorithm. All simulations overestimate average summer and early-autumn LAI. Forcing uncertainty impacts on simulated river discharge are

  19. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins

    KAUST Repository

    Yang, Zong-Liang

    2011-06-24

    The augmented Noah land surface model described in the first part of the two-part series was evaluated here over global river basins. Across various climate zones, global-scale tests can reveal a model\\'s weaknesses and strengths that a local-scale testing cannot. In addition, global-scale tests are more challenging than local- and catchment-scale tests. Given constant model parameters (e. g., runoff parameters) across global river basins, global-scale tests are more stringent. We assessed model performance against various satellite and ground-based observations over global river basins through six experiments that mimic a transition from the original Noah LSM to the fully augmented version. The model shows transitional improvements in modeling runoff, soil moisture, snow, and skin temperature, despite considerable increase in computational time by the fully augmented Noah-MP version compared to the original Noah LSM. The dynamic vegetation model favorably captures seasonal and spatial variability of leaf area index and green vegetation fraction. We also conducted 36 ensemble experiments with 36 combinations of optional schemes for runoff, leaf dynamics, stomatal resistance, and the β factor. Runoff schemes play a dominant and different role in controlling soil moisture and its relationship with evapotranspiration compared to ecological processes such as β the factor, vegetation dynamics, and stomatal resistance. The 36-member ensemble mean of runoff performs better than any single member over the world\\'s 50 largest river basins, suggesting a great potential of land-based ensemble simulations for climate prediction. Copyright © 2011 by the American Geophysical Union.

  20. A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms.

    Science.gov (United States)

    Rieckher, Matthias; Kyparissidis-Kokkinidis, Ilias; Zacharopoulos, Athanasios; Kourmoulakis, Georgios; Tavernarakis, Nektarios; Ripoll, Jorge; Zacharakis, Giannis

    2015-01-01

    We describe a customizable and cost-effective light sheet microscopy (LSM) platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP), which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT) modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples.

  1. Excited scalar and pseudoscalar mesons in the extended linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Parganlija, Denis [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany)

    2017-07-15

    We present an in-depth study of masses and decays of excited scalar and pseudoscalar anti qq states in the Extended Linear Sigma Model (eLSM). The model also contains ground-state scalar, pseudoscalar, vector and axial-vector mesons. The main objective is to study the consequences of the hypothesis that the f{sub 0}(1790) resonance, observed a decade ago by the BES Collaboration and recently by LHCb, represents an excited scalar quarkonium. In addition we also analyse the possibility that the new a{sub 0}(1950) resonance, observed recently by BABAR, may also be an excited scalar state. Both hypotheses receive justification in our approach although there appears to be some tension between the simultaneous interpretation of f{sub 0}(1790)/a{sub 0}(1950) and pseudoscalar mesons η(1295), π(1300), η(1440) and K(1460) as excited anti qq states. (orig.)

  2. Coupled model of INM-IO global ocean model, CICE sea ice model and SCM OIAS framework

    Science.gov (United States)

    Bayburin, Ruslan; Rashit, Ibrayev; Konstantin, Ushakov; Vladimir, Kalmykov; Gleb, Dyakonov

    2015-04-01

    Status of coupled Arctic model of ocean and sea ice is presented. Model consists of INM IO global ocean component of high resolution, Los Alamos National Laboratory CICE sea ice model and a framework SCM OIAS for the ocean-ice-atmosphere-land coupled modeling on massively-parallel architectures. Model is currently under development at the Institute of Numerical Mathematics (INM), Hydrometeorological Center (HMC) and P.P. Shirshov Institute of Oceanology (IO). Model is aimed at modeling of intra-annual variability of hydrodynamics in Arctic and. The computational characteristics of the world ocean-sea ice coupled model governed by SCM OIAS are presented. The model is parallelized using MPI technologies and currently can use efficiently up to 5000 cores. Details of programming implementation, computational configuration and physical phenomena parametrization are analyzed in terms of intercoupling complex. Results of five year computational experiment of sea ice, snow and ocean state evolution in Arctic region on tripole grid with horizontal resolution of 3-5 kilometers, closed by atmospheric forcing field from repeating "normal" annual course taken from CORE1 experiment data base are presented and analyzed in terms of the state of vorticity and warm Atlantic water expansion.

  3. Developing a thermodynamic a conceptual model for the Itumbiara hydroelectric reservoir based on satellite and telemetric data

    Directory of Open Access Journals (Sweden)

    Enner Herenio de Alcântara

    2011-08-01

    Full Text Available Aquatic systems continually respond to climatic conditions that vary over broad scales of space and time. The response of each water body to external conditions (hydro-meteorological processes is revealed in the first place by the thermal structures present in water body. Most lacustrine chemical, physical and biological processes are affected directly by lake hydrological (e.g. lake depth and thermal changes (e.g. seasonal stratification, and are thus, indirectly affected by climate variation. Understanding lake-climate system interactions is therefore of fundamental importance to evaluate the effects of climate change on limnological processes. Based on this, the objective of this work was to develop a thermodynamic conceptual model for the Itumbiara hydroelectric reservoir (Goiás State, Brazil. The developed methodology was based on the use of satellite imagery of moderate resolution that allow the computation of the water surface temperature from 2003 to 2008 (six years during the daytime and nighttime. The results showed the potential of the use of moderate resolution satellite data to study water surface temperature variability and to explain the main causes of this variability. The use of hydro-meteorological and bulk temperature collected by station and autonomous buoy, respectively, contributed to better understand the physical processes in the mixed depth of the reservoir. Also the results allow the elaboration of conceptual models for the thermodynamics of the Itumbiara reservoir.

  4. Study of drought processes in Spain by means of offline Land-Surface Model simulations. Evaluation of model sensitivity to the meteorological forcing dataset.

    Science.gov (United States)

    Quintana-Seguí, Pere; Míguez-Macho, Gonzalo; Barella-Ortiz, Anaïs

    2017-04-01

    Drought affects different aspects of the continental water cycle, from precipitation (meteorological drought), to soil moisture (agricultural drought), streamflow, lake volume and piezometric levels (hydrological drought). The spatial and temporal scales of drought, together with its propagation through the system must be well understood. Drought is a hazard impacting all climates and regions of the world; but in some areas, such as Spain, its societal impacts may be especially severe, creating water resources related tensions between regions and sectors. Indices are often used to characterize different aspects of drought. Similar indices can be built for precipitation (SPI), soil moisture (SSMI), and streamflow (SSI), allowing to analyse the temporal scales of drought and its spatial patterns. Precipitation and streamflow data are abundant in Spain; however soil moisture data is scarce. Land-Surface Models (LSM) physically simulate the continental water cycle and, thus, are appropriate tools to quantify soil moisture and other relevant variables and processes. These models can be run offline, forced by a gridded dataset of meteorological variables, usually a re-analysis. The quality of the forcing dataset affects the quality of the subsequent modeling results and is, thus, crucial. The objective of this study is to investigate how sensitive LSM simulations are to the forcing dataset, with a focus on drought. A global and a local dataset are used at different resolutions. The global dataset is the eartH2Observe dataset, which is based on ERA-Interim. The local dataset is the SAFRAN meteorological analysis system. The LSMs used are SURFEX and LEAFHYDRO. Standardized indices of the relevant variables are produced for all the simulations performed. Then, we analyze how differently drought propagates through the system in the different simulations and how similar are spatial and temporal scales of drought. The results of this study will be useful to understand the

  5. Development of a land surface model with coupled snow and frozen soil physics

    Science.gov (United States)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  6. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  7. Water balance in the Amazon basin from a land surface model ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hongyi; Decharme, Bertrand; Zhang, Zhengqiu J.; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Mounirou Toure, Ally; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi Rae; Drapeau, Guillaume; Leung, Lai-Yung R.; Ronchail, Josyane; Sheffield, Justin

    2014-12-06

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaled to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.

  8. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    International Nuclear Information System (INIS)

    Du, Z C; Lv, C F; Hong, M S

    2006-01-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'

  9. Grid Oriented Implementation of the Tephra Model

    Science.gov (United States)

    Coltelli, M.; D'Agostino, M.; Drago, A.; Pistagna, F.; Prestifilippo, M.; Reitano, D.; Scollo, S.; Spata, G.

    2009-04-01

    TEPHRA is a two dimensional advection-diffusion model implemented by Bonadonna et al. [2005] that describes the sedimentation process of particles from volcanic plumes. The model is used by INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, to forecast tephra dispersion during Etna volcanic events. Every day weather forecast provided by the Italian Air Force Meteorological Office in Rome and by the hydrometeorological service of ARPA in Emilia Romagna are processed by TEPHRA model with other volcanological parameters to simulate two different eruptive scenarios of Mt. Etna (corresponding to 1998 and 2002-03 Etna eruptions). The model outputs are plotted on maps and transferred to Civil Protection which takes the trouble to give public warnings and plan mitigation measures. The TEPHRA model is implemented in ANSI-C code using MPI commands to maximize parallel computation. Actually the model runs on an INGV Beowulf cluster. In order to provide better performances we worked on porting it to PI2S2 sicilian grid infrastructure inside the "PI2S2 Project" (2006-2008). We configured the application to run on grid, using Glite middleware, analyzed the obtained performances and comparing them with ones obtained on the local cluster. As TEPHRA needs to be run in a short time in order to transfer fastly the dispersion maps to Civil Protection, we also worked to minimize and stabilize grid job-scheduling time by using customized high-priority queues called Emergency Queue.

  10. Oil Spill Trajectories from HF Radars: Applied Dynamical Systems Methods vs. a Lagrangian Stochastic Model

    Science.gov (United States)

    Emery, B. M.; Washburn, L.; Mezic, I.; Loire, S.; Arbabi, H.; Ohlmann, C.; Harlan, J.

    2016-02-01

    We apply several analysis methods to HF radar ocean surface current maps to investigate improvements in trajectory modeling. Results from a Lagrangian Stochastic Model (LSM) are compared with methods based on dynamical systems theory: hypergraphs and Koopman mode analysis. The LSM produces trajectories by integrating Eulerian fields from the HF radar, and accounts for sub-grid scale velocity variability by including a random component based on the Lagrangian decorrelation time. Hypergraphs also integrate the HF radar maps in time, showing areas of strain, strain-rotation, and mixing, by plotting the relative strengths of the eigenvalues of the gradient of the time-averaged Lagrangian velocity. Koopman mode analysis decomposes the velocity field into modes of variability, similarly to EOF or a Fourier analysis, though each Koopman mode varies in time with a distinct frequency. Each method simulates oil drift from a the oil spill of May, 2015 that occurred within the coverage area of the HF radars, in the Santa Barbara Channel near Refugio Beach, CA. Preliminary results indicate some skill in determining the transport of oil when compare to publicly available observations of oil in the Santa Barbara Channel. These simulations have not shown a connection between the Refugio spill site and oil observations in the Santa Monica Bay, near Los Angeles CA, though accumulation zones shown by the hypergraphs correlate in time and space with these observations. Improvements in the HF radar coverage and accuracy were observed during the spill by the deployment of an additional HF radar site near Gaviota, CA. Presently we are collecting observations of oil on beaches and in the ocean, determining the role of winds in the oil movement, and refining the methods. Some HF radar data is being post-processed to incorporate recent antenna calibrations for sites in Santa Monica Bay. We will evaluate effects of the newly processed data on analysis results.

  11. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    Science.gov (United States)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  12. A molecular computational model improves the preoperative diagnosis of thyroid nodules

    Directory of Open Access Journals (Sweden)

    Tomei Sara

    2012-09-01

    Full Text Available Abstract Background Thyroid nodules with indeterminate cytological features on fine needle aspiration (FNA cytology have a 20% risk of thyroid cancer. The aim of the current study was to determine the diagnostic utility of an 8-gene assay to distinguish benign from malignant thyroid neoplasm. Methods The mRNA expression level of 9 genes (KIT, SYNGR2, C21orf4, Hs.296031, DDI2, CDH1, LSM7, TC1, NATH was analysed by quantitative PCR (q-PCR in 93 FNA cytological samples. To evaluate the diagnostic utility of all the genes analysed, we assessed the area under the curve (AUC for each gene individually and in combination. BRAF exon 15 status was determined by pyrosequencing. An 8-gene computational model (Neural Network Bayesian Classifier was built and a multiple-variable analysis was then performed to assess the correlation between the markers. Results The AUC for each significant marker ranged between 0.625 and 0.900, thus all the significant markers, alone and in combination, can be used to distinguish between malignant and benign FNA samples. The classifier made up of KIT, CDH1, LSM7, C21orf4, DDI2, TC1, Hs.296031 and BRAF had a predictive power of 88.8%. It proved to be useful for risk stratification of the most critical cytological group of the indeterminate lesions for which there is the greatest need of accurate diagnostic markers. Conclusion The genetic classification obtained with this model is highly accurate at differentiating malignant from benign thyroid lesions and might be a useful adjunct in the preoperative management of patients with thyroid nodules.

  13. Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria

    Directory of Open Access Journals (Sweden)

    E. Artinyan

    2008-01-01

    Full Text Available A soil-vegetation-atmosphere transfer model coupled with a macroscale distributed hydrological model was used to simulate the water cycle for a large region in Bulgaria. To do so, an atmospheric forcing was built for two hydrological years (1 October 1995 to 30 September 1997, at an eight km resolution. The impact of the human activities on the rivers (especially hydropower or irrigation was taken into account. An improvement of the hydrometeorological model was made: for better simulation of summer riverflow, two additional reservoirs were added to simulate the slow component of the runoff. Those reservoirs were calibrated using the observed data of the 1st year, while the 2nd year was used for validation. 56 hydrologic stations and 12 dams were used for the model calibration while 41 river gauges were used for the validation of the model. The results compare well with the daily-observed discharges, with good results obtained over more than 25% of the river gauges. The simulated snow depth was compared to daily measurements at 174 stations and the evolution of the snow water equivalent was validated at 5 sites. The process of melting and refreezing of snow was found to be important in this region. The comparison of the normalized values of simulated versus measured soil moisture showed good correlation. The surface water budget shows large spatial variations due to the elevation influence on the precipitation, soil properties and vegetation variability. An inter-annual difference was observed in the water cycle as the first year was more influenced by Mediterranean climate, while the second year was characterised by continental influence. The energy budget shows a dominating sensible heat component in summer, due to the fact that the water stress limits the evaporation. This study is a first step for the implementation of an operational hydrometeorological model that could be used for real time monitoring and forecasting of water budget

  14. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    Science.gov (United States)

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  15. Evaluation of snow and frozen soil parameterization in a cryosphere land surface modeling framework in the Tibetan Plateau

    Science.gov (United States)

    Zhou, J.

    2017-12-01

    Snow and frozen soil are important components in the Tibetan Plateau, and influence the water cycle and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new cryosphere land surface model (LSM) with coupled snow and frozen soil parameterization was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  16. Using SMOS for validation and parameter estimation of a large scale hydrological model in Paraná river basin

    Science.gov (United States)

    Colossi, Bibiana; Fleischmann, Ayan; Siqueira, Vinicius; Bitar, Ahmad Al; Paiva, Rodrigo; Fan, Fernando; Ruhoff, Anderson; Pontes, Paulo; Collischonn, Walter

    2017-04-01

    Large scale representation of soil moisture conditions can be achieved through hydrological simulation and remote sensing techniques. However, both methodologies have several limitations, which suggests the potential benefits of using both information together. So, this study had two main objectives: perform a cross-validation between remotely sensed soil moisture from SMOS (Soil Moisture and Ocean Salinity) L3 product and soil moisture simulated with the large scale hydrological model MGB-IPH; and to evaluate the potential benefits of including remotely sensed soil moisture for model parameter estimation. The study analyzed results in South American continent, where hydrometeorological monitoring is usually scarce. The study was performed in Paraná River Basin, an important South American basin, whose extension and particular characteristics allow the representation of different climatic, geological, and, consequently, hydrological conditions. Soil moisture estimated with SMOS was transformed from water content to a Soil Water Index (SWI) so it is comparable to the saturation degree simulated with MGB-IPH model. The multi-objective complex evolution algorithm (MOCOM-UA) was applied for model automatic calibration considering only remotely sensed soil moisture, only discharge and both information together. Results show that this type of analysis can be very useful, because it allows to recognize limitations in model structure. In the case of the hydrological model calibration, this approach can avoid the use of parameters out of range, in an attempt to compensate model limitations. Also, it indicates aspects of the model were efforts should be concentrated, in order to improve hydrological or hydraulics process representation. Automatic calibration gives an estimative about the way different information can be applied and the quality of results it might lead. We emphasize that these findings can be valuable for hydrological modeling in large scale South American

  17. Influence of the management strategy model on estimating water system performance under climate change

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Hendrickx, Frederic

    2015-04-01

    The performance of water systems used worldwide for the management of water resources is expected to be influenced by future changes in regional climates and water uses. Anticipating possible performance changes of a given system requires a modeling chain simulating its management. Operational management is usually not trivial especially when several conflicting objectives have to be accounted for. Management models are therefore often a crude representation of the real system and they only approximate its performance. Estimated performance changes are expected to depend on the management model used, but this is often not assessed. This communication analyzes the influence of the management strategy representation on the performance of an Alpine reservoir (Serre-Ponçon, South-East of France) for which irrigation supply, hydropower generation and recreational activities are the main objectives. We consider three ways to construct the strategy named as clear-, short- and far-sighted management. They are based on different forecastability degrees of seasonal inflows into the reservoir. The strategies are optimized using a Dynamic Programming algorithm (deterministic for clear-sighted and implicit stochastic for short- and far-sighted). System performance is estimated for an ensemble of future hydro-meteorological projections obtained in the RIWER2030 research project (http://www.lthe.fr/RIWER2030/) from a suite of climate experiments from the EU - ENSEMBLES research project. Our results show that changes in system performance is much more influenced by changes in hydro-meteorological variables than by the choice of strategy modeling. They also show that a simple strategy representation (i.e. clear-sighted management) leads to similar estimates of performance modifications than those obtained with a representation supposedly closer to real world (i.e. the far-sighted management). The Short-Sighted management approach lead to significantly different results, especially

  18. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    past year. The domain was expanded slightly to extend further west, north, and east to improve coverage over parts of southern Canada. Minor adjustments were also made to the manner in which GVF is calculated from the distribution of maximum Normalized Difference Vegetation Index from MODIS. The presentation will highlight some examples of the substantial inter-annual change in GVF that occurred from 2010 to 2011 in the U.S. Southern Plains as a result of the summer 2011 drought, and the early vegetation green up across the eastern U.S. due to the very warm conditions in March 2012. Finally, the SPoRT LIS runs the operational Noah land surface model (LSM) in real time over much of the eastern half of the CONUS. The Noah LSM is continually cycled in real time, uncoupled to any model, and driven by operational atmospheric analyses over a long-term, multi-year integration. The LIS-Noah provides the STRC EMS with high-resolution (3 km) LSM initialization data that are in equilibrium with the operational analysis forcing. The Noah LSM within the SPoRT LIS has been upgraded from version 2.7.1 to version 3.2, which has improved look-up table attributes for several land surface quantities. The surface albedo field is now being adjusted based on the input real-time MODIS GVF, thereby improving the net radiation. Also, the LIS-Noah now uses the newer MODIS-based land use classification scheme (i.e. the International Biosphere-Geosphere Programme [IGBP]) that has a better depiction of urban corridors in areas where urban sprawl has occurred. STRC EMS users interested in initializing their LSM fields with high-resolution SPoRT LIS data should set up their model domain with the MODIS-IGBP 20-class land use database and select Noah as the LSM.

  19. Challenges of model transferability to data-scarce regions (Invited)

    Science.gov (United States)

    Samaniego, L. E.

    2013-12-01

    Developing the ability to globally predict the movement of water on the land surface at spatial scales from 1 to 5 km constitute one of grand challenges in land surface modelling. Copying with this grand challenge implies that land surface models (LSM) should be able to make reliable predictions across locations and/or scales other than those used for parameter estimation. In addition to that, data scarcity and quality impose further difficulties in attaining reliable predictions of water and energy fluxes at the scales of interest. Current computational limitations impose also seriously limitations to exhaustively investigate the parameter space of LSM over large domains (e.g. greater than half a million square kilometers). Addressing these challenges require holistic approaches that integrate the best techniques available for parameter estimation, field measurements and remotely sensed data at their native resolutions. An attempt to systematically address these issues is the multiscale parameterisation technique (MPR) that links high resolution land surface characteristics with effective model parameters. This technique requires a number of pedo-transfer functions and a much fewer global parameters (i.e. coefficients) to be inferred by calibration in gauged basins. The key advantage of this technique is the quasi-scale independence of the global parameters which enables to estimate global parameters at coarser spatial resolutions and then to transfer them to (ungauged) areas and scales of interest. In this study we show the ability of this technique to reproduce the observed water fluxes and states over a wide range of climate and land surface conditions ranging from humid to semiarid and from sparse to dense forested regions. Results of transferability of global model parameters in space (from humid to semi-arid basins) and across scales (from coarser to finer) clearly indicate the robustness of this technique. Simulations with coarse data sets (e.g. EOBS

  20. Validation of risk prediction models for the development of HBV-related HCC: a retrospective multi-center 10-year follow-up cohort study.

    Science.gov (United States)

    Seo, Yeon Seok; Jang, Byoung Kuk; Um, Soon Ho; Hwang, Jae Seok; Han, Kwang-Hyub; Kim, Sang Gyune; Lee, Kwan Sik; Kim, Seung Up; Kim, Young Seok; Lee, Jung Il

    2017-12-22

    Recently, modified REACH-B (mREACH-B) risk prediction model for hepatocellular carcinoma (HCC) development was proposed. We validated the accuracy of the mREACH-B model and compared its accuracy with those of other prediction models. Between 2006 and 2012, 1,241 patients with chronic hepatitis B (CHB) were recruited. All patients underwent transient elastography at enrollment. The median age of the study population (840 males, 401 females) was 49 years. The median PAGE-B, LSM-HCC, and mREACH-B values were 10, 10, and 8, respectively. Among patients without cirrhosis ( n = 940, 75.7%), the median REACH-B value was 9. During the follow-up period (median 77.4 months), 66 (5.3%) and 83 (6.7%) patients developed HCC and liver-related events (LRE), respectively. Higher liver stiffness (LS) independently predicted HCC (hazard ratio [HR] = 1.047) and LRE development (HR = 1.047) (all P HCC (AUC = 0.824 at 3-year and 0.750 at 5-year) and LRE development (AUC = 0.782 at 3-year and 0.739 at 5-year) (all P HCC (AUC = 0.715-0.809 at 3-year and 0.719-0.742 at 5-year for HCC; AUC = 0.704-0.777 at 3-year and 0.721-0.735 at 5-year for LRE). Among patients without cirrhosis, mREACH-B predicted HCC (AUC = 0.803 vs. 0.654-0.816 at 3-year and 0.684 vs. 0.639-0.738 at 5-year) and LRE development (AUC = 0.734 vs. 0.619-0.789 at 3-year and 0.674 vs. 0.626-0.729 at 5-year) similarly to PAGE-B, REACH-B, and LSM-HCC. mREACH-B appropriately predicted HCC and LRE development in patients with CHB and showed similar or superior accuracy to those of PAGE-B, REACH-B, and LSM-HCC.

  1. Coupling meteorological and hydrological models to evaluate the uncertainty in runoff forecasting: the case study of Maggiore Lake basin

    Science.gov (United States)

    Ceppi, A.; Ravazzani, G.; Rabuffetti, D.; Mancini, M.

    2009-04-01

    In recent years, the interest in the prediction and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the Quantitative Precipitation Forecasts (QPFs) for hydrological purposes. The development and implementation of a real-time flood forecasting system with a hydro-meteorological operational alert procedure during the MAP-D-PHASE Project is described in this paper. D-PHASE stands for Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region and is a Forecast Demonstration Project (FDP) of the WWRP (World Weather Research Programme of WMO). It aims at demonstrating some of the many achievements of the Mesoscale Alpine Programme (MAP). The MAP FDP has addressed the entire forecasting chain, ranging from limited-area ensemble forecasting, high-resolution atmospheric modelling (km-scale), hydrological modelling and nowcasting to decision making by the end users, i.e., it is foreseen to set up an end-to-end forecasting system. The D-PHASE Operations Period (DOP) was from 1 June to 30 November 2007. In this study the hydro-meteorological chain includes both probabilistic forecasting based on ensemble prediction systems with lead time of a few days and short-range forecasts based on high resolution deterministic atmospheric models. D-PHASE hydrological ensemble forecasts are based on the 16 meteorological members, provided by COSMO-LEPS model (by ARPA Emilia-Romagna) with 5 day lead-time and a horizontal resolution of 10 km. Deterministic hydrological D-PHASE forecasts are provided by MOLOCH weather model (by ISAC-CNR) with a horizontal resolution of 2.2 km, nested into BOLAM, based on GFS initial and boundary conditions with 48 h lead-time. The hydrological model used to generate the runoff simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The

  2. Reconciling Land-Ocean Moisture Transport Variability in Reanalyses with P-ET in Observationally-Driven Land Surface Models

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.

    2016-01-01

    Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC equals P minus ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P minus ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to minus 0.03 millimeters per day per decade are reduced by the adjustments to 0.016 millimeters per day per decade, much closer to the LSM P minus ET estimate (0.007 millimeters per day per decade). Neither is significant at the 90 percent level. ENSO (El Nino-Southern Oscillation)-related modulation of VMFC and P minus ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86.

  3. Improving the transferability of hydrological model parameters under changing conditions

    Science.gov (United States)

    Huang, Yingchun; Bárdossy, András

    2014-05-01

    Hydrological models are widely utilized to describe catchment behaviors with observed hydro-meteorological data. Hydrological process may be considered as non-stationary under the changing climate and land use conditions. An applicable hydrological model should be able to capture the essential features of the target catchment and therefore be transferable to different conditions. At present, many model applications based on the stationary assumptions are not sufficient for predicting further changes or time variability. The aim of this study is to explore new model calibration methods in order to improve the transferability of model parameters. To cope with the instability of model parameters calibrated on catchments in non-stationary conditions, we investigate the idea of simultaneously calibration on streamflow records for the period with dissimilar climate characteristics. In additional, a weather based weighting function is implemented to adjust the calibration period to future trends. For regions with limited data and ungauged basins, the common calibration was applied by using information from similar catchments. Result shows the model performance and transfer quantity could be well improved via common calibration. This model calibration approach will be used to enhance regional water management and flood forecasting capabilities.

  4. LSM DAN GERAKAN ANTI KORUPSI : ANALISIS PERAN LSM DALAM MEMBANGUN KESADARAN ANTI KORUPSI DAN DALAM MEMERANGI TINDAK PIDANA KORUPSI DI KOTA SEMARANG

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2016-02-01

    Full Text Available Corruption in Indonesia still be a great challenges,  because  corruption  more extend, not only in national government, but also expand  in local government, mainly after  local election choose by people.  Almost local government should facing corruption that involved almost all institution, not only in legislative, excecutive, and judicative, but also private corporation. Thus research would describe corruption in Semarang City, and how the role of NGO,  mainly Pattiro and KP2KKN in combating corruption.  NGO have an important role both in educating of Anti-Corruption  and controlling the handle of corruption. The most goals of Education to the people  mainly how people being intolerance to corruption. Education program involving  other institution like KPK, ICW and other NGO with the same of vision in combating corruption. In other side, the role of NGO was cotrolling judicature process with Mass Media as a partner. Without Mass Media, NGO won’t be an effectiveness in combating corruption. Because  NGO still facing lack of resources in Human and financial as a force in combating corruption, so  making  a coorporation with University would be the best choices in the future, mainly in anti-corruption education.

  5. LSM DAN GERAKAN ANTI KORUPSI : ANALISIS PERAN LSM DALAM MEMBANGUN KESADARAN ANTI KORUPSI DAN DALAM MEMERANGI TINDAK PIDANA KORUPSI DI KOTA SEMARANG

    OpenAIRE

    Puji Astuti

    2016-01-01

    Corruption in Indonesia still be a great challenges,  because  corruption  more extend, not only in national government, but also expand  in local government, mainly after  local election choose by people.  Almost local government should facing corruption that involved almost all institution, not only in legislative, excecutive, and judicative, but also private corporation. Thus research would describe corruption in Semarang City, and how the role of NGO,  mainly Pattiro and KP2KKN in combati...

  6. Modelling

    CERN Document Server

    Spädtke, P

    2013-01-01

    Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.

  7. Modelling land cover change in the Ganga basin

    Science.gov (United States)

    Moulds, S.; Tsarouchi, G.; Mijic, A.; Buytaert, W.

    2013-12-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a 'hot spot' of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land cover change dataset to force climate models has been identified as a major contributor to model uncertainty. In this work a time series dataset of land cover change between 1970 and 2010 is constructed for northern India to improve the quantification of regional hydrometeorological feedbacks. The MODIS instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at small regional extent (CLUE-s) modelling framework. Non-spatial estimates of land cover area from national agriculture and forest statistics, available on a state-wise, annual basis, are used as a direct model input. Land cover change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. This dataset will provide an essential input to a high resolution, physically based land surface model to generate the lower boundary condition to assess the impact of land cover change on regional climate.

  8. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    Science.gov (United States)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies

  9. Forecasting of rain-on-snow events in alpine region using a fully coupled atmosphere/snowpack/hydrology model

    Science.gov (United States)

    Vionnet, V.; Fortin, V.; Dimitrijevic, M.; Abrahamowicz, M.; Gauthier, N.; Garnaud, C.; Bélair, S.; Milbrandt, J.; Pomeroy, J. W.

    2017-12-01

    Rain-on-snow (ROS) events occur when rain falls on a snowpack and present a strong flooding potential. An accurate estimation of the amount and timing of snowpack runoff is crucial for hydro-meteorological forecasters and remains a challenge. Indeed, during ROS events, snowpack runoff is strongly influenced by the complex evolution of meteorological and snowpack conditions. In this study, the ability of the distributed hydrology platform GEM-Hydro to forecast hydro-meteorological conditions during ROS events in complex terrain is assessed. GEM-Hydro couples the GEM (Global Environmental Multi-scale) atmospheric model with the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. GEM-Hydro is applied to the ROS event of 19-22 June 2013 in the Canadian Rockies that contributed to the devastating streamflow observed in Calgary (Alberta, Canada) and the surrounding region. A substantial snowpack remained at high elevations in the region due to a late May snowfall, snow redistribution by wind and avalanches and relatively cool spring temperatures. Relatively warm rainfall at the beginning of the storm changed to snowfall towards the end, resulting in a complex ROS and snow accumulation event. The impact of model resolution on the quality of the forecast is firstly tested using three configurations of the system at 2.5, 1 and 0.25 km. The sensitivity to horizontal resolution of simulated wind-driven turbulent energy fluxes between the atmosphere and snow surface is especially discussed since these fluxes often drive the high melt rates during ROS events. Additional simulations with a version of SVS including the multi-layer snowpack scheme Explicit Snow (SVS-ES) have then been carried out and compared to results obtained with the default version of SVS featuring a single layer snow scheme. In particular, the impact of the initialization of snowpack variables on simulated runoff is presented. This work is the first step towards the

  10. Central Asian Snow Cover from Hydrometeorological Surveys, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides observations of end of month snow depth, snow density, and snow water equivalent from three river basins in Central Asia: Amu Darya, Sir...

  11. Statistical variability of hydro-meteorological variables as indicators ...

    African Journals Online (AJOL)

    The aim of this study is to examine the variability patterns of rainfall and actual evapotranspiration during two climatic scenarios as an insight in climatic response to global warming. The comparison between evapotranspiration during the periods (1943-1977) and (1978-2012) at the five studied weather stations revealed a ...

  12. Content analysis of Hydrometeorological Network in the Lower ...

    African Journals Online (AJOL)

    jen

    as well as the utilitarian value of the networks for agricultural research and environmental panning and management. To realize this, a total of 30 out of 48 hydrometerological stations in the river basin were analyzed. The results of the analysis show among other things that, complete data were very hard to come by, and so ...

  13. Hydro-meteorological data analysis using OLAP techniques

    Directory of Open Access Journals (Sweden)

    Néstor Darío Duque-Méndez

    2014-01-01

    Full Text Available La riqueza de los datos registrados por las redes de estaciones hidrometeorológicas ofrece una gran oportunidad para analizar, conocer y entender mejor las variables hidroclimatológicas. Por lo tanto, el almacenamiento eficiente de los datos y su tratamiento eficaz son un requisito previo para la investigación meteorológica e hidrológica que requiere de estrategias para que la captación, transmisión, almacenamiento y procesamiento de datos que garanticen su calidad y consistencia. El propósito de este trabajo es desarrollar un modelo conceptual para una bodega de datos diseñada en un esquema en estrella que permita el almacenamiento estructurado y el análisis multidimensional de series históricas de datos hidroclimatológicos. La información registrada por las redes telemétricas de estaciones hidrometeorológicas existentes en Manizales y en el Departamento de Caldas son la fuente de información. El esquema de bodega de datos propuesto aprovecha los datos disponibles (en algunos casos más de 50 años con el fin de aplicar procesamiento analítico en línea (OLAP para analizar la calidad de la información y descubrir relaciones ocultas entre las variables, en una región particularmente afectada por el cambio climático y especialmente por fenómenos de variabilidad climática. La principal contribución de este documento abarca la exploración de alternativas a los métodos tradicionales de almacenamiento y análisis de información y la presentación de un número de casos que demuestran la eficacia del modelo propuesto en la evaluación de la calidad de los datos y de la visualización de las relaciones entre las diversas variables a diferentes escalas y para casos específicos.

  14. Hydrometeorology of tropical montane cloud forests: emerging patterns

    NARCIS (Netherlands)

    Bruijnzeel, L.A.; Mulligan, M.; Scatena, F.N.

    2011-01-01

    Tropical montane cloud forests (TMCF) typically experience conditions of frequent to persistent fog. On the basis of the altitudinal limits between which TMCF generally occur (800-3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ∼215 000 km

  15. Hydrometeorological database for Hubbard Brook Experimental Forest: 1955-2000

    Science.gov (United States)

    Amey Schenck Bailey; James W. Hornbeck; John L. Campbell; Christopher Eagar

    2003-01-01

    The 3,160-ha Hubbard Brook Experimental Forest (HBEF) in New Hampshire has been a prime area of research on forest and stream ecosystems since its establishment by the USDA Forest Service in 1955. Streamflow and precipitation have been measured continuously on the HBEF, and long-term datasets exist for air and soil temperature, snow cover, soil frost, solar radiation,...

  16. Content analysis of Hydrometeorological Network in the Lower ...

    African Journals Online (AJOL)

    This study deals with content analysis of hydrometerological networks in the Lower Benue River Basin, Nigeria. This is with the overall aim of determining the effectiveness of the network in terms of providing useful data for agricultural planning. The study examines the type of stations in the river basin, the type of equipment ...

  17. Numerical modeling and remote sensing of global water management systems: Applications for land surface modeling, satellite missions, and sustainable water resources

    Science.gov (United States)

    Solander, Kurt C.

    The ability to accurately quantify water storages and fluxes in water management systems through observations or models is of increasing importance due to the expected impacts from climate change and population growth worldwide. Here, I describe three innovative techniques developed to better understand this problem. First, a model was created to represent reservoir storage and outflow with the objective of integration into a Land Surface Model (LSM) to simulate the impacts of reservoir management on the climate system. Given this goal, storage capacity represented the lone model input required that is not already available to an LSM user. Model parameterization was linked to air temperature to allow future simulations to adapt to a changing climate, making it the first such model to mimic the potential response of a reservoir operator to climate change. Second, spatial and temporal error properties of future NASA Surface Water and Ocean Topography (SWOT) satellite reservoir operations were quantified. This work invoked the use of the SWOTsim instrument simulator, which was run over a number of synthetic and actual reservoirs so the resulting error properties could be extrapolated to the global scale. The results provide eventual users of SWOT data with a blueprint of expected reservoir error properties so such characteristics can be determined a priori for a reservoir given knowledge about its topology and anticipated repeat orbit pass over its location. Finally, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission was used in conjunction with in-situ water use records to evaluate sustainable water use at the two-digit HUC basin scale over the contiguous United States. Results indicate that the least sustainable water management region is centered in the southwest, where consumptive water use exceeded water availability by over 100% on average for some of these basins. This work represents the first attempt at evaluating sustainable

  18. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    Science.gov (United States)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated

  19. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis Marco Ndomba

    2008-12-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977–1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977–1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969–2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  20. A GUIDED SWAT MODEL APPLICATION ON SEDIMENT YIELD MODELING IN PANGANI RIVER BASIN: LESSONS LEARNT

    Directory of Open Access Journals (Sweden)

    Preksedis M. Ndomba

    2008-01-01

    Full Text Available The overall objective of this paper is to report on the lessons learnt from applying Soil and Water Assessment Tool (SWAT in a well guided sediment yield modelling study. The study area is the upstream of Pangani River Basin (PRB, the Nyumba Ya Mungu (NYM reservoir catchment, located in the North Eastern part of Tanzania. It should be noted that, previous modeling exercises in the region applied SWAT with preassumption that inter-rill or sheet erosion was the dominant erosion type. In contrast, in this study SWAT model application was guided by results of analysis of high temporal resolution of sediment flow data and hydro-meteorological data. The runoff component of the SWAT model was calibrated from six-years (i.e. 1977¿1982 of historical daily streamflow data. The sediment component of the model was calibrated using one-year (1977-1988 daily sediment loads estimated from one hydrological year sampling programme (between March and November, 2005 rating curve. A long-term period over 37 years (i.e. 1969-2005 simulation results of the SWAT model was validated to downstream NYM reservoir sediment accumulation information. The SWAT model captured 56 percent of the variance (CE and underestimated the observed daily sediment loads by 0.9 percent according to Total Mass Control (TMC performance indices during a normal wet hydrological year, i.e., between November 1, 1977 and October 31, 1978, as the calibration period. SWAT model predicted satisfactorily the long-term sediment catchment yield with a relative error of 2.6 percent. Also, the model has identified erosion sources spatially and has replicated some erosion processes as determined in other studies and field observations in the PRB. This result suggests that for catchments where sheet erosion is dominant SWAT model may substitute the sediment-rating curve. However, the SWAT model could not capture the dynamics of sediment load delivery in some seasons to the catchment outlet.

  1. The interactions between soil-biosphere-atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 - Part 1: Model description

    Science.gov (United States)

    Boone, Aaron; Samuelsson, Patrick; Gollvik, Stefan; Napoly, Adrien; Jarlan, Lionel; Brun, Eric; Decharme, Bertrand

    2017-02-01

    Land surface models (LSMs) are pushing towards improved realism owing to an increasing number of observations at the local scale, constantly improving satellite data sets and the associated methodologies to best exploit such data, improved computing resources, and in response to the user community. As a part of the trend in LSM development, there have been ongoing efforts to improve the representation of the land surface processes in the interactions between the soil-biosphere-atmosphere (ISBA) LSM within the EXternalized SURFace (SURFEX) model platform. The force-restore approach in ISBA has been replaced in recent years by multi-layer explicit physically based options for sub-surface heat transfer, soil hydrological processes, and the composite snowpack. The representation of vegetation processes in SURFEX has also become much more sophisticated in recent years, including photosynthesis and respiration and biochemical processes. It became clear that the conceptual limits of the composite soil-vegetation scheme within ISBA had been reached and there was a need to explicitly separate the canopy vegetation from the soil surface. In response to this issue, a collaboration began in 2008 between the high-resolution limited area model (HIRLAM) consortium and Météo-France with the intention to develop an explicit representation of the vegetation in ISBA under the SURFEX platform. A new parameterization has been developed called the ISBA multi-energy balance (MEB) in order to address these issues. ISBA-MEB consists in a fully implicit numerical coupling between a multi-layer physically based snowpack model, a variable-layer soil scheme, an explicit litter layer, a bulk vegetation scheme, and the atmosphere. It also includes a feature that permits a coupling transition of the snowpack from the canopy air to the free atmosphere. It shares many of the routines and physics parameterizations with the standard version of ISBA. This paper is the first of two parts; in part one

  2. Forecasting summertime surface temperature and precipitation in the Mexico City metropolitan area: sensitivity of the WRF model to land cover changes

    Science.gov (United States)

    López-Bravo, Clemente; Caetano, Ernesto; Magaña, Víctor

    2018-02-01

    Changes in the frequency and intensity of severe hydrometeorological events in recent decades in the Mexico City Metropolitan Area have motivated the development of weather warning systems. The weather forecasting system for this region was evaluated in sensitivity studies using the Weather Research and Forecasting Model (WRF) for July 2014, a summer time month. It was found that changes in the extent of the urban area and associated changes in thermodynamic and dynamic variables have induced local circulations that affect the diurnal cycles of temperature, precipitation, and wind fields. A newly implemented configuration (land cover update and Four-Dimensional Data Assimilation (FDDA)) of the WRF model has improved the adjustment of the precipitation field to the orography. However, errors related to the depiction of convection due to parameterizations and microphysics remains a source of uncertainty in weather forecasting in this region.

  3. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    Science.gov (United States)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the

  4. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    Science.gov (United States)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the

  5. Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator

    Science.gov (United States)

    Cai, Jin-Chi; Hu, Lin-Lin; Ma, Guo-Wu; Chen, Hong-Bin; Jin, Xiao; Chen, Huai-Bi

    2015-06-01

    In this paper, the basic equations of beam-wave interaction for designing the 220 GHz folded waveguide (FW) backward wave oscillator (BWO) are described. On the whole, these equations are mainly classified into small signal model (SSM), large signal model (LSM), and simplified small signal model (SSSM). Using these linear and nonlinear one-dimensional (1D) models, the oscillation characteristics of the FW BWO of a given configuration of slow wave structure (SWS) can be calculated by numerical iteration algorithm, which is more time efficient than three-dimensional (3D) particle-in-cell (PIC) simulation. The SSSM expressed by analytical formulas is innovatively derived for determining the initial values of the FW SWS conveniently. The dispersion characteristics of the FW are obtained by equivalent circuit analysis. The space charge effect, the end reflection effect, the lossy wall effect, and the relativistic effect are all considered in our models to offer more accurate results. The design process of the FW BWO tube with output power of watt scale in a frequency range between 215 GHz and 225 GHz based on these 1D models is demonstrated. The 3D PIC method is adopted to verify the theoretical design results, which shows that they are in good agreement with each other. Project supported by the Innovative Research Foundation of China Academy of Engineering Physics (Grant No. 426050502-2).

  6. Evaluating Different Model Structures for Representing Watershed Functions through the use of Signature Measures

    Science.gov (United States)

    Mendoza, P. A.; Clark, M. P.; Rajagopalan, B.

    2012-12-01

    The increasing availability of hydrometeorological data and computational resources has allowed the evolution of hydrological models from lumped, conceptual to fully distributed. However, principal catchment behavioral functions are poorly understood, mainly because model evaluation has been typically based on the comparison of simulated and observed time series of model outputs (e.g., streamflow), ignoring the possibility that we may be getting the right results because of a compensation of errors in model structure, parameters and data. In recent years the hydrological community has redirected its efforts to look for a better understanding of hydrological models from a functional point of view (e.g. water balance, vertical redistribution of soil moisture and redistribution of runoff in time, among others). In this research, we evaluate the ability of three hydrological models (PRMS, VIC and Noah-MP) to skillfully reproduce relevant watershed processes in the Animas River basin, which is a sub-basin of the Colorado River Basin. A suite of signature measures that have diagnostic power of model behaviors is developed and analyzed in order to diagnose the model deficiency. All model simulations were run with the same spatial discretization and forcing data to enable fair comparison of model structures

  7. How will climate change affect the vegetation cycle over France? A generic modeling approach

    Directory of Open Access Journals (Sweden)

    Nabil Laanaia

    2016-01-01

    Full Text Available The implementation of adaptation strategies of agriculture and forestry to climate change is conditioned by the knowledge of the impacts of climate change on the vegetation cycle and of the associated uncertainties. Using the same generic Land Surface Model (LSM to simulate the response of various vegetation types is more straightforward than using several specialized crop and forestry models, as model implementation differences are difficult to assess. The objective of this study is to investigate the potential of a LSM to address this issue. Using the SURFEX (“Surface Externalisée” modeling platform, we produced and analyzed 150-yr (1950–2100 simulations of the biomass of four vegetation types (rainfed straw cereals, rainfed grasslands, broadleaf and needleleaf forests and of the soil water content associated to each of these vegetation types over France. Statistical methods were used to quantify the impact of climate change on simulated phenological dates. The duration of soil moisture stress periods increases everywhere in France, especially for grasslands with, on average, an increase of 9 days per year in near-future (NF conditions and 36 days per year in distant-future (DF conditions. For all the vegetation types, leaf onset and the annual maximum LAI occur earlier. For straw cereals in the Languedoc-Provence-Corsica area, NF leaf onset occurs 18 days earlier and 37 days earlier in DF conditions, on average. On the other hand, local discrepancies are simulated for the senescence period (e.g. earlier in western and southern France for broadleaf forests, slightly later in mountainous areas of eastern France for both NF and DF. Changes in phenological dates are more uncertain in DF than in NF conditions in relation to differences in climate models, especially for forests. Finally, it is shown that while changes in leaf onset are mainly driven by air temperature, longer soil moisture stress periods trigger earlier leaf senescence

  8. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    Science.gov (United States)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  9. LIS-HYMAP coupled Hydrological Modeling in the Nile River Basin and the Greater Horn of Africa

    Science.gov (United States)

    Jung, H. C.; Getirana, A.; Policelli, F. S.

    2015-12-01

    Water scarcity and resources in Africa have been exacerbated by periodic droughts and floods. However, few studies show the quantitative analysis of water balance or basin-scale hydrological modeling in Northeast Africa. The NASA Land Information System (LIS) is implemented to simulate land surface processes in the Nile River Basin and the Greater Horn of Africa. In this context, the Noah land surface model (LSM) and the Hydrological Modeling and Analysis Platform (HYMAP) are used to reproduce the water budget and surface water (rivers and floodplains) dynamics in that region. The Global Data Assimilation System (GDAS) meteorological dataset is used to force the system . Due to the unavailability of recent ground-based observations, satellite data are considered to evaluate first model outputs. Water levels at 10 Envisat virtual stations and water discharges at a gauging station are used to provide model performance coefficients (e.g. Nash-Sutcliffe, delay index, relative error). We also compare the spatial and temporal variations of flooded areas from the model with the Global Inundation Extent from Multi-Satellites (GIEMS) and the Alaska Satellite Facility (ASF)'s MEaSUREs Wetland data. Finally, we estimate surface water storage variations using a hypsographic curve approach with Shuttle Radar Topography Mission (SRTM) topographic data and evaluate the model-derived water storage changes in both river and floodplain. This study demonstrates the feasibility of using LIS-HYMAP coupled modeling to support seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes.

  10. Modelling the Impacts of Changing Land Cover/Land Use and Climate on Flooding in the Elk River Watershed, British Columbia

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; Hopkinson, C.; MacDonald, R. J.; Johnson, D. L.

    2015-12-01

    The Elk River is a mountain watershed located along the eastern border of British Columbia, Canada. The Elk River is confined by railway bridges, roads, and urban areas. Flooding has been a concern in the valley for more than a century. The most recent major flood event occurred in 2013 affecting several communities. River modifications such as riprapped dykes, channelization, and dredging have occurred in an attempt to reduce inundation, with limited success. Significant changes in land cover/land use (LCLU) such as natural state to urban, forestry practices, and mining from underground to mountaintop/valley fill have changed terrain and ground surfaces thereby altering water infiltration and runoff processes in the watershed. Future climate change in this region is expected to alter air temperature and precipitation as well as produce an earlier seasonal spring freshet potentially impacting future flood events. The objective of this research is to model historical and future hydrological conditions to identify flood frequency and risk under a range of climate and LCLU change scenarios in the Elk River watershed. Historic remote sensing data, forest management plans, and mining industry production/post-mining reclamation plans will be used to create a predictive past and future LCLU time series. A range of future air temperature and precipitation scenarios will be developed based on accepted Global Climate Modelling (GCM) research to examine how the hydrometeorological conditions may be altered under a range of future climate scenarios. The GENESYS (GENerate Earth SYstems Science input) hydrometeorological model will be used to simulate climate and LCLU to assess historic and potential future flood frequency and magnitude. Results will be used to create innovative flood mitigation, adaptation, and management strategies for the Elk River with the intent of being wildlife friendly and non-destructive to ecosystems and habitats for native species.

  11. Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed.

    Science.gov (United States)

    Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P

    2015-05-01

    The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  13. Modelling the Spatial Distribution of Wind Energy Resources in Latvia

    Science.gov (United States)

    Aniskevich, S.; Bezrukovs, V.; Zandovskis, U.; Bezrukovs, D.

    2017-12-01

    The paper studies spatial wind energy flow distribution in Latvia based on wind speed measurements carried out at an altitude of 10 m over a period of two years, from 2015 to 2016. The measurements, with 1 min increments, were carried out using certified measuring instruments installed at 22 observation stations of the Latvian National Hydrometeorological and Climatological Service of the Latvian Environment, Geology and Meteorology Centre (LEGMC). The models of the spatial distribution of averaged wind speed and wind energy density were developed using the method of spatial interpolation based on the historical measurement results and presented in the form of colour contour maps with a 1×1 km resolution. The paper also provides the results of wind speed spatial distribution modelling using a climatological reanalysis ERA5 at the altitudes of 10, 54, 100 and 136 m with a 31×31 km resolution. The analysis includes the comparison of actual wind speed measurement results with the outcomes of ERA5 modelling for meteorological observation stations in Ainazi, Daugavpils, Priekuli, Saldus and Ventspils.

  14. Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chatzichristodoulou, Christodoulos; Nielsen, Jimmi

    2012-01-01

    Porous composite cathodes of LSM–YSZ (lanthanum strontium manganite and yttria stabilized zirconia) were impregnated with GDC (gadolinia doped ceria) nano particles. The impregnation process was varied using none or different surfactants (Triton X-45, Triton X-100, P123), and the quantity...

  15. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes-Polarization Effects

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; McIntyre, Melissa D.; Norrman, Kion

    2016-01-01

    potential. A changing electrode surface is observed during operation as the Ba3Mn2O8 secondary phase decomposes and manganese oxide accumulates on the electrode surface during cathodic polarization. The observed changes are reversible. These results suggest that the formation of Ba3Mn2O8 is responsible...... and Raman spectroscopy reveal the formation of a secondary phase, Ba3Mn2O8, on the electrode. During the in operando Raman investigation of the BaO-infiltrated La0.85Sr0.15MnO3±δ electrodes, experiments are performed at 300 and 500 °C with oxygen partial pressure 0.1 atm and with −1 or +1 V Applied...... for the reduced polarization resistance observed at open Circuit voltage (OCV) in an oxygen containing atmosphere. Furthermore, the results illustrate the dramatic differences between the electrode surface composition at OCV and during cathodic polarization. Overall, the results highlight the dynamic interactions...

  16. Fabrication of highly porous LSM/CGO cell stacks for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2013-01-01

    In this study porous cell stacks for electrochemical flue gas purification were fabricated using tape casting and lamination followed by sintering. Two different mixtures of pore formers were used; either a mixture of two types of graphite or a mixture of graphite with polymethyl methacrylate micro-particles....... It was shown that the porous cell stacks fabricated with polymethyl methacrylate had a higher porosity but a similar back pressure compared to the porous cell stacks fabricated with only graphite as a pore former. This was due to a high back pressure of the electrolyte layer. The porous cell stacks fabricated...... with polymethyl methacrylate as a pore former seem to be well suited for i.e. caption of soot particles. Furthermore, the back pressure of the electrode layer was significantly reduced when using polymethyl methacrylate pore formers. However, a better interconnectivity of the pores formed by the polymethyl...

  17. Laser surface modification (LSM) of thermally-sprayed Diamalloy 2002 coating

    Science.gov (United States)

    Gisario, A.; Barletta, M.; Veniali, F.

    2012-09-01

    Thermally-sprayed Diamalloy 2002 is widely used as overlay coating in several applications for their good wear and corrosion protection. Although, in the past, any effort has been produced to deposit Diamalloy 2002 with a low degree of defectiveness, some residual porosity and cracks can often affect the final property of the resulting coatings. Different techniques are commonly used to improve the performance of Diamalloy 2002. Recently, laser post-treatment seems to be one of the most promising, being an effective, non-contact, mini-invasive technology. In this respect, the present investigation deals with the application of a continuous wave high power diode laser to post-treat Diamalloy 2002 deposited by HVOF on AA 6082 T6 aluminum alloy. Different laser power and scan speed were investigated in order to identify the process window most favorable to improve the overall mechanical property of Diamalloy 2002 coatings. The changes in morphology, micro-structure and chemical composition of the coatings after laser post-treatments were investigated by inductive gage profilometry and combined SEM-EDXS. Further, the changes in the mechanical properties of the coatings were investigated in terms of hardness, elastic modulus, scratch and wear resistance. Consistent improvements in mechanical property can be achieved by Diamalloy 2002 when laser processing is performed at higher power and reduced scan speed. Yet, too much increase in power density should be always avoided as it can be detrimental to the final property of the coatings and cause high defectiveness and their failure.

  18. Plasma-Sprayed LSM Protective Coating on Metallic Interconnect of SOFC

    Directory of Open Access Journals (Sweden)

    Jia-Wei Chen

    2017-12-01

    Full Text Available In this study, a (La0.8Sr0.20.98MnO3 protective layer was prepared on the C276, Crofer22 APU, SUS304, and SUS430 alloys by the atmospheric plasma spraying technique (APS. The oxidation behavior and electrical property of these metal alloys have been investigated isothermally at 800 °C in air for up to 300 h. Results showed that the ferritic steels transform into MnCr2O4 spinels and a Cr2O3 layer during isothermal oxidation. The C276 alloy formed NiCr2O4 and FeCr2O4 layers; these are protective and act as an effective barrier against chromium migration into the outer oxide layer, and the alloy demonstrated good oxidation resistance and a reasonable match to the coefficient of thermal expansion of the substrate and a low-oxide scale area-specific resistance. The ASR effects on the formation of oxide scale have been investigated, and the ASR of coated samples was below 0.024 Ω·cm2. It has good electrical conductivity for SOFC in long-term use.

  19. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    H. Roux

    2011-09-01

    Full Text Available A spatially distributed hydrological model, dedicated to flood simulation, is developed on the basis of physical process representation (infiltration, overland flow, channel routing. Estimation of model parameters requires data concerning topography, soil properties, vegetation and land use. Four parameters are calibrated for the entire catchment using one flood event. Model sensitivity to individual parameters is assessed using Monte-Carlo simulations. Results of this sensitivity analysis with a criterion based on the Nash efficiency coefficient and the error of peak time and runoff are used to calibrate the model. This procedure is tested on the Gardon d'Anduze catchment, located in the Mediterranean zone of southern France. A first validation is conducted using three flood events with different hydrometeorological characteristics. This sensitivity analysis along with validation tests illustrates the predictive capability of the model and points out the possible improvements on the model's structure and parameterization for flash flood forecasting, especially in ungauged basins. Concerning the model structure, results show that water transfer through the subsurface zone also contributes to the hydrograph response to an extreme event, especially during the recession period. Maps of soil saturation emphasize the impact of rainfall and soil properties variability on these dynamics. Adding a subsurface flow component in the simulation also greatly impacts the spatial distribution of soil saturation and shows the importance of the drainage network. Measures of such distributed variables would help discriminating between different possible model structures.

  20. Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies

    Science.gov (United States)

    Shellito, Cindy J.; Sloan, Lisa C.

    2006-02-01

    Models that allow vegetation to respond to and interact with climate provide a unique method for addressing questions regarding feedbacks between the ecosystem and climate in pre-Quaternary time periods. In this paper, we consider how Dynamic Global Vegetation Models (DGVMs), which have been developed for simulations with present day climate, can be used for paleoclimate studies. We begin with a series of tests in the NCAR Land Surface Model (LSM)-DGVM with Eocene geography to examine (1) the effect of removing C 4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO 2 used in the photosynthetic rate equations. The tests were designed to highlight some of the challenges of using these models and prompt discussion of possible improvements. We discuss how lack of detail in model boundary conditions, uncertainties in the application of modern plant functional types to paleo-flora simulations, and inaccuracies in the model climatology used to drive the DGVM can affect interpretation of model results. However, we also review a number of DGVM features that can facilitate understanding of past climates and offer suggestions for improving paleo-DGVM studies.

  1. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    Science.gov (United States)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  2. Improvement, calibration and validation of a distributed hydrological model over France

    Directory of Open Access Journals (Sweden)

    P. Quintana Seguí

    2009-02-01

    Full Text Available The hydrometeorological model SAFRAN-ISBA-MODCOU (SIM computes water and energy budgets on the land surface and riverflows and the level of several aquifers at the scale of France. SIM is composed of a meteorological analysis system (SAFRAN, a land surface model (ISBA, and a hydrogeological model (MODCOU. In this study, an exponential profile of hydraulic conductivity at saturation is introduced to the model and its impact analysed. It is also studied how calibration modifies the performance of the model. A very simple method of calibration is implemented and applied to the parameters of hydraulic conductivity and subgrid runoff. The study shows that a better description of the hydraulic conductivity of the soil is important to simulate more realistic discharges. It also shows that the calibrated model is more robust than the original SIM. In fact, the calibration mainly affects the processes related to the dynamics of the flow (drainage and runoff, and the rest of relevant processes (like evaporation remain stable. It is also proven that it is only worth introducing the new empirical parameterization of hydraulic conductivity if it is accompanied by a calibration of its parameters, otherwise the simulations can be degraded. In conclusion, it is shown that the new parameterization is necessary to obtain good simulations. Calibration is a tool that must be used to improve the performance of distributed models like SIM that have some empirical parameters.

  3. Coupling Tritium Release Data with Remotely Sensed Precipitation Data to Assess Model Uncertainties

    Science.gov (United States)

    Avant, B. K.; Ignatius, A. R.; Rasmussen, T. C.; Grundstein, A.; Mote, T. L.; Shepherd, J. M.

    2010-12-01

    An accidental tritium release (570 L, 210 TBq) from the K-Reactor at the Savannah River Site (South Carolina, USA) occurred between December 22-25, 1991. Observed tritium concentrations in rivers and streams, as well as in the coastal estuary, are used to calibrate a hydrologic flow and transport model, BASINS 4.0 (Better Assessment Science Integrating Point and Non-Point Sources) environmental analysis system and the HSPF hydrologic model. The model is then used to investigate complex hydrometeorological and source attribution problems. Both source and meteorologic input uncertainties are evaluated with respect to model predictions. Meteorological inputs include ground-based rain gauges supplemented with radar along with several NASA products including TRMM 3B42, TRMM 3B42RT, and MERRA (Modern Era Retrospective-Analysis for Research and Applications) reanalysis data. Model parameter uncertainties are evaluated using PEST (Model-Independent Parameter Estimation and Uncertainty Analysis) and coupled to meteorologic uncertainties to provide bounding estimates of model accuracy.

  4. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  5. New lessons on the Sudd hydrology learned from remote sensing and climate modeling

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2006-01-01

    Full Text Available Despite its local and regional importance, hydro-meteorological data on the Sudd (one of Africa's largest wetlands is very scanty. This is due to the physical and political situation of this area of Sudan. The areal size of the wetland, the evaporation rate, and the influence on the micro and meso climate are still unresolved questions of the Sudd hydrology. The evaporation flux from the Sudd wetland has been estimated using thermal infrared remote sensing data and a parameterization of the surface energy balance (SEBAL model. It is concluded that the actual spatially averaged evaporation from the Sudd wetland over 3 years of different hydrometeorological characteristics varies between 1460 and 1935 mm/yr. This is substantially less than open water evaporation. The wetland area appears to be 70% larger than previously assumed when the Sudd was considered as an open water body. The temporal analysis of the Sudd evaporation demonstrated that the variation of the atmospheric demand in combination with the inter-annual fluctuation of the groundwater table results into a quasi-constant evaporation rate in the Sudd, while open water evaporation depicts a clear seasonal variability. The groundwater table characterizes a distinct seasonality, confirming that substantial parts of the Sudd are seasonal swamps. The new set of spatially distributed evaporation parameters from remote sensing form an important dataset for calibrating a regional climate model enclosing the Nile Basin. The Regional Atmospheric Climate Model (RACMO provides an insight not only into the temporal evolution of the hydro-climatological parameters, but also into the land surface climate interactions and embedded feedbacks. The impact of the flooding of the Sudd on the Nile hydroclimatology has been analysed by simulating two land surface scenarios (with and without the Sudd wetland. The paper presents some of the model results addressing the Sudd's influence on rainfall, evaporation

  6. Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions

    Science.gov (United States)

    Jin, Xinfang; Xue, Xingjian

    A 2D transient mathematical model is developed for regenerative solid oxide cells operated in both SOFC mode and SOEC mode. The steady state performance of the model is validated using experimental results of in-house prepared NiO-YSZ/YSZ/LSM cell under different operating temperatures. The model is employed to investigate complicated multi-physics processes during the transient process of mode switching. Simulation results indicate that the trend of internal parameter distributions, including H 2/O 2/H 2O and ionic potentials, flip when the operating cell is switched from one mode to another. However, the electronic potential shows different behaviors. At H 2 electrode, electronic potential keeps at zero voltage level, while at O 2 electrode, it increases from a relatively low level in SOFC mode to a relatively high level in SOEC mode. Transient results also show that an overshooting phenomenon occurs for mass fraction distribution of water vapor at H 2 side when the operating cell switches from SOFC mode to SOEC mode. The mass fractions of O 2 and H 2 as well as charge (electrons and ions) potentials may quickly follow the operating mode changes without over-shootings. The simulation results facilitate the internal mechanism understanding for regenerative SOFCs.

  7. Impact of model structure and parameterization on Penman-Monteith type evaporation models

    KAUST Repository

    Ershadi, A.

    2015-04-12

    sites, where the simpler aerodynamic resistance approach of Mu et al. (2011) showed improved performance. Overall, the results illustrate the sensitivity of Penman-Monteith type models to model structure, parameterization choice and biome type. A particular challenge in flux estimation relates to developing robust and broadly applicable model formulations. With many choices available for use, providing guidance on the most appropriate scheme to employ is required to advance approaches for routine global scale flux estimates, undertake hydrometeorological assessments or develop hydrological forecasting tools, amongst many other applications. In such cases, a multi-model ensemble or biome-specific tiled evaporation product may be an appropriate solution, given the inherent variability in model and parameterization choice that is observed within single product estimates.

  8. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  9. Integrating Nutrient Enrichment and Forest Management Experiments in Sweden to Constrain the Process-Based Land Surface Model ORCHIDEE

    Science.gov (United States)

    Resovsky, A.; Luyssaert, S.; Guenet, B.; Peylin, P.; Lansø, A. S.; Vuichard, N.; Messina, P.; Smith, B.; Ryder, J.; Naudts, K.; Chen, Y.; Otto, J.; McGrath, M.; Valade, A.

    2017-12-01

    Understanding coupling between carbon (C) and nitrogen (N) cycling in forest ecosystems is key to predicting global change. Numerous experimental studies have demonstrated the positive response of stand-level photosynthesis and net primary production (NPP) to atmospheric CO2 enrichment, while N availability has been shown to exert an important control on the timing and magnitude of such responses. However, several factors complicate efforts to precisely represent ecosystem-level C and N cycling in the current generation of land surface models (LSMs), including sparse in-situ data, uncertainty with regard to key state variables and disregard for the effects of natural and anthropogenic forest management. In this study, we incorporate empirical data from N-fertilization experiments at two long-term manipulation sites in Sweden to improve the representation of C and N interaction in the ORCHIDEE land surface model. Our version of the model represents the union of two existing ORCHIDEE branches: 1) ORCHIDEE-CN, which resolves processes related to terrestrial C and N cycling, and 2) ORCHIDEE-CAN, which integrates a multi-layer canopy structure and includes representation of forest management practices. Using this new model branch (referred to as ORCHIDEE-CN-CAN), we aim to replicate the growth patterns of managed forests both with and without N limitations. Our hope is that the results, in combination with measurements of various ecosystem parameters (such as soil N) will facilitate LSM optimization, inform future model development, and reduce structural uncertainty in global change predictions.

  10. Evaluation of NWP-based Satellite Precipitation Error Correction with Near-Real-Time Model Products and Flood-inducing Storms

    Science.gov (United States)

    Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.

    2017-12-01

    Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.

  11. Use of Machine Learning Techniques for Iidentification of Robust Teleconnections to East African Rainfall Variability in Observations and Models

    Science.gov (United States)

    Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris

    2014-01-01

    Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.

  12. Modelling land use change in the Ganga basin

    Science.gov (United States)

    Moulds, Simon; Mijic, Ana; Buytaert, Wouter

    2014-05-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a "hot spot" of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land use change dataset to force climate models has been identified as a major contributor to model uncertainty. This work aims to construct a monthly time series dataset of land use change for the period 1966 to 2007 for northern India to improve the quantification of regional hydrometeorological feedbacks. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality and availability of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) modelling framework, recoded in the R programming language to overcome limitations of the original interface. Non-spatial estimates of land use area published by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for the study period, available on an annual, district-wise basis, are used as a direct model input. Land use change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. The dataset will provide an essential input to a high-resolution, physically-based land-surface model to generate the lower boundary condition to assess the impact of land use change on regional climate.

  13. Multi-site evaluation of the JULES land surface model using global and local data

    Directory of Open Access Journals (Sweden)

    D. Slevin

    2015-02-01

    Full Text Available This study evaluates the ability of the JULES land surface model (LSM to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM climate model. Firstly, gross primary productivity (GPP estimates from driving JULES with data derived from local site measurements were compared to observations from the FLUXNET network. When using local data, the model is biased with total annual GPP underestimated by 16% across all sites compared to observations. Secondly, GPP estimates from driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so were compared to FLUXNET observations. It was found that model performance decreases further, with total annual GPP underestimated by 30% across all sites compared to observations. When JULES was driven using local parameters and global meteorological data, it was shown that global data could be used in place of FLUXNET data with a 7% reduction in total annual simulated GPP. Thirdly, the global meteorological data sets, WFDEI and PRINCETON, were compared to local data to find that the WFDEI data set more closely matches the local meteorological measurements (FLUXNET. Finally, the JULES phenology model was tested by comparing results from simulations using the default phenology model to those forced with the remote sensing product MODIS leaf area index (LAI. Forcing the model with daily satellite LAI results in only small improvements in predicted GPP at a small number of sites, compared to using the default phenology model.

  14. Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model

    Science.gov (United States)

    Maity, S.; Satyanarayana, A. N. V.; Mandal, M.; Nayak, S.

    2017-11-01

    In this study, an attempt has been made to investigate the sensitivity of land surface models (LSM) and cumulus convection schemes (CCS) using a regional climate model, RegCM Version-4.1 in simulating the Indian Summer Monsoon (ISM). Numerical experiments were conducted in seasonal scale (May-September) for three consecutive years: 2007, 2008, 2009 with two LSMs (Biosphere Atmosphere Transfer Scheme (BATS), Community Land Model (CLM 3.5) and five CCSs (MIT, KUO, GRELL, GRELL over land and MIT over ocean (GL_MO), GRELL over ocean and MIT over land (GO_ML)). Important synoptic features are validated using various reanalysis datasets and satellite derived products from TRMM and CRU data. Seasonally averaged surface temperature is reasonably well simulated by the model using both the LSMs along with CCSs namely, MIT, GO_ML and GL_MO schemes. Model simulations reveal slight warm bias using these schemes whereas significant cold bias is seen with KUO and GRELL schemes during all three years. It is noticed that the simulated Somali Jet (SJ) is weak in all simulations except MIT scheme in the simulations with (both BATS and CLM) in which the strength of SJ reasonably well captured. Although the model is able to simulate the Tropical Easterly Jet (TEJ) and Sub-Tropical Westerly Jet (STWJ) with all the CCSs in terms of their location and strength, the performance of MIT scheme seems to be better than the rest of the CCSs. Seasonal rainfall is not well simulated by the model. Significant underestimation of Indian Summer Monsoon Rainfall (ISMR) is observed over Central and North West India. Spatial distribution of seasonal ISMR is comparatively better simulated by the model with MIT followed by GO_ML scheme in combination with CLM although it overestimates rainfall over heavy precipitation zones. On overall statistical analysis, it is noticed that RegCM4 shows better skill in simulating ISM with MIT scheme using CLM.

  15. Flood forecasting using a fully distributed model: application of the TOPKAPI model to the Upper Xixian Catchment

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2005-01-01

    Full Text Available TOPKAPI is a physically-based, fully distributed hydrological model with a simple and parsimonious parameterisation. The original TOPKAPI is structured around five modules that represent evapotranspiration, snowmelt, soil water, surface water and channel water, respectively. Percolation to deep soil layers was ignored in the old version of the TOPKAPI model since it was not important in the basins to which the model was originally applied. Based on published literature, this study developed a new version of the TOPKAPI model, in which the new modules of interception, infiltration, percolation, groundwater flow and lake/reservoir routing are included. This paper presents an application study that makes a first attempt to derive information from public domains through the internet on the topography, soil and land use types for a case study Chinese catchment - the Upper Xixian catchment in Huaihe River with an area of about 10000 km2, and apply a new version of TOPKAPI to the catchment for flood simulation. A model parameter value adjustment was performed using six months of the 1998 dataset. Calibration did not use a curve fitting process, but was chiefly based upon moderate variations of parameter values from those estimated on physical grounds, as is common in traditional calibration. The hydrometeorological dataset of 2002 was then used to validate the model, both against the outlet discharge as well as at an internal gauging station. Finally, to complete the model performance analysis, parameter uncertainty and its effects on predictive uncertainty were also assessed by estimating a posterior parameter probability density via Bayesian inference.

  16. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2013-09-22

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.

  17. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    Science.gov (United States)

    Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2018-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from

  18. An integrated modelling framework for regulated river systems in Land Surface Hydrological Models

    Science.gov (United States)

    Rehan Anis, Muhammad; razavi, Saman; Wheater, Howard

    2017-04-01

    Many of the large river systems around the world are highly regulated with numerous physical flow control and storage structures as well as a range of water abstraction rules and regulations. Most existing Land Surface Models (LSM) do not represent the modifications to the hydrological regimes introduced by water management (reservoirs, irrigation diversions, etc.). The interactions between natural hydrological processes and changes in water and energy fluxes and storage due to human interventions are important to the understanding of how these systems may respond to climate change amongst other drivers for change as well as to the assessment of their feedbacks to the climate system at regional and global scales. This study presents an integrated modelling approach to include human interventions within natural hydrological systems using a fully coupled modelling platform. The Bow River Basin in Alberta (26,200 km2), one of the most managed Canadian rivers, is used to demonstrate the approach. We have dynamically linked the MESH modelling system, which embeds the Canadian Land Surface Scheme (CLASS), with the MODSIM-DSS water management modelling tool. MESH models the natural hydrology while MODSIM optimizes the reservoir operation of 4 simulated reservoirs to satisfy demands within the study basin. MESH was calibrated for the catchments upstream the reservoirs and gave good performance (NSE = 0.81) while BIAS was only 2.3% at the catchment outlet. Without coupling with MODSIM (i.e. no regulation), simulated hydrographs at the catchment outlet were in complete disagreement with observations (NSE = 0.28). The coupled model simulated the optimization introduced by the operation of the multi-reservoir system in the Bow river basin and shows excellent agreement between observed and simulated hourly flows (NSE = 0.98). Irrigation demands are fully satisfied during summer, however, there are some shortages in winter demand from industries, which can be rectified by

  19. Soil Moisture and Temperature Measuring Networks in the Tibetan Plateau and Their Hydrological Applications

    Science.gov (United States)

    Yang, Kun; Chen, Yingying; Qin, Jun; Lu, Hui

    2017-04-01

    Multi-sphere interactions over the Tibetan Plateau directly impact its surrounding climate and environment at a variety of spatiotemporal scales. Remote sensing and modeling are expected to provide hydro-meteorological data needed for these process studies, but in situ observations are required to support their calibration and validation. For this purpose, we have established two networks on the Tibetan Plateau to measure densely two state variables (soil moisture and temperature) and four soil depths (0 5, 10, 20, and 40 cm). The experimental area is characterized by low biomass, high soil moisture dynamic range, and typical freeze-thaw cycle. As auxiliary parameters of these networks, soil texture and soil organic carbon content are measured at each station to support further studies. In order to guarantee continuous and high-quality data, tremendous efforts have been made to protect the data logger from soil water intrusion, to calibrate soil moisture sensors, and to upscale the point measurements. One soil moisture network is located in a semi-humid area in central Tibetan Plateau (Naqu), which consists of 56 stations with their elevation varying over 4470 4950 m and covers three spatial scales (1.0, 0.3, 0.1 degree). The other is located in a semi-arid area in southern Tibetan Plateau (Pali), which consists of 25 stations and covers an area of 0.25 degree. The spatiotemporal characteristics of the former network were analyzed, and a new spatial upscaling method was developed to obtain the regional mean soil moisture truth from the point measurements. Our networks meet the requirement for evaluating a variety of soil moisture products, developing new algorithms, and analyzing soil moisture scaling. Three applications with the network data are presented in this paper. 1. Evaluation of Current remote sensing and LSM products. The in situ data have been used to evaluate AMSR-E, AMSR2, SMOS and SMAP products and four modeled outputs by the Global Land Data

  20. An Evaluation of High-Resolution Regional Climate Model Simulated Snow Cover Using Satellite Data (With Implications for the Simulated Snow-Albedo Feedback)

    Science.gov (United States)

    Minder, J. R.; Letcher, T.

    2015-12-01

    Snow cover often exhibits large spatial variability over mountainous regions where variations in elevation, aspect, vegetation, winds, and orographic precipitation all modulate snow cover. Under climate change, reductions in mountain snow cover are likely to substantially amplify regional warming via the snow-albedo feedback. To capture this important feedback it is crucial that regional climate models (RCMs) adequately simulate spatial and temporal variations in snow cover. Snow cover simulated by high-resolution RCMs over the central Rocky Mountains of the United States is evaluated. RCM simulations were conducted using the Weather Research and Forecasting (WRF) model on a 4 km horizontal grid forced by reanalysis boundary conditions over a seven-year time period. A pair of simulations is considered that differ in the domain size (regional vs. continental) and the land surface model (Noah vs. Noah-MP) employed. RCM output is compared with high-resolution gridded satellite analyses of surface albedo and fractional snow cover derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Results reveal that both RCMs are generally successful at reproducing the observed seasonal cycle and interannual variability of snow extent over the high terrain of the Rockies. However, in simulations using the Noah land surface model (LSM), sub-grid scale fractional snow covered area of grid cells containing snow is systematically too high compared to observations, often exceeding observations by more than 0.2. This bias in fractional snow cover leads to a substantial positive bias in regional surface albedo. Simulations using the Noah-MP LSM produce more realistic variations in fractional snow cover and surface albedo, likely due to its more-realistic treatment of canopy effects. We quantify how differences in simulated snow cover affect the strength of the snow-albedo feedback under climate change. Both RCMs were used to conduct representative 7-year simulations of a

  1. Enhancements to the WRF-Hydro Hydrologic Model Structure for Semi-arid Environments

    Science.gov (United States)

    Lahmers, T. M.; Gupta, H.; Hazenberg, P.; Castro, C. L.; Gochis, D.; Yates, D. N.; Dugger, A. L.; Goodrich, D. C.

    2017-12-01

    The NOAA National Water Center (NWC) implemented an operational National Water Model (NWM) in August 2016 to simulate and forecast streamflow and soil moisture throughout the Contiguous US (CONUS). The NWM is based on the WRF-Hydro hydrologic model architecture, with a 1-km resolution Noah-MP LSM grid and a 250m routing grid. The operational NWM does not currently resolve infiltration of water from the beds of ephemeral channels, which is an important component of the water balance in semi-arid environments common in many portions of the western US. This work demonstrates the benefit of a conceptual channel infiltration function in the WRF-Hydro model architecture following calibration. The updated model structure and parameters for the NWM architecture, when implemented operationally, will permit its use in flow simulation and forecasting in the southwest US, particularly for flash floods in basins with smaller drainage areas. Our channel infiltration function is based on that of the KINEROS2 semi-distributed hydrologic model, which has been tested throughout the southwest CONUS for flash flood forecasts. Model calibration utilizes the Dynamically Dimensioned Search (DDS) algorithm, and the model is calibrated using NLDAS-2 atmospheric forcing and NCEP Stage-IV precipitation. Our results show that adding channel infiltration to WRF-Hydro can produce a physically consistent hydrologic response with a high-resolution gauge based precipitation forcing dataset in the USDA-ARS Walnut Gulch Experimental Watershed. NWM WRF-Hydro is also tested for the Babocomari River, Beaver Creek, and Sycamore Creek catchments in southern and central Arizona. In these basins, model skill is degraded due to uncertainties in the NCEP Stage-IV precipitation forcing dataset.

  2. PREPARATION OF THE DIGITAL ELEVATION MODEL FOR ORTHOPHOTO CR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Z. Švec

    2016-06-01

    Full Text Available The Orthophoto CR is produced in co-operation with the Land Survey Office and the Military Geographical and Hydrometeorological Office. The product serves to ensure a defence of the state, integrated crisis management, civilian tasks in support of the state administration and the local self-government of the Czech Republic as well. It covers the whole area of the Republic and for ensuring its up-to-datedness is reproduced in the biennial period. As the project is countrywide, it keeps the project within the same parameters in urban and rural areas as well. Due to economic reasons it can´t be produced as a true ortophoto because it requires large side and forward overlaps of the aerial photographs and a preparation of the digital surface model instead of the digital terrain model. Use of DTM without some objects of DSM for orthogonalization purposes cause undesirable image deformations in the Orthophoto. There are a few data sets available for forming a suitable elevation model. The principal source should represent DTMs made from data acquired by the airborne laser scanning of the entire area of the Czech Republic that was carried out in the years 2009-2013, the DMR4G in the grid form and the DMR5G in TIN form respectively. It can be replenished by some vector objects (bridges, dams, etc. taken from the geographic base data of the Czech Republic or obtained by new stereo plotting. It has to be taken into account that the option of applying DSM made from image correlation is also available. The article focuses on the possibilities of DTM supplement for ortogonalization. It looks back to the recent transition from grid to hybrid elevation models, problems that occurred, its solution and getting some practical remarks. Afterwards it assesses the current state and deals with the options for updating the model. Some accuracy analysis are included.

  3. A mechanistic model of H{sub 2}{sup 18}O and C{sup 18}OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Still, C.J.; Torn, M.S.; Berry, J.A.

    2002-01-01

    The concentration of 18O in atmospheric CO2 and H2O is a potentially powerful tracer of ecosystem carbon and water fluxes. In this paper we describe the development of an isotope model (ISOLSM) that simulates the 18O content of canopy water vapor, leaf water, and vertically resolved soil water; leaf photosynthetic 18OC16O (hereafter C18OO) fluxes; CO2 oxygen isotope exchanges with soil and leaf water; soil CO2 and C18OO diffusive fluxes (including abiotic soil exchange); and ecosystem exchange of H218O and C18OO with the atmosphere. The isotope model is integrated into the land surface model LSM, but coupling with other models should be straightforward. We describe ISOLSM and apply it to evaluate (a) simplified methods of predicting the C18OO soil-surface flux; (b) the impacts on the C18OO soil-surface flux of the soil-gas diffusion coefficient formulation, soil CO2 source distribution, and rooting distribution; (c) the impacts on the C18OO fluxes of carbonic anhydrase (CA) activity in soil and leaves; and (d) the sensitivity of model predictions to the d18O value of atmospheric water vapor and CO2. Previously published simplified models are unable to capture the seasonal and diurnal variations in the C18OO soil-surface fluxes simulated by ISOLSM. Differences in the assumed soil CO2 production and rooting depth profiles, carbonic anhydrase activity in soil and leaves, and the d18O value of atmospheric water vapor have substantial impacts on the ecosystem CO2 flux isotopic composition. We conclude that accurate prediction of C18OO ecosystem fluxes requires careful representation of H218O and C18OO exchanges and transport in soils and plants.

  4. Climate Change and Hydrological Extreme Evolution Through a Multifractal Analysis of a Mesocale Model

    Science.gov (United States)

    Gires, A.; Schertzer, D. J.; Tchiguirinskaia, I.; Royer, J.; Dufresne, J.; Desplat, J.; Lovejoy, S.

    2008-12-01

    In its last report, the IPCC (http://www.ipcc.ch) emphasizes the question of scales and the necessity to obtain much finer resolutions for hydrological processes in climate scenarios to assess the time evolution of the hydrological extremes. One may bridge up the gap between meteorological and hydrological scales with the help of downscaling techniques, which are statically or/and physically based. In particular, one may exploit the scaling properties of the precipitation to downscale it either numerically by stochastic subgrid modeling or theoretically with the help of a few scaling exponents (Royer et al. C.R. Geoscience, 340, 2008). However, we first suggest that these techniques need to be validated not only with the help of empirical data of the actual climatology, but also by comparison with mesoscale numerical simulations in normal and pertubated conditions. Secondly, we present how to proceed to such a comparison with the help of a multifractal analysis of the hydrometeorological fields of the Meso-NH model (Meteo-France/CNRM and Laboratoire d'Aérologie, Toulouse, France), a model which has been rather extensively used for mesoscale research and should shortly become operational.

  5. Modeling of transports of water and matter in landscape. Proceedings; Modellierung des Wasser- und Stofftransportes in grossen Einzugsgebieten. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Bronstert, A.; Krysanova, V.; Schroeder, A.; Becker, A.; Bork, H.R. [eds.

    1998-04-01

    During recent years, the quantitative description of the water fluxes and the coupled transport of physical and chemical matter in the landscape has become steadily more and more important. The reasons for this are an increasing public awareness about the possible impacts of changes of land use, land cover, and of changes in regional and global climatic conditions together with a need for sound, multi-objective management of large river basins. The investigation areas of concern a usually much larger in extent than a typically sized hydrological investigation catchment. The tools primarily used in the quantification of the hydrological fluxes at the large scale are the so-called large-scale hydrological models. These models are comparatively new and still at the stage of development and improvement. The mentioned need for advanced large-scale hydrological models provided the reason for inviting scientists from German-speaking countries with experience in large-scale hydrological and hydro-meteorological models to exchange and discuss their modelling concepts and to identify research needs. The workshop was held at the Potsdam Institute for Climate Impact Research (PIK) on 15 and 16 December 1997, and was jointly organised by PIK, the University of Potsdam and the Centre for Agriculture and Land Use Research (ZALF). The workshop was attended by over 40 scientists, of whom 19 gave a presentation. (orig.)

  6. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    Science.gov (United States)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  7. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    Science.gov (United States)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  8. The role of basin physical property data in assessing water stress in water resources studies: The application of the Pitman Rainfall-runoff model in Nigeria

    CSIR Research Space (South Africa)

    Ayeni, AO

    2012-11-01

    Full Text Available This paper examines the role played by basin physical attributes in determining river runoff. The approach uses soil and other available hydro-meteorological and geophysical information to directly estimate the parameters of the Pitman rainfall...

  9. High Resolution Modelling of Crop Response to Climate Change

    Science.gov (United States)

    Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a

  10. Some practical notes on the land surface modeling in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    K. Yang

    2009-05-01

    Full Text Available The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere, CoLM (Common Land Model, and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau.

    The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.

  11. Application of a Coupled WRF-Hydro Model for Extreme Flood Events in the Mediterranean Basins

    Science.gov (United States)

    Fredj, Erick; Givati, Amir

    2015-04-01

    More accurate simulation of precipitation and streamflow is a challenge that can be addressed by using the Weather Research and Forecasting Model (WRF) in conjunction with the hydrological model coupling extension package (WRF-Hydro).This is demonstrated for the country of Israel and surrounding regions. Simulations from the coupled WRF/WRF-Hydro system were verified against measurements from rain gauges and hydrometric stations in the domain for the 2012-2013 and 2013-2014 winters (wet seasons). These periods were characterized by many punctuated hydrometeorological and hydroclimatic events, including both severe drought and extreme floods events. The WRF model simulations were initialized with 0.5 degree NOAA/NCEP GFS model data. The model domain was set up with 3 domains, up to 3km grid spacing resolution. The model configuration used here constitutes a fully distributed, 3-dimensional, variably-saturated surface and subsurface flow model. Application of terrain routing and, subsequently, channel and reservoir routing functions, to the uni-dimensional NOAA land surface model was motivated by the need to account for increased complexity in land surface states and fluxes and to provide a more physically-realistic conceptualization of terrestrial hydrologic processes. The simulation results indicated a good agreement with actual peak discharges for extreme flood events and for full hydrographs. Specifically the coupled WRF/WRF-Hydro model as configured in this study shows improvement in simulated precipitation over one way WRF precipitation simulations. The correlation between the observed and the simulated precipitation using the fully coupled WRF/WRF-Hydro system was higher than the standalone WRF model, especially for convective precipitation events that affect arid regions in the domain. The results suggest that the coupled WRF/WRF-Hydro system has potential for flood forecasting and flood warning purposes at 0-72 hour lead times for large cool season storm

  12. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-01-01

    BackgroundThere are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles.MethodsA sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from Soufrière Hills volcano, Montserrat for a period of 24 h at the air-liquid interface (ALI). Subsequently, co-cultures were exposed to co-exposures of single or repeated VA and diesel exhaust particles (DEP; NIST SRM 2975; 0.02 mg/mL), a model urban pollutant, at the pseudo-ALI. The biological impact of each individual particle type was also analysed under these precise scenarios. The cytotoxic (LDH release), oxidative stress (depletion of intracellular GSH) and (pro-)inflammatory (TNF-α, IL-8 and IL-1β) responses were assessed after the particulate exposures. The impact of VA exposure upon cell morphology, as well as its interaction with the multicellular model, was visualised via confocal laser scanning microscopy (LSM) and scanning electron microscopy (SEM), respectively.ResultsThe combination of respirable VA and DEP, in all scenarios, incited an heightened release of TNF-α and IL-8 as well as significant increases in IL-1β, when applied at sub-lethal doses to the co-culture compared to VA exposure alone. Notably, the augmented (pro-)inflammatory responses observed were not mediated by oxidative stress. LSM supported the quantitative assessment of cytotoxicity, with no changes in cell morphology within the barrier model evident. A direct interaction of the VA with all

  13. Numerical modeling of thermal regime in inland water bodies with field measurement data

    Science.gov (United States)

    Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.

    2018-01-01

    Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.

  14. Performance of the general circulation models in simulating temperature and precipitation over Iran

    Science.gov (United States)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  15. WRF-model data assimilation studies of landfalling atmospheric rivers and orographic precipitation over Northern California

    Science.gov (United States)

    Eiserloh, Arthur J., Jr.

    In this study, data assimilation methods of 3-D variational analysis (3DVAR), observation nudging, and analysis (grid) nudging were evaluated in the Weather Research and Forecasting (WRF) model for a high-impact, multi-episode landfalling atmospheric river (AR) event for Northern California from 28 November to 3 December, 2012. Eight experiments were designed to explore various combinations of the data assimilation methods and different initial conditions. The short-to-medium range quantitative precipitation forecast (QPF) performances were tested for each experiment. Surface observations from the National Oceanic and Atmospheric Administration's (NOAA) Hydrometeorology Network (HMT), National Weather Service (NWS) radiosondes, and GPS Radio Occultation (RO) vertical profiles from the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) satellites were used for assimilation. Model results 2.5 days into the forecast showed slower timing of the 2nd AR episode by a few hours and an underestimation in AR strength. For the entire event forecasts, the non-grid-nudging experiments showed the lowest mean absolute error (MAE) for rainfall accumulations, especially those with 3DVAR. Higher-resolution initial conditions showed more realistic coastal QPFs. Also, a 3-h nudging time interval and time window for observation nudging and 3DVAR, respectively, may be too large for this type of event, and it did not show skill until 60-66 h into the forecast.

  16. A Hidden Markov Model of Daily Precipitation over Western Colombia.

    Science.gov (United States)

    Rojo Hernández, Julián; Lall, Upmanu; Mesa Sanchez, Oscar

    2017-04-01

    A Hidden Markov Model of Daily Precipitation over Western Colombia. The western Pacific coast of Colombia (Chocó Region) is among the rainiest on earth, largely due to low level jet activity and orographic lifting along the western Andes. A hidden Markov model (HMM) is used to characterize daily rainfall occurrence at 250 gauge stations over the Western Pacific coast and Andean plateau in Colombia during the wet season (September - November) from 1970 to 2015. Four ''hidden'' rainfall states are identified, with the first pair representing wet and dry conditions at all stations, and the second pair North-West to South-East gradients in rainfall occurrence. Using the ERA-Interim reanalysis data (1979-2012) we show that the first pair of states are associated with low level jet convergence and divergence, while the second pair is associated with South Atlantic Convergence Zone activity and local convection. The estimated daily state-sequence is characterized by a systematic seasonal evolution, together with considerable variability on intraseasonal and interannual time scales, exhibiting a strong relationship with ENSO. Finally, a nonhomogeneous HMM (NHMM) is then used to simulate daily precipitation occurrence at the 250 stations, using the ERA-Interim vertically integrated moisture flux anomalies (two weeks lagged) and monthly means of the sea surface temperatures (one month lagged). Simulations from the NHMM are found to reproduce the relationship between the ENSO and the western Colombian precipitation. The NHMM simulations are also able to capture interannual changes in daily rainfall occurrence and dry-wet frequencies at some individual stations. It is suggested that a) HMM provides a useful tool that contributes to characterizing the Colombian's Hydro-Meteorology and it's anomalies during the ENSO, and b) the NHMM is an important tool to produce station-scale daily rainfall sequence scenarios for input into hydrological models.

  17. Reconstruction of droughts in India using multiple land-surface models (1951-2015)

    Science.gov (United States)

    Mishra, Vimal; Shah, Reepal; Azhar, Syed; Shah, Harsh; Modi, Parth; Kumar, Rohini

    2018-04-01

    India has witnessed some of the most severe historical droughts in the current decade, and severity, frequency, and areal extent of droughts have been increasing. As a large part of the population of India is dependent on agriculture, soil moisture drought affecting agricultural activities (crop yields) has significant impacts on socio-economic conditions. Due to limited observations, soil moisture is generally simulated using land-surface hydrological models (LSMs); however, these LSM outputs have uncertainty due to many factors, including errors in forcing data and model parameterization. Here we reconstruct agricultural drought events over India during the period of 1951-2015 based on simulated soil moisture from three LSMs, the Variable Infiltration Capacity (VIC), the Noah, and the Community Land Model (CLM). Based on simulations from the three LSMs, we find that major drought events occurred in 1987, 2002, and 2015 during the monsoon season (June through September). During the Rabi season (November through February), major soil moisture droughts occurred in 1966, 1973, 2001, and 2003. Soil moisture droughts estimated from the three LSMs are comparable in terms of their spatial coverage; however, differences are found in drought severity. Moreover, we find a higher uncertainty in simulated drought characteristics over a large part of India during the major crop-growing season (Rabi season, November to February: NDJF) compared to those of the monsoon season (June to September: JJAS). Furthermore, uncertainty in drought estimates is higher for severe and localized droughts. Higher uncertainty in the soil moisture droughts is largely due to the difference in model parameterizations (especially soil depth), resulting in different persistence of soil moisture simulated by the three LSMs. Our study highlights the importance of accounting for the LSMs' uncertainty and consideration of the multi-model ensemble system for the real-time monitoring and prediction of

  18. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  19. The Analytical Objective Hysteresis Model (AnOHM v1.0: methodology to determine bulk storage heat flux coefficients

    Directory of Open Access Journals (Sweden)

    T. Sun

    2017-07-01

    Full Text Available The net storage heat flux (ΔQS is important in the urban surface energy balance (SEB but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQS and net all-wave radiation (Q∗ has been captured in the Objective Hysteresis Model (OHM parameterization of ΔQS. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model. A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation. The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQS flux well (RMSE values of ∼ 30 W m−2. The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

  20. The Analytical Objective Hysteresis Model (AnOHM v1.0): methodology to determine bulk storage heat flux coefficients

    Science.gov (United States)

    Sun, Ting; Wang, Zhi-Hua; Oechel, Walter C.; Grimmond, Sue

    2017-07-01

    The net storage heat flux (ΔQS) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQS and net all-wave radiation (Q∗) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQS. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection-diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQS flux well (RMSE values of ˜ 30 W m-2). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

  1. Towards a more efficient and robust representation of subsurface hydrological processes in Earth System Models

    Science.gov (United States)

    Rosolem, R.; Rahman, M.; Kollet, S. J.; Wagener, T.

    2017-12-01

    Understanding the impacts of land cover and climate changes on terrestrial hydrometeorology is important across a range of spatial and temporal scales. Earth System Models (ESMs) provide a robust platform for evaluating these impacts. However, current ESMs lack the representation of key hydrological processes (e.g., preferential water flow, and direct interactions with aquifers) in general. The typical "free drainage" conceptualization of land models can misrepresent the magnitude of those interactions, consequently affecting the exchange of energy and water at the surface as well as estimates of groundwater recharge. Recent studies show the benefits of explicitly simulating the interactions between subsurface and surface processes in similar models. However, such parameterizations are often computationally demanding resulting in limited application for large/global-scale studies. Here, we take a different approach in developing a novel parameterization for groundwater dynamics. Instead of directly adding another complex process to an established land model, we examine a set of comprehensive experimental scenarios using a very robust and establish three-dimensional hydrological model to develop a simpler parameterization that represents the aquifer to land surface interactions. The main goal of our developed parameterization is to simultaneously maximize the computational gain (i.e., "efficiency") while minimizing simulation errors in comparison to the full 3D model (i.e., "robustness") to allow for easy implementation in ESMs globally. Our study focuses primarily on understanding both the dynamics for groundwater recharge and discharge, respectively. Preliminary results show that our proposed approach significantly reduced the computational demand while model deviations from the full 3D model are considered to be small for these processes.

  2. Upper Blue Nile basin water budget from a multi-model perspective

    Science.gov (United States)

    Jung, Hahn Chul; Getirana, Augusto; Policelli, Frederick; McNally, Amy; Arsenault, Kristi R.; Kumar, Sujay; Tadesse, Tsegaye; Peters-Lidard, Christa D.

    2017-12-01

    Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

  3. Parameter optimisation for a better representation of drought by LSMs: inverse modelling vs. sequential data assimilation

    Science.gov (United States)

    Dewaele, Hélène; Munier, Simon; Albergel, Clément; Planque, Carole; Laanaia, Nabil; Carrer, Dominique; Calvet, Jean-Christophe

    2017-09-01

    Soil maximum available water content (MaxAWC) is a key parameter in land surface models (LSMs). However, being difficult to measure, this parameter is usually uncertain. This study assesses the feasibility of using a 15-year (1999-2013) time series of satellite-derived low-resolution observations of leaf area index (LAI) to estimate MaxAWC for rainfed croplands over France. LAI interannual variability is simulated using the CO2-responsive version of the Interactions between Soil, Biosphere and Atmosphere (ISBA) LSM for various values of MaxAWC. Optimal value is then selected by using (1) a simple inverse modelling technique, comparing simulated and observed LAI and (2) a more complex method consisting in integrating observed LAI in ISBA through a land data assimilation system (LDAS) and minimising LAI analysis increments. The evaluation of the MaxAWC estimates from both methods is done using simulated annual maximum above-ground biomass (Bag) and straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal, for 45 administrative units presenting a high proportion of straw cereals. Significant correlations (p value Bag and GY are found for up to 36 and 53 % of the administrative units for the inverse modelling and LDAS tuning methods, respectively. It is found that the LDAS tuning experiment gives more realistic values of MaxAWC and maximum Bag than the inverse modelling experiment. Using undisaggregated LAI observations leads to an underestimation of MaxAWC and maximum Bag in both experiments. Median annual maximum values of disaggregated LAI observations are found to correlate very well with MaxAWC.

  4. A radar-based hydrological model for flash flood prediction in the dry regions of Israel

    Science.gov (United States)

    Ronen, Alon; Peleg, Nadav; Morin, Efrat

    2014-05-01

    Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.

  5. Description and verification of a U.S. Naval Research Lab's loosely coupled data assimilation system for the Navy's Earth System Model

    Science.gov (United States)

    Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.

    2017-12-01

    The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.

  6. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops

    Science.gov (United States)

    Duan, Q.; Schaake, J.; Andreassian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L.; Hogue, T.; Huang, M.; Leavesley, G.; Liang, X.; Nasonova, O.N.; Noilhan, J.; Oudin, L.; Sorooshian, S.; Wagener, T.; Wood, E.F.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes of atmospheric models. The MOPEX science strategy involves three major steps: data preparation, a priori parameter estimation methodology development, and demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include more basins in all parts of the world. A number of international MOPEX workshops have been convened to bring together interested hydrologists and land surface modelers from all over world to exchange knowledge and experience in developing a priori parameter estimation techniques. This paper describes the results from the second and third MOPEX workshops. The specific objective of these workshops is to examine the state of a priori parameter estimation techniques and how they can be potentially improved with observations from well-monitored hydrologic basins. Participants of the second and third MOPEX workshops were provided with data from 12 basins in the southeastern US and were asked to carry out a series of numerical experiments using a priori parameters as well as calibrated parameters developed for their respective hydrologic models. Different modeling groups carried out all the required experiments independently using eight different models, and the results from these models have been assembled for analysis in this paper. This paper presents an overview of the MOPEX experiment and its design. The main experimental results are analyzed. A key finding is that existing a priori parameter estimation procedures are problematic and need improvement. Significant improvement of these

  7. An Overview of the National Weather Service National Water Model

    Science.gov (United States)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow

  8. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2014-08-05

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.

  9. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  10. Copula Multivariate analysis of Gross primary production and its hydro-environmental driver; A BIOME-BGC model applied to the Antisana páramos

    Science.gov (United States)

    Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Galarraga, Remigio; Mynett, Arthur

    2014-05-01

    Simulations of carbon cycling are prone to uncertainties from different sources, which in general are related to input data, parameters and the model representation capacities itself. The gross carbon uptake in the cycle is represented by the gross primary production (GPP), which deals with the spatio-temporal variability of the precipitation and the soil moisture dynamics. This variability associated with uncertainty of the parameters can be modelled by multivariate probabilistic distributions. Our study presents a novel methodology that uses multivariate Copulas analysis to assess the GPP. Multi-species and elevations variables are included in a first scenario of the analysis. Hydro-meteorological conditions that might generate a change in the next 50 or more years are included in a second scenario of this analysis. The biogeochemical model BIOME-BGC was applied in the Ecuadorian Andean region in elevations greater than 4000 masl with the presence of typical vegetation of páramo. The change of GPP over time is crucial for climate scenarios of the carbon cycling in this type of ecosystem. The results help to improve our understanding of the ecosystem function and clarify the dynamics and the relationship with the change of climate variables. Keywords: multivariate analysis, Copula, BIOME-BGC, NPP, páramos

  11. Electrochemical oxidation of propene by use of LSM15/CGO10 electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    The propene catalytic oxidation was studied over an 11-layers porous electrochemical reactor made by La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 with the objective to simulate the abatement of exhaust gases emitted from Diesel engines. This work shows the possibility to enhance the catalytic activity th...... of catalysis (EPOC) was found at low temperature....

  12. High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas

    DEFF Research Database (Denmark)

    Hofmann, P.; Schweiger, A.; Fryda, L.

    2007-01-01

    and tar traces. The chosen SOFC was electrolyte supported with a nickel/gadolinium-doped cerium oxide (Ni-GDC) anode, known for its carbon deposition resistance. Through humidification the steam to carbon ratio (S/C) was adjusted to 0.5, which results in a thermodynamically carbon free condition...

  13. Improvement of LSM15-CGO10 electrodes for electrochemical removal of NOx by KNO3 and MnOx impregnation

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Kammer Hansen, Kent

    2011-01-01

    in 1000 ppm NO, 10% O2 and 1000 ppm NO + 10% O2 in the temperature range 300-500 °C and the electrodes were investigated by scanning electron microscopy before and after testing. At 400-450 °C a NOx-storage process was observed on the KNO3-impregnated electrodes, this process appeared to be dependent...

  14. Electrochemical Removal of NOx-Gasses by Use of LSM-Cathodes Impregnated with a NOx Storage Compound

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Kammer Hansen, Kent

    2010-01-01

    Electrochemical decomposition of NO on La0.85Sr0.15MnO3-- Ce0.90Gd0.10O1.95electrodes with and without KNO3 impregnation is investigated. The KNO3 is added as this compound is expected to work as a NOx-storage compound. Measurements are made in the temperature range 300-400 degree C and in three...

  15. Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by means of phalloidin labeling and cLSM.

    Science.gov (United States)

    Müller, Monika C M; Schmidt-Rhaesa, Andreas

    2003-05-01

    In the present investigation the entire muscle system of the cyclorhagid kinorhynch Antygomonas sp. was three-dimensionally reconstructed from whole mounts by means of FITC-phalloidin labeling and confocal scanning microscopy. With this technique, which proved to be especially useful for microscopically small species, we wanted to reinvestigate and supplement the findings obtained by histological and electron microscopical methods. The organization of the major muscle systems can be summarized as follows: 1) All muscle fibers, apart from the intestinal ones, the spine, and the mouth cone muscles, show a cross-striated pattern; 2) Dorsal longitudinal muscle fibers as well as segmentally arranged dorsoventral fibers occur from segment III to XIII; 3) Diagonal muscle fibers are located laterally in segments III to X; 4) Two rings of circular fibers are present in segment II, forming the closing apparatus in Cyclorhagida. Further circular muscles are present in segment I, forming the mouth cone and the eversible introvert, and in the pharyngeal bulb. Copyright 2003 Wiley-Liss, Inc.

  16. Theoretical Design and Experimental Evaluation of Molten Carbonate Modified LSM Cathode for Low Temperature Solid Oxide Fuel Cells

    Science.gov (United States)

    2015-01-07

    collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Benedict ...08/01/2011-07/31/2014 PI, Changyong Qin, Benedict College Co-PI, Kevin Huang, University of South Carolina The following topics were explored by

  17. The Climate change impact on the water balance and use efficiency of two contrasting water limited Mediterranean ecosystems in Sardinia

    Science.gov (United States)

    Montaldo, Nicola; Corona, Roberto; Albertson, John

    2016-04-01

    . Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The two case study sites are within the Flumendosa river basin, with similar height a.s.l., and close (distance of 4 km). But the first site is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types with wild olive trees and C3 herbaceous (grass) species and the soil thickness varies from 15-40 cm. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated from 2003. An ecohydrologic model is successfully tested to the case studies. It couples a vegetation dynamic model (VDM), which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM). Model is first used for simulating historically land surface fluxes from 1922 at the two sites. Climate change scenarios are then generated using a stochastic weather generator. It simulates hydrometeorological variables from historical time series altered by IPCC meteorological change predictions. The VDM-LSM predicts soil water balance and vegetation dynamics for the generated hydrometeorological scenarios at the two sites. Results demonstrate that contrasting climate change effects (decrease of winter precipitation vs increase of spring-summer air temperature) are significantly impacting land surface interactions (evapotranspiration and runoff dynamics) but with different effects on the two contrasting sites, due to the key role of the soil depth. Water resources predictions

  18. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  19. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    Science.gov (United States)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  20. Comparison between the Community Land Model and the Terra Urb model in COSMO 5.0 over tropical Africa

    Science.gov (United States)

    Brousse, Oscar; Wouters, Hendrik; Thiery, Wim; Demuzere, Matthias; Van Lipzig, Nicole

    2017-04-01

    African urban inhabitants are expected to rise up to 75% of the continent's population at the horizon of 2050 (United Nations, 2014). This unprecedented demographic rise has led to an uncontrolled urbanization, and hence to a lack of public health infrastructures and administration within African cities. During the past decades, as an example, malaria's mitigating infrastructures have been constructed without considering the impact of urbanization. Indexes of malaria's risks have been based on rural areas, driving huge biases by not taking into account characteristics of the urban environment. In response to this challenge, the REACT project sets out to develop an index for malaria risk in urban tropical Africa. In particular, we aim to create two indexes that apply to the regional and local scale, respectively. Especially, intra-urban variability of the near-surface climate and the malaria's epidemiology thus needs to be described. To start, we first conduct a series of sensitivity simulations over a one-year period to determine which Land Surface Model (LSM) implemented within COSMO 5.0 is most suited for the purpose of this research. The model domain will cover the Lake Victoria area, integrating Kampala within its boundaries. The regional climate is considered as tropical and interactions between Lake Victoria and its surroundings have been proven (Thiery et al., 2015; 2016). Since malaria depends on typical meteorological and climatic factors such as precipitation, relative humidity, wind speed and temperature, the first part of the project aims at finding which of the LSMs able to assess the more conveniently those epidemiological drivers. Indeed, the results of those runs will serve both the scales for inter- and intra-urban analysis (through a downscaling approach) and hence need to be as detailed as possible. The coupling of COSMO-CLM with the Community Land Model (COSMO-CLM2; Davin and Seneviratne, 2012) is known to have a better integration of vegetation

  1. A Budyko-type Model for Human Water Consumption

    Science.gov (United States)

    Lei, X.; Zhao, J.; Wang, D.; Sivapalan, M.

    2017-12-01

    With the expansion of human water footprint, water crisis is no longer only a conflict or competition for water between different economic sectors, but also increasingly between human and the environment. In order to describe the emergent dynamics and patterns of the interaction, a theoretical framework that encapsulates the physical and societal controls impacting human water consumption is needed. In traditional hydrology, Budyko-type models are simple but efficient descriptions of vegetation-mediated hydrologic cycle in catchments, i.e., the partitioning of mean annual precipitation into runoff and evapotranspiration. Plant water consumption plays a crucial role in the process. Hypothesized similarities between human-water and vegetation-water interactions, including water demand, constraints and system functioning, give the idea of corresponding Budyko-type framework for human water consumption at the catchment scale. Analogous to variables of Budyko-type models for hydrologic cycle, water demand, water consumption, environmental water use and available water are corresponding to potential evaporation, actual evaporation, runoff and precipitation respectively. Human water consumption data, economic and hydro-meteorological data for 51 human-impacted catchments and 10 major river basins in China are assembled to look for the existence of a Budyko-type relationship for human water consumption, and to seek explanations for the spread in the observed relationship. Guided by this, a Budyko-type analytical model is derived based on application of an optimality principle, that of maximum water benefit. The model derived has the same functional form and mathematical features as those that apply for the original Budyko model. Parameters of the new Budyko-type model for human consumption are linked to economic and social factors. The results of this paper suggest that the functioning of both social and hydrologic subsystems within catchment systems can be explored within

  2. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry

    Science.gov (United States)

    Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann

    2018-03-01

    Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.

  3. Establishing an operational waterhole monitoring system using satellite data and hydrologic modelling: Application in the pastoral regions of East Africa

    Science.gov (United States)

    Senay, Gabriel B.; Velpuri, Naga Manohar; Alemu, Henok; Pervez, Shahriar Md; Asante, Kwabena O; Karuki, Gatarwa; Taa, Asefa; Angerer, Jay

    2013-01-01

    Timely information on the availability of water and forage is important for the sustainable development of pastoral regions. The lack of such information increases the dependence of pastoral communities on perennial sources, which often leads to competition and conflicts. The provision of timely information is a challenging task, especially due to the scarcity or non-existence of conventional station-based hydrometeorological networks in the remote pastoral regions. A multi-source water balance modelling approach driven by satellite data was used to operationally monitor daily water level fluctuations across the pastoral regions of northern Kenya and southern Ethiopia. Advanced Spaceborne Thermal Emission and Reflection Radiometer data were used for mapping and estimating the surface area of the waterholes. Satellite-based rainfall, modelled run-off and evapotranspiration data were used to model daily water level fluctuations. Mapping of waterholes was achieved with 97% accuracy. Validation of modelled water levels with field-installed gauge data demonstrated the ability of the model to capture the seasonal patterns and variations. Validation results indicate that the model explained 60% of the observed variability in water levels, with an average root-mean-squared error of 22%. Up-to-date information on rainfall, evaporation, scaled water depth and condition of the waterholes is made available daily in near-real time via the Internet (http://watermon.tamu.edu). Such information can be used by non-governmental organizations, governmental organizations and other stakeholders for early warning and decision making. This study demonstrated an integrated approach for establishing an operational waterhole monitoring system using multi-source satellite data and hydrologic modelling.

  4. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    Science.gov (United States)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  5. MobRISK: a model for assessing the exposure of road users to flash flood events

    Directory of Open Access Journals (Sweden)

    S. Shabou

    2017-09-01

    Full Text Available Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial–temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.

  6. MobRISK: a model for assessing the exposure of road users to flash flood events

    Science.gov (United States)

    Shabou, Saif; Ruin, Isabelle; Lutoff, Céline; Debionne, Samuel; Anquetin, Sandrine; Creutin, Jean-Dominique; Beaufils, Xavier

    2017-09-01

    Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial-temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.

  7. Liquidity-saving mechanisms in collateral-based RTGS payment systems

    OpenAIRE

    Jurgilas, Marius; Martin, Antoine

    2010-01-01

    This paper studies banks' incentives for choosing the timing of their payment submissions in a collateral-based real-time gross settlement payment system and the way in which these incentives change with the introduction of a liquidity-saving mechanism (LSM). We show that an LSM allows banks to economize on collateral while also providing incentives to submit payments earlier. The reason is that, in our model, an LSM allows payments to be matched and offset, helping to settle payment cycles i...

  8. Retrospective Snow Analysis Across the Continental United States for the National Water Model

    Science.gov (United States)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2016-12-01

    For large portions of the United States, snow plays a vital role in hydrologic prediction. This is particularly true in the mountain west where snowmelt contributes up to 80% of total streamflow runoff. The Office of Water Prediction (OWP) will begin running the National Water Model (NWM) during the second half of 2016, which is a continental-scale implementation of the WRF-Hydro community hydrologic modeling framework. Assessing and benchmarking the performance of the snow component of the NWM is important for future research-to-operations activities and for forecasters to better understand NWM output. For this study, WRF-Hydro was ran using the same domain and physics options as the NWM (1 km LSM, 250m overland routing, and NHDPlus Version 2.1 channel network). The land surface component chosen is Noah-MP land surface model. Forcing from the National Land Data Assimilation System (NLDAS-2) was downscaled from the native 0.125 degree resolution to the 1 km modeling domain to drive the model. The model was ran over a 5-year retrospective period to gauge multi-year performance of the snow states. Output was analyzed against both in-situ observations, such as SNOTEL, and the Snow Data Assimilation System (SNODAS). In addition, gridded snow states and SNODAS grids were aggregated to Omernik-derived ecological regions. This was done in order to break up snow analysis by regions that share similar ecological and physiographic characteristics. Results show WRF-Hydro is able to capture peak timing across most of the mountain west fairly well. In terms of magnitudes, the model struggles across portions of the west with a low bias. This is especially true in the Cascades, which could be traced back to precipitation partitioning issues in the model. Across the central Rockies, the model exhibits a lower dry bias showing improved performance there. Previous literature suggests a dry bias in the precipitation out west may be contributing to model performance. East of the

  9. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang

    2013-09-22

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  10. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  11. Evaluation of NLDAS-2 Multi-Model Simulated Soil Moisture Using the Observations from North American Soil Moisture Dataset (NASMD)

    Science.gov (United States)

    Xia, Y.; Ek, M. B.; Wu, Y.; Ford, T.; Quiring, S. M.

    2014-12-01

    The North American Land Data Assimilation System phase 2 (NLDAS-2, http://www.emc.ncep.noaa.gov/mmb/nldas/) has generated 35-years (1979-2013) of hydrometeorological products from four state-of-the-art land surface models (Noah, Mosaic, SAC, VIC). These products include energy fluxes, water fluxes, and state variables. Soil moisture is one of the most important state variables in NLDAS-2 as it plays a key role in land-atmosphere interaction, regional climate and ecological model simulation, water resource management, and other study areas. The soil moisture data from these models have been used for US operational drought monitoring activities, water resources management and planning, initialization of regional weather and climate models, and other meteorological and hydrological research purposes. However, these data have not yet been comprehensively evaluated due to the lack of extensive soil moisture observations. In this study, observations from over 1200 sites in the North America compiled from 27 observational networks in the North American Soil Moisture Database (NASMD, http://soilmoisture.tamu.edu/) were used to evaluate the model-simulated daily soil moisture for different vegetation cover varying from grassland to forest, and different soil texture varying from sand to clay. Seven states in the United States from NASMD were selected based on known measurement error estimates for the evaluation. Statistical metrics, such as anomaly correlation, root-mean-square errors (RMSE), and bias are computed to assess NLDAS-2 soil moisture products. Three sensitivity tests were performed using the Noah model to examine the effect of soil texture and vegetation type mismatch on NLDAS-2 soil moisture simulation. In the first test, site observed soil texture was used. In the second test, site observed vegetation type/land cover was used. In the third test, both site observed soil texture and vegetation type were used. The results from three sensitivity tests will be

  12. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    Science.gov (United States)

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  13. Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network

    Science.gov (United States)

    Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James

    2015-01-01

    Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.

  14. Use of plant trait data in the ISBA-A-gs model

    Science.gov (United States)

    Calvet, Jean-Christophe

    2014-05-01

    ISBA-A-gs is a CO2-responsive LSM (Calvet et al., 1998; Gibelin et al., 2006), able to simulate the diurnal cycle of carbon and water vapour fluxes, together with LAI and soil moisture evolution. The various components of ISBA-A-gs are based to a large extent on meta-analyses of trait data. (1) Photosynthesis: ISBA-A-gs uses the model of Goudriaan et al. (1985) modified by Jacobs (1994) and Jacobs et al. (1996). The main parameter is mesophyll conductance (gm). Leaf-level photosynthesis observations were used together with canopy level flux observations to derive gm together with other key parameters of the Jacobs model, including in drought conditions. This permitted implementing detailed representations of the soil moisture stress. Two different types of drought responses are distinguished for both herbaceous vegetation (Calvet, 2000) and forests (Calvet et al., 2004), depending on the evolution of the water use efficiency (WUE) under moderate stress: WUE increases in the early soil water stress stages in the case of the drought-avoiding response, whereas WUE decreases or remains stable in the case of the drought-tolerant response. (2) Plant growth: the leaf biomass is provided by a growth model (Calvet et al., 1998; Calvet and Soussana, 2001) driven by photosynthesis. In contrast to other land surface models, no GDD-based phenology model is used in ISBA-A-gs, as the vegetation growth and senescence are entirely driven by photosynthesis. The leaf biomass is supplied with the carbon assimilated by photosynthesis, and decreased by a turnover and a respiration term. Turnover is increased by a deficit in photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and a minimum LAI value is prescribed. The maximum annual value of LAI is prognostic, i.e. it can be predicted by the model. LAI is derived from leaf biomass using SLA values. The latter are derived from the leaf nitrogen concentration using plasticity parameters. (3) CO2 effect: the

  15. Modeling plant competition for soil water balance in Water-limited Mediterranean Ecosystems

    Science.gov (United States)

    Cortis, C.; Montaldo, N.

    2009-12-01

    In heterogeneous ecosystems, such Mediterranean ecosystems, contrasting plant functional types (PFTs, e.g., grass and woody vegetation) compete for the water use. In these complex ecosystems current modeling approaches need to be improved due to a general lack of knowledge about the relationship between ET and the plant survival strategies for the different PFTs under water stress. Indeed, still unsolved questions are: how the PFTs (in particular the root systems) compete for the water use, the impact of this competition on the water balance terms, and the role of the soil type and soil depth in this competition. For this reasons an elaborated coupled Vegetation dynamic model (VDM) - land surface model (LSM) model able to also predict root distribution of competing plant systems is developed. The transport of vertical water flow in the unsaturated soil is modelled through a Richards’ equation based model. The water extraction (sink) term is considered as the root water uptake. Two VDMs predict vegetation dynamics, including spatial and temporal distribution/evolution of the root systems in the soil of two competing species (grass and woody vegetation). An innovative method for solving the unlinear system of predicting equations is proposed. The coupled model is able to predict soil and root water potential of the two competing plant species. The model is tested for the Orroli case study, situated in the mid-west of Sardinia within the Flumendosa river watershed. The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and coark oaks, different shrubs and herbaceous species. In particular two contrasting plant functional types (grass and woody vegetation) have been included. The model well predict the soil moisture and vegetation dynamics for the case study, and significantly different root potentials are predicted for the two PFTs, highlighting the root competition for the water use. The soil depth is low in the case

  16. Modeling plant competition for water use in Water-limited Mediterranean Ecosystems

    Science.gov (United States)

    Cortis, C.; Montaldo, N.

    2009-04-01

    In heterogeneous ecosystems, such Mediterranean ecosystems, contrasting plant functional types (PFTs, e.g., grass and woody vegetation) compete for the water use. In these complex ecosystems current modeling approaches need to be improved due to a general lack of knowledge about the relationship between ET and the plant survival strategies for the different PFTs under water stress. Indeed, still unsolved questions are: how the PFTs (in particular the root systems) compete for the water use, the impact of this competition on the water balance terms, and the role of the soil type and soil depth in this competition. For this reasons an elaborated coupled Vegetation dynamic model (VDM) - land surface model (LSM) model able to also predict root distribution of competing plant systems is developed. The transport of vertical water flow in the unsaturated soil is modelled through a Richards' equation based model. The water extraction (sink) term is considered as the root water uptake. Two VDMs predict vegetation dynamics, including spatial and temporal distribution/evolution of the root systems in the soil of two competing species (grass and woody vegetation). An innovative method for solving the unlinear system of predicting equations is proposed. The coupled model is able to predict soil and root water potential of the two competing plant species. The model is tested for the Orroli case study, situated in the mid-west of Sardinia within the Flumendosa river watershed. The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and coark oaks, different shrubs and herbaceous species. In particular two contrasting plant functional types (grass and woody vegetation) have been included. The model well predict the soil moisture and vegetation dynamics for the case study, and significantly different root potentials are predicted for the two PFTs, highlighting the root competition for the water use. The soil depth is low in the case

  17. Systematic flood modelling to support flood-proof urban design

    Science.gov (United States)

    Bruwier, Martin; Mustafa, Ahmed; Aliaga, Daniel; Archambeau, Pierre; Erpicum, Sébastien; Nishida, Gen; Zhang, Xiaowei; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin

    2017-04-01

    Urban flood risk is influenced by many factors such as hydro-meteorological drivers, existing drainage systems as well as vulnerability of population and assets. The urban fabric itself has also a complex influence on inundation flows. In this research, we performed a systematic analysis on how various characteristics of urban patterns control inundation flow within the urban area and upstream of it. An urban generator tool was used to generate over 2,250 synthetic urban networks of 1 km2. This tool is based on the procedural modelling presented by Parish and Müller (2001) which was adapted to generate a broader variety of urban networks. Nine input parameters were used to control the urban geometry. Three of them define the average length, orientation and curvature of the streets. Two orthogonal major roads, for which the width constitutes the fourth input parameter, work as constraints to generate the urban network. The width of secondary streets is given by the fifth input parameter. Each parcel generated by the street network based on a parcel mean area parameter can be either a park or a building parcel depending on the park ratio parameter. Three setback parameters constraint the exact location of the building whithin a building parcel. For each of synthetic urban network, detailed two-dimensional inundation maps were computed with a hydraulic model. The computational efficiency was enhanced by means of a porosity model. This enables the use of a coarser computational grid , while preserving information on the detailed geometry of the urban network (Sanders et al. 2008). These porosity parameters reflect not only the void fraction, which influences the storage capacity of the urban area, but also the influence of buildings on flow conveyance (dynamic effects). A sensitivity analysis was performed based on the inundation maps to highlight the respective impact of each input parameter characteristizing the urban networks. The findings of the study pinpoint

  18. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    Science.gov (United States)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model

  19. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model

    Science.gov (United States)

    Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.

    2017-11-01

    , and is able to remove the false (inaccurately) forecasted data in the ANFIS model for extremely low flows. The present results have wider implications not only for streamflow forecasting purposes, but also for other hydro-meteorological forecasting variables requiring only the historical data input data, and attaining a greater level of predictive accuracy with the incorporation of the FFA algorithm as an optimization tool in an ANFIS model.

  20. A stand-alone demography and landscape structure module for Earth system models

    Science.gov (United States)

    Nieradzik, L. P.; Haverd, V.; Smith, B.; Cook, G. D.; Briggs, P.; Roxburgh, S.; Liedloff, A.; Meyer, C.; Canadell, J.

    2013-12-01

    component of any LSM, represents a significant advance in our ability to use in-situ and remotely sensed observations of biomass and individual level parameters (e.g. crown-size, tree-height, stem diameter) as constraints on the terrestrial carbon cycle. Haverd, V., B. Smith, G. Cook, P. Briggs, L. Nieradzik, S. Roxburgh, A. Liedloff, C. Meyer, and J. G. Canadell, A stand-alone tree demography and landscape structure module for Earth system models, submitted to Geophys. Res. Let., 2013 Wolf, A., P. Ciais, V. Bellassen, N. Delbart, C.B. Field, and J.A. Berry, Forest biomass allometry in global land surface models, Global Biogeochem. Cycles, 25, GB3015, doi:10.1029/2010GB003917, 2011

  1. Investigation of boundary-layer wind predictions during nocturnal low-level jet events using the Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, Jeff D.; Simpson, Matthew D.; Fast, Jerome D.; Berg, Larry K.; Baskett, R.

    2016-04-01

    Simulations of two periods featuring three consecutive low level jet (LLJ) events in the US Upper Great Plains during the autumn of 2011 were conducted to explore the impacts of various setup configurations and physical process models on simulated flow parameters within the lowest 200 m above the surface, using the Weather Research and Forecasting (WRF) model. Sensitivities of simulated flow parameters to the horizontal and vertical grid spacing, planetary boundary layer (PBL) and land surface model (LSM) physics options, were assessed. Data from a Light Detection and Ranging (lidar) system, deployed to the Weather Forecast Improvement Project (WFIP; Finley et al. 2013) were used to evaluate the accuracy of simulated wind speed and direction at 80 m above the surface, as well as their vertical distributions between 120 and 40 m, covering the typical span of contemporary tall wind turbines. All of the simulations qualitatively captured the overall diurnal cycle of wind speed and stratification, producing LLJs during each overnight period, however large discrepancies occurred at certain times for each simulation in relation to the observations. 54-member ensembles encompassing changes of the above discussed configuration parameters displayed a wide range of simulated vertical distributions of wind speed and direction, and potential temperature, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error (RMSE) statistics show that different ensemble members performed better and worse in various simulated parameters at different times, with no clearly superior configuration . Simulations using a PBL parameterization designed specifically for the stable conditions investigated herein provided superior overall simulations of wind speed at 80 m, demonstrating the efficacy of targeting improvements of physical process models in areas of known deficiencies. However, the considerable magnitudes of the

  2. Multiple-resolution Modeling of flood processes in urban catchments using WRF-Hydro: A Case Study in south Louisiana.

    Science.gov (United States)

    Saad, H.; Habib, E. H.

    2017-12-01

    In August 2016, the city of Lafayette and many other urban centers in south Louisiana experienced catastrophic flooding resulting from prolonged rainfall. Statewide, this historic storm displaced more than 30,000 people from their homes, resulted in damages up to $8.7 billion, put rescue workers at risk, interrupted institutions of education and business, and worst of all, resulted in the loss of life of at least 13 Louisiana residents. With growing population and increasing signs of climate change, the frequency of major floods and severe storms is expected to increase, as will the impacts of these events on our communities. Local communities need improved capabilities for forecasting flood events, monitoring of flood impacts on roads and key infrastructure, and effectively communicating real-time flood dangers at scales that are useful to the public. The current study presents the application of the WRF-Hydro modeling system to represent integrated hydrologic, hydraulic and hydrometeorological processes that drive flooding in urban basins at temporal and spatial scales that can be useful to local communities. The study site is the 25- mile2 Coulee mine catchment in Lafayette, south Louisiana. The catchment includes two tributaries with natural streams located within mostly agricultural lands. The catchment crosses the I-10 highway and through the metropolitan area of the City of Lafayette into a man-made channel, which eventually drains into the Vermilion River and the Gulf of Mexico. Due to its hydrogeomorphic setting, local and rapid diversification of land uses, low elevation, and interdependent infrastructure, the integrated modeling of this coulee is considered a challenge. A nested multi-scale model is being built using the WRF-HYDRO, with 500m and 10m resolutions for the NOAH land-surface model and diffusive wave terrain routing grids, respectively.

  3. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Science.gov (United States)

    Albergel, C.; Calvet, J.-C.; de Rosnay, P.; Balsamo, G.; Wagner, W.; Hasenauer, S.; Naeimi, V.; Martin, E.; Bazile, E.; Bouyssel, F.; Mahfouf, J.-F.

    2010-11-01

    The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM) measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km) active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP), issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing) by TU-Wien (Vienna University of Technology) over a two year period (2007-2008). A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP) and the Integrated Forecasting System (IFS) analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  4. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived