WorldWideScience

Sample records for model liquid crystalline

  1. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...

  2. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  3. Co-rotational Oldroyd Fluid B Model for Spinning Flow of Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    付强

    2003-01-01

    The relationship between the extensional viscosity and material parameters was studied through the analytical formulas of stress and extensional viscosity. The differential equations were solved to obtain the relationship between extensional viscosity and strain rates. The results obtained qualitatively agree with the experimental results. The study makes it practicable to simulate the rheologic behaviors of spinning flow of liquid crystalline polymer using co-rotational Oldroyd fluid B model.

  4. ADVANCES IN LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    W. J. Jackson

    1992-01-01

    Advances have been made in understanding the interactions of composition, molecular weight,liquid crystallinity, orientation, and three-dimensional crystallinity on the properties of injection-molded and melt-spun liquid crystalline polyesters (LCP's). Two classes of potentially low-cost LCP's were compared : (1) semiflexible LCP's prepared from 1,6-hexanediol and the dimethyl ester of either trans-4, 4'-stilbenedicarboxylic acid or 4.4 ′-biphenyldicarboxylic acid and (2) all-aromatic LCP's prepared from terephthalic acid, 2, 6-naphthalenedicarboxylic acid, the diacetate of hydroquinone,and the acetate of p-hydroxybenzoic acid. The effects of composition on the plastic properties of the 4-component all-aromatic LCP's were determined with the aid of a 3 × 3 factorial statistically designed experiment, the generation of equations with a computer program, and the plotting of three-dimensional figures and contour diagrams. The effects of absolute molecular weight (Mw) on the tensile strengths of the semiflexible LCP's and one of the all-aromatic LCP's having an excellent balance of plastic properties were also compared, and it was observed that the semiflexible LCP's required Mw's about 4 times higher than the all-aromatic LCP to attain a given strength. Persistence lengths and molecular modeling were used to explain these differences.

  5. Liquid-crystalline lanthanide complexes

    OpenAIRE

    Binnemans, Koen

    1999-01-01

    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  6. Crystalline 'Genes' in Metallic Liquids

    CERN Document Server

    Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming

    2014-01-01

    The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

  7. Theoretical model of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Johansen, Per Michael; Holme, N.C.R.;

    1998-01-01

    A theoretical framework for the temporal behavior of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters is constructed. The domain structure of the material is taken into account and inter molecular interactions are included through a mean-field description. Photoinduced...

  8. Lattice Statistical Models for the Nematic Transitions in Liquid-Crystalline Systems

    Science.gov (United States)

    Nascimento, E. S.; Vieira, A. P.; Salinas, S. R.

    2016-12-01

    We investigate the connections between some simple Maier-Saupe lattice models, with a discrete choice of orientations of the microscopic directors, and a recent proposal of a two-tensor formalism to describe the phase diagrams of nematic liquid-crystalline systems. This two-tensor proposal is used to formulate the statistical problem in terms of fully connected lattice Hamiltonians, with the local nematic directors restricted to the Cartesian axes. Depending on the choice of interaction parameters, we regain all of the main features of the original mean-field two-tensor calculations. With a standard choice of parameters, we obtain the well-known sequence of isotropic, uniaxial, and biaxial nematic structures, with a Landau multicritical point. With another suitably chosen set of parameters, we obtain two tricritical points, according to some recent predictions of the two-tensor calculations. The simple statistical lattice models are quite easy to work with, for all values of parameters, and the present calculations can be carried out beyond the mean-field level.

  9. Photocontrollable liquid-crystalline actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2011-05-17

    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Liquid Crystalline Esters of Dibenzophenazines

    Directory of Open Access Journals (Sweden)

    Kevin John Anthony Bozek

    2015-01-01

    Full Text Available A series of esters of 2,3,6,7-tetrakis(hexyloxydibenzo[a,c]phenazine-11-carboxylic acid was prepared in order to probe the effects of the ester groups on the liquid crystalline behavior. These compounds exhibit columnar hexagonal phases over broad temperature ranges. Variations in chain length, branching, terminal groups, and the presence of cyclic groups were found to modify transition temperatures without substantially destabilizing the mesophase range.

  11. Growth, dynamics, and texture modeling of the lamellar smectic-A liquid crystalline transition

    Science.gov (United States)

    Abukhdeir, Nasser Mohieddin

    2009-11-01

    This thesis is focused on the study of material transformations from the disordered state to the lamellar-ordered/smectic-A liquid crystalline state via multi-scale multi-transport modeling and simulation. This approach utilizes a high-order Landau-de Gennes phenomenological model able to bridge the gap between experimentally observed macro-scale phenomena and the nano-scale growth and structure inherent to liquid crystalline ordering. A unique feature of this simulation-based thesis is the direct verification of predictions with past experimental observations. In this context, the main contributions of this thesis work focuses on three experimental systems: free growth of an isolated domain, defect/texture formation, and the evolution of texture/defect interactions as the system approaches equilibrium. Simulation studies of free growth were first performed under conditions of deep undercooling, where non-isothermal effects can be neglected. The growth/shape kinetic evolution of initially textured and homogeneous spherulites growing into an unstable isotropic matrix phase was found, elucidating nano-scale morphology/texture processes and growth instabilities inaccessible experimentally. Undulation instabilities in growing smectic-A spherulites discovered in this work shed light on a possible mechanism for the formation of experimentally observed anisotropic "batonnet" morphologies and two-dimension focal conic defect structures. Recent experimental observations of growth kinetic phenomena of meta-stable nematic pre-ordering was studied, showing that the high-order model both predicts this phenomenon and explains the underlying mechanisms for experimentally determined morphological trends. A non-isothermal extension to the high-order model is derived and applied to study free growth under shallow undercooling conditions, where latent heat and anisotropic thermal diffusion are non-negligible. Growth laws, agreeing with experimental observations, are determined and

  12. Liquid Crystalline Compositions as Gas Sensors

    Science.gov (United States)

    Shibaev, Petr; Murray, John; Tantillo, Anthony; Wenzlick, Madison; Howard-Jennings, Jordan

    2015-03-01

    Droplets and films of nematic and cholesteric liquid crystalline mixtures were studied as promising detectors of volatile organic compounds (VOCs) in the air. Under increasing concentration of VOC in the air the detection may rely on each of the following effects sequentially observed one after the other due to the diffusion of VOC inside liquid crystalline matrix: i. slight changes in orientation and order parameter of liquid crystal, ii. formation of bubbles on the top of the liquid crystalline droplet due to the mass transfer between the areas with different order parameter, iii. complete isotropisation of the liquid crystal. All three stages can be easily monitored by optical microscopy and photo camera. Detection limits corresponding to the first stage are typically lower by a factor of 3-6 than detection limits corresponding to the beginning of mass transfer and isotropisation. The prototype of a compact sensor sensitive to the presence of organic solvents in the air is described in detail. The detection limits of the sensor is significantly lower than VOC exposure standards. The qualitative model is presented to account for the observed changes related to the diffusion, changes of order parameter and isotropisation.

  13. Buckling Instability in Liquid Crystalline Physical Gels

    Science.gov (United States)

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A.; Meyer, Robert B.

    2006-04-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil side-group liquid-crystalline polymer coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to room temperature. We model the instability using the molecular theory of nematic rubber elasticity, and the theory correctly captures the change in pitch length with sample thickness and polymer concentration. This buckling instability is a clear example of a low-energy deformation that arises in materials where polymer network strains are coupled to the director orientation.

  14. Liquid Crystalline Materials for Biological Applications.

    Science.gov (United States)

    Lowe, Aaron M; Abbott, Nicholas L

    2012-03-13

    Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.

  15. Nanosecond liquid crystalline optical modulator

    Energy Technology Data Exchange (ETDEWEB)

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying the electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.

  16. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  17. Photochromism of 36-Armed Liquid Crystalline Dendrimer

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The photochromism of a 36-armed liquid crystalline dendrimer D6 was briefly described in this paper. The molar absorption coefficient, photoisomerization and photo back-isomerization of D6 in solution were investigated by UV/Vis absorption spectra. The results indicate that the photochromism and photo back-isomerization of D6 in chloroform (CHCl3) and tetrahydrofuran (THF) solutions are in accordance with the first order kinetics. The photochromism rate constants of D6 are 10-1 s-1, it is 107 times larger than that of side-chain liquid crystalline polymers containing the same azobenzene moieties.

  18. Liquid crystalline thermosetting polyimides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, A.E.; Huang, S.J. [Connecticut Univ., Storrs, CT (United States). Inst. of Materials Science

    1993-07-01

    Phase separation of rodlike reinforcing polymers and flexible coil matrix polymers is a common problem in formulating molecular composites. One way to reduce phase separation might be to employ liquid crystalline thermosets as the matrix material. In this work, functionally terminated polyimide oligomers which exhibit lyotropic liquid crystalline behavior were successfully prepared. Materials based on 2,2{prime}-bis(trifluoromethyl)-4,4{prime}-diaminobiphenyl and 3,3{prime},4,4{prime}-biphenylenetetra-carboxylic dianhydride have been synthesized and characterized.

  19. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  20. Buckling Instability in Liquid Crystalline Physical Gels

    OpenAIRE

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A; Meyer, Robert B.

    2006-01-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil–side-group liquid-crystalline polymer–coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to r...

  1. Photoorientation of a liquid crystalline polyester with azobenzene side groups

    DEFF Research Database (Denmark)

    Zebger, I; Rutloh, M; Hoffmann, U

    2002-01-01

    . This model polymer is characterized by liquid crystallinity (g 24 S-X 26 S-A 34 n 47 i) and a strong aggregation tendency. The photoorientation is cooperative, i.e., the orientation of the photochromic side group induces the alignment of the ester unit (which is a part of the main-chain) and both methylene...

  2. Epoxy + liquid crystalline epoxy coreacted network

    Science.gov (United States)

    Punchaipetch, Prakaipetch

    2000-10-01

    Molecular reinforcement through in-situ polymerization of liquid crystalline epoxies (LCEs) and a non-liquid crystalline epoxy has been investigated. Three LCEs: diglycidyl ether of 4,4'-dihydroxybiphenol (DGE-DHBP) and digylcidyl ether of 4-hydroxyphenyl-4″-hydroxybiphenyl-4 '-carboxylate (DGE-HHC), were synthesized and blended with diglycidyl ether of bisphenol F (DGEBP-F) and subsequently cured with anhydride and amine curing agents. Curing kinetics were determined using differential scanning calorimetry (DSC). Parameters for autocatalytic curing kinetics of both pure monomers and blended systems were determined. The extent of cure for both monomers was monitored by using Fourier transform infrared spectroscopy (FT-IR). The glass transitions were evaluated as a function of composition using DSC and dynamic mechanical analysis (DMA). The results show that the LC constituent affects the curing kinetics of the epoxy resin and that the systems are highly miscible. The effects of molecular reinforcement of DGEBP-F by DGE-DHBP and DGE-HHC were investigated. The concentration of the liquid crystalline moiety affects mechanical properties. Tensile, impact and fracture toughness tests results are evaluated. Scanning electron microscopy of the fracture surfaces shows changes in failure mechanisms compared to the pure components. Results indicate that mechanical properties of the blended samples are improved already at low concentration by weight of the LCE added into epoxy resin. The improvement in mechanical properties was found to occur irrespective of the absence of liquid crystallinity in the blended networks. The mechanism of crack study indicates that crack deflection and crack bridging are the mechanisms in case of LC epoxy. In case of LC modified epoxy, the crack deflection is the main mechanism. Moreover, the effect of coreacting an epoxy with a reactive monomer liquid crystalline epoxy as a matrix for glass fiber composites was investigated. Mechanical

  3. Synthesis of New Liquid Crystalline Diglycidyl Ethers

    Directory of Open Access Journals (Sweden)

    Issam Ahmed Mohammed

    2012-01-01

    Full Text Available The phenolic Schiff bases I–VI were synthesized by condensation reactions between various diamines, namely o-dianisidine, o-tolidine and ethylenediamine with vanillin or p-hydroxybenzaldehyde and subsequent reactions between these phenolic Schiff bases and epichlorohydrin to produce new diglycidyl ethers Ia–VIa. The structures of these compounds were confirmed by CHN, FT-IR, 1H-NMR, and 13C-NMR spectroscopy. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC and polarizing optical microscopy (POM. All the diglycidyl ethers prepared exhibit nematic mesophases, except for Va and VIa, which did not show any transition mesophases, but simply flow to liquids.

  4. Synthesis and properties of liquid crystalline polyurethanes

    Institute of Scientific and Technical Information of China (English)

    Xin Haobo; Zhang Yunfeng; Xing Zheng

    2006-01-01

    1,4-Bis(p-hydroxybenzoate)phenylene was prepared using 1,4-bis(trimethylsiloxy)benzene and p-hydroxybenzoyl chloride as starting materials.A series of novel 1,4-bis(p-hydroxyalkoxybenzoate)phenylene were synthesized by reaction of 1,4-bis(p-hydroxybenzoate)phenylene with 3-bromopropanol and 4-bromobutanol,respectively,The liquid crystal polyurethanes were prepared by 1,4-bis(p-hydroxyalkoxybenzoate)phenylene with MDI (p-methylene diphenylenediisocyanate) and 2,4-TDI(2,4-toluenediisocyanate),respectively.The thermotropic properties,the melting point (Tm) and the isotropization temperature (Ti) of the synthesized polyurethanes were characterized by DSC,IR and POM.It showed that all of the polyurethane polymers exhibited thermotropic liquid crystalline properties between 144℃ and 260℃.The transition temperature (Tm and Ti) decreased with an increase in the length of the methylene spacer.

  5. Polarized photoluminescence from nematic and chiral- nematic liquid crystalline films

    Science.gov (United States)

    Conger, Brooke Morgan

    Polarization control is key to optoelectronics in terms of the processing and display of optical information. In principle, photonic or electronic excitation of anisotropic films should result in polarized light emission. Because of spontaneous molecular self-assembly, liquid crystals are ideal for the exploration of polarized luminescence. Although most studies on polarized luminescence have been based on liquid crystalline fluid films, solid films are preferred in view of morphological stability. Therefore, the theme of my thesis is the study of polarized luminescence from various fluorescent liquid crystal systems. From the fundamental perspective, a theory modeling the process of polarized photoluminescence was validated using fluorophore doped fluid liquid crystal films. To provide the morphological stability crucial to practical application, polarized fluorescence using vitrifiable and polymeric liquid crystals functionalized with fluorescent moieties was investigated. In addition, liquid crystalline π- conjugated polymers were synthesized and characterized as a new class of optical polymers. The effect of the emission source on achievable polarization from pyrene and carbazole systems was also elucidated. The main observations are as follows: (1) The observed degrees of polarization for all fluorescent liquid crystal systems were found to agree with the theories governing polarized fluorescence. (2) Low molar mass vitrifiable and polymeric liquid crystalline cyanoterphenyl and cyanotolane derivatives were found to yield moderate polarized fluorescence. Monomer emission was established as the decay pathway for the precursors and cyclohexane and polymethacrylate derivatives. (3) Ordered solid films from thiophene and p-phenylene π-conjugated polymers were found to induce significant degrees of polarized fluorescence. (4) Emission from glass-forming pyrenyl derivatives exhibited excimer emission in dilute solution and neat film, whereas in solid hosts it was

  6. Structural Analysis of Aromatic Liquid Crystalline Polyesters

    Directory of Open Access Journals (Sweden)

    Arpad Somogyi

    2011-01-01

    Full Text Available Laboratory preparations of liquid crystalline prepolymers, distillates accompanying prepolymers, final polymers, and sublimates accompanying final polymers were examined. NaOD/D2O depolymerization of prepolymers and polymers back to monomers with integration of the 1H NMR spectra showed up to 6% excess of carboxyls over phenol groups, caused partly by loss of the low-boiling comonomer hydroquinone through distillation during prepolymerization and leaving anhydride units in the polymer chain. ESI− MS and MS/MS of hexafluoroisopropanol extracts of the prepolymer detected small molecules including some containing anhydride groups; ESI+ MS showed the presence of small cyclic oligomers. 1H NMR (including TOCSY spectra provided more quantitative analyses of these oligomers. The final polymerization increases the length of the polymer chains and sublimes out the small oligomers. Anhydride linkages remaining in the polymer must make LCP’s more susceptible to degradation by nucleophilic reagents such as water, alkalis, and amines.

  7. Computer simulation of confined and flexoelectric liquid crystalline systems

    CERN Document Server

    Barmes, F

    2003-01-01

    In this Thesis, systems of confined and flexoelectric liquid crystal systems have been studied using molecular computer simulations. The aim of this work was to provide a molecular model of a bistable display cell in which switching is induced through the application of directional electric field pulses. In the first part of this Thesis, the study of confined systems of liquid crystalline particles has been addressed. Computation of the anchoring phase diagrams for three different surface interaction models showed that the hard needle wall and rod-surface potentials induce both planar and homeotropic alignment separated by a bistability region, this being stronger and wider for the rod-surface varant. The results obtained using the rod-sphere surface model, in contrast, showed that tilled surface arrangements can be induced by surface absorption mechanisms. Equivalent studies of hybrid anchored systems showed that a bend director structure can be obtained in a slab with monostable homeotropic anchoring at the...

  8. ELECTROCHROMETIC STUDIES ON POLAR MULTILAYERS OF LIQUID CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    GONG Mingxuan; REN Yanzhi; LIU Wang; GAO Manglai; ZHAO Yingying; BAI Yubai; LI Tiejin

    1995-01-01

    Electrochrometic measurements were carried on the Z-type Langmuir-Blodgett films oftwo liquid crystalline polymers: mono- {6-[4-(phenylazo) naphthyloxy] hexyl } (1a) andmono- { 6-[4- (anthraquinone-1-azo) naphthyloxy] hexyl} (2a) ester of polymaleic acid . Itwas found that for both polymers, poling fields parallel and antiparallel to dipole momentsof the polymer side chains induce red and blue shift in absorption bands, respectively. Forpolymer la blue shift is accompanied by absorbance increase, while red shift by absorbancedecrease;but for polymer 2a only decrease in absorbance is observed. A simple model wasproposed to analyze the results.

  9. The effect of liquid crystalline structure on chlorhexidine diacetate release.

    Science.gov (United States)

    Farkas, E; Zelkó, R; Németh, Z; Pálinkás, J; Marton, S; Rácz, I

    2000-01-05

    The aim of this study was to examine different liquid crystalline preparations containing chlorhexidine diacetate and to find connection between their structure and the kinetic of drug release. Nonionic surfactant, Synperonic A7 (PEG(7)-C(13-15)) was selected for the preparation of the examined liquid crystalline systems. Mixtures of different ratios of Synperonic A7 and water were produced. By increasing the water content of the systems, lamellar and hexagonal liquid crystal structures were observed. For the analysis of the prepared liquid crystalline systems polarising microscopy, rheology study, differential scanning calorimetry and dynamic swelling tests were carried out. The chlorhexidine diacetate release was examined by Franz-type vertical diffusion cell apparatus. The chlorhexidine diacetate release from hexagonal liquid crystalline preparations was characterised by zero-order release kinetics, while the drug release from lamellar liquid crystalline systems was described by anomalous (non-Fickian) transport. The results indicate that the drug release kinetic is strongly dependent on the liquid crystalline structure.

  10. Mesophase Formation in Discotic Liquid Crystalline Polymers

    NARCIS (Netherlands)

    Kouwer, P.H.J.

    2002-01-01

    Liquid crystals comprise a class of materials in which characteristic properties of crystals and liquids are combined. The materials show partly ordered fluid phases, between the common solid and the liquid phases. The combination of order and a high mobility is applied in the well-known liquid

  11. Review of crystalline structures of some selected homologous series of rod-like molecules capable of forming liquid crystalline phases.

    Science.gov (United States)

    Zugenmaier, Peter

    2011-01-01

    The crystal structures of four homologous series of rod-like molecules are reviewed, two of which form hydrogen bonds and two with a symmetric chemical constitution. Many of the compounds investigated turn into liquid crystalline phases upon temperature increase. It is of valuable interest to know possible conformations and possible packing arrangements as prerequisites to model liquid crystalline structures. The hydrogen bonds of homologous series of pure 4-(ω-hydroxyalkyloxy)-4'-hydroxybiphenyl (HnHBP, n the alkyloxy tail length) are realized through head to tail arrangements of the hydroxyl groups and crystallize except one compound in chiral space groups without the molecules containing any asymmetric carbon. The hydrogen bonds of the homologous series of 4-substituted benzoic acids with various lengths of the tail provide dimers through strong polar bonding of adjacent carboxyl groups and thus provide the stiff part of a mesogenic unit prerequisite for liquid crystalline phases. The homologous series of dialkanoyloxybiphenyls (BP-n, n = 1, 19), of which nine compounds could be crystallized, show liquid crystalline behavior for longer alkane chain lengths, despite the high mobility of the alkane chain ends already detectable in the crystal phase. A single molecule, half a molecule or two half molecules form the asymmetric unit in a centrosymmetric space group. The homologous series of 1,4-terephthalidene-bis-N-(4'-n-alkylaniline) (TBAA-n) exhibit a large variety of packing arrangements in the crystalline state, with or without relying on the symmetry center within the molecules.

  12. Characterization of Cholesteric Cyclic Siloxane Liquid Crystalline Materials

    Science.gov (United States)

    1991-11-01

    34AD-A256 128 CHARACIEUAThIONOFPCl LEST CCYCJC SILOXANE LIQUID CRYSTALLINE MATERIALS TI I Herbert E. Kii C r-• CTr Dept. of Chemical Engineering v... crystalline Materials . 18: 2422 S a.•mo) ... : 01 TJ suning. RR 1*1., Er SamlskI, •L CVa1e. W AMd 7. PWMoaG ORGAIRZAIIO "W3(SC) Sil AQM~SISfS) L. KNOW"ma...ordering of the NLO chromcphore can give rise to large response amplitudes, one system currently being investigated are liquid crystalline materials which

  13. A metastable liquid melted from a crystalline solid under decompression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  14. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  15. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  16. Reactions and Interactions in Liquid Crystalline Media

    Science.gov (United States)

    1991-10-30

    effective for chemical reactions as true liquids or gels as against the relative impenetrability of solid crystals . On the other hand, liquid crystals...of order is between the almost perfect long-range positional and orientational order present in solid crystals and the statistical long- range disorder

  17. LAMELLAR STRUCTURE OF THERMOTROPIC LIQUID CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    CHEN Shouxi; JIN Yongze

    1994-01-01

    The lamellar structure of a thermotropic aromatic polyester with flexible spacer has been studied by using transmission electron microscopy. It was found that the lamellar structure could be observed in the crystalline samples ofthis semirigid polymer crystallized from different states. The thickness of lamellae is around 10 nm, which is similar to that of the conventional polymers of flexible chain molecules. The molecular chains in the lamellae are oriented in the thickness direction as determined by electron diffraction. The possibility of molecular chains folding in the lamellae has been discussed.

  18. LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Zhi-qiang Li

    1999-01-01

    Five chitosan derivatives, i.e. O-butyryl chitosan, O-benzoyl chitosan, N-phthaloyl chitosan, N-maleoyl chitosan and O-cyanoethyl chitosan, were prepared from chitosan. All of them had better solubilitythan chitosan, and demonstrated lyotropic liquid crystalline behavior in various solvents. The critical liquid crystalline behavior of three O-substituted chitosan derivatives was evidently different from two Nsubstituted analogues. Typical fingerprint textures of cholesteric phase were only observed in three Osubstituted derivatives. The critical concentration (v/v%) of three O-substituted derivatives does not depend on the acidity of acidic solvents.

  19. Tailoring liquid crystalline lipid nanomaterials for controlled release of macromolecules.

    Science.gov (United States)

    Bisset, Nicole B; Boyd, Ben J; Dong, Yao-Da

    2015-11-10

    Lipid-based liquid crystalline materials are being developed as drug delivery systems. However, the use of these materials for delivery of large macromolecules is currently hindered by the small size of the water channels in these structures limiting control over diffusion behaviour. The addition of the hydration-modulating agent, sucrose stearate, to phytantriol cubic phase under excess water conditions incrementally increased the size of these water channels. Inclusion of oleic acid enabled further control of swelling and de-swelling of the matrix via a pH triggerable system where at low pH the hexagonal phase is present and at higher pH the cubic phase is present. Fine control over the release of various sized model macromolecules is demonstrated, indicating future application to controlled loading and release of large macromolecules such as antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A liquid crystalline chirality balance for vapours

    Science.gov (United States)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  1. Liquid-like thermal conduction in a crystalline solid

    OpenAIRE

    B. Li; Kawakita, Y.; Zhang, Q.; Wang, H.; Feygenson, M.; Yu, H. L.; Wu, D; Ohara, K.; Kikuchi, T.; Shibata, K; Yamada, T; Chen, Y.(California Institute of Technology, Pasadena, USA); J. Q. He; Vaknin, D.; Wu, R. Q.

    2017-01-01

    A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. Here, we report that the crystalline solid AgCrSe2 has liquid-like thermal conduction. In this compound, Ag atoms exhibit a dynamic duality that they are exclusively involved in intense low-lying transverse acoustic phonons while they also undergo local fluctuations inherent in an order-to-disorder transition occurring at 450 K. As a consequence of this extreme d...

  2. Liquid dynamics in partially crystalline glycerol

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Niss, Kristine

    2017-01-01

    We present a dielectric study on the dynamics of supercooled glycerol during crystallization. We explore the transformation into a solid phase in real time by monitoring the temporal evolution of the amplitude of the dielectric signal. Neither the initial nucleation nor the crystal growth......, we have found no evidence that supercooled glycerol transforms into a peculiar phase in which either a new solid amorphous state or nano-crystals dispersed in a liquid matrix are formed....

  3. A liquid crystalline chirality balance for vapours

    OpenAIRE

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-01-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a t...

  4. Review of Crystalline Structures of Some Selected Homologous Series of Rod-Like Molecules Capable of Forming Liquid Crystalline Phases

    Directory of Open Access Journals (Sweden)

    Peter Zugenmaier

    2011-10-01

    Full Text Available The crystal structures of four homologous series of rod-like molecules are reviewed, two of which form hydrogen bonds and two with a symmetric chemical constitution. Many of the compounds investigated turn into liquid crystalline phases upon temperature increase. It is of valuable interest to know possible conformations and possible packing arrangements as prerequisites to model liquid crystalline structures. The hydrogen bonds of homologous series of pure 4-(ω-hydroxyalkyloxy-4′-hydroxybiphenyl (HnHBP, n the alkyloxy tail length are realized through head to tail arrangements of the hydroxyl groups and crystallize except one compound in chiral space groups without the molecules containing any asymmetric carbon. The hydrogen bonds of the homologous series of 4-substituted benzoic acids with various lengths of the tail provide dimers through strong polar bonding of adjacent carboxyl groups and thus provide the stiff part of a mesogenic unit prerequisite for liquid crystalline phases. The homologous series of dialkanoyloxybiphenyls (BP-n, n = 1, 19, of which nine compounds could be crystallized, show liquid crystalline behavior for longer alkane chain lengths, despite the high mobility of the alkane chain ends already detectable in the crystal phase. A single molecule, half a molecule or two half molecules form the asymmetric unit in a centrosymmetric space group. The homologous series of 1,4-terephthalidene-bis-N-(4′-n-alkylaniline (TBAA-n exhibit a large variety of packing arrangements in the crystalline state, with or without relying on the symmetry center within the molecules.

  5. Fluorine-containing triphenylenes. Liquid crystalline properties and surface ordering

    NARCIS (Netherlands)

    Umesh, C.P.; Marcelis, A.T.M.; Zuilhof, H.

    2014-01-01

    The synthesis and liquid crystalline properties of two novel series of triphenylenes with 4 or 5 pentafuoropentyloxy tails and 1 or 2 alkoxy tails of varying length are reported. All compounds form wide-range hexagonal columnar phases. The isotropisation temperatures and the corresponding enthalpy

  6. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    NARCIS (Netherlands)

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their un

  7. Rotational reorganization of doped cholesteric liquid crystalline films

    NARCIS (Netherlands)

    Eelkema, R.; M. Pollard, M.; Katsonis, N.; Vicario, J.; J. Broer, D.; Feringa, B.L.

    2006-01-01

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pi

  8. Liquid Crystalline Furandicarboxylic Acid-based Aaromatic Polyesters

    NARCIS (Netherlands)

    WILSENS, CAROLUS HENRICUS R. MARIA; RASTOGI, SANJAY; VELD, MARTIJN ARNOLDUS JOHANNES; KLOP, ENNO ANTON; NOORDOVER, BART ADRIANUS JOHANNES

    2013-01-01

    The invention pertains to a fully aromatic liquid crystalline furandicarboxylic acid- based aromatic polyester obtainable from a mixture of monomers comprising 2,5- furandicarboxylic acid, p-hydroxybenzoic acid, an aromatic diol, and 5-40 mol% of an aromatic monocarboxylic acid selected from vanilli

  9. Entropy calculations for a supercooled liquid crystalline blue phase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U [Physics Department, University of the West Indies, PO Box 64, Bridgetown (Barbados)

    2007-01-15

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example involving entropy calculations for an irreversible transition.

  10. Fast Switching of Vertical Alignment Liquid Crystal Cells with Liquid Crystalline Polymer Networks

    Science.gov (United States)

    Baek, Jong-In; Kim, Ki-Han; Kim, Jae Chang; Yoon, Tae-Hoon; Woo, Hwa Sung; Shin, Sung Tae; Souk, Jun Hyung

    2009-05-01

    This paper reports on the electro-optic characteristics of vertical alignment (VA) liquid crystal (LC) cells with liquid crystalline polymer networks. Optical bouncing, that occurs during the turn-on of VA cells, can be eliminated by introducing in-cell polymer networks. Furthermore, the turn-off also becomes much faster because of the anchoring effect caused by the anisotropy in the molecular shape of the liquid crystalline polymers. These response times have been found to vary for different LC/prepolymer mixtures. When the concentration of the liquid crystalline prepolymer in the initial LC/prepolymer mixture was 3, 5, or 10 wt %, the response times were measured to be 34, 56, and 87% faster than those of a VA cell with pure LC. These switching behaviors of VA cells with liquid crystalline polymer networks are demonstrated and compared with those using pure LC and with polymer networks made of isotropic prepolymers.

  11. Synthesis of azobenzene-containing liquid crystalline gelator for use in liquid crystal gels

    Institute of Scientific and Technical Information of China (English)

    Guang Wang; Xiao Liang Zhao; Yue Zhao

    2008-01-01

    A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self-assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.? 2008 Guang Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  12. Liquid crystalline critical dynamics in decylammonium chloride

    CERN Document Server

    Lee, K W; Lee, C E; Kang, K H; Rhee, C; Kang, J K

    1999-01-01

    Collective chain dynamics and phase transitions in a model biomembrane, decylammonium chloride (C sub 1 sub 0 H sub 2 sub 1 NH sub 3 Cl), were studied by means of proton nuclear magnetic resonance. Our measurements sensitively reflect the critical dynamics associated with the smectic C to smectic A transition of the lipid bilayer.

  13. Thermotropic liquid crystalline polyesters derived from 2-chloro hydroquinone

    Indian Academy of Sciences (India)

    NAGESH MANURKAR; SAYAJI MORE; KHUDBUDIN MULANI; NITIN GANJAVE; NAYAKU CHAVAN

    2017-09-01

    Synthesis of thermotropic liquid crystalline polyesters derived from bis[4-hydroxy benzoyloxy]- 2-chloro-1,4-benzene (BHBOCB) and aliphatic dicarboxylic acid chlorides by interfacial polycondensation methodology is presented. Synthesised polyesters consist of bis[4-hydroxy benzoyloxy]-2-chloro-1,4-benzeneas a mesogen and aliphatic diacid chloride as flexible spacer. The length of oligomethylene units in the polymer was varied from the trimethylene to the dodecamethylene groups. Synthesized polyesters were characterizedby differential scanning calorimetry and optical microscopy. The transition temperatures and thermodynamic properties were studied for all these polymers. These polyesters exhibited thermotropic liquid crystalline behavior and showed nematic texture except decamethylene spacer. Decamethylene spacer based polyester showed marble texture of smectic C. Mesophase stability of these polyesters was higher than 123◦C (except first heating cycle of PE-1).

  14. Synthesis and characterization of thermotropic liquid crystalline polyimides

    Indian Academy of Sciences (India)

    Sachin Mane; C R Rajan; Surendra Ponrathnam; Nayaku Chavan

    2015-10-01

    Non-symmetrical and linear dyad-based mesogens were synthesised containing imine or ester bridging group. In the present work, due to the absence of branching in diamine-based mesogen, the structure has—rigidity inversely imine/ester bridging groups between two benzene rings imparts—flexible property to the mesogen and consequently rigid–flexible property has been balanced. The synthesised mesogens were characterized by different techniques including nuclear magnetic resonance and Fourier transform infrared spectroscopy. Liquid crystalline polymers (LCPs) were synthesised using pyromellitic dianhydride and 4-[(4-aminobenzylidene)amino]aniline or 4-aminophenyl-4-aminobenzoate. Subsequently, thermotropic liquid crystalline polymers (TLCPs) have also been evaluated to obtain optical microscopy textures at different temperatures which demonstrated interesting and notable changes. It is worth noting that marble-like textures were observed upto 200 ° C.

  15. Alkyl chains acting as entropy reservoir in liquid crystalline materials.

    Science.gov (United States)

    Sorai, Michio; Saito, Kazuya

    2003-01-01

    The roles played by the conformational disordering of alkyl chains in determining the aggregation states of matter are reviewed for liquid crystalline materials from a thermodynamic perspective. Entropy, which is one of the most macroscopic concepts but which has a clear microscopic meaning, provides crucial microscopic information for complex systems for which a microscopic description is hard to establish. Starting from structural implication by absolute (third-law) entropy for crystalline solids, the existence of successive phase transitions caused by the successive conformational melting of alkyl chains in discotic mesogens is explained. An experimental basis is given for the "quasi-binary picture" of thermotropic liquid crystals, i.e., the highly disordered alkyl chains behave like a second component (solvent). A novel entropy transfer between the "components" of a molecule and the resulting "alkyl chains as entropy reservoir" mechanism are explained for cubic mesogens.

  16. Liquid crystalline networks for electroluminescent displays

    CERN Document Server

    Contoret, A E A

    2001-01-01

    This work presents the first low molar mass organic electroluminescent (EL) material to form a nematic glass and then emit plane-polarised light from the vitrified state on application of an electric field. Photocrosslinkable molecules are also discussed which form insoluble films on illumination with ultra-violet light. This approach combines the ease of deposition of small molecules with the robustness and stability of polymers, allowing simple fabrication of multi-layer EL devices and photo-patterning. A range of conjugated low molar-mass molecules are considered, containing the anthracene, perylene and fluorene cores, with the aims of producing a general recipe for efficient EL, based on ordered, stable nematics at room temperature. Many physical properties are compared and molecular mechanics modeling is used to represent molecular geometries. An acrylate and several diene photo-polymerisable derivatives of the fluorenes undergo photo-crosslinking. Infrared and photoluminescence spectroscopy is used to e...

  17. Carbon Nanotubes as Reinforcement of Cellulose Liquid Crystalline Responsive Networks.

    Science.gov (United States)

    Echeverria, Coro; Aguirre, Luis E; Merino, Esther G; Almeida, Pedro L; Godinho, Maria H

    2015-09-30

    The incorporation of small amount of highly anisotropic nanoparticles into liquid crystalline hydroxypropylcellulose (LC-HPC) matrix improves its response when is exposed to humidity gradients due to an anisotropic increment of order in the structure. Dispersed nanoparticles give rise to faster order/disorder transitions when exposed to moisture as it is qualitatively observed and quantified by stress-time measurements. The presence of carbon nanotubes derives in a improvement of the mechanical properties of LC-HPC thin films.

  18. Side-chain liquid crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, Christian; Hvilsted, Søren

    1996-01-01

    Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations...... and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage....

  19. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  20. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...... variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics...

  1. Control of structure and growth of polymorphic crystalline thin films of amphiphilic molecules on liquid surfaces

    DEFF Research Database (Denmark)

    Weinbach, S.P.; Kjær, K.; Bouwman, W.G.;

    1994-01-01

    The spontaneous formation and coexistence of crystalline polymorphic trilayer domains in amphiphilic films at air-liquid interfaces is demonstrated by grazing incidence synchrotron x-ray diffraction. These polymorphic crystallites may serve as models for the early stages of crystal nucleation...... and growth, helping to elucidate the manner in which additives influence the progress of crystal nucleation, growth, and polymorphism and suggesting ways of selectively generating and controlling multilayers on liquid surfaces. Auxiliary molecules have been designed to selectively inhibit development...

  2. The Effect of Liquid Crystalline Structures on Antiseizure Properties of Aqueous Solutions of Ethoxylated Alcohols

    OpenAIRE

    2010-01-01

    Aqueous solutions of ethoxylated alcohols which form lyotropic liquid crystals at high concentrations (40–80%) were selected as model lubricating substances. Microscopic studies under polarized light and viscosity measurements were carried out in order to confirm the presence of liquid crystalline structures in the case of alcohol solutions with ethoxylation degrees of 3, 5, 7 and 10. Microscopic images and viscosity coefficient values characteristic of various mesophases were obtained. As ex...

  3. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    Science.gov (United States)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-08-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.

  4. Study on the release of chlorhexidine base and salts from different liquid crystalline structures.

    Science.gov (United States)

    Farkas, Edit; Kiss, Dorottya; Zelkó, Romána

    2007-08-01

    The aim of this study was to investigate the influence of two types of chlorhexidine species, chlorhexidine base and its salts, on the physico-chemical features of liquid crystalline systems and on drug transport through lipophilic membranes. A non-ionic surfactant, Synperonic A7 (PEG7-C13-15) was selected for the preparation of the liquid crystalline systems. Mixtures of different ratios of Synperonic A7 and water were prepared. The liquid crystalline systems were characterized using polarizing microscopy and dynamic oscillatory test. Membrane transport was also examined. The addition of chlorhexidine species to the liquid crystalline system modified the structure of the liquid crystalline system. As a result of the changes of liquid crystalline structures, the drug release of various types of chlorhexidine could be also modified. The combination of the base and salt forms of the drug in one dosage form could eliminate the drug release changes from liquid crystalline systems of dynamically changeable structures.

  5. Non-lamellar lipid liquid crystalline structures at interfaces.

    Science.gov (United States)

    Chang, Debby P; Barauskas, Justas; Dabkowska, Aleksandra P; Wadsäter, Maria; Tiberg, Fredrik; Nylander, Tommy

    2015-08-01

    The self-assembly of lipids leads to the formation of a rich variety of nano-structures, not only restricted to lipid bilayers, but also encompassing non-lamellar liquid crystalline structures, such as cubic, hexagonal, and sponge phases. These non-lamellar phases have been increasingly recognized as important for living systems, both in terms of providing compartmentalization and as regulators of biological activity. Consequently, they are of great interest for their potential as delivery systems in pharmaceutical, food and cosmetic applications. The compartmentalizing nature of these phases features mono- or bicontinuous networks of both hydrophilic and hydrophobic domains. To utilize these non-lamellar liquid crystalline structures in biomedical devices for analyses and drug delivery, it is crucial to understand how they interact with and respond to different types of interfaces. Such non-lamellar interfacial layers can be used to entrap functional biomolecules that respond to lipid curvature as well as the confinement. It is also important to understand the structural changes of deposited lipid in relation to the corresponding bulk dispersions. They can be controlled by changing the lipid composition or by introducing components that can alter the curvature or by deposition on nano-structured surface, e.g. vertical nano-wire arrays. Progress in the area of liquid crystalline lipid based nanoparticles opens up new possibilities for the preparation of well-defined surface films with well-defined nano-structures. This review will focus on recent progress in the formation of non-lamellar dispersions and their interfacial properties at the solid/liquid and biologically relevant interfaces.

  6. Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC

    Directory of Open Access Journals (Sweden)

    Xinsheng Peng

    2014-01-01

    Full Text Available A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8-triethylamine (50 : 50 : 0.1% with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μg/mL. The regression equation is y=10706x-2959 (R2=1.0. The average recovery is 101.7%; RSD=2.22%  (n=9. This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.

  7. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  8. THERMOTROPIC LIQUID CRYSTALLINE COPOLYESTERS-SOLID STATE POLYMORPHISM

    Institute of Scientific and Technical Information of China (English)

    XIE ping; LU Daohui; BAO Jingsheng

    1988-01-01

    This paper offers some new evidence on the polymorphism of solid state of liquid crystalline aromatic copolyesters which were prepared in our laboratory. The effects of different treatment conditions(quenching and annealing) on solid structure have been examined mainly by DSC and X-ray diffraction. The discussion focuses on the supercooled mesophase and low temperature solid-solid transition, the shifting of double melting peaks of annealed samples and the changing of their △H data depending on the treatment temperature, time and thermal scanning rate.

  9. Perhydroazulene-based liquid-crystalline materials with smectic phases.

    Science.gov (United States)

    Hussain, Zakir; Hopf, Henning; Eichhorn, S Holger

    2012-01-01

    New liquid-crystalline materials with a perhydroazulene core were synthesized and the stereochemistry of these compounds was investigated. The mesomorphic properties of the new LC compounds were investigated by differential scanning colorimetry, polarizing optical microscopy and X-ray diffraction. We report here on the LC properties of nonchiral materials, which predominantly exhibit smectic phases and display nematic phases only within narrow temperature ranges. The dependence of the mesogenic behavior of the new materials on the stereochemistry of the core system was also investigated. All newly synthesized compounds were fully characterized by the usual spectroscopic and analytical methods.

  10. Perhydroazulene-based liquid-crystalline materials with smectic phases

    Directory of Open Access Journals (Sweden)

    Zakir Hussain

    2012-03-01

    Full Text Available New liquid-crystalline materials with a perhydroazulene core were synthesized and the stereochemistry of these compounds was investigated. The mesomorphic properties of the new LC compounds were investigated by differential scanning colorimetry, polarizing optical microscopy and X-ray diffraction. We report here on the LC properties of nonchiral materials, which predominantly exhibit smectic phases and display nematic phases only within narrow temperature ranges. The dependence of the mesogenic behavior of the new materials on the stereochemistry of the core system was also investigated. All newly synthesized compounds were fully characterized by the usual spectroscopic and analytical methods.

  11. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    Science.gov (United States)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  12. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    CERN Document Server

    Stimson, L M

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a s...

  13. STUDIES ON CRITICAL CONCENTRATION OF LIQUID CRYSTALLINE ETHYLCELLULOSE

    Institute of Scientific and Technical Information of China (English)

    DONG Yanming; ZHANG Shiying

    1996-01-01

    Critical concentrations of lyotropic liquid crystalline ethylcellulose in more than ten cal concentration Ccrit of forming liquid crystal phase decreased with increasing solubility parameter δ of solvent until approaching the δ of polymer. Although the alcohols used as solvents had the same variation rule, the critical concentration values of their solutions were much higher, due to their excessive large hydrogen bond component of δ. The experiments of using mixed solvents which showed good linear relation between Ccrit and δ also proved this rule. A technique of Transmission Optical Analysis was first used to estimate the concentration dependence of critical phase transition temperature Tcrit of EC, and a T-C phase diagram could be drawn.

  14. Deconfinement and quantum liquid crystalline states of dipolar fermions in optical lattices

    OpenAIRE

    2009-01-01

    We describe a simple model of fermions in quasi-one dimension that features interaction induced deconfinement (a phase transition where the effective dimensionality of the system increases as interactions are turned on) and which can be realised using dipolar fermions in an optical lattice. The model provides a relisation of a "soft quantum matter" phase diagram of strongly-correlated fermions, featuring meta-nematic, smectic and crystalline states, in addition to the normal Fermi liquid. In ...

  15. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface.

    Science.gov (United States)

    Matsuoka, Ryota; Sakamoto, Ryota; Hoshiko, Ken; Sasaki, Sono; Masunaga, Hiroyasu; Nagashio, Kosuke; Nishihara, Hiroshi

    2017-02-15

    Synthetic two-dimensional polymers, or bottom-up nanosheets, are ultrathin polymeric frameworks with in-plane periodicity. They can be synthesized in a direct, bottom-up fashion using atomic, ionic, or molecular components. However, few are based on carbon-carbon bond formation, which means that there is a potential new field of investigation into these fundamentally important chemical bonds. Here, we describe the bottom-up synthesis of all-carbon, π-conjugated graphdiyne nanosheets. A liquid/liquid interfacial protocol involves layering a dichloromethane solution of hexaethynylbenzene on an aqueous layer containing a copper catalyst at room temperature. A multilayer graphdiyne (thickness, 24 nm; domain size, >25 μm) emerges through a successive alkyne-alkyne homocoupling reaction at the interface. A gas/liquid interfacial synthesis is more successful. Sprinkling a very small amount of hexaethynylbenzene in a mixture of dichloromethane and toluene onto the surface of the aqueous phase at room temperature generated single-crystalline graphdiyne nanosheets, which feature regular hexagonal domains, a lower degree of oxygenation, and uniform thickness (3.0 nm) and lateral size (1.5 μm).

  16. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Science.gov (United States)

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  17. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    Science.gov (United States)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  18. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    Science.gov (United States)

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  19. Early dynamics of guest-host interaction in dye-doped liquid crystalline materials.

    Science.gov (United States)

    Truong, Thai V; Xu, Lei; Shen, Y R

    2003-05-16

    We have studied in detail the early dynamics of laser-induced molecular reorientation in a dye-doped liquid crystalline (LC) medium that exhibits a significant enhancement of the optical Kerr nonlinearity due to guest-host interaction. Experimental results agree quantitatively with theory based on a model in which the anisotropic dye excitation helps reorient the LC molecules through a mean-field intermolecular interaction.

  20. Regiospecific synthesis of tetrasubstituted phthalocyanines and their liquid crystalline order.

    Science.gov (United States)

    Apostol, Petru; Bentaleb, Ahmed; Rajaoarivelo, Mbolotiana; Clérac, Rodolphe; Bock, Harald

    2015-03-28

    Metal-free and metal(II) all-endo-tetraalkoxy-phthalocyanines of C4h symmetry are synthesised regiospecifically from 3-(2-butyloctyloxy)phthalonitrile with lithium octanolate and subsequent metal ion exchange. The voluminous, yet not overly large, and racemically disordered alkoxy substituent not only renders the cyclotetramerisation regiospecific, but also leads to liquid crystalline self-assembly with attainable clearing temperatures and persisting columnar organisation at room temperature. A rare hexagonal mesophase with twelve columns per hexagonal unit cell is found in the metal-free homologue, whereas the metal complexes show rectangular mesophases. The clearing temperature increases with increasing axial component of the metal ion coordination sphere. At low temperature, significant antiferromagnetic exchange between magnetic centres is observed for the Co(II) homologue, whereas the magnetic centres are magnetically independent in the Cu(II) derivative, in line with the observed higher clearing temperature in the Co(II) case that testifies of stronger interdisk interactions.

  1. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  2. Liquid-Crystalline Mesophases of Plasmid DNA in Bacteria

    Science.gov (United States)

    Reich, Ziv; Wachtel, Ellen J.; Minsky, Abraham

    1994-06-01

    Bacterial plasmids may often reach a copy number larger than 1000 per cell, corresponding to a total amount of DNA that may exceed the amount of DNA within the bacterial chromosome. This observation highlights the problem of cellular accommodation of large amounts of closed-circular nucleic acids, whose interwound conformation offers negligible DNA compaction. As determined by x-ray scattering experiments conducted on intact bacteria, supercoiled plasmids segregate within the cells into dense clusters characterized by a long-range order. In vitro studies performed at physiological DNA concentrations indicated that interwound DNA spontaneously forms liquid crystalline phases whose macroscopic structural properties are determined by the features of the molecular supercoiling. Because these features respond to cellular factors, DNA supercoiling may provide a sensitive regulatory link between cellular parameters and the packaging modes of interwound DNA in vivo.

  3. H-Bonded Liquid Crystalline Polymer Network Materials

    Institute of Scientific and Technical Information of China (English)

    LIN Hong-Cheu; HENDRIANTO Jemmy

    2001-01-01

    @@Side-chain copolymers, poly(mOBA-co-mStilb)s, composed of proton acceptors (stilbazoles) and proton donors (benzoic acids) connected to polyacrylate backbone with different methylene spacer lengths (m = 6 and 10) were prepared in different donor/acceptor molar ratios. The H-bonded copolymeric networks were formed once they were synthesized, and showed more homogenous phase than the physical-blended supramolecular networks consisting of donor and acceptor homopolymers, i.e.H-bonded blends of PmOBA and PmStilb. In order to compare the effects of the backbone connection of these H-bonded copolymers and blends, we also built monomer-monomer and polymer-monomer H-bonded complexes of similar structures (shown in Fig. 1). DSC, POM, and powder XRD studies reveal that the copolymers (m = 10)with mole fractions of benzoic acids between 0.33-0.83 show the smectic A (SMA) phase with layer spacing values between 42.22A-50.47A (increases with higher H-bonded crosslinking density between benzoic acids and stilbazoles), while for m = 6, liquid crystalline behavior still can be observed at 0.89 molar fraction of benzoic acids. However, on the basis of powder XRD study it is found that the d spacing values of H-bonded copolymers with m = 6 in the SmA phase increase with higher molar ratios of benzoic acids, which is agreed with the formation of microphase separation due to the hydrogen bonds of benzoic acids connected themselves from the same backbone. The isotropization temperatures of the H-bonded copolymers and blends increase as the molar ratios of benzoic acids increase, while the higher crosslinking density of the H-bonded copolymeric networks and blends can stabilize the liquid crystalline phase.

  4. H-Bonded Liquid Crystalline Polymer Network Materials

    Institute of Scientific and Technical Information of China (English)

    LIN; Hong-Cheu

    2001-01-01

    Side-chain copolymers, poly(mOBA-co-mStilb)s, composed of proton acceptors (stilbazoles) and proton donors (benzoic acids) connected to polyacrylate backbone with different methylene spacer lengths (m = 6 and 10) were prepared in different donor/acceptor molar ratios. The H-bonded copolymeric networks were formed once they were synthesized, and showed more homogenous phase than the physical-blended supramolecular networks consisting of donor and acceptor homopolymers, i.e.H-bonded blends of PmOBA and PmStilb. In order to compare the effects of the backbone connection of these H-bonded copolymers and blends, we also built monomer-monomer and polymer-monomer H-bonded complexes of similar structures (shown in Fig. 1). DSC, POM, and powder XRD studies reveal that the copolymers (m = 10)with mole fractions of benzoic acids between 0.33-0.83 show the smectic A (SMA) phase with layer spacing values between 42.22A-50.47A (increases with higher H-bonded crosslinking density between benzoic acids and stilbazoles), while for m = 6, liquid crystalline behavior still can be observed at 0.89 molar fraction of benzoic acids. However, on the basis of powder XRD study it is found that the d spacing values of H-bonded copolymers with m = 6 in the SmA phase increase with higher molar ratios of benzoic acids, which is agreed with the formation of microphase separation due to the hydrogen bonds of benzoic acids connected themselves from the same backbone. The isotropization temperatures of the H-bonded copolymers and blends increase as the molar ratios of benzoic acids increase, while the higher crosslinking density of the H-bonded copolymeric networks and blends can stabilize the liquid crystalline phase.……

  5. Formation of liquid crystalline phases in aqueous suspensions of platelet-like tripalmitin nanoparticles

    Science.gov (United States)

    Schmiele, Martin; Gehrer, Simone; Westermann, Martin; Steiniger, Frank; Unruh, Tobias

    2014-06-01

    Suspensions of platelet-like shaped tripalmitin nanocrystals stabilized by the pure lecithin DLPC and the lecithin blend S100, respectively, have been studied by small-angle x-ray scattering (SAXS) and optical observation of their birefringence at different tripalmitin (PPP) concentrations φPPP. It could be demonstrated that the platelets of these potential drug delivery systems start to form a liquid crystalline phase already at pharmaceutically relevant concentrations φPPP of less than 10 wt. %. The details of this liquid crystalline phase are described here for the first time. As in a previous study [A. Illing et al., Pharm. Res. 21, 592 (2004)] some platelets are found to self-assemble into lamellar stacks above a critical tripalmitin concentration \\varphi _{PPP}^{st} of 4 wt. %. In this study another critical concentration \\varphi _{PPP}^{lc}≈ 7 wt. % for DLPC and \\varphi _{PPP}^{lc}≈ 9 wt. % for S100 stabilized dispersions, respectively, has been observed. \\varphi _{PPP}^{lc} describes the transition from a phase of randomly oriented stacked lamellae and remaining non-assembled individual platelets to a phase in which the stacks and non-assembled platelets exhibit an overall preferred orientation. A careful analysis of the experimental data indicates that for concentrations above \\varphi _{PPP}^{lc} the stacked lamellae start to coalesce to rather small liquid crystalline domains of nematically ordered stacks. These liquid crystalline domains can be individually very differently oriented but possess an overall preferred orientation over macroscopic length scales which becomes successively more expressed when further increasing φPPP. The lower critical concentration for the formation of liquid crystalline domains of the DLPC-stabilized suspension compared to \\varphi _{PPP}^{lc} of the S100-stabilized suspension can be explained by a larger aspect ratio of the corresponding tripalmitin platelets. A geometrical model based on the excluded volumes of

  6. Influence of chlorhexidine species on the liquid crystalline structure of vehicle.

    Science.gov (United States)

    Farkas, E; Zelkó, R; Török, G; Rácz, I; Marton, S

    2001-02-01

    The aim of this study was to investigate the influence of three chlorhexidine species, chlorhexidine base and its salts (diacetate and digluconate), on the physico-chemical features of liquid crystalline systems and on drug transport through lipophilic membranes. Nonionic surfactant, Synperonic A7 (PEG(7)-C(13--15)) was selected for the preparation of the liquid crystalline systems. Mixtures of different ratios of Synperonic A7 and water were prepared. The liquid crystalline systems were characterized using polarizing microscopy, small-angle neutron scattering and transmission electron microscopy. Membrane transport was also examined. The addition of chlorhexidine species to the liquid crystalline system modified the structure of the liquid crystalline system. As a result of liquid crystal--drug interaction, the solubility of chlorhexidine base and its diffusion through lipophilic membranes increased in comparison with those of the chlorhexidine salts.

  7. Photogeneration and enhanced charge transport in aligned smectic liquid crystalline organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjoy; Ellman, Brett, E-mail: bellman@kent.edu [Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Tripathi, Suvagata; Twieg, Robert J. [Department of Chemistry, Kent State University, Kent, Ohio 44242 (United States)

    2015-10-07

    Liquid crystalline organic semiconductors are emerging candidates for applications in electronic and photonic devices. One of the most attractive aspects of such materials is the potential, in principle, to easily control and manipulate the molecular alignment of the semiconductor over large length scales. Here, we explore the consequences of alignment in a model smectic liquid crystalline semiconductor, and find that the photogeneration efficiency is a strong function of incident polarization in aligned samples. A straightforward theory shows that such behavior is a general feature of aligned materials, regardless of the details of photophysics. Furthermore, we uncover tentative evidence that the mobility of aligned samples is substantially enhanced. Both of these phenomena are of significant technological importance.

  8. Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices.

    Science.gov (United States)

    Peroukidis, Stavros D; Lichtner, Ken; Klapp, Sabine H L

    2015-08-14

    We investigate the self-organization of a binary mixture of similar sized rods and dipolar soft spheres by means of Monte-Carlo simulations. We model interparticle interactions by employing anisotropic Gay-Berne, dipolar and soft-sphere interactions. In the limit of vanishing magnetic moments we obtain a variety of fully miscible liquid crystalline phases including nematic, smectic and lamellar phases. For the magnetic mixture, we find that the liquid crystalline matrix supports the formation of orientationally ordered ferromagnetic chains. Depending on the relative size of the species the chains align parallel or perpendicular to the director of the rods forming uniaxial or biaxial nematic, smectic and lamellar phases. As an exemplary external perturbation we apply a homogeneous magnetic field causing uniaxial or biaxial ordering to an otherwise isotropic state.

  9. STUDY ON THE BLENDS OF NYLON 66 AND LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shufan; Ren Jinghong

    1991-01-01

    Blends of polyamide (Nylon 66 ) with two different kinds of liquid crystalline polyesters were studied in all the composition range. Homogeneous samples were obtained by coprecipitation from 2wt%. solution of blends. The thermal properties, crystallinity and morphology of these blends were studied by using DSC, polarizing microscopy, and scanning electron microscopy. The phase transition and morphology of the blends are markedlyinfluenced by the composition of liquid crystalline polyesters. The mechanical behaviour of PHB/HNA-Nylon 66 blend was improved .although polyamide (Nylon 66)with the liquid crystalline polyesters were incompatible, but a rather strong interaction between the polymers did exist.

  10. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline s

  11. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Kimmerle, Sven-Joachim Wolfgang

    2009-09-21

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  12. Photo-orientation of azobenzene-containing liquid-crystalline materials by means of domain structure rearrangement.

    Science.gov (United States)

    Bogdanov, Alexey V; Vorobiev, Andrey Kh

    2013-11-07

    A novel mechanism of photo-orientation of azobenzene-containing liquid-crystalline materials is proposed. This mechanism is based on the notion of photochemically induced domain rearrangement driven by destabilization of liquid-crystalline phase in light absorbing domains due to photochemical formation of non-mesogenic cis-azobenzene moieties. The experimental evidence of photoinduced movement of a domain boundary is presented, and the velocity of this movement is measured. A mathematical model for photo-orientation of a polydomain azobenzene-containing material is formulated. The values of model parameters for a liquid-crystalline azopolymer have been measured in separate experiments. Theoretical predictions demonstrate quantitative agreement with the experimental observations.

  13. Fundamental Study on New Micro Fluidic Drive Method Based on Liquid Crystalline Backflow

    Directory of Open Access Journals (Sweden)

    Chunbo Liu

    2012-11-01

    Full Text Available In this study, we propose a one-dimensional simple model for predicting the performance of the new micro fluidic drive and then we have a research of the control method based on liquid crystalline backflow by combining the motion of the upper plate of a liquid crystal cell and the flow of a liquid crystal. Comparison of the numerical predictions and the experimental results shows that the proposed model is useful to predict qualitatively the motion the upper plate. The drive efficiency is affected by applied voltage, the frequency, the duty ratio and the gap of the cell. The ideal drive quality can be achieved when the rotation range of the molecules at the center of the cell is controlled within 50-80°.

  14. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers.

    Science.gov (United States)

    Lehmann, W; Skupin, H; Tolksdorf, C; Gebhard, E; Zentel, R; Krüger, P; Lösche, M; Kremer, F

    2001-03-22

    Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and 'smart' ceramics such as lead zirconate titanate. But the strains achievable in these materials are small--less than 0.1 per cent--so several alternative materials and approaches have been considered. These include grafted polyglutamates (which have a performance comparable to quartz), silicone elastomers (passive material--the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes (which are slow). High and fast strains of up to 4 per cent within an electric field of 150 MV x m(-1) have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100 nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MV x m(-1). This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications.

  15. Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.

    Science.gov (United States)

    de Oca, Horacio Montes; Wilson, Joanne E; Penrose, Andrew; Langton, David M; Dagger, Anthony C; Anderson, Melissa; Farrar, David F; Lovell, Christopher S; Ries, Michael E; Ward, Ian M; Wilson, Andrew D; Cowling, Stephen J; Saez, Isabel M; Goodby, John W

    2010-10-01

    The synthesis and characterisation of a series of liquid-crystalline aromatic-aliphatic copolyesters are presented. Differential scanning calorimetry showed these polymers have a glass transition temperature in the range 72 degrees C-116 degrees C. Polarised optical microscopy showed each polymer exhibits a nematic mesophase on heating to the molten state at temperatures below 165 degrees C. Melt processing is demonstrated by the production of injection moulded and compression moulded specimens with Young's modulus of 5.7 +/- 0.3 GPa and 2.3 +/- 0.3 GPa, respectively. Wide-angle X-ray scattering data showed molecular orientation is responsible for the increase of mechanical properties along the injection direction. Degradation studies in the temperature range 37 degrees C-80 degrees C are presented for one polymer of this series and a kinetic constant of 0.002 days(-1) is obtained at 37 degrees C assuming a first order reaction. The activation energy (83.4 kJ mol(-1)) is obtained following the Arrhenius analysis of degradation, showing degradation of this material is less temperature sensitive compared with other commercially available biodegradable polyesters. In vitro and in vivo biocompatibility data are presented and it is shown the unique combination of degradative, mechanical and biological properties of these polymers may represent in the future an alternative for medical device manufacturers.

  16. Telomere maintenance in liquid crystalline chromosomes of dinoflagellates.

    Science.gov (United States)

    Fojtová, Miloslava; Wong, Joseph T Y; Dvorácková, Martina; Yan, Kosmo T H; Sýkorová, Eva; Fajkus, Jirí

    2010-10-01

    The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25-80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.

  17. New cyanopyridone based luminescent liquid crystalline materials: synthesis and characterization.

    Science.gov (United States)

    N, Ahipa T; Adhikari, Airody Vasudeva

    2014-11-01

    A new series of 4-(3,4-bis(akyloxy)phenyl)-6-(4-((1-(4-cyano- or 4-nitro-benzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2-oxo-1,2-dihydropyridine-3-carbonitriles carrying terminal di-alkoxy chain lengths (viz. octyloxy, decyloxy, dodecyloxy, tetradecyloxy and hexadodecyloxy) as well as terminal polar groups -CN or -NO2 have been designed and synthesized successfully as luminescent mesogens. Their thermotropic behaviors have been studied by means of differential scanning calorimetry and polarized optical microscopy. The supramolecular organizations in them were explored by the temperature dependent X-ray diffraction method and their photophysical properties were investigated using UV-visible and fluorescence spectral methods. The mesogenic study reveals that the presence of hydrogen bonds, as well as dimerization between the molecules, is mainly responsible for the formation of the ambient temperature hexagonal columnar phase (Colh) in the new molecules. Their photophysical study indicates that the compounds exhibit a strong absorption band at ∼370 nm and a blue emission band at ∼466 nm with good quantum yields of ∼0.62 when compared to quinine sulphate (Φf = 0.54) in chloroform. Also, the compounds show a slightly red shift in the absorption band with increased solvent polarity. In liquid crystalline films, they display a bathochromic shift in the emission band because of the intimate overlap of molecular cores in the hexagonal columnar phase.

  18. The effect of a cholesterol liquid crystalline structure on osteoblast cell behavior.

    Science.gov (United States)

    Xu, Jian-Ping; Ji, Jian; Shen, Jia-Cong

    2009-04-01

    To investigate the effect of a liquid crystalline structure on cell behavior, polymethylsiloxane-graft-(10-cholesteryloxydecanol) was specially designed to get a thermotropic liquid crystalline polymer. Results of Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy and gel permeation chromatography (GPC) indicated that cholesterol was successfully covalently grafted onto polymethylhydrosiloxane via decamethylene 'flexible spacer'. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) investigations revealed that the copolymer with 44.9% mesogenic unit showed obvious thermotropic liquid crystalline transition at about 124.9 degrees C. Polymer films were prepared by spin coating on clean glass plates from 5 mg ml(-1) toluene solutions of the copolymers. The POM investigation indicated that while the unannealed films (SC15, SC45) showed no liquid crystalline structure, the films which were annealed in vacuo at 140 degrees C for 9 h and then quenched to room temperature (SC15C, SC45C) formed discrete island-like liquid crystalline and continuous liquid crystalline structures, respectively. Osteoblast cells (MC3T3) were chosen to test the cell behavior of annealed and unannealed films. In comparison to unannealed films, the annealed films with a cholesterol liquid crystalline structure could promote osteoblast cell attachment and growth significantly.

  19. MORPHOLOGICAL STUDIES OF A THERMOTROPIC SIDE-CHAIN LIQUID CRYSTALLINE POLYMER DURING MESOPHASE TRANSITIONS

    Institute of Scientific and Technical Information of China (English)

    Chi-bing Tan; Quan-ling Zhang; Shu-fan Zhang; Xia-yu Wang; Mao Xu

    1999-01-01

    The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture was observed in the transition temperature range. Similar to main-chain liquid crystalline polymers the transition process of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at local places of the old phase matrix and a growth process of the new phase domains.

  20. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2011-10-01

    Full Text Available Abstract Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220. The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content. Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I

  1. Amphiphilic Cross-Linked Liquid Crystalline Fluoropolymer-Poly(ethylene glycol) Coatings for Application in Challenging Conditions: Comparative Study between Different Liquid Crystalline Comonomers and Polymer Architectures.

    Science.gov (United States)

    Zigmond, Jennifer S; Letteri, Rachel A; Wooley, Karen L

    2016-12-14

    Linear and hyperbranched poly(ethylene glycol)-cross-linked amphiphilic fluoropolymer networks comprised of different liquid crystalline comonomers were developed and evaluated as functional coatings in extreme weather-challenging conditions. Through variation of the liquid-crystalline comonomer and hydrophilic:hydrophobic component ratios, several series of coatings were synthesized and underwent a variety of analyses including differential scanning calorimetry, water contact angle measurements and solution stability studies in aqueous media. These materials maintained an unprecedented reduction in the free water melting transition (Tm) temperature across the hyperbranched and linear versions. The coatings synthesized from hyperbranched fluoropolymers preserved the liquid crystalline character of the mesogenic components, as seen by polarized optical microscopy, and demonstrated stability in saltwater aqueous environments and in cold weather conditions.

  2. SYNTHESIS AND MESOMORPHIC PROPERTIES OF FISHBONE-LIKE LIQUID CRYSTALLINE POLYSILSESQUIOXANES Ⅰ. FISHBONE-LIKE, β-DIKETONE-BASED LIQUID CRYSTALLINE POLYSILSESQUIOXANES AND THEIR COPPER COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rongben; XIE Zushou; WAN Youzhi; JIN Sunzhi; HOU Jianan

    1993-01-01

    Two kinds of fishbone-like, β-diketone-based liquid crystalline polysilsesquioxanes (FBDKLCP'S),homopolymeric (H-FBDKLCP) and copolymeric (C-FBDKLCP) have been first synthesized via the hydrosilylation reaction of a vinyl-terminated β-diketone with the homopolymeric ladderlike polyhydrosilsesquioxane (LPHSQ) and random copolymethylhydrosilsesquioxane (LRPMHSQ) respectively. These new kinds of FBDKLCP with Mw of 104 is thermotroic liquid crystalline polymer and its clearing temperatures Ti's and mesophase range △T's are much higher than those of the corresponding comb-like β-diketone liquid crystalline polysiloxane (DKLCP) by about 200 ℃ . Similar results have been observed with the comparison of the two different structure Cu-coordinating compounds The significant increases in Td,l's and △T's of the FBDKLCP and Cu-FBDKLCP are mainly attributed to the great rigidity of the ladderlike polysilsesquioxane backbone.

  3. In Situ and Ex Situ Syntheses of Magnetic Liquid Crystalline Materials: A Comparison

    Directory of Open Access Journals (Sweden)

    Monique Mauzac

    2012-02-01

    Full Text Available Magnetic hybrid liquid crystalline composites have been obtained either by thermal decomposition of a cobalt precursor in a solution containing a liquid crystal polymer or by dispersing preformed cobalt nanorods in a liquid crystal polymer matrix. The final materials are all mesomorphous and ferromagnetic. Their magnetic characteristics are compared as a function of the synthesis method.

  4. Ab initio calculations of the optical properties of crystalline and liquid InSb

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Haruyuki, E-mail: h-sano@ishikawa-nct.ac.jp [National Institute of Technology, Ishikawa College, Kitacyujo, Tsubata, Ishikawa 929-0392 (Japan); Mizutani, Goro [School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292 (Japan)

    2015-11-15

    Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.

  5. Quantitation of liquid-crystalline ordering in F-actin solutions.

    Science.gov (United States)

    Coppin, C M; Leavis, P C

    1992-09-01

    Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed.

  6. Physics of liquid and crystalline plasmas: Future perspectives

    Science.gov (United States)

    Morfill, G. E.

    It has been shown that under certain conditions "complex plasmas" (plasma containing ions, electrons and charged microspheres) may undergo spontaneous phase changes to become liquid and crystalline, without recombination of the charge components. Hence these systems may be regarded as new plasma states "condensed plasmas". The ordering forces are mainly electrostatic, but dipolar effects, anisotropic pressure due shielding, ion flow focussing etc. may all play a role, too. Complex plasmas are of great interest from a fundamental research point of view because the individual particles of one plasma component (the charged microspheres) can be visualised and hence the plasma can be studied at the kinetic level. Also, the relevant time scales (e.g. 1/plasma frequency) are of order 0.1 sec, the plasma processes occur practically in "slow motion". We will discuss some physical processes (e.g. wave propagation, shocks, phase transitions) of these systems and outline the potential of the research for the understanding of strongly coupled systems. Technologically, it is expected that colloidal plasmas will also become very important, because both plasma technology and colloid technology are widely developed already. In this overview first the basic forces between the particles are discussed, then the phase transitions, the lattice structures and results from active experiments will be presented. Finally the future perspectives will be discussed, from the scientific potential point of view and the experimental approaches in the laboratory and in space. Experiments under microgravity conditions are of great importance, because the microspheres are 10's of billions times heavier than the ions.

  7. Local order and orientational correlations in liquid and crystalline phases of carbon tetrabromide from neutron powder diffraction measurements

    CERN Document Server

    Temleitner, László

    2010-01-01

    The liquid, plastic crystalline and ordered crystalline phases of CBr$_4$ were studied using neutron powder diffraction. The measured total scattering differential cross-sections were modelled by Reverse Monte Carlo simulation techniques (RMC++ and RMCPOW). Following successful simulations, the single crystal diffraction pattern of the plastic phase, as well as partial radial distribution functions and orientational correlations for all the three phases have been calculated from the atomic coordinates ('particle configurations'). The single crystal pattern, calculated from a configuration that had been obtained from modelling the powder pattern, shows identical behavior to the recent single crystal data of Folmer et al. (Phys. Rev. {\\bf B77}, 144205 (2008)). The BrBr partial radial distribution functions of the liquid and plastic crystalline phases are almost the same, while CC correlations clearly display long range ordering in the latter phase. Orientational correlations also suggest strong similarities bet...

  8. Combinatorial parallel synthesis and automated screening of a novel class of liquid crystalline materials.

    Science.gov (United States)

    Deeg, Oliver; Kirsch, Peer; Pauluth, Detlef; Bäuerle, Peter

    2002-12-07

    Combinatorial parallel synthesis has led to the rapid generation of a single-compound library of novel fluorinated quaterphenyls. Subsequent automated screening revealed liquid crystalline (LC) behaviour and gave qualitative relationships of molecular structures and solid state properties.

  9. Perylenediimide-surfactant complexes: thermotropic liquid-crystalline materials via ionic self-assembly.

    Science.gov (United States)

    Guan, Ying; Zakrevskyy, Yuriy; Stumpe, Joachim; Antonietti, Markus; Faul, Charl F J

    2003-04-07

    In this communication we present the facile preparation and characterisation of thermotropic liquid-crystalline materials from the ionic self-assembly of a charged perylenediimide derivative and oppositely charged surfactants.

  10. Dynamical Study of Guest-Host Orientational Interaction in LiquidCrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Thai Viet [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Guest-host interaction has long been a subject of interest in many disciplines. Emphasis is often on how a small amount of guest substance could significantly affect the properties of a host material. This thesis describe our work in studying a guest-host effect where dye-doping of liquid crystalline materials greatly enhances the optical Kerr nonlinearity of the material. The dye molecules, upon excitation and via intermolecular interaction, provides an extra torque to reorient the host molecules, leading to the enhanced optical Kerr nonlinearity. We carried out a comprehensive study on the dynamics of the photoexcited dye-doped liquid crystalline medium. Using various experimental techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photo-excitation, and thus were able to follow the transient process in which photo-excitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced molecular reorientation. We also observed for the first time the enhanced reorientation in a pure liquid crystal system, where the guest population is created through photoexcitation of the host molecules themselves. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.

  11. A NEW STRATEGY FOR THE DESIGN OF LIQUID CRYSTALLINE POLYMERS WITH FLEXIBLE AND APOLAR BUILDING BLOCKS

    Institute of Scientific and Technical Information of China (English)

    K.C. Gupta; H.K. Abdulkadir; S. Chand

    2003-01-01

    The synthesis and characterization of a new series of liquid crystalline polymers, poly(dicycloalkyl vinylterephthalate)s, are reported. The basic building blocks of these polymers are not mesogenic by themselves. However,very stable mesophases can be generated by self-assembly of the polymer molecules. This approach suggests a novel design strategy of liquid crystalline polymers with flexible and apolar building blocks.

  12. REFRACTOMETRY AND TEXTURES OF METHYL-CYANOETHYL CELLULOSE/DICHLOROACETIC ACID LIQUID CRYSTALLINE SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; WU Bingkun

    1992-01-01

    An Abbe' refractometer with a rotatable polarizer mounted on the eyepiece is used for determining the two principal refractive indices of methyl-cyanoethyl cellulose/dichloroacetic acid liquid crystalline solutions. The critical concentration where the mesophase appears can be determined according to the variation of the increment of the refractive index with the concentration. Mesophase textures of the liquid crystalline solutions are observed and the influence of the concentration on mesophase textures is also discussed.

  13. Effect of organoclay on the orientation and thermal properties of liquid-crystalline polymers

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2007-08-01

    Full Text Available on th Thermal Properties of Liquid-Crystallin Polymers a Introduction Liquid-crystalline polymers (LCP) are well known for their excellent properties, such as high strength and stiffness, low melt viscosity, and their high chemical and thermal...] they confirmed the very high degree of dispersion of organoclay in the LCP matrix, because of the formation of hydrogen bonds between the pendent pyridyl group in the LCP and the hydroxyl group of the surfactant residing at the surface of organoclay...

  14. Shape-Selectivity with Liquid Crystal and Side-Chain Liquid Crystalline Polymer SAW Sensor Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    FRYE-MASON,GREGORY CHARLES; OBORNY,MICHAEL C.; PUGH,COLEEN; RICCO,ANTONIO; THOMAS,ROSS C.; ZELLERS,EDWARD T.; ZHANG,GUO-ZHENG

    1999-09-23

    A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.

  15. Structure/Property Relationships of Siloxane-Based Liquid Crystalline Materials

    Science.gov (United States)

    1992-05-01

    AD-A266 676 IImNflhIIIII WL-TR-92-4051 STRUCIUREIPROPERTY RELATIONSHIPS OF SILOXANE- BASED LIQUID CRYSTALLINE MATERIALS Timothy J. Bunning Herbert E...FUNDING NUMBERSSTRUCTURE/PROPERTY RELATIONSHIPS OF SILOXANE-BASED P: 612 LIQUID CRYSTALLINE MATERIALS PR: 624022 TA: 04 6 AUTHOR(S) W: 0 B unning, T.J...TY UISP1CTM D B DistbuationlI -vi Availability Codes Avail and/or Dist Special -Il V. SYNTHESIZED SILOXANE LIOUD CRYSTALLINE MATERIALS (Results and

  16. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis

    NARCIS (Netherlands)

    Wang, Zhouhong; McDonald, Armando G.; Westerhof, Roel J.M.; Kersten, Sascha R.A.; Cuba-Torres, Christian M.; Ha, Su; Pecha, Brennan; Garcia-Perez, Manuel

    2013-01-01

    The effect of cellulose crystallinity on the formation of a liquid intermediate and on its thermal degradation was studied thermogravimetrically and by Py-GC/MS using a control cellulose (Avicel, crystallinity at 60.5%) and ball-milled Avicel (low cellulose crystallinity at 6.5%). The crystallinity

  17. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    Science.gov (United States)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  18. Synthesis and characterization of liquid-crystalline supramolecular architecture by a combination of molecular recognition and polymerization reaction

    Science.gov (United States)

    Ahn, Cheol-Hee

    In nature, self-assembly with well defined shapes obtained from combinations of polymeric building blocks with complex architecture are abundant since they are responsible for the production of structural materials and for the generation of some of the most efficient mechanisms. One of the many roles liquid crystallinity plays in natural systems is in their self-assembly and organization. The assembly of these complex natural systems is largely under thermodynamic control which is manipulated by their liquid crystallinity. The goal of this thesis is to use Nature as a model for the development of new synthetic concepts and strategies in the field of polymer science. The two models selected are rod-like and icosahedral viruses. The strategy involved in this thesis requires the design of libraries of monodendritic building blocks with well defined flat tapered and conical shapes which self-assemble into cylindrical and respectively spherical shapes. By analogy with viruses these supermolecules will generated hexagonal columnar and spherical cubic thermotropic phases. These liquid crystalline phases allow the determination of their shape by X-ray diffraction and Scanning Force Microscopy. Libraries of flat tapered and conical monodendritic building blocks will be functionalized with polymerizable groups and polymerized to generate the first examples of polymers of cylindrical and spherical shapes with diameter and length, and diameter controlled at the nanoscale level. The organization of these dendritic monomers in a liquid crystalline assembly is also used to aggregate their polymerizable groups in a reactor of artificially enhanced concentration and restricted geometry during the polymerization process and therefore, generate a new approach to the control of polymerization. The resulting liquid crystallinity provides access to the thermodynamically controlled assembly and characterization of these newly developed polymers. With few exceptions, there is no precedent

  19. Effect of heat and film thickness on a photoinduced phase transition in azobenzene liquid crystalline polyesters

    DEFF Research Database (Denmark)

    Sanchez, C; Alcala, R; Hvilsted, Søren

    2003-01-01

    The liquid crystal to isotropic phase transition induced with 488 nm light in films of liquid crystalline azobenzene polyesters has been studied as a function of temperature, light intensity, and film thickness. That phase transition is associated with the photoinduced trans-cis-trans isomerizati...

  20. Electrochemical studies of redox probes in self-organized lyotropic liquid crystalline systems

    Indian Academy of Sciences (India)

    P Suresh Kumar; V Lakshminarayanan

    2009-09-01

    Lyotropic liquid crystalline phases formed by surfactants are of special importance due to their close resemblance to biological systems. The redox reactions in such ordered media are of fundamental interest in understanding several complex processes occurring in the biological media, where the former can act as model systems. In this work, we have carried out the redox reactions of benzoquinone| hydroquinone, methyl viologen and ferrocenemethanol probes in a lyotropic hexagonal columnar phase (H1 phase) using cyclic voltammetry and electrochemical impedance spectroscopic studies. The liquid crystalline phase we have studied is made up of the non-ionic surfactant, Triton X-100 and water. Polarizing optical microscopic examination confirmed that the columnar hexagonal phase is retained even after the addition of redox probe as well as the supporting electrolyte. Our studies show a significant shift in the half-peak potentials of the redox probes in the H1 phase as compared to the solvent phase. The diffusion coefficient values for different redox probes in the H1 phase were also found to be significantly reduced when compared to the corresponding solvent media.

  1. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio; Cruz, Monica; de Pablo, Juan

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We also study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.

  2. Polarization-Sensitive Two-Photon Microscopy Study of the Organization of Liquid-Crystalline DNA

    Science.gov (United States)

    Mojzisova, Halina; Olesiak, Joanna; Zielinski, Marcin; Matczyszyn, Katarzyna; Chauvat, Dominique; Zyss, Joseph

    2009-01-01

    Abstract Highly concentrated DNA solutions exhibit self-ordering properties such as the generation of liquid-crystalline phases. Such organized domains may play an important role in the global chromatin topology but can also be used as a simple model for the study of more complex 3D DNA structures. In this work, using polarized two-photon fluorescence microscopy, we report on the orientation of DNA molecules in liquid-crystalline phases. For this purpose, we analyze the signal emitted by fluorophores that are noncovalently bound to DNA strands. In nonlinear processes, excitation occurs exclusively in the focal volume, which offers advantages such as the reduction of photobleaching of out-of-focus molecules and intrinsic 3D sectioning capability. Propidium iodide and Hoechst, two fluorophores with different DNA binding modes, have been considered. Polarimetric measurements show that the dyes follow the alignment with respect to the DNA strands and allow the determination of the angles between the emission dipoles and the longitudinal axis of the DNA double strand. These results provide a useful starting point toward the application of two-photon polarimetry techniques to determine the local orientation of condensed DNA in physiological conditions. PMID:19843467

  3. Bio-based ionic liquid crystalline quaternary ammonium salts: properties and applications.

    Science.gov (United States)

    Sasi, Renjith; Rao, Talasila P; Devaki, Sudha J

    2014-03-26

    In the present work, we describe the preparation, properties, and applications of novel ionic liquid crystalline quaternary ammonium salts (QSs) of 3-pentadecylphenol, a bio-based low-cost material derived from cashew nut shell liquid. Amphotropic liquid crystalline phase formation in QSs was characterized using a combination of techniques, such as DSC, PLM, XRD, SEM, and rheology, which revealed the formation of one, two, and three dimensionally ordered mesophases in different length scales. On the basis of these results, a plausible mechanism for the formation of specific modes of packing in various mesophases was proposed. Observation of anisotropic ionic conductivity and electrochemical stability suggests their application as a solid electrolyte.

  4. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  5. SYNTHESIS AND PROPERTIES OF NEW MESOGEN-JACKETED LIQUID CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Qi-ding Mi; Qi-feng Zhou

    2000-01-01

    Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these polymers was examined using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Their liquid crystallinity is influenced by the variation of polymer backbone, spacer, mesogenic unit and its terminal groups. The results show that 1) a more flexible polymer main-chain is more favorable to the formation of a liquid crystal phase, while 2)a flexible spacer will decrease the "Jacket Effect" and the liquid crystallinity and 3) a subtle modification of the terminal groups on the mesogenic unit may also have a significant influence on properties of the polymers.

  6. Liquid-crystalline polymer holograms for high-density optical storage and photomechanical analysis

    Science.gov (United States)

    Shishido, A.; Akamatsu, N.

    2012-10-01

    We report linear and crosslinked azobenzene containing liquid-crystalline polymers which can be applied to high-density optical storage and photomechanical analysis. We introduced a molecular design concept of multicomponent systems composed of photoresponse, refactive-index change amplification, and transparency units. Taking advantage of characteristics of liquid crystals (optical anisotropy and cooperative motion), polarization holograms were recorded, which enabled us higher-density holographic storage. On the other hand, crosslinked liquid-crystalline azobenzene polymer films were fabricated to investigate the photomechanical behavior. We have found that a large change in Young's modulus is induced by several mol%-cis form production. Furthermore, a unique bending behavior, which cannot be explained by the conventional bending mechanism, was observed in the crosslinked liquid-crystalline polymer films with azobenzene in the side chain.

  7. The Effect of Liquid Crystalline Structures on Antiseizure Properties of Aqueous Solutions of Ethoxylated Alcohols

    Directory of Open Access Journals (Sweden)

    Anna Bak

    2010-01-01

    Full Text Available Aqueous solutions of ethoxylated alcohols which form lyotropic liquid crystals at high concentrations (40–80% were selected as model lubricating substances. Microscopic studies under polarized light and viscosity measurements were carried out in order to confirm the presence of liquid crystalline structures in the case of alcohol solutions with ethoxylation degrees of 3, 5, 7 and 10. Microscopic images and viscosity coefficient values characteristic of various mesophases were obtained. As expected, the viscosity of LLCs decreases considerably with an increase in shearing rate which is characteristic of liquid crystals being non-Newtonian liquids. Antiseizure properties were determined by means of a four-ball machine (T-02 Tester and characterized by scuffing load (Pt, seizure load (Poz and limiting pressure of seizure (poz. Alcohol ethoxylates forming mesophases in aqueous solutions have the strongest effect on the Pt values which are several times higher than those measured in the presence of water. Ethoxylates with higher degrees of ethoxylation exhibit higher values of scuffing load. Those changes have been interpreted as a result of higher cloud points at which those compounds lose their amphiphilic properties. In general, the presence of mesophases in the bulk phase and particularly in the surface phase may lead to the formation of a lubricant film which separates the frictionally cooperating elements of a friction pair. The antiseizure efficiency of alcohol solutions is highest up to the load value which does not exceed the scuffing load value.

  8. The effect of liquid crystalline structures on antiseizure properties of aqueous solutions of ethoxylated alcohols.

    Science.gov (United States)

    Sulek, Marian Wlodzimierz; Bak, Anna

    2010-01-12

    Aqueous solutions of ethoxylated alcohols which form lyotropic liquid crystals at high concentrations (40-80%) were selected as model lubricating substances. Microscopic studies under polarized light and viscosity measurements were carried out in order to confirm the presence of liquid crystalline structures in the case of alcohol solutions with ethoxylation degrees of 3, 5, 7 and 10. Microscopic images and viscosity coefficient values characteristic of various mesophases were obtained. As expected, the viscosity of LLCs decreases considerably with an increase in shearing rate which is characteristic of liquid crystals being non-Newtonian liquids. Antiseizure properties were determined by means of a four-ball machine (T-02 Tester) and characterized by scuffing load (P(t)), seizure load (P(oz)) and limiting pressure of seizure (p(oz)). Alcohol ethoxylates forming mesophases in aqueous solutions have the strongest effect on the P(t) values which are several times higher than those measured in the presence of water. Ethoxylates with higher degrees of ethoxylation exhibit higher values of scuffing load. Those changes have been interpreted as a result of higher cloud points at which those compounds lose their amphiphilic properties. In general, the presence of mesophases in the bulk phase and particularly in the surface phase may lead to the formation of a lubricant film which separates the frictionally cooperating elements of a friction pair. The antiseizure efficiency of alcohol solutions is highest up to the load value which does not exceed the scuffing load value.

  9. Free-surface molecular command systems for photoalignment of liquid crystalline materials.

    Science.gov (United States)

    Fukuhara, Kei; Nagano, Shusaku; Hara, Mitsuo; Seki, Takahiro

    2014-01-01

    The orientation of liquid crystal molecules is very sensitive towards contacting surfaces, and this phenomenon is critical during the fabrication of liquid crystal display panels, as well as optical and memory devices. To date, research has focused on designing and modifying solid surfaces. Here we report an approach to control the orientation of liquid crystals from the free (air) surface side: a skin layer at the free surface was prepared using a non-photoresponsive liquid crystalline polymer film by surface segregation or inkjet printing an azobenzene-containing liquid crystalline block copolymer. Both planar-planar and homoeotropic-planar mode patterns were readily generated. This strategy is applicable to various substrate systems, including inorganic substrates and flexible polymer films. These versatile processes require no modification of the substrate surface and are therefore expected to provide new opportunities for the fabrication of optical and mechanical devices based on liquid crystal alignment.

  10. Liquid Crystalline Epoxies with Lateral Substituents Showing a Low Dielectric Constant and High Thermal Conductivity

    Science.gov (United States)

    Guo, Huilong; Lu, Mangeng; Liang, Liyan; Wu, Kun; Ma, Dong; Xue, Wei

    2017-02-01

    In this work, liquid crystalline epoxies with lateral substituents were synthesized and cured with aromatic amines or anhydride. The liquid crystalline phase structure of liquid crystalline epoxies with lateral substituents was determined by polarized optical microscopy. The relationship between thermal conductivity and dielectric properties and liquid crystalline domain structure was discussed in the paper. The samples show high thermal conductivity up to 0.29 W/(m × K), due to the orientation of mesogenic units in epoxies. The sample's low dielectric constant of 2.29 is associated with the oriented mesogenic units and long nonpolar lateral substituents. This indicates a new way to obtain materials with high thermal conductivity and a low dielectric constant by introducing oriented mesogenic units into cross-linked epoxy systems. The water repellency is reflected in the contact angles of 92-98°, which are apparently higher than that of conventional epoxy systems. It was also found that the better toughness of liquid crystalline epoxies with lateral substituents was attributed to the existence of long flexible alkyl lateral substituents.

  11. THERMAL ANALYSIS AND STRUCTURE STUDIES ON THE BLENDS OF LIQUID CRYSTALLINE COPOLYESTERS AND PET, PBT

    Institute of Scientific and Technical Information of China (English)

    XIE Ping; LU Daohui

    1987-01-01

    The apparent uniform blends of liquid crystalline aromatic copolyesters and semiflexible polyesters PET or PBT were obtained by mechanical mixing in the molten state within certain range of composition.The effects of blending with liquid crystalline components on the structure of homopolyester matrix were examined by thermal analysis and X-ray diffraction. These results suggest that the LC component in the blend may possibly be acting as a nucleating agent, or it may induce axial orientation of molecules promoting the local ordering of matrix. For the blends of PET, these influences mainly display in narrowing the width of cold crystalline peak and enhancing the main peak of x-ray diffraction; and for the blends of PBT, the pre-melting crystalline peak was enhanced.

  12. SYNTHESIS AND PROPERTIES OF NEW SIDE-CHAIN LIQUID CRYSTALLINE POLYMER WITH LATERALLY ATTACHED MESOGENS BY ESTER GROUP

    Institute of Scientific and Technical Information of China (English)

    Qi-ding Mi; Qi-feng Zhou

    1999-01-01

    New liquid crystalline monomer, 2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized. Polyacrylate with laterally attached mesogens via ester linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state. However, its liquid crystallinity is very low as compared to that of poly { 2,5-bis[(4'-methoxyphenoxy)carbonyl] -styrene }.

  13. Enhanced light absorption in graphene via a liquid-crystalline optical diode

    Science.gov (United States)

    Pantazi, Aikaterini Iria; Yannopapas, Vassilios

    2016-09-01

    We demonstrate theoretically that light absorption in graphene can be boosted via a light-trapping mechanism based on a liquid-crystalline optical diode. The optical diode consists of twisted-nematic and nematic liquid-crystalline slabs. In particular, we show that, using a proper optical-diode setup, the absorption in a single graphene layer can be enhanced by a factor of four. By varying the pitch of the twisted-nematic liquid-crystalline slabs comprising the diode, one can tune the operating spectral region of the diode and thus enhance the absorption of graphene within a desired spectral window. Our calculations are based on Berreman's 4×4 method which treats anisotropic, isotropic and/ or inhomogeneous layered systems on equal footing.

  14. Luminescent liquid crystalline materials based on palladium(II) imine derivatives containing the 2-phenylpyridine core.

    Science.gov (United States)

    Micutz, Marin; Iliş, Monica; Staicu, Teodora; Dumitraşcu, Florea; Pasuk, Iuliana; Molard, Yann; Roisnel, Thierry; Cîrcu, Viorel

    2014-01-21

    In this work we report our studies concerning the synthesis and characterisation of a series of imine derivatives that incorporate the 2-phenylpyridine (2-ppy) core. These derivatives were used in the cyclometalating reactions of platinum(II) or palladium(II) in order to prepare several complexes with liquid crystalline properties. Depending on the starting materials used as well as the solvents employed, different metal complexes were obtained, some of them showing both liquid crystalline behaviour and luminescence properties at room temperature. It was found that, even if there are two competing coordination sites, the cyclometalation process takes place always at the 2-ppy core with (for Pt) or without (for Pd) the imine bond cleavage. We successfully showed that it is possible to prepare emissive room temperature liquid crystalline materials based on double cyclopalladated heteroleptic complexes by varying the volume fraction of the long flexible alkyl tails on the ancillary benzoylthiourea (BTU) ligands.

  15. SYNTHESIS AND CHARACTERIZATION OF PALLADIUM COORDINATING IMINE SIDE CHAIN LIQUID CRYSTALLINE POLYSILOXANES

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; ZHANG Rongben

    1991-01-01

    New thermotropic chloro-bridged dinuclear palladium coordinating imine side chain liquid crystalline polysiloxanes have been synthesized. Their mesomorphic properties have been investigated by DSC, X-ray diffraction and polarizing microscopy. The polymeric complexes show nematicdiscotic (Nd) mesophase. It is found that the temperature range of liquid crystalline state of chloro-bridged polymeric complexes is much wider than that of acetato-bridged ones and imine side chain polysiloxane. This indicates that the disc-like chloro-bridged palladium complexing units play a role as mesogen in mesophase.

  16. Thermomagnetic processing of liquid-crystalline epoxy resins and their mechanical characterization using nanoindentation.

    Science.gov (United States)

    Li, Yuzhan; Rios, Orlando; Kessler, Michael R

    2014-11-12

    A thermomagnetic processing method was used to produce a biphenyl-based liquid-crystalline epoxy resin (LCER) with oriented liquid-crystalline (LC) domains. The orientation of the LCER was confirmed and quantified using two-dimensional X-ray diffraction. The effect of molecular alignment on the mechanical and thermomechanical properties of the LCER was investigated using nanoindentation and thermomechanical analysis, respectively. The effect of the orientation on the fracture behavior was also examined. The results showed that macroscopic orientation of the LC domains was achieved, resulting in an epoxy network with an anisotropic modulus, hardness, creep behavior, and thermal expansion.

  17. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Science.gov (United States)

    Bubnov, Alexej; Tykarska, Marzena; Hamplová, Věra; Kurp, Katarzyna

    2016-09-01

    Design of binary and multicomponent liquid crystalline mixtures is a very powerful tool to reach the desired self-assembling properties. Beyond many advantages, this method has a distinct negativity - it is very material-consuming. While working with unique chiral materials in the research laboratory, this problem can be solved by applying miscibility study by the contact preparation method. In this work, the miscibility studies of lactic acid derivatives and non-chiral/chiral liquid crystalline molecules of different structure have been done in order to establish the phase diagrams. Special attention is focused on the ferro(antiferro)electric smectic phases.

  18. Spatial ordering and abnormal optical activity of DNA liquid-crystalline dispersion particles

    Science.gov (United States)

    Semenov, S. V.; Yevdokimov, Yu. M.

    2016-12-01

    In our work, we investigate physicochemical and optical properties of double-strand DNA dispersions. The study of these properties is of biological interest, because it allows one to describe the characteristics of certain classes of chromosomes and DNA containing viruses. The package pattern of DNA molecules in the dispersions particles (DP) is examined. The consideration of the DNA liquid-crystalline DP optical activity based on the theory of electromagnetic wave absorption by large molecular aggregates has been performed. The investigation is also focused on various effects induced by the interaction between biological active compounds and DNA in the content of liquid-crystalline DP.

  19. Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential.

    Science.gov (United States)

    Wang, Qi; E, Weinan; Liu, Chun; Zhang, Pingwen

    2002-05-01

    The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers (LCPs) is extended to model flows of nonhomogeneous, rodlike LCPs through a nonlocal (long-range) intermolecular potential. The theory features (i) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consistent with the chemical potential, (ii) short-range elasticity as well as long-range isotropic and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlocal molecular interaction, and (iv) an extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient expansions of the number density function in the free energy density.

  20. Birefringence-dependent linearly-polarized emission in a liquid crystalline organic light emitting polymer.

    Science.gov (United States)

    Lee, Dong-Myoung; Lee, You-Jin; Kim, Jae-Hoon; Yu, Chang-Jae

    2017-02-20

    We investigated the linearly polarized emission of uniformly aligned poly(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thia-diazol-4,8-diyl) (F8BT) with a liquid crystalline phase on a rubbed alignment layer. The polarization ratio, defined by the ratio of luminous intensities polarized parallel and perpendicular to the rubbed direction, gradually decreased with increasing thickness of the F8BT film. In the photoluminescence (PL) process, the polarized light is emitted throughout the whole F8BT film, while in the electroluminescence (EL) process, the polarized light is emitted at a certain region within the F8BT film. The thickness-dependent polarization ratios in both PL and EL processes were successfully described based on a simple model wherein the mean optical birefringence was expressed as a function of the thickness of the F8BT film.

  1. EPR spectroscopy of protein microcrystals oriented in a liquid crystalline polymer medium

    Science.gov (United States)

    Caldeira, Jorge; Figueirinhas, João Luis; Santos, Celina; Godinho, Maria Helena

    2004-10-01

    Correlation of the g-tensor of a paramagnetic active center of a protein with its structure provides a unique experimental information on the electronic structure of the metal site. To address this problem, we made solid films containing metalloprotein ( Desulfovibrio gigas cytochrome c3) microcrystals. The microcrystals in a liquid crystalline polymer medium (water/hydroxypropylcellulose) were partially aligned by a shear flow. A strong orientation effect of the metalloprotein was observed by EPR spectroscopy and polarizing optical microscopy. The EPR spectra of partially oriented samples were simulated, allowing for molecular orientation distribution function determination. The observed effect results in enhanced sensitivity and resolution of the EPR spectra and provides a new approach towards the correlation of spectroscopic data, obtained by EPR or some other technique, with the three-dimensional structure of a protein or a model compound.

  2. Dynamics of the guest-host orientational interaction in dye-doped liquid-crystalline materials.

    Science.gov (United States)

    Truong, Thai V; Xu, Lei; Shen, Y R

    2005-11-01

    We present a comprehensive study on the dynamics of laser-induced molecular reorientation in a dye-doped liquid crystalline (LC) medium that exhibits significant enhancement of the optical Kerr nonlinearity due to guest-host interaction. Using various techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photoexcitation and, thus, were able to follow the transient process in which photoexcitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced optical Kerr nonlinearity. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.

  3. Planar-fingerprint transition in a thermoreversible liquid crystalline gel

    Science.gov (United States)

    de Lózar, Alberto; Schöpf, Wolfgang; Rehberg, Ingo; Lafuente, Oscar; Lattermann, Günter

    2005-05-01

    A thermoreversible (physical) gel consisting of a nematic liquid crystal mixed with a small quantity of a chiral organogelator is investigated in the planar configuration. The response of the system to an external electric field reveals multistability within a small hysteresis. The relaxation of the liquid crystal under this field is characterized by two different time scales: a fast one that is connected to the tilt of the director field, and a slow one that describes the reorientation of the chiral structure. In the first case, the relaxation is nonexponential and can be described by a Kohlrausch-Williams-Watts law with a stretching parameter of 0.5.

  4. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline ph

  5. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline

  6. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines : Toward Molecular Wires and Molecular Ionoelectronics

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Picken, Stephen J.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4’,5’-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 °C. The structures of the crystalline ph

  7. Novel Colloidal and Dynamic Interfacial Phenomena in Liquid Crystalline Systems

    Science.gov (United States)

    2014-09-13

    Hongrui Jiang. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions, Lab -on-a... Chip (06 2012) Daniel S. Miller, Nicholas L. Abbott,. Influence of droplet size, pH and ionic strength on endotoxin- triggered ordering transitions

  8. The effect of flexible spacers on the h-shaped dimesogenic liquid crystalline compounds

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hoon; Lee, Hwan Myoung; Choi, Ok Byung; Lee, Chang Joon [Hoseo Univ., Asan (Korea, Republic of); So, Bong Keun; Lee, Soo Min [Hannam Univ., Daejon (Korea, Republic of)

    2001-12-01

    A homologous series of new H-shaped twin liquid crystal molecules (PPPA-n) with flexible spacers, oxypolymethyleneoxy, has been prepared by esterification of acid chloride of {alpha}, {omega}-bis(2,5-dicar-boxyphenoxy)alkanes with p-phenylphenol. The length of spacer was varied from oxyethyleneoxy (n=2) to oxydecamethyleneoxy (n=10). Their thermodynamic data were measured by differential scanning calorimetry and liquid crystalline properties were investigated by a hot-stage polarizing microscope.

  9. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    Science.gov (United States)

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration.

  10. Miscibility of Semi-flexible Thermotropic Liquid Crystalline Copolyesteramide with Polyamide 66

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Liquid crystalline polymer-polyamide 66 (LCP/PA66) blends were compounded by usingaBrabender mixing followed by compression moulding. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30% (molar fraction) of p-amino benzoic acid (ABA)and 70% (molar fraction) of poly (ethylene terephthalate)(PET). The LCP/PA66 blends wereinvestigated in terms of the thermal and dynamic mechanical properties. It was found that PA66and LCP components of the blends are miscible in the molten state, but are partially miscible inthe solid state. The inclusion of the semi-flexible LCP into PA66 retards the crystallization rateof PA66. Furthermore, the melting temperature and the degree of crystallinity of PA66 are reduced considerably due to the LCP addition.

  11. MORPHOLOGICAL STUDIES ON THERMOTROPIC LIQUID CRYSTALLINE POLYESTER——MORPHOLOGY OF SHEAR ORIENTED FILMS

    Institute of Scientific and Technical Information of China (English)

    WANG Xiayu; DONG Yanming; LI Xianxing; XIONG Qianzhen

    1989-01-01

    The morphology of shear-oriented films of a thermotropic liquid crystalline polyester containing a triad ester mesogenic unit and a flexible spacer has been investigated in details. The formation conditions and process, the fine structures and the relaxation process of mat structure in the oriented films have been observed and discussed.

  12. Microphase separation and liquid-crystalline ordering of rod-coil copolymers

    NARCIS (Netherlands)

    AlSunaidi, A.; Otter, den W.K.; Clarke, J.H.R.

    2009-01-01

    Microphase separation and liquid-crystalline ordering in diblock and triblock rod-coil copolymers (with rod-to-coil fraction f = 0.5) were investigated using the dissipative particle dynamics method. When the isotropic disordered phases of these systems were cooled down below their order-disorder tr

  13. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C

    2007-01-01

    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline WC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobeazene content in these copolymers ranges from 52 to 7 wt %. For an azo conteat dowri to 20% they exhibit a LC ...

  14. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    DEFF Research Database (Denmark)

    Sánchez, C; Alcalá, R; Hvilsted, Søren

    2001-01-01

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution w...

  15. A paint removal concept with side-chain liquid crystalline polymers as primer material

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.; Nieuwhof, R.P.; Marcelis, A.T.M.; Sudhölter, E.J.R.

    2001-01-01

    A new paint removal concept is introduced making use of a polymer primer layer with a sharp softening temperature. For this, a new class of side-chain liquid crystalline polymers with polar moieties in the backbone has been developed and studied in thin films. These polymers form lamellar-ordered

  16. Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications.

    Science.gov (United States)

    Lali Raveendran, Reshma; Kumar Sasidharan, Nishanth; Devaki, Sudha J

    2017-04-19

    The design of liquid crystalline hydrogels knitted with silver nanoparticles in macroscopic ordering is becoming a subject of research interest due to their promising multifunctional applications in biomedical and optoelectronic applications. The present work describes the development of liquid crystalline Schiff-based hydrogel decorated with silver nanoparticles and the demonstration of its antifungal applications. Schiff base was prepared from polyglucanaldehyde and chitosan, and the former was prepared by the oxidation of amylose (polyglucopyranose) isolated from abundantly available unutilized jackfruit seed starch. Self-assembled silver columns decorated with macroscopically ordered networks were prepared in a single step of in situ condensation and a reduction/complexation process. The various noncovalent interactions among the -OH, -C═O, and -NH impart rigidity and ordering for the formation of macroscopically ordered liquid crystalline hydrogel and the Ag(I) complexation evidenced from the studies made by FT-IR spectroscopy in combination with rheology and microscopic techniques such as SEM, TEM, AFM, XRD, and PLM. The antifungal studies were screened using species of Candida by disc diffusion method. The MIC and MFC values, in vitro antifungal studies, reactive oxygen species (ROS) production, and propidium iodide (PI) uptake results suggest that the present macroscopically ordered liquid crystalline hydrogel system can be considered an excellent candidate for topical applications. All these results suggest that this design strategy can be exploited for the incorporation of biologically relevant metal nanoparticles for developing unique robust hydrogels for multifunctional applications.

  17. STUDY ON THE PHASE TRANSITION KINETICS OF THERMOTROPIC LIQUID CRYSTALLINE AROMATIC-ALIPHATIC COPOLYESTER

    Institute of Scientific and Technical Information of China (English)

    LI Minhui; WANG Xiaogong; LIU Deshan; ZHOU Qixiang

    1991-01-01

    The phase transition kinetics of thermotropic liquid crystalline aromatic-aliphatic regular copolyester:(X) were studied by DSC. By means of Kissinger's method the kinetic equation and parameters including activation energy, rate order and preexponential factor for phase transition from nematic to isotropic were obtained. The activation energy from crystal to nematic was also presented.

  18. 21 CFR 524.2620 - Liquid crystalline trypsin, Peru balsam, castor oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Liquid crystalline trypsin, Peru balsam, castor oil. 524.2620 Section 524.2620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...) Conditions of use. The drug is used as an aid in the treatment of external wounds and assists healing by...

  19. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.;

    1999-01-01

    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  20. Novel biphotonic holographic storage in a side-chain liquid crystalline polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, S.; Andruzzi, F.

    1993-01-01

    We report novel biphotonic holographic storage of text and gratings on unoriented films of a side-chain liquid crystalline polyester capable of high density storage and complete erasure. The holograms have a typical size of 1 mm. The recording utilizes unusual photochemistry involving azo dye...

  1. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    Science.gov (United States)

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  2. Side-chain liquid-crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, F.; Ramanujam, P.S.

    1992-01-01

    We report erasable holographic recording with a resolution of at least 2500 lines/mm on unoriented films of side-chain liquid-crystalline polyesters. Recording energies of approximately 1 J/cm2 have been used. We have obtained a diffraction efficiency of approximately 30% with polarization record...

  3. Alternating Side-Chain Liquid-Crystalline Copolymers with Polar Moieties in the Backbone

    NARCIS (Netherlands)

    Nieuwhof, R.P.

    1999-01-01

    Side-chain liquid-crystalline polymers (SCLCPs) obtained via the alternating copolymeri-zation of maleic anhydride (MA) and mesogenic 1-alkenes are an interesting class of polymers that may show good adhesion towards metal surfaces and form ordered layered structures. If these polymers contain metho

  4. Dynamic Rheological Characterization of A Thermotropic Liquid Crystalline Poly (aryl ether ketone)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rheometrics ARES rheometer was applied to determining the rheological behavior of a thermotropic liquid crystalline poly (aryl ether ketone). The viscosity of the material decreases with increasing temperature, reaching a minimum in the nematic state, then slightly increases with further raising the temperature in the biphase.

  5. Periodic orientational motions of rigid liquid-crystalline polymers in shear flow

    NARCIS (Netherlands)

    Tao, Y.G.; den Otter, Wouter K.; Briels, Willem J.

    2006-01-01

    The collective periodic motions of liquid-crystalline polymers in a nematic phase in shear flow have, for the first time, been simulated at the particle level by Brownian dynamics simulations. A wide range of parameter space has been scanned by varying the aspect ratio L/D between 10 and 60 at three

  6. Anion-directed self-organization of thermotropic liquid crystalline materials containing a guanidinium moiety.

    Science.gov (United States)

    Kim, Dongwoo; Jon, Sangyong; Lee, Hyung-Kun; Baek, Kangkyun; Oh, Nam-Keun; Zin, Wang-Cheol; Kim, Kimoon

    2005-11-28

    New wedge-shaped thermotropic liquid crystalline materials containing a guanidinium moiety at the apex organize into various supramolecular structures such as hexagonal columnar, rectangular columnar and Pm3n cubic mesophases depending on anions illustrating guest-directed self-organization in mesophases.

  7. SYNTHESIS OF LIQUID CRYSTALLINE POLYACRYLATES WITH THIOESTER AS BRIDGE-BOND

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weibang; ZHANG Guodong; XU Jiarui; ZENG Hanmin

    1996-01-01

    A new series of acrylates with the same mesogens containing thioester as bridge-bond were synthesized, and the acrylates were characterized by H1 NMR, IR and MS. The polymers were obtained by radical polymerization using AIBN as initiator. The monomers and polymers exhibit thermotropic-enantiotropic liquid crystalline behavior.

  8. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions.

    Science.gov (United States)

    Shen, Hsin-Hui; Crowston, Jonathan G; Huber, Florian; Saubern, Simon; McLean, Keith M; Hartley, Patrick G

    2010-12-01

    Lyotropic liquid crystalline nanoparticles (cubosomes) have the potential to act as amphiphilic scaffolds for the presentation of lipids and subsequent application in, for example, bioseparations and therapeutic delivery. In this work we have formulated lyotropic liquid crystalline systems based on the synthetic amphiphile 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecane (phytantriol) and containing the lipid dipalmitoyl phosphatidylserine (DPPS). We have prepared a range of DPPS-containing phytantriol cubosome formulations and characterized them using Small Angle X-ray Scattering and Cryo-transmission electron microscopy. These techniques show that increased DPPS content induces marked changes in lyotropic liquid crystalline phase behaviour, characterized by changes in crystallographic dimensions and increases in vesicle content. Furthermore, in vitro cell culture studies indicate that these changes correlate with lipid/surfactant cellular uptake and cytotoxicity. A model cell membrane based on a surface supported phospholipid bilayer was used to gain insights into cubosome-bilayer interactions using Quartz Crystal Microgravimetry. The data show that mass uptake at the supported bilayer increased with DPPS content. We propose that the cytotoxicity of the DPPS-containing dispersions results from changes in lipid/surfactant phase behaviour and the preferential attachment and fusion of vesicles at the cell membrane.

  9. Liquid Crystalline π-Conjugated Copolymers Bearing a Pyrimidine Type Mesogenic Group

    Directory of Open Access Journals (Sweden)

    Kohsuke Kawabata

    2009-01-01

    Full Text Available Phenylene-thiophene-based liquid crystalline π-conjugated copolymers bearing mesogenic groups as side chains were synthesized via a Stille polycondensation reaction and confirmed to exhibit a nematic liquid crystal phase at appropriate temperatures. The formation of a nematic phase, but not a smectic phase indicates cooperation of the main chain and side chain in the formation of a nematic main-chain/side-chain liquid crystal phase. The generation of polarons in the main chain as charge carriers during in-situ vapor doping of iodine is confirmed to increase with a doping progresses, exhibiting Dysonian paramagnetic behavior typical of conductive polymers.

  10. SYNTHESIS AND CHARACTERIZATION OF β-DIKETONE BASED SIDE CHAIN LIQUID CRYSTALLINE POLYSILOXANES

    Institute of Scientific and Technical Information of China (English)

    WU Fuzhou; ZHANG Rongben; JIANG Yingyan

    1990-01-01

    A new type of β-diketone based side chain liquid crystalline polysiloxanes (DKLCP) with different length of flexible spacers and end groups have been synthesized by hydrosilation reaction. This is liquid crystal polymers (LCP) using coordinating β-diketone ligand as mesogens. The phase behaviour of DKLCP polymers was studied by differential scanning calorimetry and polarizing microscopy.X-ray diffraction investigations demonstrated that the polysiloxanes with sufficiently long flexible spacers were smectic liquid crystal polymers, while those with much shorter spacers were nematic ones.

  11. Shadow wave-function variational calculations of crystalline and liquid phases of 4He

    Science.gov (United States)

    Vitiello, S. A.; Runge, K. J.; Chester, G. V.; Kalos, M. H.

    1990-07-01

    A new class of variational wave functions for boson systems, shadow wave functions, is used to investigate the properties of solid and liquid 4He. The wave function is translationally invariant and symmetric under particle interchange. In principle, the calculations for the crystalline phase do not require the use of any auxiliary lattice. Using the Metropolis Monte Carlo algorithm, we show that the additional variational degrees of freedom in the wave function lower the energy significantly. This wave function also allows the crystalization of an equilibrated liquid phase when a crystalline seed is used. The pair correlation function and structure factor S(k) are determined in the liquid phase. The condensate fraction is calculated as well. Results are given for the single-particle distribution function around the lattice positions in the solid phase.

  12. Stability of Equilibria of Nematic Liquid Crystalline Polymers

    Science.gov (United States)

    2011-01-01

    into bullet-proof vests and airbags . The theoretical studies of liquid crystals traced back more than 60 years ago. In 1949 Onsager [29] developed a...distribution: The free energy of the orientational distribution ρ(m) is G([ρ]) = ∫ S [ log ρ(m) + 1 2 U(m, [ρ]) ] ρ(m)dm. (16) Recall that for any ρ(m), by...equation (12), it satisfies f(r(b)) = 1/b. Substituting this into (29) yields H11 = 1− b 3 2 ( 〈m43〉 − 〈m 2 3〉 2 )∣∣∣∣ eq = −b r(b)f ′(r(b)). Recall

  13. Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets

    Science.gov (United States)

    Lin, I.-Hsin; Miller, Daniel S.; Bertics, Paul J.; Murphy, Christopher J.; de Pablo, Juan J.; Abbott, Nicholas L.

    2011-06-01

    The ordering of liquid crystals (LCs) is known to be influenced by surfaces and contaminants. Here, we report that picogram per milliliter concentrations of endotoxin in water trigger ordering transitions in micrometer-size LC droplets. The ordering transitions, which occur at surface concentrations of endotoxin that are less than 10-5 Langmuir, are not due to adsorbate-induced changes in the interfacial energy of the LC. The sensitivity of the LC to endotoxin was measured to change by six orders of magnitude with the geometry of the LC (droplet versus slab), supporting the hypothesis that interactions of endotoxin with topological defects in the LC mediate the response of the droplets. The LC ordering transitions depend strongly on glycophospholipid structure and provide new designs for responsive soft matter.

  14. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  15. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  16. SYNTHESIS AND CHARACTERIZATION OF AROMATIC LIQUID CRYSTALLINE COPOLYESTERS WITH REGULAR SEQUENCE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    LIN Qinghuang; WANG Huifen; LIU Deshan; ZHOU Qixiang

    1990-01-01

    Several novel aromatic liquid crystalline copolyesters with regular sequence structure were prepared by melt Schotten-Baumann polycondensation via complex monomer. Polarizing microscope with hot stage,thermal analysis and X-ray diffraction were used to investigate the structure and properties of the copolyesters . The effects of structural units, such as flexible spacer, noncolinear meta-linked phenylene unit, crankshaft unit, kink with flexible bridging unit and various substituted benzene rings on melting temperature of aromatic copolyesters were studied and discussed on the basis of crystalline structure of the polymers.

  17. Screening in crystalline liquids protects energetic carriers in hybrid perovskites

    Science.gov (United States)

    Zhu, Haiming; Miyata, Kiyoshi; Fu, Yongping; Wang, Jue; Joshi, Prakriti P.; Niesner, Daniel; Williams, Kristopher W.; Jin, Song; Zhu, X.-Y.

    2016-09-01

    Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3, and CsPbBr3. We observed hot fluorescence emission from energetic carriers with ~102-picosecond lifetimes in CH3NH3PbBr3 or CH(NH2)2PbBr3, but not in CsPbBr3. The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit.

  18. Formation of crystalline telluridomercurates from ionic liquids near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Donsbach, Carsten; Dehnen, Stefanie [Fachbereich Chemie und Wissenschaftliches Zentrum fuer Materialwissenschaften, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg (Germany)

    2017-01-15

    The ternary telluridomercurate Na{sub 2}[HgTe{sub 2}] (1) was formed by fusion of Na{sub 2}Te and HgTe at 600 C and further treated in the ionic liquid (C{sub 4}C{sub 1}Im)[BF{sub 4}] (C{sub 4}C{sub 1}Im = 1-butyl-3-methylimidazolium) at moderately elevated temperatures (60 C), leading to replacement of the Na{sup +} cations with (C{sub 4}C{sub 1}Im){sup +} and re-arrangement of the inorganic substructure. As a result, we obtained the telluridomercurate (C{sub 4}C{sub 1}Im){sub 2}[HgTe{sub 2}] (2) and the tellurido/ditelluridomercurate (C{sub 4}C{sub 1}Im){sub 2}[Hg{sub 2}Te{sub 4}] (3) besides polytellurides and HgTe as by-products. The heavy atom compositions of the compounds were confirmed by micro X-ray fluorescence spectroscopy (μ-XFS), and their structures were determined by single-crystal diffraction. The cation-exchanged salts were further investigated by UV/Vis spectroscopy, indicating narrow band-gap optical transitions at 2.80 eV (2) and 1.63 eV (3), in agreement with their visible yellow or reddish-black color, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Modeling of ionic liquids

    Science.gov (United States)

    Tatlipinar, Hasan

    2017-02-01

    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  20. Cholesteric liquid crystalline materials with a dual circularly polarized light reflection band fixed at room temperature.

    Science.gov (United States)

    Agez, Gonzague; Mitov, Michel

    2011-05-26

    An unpolarized normal-incidence light beam reflected by a cholesteric liquid crystal is left- or right-circularly polarized, in the cholesteric temperature range. In this article, we present a novel approach for fabricating a cholesteric liquid crystalline material that exhibits reflection bands with both senses of polarization at room temperature. A cholesteric liquid crystal that presents a twist inversion at a critical temperature T(c) is blended with a small quantity of photopolymerizable monomers. Upon ultraviolet irradiation above T(c), the liquid crystal becomes a polymer-stabilized liquid crystal. Below T(c), the material reflects a dual circularly polarized band in the infrared. By quenching the experimental cell at a temperature below the blend's melting point, the optical properties of the material in an undercooled state are conserved for months at room temperature, which is critical to potential applications such as heat-repelling windows and polarization-independent photonic devices.

  1. Organic solar cells based on liquid crystalline and polycrystalline thin films

    Science.gov (United States)

    Yoo, Seunghyup

    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors. Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements. In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7% under broadband illumination (350--900 nm) with a peak external quantum efficiency of 58% have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using

  2. The Role of Liquid-crystalline Structures in the Morphogenesis of Animal Fibers.

    Science.gov (United States)

    McKinnon, A John; Harland, Duane P

    2010-07-01

    The role of liquid-crystalline (mesophase) structures in extra-cellular morphogenesis is widely recognized. This paper summarizes a model for the more unusual case of intra-cellular mesophases. In the nascent mammalian hair cortex, cell differentiation is correlated with different mesophase textures within tactoids that are composed of intermediate filaments (IFs), and which form by a concerted process of unit-length-filament (ULF) polymerization and phase separation. Nematic and double-twist textures arise from differences in mesogen orientation and length in apposed tactoids. The model explains features of mature structures such as the fibril-matrix ratios in different cell types. The rapidity of IF formation suggests that a sudden-transition equilibrium polymerization, involving a high-energy initiating species, obeying the same statistical model as several other biological transitions, may be involved. This leads to an appealing symmetry, with the key factor in both polymerization and mesophase stability being the retention of protein head-group entropy.

  3. Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters.

    Science.gov (United States)

    Molard, Yann

    2016-08-16

    Inorganic phosphorescent octahedral metal nanoclusters fill the gap between metal complexes and nanoparticles. They are finite groups of metal atoms linked by metal-metal bonds, with an exact composition and structure at the nanometer scale. As their phosphorescence internal quantum efficiency can approach 100%, they represent a very attractive class of molecular building blocks to design hybrid nanomaterials dedicated to light energy conversion, optoelectronic, display, lighting, or theragnostic applications. They are obtained as AnM6X(i)8X(a)6 ternary salt powders (A = alkali cation, M = Mo, Re, W, X(i): halogen inner ligand, X(a) = halogen apical ligand) by high temperature solid state synthesis (750-1200 °C). However, their ceramic-like behavior has largely restricted their use as functional components in the past. Since these last two decades, several groups, including ours, started to tackle the challenge of integrating them in easy-to-process materials. Within this context, we have extensively explored the nanocluster ternary salt specificities to develop a new class of self-organized hybrid organic-inorganic nanomaterials known as clustomesogens. These materials, combine the specific properties of nanoclusters (magnetic, electronic, luminescence) with the anisotropy-related properties of liquid crystals (LCs). This Account covers the research and development of clustomesogens starting from the design concepts and synthesis to their introduction in functional devices. We developed three strategies to build such hybrid super- or supramolecules. In the covalent approach, we capitalized on the apical ligand-metal bond iono-covalent character to graft tailor-made organic LC promoters on the {M6X(i)8}(n+) nanocluster cores. The supramolecular approach relies on the host-guest complexation of the ternary cluster salt alkali cations with functional crown ether macrocycles. We showed that the hybrid LC behavior depends on the macrocycles structural features

  4. Synthesis of rod-like bis-ester liquid crystals and their influence on photoelectric properties of liquid crystalline materials

    Institute of Scientific and Technical Information of China (English)

    Min Yan Zheng; Yong Sheng Wei; Zhong Wei An; Shan Wang

    2009-01-01

    Six novel rod-like magnetic liquid crystals have been prepared,in which trans-bicyclobexyl or trans-cyclobexylphenyl and biphenylcarboxylic acid phenyl ester mesogenic cores with n-propyl and n-pentyl substituents were terminated by 4-hydroxylTEMPO (TEMPO = 2,2,6,6-tetramethylpiperidine-l-oxy).Their structures were confirmed by elemental analysis,IR and MS.Determined by SQUID,EPR,DSC and HS-POM (heat stage polarizing optical microscope),the six compounds all have both magnetic and liquid crystalline properties; their temperature ranges of mesophase were from 16.0 to 24.8 ~C,and the magnetic liquid crystal molecules could obviously improve the response sensitivity of liquid crystal materials.

  5. Liquid crystalline polymers IX Main chain thermotropic poly (azomethine – ethers containing thiazole moiety linked with polymethylene spacers

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available A new homologous series of thermally stable thermotropic liquid crystalline poly(azomethine-ethers based on thiazole moiety were synthesized by solution polycondensation of 4,4`-diformyl-α,ω-diphenoxyalkanes, I–IV or 4,4`-diformyl-2,2`-dimethoxy-α,ω-diphenoxyalkanes V–VIII with the new bis(2-aminothiazole monomer X. A model compound XI was synthesized from X with benzaldehyde and characterized by elemental and spectral analyses. The inherent viscosities of the resulting polymers were in the range 0.43–1.34 dI/g. All the poly(azomethine-ethers were insoluble in common organic solvents but dissolved completely in concentrated H2SO4 and formic acid. The mesomorphic properties of these polymers were studied as a function of the diphenoxyalkane space length. Their thermotropic liquid crystalline properties were examined by DSC and optical polarizing microscopy and demonstrated that the resulting polymers form nematic mesophases over wide temperature ranges. The thermogravimetric analyses of those polymers were evaluated by TGA and DSC measurements and correlated to their structural units. X-ray analysis showed that polymers having some degree of crystallinity in the region 2θ = 5–60°. In addition, the morphological properties of selected examples were tested by scanning electron microscopy.

  6. Topological Influence of Lyotropic Liquid Crystalline Systems on Excited-State Proton Transfer Dynamics.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Hazra, Partha

    2016-03-29

    In the present work, we have investigated the excited-state proton transfer (ESPT) dynamics inside lipid-based reverse hexagonal (HII), gyroid Ia3d, and diamond Pn3m LLC phases. Polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS) techniques have been employed for the characterization of LLC systems. Time-resolved fluorescence results reveal the retarded ESPT dynamics inside liquid crystalline systems compared to bulk water, and it follows the order HII water and it follows the order H2O constant and different channel diameters of these LLC systems. However, the dissociation dynamics is found to be slower than bulk water and it follows the order HII dissociation dynamics in these liquid crystalline systems.

  7. Selective Sequence for the Peptide-Triggered Phase Transition of Lyotropic Liquid-Crystalline Structures.

    Science.gov (United States)

    Liu, Qingtao; Dong, Yao-Da; Boyd, Ben J

    2016-05-24

    A novel concept of using mixed lipids to construct selective peptide-sequence-sensing lyotropic liquid-crystalline (LLC) dispersion systems was investigated. The LLC systems were constructed using a mixture of phytantriol, a lipid that forms lyotropic liquid-crystalline phases, and a novel synthesized peptide-lipid (peplipid) for sensing a target peptide with the RARAR sequence. The internal structure of the dispersed LLC particles was converted from the lamellar structure (liposomes) to the inverse bicontinuous cubic phase (cubosomes) in the presence of the target peptide. The addition of common human proteins did not induce any structural change, indicating a high selectivity of interaction with the target peptide. The concept has potential for the design of targeted controlled release drug delivery agents.

  8. SYNTHESIS OF NOVEL LIQUID CRYSTALLINE POLY(METH)ACRYLATES CONTAINING SILOXANE SPACER AND TERPHENYLENE MESOGENIC UNIT

    Institute of Scientific and Technical Information of China (English)

    Zhi-qian Zang; Yu-fei Luo; Dong Zhang; Xin-hua Wan; Qi-feng Zhou

    2000-01-01

    Novel side-chain liquid-crystalline poly(meth)acrylates were synthesized using 1-(3-hydroxyl-propyl)-3-[(4"cyano-p-terphenyloxycarbonyl)alkyl]-1, 1,3,3-tetramethyldisiloxane as the key intermediate. The polymers used a disiloxane moiety as decoupling spacer with cyano-p-terphenyl as mesogenic unit. The products were characterized by NMR, GPC,DSC and polarizing optical microscopy. All the polymers with cyano-p-terphenyl mesogens formed a stable mesophase.However, if the mesogenic unit is replaced by cyano-p-biphenyl, the liquid crystalline character will be lost. The results also showed that the decoupling is incomplete even if a complex and very flexible decoupling spacer is deliberately incorporated to obtain the highest possible decoupling effect.

  9. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    Science.gov (United States)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  10. Self-assembly of azobenzene based side-chain liquid crystalline polymer and -alkyloxybenzoic acids

    Indian Academy of Sciences (India)

    Kumarasamy Gayathri; Subramanian Balamurugan; Palaninathan Kannan

    2011-05-01

    Liquid crystalline pendant polymeric complexes have been obtained by supramolecular assembly of two mesogenic components namely, poly[4-(10-acryloyloxydecyloxy)-4'- phenylazobenzonitrile] (P10) and 4-alkyloxybenzoic acids (A7-A12). Hydrogen bond formed between carboxylic acid and cyano moiety served as molecular bridge. The polymeric complexes acquitted as undivided liquid crystalline properties exhibited stable and enantiotropic mesophases. The precursor, monomer and polymer were analysed by 1H-NMR and 13C-NMR spectroscopy. The hydrogen bonding interaction in polymer complexes (P10-A7 to P10-A12) was investigated by FT-IR spectroscopy. The thermal behaviours and textural analysis were studied by differential scanning calorimetry and polarized optical microscopy respectively.

  11. Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2015-08-01

    Full Text Available In this work liquid-crystalline polymer (LCP nanocomposites reinforced with in-situ reduced graphene oxide are investigated. Graphene oxide (GO was first synthesized by the Hummers method, and the kinetics of its thermal reduction was assessed. GO layers were then homogeneously dispersed in a thermotropic liquid crystalline polymer matrix (Vectran®, and an in-situ thermal reduction of GO into reduced graphene oxide (rGO was performed. Even at low rGO amount, the resulting nanocomposites exhibited an enhancement of both the mechanical properties and the thermal stability. Improvements of the creep stability and of the thermo-mechanical behavior were also observed upon nanofiller incorporation. Furthermore, in-situ thermal reduction of the insulating GO into the more electrically conductive rGO led to an important surface resistivity decrease in the nanofilled samples.

  12. SYNTHESIS AND CHARACTERIZATION OF TRIAZOLE CONTAINING LIQUID CRYSTALLINE POLYMERS THROUGH 1,3-DIPOLAR CYCLOADDITION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Devamani Srividhya; Sundaram Manjunathan; Sivashankaran Nithyanandan; Subramanan Balamurugan; Sengodan Senthil

    2009-01-01

    Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were characterized. Click reaction of azide and alkyne functionals catalyzed by Cu(Ⅰ) yielded target polyesters with 1,2,3-triazole groups. The structure of the polymer was confirmed by spectral techniques. GPC analysis reveals that the polymers have moderate molecular weight with narrow distribution. Hot stage optical polarizing microscopic investigation confirms the liquid crystalline nature of the polymers with lengthy flexible spacers, while the short chain containing polymers does not show the mesomorphic properties. Differential scanning calorimetric analysis confirms the formation of mesophase in some of the polymers, and it is in accordance with the microscopic results. Thermal stabilities of the polymers were analyzed by thermogravimetric analysis.

  13. Crystalline Silicotitanate: a New Type of Ion Exchanger for Cs Removal from Liquid Waste

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The research and developments of a new type of inorganic ion exchanger, crystalline silicotitanate (CST) are reviewed.This material is stable against radiation, and the CST has high selectivity for Cs over Na, K and Rb. It performs well in acidic, neutral, and basic solutions. The results of ion exchange tests show that CST is an excellent candidate for Cs removal from high-level liquid waste.

  14. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Indian Academy of Sciences (India)

    C K S Pillai; Neethu Sundaresan; M Radhakrishnan Pillai; T Thomas; T J Thomas

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  15. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Science.gov (United States)

    Pillai, C. K. S.; Sundaresan, Neethu; Radhakrishnan Pillai, M.; Thomas, T.; Thomas, T. J.

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physico-chemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li--DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  16. Enhancement in Mechanical and Shape Memory Properties for Liquid Crystalline Polyurethane Strengthened by Graphene Oxide

    OpenAIRE

    Yueting Li; Huiqin Lian; Yanou Hu; Wei Chang; Xiuguo Cui; Yang Liu

    2016-01-01

    Conventional shape memory polymers suffer the drawbacks of low thermal stability, low strength, and low shape recovery speed. In this study, main-chain liquid crystalline polyurethane (LCPU) that contains polar groups was synthesized. Graphene oxide (GO)/LCPU composite was fabricated using the solution casting method. The tensile strength of GO/LCPU was 1.78 times that of neat LCPU. In addition, shape recovery speed was extensively improved. The average recovery rate of sample with 20 wt % GO...

  17. Studies on the Synthesis,Characterization and Properties of the Reactive Thermotropic Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Four species of reactive thermotropic liquid crystalline polymer (LCMC) with different relative molecular weight were synthesized in this work (see scheme 1, n=2, 6, 10, ∞.n means number of repeat structure unit). Their structure, morphology and properties were investigated systemically by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WAXD), polarizing opticalmicroscopy (POM) and ubb...

  18. SYNTHESIS AND CHARACTERIZATION OF TRIAZOLE CONTAINING LIQUID CRYSTALLINE POLYMERS THROUGH 1,3-DIPOLAR CYCLOADDITION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Devamani; Srividhya; Sundaram; Manjunathan; Sivashankaran; Nithyanandan; Subramanan; Balamurugan; Sengodan; Senthil

    2009-01-01

    Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were characterized. Click reaction of azide and alkyne functionals catalyzed by Cu(I) yielded target polyesters with 1,2,3-triazole groups.The structure of the polymer was confirmed by spectral techniques.GPC analysis reveals that the polymers have moderate molecular weight with narrow distributio...

  19. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions.

    Science.gov (United States)

    Henmi, Masahiro; Nakatsuji, Koji; Ichikawa, Takahiro; Tomioka, Hiroki; Sakamoto, Takeshi; Yoshio, Masafumi; Kato, Takashi

    2012-05-02

    A membrane with ordered 3D ionic nanochannels constructed by in situ photopolymerization of a thermotropic liquid-crystalline monomer shows high filtration performance and ion selectivity. The nanostructured membrane exhibits water-treatment performance superior to that of an amorphous membrane prepared from the isotropic melt of the monomer. Self-organized nanostructured membranes have great potential for supplying high-quality water. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  1. Chiral front propagation in liquid-crystalline materials: Formation of the planar monodomain twisted plywood architecture of biological fibrous composites.

    Science.gov (United States)

    De Luca, Gino; Rey, Alejandro D

    2004-01-01

    Biological fibrous composites commonly exhibit an architecture known as twisted plywood, which is similar to that of the cholesteric liquid-crystalline mesophases. The explanation for the structural similarity is that biological fibrous composites adopt a lyotropic cholesteric liquid-crystalline phase during their formation process. In this work, a mathematical model based on the Landau-de Gennes theory of liquid crystals has been developed to reproduce the process by which long chiral fibrous molecules form the twisted plywood structures observed in biological composites. The dynamics of the process was then further investigated by analytically solving a simplified version of the governing equations. Results obtained from the model are in good qualitative agreement with the theory of Neville [Biology of Fibrous Composites (Cambridge University Press, Cambridge, England, 1993)] who hypothesized the necessity of a constraining layer to lock the direction of the helical axis of the plywood in order to create a monodomain structure. Computational results indicate that the plywood architecture is obtained by a chiral front propagation process with a fully relaxed wake. The effects of chirality and concentration on the formation process kinetics are characterized.

  2. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  3. Preparation and characterization of new poly-pyrrole having side chain liquid crystalline moieties

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S. Hossein, E-mail: hosseini_sh44@yahoo.com [Department of Chemistry, Faculty of Science and Engineering, Imam Hossein University, Babaee Express Way, Tehran (Iran, Islamic Republic of); Mohammadi, M. [Department of Chemistry, Faculty of Science and Engineering, Imam Hossein University, Babaee Express Way, Tehran (Iran, Islamic Republic of)

    2009-06-01

    We have synthesized a novel liquid-crystalline (LC)-conducting polymer by introducing LC group into pyrrole monomer and polymerizing it with FeCl{sub 3}. The N-substituted pyrrole with LC group (Py-RedII) was prepared by direct reaction of potassium pyrrole salt with 2-[N-ethyl-N-[4-[(4-nitrophenyl)azo]-phenyl]amino]ethyl-3-chloropropionate (RedII). The polymerization of this monomer was successful, giving a conjugated polymer system with liquid crystalline moieties in moderate yield. The polymer obtained was soluble in organic solvents and had a thermotropic liquid crystallinity with mosaic texture characterized by polarizing optical microscopy. Phase transitions, thermal analysis and rheological studies were also evaluated by means of differential scanning calorimetry (DSC), thermogravimetry analysis (TGA) and scanning electron microscopy (SEM), respectively. Spectral properties of poly (2-[N-ethyl-N-[4-[(nitrophenyl)azo]phenyl]amino]ethyl-N-pyrrolyl propionate) (PPy-RedII) were characterized by UV, IR, {sup 1}H NMR, and {sup 13}C NMR spectroscopies. The photoluminescence spectrum of the film showed that maximum photoluminescence peak emission is located at 437 nm, corresponding to the photon energy of 2.5 eV. Electrical conductivity of PPy-RedII was studied by the four-probe method and produced a conductivity of 7.5 x 10{sup -4} S cm{sup -1}.

  4. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  5. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.

    Science.gov (United States)

    Verma, Purnima; Ahuja, Munish

    2016-10-01

    The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC0→1440 min) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.

  6. SYNTHESIS AND CHARACTERIZATION OF SIDE CHAIN LIQUID CRYSTALLINE POLYSILOXANES CONTAINING BENZYL ETHER LINKING UNITS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Side chain liquid crystalline polysiloxanes containing benzyl ether linking units were synthesized by the hydrosilylation of poly(methylhydrosiloxane) with a series of 4-(4-alkoxybenzyloxy)-4'-allyloxybiphenyl monomers [4-(4-methoxybenzyloxy)-4'-allyloxybiphenyl (M1), 4-(4-ethoxybenzyloxy)-4'-allyloxybiphenyl (M2), 4-(4-propoxybenzyloxy)-4'-allyloxybiphenyl (M3), 4-(4-butoxybenzyloxy)-4'-allyloxybiphenyl (M4), 4-(4-pentoxybenzyloxy)-4'-allyloxybiphenyl (Ms), 4-benzyloxy-4'-allyloxybiphenyl (M6)]. The phase behavior of monomeric and polymeric liquid crystals was characterized by differential scanning calorimetry and optical polarization microscopy where the groups are ranged from methoxy to pentoxy. Both the monomeric and polymeric liquid crystals exhibit liquid crystal behaviors.

  7. MORPHOLOGICAL AND KINETIC STUDIES OF PHASE TRANSITIONS OF A SIDE-CHAIN LIQUID CRYSTALLINE POLYMER

    Institute of Scientific and Technical Information of China (English)

    Chi-bing Tan; Shu-fan Zhang; Mao Xu

    1999-01-01

    The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found to be composed of the initiation of a new phase at local places of the old phase matrix and the growth of the new phase domains. The kinetics of the liquid-crystallization of the polymer from an isotropic melt to a smectic mesophase was also investigated. The isothermal process of the transition can be described by the Avrami equation. The values of the Avrami exponent were found to be around 2.6. which is lower than the value usually obtained for crystallization transition of polymers, but larger than that reported for liquid-crystallization transition of main-chain polymers. These results may indicate the difference in growth geometry of new phase during transition between crystallization and liquid-crystallization in general and between liquid-crystallization of main-chain and side-chain polymers. It was found that the liquidcrystallization of the used side-chain polymethacrylate may occur at small undercoolings with high transformation rate similar to that of main-chain polymers and small-molecule liquid crystals, while the crystallization of polymers can only proceed at large undercoolings. These phenomena can be explained by the idea that the surface free energy of nucleus during liquid-crystallization transition is less than that for crystallization, and evidence was obtained from analysis of the temperature dependence of the transformation rate.

  8. Liquid crystalline phase transitions in virus and virus/polymer suspensions

    Science.gov (United States)

    Dogic, Zvonimir

    Using experimental, theoretical, and simulation methods, we investigate the relationship between the intermolecular interactions of rod-like colloids and the resulting liquid crystalline phase diagrams. As a model system of rod-like particles we use bacteriophage fd, which is a charge stabilized colloid. We are able to engineer complex attractive and repulsive intermolecular interactions by changing the ionic strengths of the suspensions, attaching covalently bound polymers and adding nonadsorbing polymers. Using standard molecular cloning techniques it is also shown that the aspect ratio of the rod-like particle can be manipulated. In the limit of high ionic strength the fd virus quantitatively agrees with the Onsager theory for the isotropic-nematic (I-N) phase transition in hard rods. The role of attractive interaction on the nature of the I-N phase transition is investigated. As the strength of the attraction is increased we observe isotropic-smectic (I-S) phase transitions. Using an optical microscope we follow the kinetics of the I-S phase transition and observe a wide range of novel structures of unexpected complexity. We also investigate the influence of adding hard spheres, or polymers on the nematic-smectic phase transition. We conclude that adding small spheres stabilizes the smectic phase and destabilizes the nematic phase.

  9. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    Science.gov (United States)

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle.

  10. SYNTHESIS AND SUPRAMOLECULAR CHEMISTRY OF NOVEL LIQUID-CRYSTALLINE CROWN ETHER-SUBSTITUTED PHTHALOCYANINES - TOWARD MOLECULAR WIRES AND MOLECULAR IONOELECTRONICS

    NARCIS (Netherlands)

    VANNOSTRUM, CF; PICKEN, SJ; SCHOUTEN, AJ; NOLTE, RJM

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4',5'-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 degrees C. The structures of the crystal

  11. SYNTHESIS AND SUPRAMOLECULAR CHEMISTRY OF NOVEL LIQUID-CRYSTALLINE CROWN ETHER-SUBSTITUTED PHTHALOCYANINES - TOWARD MOLECULAR WIRES AND MOLECULAR IONOELECTRONICS

    NARCIS (Netherlands)

    VANNOSTRUM, CF; PICKEN, SJ; SCHOUTEN, AJ; NOLTE, RJM

    1995-01-01

    The synthesis of the metal-free and the dihydroxysilicon derivatives of tetrakis[4',5'-bis(decoxy)benzo-18-crown-6]phthalocyanine is described. The metal-free phthalocyanine is liquid crystalline and exhibits a crystalline phase to mesophase transition at 148 degrees C. The structures of the crystal

  12. A new series of two-ring-based side chain liquid crystalline polymers: synthesis and mesophase characterization

    CSIR Research Space (South Africa)

    Reddy, GSM

    2013-05-01

    Full Text Available A new series of side chain liquid crystalline polymers containing a core, a butamethylenoxy spacer, ester groups, and terminal alkoxy groups were synthesised and their structures were confirmed. The core was constructed with two phenyl rings...

  13. Photochromic hybrid organic-inorganic liquid-crystalline materials built from nonionic surfactants and polyoxometalates: elaboration and structural study.

    Science.gov (United States)

    Poulos, Andreas S; Constantin, Doru; Davidson, Patrick; Impéror, Marianne; Pansu, Brigitte; Panine, Pierre; Nicole, Lionel; Sanchez, Clément

    2008-06-17

    This work reports the elaboration and structural study of new hybrid organic-inorganic materials constructed via the coupling of liquid-crystalline nonionic surfactants and polyoxometalates (POMs). X-ray scattering and polarized light microscopy demonstrate that these hybrid materials, highly loaded with POMs (up to 18 wt %), are nanocomposites of liquid-crystalline lamellar structure (Lalpha), with viscoelastic properties close to those of gels. The interpretation of X-ray scattering data strongly suggests that the POMs are located close to the terminal -OH groups of the nonionic surfactants, within the aqueous sublayers. Moreover, these materials exhibit a reversible photochromism associated to the photoreduction of the polyanion. The photoinduced mixed-valence behavior has been characterized through ESR and UV-visible-near-IR spectroscopies that demonstrate the presence of W(V) metal cations and of the characteristic intervalence charge transfer band in the near-IR region, respectively. These hybrid nanocomposites exhibit optical properties that may be useful for applications involving UV-light-sensitive coatings or liquid-crystal-based photochromic switches. From a more fundamental point of view, these hybrid materials should be very helpful models for the study of both the static and dynamic properties of nano-objects confined within soft lamellar structures.

  14. "Bicontinuous cubic" liquid crystalline materials from discotic molecules: a special effect of paraffinic side chains with ionic liquid pendants.

    Science.gov (United States)

    Alam, Md Akhtarul; Motoyanagi, Jin; Yamamoto, Yohei; Fukushima, Takanori; Kim, Jungeun; Kato, Kenichi; Takata, Masaki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Aida, Takuzo

    2009-12-16

    Triphenylene (TP) derivatives bearing appropriate paraffinic side chains with imidazolium ion-based ionic liquid (IL) pendants were unveiled to display a phase diagram with liquid crystalline (LC) mesophases of bicontinuous cubic (Cub(bi)) and hexagonal columnar (Col(h)) geometries. While their phase transition behaviors are highly dependent on the length of the side chains and the size of the ionic liquid pendants, TPs with hexadecyl side chains exclusively form a Cub(bi) LC assembly over an extremely wide temperature range of approximately 200 degrees C from room temperature when the anions of the IL pendants are relatively small. Wide-angle X-ray diffraction analysis suggested that the Cub(bi) LC mesophase contains pi-stacked columnar TP arrays with a plane-to-plane separation of approximately 3.5 A. Consistently, upon laser flash photolysis, it showed a transient microwave conductivity comparable to that of a Col(h) LC reference.

  15. [Influence of low-intensity laser radiation on the formation of liquid crystalline structures in a solution of glycoproteins].

    Science.gov (United States)

    Skopinov, S A; Iakovleva, S V; Denisova, E A; Vazina, A A; Zheleznaia, L A

    1989-01-01

    Liquid-crystalline structure formation in glycoprotein solutions irradiated by helium-neon laser in the presence of hydrogen peroxide was observed by both polarizing microscopy and spectrophotometry. High molecular weight (2.10(6) Da) and heavily glycosylated (about 80%) glycoprotein was isolated from the mucus layer of pig small intestine. Remarkable changes of both optic parameters of the solutions and the morphology of liquid-crystalline structures were detected in irradiated samples compared to the non-irradiated ones.

  16. Effect of Flame Conditions on Crystalline Structure of TiO2 in Liquid Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    LI Chang-jiu; YANG Guan-jun; WANG Yu-yue

    2004-01-01

    Nanostructured TiO2 is a most promising functional ceramic owing to its potential utilization in photocatalytical, optical and electrical applications. Nanostructured TiO2 coating was deposited through thermal spraying with liquid feedstock. Two types of crystalline structures were present in the synthesized TiO2 coating including anatase phase and rutile phase.The effect of spray flame conditions on the crystalline structure was investigated in order to control the crystalline structure of the coating. The results showed that spray distance, flame power and precursor concentration in the liquid feedstock significantly influenced phase constitutions and grain size in the coating. Anatase phase was formed at spray distance from 150 to 250mm, while rutile phase was evidently observed in the coating deposited at 100 mm. The results suggested that anatase phase was firstly formed in the coating, and rutile phase resulted from the transformation of the deposited anatase phase. The phase transformation from anatase to rutile occurred through the annealing effect of spraying flame. The control of the phase formation can be realized through flame condition and spray distance.

  17. Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds.

    Science.gov (United States)

    Li, Yuzhan; Rios, Orlando; Keum, Jong K; Chen, Jihua; Kessler, Michael R

    2016-06-22

    Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. All three functional building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.

  18. Modeling of liquid phases

    CERN Document Server

    Soustelle, Michel

    2015-01-01

    This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

  19. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.; Chen, S.H. [Univ. of Rochester, NY (United States); Blanton, T.N. [Eastman Kodak Co., Rochester, NY (United States)

    1999-06-01

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of a blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.

  20. Effects of surface morphology on the anchoring and electrooptical dynamics of confined nanoscale liquid crystalline films.

    Science.gov (United States)

    Noble, Alison R; Kwon, Hye J; Nuzzo, Ralph G

    2002-12-18

    The orientation and dynamics of two 40-nm thick films of 4-n-pentyl-4'-cyanobiphenyl (5CB), a nematic liquid crystal, have been studied using step-scan Fourier transform infrared spectroscopy (FTIR). The films are confined in nanocavities bounded by an interdigitated electrode array (IDA) patterned on a zinc selenide (ZnSe) substrate. The effects of the ZnSe surface morphology (specifically, two variations of nanometer-scale corrugations obtained by mechanical polishing) on the initial ordering and reorientation dynamics of the electric-field-induced Freedericksz transition are presented here. The interaction of the 5CB with ZnSe surfaces bearing a spicular corrugation induces a homeotropic (surface normal) alignment of the film confined in the cavity. Alternately, when ZnSe is polished to generate fine grooves along the surface, a planar alignment is promoted in the liquid crystalline film. Time-resolved FTIR studies that enable the direct measurement of the rate constants for the electric-field-induced orientation and thermal relaxation reveal that the dynamic transitions of the two film structures are significantly different. These measurements quantitatively demonstrate the strong effects of surface morphology on the anchoring, order, and dynamics of liquid crystalline thin films.

  1. Crystalline and liquid Si3 N4 characterization by first-principles molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Castellani Niccoló

    2011-05-01

    Full Text Available Silicon nitride (Si3 N4 has a wide range of engineering applications where its mechanical and electronic properties can be effectively exploited. In particular, in the microelectronics field, the amorphous silicon nitride films are widely used as charge storage layer in metal-alumina-nitrideoxide nonvolatile memory devices. Atomic structure of amorphous silicon nitride is characterized by an high concentration of traps that control the electric behavior of the final device by the trappingde-trapping mechanism of the electrical charge occurring in its traps. In order to have a deep understanding of the material properties and, in particular, the nature of the electrical active traps a detailed numerical characterization of the crystalline and liquid phases is mandatory. For these reasons first-principles molecular dynamics simulations are extensively employed to simulate the crystalline Si3 N4 in its crystalline and liquid phases. Good agreement with experimental results is obtained in terms of density and formation entalpy. Detailed characterization of c-Si3 N4 electronic properties is performed in terms of band structure and band gap. Then constant temperature and constant volume first-principles molecular dynamics is used to disorder a stoichiometric sample of Si3 N4 . Extensive molecular dynamics simulations are performed to obtain a reliable liquid sample whose atomic structure does not depend on the starting atomic configuration. Detailed characterization of the atomic structure is achieved in terms of radial distribution functions and total structure factor.

  2. Homology models of human gamma-crystallins: structural study of the extensive charge network in gamma-crystallins.

    Science.gov (United States)

    Salim, Asmat; Zaidi, Zafar H

    2003-01-17

    The lens is composed of highly stable and long-lived proteins, the crystallins which are divided into alpha-, beta-, and gamma-crystallins. Human gamma-crystallins belong to the betagamma superfamily. A large number of gamma-crystallins have been sequenced and have been found to share remarkable sequence homology with each other. Some of the gamma-crystallins from various sources have also been elucidated structurally by X-ray crystallographic or NMR spectroscopic experiments. Their three-dimensional structures are also similar having consisted of two domains each possessing two Greek key motifs. In this study we have constructed the comparative or homology models of the four major human gamma-crystallins, gammaA-,gammaB-, gammaC-, and gammaD-crystallins and studied the charge network in these crystallins. Despite an overall structural similarity between these crystallins, differences in the ion pair formation do exist which is partly due to the differences in their primary sequence and partly due to the structural orientation of the neighboring amino acids. In this study, we present an elaborate analysis of these charged interactions and their formation or loss with respect to the structural changes.

  3. A continuum theory for modeling the dynamics of crystalline materials.

    Science.gov (United States)

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper introduces a multiscale field theory for modeling and simulation of the dynamics of crystalline materials. The atomistic formulation of a multiscale field theory is briefly introduced. Its applicability is discussed. A few application examples, including phonon dispersion relations of ferroelectric materials BiScO3 and MgO nano dot under compression are presented.

  4. Large scale molecular dynamics simulations of a liquid crystalline droplet with fast multipole implementations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Lupo, J.; Patnaik, S.S.; McKenney, A.; Pachter, R.

    1999-07-01

    The Fast Multipole Method (FMM) offers an efficient way (order O(N)) to handle long range electrostatic interactions, thus enabling more realistic molecular dynamics simulations of large molecular systems. The performance of the fast molecular dynamics (FMD) code, a parallel MD code being developed in the group, using the three-dimensional fast multipole method, shows a good speedup. The application to the full atomic-scale molecular dynamics simulation of a liquid crystalline droplet of 4-n-pentyl-4{prime}-cyanobiphenyl (5CB) molecules, of size 35,872 atoms, shows strong surface effects on various orientational order parameters.

  5. Finite-difference time-domain analysis of light propagation in cholesteric liquid crystalline droplet array

    Science.gov (United States)

    Yamamoto, Kaho; Iwai, Yosuke; Uchida, Yoshiaki; Nishiyama, Norikazu

    2016-08-01

    We numerically analyzed the light propagation in cholesteric liquid crystalline (CLC) droplet array by the finite-difference time-domain (FDTD) method. The FDTD method successfully reproduced the experimental light path observed in the complicated photonic structure of the CLC droplet array more accurately than the analysis of CLC droplets by geometric optics with Bragg condition, and this method help us understand the polarization of the propagating light waves. The FDTD method holds great promise for the design of various photonic devices composed of curved photonic materials like CLC droplets and microcapsules.

  6. Liquid crystalline polymer networks based on a nematic epoxy resin with azoxy group

    Science.gov (United States)

    Włodarska, M.; Mossety-Leszczak, B.; Bąk, G. W.; Galina, H.; Ledzion, R.

    2009-06-01

    The paper presents research results on curing two recently synthesized liquid crystalline epoxy materials with selected amines. The process of cross-linking, the final product of curing, and the pure monomers were examined using polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and dielectric spectroscopy (DS). Chemical structure of the products was confirmed using spectroscopic methods. The authors attempted to demonstrate how selection of curing conditions (such as the amine used as curing agent, the curing temperature or preparation of the surface in contact with the sample) influences optical properties of the cured product.

  7. Probing the Texture of the Calamitic Liquid Crystalline Dimer of 4-(4-Pentenyloxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Maher A. Qaddoura

    2010-01-01

    Full Text Available The liquid crystalline dimer of 4-(4-pentenyloxybenzoic acid, a member of the n-alkoxybenzoic acid homologous series, was synthesized using potassium carbonate supported on alumina as catalyst. The acid dimer complex exhibited three mesophases; identified as nematic, smectic X1 and smectic X2. Phase transition temperatures and the corresponding enthalpies were recorded using differential scanning calorimetry upon both heating and cooling. The mesophases were identified by detailed texture observations by variable temperature polarized light microscopy. The nematic phase was distinguished by a fluid Schlieren texture and defect points (four and two brushes while the smectic phases were distinguished by rigid marble and mosaic textures, respectively.

  8. Interferometric Sensor of Wavelength Detuning Using a Liquid Crystalline Polymer Waveplate

    Directory of Open Access Journals (Sweden)

    Paweł Wierzba

    2016-05-01

    Full Text Available Operation of a polarization interferometer for measurement of the wavelength changes of a tunable semiconductor laser was investigated. A λ/8 waveplate made from liquid crystalline polymer is placed in one of interferometers’ arms in order to generate two output signals in quadrature. Wavelength was measured with resolution of 2 pm in the wavelength range 628–635 nm. Drift of the interferometer, measured in the period of 500 s, was 8 nm, which corresponded to the change in the wavelength of 1.3 pm. If needed, wavelength-dependent Heydemann correction can be used to expand the range of operation of such interferometer.

  9. Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2012-01-01

    Full Text Available Photocontrol of molecular alignment is an exceptionally-intelligent and useful strategy. It enables us to control optical coefficients, peripheral molecular alignments, surface relief structure, and actuation of substances by means of photoirradiation. Azobenzene-containing polymers and functionalized liquid crystalline polymers are well-known photocontrollable materials. In this paper, we introduce recent applications of these materials in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics. The concepts in each application are explained based on the mechanisms of photocontrol. The interesting natures of the photocontrollable materials and the conceptual applications will stimulate novel ideas for future research and development in this field.

  10. Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hao; Cerretti, Giacomo; Wiersma, Diederik S., E-mail: camilla.parmeggiani@lens.unifi.it, E-mail: wiersma@lens.unifi.it [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Wasylczyk, Piotr [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Hoza 69, Warszawa 00-681 (Poland); Martella, Daniele [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica “Ugo Schiff,” University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (Italy); Parmeggiani, Camilla, E-mail: camilla.parmeggiani@lens.unifi.it, E-mail: wiersma@lens.unifi.it [European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR-INO, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)

    2015-03-16

    We report a method to fabricate polymer microstructures with local control over the molecular orientation. Alignment control is achieved on molecular level in a structure of arbitrary form that can be from 1 to 100 μm in size, by fixing the local boundary conditions with micro-grating patterns. The method makes use of two-photon polymerization (Direct Laser Writing) and is demonstrated specifically in liquid-crystalline elastomers. This concept allows for the realization of free-form polymeric structures with multiple functionalities which are not possible to realize with existing techniques and which can be locally controlled by light in the micrometer scale.

  11. SYNTHESES AND CHARACTERIZATION OF A NEW TYPE OF LIQUID CRYSTALLINE POLYESTERS

    Institute of Scientific and Technical Information of China (English)

    BAI Ruke; WU Chengpei; ZOU Yingfeng; SUN Wu; PAN Caiyuan; Toshiyuki Uryu

    1994-01-01

    A new type of liquid crystalline polyesters with resorcin as one part of the mesogenic unit connected together by polymethylene, or phenylene group, and lateral groups consisting of a rigid azobenzene as another part of the mesogenic unit were synthesized by interfacial polymerization of diacyl chlorides in 1, 2-dichloroethane and 2,4-dihydroxy-4'-nitroazobenzene in aqueous alkaline solution. The polyester structures were confirmed by proton NMR and IR spectra. Their phase transition behavior and texture were studied by polarizing microscopy and DSC.

  12. The Distribution of Crystalline Hematite on Mars from the Thermal Emission Spectrometer: Evidence for Liquid Water

    Science.gov (United States)

    Christensen, P. R.; Malin, M.; Morris, D.; Bandfield, J.; Lane, M.; Edgett, K.

    2000-01-01

    Crystalline hematite on Mars has been mapped using the MGS TES. Two major, and several minor areas of significant accumulation are identified. We favor precipitation models involving Fe-rich water, providing direct mineralogic evidence for large-scale water interactions.

  13. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Li, Quan

    2016-12-28

    Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.

  14. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata

    DEFF Research Database (Denmark)

    Chaiyana, Wantida; Rades, Thomas; Okonogi, Siriporn

    2013-01-01

    and water with the oil:surfactant ratios of 1:5 and 2:5. The formulations were characterized by photon correlation spectroscopy, polarizing light microscopy, differential scanning calorimetry, and viscosity measurement. A reverse micellar phase, w/o microemulsions, liquid crystalline systems, liquid crystal...... in microemulsion systems and coarse emulsions were formed along the aqueous dilution line of both oil:surfactant ratios. Formulations with the ratio of 1:5 containing 0.1μg/ml extract showed a significantly higher acetylcholinesterase inhibition than those with the ratio of 2:5. The skin of stillborn piglet...... was used in the permeation study. The liquid crystalline and microemulsion systems significantly increased the transdermal delivery of the extract within 24h. It was concluded that the alkaloidal extract from T. divaricata stem loaded in liquid crystalline or microemulsion systems comprising Z. cassumunar...

  15. Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate.

    Science.gov (United States)

    Cheng, Gang; Varanasi, Patanjali; Arora, Rohit; Stavila, Vitalie; Simmons, Blake A; Kent, Michael S; Singh, Seema

    2012-08-23

    Ionic liquids (ILs) have been shown to affect cellulose crystalline structure in lignocellulosic biomass during pretreatment. A systematic investigation of the swelling and dissolution processes associated with IL pretreatment is needed to better understand cellulose structural transformation. In this work, 3-20 wt % microcrystalline cellulose (Avicel) solutions were treated with 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]) and a mixture of [C(2)mim][OAc] with the nonsolvent dimethyl sulfoxide (DMSO) at different temperatures. The dissolution process was slowed by decreasing the temperature and increasing cellulose loading, and was further retarded by addition of DMSO, enabling in-depth examination of the intermediate stages of dissolution. Results show that the cellulose I lattice expands and distorts prior to full dissolution in [C(2)mim][OAc] and that upon precipitation the former structure leads to a less ordered intermediate structure, whereas fully dissolved cellulose leads to a mixture of cellulose II and amorphous cellulose. Enzymatic hydrolysis was more rapid for the intermediate structure (crystallinity = 0.34) than for cellulose II (crystallinity = 0.54).

  16. Anchoring Strength of Thin Aligned-Polymer Films Formed by Liquid Crystalline Monomer

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Ikehata, Seiichiro; Sato, Fumio

    2003-04-01

    We have evaluated the polar anchoring strength of a thin molecule-aligned polymer film formed by a liquid crystalline monomer. The polymer film was obtained by photopolymerization of the monomer oriented by a rubbed polyimide alignment layer in a chamber filled with N2 gas. We fabricated a nematic liquid crystal cell using the thin aligned-polymer films as alignment layers, and then evaluated the anchoring strength of the polymer by measuring the optical retardation curve of the cell driven by voltages. The experimental result showed that the anchoring strength was one order of magnitude lower than that of a conventional rubbed polyimide alignment layer, and decreased with increasing the cure temperature of the monomer film.

  17. Arrangement and SERS Applications of Nanoparticle Clusters Using Liquid Crystalline Template.

    Science.gov (United States)

    Kim, Dae Seok; Honglawan, Apiradee; Yang, Shu; Yoon, Dong Ki

    2017-02-16

    Manipulation of nanomaterials such as nanoparticles (NPs) and nanorods (NRs) to make clusters is of significant interest in material science and nanotechnology due to the unusual collective opto-electric properties in such structures that cannot be found in the individual NPs. This work demonstrates an effective way to arrange NP clusters (NPCs) to make the desired arrays based on removable and NP-guidable liquid crystalline template using sublimation and reconstruction phenomenon. The position of the NPCs is precisely controlled by the defect structure of the liquid crystal (LC), namely toric focal conic domains (TFCDs), during thermal annealing to construct the LC and corresponding NPC structures. As a proof of concept, the surface-enhanced Raman scattering (SERS) activity of a fabricated array of gold nanorod (GNR) clusters is measured and shown to have highly sensitive detection characteristics essential for potential sensing applications.

  18. Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers

    Science.gov (United States)

    Gu, Wei; Wei, Jia; Yu, Yanlei

    2016-09-01

    Crosslinked liquid crystalline polymers (CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks. The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore, they can be utilized to fabricate smart actuators, which have potential applications in artificial muscles, micro-optomechanical systems, optics, and energy-harvesting fields. In this review the recent development of thermo- and photo-driven soft actuators based on the CLCPs are summarized. Project supported by the National Natural Science Foundation of China (Grant Nos. 21134003, 21273048, 51225304, and 51203023) and Shanghai Outstanding Academic Leader Program, China (Grant No. 15XD1500600).

  19. MORPHOLOGY STUDY OF A SERIES OF AZOBENZENE-CONTAINING SIDE-ON LIQUID CRYSTALLINE TRIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Wei Deng; Annie Br(u)let; Pierre-antoine Albouy; Patrick Keller; Xiao-gong Wang; Min-hui Li

    2012-01-01

    A series of azobenzene containing side-on liquid crystalline ABA triblock copolymers were investigated.This triblock series possesses the same central liquid crystal block B and various lengths of the amorphous block A.Transmission electron microscopy (TEM),small angle X-rays and neutron scattering (SAXS and SANS) were used to study their morphologies.Aider annealing the samples over weeks at a temperature within the nematic temperature range of block B,different morphologies (disordered,lamellar,perforated layer and hexagonal cylinder) were observed by TEM.The alignment behavior of these azo triblock copolymers in the magnetic field for artificial muscle application,as well as the phase period and the order-disorder transition (ODT) were studied in situ by SANS.

  20. Towards photo-induced swimming: actuation of liquid crystalline elastomer in water

    Science.gov (United States)

    Cerretti, Giacomo; Martella, Daniele; Zeng, Hao; Parmeggiani, Camilla; Palagi, Stefano; Mark, Andrew G.; Melde, Kai; Qiu, Tian; Fischer, Peer; Wiersma, Diederik S.

    2016-04-01

    Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

  1. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems.

    Science.gov (United States)

    Wang, D Q; Carey, M C

    1996-03-01

    Using complementary physical-chemical techniques we defined five different crystallization pathways as functions of time (30 days) and increasing lecithin (egg yolk) content in pathophysiologically relevant model biles super-saturated (cholesterol saturation indices, 1.2 - 2.7) by dilution of approximately equal to 29 g/dl bile salt-lecithin-cholesterol micellar solutions. As evidenced by quasi-elastic light-scattering spectroscopy, supersaturation was heralded by the appearance of unilamellar vesicles. With the lowest lecithin contents, arc-like crystals with habit and density (d 1.030 g/mL) consistent with anhydrous cholesterol appeared first and evolved via helical and tubular crystals to form plate-like cholesterol monohydrate crystals (d 1.045 g/mL). With higher lecithin fractions, cholesterol monohydrate crystals appeared earlier than arc and other transitional crystals. With typical physiological lecithin contents, early liquid crystals (d 1.020 g/mL) were followed by cholesterol monohydrate crystals and subsequent appearances of arc and other intermediate crystals. With higher lecithin contents, liquid crystals were followed by cholesterol monohydrate crystals only, and at the highest lecithin mole fractions, liquid crystals appeared that did not generate solid crystals. Added calcium increased solid crystal number in proportion to its concentration (5 - 20 mM) but did not influence appearance times, crystallization pathways, or micellar cholesterol solubilities. Decreases in temperature (37 degrees --> 4 degrees C), total lipid concentration (7.3 --> 2.4 g/dL), and bile salt hydrophobicity (3 alpha, 12 alpha --> 3 alpha, 7 alpha, 12 alpha --> 3 alpha, 7 beta hydroxylated taurine conjugates) progressively shifted all crystallization pathways to lower lecithin contents, retarded crystallization, and decreased micellar cholesterol solubilities. The lecithin content of mother biles decreased markedly during crystallization especially where liquid crystals were

  2. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk.

    Science.gov (United States)

    Walker, Andrew A; Holland, Chris; Sutherland, Tara D

    2015-06-22

    Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and 'non-canonical' silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid-solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials.

  3. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  4. Liquid crystalline systems containing Vitamin E TPGS for the controlled transdermal nicotine delivery

    Directory of Open Access Journals (Sweden)

    Lívia Neves Borgheti-Cardoso

    Full Text Available ABSTRACT Transdermal nicotine patches have been used in smoking cessation therapy, suggested for the treatment of skin disorders with eosinophilic infiltration and have been found to improve attention performance in patients with Alzheimer's disease and age-associated memory impairment. However, skin irritation with extended patch use is still a problem. The aim of this work was to develop a simple to prepare liquid crystalline system containing vitamin E TPGS that would be able to control nicotine delivery and reduce irritation and sensitization problems. The liquid crystalline phases were macroscopically characterized by visual analysis and examined microscopically under a polarized light microscope. Topical and transdermal delivery of nicotine were investigated in vitro using porcine ear skin mounted on a Franz diffusion cell. Nicotine skin permeation from the developed cubic phase followed zero-order kinetics (r = 0.993 and was significantly enhanced after 12 h when compared to the control formulation (nicotine solution (p < 0.05 (138.86 ± 20.44 and 64.91 ± 4.06 μg/cm2, respectively. Cubic phase was also able to target viable skin layers in comparison to control solution (8.18 ± 1.89 and 2.63 ± 2.51 μg/cm2, respectively. Further studies to evaluate skin sensitization and irritation are now necessary.

  5. Controlling the Spatial Organization of Liquid Crystalline Nanoparticles by Composition of the Organic Grafting Layer.

    Science.gov (United States)

    Wójcik, Michał M; Olesińska, Magdalena; Sawczyk, Michał; Mieczkowski, Józef; Górecka, Ewa

    2015-07-01

    Understanding how the spatial ordering of liquid crystalline nanoparticles can be controlled by different factors is of great importance in the further development of their photonic applications. In this paper, we report a new key parameter to control the mesogenic behavior of gold nanoparticles modified by rodlike thiols. An efficient method to control the spatial arrangement of hybrid nanoparticles in a condensed state is developed by changing the composition of the mesogenic grafting layer on the surface of the nanoparticles. The composition can be tuned by different conditions of the ligand exchange reaction. The thermal and optical behavior of the mesogenic and promesogenic ligands were investigated by using differential scanning calorimetry (DSC) and hot-stage polarized optical microscopy. The chemical structure of the synthesized hybrid nanoparticles was characterized by (1) H NMR spectroscopy, thermogravimetric analysis (TGA), XPS, and elemental analysis, whereas the superstructures were examined by small-angle X-ray diffraction (SAXSRD) analysis. Structural studies showed that the organic sublayer made of mesogenic ligands is denser with an increasing the average ligand number, thereby separating the nanoparticles in the liquid crystalline phases, which changes the parameters of these phases.

  6. PREPARATION AND CHARACTERIZATION OF SHISH-KEBAB TYPE LIQUID CRYSTALLINE POLY(p-PHENYLENEVINYLENE)

    Institute of Scientific and Technical Information of China (English)

    Shi-jun Zheng; Kazuo Akagi; Qun Xu; Shao-kui Cao; Qi-feng Zhou

    2006-01-01

    Novel shish-kebab type liquid crystalline poly(p-phenylenevinylene) derivatives were synthesized by Stille coupling reaction from 2,5-bis[(4-n-alkoxyl)benzoyloxy]1,4-dibromobenzene (monomer 1) and 1,2-bis(tributylstannyl)ethylene (monomer 2). The polymers with alkoxy groups are soluble in common organic solvents and exhibit blue fluorescence. Both the cast film and the annealed film have large red-shifts in fluorescence spectra and show yellow fluorescence. The polymers with CN and NO2 groups show poor solubility and green fluorescence. All the polymers possess liquid crystalline smectic phases. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The polymers are easily aligned under a magnetic field of 10 Tesla. It is found that the conjugated backbone and LC side chain are aligned perpendicular and parallel to the magnetic field, respectively. The polymers show optical dichroism in fluorescence spectra, suggesting that they are available for advance materials with linear optical polarization.

  7. Highly ordered monodomain ionic self-assembled liquid-crystalline materials.

    Science.gov (United States)

    Zakrevskyy, Y; Smarsly, B; Stumpe, J; Faul, C F J

    2005-02-01

    Liquid-crystalline properties of the ionic self assembled complex benzenehexacarboxylic- (didodecyltrimethylammonium)6 [BHC- (C12D)6] were investigated by polarizing microscopy, differential scanning calorimetry (DSC), x-ray analysis, null ellipsometry, UV and IR spectroscopy. The complex exhibits a bilayer smectic Sm- A2 liquid-crystalline phase and aligns spontaneously. Alignment properties do not depend on the hydrophobic or hydrophilic treatment of the surfaces. The aligned complex possesses a negative (delta n=-0.02) homeotropically oriented optical axis, with layers aligned parallel to the surface. X-ray analysis of the aligned sample revealed a lamellar structure with a d spacing of 3.15 nm, consisting of sublayers of thicknesses d1 = 1.41 and d2 = 1.74 nm . This was confirmed by simple geometrical calculations and detailed temperature-dependent investigations, revealing that the first layer contains the BHC molecules and oppositely charged groups of the surfactants, and the second the alkyl tails of the surfactant. Changes in the order parameters (as calculated from the IR investigations) are correlated with the phase transitions as found by DSC. The properties of the complex are strongly influenced by the ionic interactions within the complex. The presence of these groups slows down the dynamics within the material sufficiently to allow for crystallization of the complex from an aligned LC phase into a single crystal domain, as well as restricting the transition to the isotropic phase.

  8. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes.

    Science.gov (United States)

    Jiménez, Josefina; Laguna, Antonio; Gascón, Elena; Sanz, José Antonio; Serrano, José Luis; Barberá, Joaquín; Oriol, Luis

    2012-12-21

    A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase.

  9. Model of Wigner liquid

    CERN Document Server

    Batyev, E G

    2001-01-01

    One studies a two-dimensional system of low-density charge carriers that is, with the strong Coulomb interaction that may lead to occurrence of a short-wave soft mode (sign of crystallization). Within this system there are elementary excitations of two types: Fermi-excitations and Bose-excitation with a slit within the spectrum (like rotons in a superfluid helium). The presented model represents a Fermi-liquid plus soft water. Interaction of different excitations with one another is described phenomenologically in terms of the theory of the Landau Fermi-liquid. One has derived equations the solution of which presents the dependence of the effective mass of Fermi-excitations and of slit in the Bose-excitation spectrum on temperature

  10. On the molecular anisotropy of liquid crystalline and flexible polymer systems

    Science.gov (United States)

    van Horn, Brett L.

    The demand for products of ever increasing quality or for novel applications has required increasing attention to or manipulation of the anisotropy of manufactured parts. Oriented plastics are used everywhere from recording film to automotive body parts to monofilament fishing line. Liquid crystals are also used in a wide array of applications including their dominance in the flat panel display industry, color changing temperature sensors, and woven bullet resistant fabrics. Anisotropy can also be detrimental, for instance sometimes leading to poor fracture resistance or low yield stress along specific directions. Controlling and measuring anisotropy of materials has become increasingly important, but doing so is wrought with challenges. Measuring physical properties of isotropic liquids, such as water or most oils can be done in a straightforward fashion. Their viscosities and densities, for example, have unique values under a given set of conditions. With anisotropic fluids, like liquid crystals, the viscosity, for instance, will not only depend upon temperature, concentration, etc. but also upon the direction of observation, degree of anisotropy, source of anisotropy, and so forth. This added degree of complexity complicates our ability to define the state of the material at which the measurements are made and generally necessitates the use of more sophisticated measurement strategies or techniques. This work presents techniques and tools for investigating anisotropy in liquid crystalline and stretched polymeric systems. Included are the use of conoscopy for the determination of birefringence and orientation of nematic liquid crystals and stretched polymers, the shear response of flow aligning nematic liquid crystal monodomains, and the design of a novel linear rheometer that allows for in situ optical or scattering investigations.

  11. Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering.

    Science.gov (United States)

    Warren, Dallas B; Anby, Mette U; Hawley, Adrian; Boyd, Ben J

    2011-08-02

    The role of the digestion of lipids in facilitating absorption of poorly water-soluble compounds, such as vitamins, is not only an important nutritional issue but is increasingly being recognized as an important determinant in the effectiveness of lipid-based drug formulations. It has been known for some time that lipids often form complex liquid crystalline structures during digestion and that this may impact drug solubilization and absorption. However, until recently we have been unable to detect and characterize those structures in real time and have been limited in establishing the interplay between composition, digestion, and nanostructure. Here, we establish the use of an in vitro lipid digestion model used in conjunction with synchrotron small-angle X-ray scattering by first confirming its validity using known, nondigestible liquid crystalline systems, and then extend the model to study the real time evolution of nanostructure during the digestion of common formulation lipids. The formation of liquid crystalline structures from unstructured liquid formulations is discovered, and the kinetics of formation and dependence on composition is investigated.

  12. Anchoring and electro-optical dynamics of thin liquid crystalline films in a polyimide cell: Experiment and theory

    Science.gov (United States)

    Lee, Lay Min; Kwon, Hye J.; Kang, Joo H.; Nuzzo, Ralph G.; Schweizer, Kenneth S.

    2006-07-01

    The surface-dependent anchoring and electro-optical (EO) dynamics of thin liquid crystalline films have been examined using Fourier transform infrared spectroscopy. A simple nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB), is confined as 40, 50, and 390nm thick films in nanocavities defined by gold interdigitated electrode arrays (IDEAs) patterned on polyimide-coated zinc selenide (ZnSe) substrates [Noble et al., J. Am. Chem. Soc. 124, 15020 (2002)]. New strategies for controlling the anchoring interactions and EO dynamics are explored based on coating a ZnSe surface with an organic polyimide layer in order to both planarize the substrate and induce a planar alignment of the liquid crystalline film. The polyimide layer can be further treated so as to induce a strong alignment of the nematic director along a direction parallel to the electrode digits of the IDEA. Step-scan time-resolved spectroscopy measurements were made to determine the rate constants for the electric-field-induced orientation and thermal relaxation of the 5CB films. In an alternate set of experiments, uncoated ZnSe substrates were polished unidirectionally to produce a grooved surface presenting nanometer-scale corrugations. The dynamical rate constants measured for several nanoscale film thicknesses and equilibrium organizations of the director in these planar alignments show marked sensitivities. The orientation rates are found to vary strongly with both the magnitude of the applied potential and the initial anisotropy of the alignment of the director within the IDEA. The relaxation rates do not vary in this same way. The marked variations seen in EO dynamics can be accounted for by a simple coarse-grained dynamical model.

  13. A Comprehensive Study on Lyotropic Liquid-Crystalline Behavior of an Amphiphile in 20 Kinds of Amino Acid Ionic Liquids.

    Science.gov (United States)

    Fujimura, Kanae; Ichikawa, Takahiro; Yoshio, Masafumi; Kato, Takashi; Ohno, Hiroyuki

    2016-02-18

    We examined the self-organization behavior of a designed amphiphilic molecule in 20 kinds of amino acid ionic liquids composed of 1-butyl-3-methylimidazolium cation and natural amino acid anion ([C4mim][AA]). Addition of [C4mim][AA], regardless of their anion species, to the amphiphile provided homogeneous mixtures showing lyotropic liquid-crystalline (LC) behavior. Upon increasing the component ratio of [C4mim][AA] in the mixtures, a successive change of the mesophase patterns from inverted hexagonal columnar, in some case via bicontinuous cubic, to layered phases was observed. By examining the LC properties at various temperatures and component ratios, we constructed lyotropic LC phase diagrams. Interestingly, the appearance of these phase diagrams is greatly different according to the selection of [AA]. Through comparison, we found that the self-organization behavior of an amphiphile in ionic liquids can be tuned by controlling their ability to form hydrogen-bond, van der Waals, and π-π interactions.

  14. The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model

    CERN Document Server

    Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J

    2005-01-01

    The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10-48 Km-2. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter. PACS numbers: 98.80.Es, 04.20.-q, 03.65.-w, 61.50.-f, 98.80.Ft

  15. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices.

    Science.gov (United States)

    Fleischmann, Eva-Kristina; Zentel, Rudolf

    2013-08-19

    While the unique optical properties of liquid crystals (LCs) are already well exploited for flat-panel displays, their intrinsic ability to self-organize into ordered mesophases, which are intermediate states between crystal and liquid, gives rise to a broad variety of additional applications. The high degree of molecular order, the possibility for large scale orientation, and the structural motif of the aromatic subunits recommend liquid-crystalline materials as organic semiconductors, which are solvent-processable and can easily be deposited on a substrate. The anisotropy of liquid crystals can further cause a stimuli-responsive macroscopic shape change of cross-linked polymer networks, which act as reversibly contracting artificial muscles. After illustrating the concept of liquid-crystalline order in this Review, emphasis will be placed on synthetic strategies for novel classes of LC materials, and the design and fabrication of active devices.

  16. Relaxation process and phase transition of lanthanide liquid crystalline complexes by photoacoustic spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Junjia; YANG Yuetao; LIU Xiaojun; ZHANG Shuyi; ZHANG Zhongning

    2008-01-01

    Lanthanide-containing liquid crystals exhibiting smectic A phase close to room temperature were obtained. Photoacoustic (PA) spectroscopy was used to study the spectral properties and phase transitions of liquid crystalline metal complexes. It was found that PA intensity of the ligand had a relationship with the probability of nonradiative transitions, which increased in the order of Eu(tta)3L2liquid crystals containing metal ions.

  17. LIQUID CRYSTALLINE BEHAVIOR OF HYDROXYPROPYL CELLULOSE ESTERIFIED WITH 4-ALKOXYBENZOIC ACID.

    Directory of Open Access Journals (Sweden)

    Yehia Fahmy

    2010-07-01

    Full Text Available A series of 4- alkyoxybenzoyloxypropyl cellulose (ABPC-n samples was synthesized via the esterification of hydroxypropyl cellulose (HPC with 4-alkoxybenzoic acid bearing different numbers of carbon atoms. The molecular structure of the ABPC-n was confirmed by Fourier transform infrared (FT-IR spectroscopy and 1H NMR spectroscopy. The liquid crystalline (LC phases and transitions behaviors were investigated using differential scanning calorimetry (DSC, polarized light microscopy (PLM, and refractometry. It was found that the glass transition (Tg and clearing (Tc temperatures decrease with increase of the alkoxy chain length. It was observed that the derivatives with an odd number of carbon atoms are non-mesomorphic. This series of ABPC-n polymers exhibit characteristic features of cholesteric LC phases between their glass transition and isotropization temperatures.

  18. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions.

    Science.gov (United States)

    Ube, Toru; Ikeda, Tomiki

    2014-09-22

    Crosslinked liquid-crystalline polymer materials that macroscopically deform when irradiated with light have been extensively studied in the past decade because of their potential in various applications, such as microactuators and microfluidic devices. The basic motions of these materials are contraction-expansion and bending-unbending, which are observed mainly in polysiloxanes and polyacrylates that contain photochromic moieties. Other sophisticated motions such as twisting, oscillation, rotation, and translational motion have also been achieved. In recent years, efforts have been made to improve the photoresponsive and mechanical properties of this novel class of materials through the modification of molecular structures, development of new fabrication methods, and construction of composite structures. Herein, we review structures, functions, and working mechanisms of photomobile materials and recent advances in this field.

  19. Cellulose Acetate Sulfate as a Lyotropic Liquid Crystalline Polyelectrolyte: Synthesis, Properties, and Application

    Directory of Open Access Journals (Sweden)

    D. D. Grinshpan

    2010-01-01

    Full Text Available The optimal conditions of cellulose acetate sulfate (CAS homogeneous synthesis with the yield of 94–98 wt.% have been determined. CAS was confirmed to have an even distribution of functional groups along the polymer chain. The polymer was characterized by an exceptionally high water solubility (up to 70 wt.%. The isothermal diagrams of its solubility in water-alcohol media have been obtained. CAS aqueous solutions stability, electrolytic, thermal, and viscous properties have been defined. The main hydrodynamic characteristics such as intrinsic viscosity, Huggins constant, and crossover concentration have been evaluated. The parameters of polymer chain thermodynamic rigidity have been calculated. The formation of liquid crystalline structures in concentrated CAS solutions has been confirmed. CAS was recommended to be used as a binder for the medicinal forms of activated carbon and carbon sorbent for water treatment, hydrophilic ointment foundation.

  20. Copper-Coated Liquid-Crystalline Elastomer via Bioinspired Polydopamine Adhesion and Electroless Deposition.

    Science.gov (United States)

    Frick, Carl P; Merkel, Daniel R; Laursen, Christopher M; Brinckmann, Stephan A; Yakacki, Christopher M

    2016-12-01

    This study explores the functionalization of main-chain nematic elastomers with a conductive metallic surface layer using a polydopamine binder. Using a two-stage thiol-acrylate reaction, a programmed monodomain is achieved for thermoreversible actuation. A copper layer (≈155 nm) is deposited onto polymer samples using electroless deposition while the samples are in their elongated nematic state. Samples undergo 42% contraction when heated above the isotropic transition temperature. During the thermal cycle, buckling of the copper layer is seen in the direction perpendicular to contraction; however, transverse cracking occurs due to the large Poisson effect experienced during actuation. As a result, the electrical conductivity of the layer reduced quickly as a function of thermal cycling. However, samples do not show signs of delamination after 25 thermal cycles. These results demonstrate the ability to explore multifunctional liquid-crystalline composites using relatively facile synthesis, adhesion, and deposition techniques.

  1. Photo-Induced Bending Behavior of Post-Crosslinked Liquid Crystalline Polymer/Polyurethane Blend Films.

    Science.gov (United States)

    Pang, Xinlei; Xu, Bo; Qing, Xin; Wei, Jia; Yu, Yanlei

    2017-06-30

    Photoresponsive blend films with post-crosslinked liquid crystalline polymer (CLCP) as a photosensitive component and flexible polyurethane (PU) as the matrix are successfully fabricated. After being uniaxially stretched, even at low concentration, the azobenzene-containing CLCP effectively transfers its photoresponsiveness to the photoinert PU matrix, resulting in the fast photo-induced bending behavior of whole blend film thanks to the effective dispersion of CLCP. Specifically, the blend film shows photo-induced deformations upon exposure to unpolarized UV light at ambient temperature. The film unbends after thermal treatment, and the randomly orientated mesogens in the film can be realigned by the mechanical stretching, which endows the film with a reversible deformation behavior. The photosensitive blend film possesses favorable mechanical property and good processability at low cost, and it is a promising candidate for a new generation of actuators. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Glass-sandwich-type organic solar cells utilizing liquid crystalline phthalocyanine

    Science.gov (United States)

    Usui, Toshiki; Nakata, Yuya; De Romeo Banoukepa, Gilles; Fujita, Kento; Nishikawa, Yuki; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Glass-sandwich-type organic solar cells utilizing liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), have been fabricated and their photovoltaic properties have been studied. The short-circuit current density (J sc) and power conversion efficiency (PCE) depend on the C6PcH2 layer thickness, and the maximum performance, such as a J sc of 7.1 mA/cm2 and a PCE of 1.64%, was demonstrated for a device having a 420-nm-thick C6PcH2 layer. We examined the photovoltaic properties from the viewpoint of the C6PcH2-layer electrical conductance, based on the distribution of the column-axis direction.

  3. Immune cell activation from multivalent interactions with liquid-crystalline polycation-DNA complexes

    Science.gov (United States)

    Schmidt, Nathan; Jin, Fan; Lande, Roberto; Curk, Tine; Xian, Wujing; Frasca, Loredana; Dobnikar, Jure; Frenkel, Daan; Gilliet, Michel; Wong, Gerard

    2014-03-01

    Microbial DNA can trigger type I interferon (IFN) production in plasmacytoid cells (pDCs) by binding to endosomal toll-like receptor 9 (TLR9). TLR9 in pDCs do not normally respond to self-DNA, but in certain autoimmune diseases self-DNA can complex with the polycationic antimicrobial peptide LL37 into condensed structures which allow DNA to access endosomal compartments and stimulate TLR9 in pDCs. We use x-ray studies and cell measurements of IFN secretion by pDCs to show that a broad range of polycation-DNA complexes stimulate pDCs and elucidate the criterion for high IFN production. Furthermore, we show via experiments and computer simulations that the distinguishing factor for why certain complexes activate pDCs while others do not is the self-assembled structure of the liquid-crystalline polycation-DNA complex.

  4. Macroscopic Ordering of CNTs in a Liquid Crystalline Polymer Nano-Composite by Shearing

    Science.gov (United States)

    Kalakonda, P.; Sarkar, S.; Iannacchione, G. S.; Gombos, E.; Hoonjan, G. S.; Georgiev, G.; Cebe, P.

    2012-02-01

    We present a series of complimentary experiments exploring the macroscopic alignment of carbon nanotubes (CNTs) in a liquid crystalline polymer (isotactic polypropylene - iPP) nano-composites as a function of temperature, shear, and CNT concentration. The phase behavior of iPP+CNT, studied by Modulated Differential Scanning Calorimetry, revealed the evolution of the α-monoclinic transition and its dynamics, which are dependent on CNT content and thermal treatment. These results indicate that the CNT nucleates crystal formation from the melt. Spectroscopic ellipsometry reveals a change in the optical constants that are connected to the ordering of CNTs when the iPP+CNT is sheared. This anisotropy is also exhibited in measurements of the electrical and thermal conductivities parallel and perpendicular to the shear direction. The amount of order induced into the dispersed CNTs is relatively low for these low concentration samples (< 5 wt%).

  5. A neuro-evolutive technique applied for predicting the liquid crystalline property of some organic compounds

    Science.gov (United States)

    Drăgoi, Elena-Niculina; Curteanu, Silvia; Lisa, Cătălin

    2012-10-01

    A simple self-adaptive version of the differential evolution algorithm was applied for simultaneous architectural and parametric optimization of feed-forward neural networks, used to classify the crystalline liquid property of a series of organic compounds. The developed optimization methodology was called self-adaptive differential evolution neural network (SADE-NN) and has the following characteristics: the base vector used is chosen as the best individual in the current population, two differential terms participate in the mutation process, the crossover type is binomial, a simple self-adaptive mechanism is employed to determine the near-optimal control parameters of the algorithm, and the integration of the neural network into the differential evolution algorithm is performed using a direct encoding scheme. It was found that a network with one hidden layer is able to make accurate predictions, indicating that the proposed methodology is efficient and, owing to its flexibility, it can be applied to a large range of problems.

  6. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    Science.gov (United States)

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly.

  7. Enhancement in Mechanical and Shape Memory Properties for Liquid Crystalline Polyurethane Strengthened by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yueting Li

    2016-07-01

    Full Text Available Conventional shape memory polymers suffer the drawbacks of low thermal stability, low strength, and low shape recovery speed. In this study, main-chain liquid crystalline polyurethane (LCPU that contains polar groups was synthesized. Graphene oxide (GO/LCPU composite was fabricated using the solution casting method. The tensile strength of GO/LCPU was 1.78 times that of neat LCPU. In addition, shape recovery speed was extensively improved. The average recovery rate of sample with 20 wt % GO loading was 9.2°/s, much faster than that of LCPU of 2.6°/s. The enhancement in mechanical property and shape memory behavior could be attributed to the structure of LCPU and GO, which enhanced the interfacial interactions between GO and LCPU.

  8. Formation of nanoparticles during melt mixing a thermotropic liquid crystalline polyester and sulfonated polystyrene ionomers

    Science.gov (United States)

    Lee, Hyuksoo; Zhu, Lei; Weiss, R. A.

    2006-03-01

    The formation of nanoparticles and the mechanism of their formation in a blend of a thermotropic liquid crystalline polyester (LCP) and the zinc salt of a lightly sulfonated polystyrene ionomer (Zn-SPS) were investigated using Fourier transform infrared, thermogravimetric analysis, and gas chromatograph-mass spectroscopy. Transmission electron microscopy and wide-angle X-ray scattering were used to study the morphology of the blends and structure of nanoparticles. The origin of nanoparticle formation appeared to be related to the development of phenyl acetate chain ends on the LCP that arose due to a chemical reaction between the LCP and residual catalytic amounts of zinc-acetate and/or acetic acid that were present from the neutralization step in the preparation of the ionomer. The origin of formation and kinetics of the nano-particle formation and the mechanical and rheological properties of these nanocomposites are briefly discussed.

  9. INFLUENCE OF BACKBONE RIGIDITY ON THE LIQUID CRYSTALLINITY OF MESOGEN-CONTAINING POLYACETYLENES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Two acetylene polymers containing cyanobiphenyl-based mesogens,poly{10-[((4'-cyano-4-biphenylyl)oxy)carbonyl]-1-decyne} (PA8CN), which has a relatively flexible polyalkyne backbone, and poly {[4-(((12-((4'-cyano-4-biphenylyl)oxy)dodecyl)oxy)carbonyl) phenyl]-acetylene} (PB12CN), which has a fairly rigid poly(phenylacetylene)backbone, were synthesized using respectively WCl6 and [Rh(nbd)Cl]2 as the catalysts.PA8CN exhibits enantiotropic interdigitated smectic A phase (SAd) over a temperature range as wide as ca. 100℃, whereas PB12CN is non-mesomorphic, demonstrating that the backbone rigidity plays an important role in determining the liquid crystallinity of the polyacetylenes.

  10. CHOLESTERIC LIQUID CRYSTALLINE CHARACTER ON THE SURFACE OF CHITOSAN/POLYACRYLIC ACID COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Yu-song; Wu Mian Wang

    2001-01-01

    The cholesteric liquid crystalline structure in chitosan/polyacrylic acid composite films was studied by surface techniques. A periodical lamellar-like structure was observed in the permanganic acid etched film surface by both scanning electron microscopy (SEM) and atomic force microscopy (AFM), instead of the thumb-print texture which can be detected with polarized optical microscopy. It is suggested that the periodical lamellar-like structure is induced by the etching selectivity between cholesteric layers due to different molecular arrangement on the film surface. Four kinds of perpendicular disclinations, I.e. Χ→τ- + λ+, χ→λ- + τ+, χ→τ- + τ+ and χ→λ- + λ+, were found in the composite films from SEM observations. The smallest periodicity of lamellar-like structure (equals to halfpitch) is 20~40 nm measured with AFM.

  11. Pendant triazole ring assisted mesogen containing side chain liquid crystalline polymethacrylates: Synthesis and characterization

    Indian Academy of Sciences (India)

    T Palani; C Saravanan; P Kannan

    2011-01-01

    Two series of click chemistry assisted alkoxymethyl-1H-[1,2,3]-triazol-1-yl containing sidechain liquid-crystalline polymethacrylates were synthesized by free radical polymerization technique. Mesogen was linked to backbone through various spacer units. Monomers and polymers were characterized by FT-IR, 1H and 13C-NMR spectral techniques. Thermal stability of polymers was confirmed by thermogravimetric analysis. Mesomorphic property and phase transition temperature of polymers were analysed by differential scanning calorimetry and polarized optical microscopy. Phase transition temperature and mesomorphic property of polymers with respect to insertion of polar alkoxy group on terminal triazole ring and spacer length between backbone and mesogen were investigated. Polymers exhibited grainy like textures under polarized optical microscopy. Spacer length between mesogen and backbone alters phase transition temperature of the polymers.

  12. Stereodynamic control of star-epoxy/anhydride crosslinking actuated by liquid-crystalline phase transitions.

    Science.gov (United States)

    Pin, Jean-Mathieu; Mija, Alice; Sbirrazzuoli, Nicolas

    2017-02-07

    The epoxy/anhydride copolymerization kinetics of an original star-epoxy monomer (TriaEP) was explored in dynamic heating mode using a series of isoconversional methods. Negative values of the apparent activation energy (Eα) related to an anti-Arrhenius behavior were observed. The transition from Arrhenius to anti-Arrhenius behavior and vice versa depending on the Eα of polymerization was correlated with the dynamics of mesophasic fall-in/fall-out events, physically induced transition (PIT) and chemically induced transition (CIT). This self-assembly phenomenon induces the generation of an anisotropic crosslinked architecture exhibiting both nematic discotic (ND) and nematic columnar (NC) organization. Particular emphasis was placed on evaluating the juxtaposition/contribution of the liquid-crystalline transitions to crosslinking, considering both the reaction dynamics and the macromolecular vision.

  13. RHEOLOGICAL PROPERTIES OF LIQUID CRYSTALLINE COPOLY (p-HYDROXYBENZOATE/BISPHENOL A TEREPHTHALATE)

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; WU Dacheng; LI Ruixia

    1996-01-01

    Various aspects of the rheological behaviour of liquid crystalline copolyesters, i.e.,samples of copoly (p-hydroxybenzoate/bisphenol A terephthalate), were explored by using Instron capillary rheometer. The experimental results indicated that the apparent viscosity was affected significantly by shear rate, melt temperature and p-hydroxybenzoate unit content. The flow activation energies △Eη are in the range of 205.1 to 74.5 k J/mol, depending on the shear rate of 10-1000 s-1, at temperature 568-603K. These copolyesters exhibit a yield phenomenon in the shear flow, and the values of yield stress decrease with increasing temperature. It is quite unusual that the extrudate of the copolyester shows the smaller swelling ratio even than unity at the lower temperature and lower shear rates.

  14. Light-induced disorder in liquid-crystalline elastomers for actuation

    Science.gov (United States)

    Sánchez-Ferrer, Antoni

    2011-10-01

    Liquid-Crystalline Elastomers (LCEs) are materials which combine the entropic properties of a crosslinked polymer melt with the enthalpic properties of a liquid-crystalline state of order. LCEs show unique characteristics: visco-elasticity and order at the same time in one system. The elastic and the viscous properties come from the crosslinking and friction of the polymer chains, respectively, while the orientation comes from the mesophase which keeps the polymer backbone aligned. LCEs behave as normal polymer networks or rubbers when no energy-storing mesophase is present. This state of disorder can be induced by means of temperature or light. Thermally, the change in shape of LCEs can easily reach 300% when all the enthalpy stored by the mesophase is released and the crosslinked polymer chains are free to move and adopt a random coil conformation. The light-induced local disorder can be achieved when shape-changing molecules are incorporated in the LCE matrix. These compounds are able to absorb light, rearrange themselves in a new shape and subsequently disturbing the mesophase. This results in the molecules that are keeping the order no longer being able to sustain the retractive force of the polymer backbone, and the material contracts, exerting an actuating force. But how does a light sensitive side-chain LCE elastomer behave? And a main-chain LCE? What about nematics or smectics? Is a different kind of actuation, besides the common retractive force, possible? To answer these questions, new chemistry needs to be developed, together with new physics to understand the systems, and new applications need to be created.

  15. Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission.

    Science.gov (United States)

    Pathak, Suraj Kumar; Pradhan, Balaram; Gupta, Monika; Pal, Santanu Kumar; Sudhakar, Achalkumar Ammathnadu

    2016-09-13

    A family of closely related star-shaped stilbene-based molecules containing an amide linkage are synthesized, and their self-assembly in liquid-crystalline and gel states was investigated. The number and position of the peripheral alkyl tails were systematically varied to understand the structure-property relation. Interestingly, one of the molecules with seven peripheral chains was bimesomorphic, exhibiting columnar hexagonal and columnar rectangular phases, whereas the rest of them stabilized the room-temperature columnar hexagonal phase. The self-assembly of these molecules in liquid-crystalline and organogel states is extremely sensitive to the position and number of alkoxy tails in the periphery. Two of the compounds with six and seven peripheral tails exhibited supergelation behavior in long-chain hydrocarbon solvents. One of these compounds with seven alkyl chains was investigated further, and it has shown higher stability and moldability in the gel state. The xerogel of the same compound was characterized with the help of extensive microscopic and X-ray diffraction studies. The nanofibers in the xerogel are found to consist of molecules arranged in a lamellar fashion. Furthermore, this compound shows very weak emission in solution but an aggregation-induced emission property in the gel state. Considering the dearth of solid-state blue-light-emitting organic materials, this molecular design is promising where the self-assembly and emission in the aggregated state can be preserved. The nonsymmetric design lowers the phase-transition temperatures.The presence of an amide bond helps to stabilize columnar packing over a long range because of its polarity and intermolecular hydrogen bonding in addition to promoting organogelation.

  16. Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers.

    Science.gov (United States)

    Leekumjorn, Sukit; Sum, Amadeu K

    2007-05-31

    Molecular dynamics simulations were used for a comprehensive study of the structural properties of monounsaturated POPC and POPE bilayers in the gel and liquid-crystalline state at a number of temperatures, ranging from 250 to 330 K. Though the chemical structures of POPC and POPE are largely similar (choline versus ethanolamine headgroup), their transformation processes from a gel to a liquid-crystalline state are contrasting. In the similarities, the lipid tails for both systems are tilted below the phase transition and become more random above the phase transition temperature. The average area per lipid and bilayer thickness were found less sensitive to phase transition changes as the unsaturated tails are able to buffer reordering of the bilayer structure, as observed from hysteresis loops in annealing simulations. For POPC, changes in the structural properties such as the lipid tail order parameter, hydrocarbon trans-gauche isomerization, lipid tail tilt-angle, and level of interdigitation identified a phase transition at about 270 K. For POPE, three temperature ranges were identified, in which the lower one (270-280 K) was associated with a pre-transition state and the higher (290-300 K) with the post-transition state. In the pre-transition state, there was a significant increase in the number of gauche arrangements formed along the lipid tails. Near the main transition (280-290 K), there was a lowering of the lipid order parameters and a disappearance of the tilted lipid arrangement. In the post-transition state, the carbon atoms along the lipid tails became less hindered as their density profiles showed uniform distributions. This study also demonstrates that atomistic simulations of current lipid force fields are capable of capturing the phase transition behavior of lipid bilayers, providing a rich set of molecular and structural information at and near the main transition state.

  17. NATO Advanced Research Workshop on Computational Methods for Polymers and Liquid Crystalline Polymers

    CERN Document Server

    Pasini, Paolo; Žumer, Slobodan; Computer Simulations of Liquid Crystals and Polymers

    2005-01-01

    Liquid crystals, polymers and polymer liquid crystals are soft condensed matter systems of major technological and scientific interest. An understanding of the macroscopic properties of these complex systems and of their many and interesting peculiarities at the molecular level can nowadays only be attained using computer simulations and statistical mechanical theories. Both in the Liquid Crystal and Polymer fields a considerable amount of simulation work has been done in the last few years with various classes of models at different special resolutions, ranging from atomistic to molecular and coarse-grained lattice models. Each of the two fields has developed its own set of tools and specialized procedures and the book aims to provide a state of the art review of the computer simulation studies of polymers and liquid crystals. This is of great importance in view of a potential cross-fertilization between these connected areas which is particularly apparent for a number of experimental systems like, e.g. poly...

  18. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Science.gov (United States)

    Elnaggar, Yosra SR; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    2016-01-01

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. PMID:27822033

  19. 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester

    DEFF Research Database (Denmark)

    Holme, NCR; Ramanujam, P.S.; Hvilsted, Søren

    1996-01-01

    We show far what is believed to he the first time that it is possible tu generate 10,000 rapid write, read, and erase cycles optically in an azobenzene sidechain liquid-crystalline polyester. We do this by exposing the film alternately to visible light from an argon laser at 488 nm and ultraviolet...

  20. KINETIC-STUDY OF THE PHOTOINITIATED POLYMERIZATION OF A LIQUID-CRYSTALLINE DIACRYLATE MONOMER BY DSC IN THE ISOTHERMAL MODE

    NARCIS (Netherlands)

    Doornkamp, Annette; VANEKENSTEIN, GORA; TAN, YY

    1992-01-01

    The photoinitiated polymerization of the liquid crystalline (LC) diacrylate monomer 1,4-(-2-methyl phenylene)-bis[4-(6-acryloyloxy-hexamethyleneoxy)benzoate] with T(k,n) = 85-degrees-C and T(i) = 118-degrees-C, was studied by d.s.c. at various temperatures under different conditions. In the

  1. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies.

    Science.gov (United States)

    Elnaggar, Yosra Sr; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.

  2. Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.

    Science.gov (United States)

    Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo

    2016-03-01

    Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.

  3. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    Science.gov (United States)

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  4. SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

    Directory of Open Access Journals (Sweden)

    Shun Mitsui

    2017-02-01

    Full Text Available The photoinduced surface relief formation via mass transfer upon irradiation with patterned light has long been a subject of extensive investigation. In azobenzene-containing liquid crystalline materials, UV light irradiation that generates the cis isomer leads to the liquid crystal to isotropic photochemical transition. Due to this phase change, efficiency of the mass transfer to generate a surface relief grating (SRG becomes markedly greater. We have previously indicated that azobenzene-colored SRG-inscribed film can be bleached by removing a hydrogen-bonded azobenzene mesogen. However, this process largely reduces the height feature of the SRG corrugation. Herein, we propose an extended procedure where a colorless mesogen is filled successively after the removal of the azobenzene side chain. The process involves four stages: (i SRG inscription in a hydrogen-bonded supramolecular azobenzene material; (ii crosslinking (insolubilization of the SRG film; (iii removal of azobenzene mesogen by rinsing with a solvent, and (iv stuffing the hollow film with a different mesogen. Although the final stuffing stage was insufficient at the present stage, this work demonstrates the possibility and validity of the strategy of mesogen replacement.

  5. The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2011-01-01

    We report on the optimisation of a recently developed high performance 0-3 piezoelectric composite comprising of the piezoelectric Lead Zirconate Titanate (PZT) powder and a liquid crystalline thermosetting matrix polymer (LCT). The matrix polymer is a liquid crystalline polymer comprising of an HBA

  6. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Elnaggar YSR

    2016-10-01

    Full Text Available Yosra SR Elnaggar,1,2 Sara M Talaat,1 Mohammed Bahey-El-Din,3 Ossama Y Abdallah1 1Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 2Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, 3Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: Terconazole (Tr is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. Keywords: terconazole, liquid crystalline, organogel, skin targeting, skin mycosis

  7. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    Science.gov (United States)

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase

  8. Liquid-crystalline rigid-core semiconductor oligothiophenes: influence of molecular structure on phase behaviour and thin-film properties.

    Science.gov (United States)

    Melucci, Manuela; Favaretto, Laura; Bettini, Christian; Gazzano, Massimo; Camaioni, Nadia; Maccagnani, Piera; Ostoja, Paolo; Monari, Magda; Barbarella, Giovanna

    2007-01-01

    The design, synthesis and properties of liquid-crystalline semiconducting oligothiophenes containing dithienothiophene (DTT), benzothiadiazole (BTZ) and carbazole (CBZ) rigid cores are described. The effect of molecular structure (shape, size and substitution) on their thermal behaviour and electrical properties has been investigated. Polarised optical microscopy (POM) and differential scanning calorimetry (DSC) analyses have revealed highly ordered smectic mesophases for most of the newly synthesised compounds. X-ray diffraction (XRD) studies performed at various temperatures have shown that the smectic order is retained in the crystalline state upon cooling across the transition temperature, affording cast films with a more favourable morphology for FET applications.

  9. Non-covalent modification of reduced graphene oxide by a chiral liquid crystalline surfactant

    Science.gov (United States)

    Lin, Pengcheng; Cong, Yuehua; Sun, Cong; Zhang, Baoyan

    2016-01-01

    In order to effectively disperse reduced graphene oxide (RGO) in functional materials and take full advantage of its exceptional physical and chemical properties, a novel and effective approach for non-covalent modification of RGO by a chiral liquid crystalline surfactant (CLCS) consisting of chiral mesogenic units, nematic mesogenic units with carboxyl groups and non-mesogenic units with a polycyclic conjugated structure is firstly established. The polycyclic conjugated structure can anchor onto the RGO surface via π-π interactions, the chiral mesogenic units possess affinity for chiral materials by joining the helical matrix of chiral material and the carboxyl groups in nematic mesogenic units are supposed to form coordination bonds with nano zinc oxide (ZnO) to fabricate functional nano hybrids. The transmittances of CLCS-RGO hybrids exhibit S-shaped nonlinear increase with the increase of wavelength, but the total transmittances from 220 nm to 800 nm show a linear decreasing trend with the increase of RGO content in the CLCS-RGO hybrid. Due to the superior thermal properties of RGO and the interactions between RGO and CLCS, the dispersed RGO can improve the glass transition and increase the thermal stability and decomposition activation energy of CLCS. The intercalation of RGO can decrease the thermochromism temperature and improve the pitch uniformity of CLCS. Furthermore, CLCS can promote the dispersion of RGO in chiral nematic liquid crystals (CNLCs), and the CNLC-RGO-CLCS hybrids present decreased driving voltage and accelerated electro-optical response. The CLCS non-covalently modified RGO can strengthen the photocatalytic degradation of ZnO by suppressing the aggregation of ZnO and RGO.In order to effectively disperse reduced graphene oxide (RGO) in functional materials and take full advantage of its exceptional physical and chemical properties, a novel and effective approach for non-covalent modification of RGO by a chiral liquid crystalline surfactant

  10. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates.

    Science.gov (United States)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline; McElhinny, Kyle M; Evans, Paul G; Calcagno, Barbara O; Acevedo, Aldo

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic-isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture.

  11. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.

    Science.gov (United States)

    Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang

    2016-06-22

    Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.

  12. Revealing the potential of Didodecyldimethylammonium bromide as efficient scaffold for fabrication of nano liquid crystalline structures.

    Science.gov (United States)

    Kanwar, Rohini; Kaur, Gurpreet; Mehta, S K

    2016-03-01

    To exploit the potential of Didodecyldimethylammonium bromide (D12DAB) as a core lipidic constituent, an attempt was made to fabricate and optimize cationic nanostructured lipid carriers (cNLCs) using a cost-effective microemulsification methodology. Designed composition was optimized by studying the effect of different microemulsion components on D12DAB cNLCs characteristics. ​Spherical shaped D12DAB cNLCs were obtained with an average size of ∼160 nm and zeta potential of +30.2 mV. Differential Scanning Calorimetry (DSC) depicted the presence of thermotropic character, whereas polarized optical microscopy confirmed the mesophase like behavior of D12DAB based cNLCs. In addition, hemolysis analysis revealed that the toxicity was concentration dependent as LC50 was reached at a concentration of 50 μg/mL of cNLCs. This class of cNLCs is expected to become a potent candidate for a broad spectrum of medicaments as carriers, targeting for pharmaceutical and medicinal purposes, due to the combination of a hard lipid with a soft lipid, where the liquid crystalline structure of the lipid co-exists.

  13. Controlling domain orientation of liquid crystalline block copolymer in thin films through tuning mesogenic chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Xie, He-Lou [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Li, Xiao [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Ren, Jiaxing [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Bishop, Camille [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Arges, Christopher G. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge Louisiana 70803 USA; Nealey, Paul F. [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Materials Science Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-01-24

    Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.

  14. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil S; Mahadik, Kakasaheb R; Paradkar, Anant R

    2015-02-20

    The current work was undertaken to assess suitability of liquid crystalline phase for engineering of lactose crystals and their utility as a carrier in dry powder inhalation formulations. Saturated lactose solution was poured in molten glyceryl monooleate which subsequently transformed into gel. The gel microstructure was analyzed by PPL microscopy and SAXS. Lactose particles recovered from gels after 48 h were analyzed for polymorphism using techniques such as FTIR, XRD, DSC and TGA. Particle size, morphology and aerosolisation properties of prepared lactose were analyzed using Anderson cascade impactor. In situ seeding followed by growth of lactose crystals took place in gels with cubic microstructure as revealed by PPL microscopy and SAXS. Elongated (size ∼ 71 μm) lactose particles with smooth surface containing mixture of α and β-lactose was recovered from gel, however percentage of α-lactose was more as compared to β-lactose. The aerosolisation parameters such as RD, ED, %FPF and % recovery of lactose recovered from gel (LPL) were found to be comparable to Respitose® ML001. Thus LC phase (cubic) can be used for engineering of lactose crystals so as to obtain particles with smooth surface, high elongation ratio and further they can be used as carrier in DPI formulations.

  15. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation

    Science.gov (United States)

    Schmidt, Nathan W.; Jin, Fan; Lande, Roberto; Curk, Tine; Xian, Wujing; Lee, Calvin; Frasca, Loredana; Frenkel, Daan; Dobnikar, Jure; Gilliet, Michel; Wong, Gerard C. L.

    2015-07-01

    Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.

  16. Milliscale Self-Integration of Megamolecule Biopolymers on a Drying Gas-Aqueous Liquid Crystalline Interface.

    Science.gov (United States)

    Okeyoshi, Kosuke; Okajima, Maiko K; Kaneko, Tatsuo

    2016-06-13

    A drying environment is always a proposition faced by dynamic living organisms using water, which are driven by biopolymer-based micro- and macrostructures. Here, we introduce a drying process for aqueous liquid crystalline (LC) solutions composed of biopolymer with extremely high molecular weight components such as polysaccharides, cytoskeletal proteins, and DNA. On controlling the mobility of the LC microdomain, the solutions showed milliscale self-integration starting from the unstable gas-LC interface during drying. In particular, we first identified giant rod-like microdomains (∼1 μm diameter and more than 20 μm length) of the mega-molecular polysaccharide, sacran, which is remarkably larger than other polysaccharides. These microdomains led to the formation of a single milliscale macrodomain on the interface. In addition, the dried polymer films on a solid substrate also revealed that such integration depends on the size of the microdomain. We envision that this simple drying method will be useful not only for understanding the biopolymer hierarchization at the macroscale level but also for preparation of surfaces with direction controllability, as seen in living organisms, for use in various fields such as diffusion, mechanics, and photonics.

  17. Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators.

    Science.gov (United States)

    Lu, Xili; Guo, Shengwei; Tong, Xia; Xia, Hesheng; Zhao, Yue

    2017-07-01

    A new strategy for enhancing the photoinduced mechanical force is demonstrated using a reprocessable azobenzene-containing liquid crystalline network (LCN). The basic idea is to store mechanical strain energy in the polymer beforehand so that UV light can then be used to generate a mechanical force not only from the direct light to mechanical energy conversion upon the trans-cis photoisomerization of azobenzene mesogens but also from the light-triggered release of the prestored strain energy. It is shown that the two mechanisms can add up to result in unprecedented photoindued mechanical force. Together with the malleability of the polymer stemming from the use of dynamic covalent bonds for chain crosslinking, large-size polymer photoactuators in the form of wheels or spring-like "motors" can be constructed, and, by adjusting the amount of prestored strain energy in the polymer, a variety of robust, light-driven motions with tunable rolling or moving direction and speed can be achieved. The approach of prestoring a controllable amount of strain energy to obtain a strong and tunable photoinduced mechanical force in azobenzene LCN can be further explored for applications of light-driven polymer actuators. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gradient measurement technique to identify phase transitions in nano-dispersed liquid crystalline compounds

    Science.gov (United States)

    Pardhasaradhi, P.; Madhav, B. T. P.; Venugopala Rao, M.; Manepalli, R. K. N. R.; Pisipati, V. G. K. M.

    2016-09-01

    Characterization and phase transitions in pure and 0.5% BaTiO3 nano-dispersed liquid crystalline (LC) N-(p-n-heptyloxybenzylidene)-p-n-nonyloxy aniline, 7O.O9, com-pounds are carried out using a polarizing microscope attached with hot stage and camera. We observed that when any of these images are distorted, different local structures suffer from various degradations in a gradient magnitude. So, we examined the pixel-wise gradient magnitude similarity between the reference and distorted images combined with a novel pooling strategy - the standard deviation of the GMS map - to determine the overall phase transition variations. In this regard, MATLAB software is used for gradient measurement technique to identify the phase transitions and transition temperature of the pure and nano-dispersed LC compounds. The image analysis of this method proposed is in good agreement with the standard methods like polarizing microscope (POM) and differential scanning calorimeter (DSC). 0.5% BaTiO3 nano-dispersed 7O.O9 compound induces cholesteric phase quenching the nematic phase, which the pure compound exhibits.

  19. Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders.

    Science.gov (United States)

    Shi, Qianqian; Si, Kae Jye; Sikdar, Debabrata; Yap, Lim Wei; Premaratne, Malin; Cheng, Wenlong

    2016-01-26

    Anisotropic plasmonic nanoparticles have been successfully used as constituent elements for growing ordered nanoparticle arrays. However, orientational control over their spatial ordering remains challenging. Here, we report on a self-assembled two-dimensional (2D) nanoparticle liquid crystalline superstructure (NLCS) from bipyramid gold nanoparticles (BNPs), which showed four distinct orientational packing orders, corresponding to horizontal alignment (H-NLCS), circular arrangement (C-NLCS), slanted alignment (S-NLCS), and vertical alignment (V-NLCS) of constituent particle building elements. These packing orders are characteristic of the unique shape of BNPs because all four packing modes were observed for particles with various sizes. Nevertheless, only H-NLCS and V-NLCS packing orders were observed for the free-standing ordered array nanosheets formed from a drying-mediated self-assembly at the air/water interface of a sessile droplet. This is due to strong surface tension and the absence of particle-substrate interaction. In addition, we found the collective plasmonic coupling properties mainly depend on the packing type, and characteristic coupling peak locations depend on particle sizes. Interestingly, surface-enhanced Raman scattering (SERS) enhancements were heavily dependent on the orientational packing ordering. In particular, V-NLCS showed the highest Raman enhancement factor, which was about 77-fold greater than the H-NLCS and about 19-fold greater than C-NLCS. The results presented here reveal the nature and significance of orientational ordering in controlling plasmonic coupling and SERS enhancements of ordered plasmonic nanoparticle arrays.

  20. STUDY ON INTERMITTENT SHEAR FLOW AND RELAXATION BEHAVIOR OF THERMOTROPIC LIQUID CRYSTALLINE POLYMER

    Institute of Scientific and Technical Information of China (English)

    Ruo-Bing Yu; Chi-Xing Zhou; Wei Yu

    2005-01-01

    Intermittent shear flow including start-up flow and small oscillatory amplitude time sweep or stress relaxation after cessation of shear flow was used to study the rheological behavior and internal structure of thermotropic liquid crystalline polymer (TLCP). There are two kinds of intermittent shear flow: all start-up flows are in the same direction (intermittent flow forward: IFF) and start-up flows change their directions alternately (intermittent flow reversal: IFR). The results show that the stress of start-up flow of IFF and IFR in the test process is not superposed, indicating different changes of internal structure of thermotropic LCP (TLCP). Two main factors affect structure changes in the experimental time scale. One relates to long-term texture relaxation process, the other is an interchain reaction that becomes important after 30 min. The two factors raise the stress of IFF, but express complex effects for the stress of IFR. The latter factor becomes very important at long time annealing process. The relaxation behavior was also studied by the application of wide range relaxation spectrum calculated from the combined dynamic modulus, which gave three characteristic relaxation times (0.3, 10 and 600 s)ascribable to the relaxations of less-phase orientation, domain orientation, and domain deformation, respectively. The result also shows that the domain coalescence (texture relaxation), a long relaxation time, is a much slow process and lasts beyond 2400 s of the test time.

  1. Electrically Conductive Compounds of Polycarbonate, Liquid Crystalline Polymer, and Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Penwisa Pisitsak

    2012-01-01

    Full Text Available A thermotropic liquid crystalline polymer (LCP was blended with polycarbonate (PC and multiwalled carbon nanotube (CNT with the goal of improving electrical conductivity and mechanical properties over PC. The LCP was anticipated to produce fibrillar domains in PC and help improve the mechanical properties. The study was carried out using two grades of LCP—Vectra A950 (VA950 and Vectra V400P (V400P. The compounds contained 20 wt% LCP and 0.5 to 15 wt% CNT. The compounds were prepared by melt-blending in a twin-screw minicompounder and then injection molded using a mini-injection molder. The fibrillar domains of LCP were found only in the case of PC/VA950 blend. However, these fibrils turned into droplets in the presence of CNT. It was found that CNT preferentially remained inside the LCP domains as predicted from the value of spreading coefficient. The electrical conductivity showed the following order with the numbers in parenthesis representing the electrical percolation threshold of the compounds: PC/CNT (1% > PC/VA950P/CNT (1% > PC/V400P/CNT (3%. The storage modulus showed improvements with the addition of CNT and VA950.

  2. Synthesis and Characterization of Ferrocene-Containing Liquid Crystalline Materials with a Bromo-phenyl Moiety

    Institute of Scientific and Technical Information of China (English)

    ZHAO,Ke-Qing(赵可清); HU,Ping(胡平); XU,Hong-Bo(许洪波); ZHANG,Liang-Fu(张良辅)

    2002-01-01

    Ten ferrocene-containing liquid crystalline materials, pFcC6H4CO2C6H4N= CHC6H4O2CC6H3BrOCnH2n + 1 ( type Ⅰ)and p-FcC6H4N = CHC6H4O2CC6H3BrOCnH2n+1 ( type Ⅱ),were synthesized by condensation reactions of two ferrocenesubstituted amines, p-FcC6H4CO2C6H4NH2 ( 4 ) and pFcC6H4NH2(5) (Fc: ferrocenyl) with five bromo-substituted benzaldehydes (3) (H2n+1CnOC6H3BrCOOC6H4CHO, n = 2,4, 6, 8 and 10). Their mesogenic behaviors were studied by hot-stage polarized optical microscopy and differential scanning calorimetry. The effects of structure (rigid core, terminal chain length) on the phase transition behaviors were discussed.

  3. Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid.

    Science.gov (United States)

    Cao, Xuefei; Peng, Xinwen; Sun, Shaoni; Zhong, Linxin; Wang, Sha; Lu, Fachuang; Sun, Runcang

    2014-10-13

    The present study investigated the impact of regeneration process on the crystalline structure and enzymatic hydrolysis behaviors of microcrystalline cellulose (MCC) regenerated from ionic liquid 1-butyl-3-methylimidazolium chloride. The crystalline structures of these regenerated samples were analyzed by X-ray diffraction. Results suggested that almost amorphous cellulose was obtained by regenerating MCC in acetone (DRC-a), while partial cellulose II structure could be found in these regenerated samples from water and ethanol. Additionally, the enzymatic hydrolysis behaviors of MCC and its regenerated samples were comparatively studied. Results showed that above 90% of cellulose could be converted into glucose within 4h for DRC-a and regenerated cellulose without drying (WRC-w) as compared to that of MCC (9.7%). Therefore, the regeneration process could significantly influence the crystallinity and digestibility of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effect of long range order on sheared liquid crystalline materials: flow regimes, transitions, and rheological phase diagrams

    Science.gov (United States)

    Tsuji; Rey

    2000-12-01

    A generalized theory that includes short-range elasticity, long-range elasticity, and flow effects is used to simulate and characterize the shear flow of liquid crystalline materials as a function of the Deborah (De) and Ericksen (Er) numbers in the presence of fixed planar director boundary conditions; the results are also interpreted as a function of the ratio R between short-range and long-range elasticity. The results are effectively summarized into rheological phase diagrams spanned by De and Er, and also by R and Er, where the stability region of four distinct flow regimes are indicated. The four regimes for planar (two-dimensional orientation) shear flow are (1) the elastic-driven steady state, (2) the composite tumbling-wagging periodic state, (3) the wagging periodic state, and (4) the viscous-driven steady state. The coexistence of the four regimes at a quacritical point is shown to be due to the emergence of a defect structure. The origin, the significant steady and dynamical features, and the transitions between these regimes are thoroughly characterized and analyzed. Quantitative and qualitative comparisons between the present complete model predictions and those obtained from the classical theories of nematodynamics (Leslie-Ericksen and Doi theories) are presented and the main physical mechanisms that drive the observed deviations between the predictions of these models are identified. The presented results fill the previously existing gap between the classical Leslie-Ericksen theory and the Doi theory, and present a unified description of nematodynamics.

  5. Free Surface Command Layer for Photoswitchable Out-of-Plane Alignment Control in Liquid Crystalline Polymer Films.

    Science.gov (United States)

    Nakai, Takashi; Tanaka, Daisuke; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro

    2016-01-26

    To date, reversible alignment controls of liquid crystalline materials have widely been achieved by photoreactive layers on solid substrates. In contrast, this work demonstrates the reversible out-of-plane photocontrols of liquid crystalline polymer films by using a photoresponsive skin layer existing at the free surface. A polymethacrylate containing a cyanobiphenyl side-chain mesogen adopts the planar orientation. Upon blending a small amount of azobenzene-containing side-chain polymer followed by successive annealing, segregation of the azobenzene polymer at the free surface occurs and induces a planar to homeotropic orientation transition of cyanobiphenyl mesogens underneath. By irradiation with UV light, the mesogen orientation turns into the planar orientation. The orientation reverts to the homeotropic state upon visible light irradiation or thermally, and such cyclic processes can be repeated many times. On the basis of this principle, erasable optical patterning is performed by irradiating UV light through a photomask.

  6. Analysis of coal tar polycyclic aromatic hydrocarbon LC-fractions by capillary SFC on a liquid crystalline stationary phase

    Energy Technology Data Exchange (ETDEWEB)

    Kithinji, J.P.; Raynor, M.W.; Egia, B.; Davies, I.L.; Bartle, K.D.; Clifford, A.A. (University of Leeds, Leeds (UK). School of Chemistry)

    1990-01-01

    Supercritical fluid chromatography (SFC) on a capillary column coated with a smectic mesomorphic crystalline phase is shown to exhibit a typical turnover effect (retention versus column temperature) for polycyclic aromatic hydrocarbons (PAHs) at lower temperatures than are found on a methylpolysiloxane phase. Liquid chromatography is used to separate various fractions from a coal tar, which are analyzed by high resolution capillary SFC. Different density and temperature programs were investigated to optimize the separations. Simultaneous density and temperature programs gave the best results, and this is thought to be due to increased solute diffusion coefficients which yield highly efficient separations for the high molecular weight polycyclic aromatic hydrocarbons. The separation mechanism is based on the shape of the liquid crystalline phase, solubility, volatility, and molecular geometry of the PAHs.

  7. 液晶热固体的合成与性能%Preparation and Properties of Liquid Crystalline Thermosets

    Institute of Scientific and Technical Information of China (English)

    刘伟昌; 申胜军; 刘德山

    1999-01-01

      综述了液晶热固体的新进展,主要包括合成液晶热固体的基本条件、液晶热固体的力学及电学性能和独特的自增强结构,并依交联点类型对液晶热固体进行了分类,着重介绍了相应的合成方法及特点。%  The progresses of liquid crystalline thermosets (LCTs) are reviewed in this paper. The basic conditions of LCTs synthesis and the mechanical and electronic properties,as well as the special self-strengthen structure are introduced. The liquid crystalline thermosets are classified by the crosslinking sites and the corresponding preparation methods are described.

  8. Modelling room temperature ionic liquids.

    Science.gov (United States)

    Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L

    2008-08-07

    Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.

  9. Liquid Crystalline Graphene Oxide/PEDOT:PSS Self-Assembled 3D Architecture for Binder-Free Supercapacitor Electrodes

    OpenAIRE

    Islam, Md. Monirul; Chidembo, Alfred T.; Aboutalebi, Seyed Hamed; Cardillo, Dean; Liu, Hua Kun; Konstantinov, Konstantin; Dou, Shi Xue

    2014-01-01

    Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convenient method. Liquid crystalline graphene oxide was used as precursor to interact with poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. This layer...

  10. Liquid crystalline graphene oxide/PEDOT:PSS self-assembled 3D architecture for binder-free supercapacitor electrodes

    OpenAIRE

    Monirul eIslam; Alfred eChidembo; Hamed eAboutalebi; Dean eCardillo; Hua Kun Liu; Konstantin eKonstantinov; Shi Xue Dou

    2014-01-01

    Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convienient method. Liquid crystalline graphene oxide (LC GO) was used as precursor to interact with poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. T...

  11. Fastest non-ionic azo dyes and transfer of their thermal isomerisation kinetics into liquid-crystalline materials.

    Science.gov (United States)

    Garcia-Amorós, Jaume; Castro, M Cidália R; Coelho, Paulo; Raposo, M Manuela M; Velasco, Dolores

    2016-04-14

    Push-pull bithienylpyrrole-based azo dyes exhibit thermal isomerisation rates as fast as 1.4 μs in acetonitrile at 298 K becoming, thus, the fastest neutral azo dyes reported so far. These remarkably low relaxation times can be transferred into liquid-crystalline matrices enabling light-triggered oscillations in the optical density of the final material up to 11 kHz under ambient conditions.

  12. Design and Characterization of a Novel p1025 Peptide-Loaded Liquid Crystalline System for the Treatment of Dental Caries

    OpenAIRE

    Giovana Maria Fioramonti Calixto; Matheus Henrique Garcia; Eduardo Maffud Cilli; Leila Aparecida Chiavacci; Marlus Chorilli

    2016-01-01

    Dental caries, mainly caused by the adhesion of Streptococcus mutans to pellicle-coated tooth surfaces, is an important public health problem worldwide. A synthetic peptide (p1025) corresponding to residues 1025–1044 of the adhesin can inhibit this binding. Peptides are particularly susceptible to the biological environment; therefore, a p1025 peptide-loaded liquid crystalline system (LCS) consisting of tea tree oil as the oil phase, polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol as ...

  13. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  14. Computer construction and analysis of protein models of the mutant γD-crystallin gene

    Institute of Scientific and Technical Information of China (English)

    YAO Ke; SUN Zhao-hui; SHENTU Xing-chao; WANG Kai-jun; TAN Jian

    2005-01-01

    Background γD-crystallin plays an important role in human cataract formation. Being highly stable, γD-crystallin proteins are composed of two domains. In this study we constructed and analyzed protein models of the mutant γD-crystallin gene, which caused a special fasciculiform congenital cataract affecting a large Chinese family. Methods γD-crystallin protein structure was predicted by Swiss-Model software using bovine γD-crystallin as a template and Prospect software using human βb2-crystallin as a template. The models were observed with a Swiss-Pdb viewer.Results The mutant γD-crystallin structure predicted by the Swiss-Model software showed that proline23 was an exposed surface residue and P23T change made a decreased hydrogen bond distance between threonine23 and asparagine49. The mutant γD-crystallin structure predicted by the Prospect software showed that the P23T change exerted a significant effect on the protein's tertiary structure and yielded hydrogen bonds with aspartic acid21, asparagine24, asparagine49 and serine74.Conclusion The mutant γD-crystallin gene has a significant effect on the protein's tertiary structure, supporting that alteration of γ-crystallin plays an important role in human cataract formation.

  15. Multilayer-Coated Liquid Crystalline Nanoparticles for Effective Sorafenib Delivery to Hepatocellular Carcinoma.

    Science.gov (United States)

    Thapa, Raj Kumar; Choi, Ju Yeon; Poudel, Bijay K; Hiep, Tran Tuan; Pathak, Shiva; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-09-16

    Hepatocellular carcinoma is one of the most common cancers in adults and develops due to activation of oncogenes and inactivation of tumor suppressor genes. Sorafenib (SF) is a U.S. Food and Drug Administration (FDA) approved drug for the treatment of hepatocellular carcinoma. However, its clinical use is limited by its poor aqueous solubility and undesirable side effects. Monoolein-based liquid crystalline nanoparticles (LCN) are self-assembled structures that have been determined as promising drug-delivery vehicles. Therefore, the main aim of this study was to prepare layer-by-layer (LbL) polymer-assembled SF-loaded LCNs (LbL-LCN/SF) for effective delivery of SF to hepatocellular carcinoma. Results revealed that LbL-LCN/SF presented optimum particle size (∼165 nm) and polydispersity index (PDI, ∼0.14) with appropriate polymer layer assembly confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Furthermore, LbL-LCN/SF effectively controlled burst release and exhibited pH-sensitive release of SF, thereby increasing drug release in the acidic microenvironment of tumor cells. Compared to free SF and bare LCN, the hemolytic activity of LbL-LCN/SF was significantly reduced (p<0.01). Interestingly, LbL-LCN/SF was more cytotoxic to HepG2 cells than the free drug was. Additionally, high cellular uptake and greater apoptotic effects of LbL-LCN/SF in HepG2 cells indicates superior antitumor effects. Therefore, LbL-LCN/SF is a potentially effective formulation for hepatocellular carcinoma.

  16. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  17. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); McElhinny, Kyle M.; Evans, Paul G. [Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin-Madison, WI 53706 (United States); Calcagno, Barbara O. [Department of General Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); Acevedo, Aldo, E-mail: aldo.acevedo@upr.edu [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico)

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  18. Crystalline Structure of Accretion Disks: Features of the Global Model

    CERN Document Server

    Montani, Giovanni

    2012-01-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipole like magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in [1, 2]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ring-like decomposition of the disk, according to the same modulation of the magnetic f...

  19. Smooth/rough layering in liquid-crystalline/gel state of dry phospholipid film, in relation to its ability to generate giant vesicles

    CERN Document Server

    Hishida, M; Yoshikawa, K; Hishida, Mafumi; Seto, Hideki; Yoshikawa, Kenichi

    2005-01-01

    Morphological changes in a dry phospholipid film on a solid substrate were studied below and above the main transition temperature, between the gel and liquid-crystalline phases by phase-contrast microscopy and AFM. A Phospholipid film in the liquid-crystalline phase exhibits flat, smooth layering, whereas that in the gel phase shows rough, random layering. These film morphologies are discussed in relation to the ability to form giant vesicles through the natural swelling method.

  20. EFFECT OF SEQUENCE STRUCTURE ON THE THERMOTROPIC LIQUID CRYSTALLINE PROPERTIES OF POLYESTERAMIDES BASED ON DIMETHYLBENZIDINE, BISPHENOL-A AND p-TEREPHTHALYL CHLORIDE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A series of thermotropic liquid crystalline polyesteramides with different sequence structure based on dimethylbenzidine (DMBD), bisphenol-A(BPA) and pterephthalyl chloride (TPC) was synthesized by changing the feeding order of monomers in low temperature solution polycondensation system. By means of NMR and a computer program the sequence structure parameters were measured. The effect of sequence structure on liquid crystalline phase transition temperature of PEAs obtained was investigated.

  1. SYNTHESIS AND CHARACTERIZATION OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Zhang; Xiong-yan Zhao; De-shan Liu; Qi-xiang Zhou

    1999-01-01

    A series of liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and welldefined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.

  2. Crystalline structure of accretion disks: features of a global model.

    Science.gov (United States)

    Montani, Giovanni; Benini, Riccardo

    2011-08-01

    In this paper, we develop the analysis of a two-dimensional magnetohydrodynamical configuration for an axially symmetric and rotating plasma (embedded in a dipolelike magnetic field), modeling the structure of a thin accretion disk around a compact astrophysical object. Our study investigates the global profile of the disk plasma, in order to fix the conditions for the existence of a crystalline morphology and ring sequence, as outlined by the local analysis pursued in Coppi [Phys. Plasmas 12, 7302 (2005)] and Coppi and Rousseau [Astrophys. J. 641, 458 (2006)]. In the linear regime, when the electromagnetic back-reaction of the plasma is small enough, we show the existence of an oscillating radial behavior for the flux surface function, which very closely resembles the one outlined in the local model, apart from a radial modulation of the amplitude. In the opposite limit, corresponding to a dominant back-reaction in the magnetic structure over the field of central object, we can recognize the existence of a ringlike decomposition of the disk, according to the same modulation of the magnetic flux surface, and a smoother radial decay of the disk density, with respect to the linear case. In this extreme nonlinear regime, the global model seems to predict a configuration very close to that of the local analysis, but here the thermostatic pressure, crucial for the equilibrium setting, is also radially modulated. Among the conditions requested for the validity of such a global model, the confinement of the radial coordinate within a given value sensitive to the disk temperature and to the mass of the central objet, stands; however, this condition corresponds to dealing with a thin disk configuration.

  3. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    Science.gov (United States)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  4. Hydrodynamic theories for mixtures of polymers and rodlike liquid crystalline polymers.

    Science.gov (United States)

    Forest, M Gregory; Wang, Qi

    2005-10-01

    We develop a hydrodynamic theory for flows of incompressible blends of flexible polymers and rodlike nematic polymers (RNPs) or rodlike nematic liquid crystal polymers (RNLCPs) extending the thermodynamical theory of Muratov and E [J. Chem. Phys. 116, 4723 (2002)] for phase separation kinetics of the blend. We model the flexible polymer molecules in the polymer matrix as Rouse chains and assume the translational diffusion of the molecules is predominantly through the volume fraction of the flexible polymer and the molecules of rodlike nematic liquid crystal polymers. We then (i) derive the translational flux for the rodlike nematic liquid crystal polymers to ensure the incompressibility constraint; (ii) derive the elastic stress tensor, accounting for the contribution from both the rodlike nematic polymer and the flexible polymer matrix, as well as the extra elastic body force due to the nonlocal intermolecular potential for long range molecular interaction; (iii) show that the theory obeys positive entropy production and thereby satisfies the second law of thermodynamics. By applying the gradient expansion technique on the number density function of RNLCPs, we present an approximate, weakly nonlocal theory in differential form in which the intermolecular potential is given by gradients of the number density function of the RNLCP and the volume fraction of the flexible polymer. In the approximate theory, the elastic stress is augmented by an extra stress tensor due to the spatial convection of the macroscopic material point and long range interaction, whose divergence yields the analogous extra elastic body force with respect to the nonlocal intermolecular potential. Finally, we compare the model in steady simple shear with the Doi theory for bulk monodomains of rodlike nematic polymers.

  5. Influence of growth parameters on the surface morphology and crystallinity of InSb epilayers grown by liquid phase epitaxy

    Indian Academy of Sciences (India)

    N K Udayashankar; H L Bhat

    2003-12-01

    Unintentionally doped homoepitaxial InSb films have been grown by liquid phase epitaxy employing ramp cooling and step cooling growth modes. The effect of growth temperature, degree of supercooling and growth duration on the surface morphology and crystallinity were investigated. The major surface features of the grown film like terracing, inclusions, meniscus lines, etc are presented step-by-step and a variety of methods devised to overcome such undesirable features are described in sufficient detail. The optimization of growth parameters have led to the growth of smooth and continuous films. From the detailed morphological, X-ray diffraction, scanning electron microscopic and Raman studies, a correlation between the surface morphology and crystallinity has been established.

  6. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition.

    Science.gov (United States)

    Glagolev, Mikhail K; Vasilevskaya, Valentina V; Khokhlov, Alexei R

    2016-07-28

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  7. 姜黄素液晶纳米粒大鼠口服吸收的研究%Study on the oral absorption of curcumin-loaded liquid crystalline nanoparticles in rats

    Institute of Scientific and Technical Information of China (English)

    刘秀菊; 苏旬; 郭京艳; 贺秀丽; 翟光喜

    2012-01-01

    目的:研究姜黄素液晶纳米粒大鼠的口服吸收.方法:采用热处理-高压匀质法制备姜黄素液晶纳米粒,利用HPLC测定血浆中姜黄素浓度,DAS 2.0软件处理数据,求算药动学参数.结果:姜黄素液晶纳米粒口服吸收符合单室模型;与原料药组相比,姜黄素液晶纳米粒口服相对生物利用度为395.56%.结论:液晶纳米粒显著提高了姜黄素的口服吸收.%OBJECnVE To study the oral absorption of curcumin-loaded liquid crystalline nanoparticles in rats. METHODS Curcumin loaded liquid crystalline nanoparticles were prepared with the method of hot treatment and high-pressure homogeni-zation,curcumin in plasma was determined by HPLC and the results were analyzed with Program DAS 2. 0 to obtain the phar-macokinetics parameters. RESULTS The oral absorption of curcumin Loaded liquid crystalline nanoparticles in rat fitted one-compartment model,and the relative bioavailability was 395. 56% compared to crude CUR CONCLUSION Liquid crystalline nanoparticles could markedly improve the oral absorption of CUR in rat.

  8. Tilted Orientation of Photochromic Dyes with Guest-Host Effect of Liquid Crystalline Polymer Matrix for Electrical UV Sensing

    Directory of Open Access Journals (Sweden)

    Amid Ranjkesh

    2015-12-01

    Full Text Available We propose a highly oriented photochromic dye film for an ultraviolet (UV-sensing layer, where spirooxazine (SO derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation.

  9. Tilted Orientation of Photochromic Dyes with Guest-Host Effect of Liquid Crystalline Polymer Matrix for Electrical UV Sensing.

    Science.gov (United States)

    Ranjkesh, Amid; Park, Min-Kyu; Park, Do Hyuk; Park, Ji-Sub; Choi, Jun-Chan; Kim, Sung-Hoon; Kim, Hak-Rin

    2015-12-29

    We propose a highly oriented photochromic dye film for an ultraviolet (UV)-sensing layer, where spirooxazine (SO) derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM) using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation.

  10. Preparation and Characterization of Liquid Crystalline Polyurethane/Al2O3/Epoxy Resin Composites for Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Shaorong Lu

    2012-01-01

    Full Text Available Liquid crystalline polyurethane (LCPU/Al2O3/epoxy resin composites were prepared by using LCPU as modifier. The mechanical properties, thermal stability, and electrical properties of the LCPU/Al2O3/epoxy resin composites were investigated systematically. The thermal oxidation analysis indicated that LCPU/Al2O3/epoxy resin composites can sustain higher thermal decomposition temperature. Meanwhile, coefficient of thermal expansion (CTE was also found to decrease with addition of LCPU and nano-Al2O3.

  11. THERMAL DEGRADATION OF THERMOTROPIC LIQUID CRYSTALLINE TERPOLYESTERS BASED ON VANILLIC ACID, p-HYDROXYBENZOIC ACID AND POLY(ETHYLENE TEREPHTHALATE)

    Institute of Scientific and Technical Information of China (English)

    LI Xingui; HUANG Meirong; GUAN Guihe; SUN Tong

    1993-01-01

    Nine thermotropic liquid crystalline terpolyesters based on vanillic acid(V), p-hydroxybenzoic acid(H) and poly(ethylene terephthalate)(E) were investigated by thermogravimetry to ascertain their thermostability and the kinetic parameters for thermal degradation. Overall activation energy data of the degradation had been calculated over the range 5~70% weight loss. The temperatures and the activation energy of the degradation lie in the ranges of 384~394 ℃ at a heating rate of 1 ℃/min and 176~205 KJ/mol at the weight loss of 5%, respectively, which suggests that the terpolyesters have good thermostability.

  12. Synthesis and Liquid Crystalline Properties of 3-Substituted Pentane-2,4-dione, Pyrazole and Isoxazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    HAN,Jie; GUO,Hui; WANG,Xiao-Guang; PANG,Mei-Li; MENG,Ji-Ben

    2007-01-01

    The γ-substituted β-diketonate 2,4-dioxo-3-pentyl 4-[4-(n-octyloxy)cinnamoyl]oxybenzoate 1 and its pyrazole and isoxazole derivatives (2 and 3 respectively) have been synthesized and characterized by the spectroscopic methods and elemental analysis. The mesogenic properties of these compounds have been studied by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). A monotropic nematic mesophase was observed for theβ-diketonate 1, in contrast, the pyrazole 2 displays an enantiotropic smectic A and isoxazole 3 exhibits an enantiotropic nematic mesophase. The relationship between the structure and liquid crystalline properties has also been discussed.

  13. Synthesis of Isothianaphthene (ITN and 3,4-Ethylenedioxy-Thiophene (EDOT-Based Low-Bandgap Liquid Crystalline Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Hiromasa Goto

    2013-05-01

    Full Text Available Copolymers, consisting of isothianaphthene and phenylene derivatives with liquid crystal groups, were synthesized via Migita-Kosugi-Stille polycondensation reaction. IR absorption, UV-vis optical absorption, and PL spectroscopy measurements were carried out. Thermotropic liquid crystallinity of the polymers with bandgap of ~2.5 eV was confirmed.

  14. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery.

    Science.gov (United States)

    Elgindy, Nazik A; Mehanna, Mohammed M; Mohyeldin, Salma M

    2016-03-30

    The study aims to elaborate novel self-assembled liquid crystalline nanoparticles (LCNPs) for management of hormonal disturbances following non-invasive progesterone transdermal delivery. Fabrication and optimization of progesteroneloaded LCNPs for transdermal delivery were assessed via a quality by design approach based on 2(3) full factorial design. The design includes the functional relationships between independent processing variables and dependent responses of particle size, polydispersity index, zeta potential, cumulative drug released after 24h and ex-vivo transdermal steady flux. The developed nanocarrier was subjected to TEM (transmission electron microscope) for morphological elucidation and stability study within a period of three months at different storage temperatures. The cubic phase of LCNPs was successfully prepared using glyceryl monooleate (GMO) via the emulsification technique. Based on the factorial design, the independent operating variables significantly affected the five dependent responses. The cubosomes hydrodynamic diameters were in the nanometric range (101-386 nm) with narrow particle size distribution, high negative zeta potential ≥-30 mV and entrapment efficiency ≥94%. The LCNPs succeeded in sustaining progesterone release for almost 24h, following a non-fickian transport of drug diffusion mechanism. Ex-vivo study revealed a significant enhancement up to 6 folds in the transdermal permeation of progesterone-loaded LCNPs compared to its aqueous suspension. The optimized LCNPs exhibited a high physical stability while retaining the cubic structure for at least three months. Quality by design approach successfully accomplished a predictable mathematical model permitting the development of novel LCNPs for transdermal delivery of progesterone with the benefit of reducing its oral route side effects.

  15. Rheology of the lamellar liquid-crystalline phase in polyethoxylated alcohol/water/heptane systems.

    Directory of Open Access Journals (Sweden)

    Gallegos, C.

    2005-06-01

    Full Text Available Linear viscoelastic tests as well as transient and steady flow experiments were carried out on lamellar liquid crystalline samples of poly (oxyethylene alcohol/water/heptane systems. The effect of surfactant and heptane concentrations on the rheological properties of the lamellar mesophase was investigated. The mechanical spectrum inside the linear viscoelastic regime shows, in all cases, a well-developed plateau region in the whole frequency range studied. The values of the dynamic functions were higher for intermediate surfactant or heptane concentrations indicative of a major development of the elastic network in the midrange of existence of the lamellar phase. Transient and steady flow experiments point out a shear-induced evolution of the lamellar microstructure. Different power law regions with different values of the flow index were detected in the viscosity versus shear rate plots. These shear-induced structural modifications were confirmed by using polarizing microscopy in an optical shearing cell. Structural modifications appear to be highly influenced by shear rate. In general, applying relatively high constant shear rates, the alignment of the bilayers followed by the appearance of the “oily streaks” structure was observed. Appearance of shear-induced vesicles occurs at high heptane content, as indicates the texture of close-packed monodisperse spherulites detected by polarizing microscopy.n este trabajo se han estudiado las propiedades reológicas de una fase líquido-cristalina laminar contenida en un sistema alcohol polietoxilado/agua/heptano, mediante ensayos viscoelásticos lineales, estacionarios y transitorios. El efecto de distintas variables como la composición de tensioactivo y heptano sobre dichas propiedades reológicas ha sido analizado. El espectro mecánico obtenido de la fase laminar muestra en todos los casos una región “plateau” en el intervalo de frecuencias estudiado así como mayores valores

  16. Synthesis and characterization of new homologous series of unsymmetrical liquid crystalline compounds based on chalcones and 3, 5-disubstituted isoxazoles

    Indian Academy of Sciences (India)

    SOWMYA P T; K M LOKANATHA RAI

    2017-01-01

    Two homologous series of unsymmetrical alkylated chalcones and 3,5-diaryl isoxazoles, consisting of 20 members, with various n-alkyl bromides (n=2−7, 10, 12, 14, 16) have been synthesized and studied for their liquid crystalline property. Simple strategy was employed to achieve the target materials. Flexibilityin the synthesized molecules is provided by attaching straight alkoxy chains, where one terminal group is fixed and other terminal group is varied. The synthesized compounds were characterized on the basis of Mass, IR and NMR spectroscopy. The stability and the range of the mesophases increased with the length of the chain on the isoxazoles. The melting point, transition temperatures and enantiotropic liquid crystal morphologies were determined by polarizing optical microscopy (POM) in conjunction with a hot stage and by differential scanning calorimetry (DSC).

  17. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  18. Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends

    Directory of Open Access Journals (Sweden)

    Lin Li

    2012-03-01

    Full Text Available Because of their extraordinary properties, such as high thermal stability, flame retardant, high chemical resistance and high mechanical strength, thermotropic liquid crystalline polymers (TLCPs have recently gained more attention while being useful for many applications which require chemical inertness and high strength. Due to the recent advance in nanotechnology, TLCPs are usually compounded with nanoparticles to form particulate composites to enhance their properties, such as barrier properties, electrical properties, mechanical properties and thermal properties. Carbon-based nanofillers such as carbon nanotube (CNT, graphene and graphene oxide are the most common fillers used for the TLCP matrices. In this review, we focus on recent advances in thermotropic main-chain liquid crystalline polymer nanocomposites incorporated with CNTs. However, the biggest challenges in the preparation of CNT/TLCP nanocomposites have been shown to be inherent in the dispersion of CNTs into the TLCP matrix, the alignment and control of CNTs in the TLCP matrix and the load-transfer between the TLCP matrix and CNTs. As a result, this paper reviews recent advances in CNT/TLCP nanocomposites through enhanced dispersion of CNTs in TLCPs as well as their improved interfacial adhesion with the TLCP matrices. Case studies on the important role of chemically modified CNTs in the TLCP/thermoplastic polymer blends are also included.

  19. Thermal properties and crystallite morphology of nylon 66 modified with a novel biphenyl aromatic liquid crystalline epoxy resin.

    Science.gov (United States)

    Cai, Zhiqi; Mei, Shuang; Lu, Yuan; He, Yuanqi; Pi, Pihui; Cheng, Jiang; Qian, Yu; Wen, Xiufang

    2013-10-15

    In order to improve the thermal properties of important engineering plastics, a novel kind of liquid crystalline epoxy resin (LCER), 3,3',5,5' -Tetramethylbiphenyl-4,4' -diyl bis(4-(oxiran-2-ylmethoxy)benzoate) (M1) was introduced to blend with nylon 66 (M2) at high temperature. The effects of M1 on chemical modification and crystallite morphology of M2 were investigated by rheometry, thermo gravimetric analysis (TGA), dynamic differential scanning calorimetry (DSC) and polarized optical microscopy (POM). TGA results showed that the initial decomposition temperature of M2 increased by about 8 °C by adding 7% wt M1, indicating the improvement of thermal stability. DSC results illustrated that the melting point of composites decreased by 12 °C compared to M2 as the content of M1 increased, showing the improvement of processing property. POM measurements confirmed that dimension of nylon-66 spherulites and crystallization region decreased because of the addition of liquid crystalline epoxy M1.

  20. Hexakis(4-iodophenyl)-peri-hexabenzocoronene- a versatile building block for highly ordered discotic liquid crystalline materials.

    Science.gov (United States)

    Wu, Jishan; Watson, Mark D; Zhang, Li; Wang, Zhaohui; Müllen, Klaus

    2004-01-14

    Hexakis (4-iodophenyl)-peri-hexabenzocoronene (5), a novel functionalizable mesogenic building block, was prepared by rational multistep synthesis. Although sparingly soluble in common solvents, it can be obtained in pure form and then functionalized via Hagihara-Sonogashira coupling to give a series of highly ordered columnar liquid crystalline molecules 14a-c. The total synthesis involves five 6-fold transformations, all in excellent to near quantitative isolated yields. Their thermotropic liquid crystalline behavior was studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). Compared to the normal alkyl-subsituted hexabenzocoronenes (HBCs), 14a-c exhibit more highly ordered columnar mesophases, including three-dimensionally ordered superstructures (helical columnar mesophase). These could arise from additional intracolumnar pi-pi interactions between, and space-filling requirements introduced by, the rigid-rod side groups. Atomic force microscopy (AFM) revealed self-assembled bundles of columnar aggregates in spin-coated films and isolated several-micron-long nanoribbons composed of a defined number of columns in drop cast films.

  1. Design and Characterization of a Novel p1025 Peptide-Loaded Liquid Crystalline System for the Treatment of Dental Caries.

    Science.gov (United States)

    Calixto, Giovana Maria Fioramonti; Garcia, Matheus Henrique; Cilli, Eduardo Maffud; Chiavacci, Leila Aparecida; Chorilli, Marlus

    2016-01-28

    Dental caries, mainly caused by the adhesion of Streptococcus mutans to pellicle-coated tooth surfaces, is an important public health problem worldwide. A synthetic peptide (p1025) corresponding to residues 1025-1044 of the adhesin can inhibit this binding. Peptides are particularly susceptible to the biological environment; therefore, a p1025 peptide-loaded liquid crystalline system (LCS) consisting of tea tree oil as the oil phase, polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol as the surfactant, and water or 0.5% polycarbophil polymer dispersions as the aqueous phase was employed as a drug delivery platform. This system exhibited anticaries and bioadhesive properties and provided a protective environment to p1025 at the site of action, thereby modulating its action, prolonging its contact with the teeth, and decreasing the frequency of administration. LCSs were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), and rheological, texture, and bioadhesive tests. PLM and SAXS revealed the presence of hexagonal liquid crystalline phases and microemulsions. Rheological analyses demonstrated that the addition of polymer dispersions favored characteristics such as shear thinning and thixotropy, hence improving buccal application. Bioadhesion tests showed that polymer dispersions contributed to the adhesion onto the teeth. Taken together, LCS could provide a novel pharmaceutical nanotechnology platform for dental caries treatment.

  2. Design and Characterization of a Novel p1025 Peptide-Loaded Liquid Crystalline System for the Treatment of Dental Caries

    Directory of Open Access Journals (Sweden)

    Giovana Maria Fioramonti Calixto

    2016-01-01

    Full Text Available Dental caries, mainly caused by the adhesion of Streptococcus mutans to pellicle-coated tooth surfaces, is an important public health problem worldwide. A synthetic peptide (p1025 corresponding to residues 1025–1044 of the adhesin can inhibit this binding. Peptides are particularly susceptible to the biological environment; therefore, a p1025 peptide-loaded liquid crystalline system (LCS consisting of tea tree oil as the oil phase, polyoxypropylene-(5-polyoxyethylene-(20-cetyl alcohol as the surfactant, and water or 0.5% polycarbophil polymer dispersions as the aqueous phase was employed as a drug delivery platform. This system exhibited anticaries and bioadhesive properties and provided a protective environment to p1025 at the site of action, thereby modulating its action, prolonging its contact with the teeth, and decreasing the frequency of administration. LCSs were characterized by polarized light microscopy (PLM, small-angle X-ray scattering (SAXS, and rheological, texture, and bioadhesive tests. PLM and SAXS revealed the presence of hexagonal liquid crystalline phases and microemulsions. Rheological analyses demonstrated that the addition of polymer dispersions favored characteristics such as shear thinning and thixotropy, hence improving buccal application. Bioadhesion tests showed that polymer dispersions contributed to the adhesion onto the teeth. Taken together, LCS could provide a novel pharmaceutical nanotechnology platform for dental caries treatment.

  3. SYNTHESIS OF SIDE-CHAIN LIQUID CRYSTALLINE POLYSILOXANE CONTAINING SCHIFF'S BASE MESOGENS WITH NO2-END GROUP AND ITS BEHAVIOR IN A DC ELECTRIC FIELD

    Institute of Scientific and Technical Information of China (English)

    XIE Ping; SUN Limin; ZHANG Rongben

    1993-01-01

    A side chain liquid crystalline copolysiloxane, which would show electro-optic effects as known from low mass liquid crystal, was synthesized by hydrosilylation reaction, and the two homologous monomers with different length spacers containing Schiff's base mesogen with -NO2 terminated group were grafted to a polysiloxane main chain. Residual monomer in crude product is effective in reinforcing the response to an electric field over that of pure polymeric liquid crystal.

  4. Gravitational Stability for a Vacuum Cosmic Space Crystalline Model

    CERN Document Server

    Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J

    2005-01-01

    Using Heisenberg's uncertainty principle it is shown that the gravitational stability condition for a crystalline vacuum cosmic space implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action which leads to our theory is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space is 10 to the 40 power times the energy of the crystalline structure of vacuum space inside the present Universe volume. PACS numbers: 04.20.-q, 03.65.-w, 03.50.De, 61.50.-f, 98.80.Ft

  5. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks.

    Science.gov (United States)

    Yoshida, H; Asakura, K; Fukuda, J; Ozaki, M

    2015-05-21

    Topological defects in liquid crystals not only affect the optical and rheological properties of the host, but can also act as scaffolds in which to trap nano or micro-sized colloidal objects. The creation of complex defect shapes, however, often involves confining the liquid crystals in curved geometries or adds complex-shaped colloidal objects, which are unsuitable for device applications. Using topologically patterned substrates, here we demonstrate the controlled generation of three-dimensional defect lines with non-trivial shapes and even chirality, in a flat slab of nematic liquid crystal. By using the defect lines as templates and the electric response of the liquid crystals, colloidal superstructures are constructed, which can be reversibly reconfigured at a voltage as low as 1.3 V. Three-dimensional engineering of the defect shapes in liquid crystals is potentially useful in the fabrication of self-healing composites and in stabilizing artificial frustrated phases.

  6. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  7. Ionothermal synthesis--ionic liquids as functional solvents in the preparation of crystalline materials.

    Science.gov (United States)

    Morris, Russell E

    2009-06-07

    Ionothermal synthesis is the use of ionic liquids simultaneously as both the solvent and potential template or structure directing agent in the formation of solids. It directly parallels hydrothermal synthesis where the solvent is water. In this feature article I discuss the general features of ionothermal synthesis and how the properties of the synthesis differ from those of other synthetic methodologies. In particular, I will discuss the role of the ionic liquid anion in determining the structure of the synthesised solid, the role of mineralisers such as water and fluoride, and the targeted use of unstable ionic liquids to produce new inorganic and inorganic-organic hybrid materials.

  8. Synthesis and Characterization of Liquid Crystalline Poly((N-acylethyleneimine)s.

    Science.gov (United States)

    1986-10-01

    8217%-,% , . . . % .% . . " ’% ’ # ./ / ." ’ z ’%’z . ’’ .’ ’ ’ 4. Ethyl-5-(4-phenylphenoxy)Valerate (BiPh-4-COO~t) 4- Phenylphenol (8g, 0.04 mol) and 1.656g (0.04...vacuum. The sodium salt of 4- phenylphenol was put Into 120 al of dried dimethylformamide and 8.5 .l (0.054 mol) of ethyl-5-bromovalerate and l.4g (10...that poly(BiPh-4-Oxz) is crystalline. This is not an unexpected result. The insertion of 4- phenylphenol as side group in polymers before, did give

  9. Effect of emulsifiers and their liquid crystalline structures in emulsions on dermal and transdermal delivery of hydroquinone, salicylic acid and octadecenedioic acid.

    Science.gov (United States)

    Otto, A; Wiechers, J W; Kelly, C L; Dederen, J C; Hadgraft, J; du Plessis, J

    2010-01-01

    This study investigated the effect of emulsifiers and their liquid crystalline structures on the dermal and transdermal delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC). Emulsions containing liquid crystalline phases were compared with an emulsion without liquid crystals. Skin permeation experiments were performed using Franz-type diffusion cells and human abdominal skin dermatomed to a thickness of 400 mum. The results indicate that emulsifiers arranging in liquid crystalline structures in the water phase of the emulsion enhanced the skin penetration of the active ingredients with the exception of SA. SA showed a different pattern of percutaneous absorption, and no difference in dermal and transdermal delivery was observed between the emulsions with and without liquid crystalline phases. The increase in skin penetration of HQ and DIOIC could be attributed to an increased partitioning of the actives into the skin. It was hypothesized that the interaction between the different emulsifiers and active ingredients in the formulations varied and, therefore, the solubilization capacities of the various emulsifiers and their association structures.

  10. Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid-crystalline nanocarriers.

    Science.gov (United States)

    Azmi, Intan Diana Mat; Wu, Linping; Wibroe, Peter Popp; Nilsson, Christa; Østergaard, Jesper; Stürup, Stefan; Gammelgaard, Bente; Urtti, Arto; Moghimi, Seyed Moein; Yaghmur, Anan

    2015-05-12

    The inverted-type liquid-crystalline dispersions comprising cubosomes and hexosomes hold much potential for drug solubilization and site-specific targeting on intravenous administration. Limited information, however, is available on the influence of plasma components on nanostructural and morphological features of cubosome and hexosome dispersions, which may modulate their stability in the blood and their overall biological performance. Through an integrated approach involving SAXS, cryo-TEM, and nanoparticle tracking analysis (NTA) we have studied the time-dependent effect of human plasma (and the plasma complement system) on the integrity of the internal nanostructure, morphology, and fluctuation in size distribution of phytantriol (PHYT)-based nonlamellar crystalline dispersions. The results indicate that in the presence of plasma the internal nanostructure undergoes a transition from the biphasic phase (a bicontinuous cubic phase with symmetry Pn3m coexisting with an inverted-type hexagonal (H2) phase) to a neat hexagonal (H2) phase, which decreases the median particle size. These observations were independent of a direct effect by serum albumin and dispersion-mediated complement activation. The implication of these observations in relation to soft nanocarrier design for intravenous drug delivery is discussed.

  11. Crystalline polymer decoration on multiwalled carbon nanotubes: MWCNT-induced P4VP periodic crystallization in CO2-expanded liquids

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available This work reports the functionalization of multi-walled carbon nanotubes (MWCNTs with crystalline poly(4- vinylpyridine (P4VP in CO2-expanded liquids (CXLs. The structure and morphology of MWCNT-induced polymer crystallization are examined, with the focus on molecular weight of P4VP (MW-P4VP, the pressure of CXLs and the concentration of P4VP. First, it is observed that the crystallization morphologies for the P4VP/MWCNTs composite with a low molecular weight P4VP (LMW-P4VP matrix could be finely controlled in CXLs, and it is surprising to find that the P4VP8700 wrapping patterns undergo a morphological evolution from dot crystals to dotted helical wrappings, and then to dense helical patterns by facile pressure tuning under lower polymer concentration. In other words, the CXLs method enables superior control of the P4VP crystallization patternings on MWCNTs, particularly efficient for LMW-P4VP at lower polymer concentration. Meanwhile, the CXL-assisted P4VP crystal growth mechanism on MWCNT is investigated, and the dominating growth mechanism is attributed to 'normal epitaxy' at lower P4VP concentration rather than 'soft epitaxy' at higher concentration. We believe that this work reports a new crystalline polymer wrapping approach in CXLs to noncovalent engineering of MWCNTs surfaces.

  12. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer-maghemite nanoparticle hybrid nanocomposites.

    Science.gov (United States)

    Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele

    2013-06-21

    We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.

  13. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators.

    Science.gov (United States)

    Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2014-09-22

    Aerogels of high porosity and with a large internal surface area exhibit outstanding performances as thermal, acoustic, or electrical insulators. However, most aerogels are mechanically brittle and optically opaque, and the structural and physical properties of aerogels strongly depend on their densities. The unfavorable characteristics of aerogels are intrinsic to their skeletal structures consisting of randomly interconnected spherical nanoparticles. A structurally new type of aerogel with a three-dimensionally ordered nanofiber skeleton of liquid-crystalline nanocellulose (LC-NCell) is now reported. This LC-NCell material is composed of mechanically strong, surface-carboxylated cellulose nanofibers dispersed in a nematic LC order. The LC-NCell aerogels are transparent and combine mechanical toughness and good insulation properties. These properties of the LC-NCell aerogels could also be readily controlled. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide

    Directory of Open Access Journals (Sweden)

    B. Qi

    2014-07-01

    Full Text Available Graphene oxide (GO sheets were chemically grafted with thermotropic liquid crystalline epoxy (TLCP. Then we fabricated composites using TLCP-g-GO as reinforcing filler. The mechanical properties and thermal properties of composites were systematically investigated. It is found that the thermal and mechanical properties of the composites are enhanced effectively by the addition of fillers. For instance, the composites containing 1.0 wt% of TLCP-g-GO present impact strength of 51.43 kJ/m2, the tensile strength of composites increase from 55.43 to 80.85 MPa, the flexural modulus of the composites increase by more than 48%. Furthermore, the incorporation of fillers is effective to improve the glass transition temperature and thermal stability of the composites. Therefore, the presence of the TLCP-g-GO in the epoxy matrix could make epoxy not only stronger but also tougher.

  15. Thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene and aliphatic dicarboxylic acid chlorides

    Indian Academy of Sciences (India)

    Khudbudin Mulani; Mohasin Momin; Nitin Ganjave; Nayaku Chavan

    2015-09-01

    A series of thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene (BHBOMB) and aliphatic dicarboxylic acid chlorides were investigated. All these polyesters were synthesized by interfacial polycondensation method and characterized by differential scanning calorimetry and wide-angle X-ray diffractometer. These polyesters consist of BHBOMB as a mesogenic diol and aliphatic diacid chlorides were used as flexible spacers. The length of oligomethylene units in polymer was varied from the trimethylene to the dodecamethylene groups. The transition temperatures and thermodynamic properties were studied for all these polymers. All these polyesters were soluble in chlorinated solvents such as chloroform, dichloromethane, dichloroethane, etc. More importantly, all these polyesters exhibited very large mesophase stability.

  16. X-ray Scattering Measurements of Molecular Orientation in Channel Flows of a Thermotropic Liquid Crystalline Polymer

    Science.gov (United States)

    Cinader, D., Jr.; Burghardt, W.

    1998-03-01

    We have constructed an extrusion die which allows collection of x-ray scattering patterns(Experiments performed at DND-CAT at the APS) as a function of position in channel flows. A single-screw extruder is used to pump the melt, while interchangeable spacers allow the channel flow geometry to be altered. Available geometries include contractions and expansions of sharp and gradual character, as well as a simple slit flow. We present studies of a commercial liquid crystalline polymer (Xydar resin supplied by Amoco), emphasizing results from expansion flow experiments. A sharp decrease in orientation is observed at the expansion, followed by a recovery in the straight downstream channel. Scattering patterns reveal orientation transverse to the flow direction induced by unfavorable extensional gradients. This mixed orientation state manifests itself as a Rfour spotS scattering pattern consisting of two sets of nematic peaks with axes aligned perpendicular to one another.(Work sponsored by an AFOSR MURI)

  17. Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties

    Directory of Open Access Journals (Sweden)

    Alexej Bubnov

    2013-02-01

    Full Text Available Several new calamitic liquid-crystalline (LC materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of carbon nanotubes or various nanoparticles. Thermotropic mesomorphic properties have been studied by using polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Four of these nonchiral and chiral materials exhibit nematic and chiral nematic phases, respectively. For some molecular structures, smectic phases have also been detected. A contact sample of one of the prepared compounds with diethylene glycol clearly shows the lyotropic behaviour; namely a lamellar phase was observed. The relationship between the molecular structure and mesomorphic properties of these new LCs with hydrophilic chains is discussed.

  18. Evaluation of preservative effectiveness of liquid crystalline systems with retynil palmitate by the challenge test and D-value.

    Science.gov (United States)

    Chorilli, Marlus; Leonardi, Gislaine Ricci; Salgado, Hérida Regina Nunes; Scarpa, Maria Virgínia

    2011-01-01

    The objective of this work was to evaluate the preservative effectiveness of liquid crystalline systems containing retynil palmitate (RP) by the challenge test (CT) and D-value. A system was developed containing water, silicon glycol copolymer, and polyether functional siloxane with 1% RP added. The analyses were carried out by methods in the U.S. Pharmacopeia (USP 31, 2008) using the microorganisms Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. The CT showed that after 7 days, all microorganisms were eliminated except A. niger, which maintained viability for at least 28 days after inoculation. Moreover, the microorganisms E. coli, P. aeruginosa, S. aureus, C. albicans, and A. niger presented different growth behaviors, evidenced by differences among the D-values calculated. It was concluded that the CT and D-value were efficient methods for evaluation of the preservative property of these formulations.

  19. PREPARATION OF LIQUID CRYSTALLINE COPOLYESTERS WITH SPACERS BASED ON BISPHENOL- A,BISPHENOL- S OR POLYSULFONE BY DIRECT POLYCONDENSATION

    Institute of Scientific and Technical Information of China (English)

    WANG Pingping; ZHANG Hongzhi

    1989-01-01

    Four series of copolyesters were synthesized by direct polycondensation reaction between aromatic dicarboxylic acids and bisphenols by using tosyl chloride and N, N-dimethylformamide ( DMF ) in pyridine under mild conditions. The electron-rich hydroxyl groups of bisphenols favoured the polycondensation reaction and the order of relative reactivities of bisphenols is as follow:bisphenol-A > hydroquinone ~ bisphenol-S > chlorohydroquinone .Themesomorphic properties of copolyesters were examined by birefringence under polarizing microscope, melt transparency, DSC and X-ray diffraction . The minimum molar fraction of mesogenic units needed for the appearance of liquid crystallinity is not higher than 0.1 despite of the different varieties and lengths of the spacers studied.

  20. Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties.

    Science.gov (United States)

    Bubnov, Alexej; Kašpar, Miroslav; Hamplová, Věra; Dawin, Ute; Giesselmann, Frank

    2013-01-01

    Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of carbon nanotubes or various nanoparticles. Thermotropic mesomorphic properties have been studied by using polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Four of these nonchiral and chiral materials exhibit nematic and chiral nematic phases, respectively. For some molecular structures, smectic phases have also been detected. A contact sample of one of the prepared compounds with diethylene glycol clearly shows the lyotropic behaviour; namely a lamellar phase was observed. The relationship between the molecular structure and mesomorphic properties of these new LCs with hydrophilic chains is discussed.

  1. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity

    Directory of Open Access Journals (Sweden)

    Baskaran R

    2014-06-01

    Full Text Available Rengarajan Baskaran,1 Thiagarajan Madheswaran,2 Pasupathi Sundaramoorthy,1 Hwan Mook Kim,1 Bong Kyu Yoo1 1College of Pharmacy, Gachon University, Incheon, South Korea; 2College of Pharmacy Yeungnam University, Gyeongsan, South Korea Abstract: Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO-based liquid crystalline nanoparticles (LCNs and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C, and the in vitro release of curcumin was sustained (10% or less over 15 days. Fluorescence-activated cell sorting (FACS analysis using a human colon cancer cell line (HCT116 exhibited 99.1% fluorescence gating for 5 µM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO, indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. Keywords: liquid

  2. Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nanostructured particle dispersions.

    Science.gov (United States)

    Tilley, Adam J; Drummond, Calum J; Boyd, Ben J

    2013-02-15

    Liquid crystalline nanostructured particles, such as cubosomes and hexosomes, are most often colloidally stabilised using the tri-block co-polymer Pluronic® F127. Although the effect of F127 on the internal particle nanostructure has been well studied, the associative aspects of F127 with cubosomes and hexosomes are poorly understood. In this study the quantitative association of F127 with phytantriol-based cubosomes and hexosomes was investigated. The amount of free F127 in the dispersions was determined using pressure ultra-filtration. The percentage of F127 associated with the particles plateaued with increasing F127 concentration above the critical aggregation concentration. Hence the free concentration of F127 in the dispersion medium was proposed as a key factor governing association below the CMC, and partitioning of F127 between micelles and particles occurred above the CMC. The association of F127 with the particles was irreversible on dilution. The F127 associated with both the external and internal surfaces of the phytantriol cubosomes. The effects of lipid and F127 concentration, lipid type, dilution of the dispersions and internal nanostructure were also elucidated. A greater amount of F127 was associated with cubosomes comprised of glyceryl monooleate (GMO) than those prepared using phytantriol. Hexosomes prepared using a mixture of phytantriol and vitamin E acetate (vitEA) had a greater amount of F127 associated with them than phytantriol cubosomes. Hexosomes prepared using selachyl alcohol had less F127 associated with them than phytantriol:vitEA-based hexosomes and GMO-based cubosomes. This indicated that both the lipid from which the particles are composed and the particle internal nanostructure have an influence on the association of F127 with lyotropic liquid crystalline nanostructured particles. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Discotic liquid crystalline tris(hexahexyloxytriphenylene)triazines with separate columns of triphenylene and triazine cores

    NARCIS (Netherlands)

    Umesh, C.P.; Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2014-01-01

    A series of novel discotic liquid crystal compounds containing three pendent triphenylenes connected to a triazine core via spacers of different length that were linked via a triazole group as obtained from an azide–alkyne click reaction was investigated. All compounds of the series exhibit

  4. Unusual Photo-Induced Behaviour in a Side Chain Liquid Crystalline Azo-Polyester

    DEFF Research Database (Denmark)

    López, D; Rodríguez, F.J.; Sánchez, C.

    2006-01-01

    An unusual behaviour has been observed in the photo-indueed response of an azobenzene side chain liquid erystalline polyester (P6d4). Room temperature irradiation with linearly polarised 488 nm light does not induce any birefringence (An) in films of this polymer that have been quenehed from the ...

  5. Liquid Crystalline Thiadiazole Derivatives: Thiadiazole Derivatives Containing Pyridine Ring as Terminal Group

    Institute of Scientific and Technical Information of China (English)

    XU,Yah(徐艳); XU,Yan; ZHU,Zhi-Guo(朱志国)XU; ZHU,Zhi-Guo; XU,Zheng(徐正); XU,Zheng

    2001-01-01

    The synthesis and mesomorphic behavior of a new series of liquid crystals coutaining 1,3,4-thiadiazole and pyridine rings with-CH = N-central group are reported. All compounds ex hibit enantiotropic snectic A mesophase, but the Schiff' s base analogues hnve no mesomorphic behavior. The innuence of the pyridine ing and thiadiazole ring is discussed.

  6. Thermal and structural studies of imidazolium-based ionic liquids with and without liquid-crystalline phases: the origin of nanostructure.

    Science.gov (United States)

    Nemoto, Fumiya; Kofu, Maiko; Yamamuro, Osamu

    2015-04-16

    To clarify the origin of the nanostructure of ionic liquids (ILs), we have investigated two series of ILs 1-alkyl-3-methylimidazolium hexafluorophosphate (CnmimPF6, n = 4-16, n is an alkyl-carbon number) and 1-alkyl-3-methylimidazolium chloride (CnmimCl, n = 4-14) using differential scanning calorimetry and X-ray diffraction techniques. The PF6 samples with n > 13 and the Cl samples with n > 10 exhibited the liquid-crystalline (LC) to liquid (L) phase transitions, as reported before. We found that both samples with smaller n also exhibited the LC to L transitions under supercooled states as far as the ionic motions were not frozen-in at the glass transition temperatures Tg. The Tg of the LC phase was close to that of the L phase, indicating that the characteristic length of the glass transition is shorter than that of the nanostructure. A low-Q peak due to the nanostructure in the L phase and a diffraction peak due to the layer structure in the LC phase appeared at almost the same Q positions in both samples. On the basis of the above results and some thermodynamic analysis, we argue that the nanostructures of ILs are essentially the same as the layer structures in the LC phases.

  7. Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model

    Science.gov (United States)

    Duan, Z.; Thomas, N. L.

    2014-02-01

    The water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial poly(lactic acid) (PLA) were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0% to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38 °C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0% to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the "Tortuous Path Model." The model was also successfully used to explain published data on water permeability of polyethylene terephthalate.

  8. Functional properties of fluorescent poly(amidoamine) dendrimers in nematic liquid crystalline media

    Science.gov (United States)

    Grabchev, Ivo; Sali, Seher; Chovelon, Jean-Marc

    2006-05-01

    The effectiveness of poly(amidoamine) dendrimers from zero generation as a fluorescent guest for liquid crystal displays of the 'guest-host' type is discussed on the basis of their absorption and fluorescent properties. It has been shown that the dendrimers at concentration of 0.3 wt% do not destabilize the orientation of the liquid crystal matrix. The orientation order parameters SA and SF depends on the nature of the substituent at C-4 position of the 1,8-naphthalimide. The effect that poly(amidoamine) dendrimers have upon the phase transition temperature and the electro-optical properties of the LC/dendrimer mixtures has been also presented. All investigations reported have been carried out in surface stabilized display cells.

  9. Low-temperature liquid precursors of crystalline metal oxides assisted by heterogeneous photocatalysis.

    Science.gov (United States)

    Bretos, Iñigo; Jiménez, Ricardo; Pérez-Mezcua, Dulce; Salazar, Norberto; Ricote, Jesús; Calzada, M Lourdes

    2015-04-24

    The photocatalytically assisted decomposition of liquid precursors of metal oxides incorporating TiO2 particles enables the preparation of functional layers from the ferroelectric Pb(Zr,Ti)O3 and multiferroic BiFeO3 perovskite systems at temperatures not exceeding 350 ºC. This enables direct deposition on flexible plastic, where the multifunctionality provided by these complex-oxide materials guarantees their potential use in next-generation flexible electronics.

  10. Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures.

    Science.gov (United States)

    Vergara, Jorge; Barberá, Joaquín; Serrano, José Luis; Ros, M Blanca; Sebastián, Nerea; de la Fuente, Rosario; López, David O; Fernández, Gustavo; Sánchez, Luis; Martín, Nazario

    2011-12-23

    What a core-ker! By the appropriate combination of promesogenic bent-core structures and the C(60)  unit, lamellar polar liquid-crystal phases were induced. The supramolecular organization of the functional fullerene-based assemblies, the temperature range of the soft phase, the stabilization of the mesophase-like order at room temperature, and the molecular switching under an electric field can be tuned, depending on the molecular structure.

  11. Macroscopic control of helix orientation in films dried from cholesteric liquid crystalline cellulose nanocrystal suspensions


    OpenAIRE

    2014-01-01

    The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film format...

  12. The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties

    Directory of Open Access Journals (Sweden)

    Jianfeng Ban

    2016-09-01

    Full Text Available To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase, and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors.

  13. Development of liquid-crystalline epoxy resin containing ester mesogen%酯基液晶环氧树脂研究进展

    Institute of Scientific and Technical Information of China (English)

    徐淑权; 李玲; 王晓铭

    2013-01-01

    介绍了酯基液晶环氧树脂的合成方法及其优缺点,介晶基元的长度、取代基以及柔性间隔链对酯基液晶环氧树脂液晶性能的影响,固化剂的选择、固化温度和酯基液晶环氧树脂的化学结构对酯基液晶环氧树脂固化特性的影响,并展望了酯基液晶环氧树脂的发展前景.%The synthesis methods of liquid-crystalline epoxy resin containing ester mesogen and their advantages and disadvantages are introduced in this paper. The influences of the length of the mesogenic unit, substituents and flexible spacer on the performance of the liquid-crystalline epoxy resin containing ester mesogen are analyzed. The effects of curing agent choice, curing temperature and chemical structure of the liquid-crystalline epoxy resin containing ester mesogen on the curing characteristics studied as well. The prospects of liquid-crystalline epoxy resin containing ester mesogen are proposed.

  14. On the "Tertiary Structure" of Poly-Carbenes; Self-Assembly of sp(3)-Carbon-Based Polymers into Liquid-Crystalline Aggregates

    NARCIS (Netherlands)

    Franssen, Nicole M. G.; Ensing, Bernd; Hegde, Maruti; Dingemans, Theo J.; Norder, Ben; Picken, Stephen J.; van Ekenstein, Gert O. R. Alberda; van Eck, Ernst R. H.; Elemans, Johannes A. A. W.; Vis, Mark; Reek, Joost N. H.; de Bruin, Bas

    2013-01-01

    The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities al

  15. On the “Tertiary Structure” of Poly-Carbenes; Self-Assembly of sp3-Carbon-Based Polymers into Liquid-Crystalline Aggregates

    NARCIS (Netherlands)

    Franssen, N.G.M.; Ensing, B.; Hegde, M.; Dingemans, T.J.; Norder, B.; Picken, S.J.; Alberda van Ekenstein, G.O.R.; van Eck, E.R.H.; Elemans, J.A.A.W; Vis, M.; Reek, J.N.H.; de Bruin, B.

    2013-01-01

    The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities al

  16. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  17. Molecular structure of the discotic liquid crystalline phase of hexa-peri-hexabenzocoronene/oligothiophene hybrid and their charge transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Saientan; Maingi, Vishal; Maiti, Prabal K., E-mail: maiti@physics.iisc.ernet.in [Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012 (India); Yelk, Joe; Glaser, Matthew A.; Clark, Noel A. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Walba, David M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-10-14

    Using atomistic molecular dynamics simulation, we study the discotic columnar liquid crystalline (LC) phases formed by a new organic compound having hexa-peri-Hexabenzocoronene (HBC) core with six pendant oligothiophene units recently synthesized by Nan Hu et al. [Adv. Mater. 26, 2066 (2014)]. This HBC core based LC phase was shown to have electric field responsive behavior and has important applications in organic electronics. Our simulation results confirm the hexagonal arrangement of columnar LC phase with a lattice spacing consistent with that obtained from small angle X-ray diffraction data. We have also calculated various positional and orientational correlation functions to characterize the ordering of the molecules in the columnar arrangement. The molecules in a column are arranged with an average twist of 25° having an average inter-molecular separation of ∼5 Å. Interestingly, we find an overall tilt angle of 43° between the columnar axis and HBC core. We also simulate the charge transport through this columnar phase and report the numerical value of charge carrier mobility for this liquid crystal phase. The charge carrier mobility is strongly influenced by the twist angle and average spacing of the molecules in the column.

  18. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics.

    Science.gov (United States)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won; Seo, Sungbaek; Koo, Bonwon; Kim, Jinsang

    2013-07-01

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur-fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and the flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.

  19. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    Science.gov (United States)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  20. GPU-accelerated molecular dynamics simulation for study of liquid crystalline flows

    Science.gov (United States)

    Sunarso, Alfeus; Tsuji, Tomohiro; Chono, Shigeomi

    2010-08-01

    We have developed a GPU-based molecular dynamics simulation for the study of flows of fluids with anisotropic molecules such as liquid crystals. An application of the simulation to the study of macroscopic flow (backflow) generation by molecular reorientation in a nematic liquid crystal under the application of an electric field is presented. The computations of intermolecular force and torque are parallelized on the GPU using the cell-list method, and an efficient algorithm to update the cell lists was proposed. Some important issues in the implementation of computations that involve a large number of arithmetic operations and data on the GPU that has limited high-speed memory resources are addressed extensively. Despite the relatively low GPU occupancy in the calculation of intermolecular force and torque, the computation on a recent GPU is about 50 times faster than that on a single core of a recent CPU, thus simulations involving a large number of molecules using a personal computer are possible. The GPU-based simulation should allow an extensive investigation of the molecular-level mechanisms underlying various macroscopic flow phenomena in fluids with anisotropic molecules.

  1. Electroviscoelasticity of liquid/liquid interfaces: fractional-order model.

    Science.gov (United States)

    Spasic, Aleksandar M; Lazarevic, Mihailo P

    2005-02-01

    A number of theories that describe the behavior of liquid-liquid interfaces have been developed and applied to various dispersed systems, e.g., Stokes, Reiner-Rivelin, Ericksen, Einstein, Smoluchowski, and Kinch. A new theory of electroviscoelasticity describes the behavior of electrified liquid-liquid interfaces in fine dispersed systems and is based on a new constitutive model of liquids. According to this model liquid-liquid droplet or droplet-film structure (collective of particles) is considered as a macroscopic system with internal structure determined by the way the molecules (ions) are tuned (structured) into the primary components of a cluster configuration. How the tuning/structuring occurs depends on the physical fields involved, both potential (elastic forces) and nonpotential (resistance forces). All these microelements of the primary structure can be considered as electromechanical oscillators assembled into groups, so that excitation by an external physical field may cause oscillations at the resonant/characteristic frequency of the system itself (coupling at the characteristic frequency). Up to now, three possible mathematical formalisms have been discussed related to the theory of electroviscoelasticity. The first is the tension tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless of their origin (mechanical and/or electrical). The second is the Van der Pol derivative model, presented by linear and nonlinear differential equations. Finally, the third model presents an effort to generalize the previous Van der Pol equation: the ordinary time derivative and integral are now replaced with the corresponding fractional-order time derivative and integral of order p<1.

  2. Viscoelastic Model of Cross-Linked Polyethylene Including Effects of Temperature and Crystallinity

    Science.gov (United States)

    Olasz, L.; Gudmundson, P.

    2005-12-01

    Characterization of the mechanical behavior of cross-linked polyethylene (XLPE) commonly used in high voltage cable insulation was performed by an extensive set of isothermal uniaxial tensile relaxation tests. Tensile relaxation experiments were complemented by pressure-volume-temperature experiments as well as density and crystallinity measurements. Based on the experimental results, a viscoelastic power law model with four parameters was formulated, incorporating temperature and crystallinity dependence. It was found that a master curve can be developed by both horizontal and vertical shifting of the relaxation curves. The model was evaluated by making comparisons of the predicted stress responses with the measured responses in relaxation tests with transient temperature histories.

  3. Impact of BaTiO(3) nanoparticles on pretransitional effects in liquid crystalline dodecylcyanobiphenyl.

    Science.gov (United States)

    Rzoska, S J; Starzonek, S; Drozd-Rzoska, A; Czupryński, K; Chmiel, K; Gaura, G; Michulec, A; Szczypek, B; Walas, W

    2016-02-01

    The pretransitional behavior of dodecylcyanobiphenyl (12CB) (isotropic-smectic-A-solid mesomorphism) with d=50nmBaTiO(3) nanoparticles (NPs) linked to the cubic phase was monitored via temperature studies of dielectric constant. Tests were carried out in the isotropic, liquid crystal mesomorphic, and solid phases. For each phase transition the same value of the critical exponent α∼0.5 was obtained, including nanocolloids. All phase transitions show the weakly discontinuous nature. The temperature metric of the discontinuity ΔT notably decreases when adding nanoparticles. The addition of nanoparticles first decreases the dielectric constant by approximately 50% in comparison with pure 12CB, but already for a concentration ∼x=0.4% NP an increase over 50% takes place. It is notable that for the latter concentration unique hallmarks of the pretransitional effect emerge also for the solid-mesophase transition. All these indicate the important impact of nanoparticles on multimolecular mesoscale fluctuations.

  4. Continuous rotation of a cholesteric liquid crystalline droplet by a circularly polarized optical tweezers

    Science.gov (United States)

    Tamura, Yuta; Kimura, Yasuyuki

    2017-04-01

    We studied the opto-mechanical response of droplets composed of cholesteric liquid crystal (ChLC) to a circularly polarized optical tweezers. Although the alignment of LC molecular within a droplet depends on the relative ratio of the droplet diameter d to the helical pitch p, the optically induced rotation was found to be asymmetric to the direction of circularly polarized light irrespective to the inner molecular alignment. We studied the rotation of the droplets with various sizes, helical pitch (strength of chirality) and different chirality. In the case of d/p 1, the direction of the rotation was simply determined by chirality of ChLC and the rotation was also observed for linearly polarized light, which has already been reported by Yang et al.

  5. Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording)

    Science.gov (United States)

    Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen

    2015-10-01

    Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.

  6. Multiscale Modeling of Non-crystalline Ceramics (Glass) (FY11)

    Science.gov (United States)

    2012-01-01

    method to model (i.e., via density functional theory, MD, Monte Carlo methods, or master equation techniques) this archetypal material for prediction...ring statistics. We used two different methods to generate the random connected networks (1) a Monte -Carlo bond switching model (72 and 114 atom models...NO. OF COPIES ORGANIZATION 1 (PDF ONLY) DEFENSE TECHNICAL INFORMATION CTR DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218 1

  7. Mixing Effect of Polyoxyethylene-Type Nonionic Surfactants on the Liquid Crystalline Structures.

    Science.gov (United States)

    Kunieda; Umizu; Yamaguchi

    1999-10-01

    An effective cross-sectional area per surfactant molecule at hydrophobic interfaces of aggregates, a(S), in hexagonal (H(1)) and lamellar (L(alpha)) liquid crystals was calculated in homogeneous and mixed polyoxyethylene dodecyl ether systems as a function of polyoxyethylene (EO) chain length by means of small-angle X-ray scattering. The a(S) increases with increasing the EO chain length. The a(S) in the mixed surfactant system is considerably smaller than that in the single surfactant system, even if the average EO chain length is the same. The reduction of a(S) is larger than that predicted by ideal mixing of the surfactants. Moreover, if the EO chain lengths of the surfactants are more separated, the a(S) is smaller. The shapes of surfactant self-organizing structures may be governed by the balance of the attractive and the repulsive forces acting at the hydrophobic interfaces of the aggregates. According to this consideration, the mixing effect of surfactants with the different EO chain lengths on the a(S) in the L(alpha) phase was discussed. It is considered that the surfactant molecules are tightly packed in the aggregates since the reduction in repulsion force takes place in the excess EO chain part of the hydrophilic surfactant longer than the short EO chain of the lipophilic one. The lower surface tensions and the better stability of macroemulsions and the large solubilizing capacity of microemulsions result from the mixing effect. Copyright 1999 Academic Press.

  8. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhargavi, R.; Nair, Geetha G., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com; Krishna Prasad, S., E-mail: geeraj88@gmail.com, E-mail: skpras@gmail.com [Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013 (India); Majumdar, R.; Bag, Braja G. [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore (W) 721 102 (India)

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  9. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  10. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-09-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.

  11. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-09-08

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.

  12. Multiscale Modeling of Non-crystalline Ceramics (Glass)

    Science.gov (United States)

    2013-03-01

    theory, MD, Monte Carlo methods, or master equation techniques) this archetypal material to predict of elastic properties, diffusivity, surface...connected networks (1) a Monte -Carlo bond switching model (72- and 114-atom models) and (2) MD simulated annealing of melted silica. The ring statistics...INFORMATION CTR DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FORT BELVOIR VA 22060-6218 1 DIRECTOR US ARMY RESEARCH LAB IMAL HRA 2800 POWDER MILL RD ADELPHI

  13. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    OpenAIRE

    Fu-Zhi Dai; Yanchun Zhou

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, wh...

  14. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration.

    Science.gov (United States)

    Nguyen, Tri-Hung; Hanley, Tracey; Porter, Christopher J H; Boyd, Ben J

    2011-07-30

    This study is the first to demonstrate the ability of nanostructured liquid crystal particles to sustain the absorption of a poorly water soluble drug after oral administration. Cubic (V(2)) liquid crystalline nanostructured particles (cubosomes) formed from phytantriol (PHY) were shown to sustain the absorption of cinnarizine (CZ) beyond 48h after oral administration to rats. Plasma concentrations were sustained within the range of 21.5±1.5ng/mL from 12 to 48h. In stark contrast, cubosomes prepared using glyceryl monooleate (GMO) did not sustain the absorption of CZ and drug concentrations fell below quantifiable levels after 24h. Sustained absorption of CZ from PHY cubosomes lead to a significant enhancement (pnanostructured particles in simulated gastric and intestinal fluids using small angle x-ray scattering (SAXS) revealed that the V(2)Pn3m nanostructure of PHY cubosomes was maintained for extended periods of time, in contrast to GMO cubosomes where the V(2)Im3m nanostructure was lost within 18h after exposure, suggesting that degradation of the LC nanostructure may limit sustained drug release. In addition, PHY cubosomes were shown to be extensively retained in the stomach (>24h) leading to the conclusion that in the case of non-digestible PHY cubosomes, the stomach may act as a non-sink reservoir that facilitates the slow release of poorly water soluble drugs, highlighting the potential use of non-digestible LC nanostructured particles as novel sustained oral drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Calculation of the Standard Molal Thermodynamic Properties of Crystalline, Liquid, and Gas Organic Molecules at High Temperatures and Pressures

    Science.gov (United States)

    Helgeson, Harold C.; Owens, Christine E.; Knox, Annette M.; Richard, Laurent

    1998-03-01

    Calculation of the thermodynamic properties of organic solids, liquids, and gases at high temperatures and pressures is a requisite for characterizing hydrothermal metastable equilibrium states involving these species and quantifying the chemical affinities of irreversible reactions of organic molecules in natural gas, crude oil, kerogen, and coal with minerals and organic, inorganic, and biomolecular aqueous species in interstitial waters in sedimentary basins. To facilitate calculations of this kind, coefficients for the Parameters From Group Contributions (PFGC) equation of state have been compiled for a variety of groups in organic liquids and gases. In addition, molecular weights, critical temperatures and pressures, densities at 25°C and 1 bar, transition, melting, and boiling temperatures ( Tt,Pr, Tm,Pr, and Tv,Pr, respectively) and standard molal enthalpies of transition (Δ H° t,Pr), melting (Δ H° m,Pr), and vaporization (Δ H° v,Pr) of organic species at 1 bar ( Pr) have been tabulated, together with an internally consistent and comprehensive set of standard molal Gibbs free energies and enthalpies of formation from the elements in their stable state at 298.15 K ( Tr) and Pr (Δ G° f and Δ H° f, respectively). The critical compilation also includes standard molal entropies ( S°) and volumes ( V°) at Tr and Pr, and standard molal heat capacity power function coefficients to compute the standard molal thermodynamic properties of organic solids, liquids, and gases as a function of temperature at 1 bar. These properties and coefficients have been tabulated for more than 500 crystalline solids, liquids, and gases, and those for many more can be computed from the equations of state group additivity algorithms. The crystalline species correspond to normal alkanes (C nH 2( n+1) ) with carbon numbers ( n, which is equal to the number of moles of carbon atoms in one mole of the species) ranging from 5 to 100, and 23 amino acids including glycine (C 2H 5NO

  16. Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm

    Directory of Open Access Journals (Sweden)

    Jéssica Bernegossi

    2015-12-01

    Full Text Available Decapeptide KSL-W shows antibacterial activities and can be used in the oral cavity, however, it is easily degraded in aqueous solution and eliminated. Therefore, we aimed to develop liquid crystalline systems (F1 and F2 for KSL-W buccal administration to treat multispecies oral biofilms. The systems were prepared with oleic acid, polyoxypropylene (5 polyoxyethylene (20 cetyl alcohol (PPG-5-CETETH-20, and a 1% poloxamer 407 dispersion as the oil phase (OP, surfactant (S, and aqueous phase (AP, respectively. We characterized them using polarized light microscopy (PLM, small-angle X-ray scattering (SAXS, rheology, and in vitro bioadhesion, and performed in vitro biological analysis. PLM showed isotropy (F1 or anisotropy with lamellar mesophases (F2, confirmed by peak ratio quantification using SAXS. Rheological tests demonstrated that F1 exhibited Newtonian behavior but not F2, which showed a structured AP concentration-dependent system. Bioadhesion studies revealed an AP concentration-dependent increase in the system’s bioadhesiveness (F2 = 15.50 ± 1.00 mN·s to bovine teeth blocks. Antimicrobial testing revealed 100% inhibition of multispecies oral biofilm growth after KSL-W administration, which was incorporated in the F2 aqueous phase at a concentration of 1 mg/mL. Our results suggest that this system could serve as a potential vehicle for buccal administration of antibiofilm peptides.

  17. Synthesis of liquid crystalline 4H-benzo[1,2,4]thiadiazines and generation of persistent radicals.

    Science.gov (United States)

    Zienkiewicz, Józef; Fryszkowska, Anna; Zienkiewicz, Katarzyna; Guo, Fengli; Kaszynski, Piotr; Januszko, Adam; Jones, David

    2007-04-27

    Four substituted 4H-benzo[1,2,4]thiadiazines 2 were prepared by condensation of the appropriate anilines and benzonitriles followed by oxidative cyclization. The preparation of three fluorinated derivatives 2b-2d proceeded smoothly, while the synthesis of 2a was problematic, presumably due to the relatively high electron density of the benzene ring. The four-ring derivatives 2c and 2d exhibited liquid crystalline properties (2c: Cr 95 SmA 158 I and 2d: Cr 142 SmA 212 I). 4H-Benzo[1,2,4]thiadiazines 2 were oxidized with AgO to generate the corresponding persistent radicals 1 (g=2.0057). The stability of the radicals followed the order 1b approximately 1d>1c>1a, and the two fluorinated radicals 1b and 1d were isolated as crude solids. The lower stability of 1c is presumably due to the presence of the reactive benzylic CH position, and 1a lacks the stabilizing effect of the three fluorine atoms. ESR spectra for 1 were simulated using DFT-derived hfcc as the starting point.

  18. Liquid crystalline graphene oxide/PEDOT:PSS self-assembled 3D architecture for binder-free supercapacitor electrodes

    Directory of Open Access Journals (Sweden)

    Monirul eIslam

    2014-08-01

    Full Text Available Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convienient method. Liquid crystalline graphene oxide (LC GO was used as precursor to interact with poly(3,4-ethylene-dioxythiophene:poly(styrenesulfonate (PEDOT:PSS in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. This layer-by-layer self-assembled 3D architecture of best performing composite (rGO-PEDOT:PSS 25 showed excellent electrochemical performance of 434 F g-1 through chemical treatment. To highlight these advances, we further explored the practicality of the as-prepared electrode by varying the composite material content. An asymmetric supercapacitor device using aqueous electrolyte was also studied of this same composite. The resulting performance from this set up included a specific capacitance of 132 F g-1. Above all, we observed an increase in specific capacitance (19% with increase in cycle life emphasizing the excellent stability of this device.

  19. Magnetic field detector consisting of magnetic and semiconducting nanoparticles co-assembled in a liquid crystalline matrix

    Science.gov (United States)

    Amaral, Jose; Rodarte, Andrea; Wan, Jacky; Ferri, Christopher; Quint, Makiko; Pandolfi, Ron; Scheibner, Michael; Hirst, Linda; Ghosh, Sayantani

    2015-03-01

    An exciting area of research is using nano-constituents to create artificial materials that are multifunctional and allow for modification post-fabrication and in situ. We are investigating the ensemble behavior of iron-oxide magnetic nanoparticles (MNPs) and CdSe/ZnS quantum dots (QDs) when dispersed in an electro-optically active liquid crystalline (LC) matrix. The directed assembly of NPs in the matrix is driven by the temperature-induced transition of the LC from the isotropic to the nematic phase as the NPs are mostly expelled into the isotropic regions, finally ending up clustered around LC defect points when the transition is complete. Our results show a two-fold intensity increase of QD photoluminescence intensity with low magnetic fields (less than 100 mT). We speculate this increase is due to MNP rearrangement which produces a compaction of the clusters, resulting in the detection of increased QD emission. The individual components work together to act as a magnetic field detector and since they are direct assembled in a LC medium, they could potentially be used in a wide range of fluid-based applications. This work was funded by NSF grants DMR-1056860 and ECC-1227034. This work was funded by NSF Grants DMR-1056860 and ECC-1227034.

  20. Tailoring the internal structure of liquid crystalline nanoparticles responsive to fungal lipases: A potential platform for sustained drug release.

    Science.gov (United States)

    Poletto, F S; Lima, F S; Lundberg, D; Nylander, T; Loh, W

    2016-11-01

    Lipases are key components in the mechanisms underlying the persistence and virulence of infections by fungi, and thus also promising triggers for bioresponsive lipid-based liquid crystalline nanoparticles. We here propose a platform in which only a minor component of the formulation is susceptible to cleavage by lipase and where hydrolysis triggers a controlled phase transition within the nanoparticles that can potentially allow for an extended drug release. The responsive formulations were composed of phytantriol, which was included as a non-cleavable major component and polysorbate 80, which serves both as nanoparticle stabilizer and potential lipase target. To monitor the structural changes resulting from lipase activity with sufficient time resolution, we used synchrotron small angle x-ray scattering. Comparing the effect of the two different lipases used in this work, lipase B from Candida Antarctica, (CALB) and lipase from Rhizomucor miehei (RMML), only CALB induced phase transition from bicontinuous reverse cubic to reverse hexagonal phase within the particles. This phase transition can be attributed to an increasing amount of oleic acid formed on cleavage of the polysorbate 80. However, when also a small amount of a cationic surfactant was included in the formulation, RMML could trigger the corresponding phase transition as well. The difference in activity between the two lipases can tentatively be explained by a difference in their interaction with the nanoparticle surface. Thus, a bioresponsive system for treating fungal infections, with a tunable selectivity for different types of lipases, could be obtained by tuning the composition of the nanoparticle formulation.

  1. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Science.gov (United States)

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  2. A novel twisted nematic alignment and its effects on the electro-optical dynamics of nanoscale liquid crystalline films

    Science.gov (United States)

    Rauzan, Brittany; Lee, Lay Min; Nuzzo, Ralph

    2015-03-01

    Vibrational spectroscopic studies of a surface induced, twisted alignment of the nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB) and its temperature-dependent electro-optical (EO) dynamics were studied near the crystalline-nematic and nematic-isotropic transition temperatures, and at a median temperature in the nematic phase. A 50 nm thick film of 5CB was confined in nanocavities defined by the dimensions of a gold interdigitated electrode array patterned on a unidirectionally polished ZnSe substrate. The film was assembled between two polished substrates bearing extended nanometer-scaled grooves that are oriented orthogonally to one another. The results show that with this anchoring scheme, the molecular director of the LC film undergoes a ninety-degree twist. Step-scan time resolved spectroscopy (TRS) measurements were made to determine the rate constants for the temperature-dependent EO dynamics of both the electric field-induced orientation and thermal relaxation processes of the LC film. The work rationalizes the impacts of organizational anisotropy and illustrates how it can be exploited as a design principle to effectively influence the electric field-induced dynamics of LC systems.

  3. Biomimetic Nucleation and Morphology Control of CaCO_3 in PAAm Hydrogels Synthesized from Lyotropic Liquid Crystalline Templates

    Institute of Scientific and Technical Information of China (English)

    DU, Zhuwei; LU, Cuixiang; LI, Haoran; LI, Dingjie

    2009-01-01

    Hydrogels have been thought to be the material which can provide appealing replacements of biological organisms. Pores of hydrogeis synthesized from lyotropic liquid crystalline (LLC) templates were smaller in size and more uniform than those of traditional hydrogels. LLC poly-acrylamide (PAAm) hydrogels were used as the growth media of CaCO_3. After copolymerized with acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS),LLC hydrogels were modified with COOH and SO_3H, respectively. The effect of functional groups on the biomitactic mineralization of CaCO_3 was studied. Most of crystals from traditional hydrogels are rhombohedral and could not form aggregates. Only a few could aggregate and have a particular morphology with irregular orientation of subcrystal. Compared with crystals separated from traditional hydrogels, crystals growing in the LLC hydrogels were much more regulated and could form aggregates with particular morphology and regular orientation, that is,face (104) of rhombohedral subcrystals parallel to the surface of the macrocrystals. Modification of COOH and SO_3H groups made CaCO_3 subcrystal align more tightly. COOH had minor influences on the crystal orientation and small modification to the aggregate morphology. SO_3H groups could change the crystal orientation and morphology effectively. The aggregates are pseudo-spherical and the face perpendicularity to the face (104) parallels to the surface of the aggregates.

  4. Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm.

    Science.gov (United States)

    Bernegossi, Jéssica; Calixto, Giovana Maria Fioramonti; Sanches, Paulo Ricardo da Silva; Fontana, Carla Raquel; Cilli, Eduardo Maffud; Garrido, Saulo Santesso; Chorilli, Marlus

    2015-12-25

    Decapeptide KSL-W shows antibacterial activities and can be used in the oral cavity, however, it is easily degraded in aqueous solution and eliminated. Therefore, we aimed to develop liquid crystalline systems (F1 and F2) for KSL-W buccal administration to treat multispecies oral biofilms. The systems were prepared with oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol (PPG-5-CETETH-20), and a 1% poloxamer 407 dispersion as the oil phase (OP), surfactant (S), and aqueous phase (AP), respectively. We characterized them using polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheology, and in vitro bioadhesion, and performed in vitro biological analysis. PLM showed isotropy (F1) or anisotropy with lamellar mesophases (F2), confirmed by peak ratio quantification using SAXS. Rheological tests demonstrated that F1 exhibited Newtonian behavior but not F2, which showed a structured AP concentration-dependent system. Bioadhesion studies revealed an AP concentration-dependent increase in the system's bioadhesiveness (F2 = 15.50 ± 1.00 mN·s) to bovine teeth blocks. Antimicrobial testing revealed 100% inhibition of multispecies oral biofilm growth after KSL-W administration, which was incorporated in the F2 aqueous phase at a concentration of 1 mg/mL. Our results suggest that this system could serve as a potential vehicle for buccal administration of antibiofilm peptides.

  5. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Directory of Open Access Journals (Sweden)

    Zhuoshi Wang

    2014-04-01

    Full Text Available In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide (PEO with a degree of polymerization (DP of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC, thermal polarized optical microscopy (POM and X-ray diffraction (XRD reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7 self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies.

  6. MARTINI Coarse-Grained Model for Crystalline Cellulose Microfibers

    NARCIS (Netherlands)

    Lopez, Cesar A.; Bellesia, Giovanni; Redondo, Antonio; Langan, Paul; Chundawat, Shishir P. S.; Dale, Bruce E.; Marrink, Siewert J.; Gnanakaran, S.

    2015-01-01

    Commercial-scale biofuel production requires a deep understanding of the structure and dynamics of its principal target: cellulose. However, an accurate description and modeling of this carbohydrate structure at the mesoscale remains elusive, particularly because of its overwhelming length scale and

  7. Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase.

    Science.gov (United States)

    Maltsev, Alexander S; Grishaev, Alexander; Roche, Julien; Zasloff, Michael; Bax, Ad

    2014-03-12

    The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to liquid crystalline cetyl pyridinium bromide. High precision residual dipolar couplings (RDCs) measured for the backbone (1)H-(15)N, (15)N-(13)C', (1)H(α)-(13)C(α), and (13)C'-(13)C(α) one-bond interactions in the squalamine medium fit well to the static structural model previously derived from NMR data. Inclusion into the structure refinement procedure of these RDCs, together with (1)H-(15)N and (1)H(α)-(13)C(α) RDCs newly measured in Pf1, results in improved agreement between alignment-induced changes in (13)C' chemical shift, (3)JHNHα values, and (13)C(α)-(13)C(β) RDCs and corresponding values predicted by the structure, thereby validating the high quality of the single-conformer structural model. This result indicates that fitting of a single model to experimental data provides a better description of the average conformation than does averaging over previously reported NMR-derived ensemble representations. The latter can capture dynamic aspects of a protein, thus making the two representations valuable complements to one another.

  8. Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization

    Science.gov (United States)

    Oka, Hiroshi; Amamoto, Takashi; Koyama, Masahiro; Imai, Yasuhiko; Kimura, Shigeru; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    We developed a method of forming single-crystalline germanium-tin (GeSn) alloy on transparent substrates that is based on liquid-phase crystallization. By controlling and designing nucleation during the melting growth process, a highly tensile-strained single-crystalline GeSn layer was grown on a quartz substrate without using any crystal-seeds or catalysts. The peak field-effect hole mobility of 423 cm2/V s was obtained for a top-gate single-crystalline GeSn MOSFET on a quartz substrate with a Sn content of 2.6%, indicating excellent crystal quality and mobility enhancement due to Sn incorporation and tensile strain.

  9. Liquid Crystalline Nanoparticles as an Ophthalmic Delivery System for Tetrandrine: Development, Characterization, and In Vitro and In Vivo Evaluation

    Science.gov (United States)

    Liu, Rui; Wang, Shuangshuang; Fang, Shiming; Wang, Jialu; Chen, Jingjing; Huang, Xingguo; He, Xin; Liu, Changxiao

    2016-05-01

    The purpose of this study was to develop novel liquid crystalline nanoparticles (LCNPs) that display improved pre-ocular residence time and ocular bioavailability and that can be used as an ophthalmic delivery system for tetrandrine (TET). The delivery system consisted of three primary components, including glyceryl monoolein, poloxamer 407, and water, and two secondary components, including Gelucire 44/14 and amphipathic octadecyl-quaternized carboxymethyl chitosan. The amount of TET, the amount of glyceryl monoolein, and the ratio of poloxamer 407 to glyceryl monoolein were selected as the factors that were used to optimize the dependent variables, which included encapsulation efficiency and drug loading. A three-factor, five-level central composite design was constructed to optimize the formulation. TET-loaded LCNPs (TET-LCNPs) were characterized to determine their particle size, zeta potential, entrapment efficiency, drug loading capacity, particle morphology, inner crystalline structure, and in vitro drug release profile. Corneal permeation in excised rabbit corneas was evaluated. Pre-ocular retention was determined using a noninvasive fluorescence imaging system. Finally, pharmacokinetic study in the aqueous humor was performed by microdialysis technique. The optimal formulation had a mean particle size of 170.0 ± 13.34 nm, a homogeneous distribution with polydispersity index of 0.166 ± 0.02, a positive surface charge with a zeta potential of 29.3 ± 1.25 mV, a high entrapment efficiency of 95.46 ± 4.13 %, and a drug loading rate of 1.63 ± 0.07 %. Transmission electron microscopy showed spherical particles that had smooth surfaces. Small-angle X-ray scattering profiles revealed an inverted hexagonal phase. The in vitro release assays showed a sustained drug release profile. A corneal permeation study showed that the apparent permeability coefficient of the optimal formulation was 2.03-fold higher than that of the TET solution. Pre-ocular retention

  10. Geologic and Isotopic Models for the Carpathian Crystalline Evolution

    Directory of Open Access Journals (Sweden)

    Ioan Coriolan Balintoni

    2015-03-01

    Full Text Available The majority of Carpathian metamorphics protoliths have TDM model Sm/Nd ages between 1.6 and 2.0 Ga. This suggests an important episode of continental crust formation after the 2.0 Ga. The Biharia lithogroup (Apuseni Mountains and the Tulghes lithogroup (East Carpathians furnished Zircon U/Pb ages from metagranitoids and acid metavolcanics, respective, around 500 Ma; this is a sign of existence of some Lower Proterozoic protoliths among Carpathian metamorphics. The bimodal intrusions which are piercing the volcano-sedimentary sequence of Paiuseni lithogroup in Highiş Massif (Apuseni Mountains have given Permian ages on Zircon U/Pb data. The Paiuseni lithogroup probably represents the fill of a rift basin of the same age. The Arieseni, Muntele Mare and Vinta granitoid intrusions from Apuseni Mountains, with U/Pb ages between Lower Devonian and Permian, indicates some contractional and extensional processes, in connection with Variscan Orogeny.

  11. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Science.gov (United States)

    Lorieau, Justin L; Maltsev, Alexander S.; Louis, John M; Bax, Ad

    2013-01-01

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d (GpG). The method can be used to generate sets of residual dipolar couplings (RDCs) that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins. PMID:23508769

  12. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Energy Technology Data Exchange (ETDEWEB)

    Lorieau, Justin L.; Maltsev, Alexander S.; Louis, John M.; Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Laboratory of Chemical Physics (United States)

    2013-04-15

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.

  13. PEGylation of Phytantriol-Based Lyotropic Liquid Crystalline Particles-The Effect of Lipid Composition, PEG Chain Length, and Temperature on the Internal Nanostructure

    DEFF Research Database (Denmark)

    Nilsson, Christa; Ostergaard, Jesper; Larsen, Susan Weng

    2014-01-01

    on phytantriol (PHYT) were investigated by means of synchrotron small-angle X-ray scattering and Transmission Electron Cryo-Microscopy. The results suggest that the used lipopolymers are incorporated into the water-PHYT interfacial area and induce a significant effect on the internal nanostructures...... injectable long-circulating drug nanocarriers based on cubosomes and hexosomes by shielding and coating the dispersed particles enveloping well-defined internal nonlamellar liquid crystalline nanostructures with hydrophilic PEG segments. The present study attempts to shed light on the possible PEGylation...... of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based...

  14. The van Hemmen model and effect of random crystalline anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Denes M. de [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Godoy, Mauricio, E-mail: mgodoy@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Arruda, Alberto S. de, E-mail: aarruda@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Silva, Jonathas N. da [Universidade Estadual Paulista, 14800-901, Araraquara, São Paulo (Brazil); Ricardo de Sousa, J. [Instituto Nacional de Sistemas Complexos, Departamento de Fisica, Universidade Federal do Amazona, 69077-000, Manaus, Amazonas (Brazil)

    2016-01-15

    In this work, we have presented the generalized phase diagrams of the van Hemmen model for spin S=1 in the presence of an anisotropic term of random crystalline field. In order to study the critical behavior of the phase transitions, we employed a mean-field Curie–Weiss approach, which allows calculation of the free energy and the equations of state of the model. The phase diagrams obtained here displayed tricritical behavior, with second-order phase transition lines separated from the first-order phase transition lines by a tricritical point. - Highlights: • Several phase diagrams are obtained for the model. • The influence of the random crystalline anisotropy field on the model is investigated. • Three ordered (spin-glass, ferromagnetic and mixed) phases are found. • The tricritical behavior is examined.

  15. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    Science.gov (United States)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  16. Revealing crystalline domains in a mollusc shell single-crystalline prism

    Science.gov (United States)

    Mastropietro, F.; Godard, P.; Burghammer, M.; Chevallard, C.; Daillant, J.; Duboisset, J.; Allain, M.; Guenoun, P.; Nouet, J.; Chamard, V.

    2017-09-01

    Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the `single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

  17. Improved Cross Validation of a Static Ubiquitin Structure Derived from High Precision Residual Dipolar Couplings Measured in a Drug-Based Liquid Crystalline Phase

    OpenAIRE

    2014-01-01

    The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to liquid crystalline cetyl pyridinium bromide. High precision residual dipolar couplings (RDCs) measu...

  18. The importance of orientation in proton transport of a polymer film based on an oriented self-organized columnar liquid-crystalline polyether

    Energy Technology Data Exchange (ETDEWEB)

    Tylkowski, Bartosz; Castelao, Nuria [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Giamberini, Marta, E-mail: marta.giamberini@urv.net [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain); Reina, Jose Antonio [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Carrer Marcel.li Domingo s/n, E-43007, Tarragona (Spain); Gumi, Tania [Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paiesos Catalans, 26, E-43007, Tarragona (Spain)

    2012-02-01

    We prepared membranes based on a liquid-crystalline side-chain polyether obtained by chemical modification of commercial poly(epichlorohydrin) (PECH) with dendrons. This polymer exhibited a columnar structure, which could form an ion channel in the inner part. The columns were successfully oriented by taking advantage of surface interactions between the polymer and hydrophilic substrates, as confirmed by X-ray diffraction analysis (XRD), environmental scanning electron microscopy (ESEM) and optical microscopy between crossed polars (POM). Column orientation was found to be crucial for effective transport: the oriented membranes exhibited proton transport comparable to that of Nafion Registered-Sign N117 and no water uptake. An increase in sodium ion concentration in the feed phase suggested a proton/cation antiport. On the contrary, no proton transport was detected on unoriented membranes based on the same liquid-crystalline side-chain polyether or on unmodified PECH. - Highlights: Black-Right-Pointing-Pointer We prepared oriented membranes based on a liquid crystalline columnar polyether. Black-Right-Pointing-Pointer In this structure, the inner polyether chain could work as an ion channel. Black-Right-Pointing-Pointer We obtained membranes by casting a chloroform solution in the presence of water. Black-Right-Pointing-Pointer Membranes showed good proton permeability due to the presence of oriented channels.

  19. Characterization of a Model Polyelectrolyte Membrane Using a Semi-crystalline Block Copolymer

    Science.gov (United States)

    Beers, Keith; Wang, Xin; Balsara, Nitash

    2011-03-01

    The microstructured block copolymer sulfonated polystyrene-block-polyethylene is studied as model system for use as a proton exchange membrane in a fuel cell. Self-assembly of this system creates proton conducting hydrophilic channels in the form of sulfonated polystyrene domains, while the polyethylene domains create a hydrophobic matrix to provide mechanical stability. This system serves as a powerful model system since the effects of domain size, morphology and crystallinity on water uptake and proton conductivity can be investigated. Similar systems have shown the ability of small hydrophilic channels to prevent drying at high temperatures in humid air, but have focused on amorphous hydrophobic blocks. The morphology, water uptake, and proton conductivity of this semi-crystalline model system will be discussed.

  20. System size dependence of the structure and rheology in a sheared lamellar liquid crystalline medium

    Science.gov (United States)

    Jaju, S. J.; Kumaran, V.

    2016-12-01

    The structural and rheological evolution of an initially disordered lamellar phase system under a shear flow is examined using a mesoscale model based on a free energy functional for the concentration field, which is the scaled difference in the concentration between the hydrophilic and hydrophobic components. The dimensionless numbers which affect the shear evolution are the Reynolds number (γ ˙ ¯ L2 /ν ) , the Schmidt number (ν /D ) , a dimensionless parameter Σ =(A λ2 /ρ ν2 ) , a parameter μr which represents the viscosity contrast between the hydrophilic and hydrophobic components, and (L /λ ) , the ratio of system size and layer spacing. Here, ρ, ν, and D are the density, kinematic viscosity (ratio of viscosity and density), and the mass diffusivity, and A is the energy density in the free energy functional which is proportional to the compression modulus. Two distinct modes of structural evolution are observed for moderate values of the parameter Σ depending only on the combination ScΣ and independent of system size. For ScΣ less than about 10, the layers tend to form before they are deformed by the mean shear, and layered but misaligned domains are initially formed, and these are deformed and rotated by the flow. In this case, the excess viscosity (difference between the viscosity and that for an aligned state) does not decrease to zero even after 1000 strain units, but appears to plateau to a steady state value. For ScΣ greater than about 10, layers are deformed by the mean shear before they are fully formed, and a well aligned lamellar phase with edge dislocation orders completely due to the cancellation of dislocations. The excess viscosity scales as t-1 in the long time limit. The maximum macroscopic viscosity (ratio of total stress and average strain rate over the entire sample) during the alignment process increases with the system size proportional to (L/λ ) 3 /2. For large values of Σ, there is localisation of shear at the walls

  1. Effects of substitution and terminal groups for liquid-crystallinity enhanced luminescence of disubstituted polyacetylenes carrying chromophoric terphenyl pendants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Liquid-crystalline and light-emitting poly(2-alkyne)s containing terphenyl cores with hexamethyleneoxy spacers,and cyano or n-propoxy tails -[CH3C=C(CH2)6O-terphenyl-R]n-,where R=CN,CH3PA6CN,R=OCH2CH2CH3,CH3PA6OPr,were synthesized.The effects of the substitution and terminal groups on the properties,especially the mesomorphic and optical properties of the polymers,were investigated.The disubstituted acetylene monomers (CH3A6CN,CH3A6OPr) were pre- pared through multistep reaction routes and were polymerized by WCl6-Ph4Sn in good yields (up to 82%).All the monomers and CH3PA6CN exhibited the enantiotropic SmA phase with a monolayer arrangement at elevated temperatures,whereas CH3PA6OPr formed a bilayer SmAd packing arrangement.Upon excitation at 330 nm,strong UV and blue emission peaks at 362 and 411 nm were observed in CH3PA6OPr and CH3PA6CN,respectively.The luminescent properties of CH3PA6CN and CH3PA6OPr have been improved by introducing the methyl substituted group,and the quantum yield of the polymer with cyano tail CH3PA6CN (φ= 74%) was found to be higher than that of CH3PA6OPr (φ= 60%).Compared to polyacety- lene parents,both CH3PA6OPr and CH3PA6CN showed a narrower energy gap.This demonstrated that the electrical con- ductivities of polyacetylenes could be enhanced by attaching appropriate pendants to the conjugated polyene backbones.

  2. Kinetic asymmetry in the gel-liquid crystalline state transitions of DDAB vesicles studied by differential scanning calorimetry.

    Science.gov (United States)

    Feitosa, Eloi

    2010-04-01

    Didodecyldimethylammonium bromide (DDAB) (1.0 mM) vesicles in water were investigated by differential scanning calorimetry (DSC) to highlight the existing kinetic asymmetry in the gel-liquid crystalline (LC) state transitions. The experiments were performed in the range of temperature, scan rate and pre-scanning time 5-45 degrees C, 15-90 degrees C/h and 0-16 h, respectively, in the up- and down-scanning modes. Depending on the input parameters and number of heating-cooling cycles, the DSC thermograms exhibit a sharp peak, a broad band or a flat shape. A melting temperature T(m)=15.6-16.0 degrees C, given by the peak position, was obtained independently of the scan rate used in the up-scanning mode. The data reveal that DDAB vesicles exhibit much slower kinetics for the LC to gel state than for the opposite transition. Such an asymmetry is supported by: (a) the absence of peak for shorter pre-scanning times but longer scan rates, (b) the increasing intensity of the DSC peak with increasing pre-scanning time and decreasing scan rate, and (c) the complete absence of peak in the down-scan mode. Longer pre-scanning time, however, yields crystal precipitates due to a Krafft phenomenon, which also reduces the peak intensity. The overall results depend on whether the sample is fresh or not, that is, after some heating-cooling cycles, the melting peak requires a longer pre-scanning time to be detected. The kinetic asymmetry explains, for example, the lack of any DSC melting peak reported for "non-fresh" DDAB vesicles, which was as yet unexplained. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem.

    Science.gov (United States)

    Nilsson, Christa; Edwards, Katarina; Eriksson, Jonny; Larsen, Susan Weng; Østergaard, Jesper; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2012-08-14

    The present study was designed to evaluate the effect of the negatively charged food-grade emulsifier citrem on the internal nanostructures of oil-free and oil-loaded aqueous dispersions of phytantriol (PHYT) and glyceryl monooleate (GMO). To our knowledge, this is the first report in the literature on the utilization of this charged stabilizing agent in the formation of aqueous dispersions consisting of well-ordered interiors (either inverted-type hexagonal (H(2)) phases or inverted-type microemulsion systems). Synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to characterize the dispersed and the corresponding nondispersed phases of inverted-type nonlamellar liquid-crystalline phases and microemulsions. The results suggest a transition between different internal nanostructures of the aqueous dispersions after the addition of the stabilizer. In addition to the main function of citrem as a stabilizer that adheres to the surface of the dispersed particles, it has a significant impact on the internal nanostructures, which is governed by the following factors: (1) its penetration between the hydrophobic tails of the lipid molecules and (2) its degree of incorporation into the lipid-water interfacial area. In the presence of citrem, the formation of aqueous dispersions with functionalized hydrophilic domains by the enlargement of the hydrophilic nanochannels of the internal H(2) phase in hexosomes and the hydrophilic core of the L(2) phase in emulsified microemulsions (EMEs) could be particularly attractive for solubilizing and controlling the release of positively charged drugs.

  4. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.

    Science.gov (United States)

    Tangso, Kristian J; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick; Boyd, Ben J

    2014-08-13

    Nanostructured capsules comprised of the anionic bile salt, sodium taurodeoxycholate (STDC), and the biocompatible cationic polymer, chitosan, were prepared to assess their potential as novel tailored release nanomaterials. For comparison, a previously studied system, sodium dodecyl sulfate (SDS), and polydiallyldimethylammonium chloride (polyDADMAC) was also investigated. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified the presence of lamellar and hexagonal phase at the surfactant-polymer interface of the respective systems. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and salt concentration, respectively, and were found to influence the liquid-crystalline nanostructure formed. The hexagonal phase persisted at high temperatures, however the lamellar phase structure was lost above ca. 45 °C. Both mesophases were found to dissociate upon addition of 4% NaCl solution. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from the lamellar phase significantly increased in response to changes in the solution conditions studied, suggesting that modulating the drug release from these bile salt-chitosan capsules is readily achieved. In contrast, release from the hexagonal phase capsules had no appreciable response to the stimuli applied. These findings provide a platform for these oppositely charged surfactant and polymer systems to function as stimuli-responsive or sustained-release drug delivery systems.

  5. LIQUID CRYSTALLINE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    XinJiu Wang; Qi-Feng Zhou

    2005-01-01

    @@ "Their book is a most useful resource for approaching a large literature that even a specialist needs help to assimilate. It covers many widely separated areas - synthetic chemistry to theoretical physics, fundamental science to applications."

  6. Theoretical modeling of charge trapping in crystalline and amorphous Al2O3

    Science.gov (United States)

    Dicks, Oliver A.; Shluger, Alexander L.

    2017-08-01

    The characteristics of intrinsic electron and hole trapping in crystalline and amorphous Al2O3 have been studied using density functional theory (DFT). Special attention was paid to enforcing the piece-wise linearity of the total energy with respect to electron number through the use of a range separated, hybrid functional PBE0-TC-LRC (Guidon et al 2009 J. Chem. Theory Comput. 5 3010) in order to accurately model the behaviour of localized states. The tuned functional is shown to reproduce the geometric and electronic structures of the perfect crystal as well as the spectroscopic characteristics of MgAl hole centre in corundum α-Al2O3. An ensemble of ten amorphous Al2O3 structures was generated using classical molecular dynamics and a melt and quench method and their structural characteristics compared with the experimental data. The electronic structure of amorphous systems was characterized using the inverse participation ratio method. Electrons and holes were then introduced into both crystalline and amorphous alumina structures and their properties calculated. Holes are shown to trap spontaneously in both crystalline and amorphous alumina. In the crystalline phase they localize on single O ion with the trapping energy of 0.38 eV. In amorphous phase, holes localize on two nearest neighbour oxygen sites with an average trapping energy of 1.26 eV, with hole trapping sites separated on average by about 8.0 Å. No electron trapping is observed in the material. Our results suggest that trapping of positive charge can be much more severe and stable in amorphous alumina rather than in crystalline samples.

  7. MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Eder Oliveira Abensur

    2014-05-01

    Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.

  8. Real catalysis on single crystalline model catalysts with in-situ reactivity measurement

    OpenAIRE

    O. Shekhah; Ranke, W.; Schlögl, R.

    2003-01-01

    The pressure and materials gap between reactivity studies in UHV and real catalysis can only be overcome by application of in-situ methods for catalyst characterization and/or activity measurements under realistic pressure and temperature conditions. As a model reaction we study the economically important catalytic dehydrogenation of ethylbenzene (EB) to styrene (St) [1]. The technical catalyst consists of potassium-promoted iron oxides. We use single crystalline epitaxial layers of Fe2O3, Fe...

  9. The average free volume model for liquids

    CERN Document Server

    Yu, Yang

    2014-01-01

    In this work, the molar volume thermal expansion coefficient of 59 room temperature ionic liquids is compared with their van der Waals volume Vw. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. A combination between free volume and Lennard-Jones potential is applied to explain the physical phenomena of liquids. Some typical simple liquids (inorganic, organic, metallic and salt) are introduced to verify this hypothesis. Good agreement from the theory prediction and experimental data can be obtained.

  10. Reversible Polymorphism, Liquid Crystallinity, and Stimuli-Responsive Luminescence in a Bola-amphiphilic π-System: Structure-Property Correlations Through Nanoindentation and DFT Calculations.

    Science.gov (United States)

    Roy, Syamantak; Hazra, Arpan; Bandyopadhyay, Arkamita; Raut, Devraj; Madhuri, P Lakshmi; Rao, D S Shankar; Ramamurty, Upadrasta; Pati, Swapan Kumar; Krishna Prasad, S; Maji, Tapas Kumar

    2016-10-03

    We report the design, synthesis, detailed characterization, and analysis of a new multifunctional π-conjugated bola-amphiphilic chromophore: oligo-(p-phenyleneethynylene)dicarboxylic acid with dialkoxyoctadecyl side chains (OPE-C18-1). OPE-C18-1 shows two polymorphs at 123 K (OPE-C18-1') and 373 K (OPE-C18-1″), whose crystal structures were characterized via single crystal X-ray diffraction. OPE-C18-1 also exhibits thermotropic liquid crystalline property revealing a columnar phase. The inherent π-conjugation of OPE-C18-1 imparts luminescence to the system. Photoluminescence measurements on the mesophase also reveal similar luminescence as in the crystalline state. Additionally, OPE-C18-1 shows mechano-hypsochromic luminescence behavior. Density functional theory (DFT)-based calculations unravel the origins behind the simultaneous existence of all these properties. Nanoindentation experiments on the single crystal reveal its mechanical strength and accurately correlate the molecular arrangement with the liquid crystalline and mechanochromic luminescence behavior.

  11. A rapid and sensitive detection of D-Aspartic acid in Crystallin by chiral derivatized liquid chromatography mass spectrometry.

    Science.gov (United States)

    Mizuno, Hajime; Miyazaki, Yasuto; Ito, Keisuke; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2016-10-07

    A method for the determination of D-Aspartic acid (D-Asp) and its D/L ratio in peptides and proteins has been developed. This method was carried out with good separation of the D/L chiral peptide pairs by combination of a chiral derivatization and an ADME column separation. Furthermore, a cationic derivatization reagent, DBD-Py-NCS, increased the sensitivity of the ESI-MS/MS detection. To confirm the comprehensive peptide analysis, synthesized α-Crystallin tryptic peptides, which included D-Asp residues, were analyzed. The 5 pairs of D/L-Asp that included peptide diastereomers were well separated. Their peak resolutions were more than 1.5 and the results were reproducible (RSD<0.05, n=5). As an application of this method, we analyzed the α-Crystallin standard and UV irradiated α-Crystallin. After trypsin digestion and DBD-Py-NCS derivatization, the tryptic peptide derivatives were applied to LC-MS/MS. Based on the results of peptide sequence identification, almost all the tryptic peptides of the αA- and αB-Crystallin homologous subunits of α-Crystallin were detected as DBD-Py NCS derivatives. However, there was no D-Asp residue in the standard proteins. In the case of the UV irradiated α-Crystallin, Asp(76) and Asp(84) in the αA-Crystallin and Asp(96) in αB-Crystallin were racemized to D-Asp. These results show that this proposed chiral peptide LC-MS/MS method using chiral derivatization provides a rapid and sensitive analysis for post translational Asp racemization sites in aging proteins.

  12. Distinct Topological Crystalline Phases in Models for the Strongly Correlated Topological Insulator SmB_{6}.

    Science.gov (United States)

    Baruselli, Pier Paolo; Vojta, Matthias

    2015-10-09

    SmB_{6} was recently proposed to be both a strong topological insulator and a topological crystalline insulator. For this and related cubic topological Kondo insulators, we prove the existence of four different topological phases, distinguished by the sign of mirror Chern numbers. We characterize these phases in terms of simple observables, and we provide concrete tight-binding models for each phase. Based on theoretical and experimental results for SmB_{6} we conclude that it realizes the phase with C_{k_{z}=0}^{+}=+2, C_{k_{z}=π}^{+}=+1, C_{k_{x}=k_{y}}^{+}=-1, and we propose a corresponding minimal model.

  13. Effect of crystalline lens surfaces and refractive index on image quality by model simulation analysis

    Institute of Scientific and Technical Information of China (English)

    Meimei Kong; Zhishan Gao; Lei Chen; Xinhua Li

    2008-01-01

    The surfaces and refractive index of crystalline lens play an important role in the optical performance of human eye.On the basis of two eye models,which are widely applied at present,the effect of lens surfaces and its refractive index distribution on optical imaging is analyzed with the optical design software ZEMAX (Zemax Development Co.,San Diego,USA).The result shows that good image quality can be provided by the aspheric lens surfaces or (and) the gradient-index (GRIN) distribution.It has great potential in the design of intraocular lens (IOL).The eye models with an intraocular implantation are presented.

  14. Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound

    OpenAIRE

    Pastorino, C.; Gamba, Z.

    2000-01-01

    We analize two anisotropic atom-atom models used to describe the crystalline alpha,beta and gamma phases of S8 crystals, the most stable compound of elemental sulfur in solid phases, at ambient pressure and T

  15. Atomic model of liquid pure Fe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a θ-θX-ray diffractometer, the liquid structure of pure Fewas investigated and the diffraction intensity, structure factor, pair distribution function as well as the coordination number and atomic distance were obtained. The experimental results showed that there was also a pre-peak on the curve of the structure factor of liquid pure Fe. The pre-peak is a mark of medium-range order in melts. According to the characteristics of pre-peak, an atomic model of liquid pure Fe is constructed, namely, the structure of liquid pure Fe is a combination of clusters consisting of bcc cells with shared vertexes and other atoms with random dense atom distribution.

  16. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  17. Effect of trans-cis photoisomerization on phase equilibria and phase transition of liquid-crystalline azobenzene chromophore and its blends with reactive mesogenic diacrylate.

    Science.gov (United States)

    Kim, Namil; Li, Quan; Kyu, Thein

    2011-03-01

    Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e., ripples). The phase-transition temperatures and corresponding morphologies of the blends have been investigated by means of differential scanning calorimetry and optical microscopy. A theoretical phase diagram of a binary nematic and crystalline system was constructed by self-consistently solving the combined free energies of Flory-Huggins, Maier-Saupe, and phase-field theory. The calculation revealed various coexistence regions such as nematic + liquid (N₁ + L₂), crystal + liquid (Cr₁ + L₂), crystal + nematic (Cr₁ + N₂), and crystal + crystal (Cr₁ + Cr₂) over a broad range of compositions including the single-phase nematic (N₁, N₂) of the corresponding constituents. The calculated liquidus lines were in good accord with the depressed mesophase-isotropic transition points. The present paper demonstrates the effect of trans-cis photoisomerization on the mesophase transitions of neat LCAC and the phase diagram of LCAC-RM257 as well as on the ripple formation (i.e., periodic undulation) on the azobenzene crystals.

  18. Discrete dipole approximation models of chrystalline forsterite: Applications to cometary crystalline silicates

    Science.gov (United States)

    Lindsay, Sean Stephen

    The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline

  19. Application of rock-cad modelling system in characterization of crystalline bedrock

    Science.gov (United States)

    Saksa, Pauli

    The Finnish power company Teollisuuden Voima Oy studies crystalline bedrock in Finland for final disposal of high-level nuclear fuel waste. In evaluation of the varying lithological and structural conditions CAD-based ROCK-CAD system has been developed. ROCK-CAD is based on true solid modelling approach. One modelled volume consists of several mutually independent submodels. Mainly lithological, structural (fracturing) and hydraulical properties are modelled. ROCK-CAD is in operational use and experiences have been got from four sites modelled this far. The main uses of the software, have been in general visualization, in planning of sopplementary investigations and in qualitative interpretation and model development done by the experts. Computerized models form also the basis for ground water flow simulations and rock mechanical calculations. Two example drawings are presented and discussed.

  20. PEGylation of phytantriol-based lyotropic liquid crystalline particles--the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure.

    Science.gov (United States)

    Nilsson, Christa; Østergaard, Jesper; Larsen, Susan Weng; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2014-06-10

    Poly(ethylene glycol)-grafted 1,2-distearoyl-sn-glycero-3-phosphoethanolamines (DSPE-mPEGs) are a family of amphiphilic lipopolymers attractive in formulating injectable long-circulating nanoparticulate drug formulations. In addition to long circulating liposomes, there is an interest in developing injectable long-circulating drug nanocarriers based on cubosomes and hexosomes by shielding and coating the dispersed particles enveloping well-defined internal nonlamellar liquid crystalline nanostructures with hydrophilic PEG segments. The present study attempts to shed light on the possible PEGylation of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based on phytantriol (PHYT) were investigated by means of synchrotron small-angle X-ray scattering and Transmission Electron Cryo-Microscopy. The results suggest that the used lipopolymers are incorporated into the water-PHYT interfacial area and induce a significant effect on the internal nanostructures of the dispersed submicrometer-sized particles. The hydrophilic domains of the internal liquid crystalline nanostructures of these aqueous dispersions are functionalized, i.e., the hydrophilic nanochannels of the internal cubic Pn3m and Im3m phases are significantly enlarged in the presence of relatively small amounts of the used DSPE-mPEGs. It is evident that the partial replacement of PHYT by these PEGylated lipids could be an attractive approach for the surface modification of cubosomal and hexosomal particles. These PEGylated nanocarriers are particularly attractive in designing injectable cubosomal and hexosomal nanocarriers for loading drugs and/or imaging probes.

  1. Influence of hydrogen bonding on the generation and stabilization of liquid crystalline polyesters, poly(esteramide)s and polyacrylates

    Indian Academy of Sciences (India)

    C K S Pillai; K Y Sandhya; J D Sudha; M Saminathan

    2003-08-01

    Induction and stabilization of liquid crystallinity through hydrogen bonding (HB) are now well-established. Interesting observations made on the influence of HB on LC behaviour of amido diol-based poly(esteramide)s, poly(esteramide)s containing nitro groups and azobenzene mesogen-based polyacrylates will be discussed. The use of amido diol as an important precursor for the synthesis of novel PEAs containing inbuilt di-amide linkage enabled generation of extensive hydrogen bondings between the amide–amide and amide–ester groups which stabilized the mesophase structures of the PEAs. The contributions of hydrogen bonding to the generation and stabilization of mesophase structures were plainly evident from the observation of liquid crystallinity even in PEAs prepared from fully aliphatic amido diols. Replacement of terephthaloyl units by isophthaloyl moiety totally vanquished liquid crystalline phases while biphenylene and naphthalene units did only reduce the transition temperatures as expected. The occurrence of the smectic phases in some of the polymers indicated possibly self-assembly through the formation of hetero intermolecular hydrogen bonded networks. A smectic polymorphism and in addition, a smectic-to-nematic transition, were observed in the monomers and polymers based on 1,4-phenylene[bis-(3-nitroanthranilidic acid)] containing nitro groups. A smectic polymorphism was also observed as a combined effect of hydrogen bonded carboxyl groups and laterally substituted alkyl side chains in the case of azobenzene mesogen containing side chain polyacrylates. It was further shown that the presence of the mesophase enhances the non-linear optical (NLO) response of these polymers.

  2. Modeling of stress relaxation of a semi-crystalline multiblock copolymer and its deformation behavior.

    Science.gov (United States)

    Yan, Wan; Fang, Liang; Heuchel, Matthias; Kratz, Karl; Lendlein, Andreas

    2015-01-01

    Stress relaxation can strongly influence the shape-memory capability of polymers. Recently a modified Maxwell-Wiechert model comprising two Maxwell units and a single spring unit in parallel has been introduced to successfully describe the shape recovery characteristics of amorphous polyether urethanes. In this work we explored whether such a modified Maxwell-Wiechert model is capable to describe the stress relaxation behavior of a semi-crystalline multiblock copolymer named PCL-PIBMD, which consists of crystallizable poly(ɛ-caprolactone) (PCL) segments and crystallizable poly(3S-isobutylmorpholine-2,5-dione) (PIBMD) segments. The stress relaxation behavior of PCL-PIBMD was explored after uniaxial deformation to different strains ranging from 50 to 900% with various strain rates of 1 or 10 or 50 mm·min -1. The modeling results indicated that under the assumption that in PCL-PIBMD both PCL and PIBMD blocks have narrow molecular weight distributions and are arranged in sequence, the two relaxation processes can be related to the amorphous PCL and PIBMD domains and the spring element can be associated to the PIBMD crystalline domains. The first Maxwell unit representing the faster relaxation process characterized by the modulus E1 and the relaxation time τ1 is related to the amorphous PCL domains (which are in the rubbery state), while the second Maxwell unit (E2 ; τ2) represents the behavior of the amorphous PIBMD domains, which are in the glassy state at 50 °C. Increasing strain rates resulted in an increase of E1 and a significant reduction in τ1, whereas the elastic modulus as well as the relaxation time related to the amorphous PIBMD domains remained almost constant. When a higher deformation was applied (ɛ ≥ 200% ) lower values for the elastic moduli of the three model elements were obtained. In general the applied model was also capable to describe the relaxation behavior of PCL-PIBMD at a deformation temperature of 20 °C, where additional crystalline

  3. Mechanical model study of relationship of molecular configuration and multiphase in liquid crystal materials

    Institute of Scientific and Technical Information of China (English)

    Ma Heng; Sun Rui-Zhi; Li Zhen-Xin

    2006-01-01

    A mechanical model of liquid crystals (LCs) is applied to study the polymorphism of homologous series of terphenyl compounds. With a semi-experimental molecular orbit method, we calculate the moment of inertia which represents the rotation state to describe the phase transition temperature obtained from experimental data. We propose a novel explanation of the phase sequence or polymorphism of LC materials using the two key parameters, the moment of inertia and critical rotational velocity. The effect of molecular polarity on the appearance of liquid crystalline is also discussed.

  4. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    Directory of Open Access Journals (Sweden)

    Zeng N

    2012-07-01

    Full Text Available Ni Zeng,1,3,* Xiaoling Gao,2,* Quanyin Hu,1 Qingxiang Song,2 Huimin Xia,1 Zhongyang Liu,1 Guangzhi Gu,1 Mengyin Jiang,1,4 Zhiqing Pang,1 Hongzhuan Chen,2 Jun Chen,1 Liang Fang3 1Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, 2Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, 3Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 4School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong People's Republic of China, *These authors contributed equally to this workBackground: Lipid-based liquid crystalline nanoparticles (LCNPs have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized.Methods: In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a "ball-like"/"hexagonal" morphology.Results: Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and

  5. Molecular Control of Liquid Crystalline Orientation of Poly(p-phenylene- 2,6-benzobisoxazole) and Poly(p-phenylene-2,6-benzobisthiazole).

    Science.gov (United States)

    1992-11-30

    Textile and Fiber Engineering Atlanta, GA 30332 To be Published in Polymer Preprints Spring 1993 November 30, 1992 Reproduction in whole, or in part...Report 4. lIlt I APIII 51.DIIhIWtI 5. jNO’N wqeuum; Molecular Control of the Liquid Crystalline Orientation of Polybenzoxazoles Grant* N-00014-91-J...APeluAlw3ft Norris Brown College GeorgTh Institute of ’’ ’’ Department of Chemistry Tech. School of Textil Atlanta, GA 30314 and Fiber Engineering

  6. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... are known. The parameters of the liquid surface model and its potential applications are discussed. The model has been suggested for open end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the nanotube stability is also discussed. The suggested model gives...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...

  7. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  8. Dynamic renormalization group study of a generalized continuum model of crystalline surfaces.

    Science.gov (United States)

    Cuerno, Rodolfo; Moro, Esteban

    2002-01-01

    We apply the Nozières-Gallet dynamic renormalization group (RG) scheme to a continuum equilibrium model of a d-dimensional surface relaxing by linear surface tension and linear surface diffusion, and which is subject to a lattice potential favoring discrete values of the height variable. The model thus interpolates between the overdamped sine-Gordon model and a related continuum model of crystalline tensionless surfaces. The RG flow predicts the existence of an equilibrium roughening transition only for d=2 dimensional surfaces, between a flat low-temperature phase and a rough high-temperature phase in the Edwards-Wilkinson (EW) universality class. The surface is always in the flat phase for any other substrate dimensions d>2. For any value of d, the linear surface diffusion mechanism is an irrelevant perturbation of the linear surface tension mechanism, but may induce long crossovers within which the scaling properties of the linear molecular-beam epitaxy equation are observed, thus increasing the value of the sine-Gordon roughening temperature. This phenomenon originates in the nonlinear lattice potential, and is seen to occur even in the absence of a bare surface tension term. An important consequence of this is that a crystalline tensionless surface is asymptotically described at high temperatures by the EW universality class.

  9. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    Science.gov (United States)

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  10. Research Advance in Liquid Crystalline Polysaccharides and Their Applications%液晶性多糖的研究进展及其应用

    Institute of Scientific and Technical Information of China (English)

    高山俊; 张玲

    2009-01-01

    In this paper,liquid crystal polymer,its classifcation and characterization have been introduced. The study on liqiud crystalline polysaccharides is reviewed in detail,including cellulose and its derivatives,chitosan and its derivatives,xanthan,schizophyllan(SPG) and konjac glucomannan(KGM).The applications of liquid crystals of cellulose,chitosan and their derivatives are introduced.%介绍了高分子液晶及其分类和表征方法,综述了可以形成液晶的几种多糖,包括纤维素及其衍生物、壳聚糖及其衍生物、黄原胶、裂裥菌素(SPG)、魔芋葡苷聚糖(KGM)的研究进展,并对纤维素、壳聚糖及其衍生物液晶的应用进行了介绍.

  11. The study of the elasticity of spider dragline silk with liquid crystal model

    Energy Technology Data Exchange (ETDEWEB)

    Cui Linying, E-mail: cly05@mails.tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu Fei [Centre for Advanced Study, Tsinghua University, Beijing 100084 (China); Ouyang Zhongcan, E-mail: oy@itp.ac.c [Centre for Advanced Study, Tsinghua University, Beijing 100084 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, PO Box 2735, Beijing 100190 (China)

    2009-11-30

    Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.

  12. DDA Modeling for the Mid-IR Absorption of Irregularly Shaped Crystalline Forsterite Grains

    Science.gov (United States)

    Lindsay, Sean; Wooden, D. H.; Kelley, M. S.; Harker, D. E.; Woodward, C. E.; Murphy, J.

    2010-10-01

    An analysis of the Spitzer IRS spectra of the Deep Impact ejecta of comet 9P/Tempel 1 (Wooden et al. 2010, 42nd DPS Meeting) in conjunction with the dynamics of the ejecta grains (Kelley et al. 2010, 42nd DPS Meeting) strongly suggests that ecliptic comets have comae dominated by large (> 10 - 20 micron in radii) porous grains with Mg-rich crystal inclusions. In fact, Kelley et al. (2010) conclude that many ecliptic comets may be dominated by such grains with a high crystalline fraction, approximately 40% by mass, despite their generally weak silicate emission feature. To date, no model for the optical properties in the mid-IR of multi-mineralic large porous grains with silicate crystal inclusions, has been performed. We have initiated a program to compute the absorption and scattering efficiencies for these grains. Presented here are the 3 - 40 micron absorption efficiencies for models of sub-micron sized crystalline forsterite grains of irregular shape. We use the Discrete Dipole Approximation (DDA) to create discrete targets of forsterite that can be included in large porous aggregates. Computations are performed on the NAS Pleiades supercomputer. Our calculated absorption efficiencies for individual grains of forsterite are in agreement with laboratory measurements (Tamanai et al. 2006; Koike et al. 2003) and the continuous distribution of ellipsoids (CDE) method by Harker et al. (2007). We find for discrete grains that grain shape has a strong effect on the peak location of a crystalline resonance and that mimicking the physical properties of forsterite is important. Also presented are the absorption efficiencies for simple multi-component aggregates and for collections of forsterite crystals of different size and shape to replicate laboratory samples. This research is supported by the NASA GSRP Program.

  13. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.

    Science.gov (United States)

    Cheng, Gang; Varanasi, Patanjali; Li, Chenlin; Liu, Hanbin; Melnichenko, Yuri B; Simmons, Blake A; Kent, Michael S; Singh, Seema

    2011-04-11

    Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellulose (Avicel), switchgrass (Panicum virgatum), pine ( Pinus radiata ), and eucalyptus ( Eucalyptus globulus ), and its influence on cellulose hydrolysis kinetics of the resultant biomass. These feedstocks were pretreated using 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]) at 120 and 160 °C for 1, 3, 6, and 12 h. The influence of the pretreatment conditions on the cellulose crystalline structure was analyzed by X-ray diffraction (XRD). On a larger length scale, the impact of ionic liquid pretreatment on the surface roughness of the biomass was determined by small-angle neutron scattering (SANS). Pretreatment resulted in a loss of native cellulose crystalline structure. However, the transformation processes were distinctly different for Avicel and for the biomass samples. For Avicel, a transformation to cellulose II occurred for all processing conditions. For the biomass samples, the data suggest that pretreatment for most conditions resulted in an expanded cellulose I lattice. For switchgrass, first evidence of cellulose II only occurred after 12 h of pretreatment at 120 °C. For eucalyptus, first evidence of cellulose II required more intense pretreatment (3 h at 160 °C). For pine, no clear evidence of cellulose II content was detected for the most intense pretreatment conditions of this study (12 h at 160 °C). Interestingly, the rate of enzymatic hydrolysis of Avicel was slightly lower for pretreatment at 160 °C compared with pretreatment at 120 °C. For the biomass samples, the hydrolysis rate was much greater for pretreatment at 160 °C compared with pretreatment

  14. Lyotropic, liquid crystalline nanostructures of aqueous dilutions of SMEDDS revealed by small-angle X-ray scattering: impact on solubility and drug release.

    Science.gov (United States)

    Goddeeris, Caroline; Goderis, Bart; Van den Mooter, Guy

    2010-05-12

    The present study was conducted to characterise the liquid crystalline phases that occur upon diluting a SMEDDS and to elucidate the role of these phases on drug solubilisation and release. Small-angle X-ray scattering (SAXS) was used to probe the structures in aqueous dilutions of 3 SMEDDS consisting of propylene glycol mono- and dicaprylate and mono- and dicaprate (PGDCDC) and d-alpha-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000), polysorbate 80 (P80) or polyoxyl 40 hydrogenated castor oil (P40HC). The scattering patterns revealed the formation of either a random periodic or a lamellar phase when 10% (w/w) water was added. All formulations exhibited lamellar structures at 20% (w/w) aqueous dilution, of which the layer-to-layer distance increased upon further addition of water. At 40% (w/w) water, a hexagonal or lamellar phase was formed, depending on the geometry of the surfactant. Temperature did not alter the phases formed. Incorporation of the drug UC 781 only slightly enlarged the characteristic dimensions of the liquid crystalline phases. Drug solubility decreased upon aqueous dilution, although 10% (w/w) dilutions of PGDCDC-P80 SMEDDS and PGDCDC-TPGS 1000 SMEDDS revealed a highly increased solubility as compared to the pure formulations. Drug release data revealed that UC 781 release could not be linked to the solubilisation capacity of the SMEDDS, but could be associated with the solubility of UC 781 in the phases formed at water concentrations above 10% (w/w).

  15. Mechanoresponsive change in photoluminescent color of rod-like liquid-crystalline compounds and control of molecular orientation on photoaligned layer

    Science.gov (United States)

    Kondo, Mizuho; Miura, Seiya; Okumoto, Kentaro; Hashimoto, Mayuko; Fukae, Ryohei; Kawatsuki, Nobuhiro

    2014-10-01

    In this paper, we reported novel liquid-crystalline luminophore that switches its photoluminescent color by mechanically grinding. Mechanochromic luminescence (MCL) is expected for mechanical sensor, cellular imaging, detection of microenvironmental changes, and optical memory. In this work, we focused on liquid-crystalline MCL compounds on alignment layer. Controlling the molecular alignment of MCL compounds with photoalignment layer have potential to succeed in functional MCL film such as polarized micropatterned MCL and directional detection of mechanical stimuli. Herein, we prepared asymmetric rodlike MCL compounds containing cyano- and pyridyl molecular terminal and explored their photoluminescence behavior under mechanical stimulus. The cyano terminated compound showed a nematic phase and tuned its photoluminescent color from green to yellow upon grinding, while the pyridyl-terminated compounds that show no mesophase changed its photoluminescent color from blue to green and reverted to its initial color by heating above its melting point. The cyano-terminated MCL was aligned along the orientation direction of photoalignment layer and pyridyl-terminated MCL exhibited uniaxial alignment when it coated on photoaligned film containing carboxylic acid.

  16. Soft-sphere model for liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.

    1977-11-08

    A semi-empirical soft-sphere model of fluids is modified for application to the thermodynamic properties of liquid metals. Enthalpy, volume, and sound speed are computed as functions of temperature for 13 metals and compared with experimental data. Critical points and coexistence curves are also computed and compared with experimental data, where these have been measured. Strengths and weaknesses of the model are discussed.

  17. Alpha B-crystallin improved survival of retinal ganglion cells in a rat model of acute ocular hypertension

    Institute of Scientific and Technical Information of China (English)

    Zhihong Wu; Layi Wang; Shike Hou

    2012-01-01

    Increased endogenous αB-crystallin protein levels have been shown to reduce cell apoptosis,although the effects of exogenous αB-crystallin protein remain poorly understood.The present study established an acute ocular hypertension model in the right eye of Sprague-Dawley rats.Fluorogold retrograde tracing and immunofluorescence methods showed that the number of retinal ganglion cells decreased in the right eyes and caspase-3 expression increased following acute ocular hypertension.Intravitreal injection of αB-crystallin in the right eye increased the number of retinal ganglion cells and reduced caspase-3 expression.Results demonstrated that exogenous αB-crystallin protein inhibited caspase-3 expression and improved retinal ganglion cell survival following acute ocular hypertension.

  18. Structural Features and the Anti-Inflammatory Effect of Green Tea Extract-Loaded Liquid Crystalline Systems Intended for Skin Delivery

    Directory of Open Access Journals (Sweden)

    Patricia Bento da Silva

    2017-01-01

    Full Text Available Camellia sinensis, which is obtained from green tea extract (GTE, has been widely used in therapy owing to the antioxidant, chemoprotective, and anti-inflammatory activities of its chemical components. However, GTE is an unstable compound, and may undergo reactions that lead to a reduction or loss of its effectiveness and even its degradation. Hence, an attractive approach to overcome this problem to protect the GTE is its incorporation into liquid crystalline systems (LCS that are drug delivery nanostructured systems with different rheological properties, since LCS have both fluid liquid and crystalline solid properties. Therefore, the aim of this study was to develop and characterize GTE-loaded LCS composed of polyoxypropylene (5 polyoxyethylene (20 cetyl alcohol, avocado oil, and water (F25E, F29E, and F32E with different rheological properties and to determine their anti-inflammatory efficacy. Polarized light microscopy revealed that the formulations F25, F29, and F32 showed hexagonal, cubic, and lamellar liquid crystalline mesophases, respectively. Rheological studies showed that F32 is a viscous Newtonian liquid, while F25 and F29 are dilatant and pseudoplastic non-Newtonian fluids, respectively. All GTE-loaded LCS behaved as pseudoplastic with thixotropy; furthermore, the presence of GTE increased the S values and decreased the n values, especially in F29, indicating that this LCS has the most organized structure. Mechanical and bioadhesive properties of GTE-unloaded and -loaded LCS corroborated the rheological data, showing that F29 had the highest mechanical and bioadhesive values. Finally, in vivo inflammation assay revealed that the less elastic and consistent LCS, F25E and F32E presented statistically the same anti-inflammatory activity compared to the positive control, decreasing significantly the paw edema after 4 h; whereas, the most structured and elastic LCS, F29E, strongly limited the potential effects of GTE. Thereby, the

  19. Two-dimensional modeling of the back amorphous-crystalline silicon heterojunction (BACH) photovoltaic device

    Science.gov (United States)

    Chowdhury, Zahidur R.; Chutinan, Alongkarn; Gougam, Adel B.; Kherani, Nazir P.; Zukotynski, Stefan

    2010-06-01

    Back Amorphous-Crystalline Silicon Heterojunction (BACH)1 solar cell can be fabricated using low temperature processes while integrating high efficiency features of heterojunction silicon solar cells and back-contact homojunction solar cells. This article presents a two-dimensional modeling study of the BACH cell concept. A parametric study of the BACH cell has been carried out using Sentaurus after benchmarking the software. A detailed model describing the optical generation is defined. Solar cell efficiency of 24.4% is obtained for AM 1.5 global spectrum with VOC of greater than 720 mV and JSC exceeding 40 mA/cm2, considering realistic surface passivation quality and other dominant recombination processes.

  20. Phase field modeling of grain structure evolution during directional solidification of multi-crystalline silicon sheet

    Science.gov (United States)

    Lin, H. K.; Lan, C. W.

    2017-10-01

    Evolution of grain structures and grain boundaries (GBs), especially the coincident site lattice GBs, during directional solidification of multi-crystalline silicon sheet are simulated by using a phase field model for the first time. Since the coincident site lattice GBs having lower mobility, tend to follow their own crystallographic directions despite thermal gradients, the anisotropic energy and mobility of GBs are considered in the model. Three basic interactions of GBs during solidification are examined and they are consistent with experiments. The twinning process for new grain formation is further added in the simulation by considering twin nucleation. The effect of initial distribution of GB types and grain orientations is also investigated for the twinning frequency and the evolution of grain size and GB types.

  1. Modeling liquid hydrogen cavitating flow with the full cavitation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.B.; Qiu, L.M.; Qi, H.; Zhang, X.J.; Gan, Z.H. [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-12-15

    Cavitation is the formation of vapor bubbles within a liquid where flow dynamics cause the local static pressure to drop below the vapor pressure. This paper strives towards developing an effective computational strategy to simulate liquid hydrogen cavitation relevant to liquid rocket propulsion applications. The aims are realized by performing a steady state computational fluid dynamic (CFD) study of liquid hydrogen flow over a 2D hydrofoil and an axisymmetric ogive in Hord's reports with a so-called full cavitation model. The thermodynamic effect was demonstrated with the assumption of thermal equilibrium between the gas phase and liquid phase. Temperature-dependent fluid thermodynamic properties were specified along the saturation line from the ''Gaspak 3.2'' databank. Justifiable agreement between the computed surface pressure, temperature and experimental data of Hord was obtained. Specifically, a global sensitivity analysis is performed to examine the sensitivity of the turbulent computations to the wall grid resolution, wall treatments and changes in model parameters. A proper near-wall model and grid resolution were suggested. The full cavitation model with default model parameters provided solutions with comparable accuracy to sheet cavitation in liquid hydrogen for the two geometries. (author)

  2. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle.

    Science.gov (United States)

    Sherif, Saly; Bendas, Ehab R; Badawy, Sabry

    2014-02-01

    Topical 5% alpha lipoic acid (ALA) has shown efficacy in treatment of photo-damaged skin. The aim of this work was to evaluate the potential of poloxamer (P407) gel as a vehicle for the novel lipid base particulate system (cubosome dispersions) of ALA. Cubosome dispersions were formulated by two different approaches, emulsification of glyceryl monoolein (GMO) and poloxamer (P407) in water followed by ultrasonication, and the dilution method using a hydrotrope. Three different concentrations of GMO were used to formulate the cubosome dispersions using the first method, 5% (D1), 10% (D2) and 15% w/w (D3). In the second technique an isotropic liquid was produced by combining GMO with ethanol, and this isotropic liquid was then diluted with a P407 solution (D4). The dispersions were characterized by zeta potential, light scattering techniques, optical and transmission electron microscopy, encapsulation efficiency and in vitro drug release. Results showed that D4 was not a uniform dispersion and that D1, D2 and D3 were uniform dispersions, in which by increasing the GMO content in the dispersion, the size of the cubosomes decreased, zeta potential became more negative, encapsulation efficiency increased up to 86.48% and the drug release rate was slower. P407 gels were prepared using the cold method. Two concentrations of P407 gel were fabricated, 20 and 30% w/w. P407 gels were loaded with either ALA or dispersions containing ALA cubosomes. P407 gels were characterized by critical gelation temperature, rheological measurements and in vitro drug release studies. Results suggested that by increasing P407 concentration, the gelation temperature decreases and viscosity increases. Drug release in both cases was found to follow the Higuchi square root model. Gel loaded with ALA cubosomes provided a significantly lower release rate than the gel loaded with the un-encapsulated ALA. A double blinded placebo controlled clinical study was conducted, aiming to evaluate the efficacy

  3. Synthesis and Their Liquid Crystalline Behavior of Y-Type Miktoarm Star Mesogen-jacketed Liquid Crystalline Copolymer%Y型星形杂臂甲壳型液晶聚合物的合成及其液晶行为研究

    Institute of Scientific and Technical Information of China (English)

    陈建芳; 凌爱华; 王霞瑜

    2011-01-01

    通过原子转移自由基聚合(ATRP)与ATRP衍生物化学修饰结合的方法,合成了含一条聚苯乙烯(Ps)臂、两条聚[乙烯基对苯二甲酸二(对甲氧基苯酚)酯](PMPCS)臂的Y型星形杂臂甲壳型液晶聚合物Ps(PMPCS)2.采用核磁共振谱(1H NMR)和凝胶渗透色谱(GPC)手段确定了聚合物的基本结构,所得聚合物为接近单分散的星形杂臂聚合物.采用热分析(DSC)、热台偏光显微镜(POM)和x衍射仪(WXAD)研究了此类星形杂臂共聚物的热致液晶行为.液晶性研究显示,其液晶性与刚性链段PMPCS的长度密切相关,只有当杂臂共聚物中刚性PMPCS链段达到一定长度后才出现液晶性.%Y-type miktoarm star Mesogen-jacketed liquid crystal copolymers carrying one polystyrene (PS)and two poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl] styrene } arms (PMPCS) were synthesized by combination of atom transfer radical polymerization (ATRP) and ATRP method of chemically modified derivatives. Their architectures were confirmed by GPC and 1H NMR spectroscopy. The liquid crystalline behavior of these copolymers was studied by DSC, POM and WXAD. Their liquid-crystalline phase intently depends on the molecular weights of the rigid rod arm of miktoarm star copolymers. The liquid-crystalline phase only appeared after a certain length of PMPCS.

  4. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo

    2011-09-01

    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  5. Dendronized Carbohydrates Ⅱ——Liquid Crystallinity Study%树状碳水化合物Ⅱ——液晶性的研究

    Institute of Scientific and Technical Information of China (English)

    杨柳林; 董炎明; 胡晓兰; 刘安华

    2012-01-01

    以基于单糖为内核,楔形液晶基元DOBOB酸(3,4,5-三[对-(十二烷氧基)苄氧基]苯甲酸)为分枝的树状碳水化合物液晶为研究对象,利用DSC、热台偏光显微镜、XRD和CD/UV光谱等手段研究该类化合物的液晶性.研究发现分枝的数目对该类化合物的液晶性有显著影响,以2-乙酰氨基葡萄糖为内核的包含四个分枝的树状分子具有最高的液晶结构有序性,清亮点也显著高于另两种单糖内核(含五个分枝)的树状分子.此外,该类碳水化合物液晶形成的液晶相都具备超分子手性,为探索碳水化合物手性液晶相提供了一条新的思路.%Liquid crystallinity of dendronized carbohydrate liquid crystals,which contain carbohydrate core and mesogen branches DOBOB(3,4,5-tris(p-dodecyloxybenzyloxy) benzoic acid),was studied by DSC,thermal polarized optical microscopy,XRD and CD/UV spectrum.The number of branches affects the liq-uid crystallinity significantly.Dendrimer that contains four branches has the highest liquid crystal structure order,and the clearing point is also higher than the other two dendrimers which contain five branches.Oth-erwise,supramolecular chirality is also expressed in the mesophase formed by these dendronized carbohy-drates,which may provide inspiration in searching for chiral mesophase of carbohydrate liquid crystals.

  6. Thermodynamic properties of chiral liquid crystalline material (S)-4-(2-methylbutyl)-4'-cyanobiphenyl (5*CB)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hal [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Inaba, Akira [Research Center for Molecular Thermodynamics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)], E-mail: inaba@chem.sci.osaka-u.ac.jp; Krawczyk, Jan; Massalska-Arodz, Maria [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)

    2008-08-15

    As a part of a project of clarifying the physical properties and dynamics of cyanobiphenyls with chiral molecules, thermodynamic properties of (S)-4-(2-methylbutyl)-4'-cyanobiphenyl (5*CB) were investigated by adiabatic calorimetry between T = (5 and 350) K. The complicated phase behaviour was solved and the thermodynamic functions were determined. A new glass transition was identified in the phase II (metastable crystal) at T = 105 K. No inversion of the stability between two crystalline phases was found, being contrary to the expectations from the previous neutron scattering studies.

  7. Desenvolvimento de sistemas líquido-cristalinos empregando silicone fluido de co-polímero glicol e poliéter funcional siloxano Development of liquid-crystalline systems using silicon glycol copolymer and polyether functional siloxane

    Directory of Open Access Journals (Sweden)

    Marlus Chorilli

    2009-01-01

    Full Text Available For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS and water (S1 and with diisopropyl adipate, PFS and water (S4 presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC, the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.

  8. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  9. Activated kinetics of the Crystalline to Nematic (K-N) and Nematic to Isotropic (N-I) phase transitions of Pentylcyanobiphenyl (5CB) liquid crystal

    Science.gov (United States)

    Sharma, Dipti

    2011-04-01

    Activated kinetics of the crystalline to Nematic (K-N) and the Nematic to Isotropic (N-I) phase transitions of the Pentylcyanobiphenyl (5CB) liquid crystal are discussed here. A kinetic comparison of the same types of transitions of other family member with higher number of carbon atoms i.e. Octylcyanobiphenyl (8CB) are also made to see the difference between the kinetic behavior of the above two transitions of the liquid crystals. Experiments were performed using high resolution calorimetric technique for heating and cooling runs. Two different scans i.e. Temperature scans and Rate scans were performed for 5CB and 8CB from 280 to 333 K at various rates to get the detailed behavior of the transitions. As a result, Double activation was observed for 5CB for two heating rate regimes whereas 8CB indicated single activation only. The 5CB has smaller enthalpy and entropy of the transitions and needs larger activation than 8CB. This kinetic change can be explained in terms of the length scale and mobility of the liquid crystal molecules.

  10. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  11. MODEL OF LASER INTERACTION WITH LIQUID DROPLET

    Directory of Open Access Journals (Sweden)

    K. N. Volkov,

    2016-09-01

    Full Text Available Subject of Research. A mathematical model of optical breakdown in the dielectric liquid droplets when exposed to pulsed laser radiation was developed. The process is considered in several stages: heating, evaporation of the particle, forming a steam halo, ionization of the steam halo. Numerical study was carried out on the basis of the mathematical model to determine the threshold characteristics of the laser pulse. Main Results.Distributions of pressure, density and temperature of the particle steam halo were obtained by means of a calculation. The temperature field around the liquid droplet was determined. It has been found that at high energies in the gas bubble, the conditions are provided for thermal gas ionization and start of the electron avalanche, leading to plasma formation. Due to the volumetric heat generation, the droplet is overheated and is in a metastable state. The plasma cloud is almost opaque to radiation that causes an abrupt increase of temperature. As a result, an explosion occurs inside the droplet with the formation of a shock wave that is propagating outward. Practical Relevance.The results can be used to assess the performance of high-power laser scanning (LIDAR under the presence of liquid droplets in the atmosphere and other suspensions. Lasers can be used in fire and explosion aerospace systems. Obtained findings can be applied also in the systems of laser ignition and detonation initiation.

  12. Selectively deuterated liquid crystalline cyanoazobenzene side-chain polyesters. 3. Investigations of laser induced segmental mobility by Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Kulinna, Christian; Hvilsted, Søren; Hendann, Claudia

    1998-01-01

    -line with the laser irradiation reveals that the alignment of the aliphatic segments arises simultaneously with the chromophore orientation. Temperature dependent infrared investigations of the laser-induced orientation shows that the preservation of the photoinduced anisotropy directly relates to the polyester phase......The laser-induced anisotropy in thin films of an extensive number of cyanoazobenzene sidechain liquid crystalline polytetradecanedioates, -dodecanedioates, and -adipates selectively deuterated at different positions have been investigated with polarized FTIR spectroscopy. The analysis...... spacer are preferentially oriented perpendicular to the laser light polarization. The extent of orientation increases with increasing spacer length. On the other hand, in the shorter adipates only the chromophore and the spacer are likewise oriented. Rapid-scan FTIR analysis performed on...

  13. EFFECT OF DRAWING ON MORPHOLOGY,STRUCTURE AND MECHANICAL PROPERTIES OF BLENDS OF A LIQUID CRYSTALLINE POLYMER AND MODIFIED POLY(PHENYLENE OXIDE)

    Institute of Scientific and Technical Information of China (English)

    LIU Songlin; SHEN Jingshu

    1997-01-01

    Polymer strands with various draw ratios of a thermotropic liquid crystalline polymer (LCP) and modified poly(phenylene oxide) were prepared by drawing the melts leaving a slit die in open air. The morphology, structure and mechanical properties of the resulting strands were studied as a function of LCP content and draw ratio. It was found that the thermal and mechanical properties of the matrix phase did not change dramatically with the amount of LCP and draw ratio, but the orientation of LCP phase could be increased with draw ratio. The mechanical properties of the strands could be improved by moderately drawing the melts. Wide angle X-ray diffraction suggested that the improvement in tenile strength of the strands was due to the resultant fibrillation of LCP phase and enhanced molecular orientation. Morphological observation indicated that excessive drawing of the strands could lead to the break down of the microfibrils of LCP and thus resulted in the decrease of mechanical strength.

  14. Metastable liquid-liquid transition in a molecular model of water

    Science.gov (United States)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  15. Correlation of liquid-liquid equilibria of non-ideal binary systems by NRTL model

    Directory of Open Access Journals (Sweden)

    Grozdanić Nikola D.

    2013-01-01

    Full Text Available Non Random Two Liquid model (NRTL with three different forms of temperature dependant parameters was used to correlate the liquid - liquid equilibrium data for systems of alcohols with alkanes, and alcohols with two ionic liquids: 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([bmmim][BF4] and 1-butyl-3-ethylimidazolium tetrafluoroborate ([beim][BF4]. Different temperature dependences of NRTL parameters were tested on thirteen literature experimental liquid - liquid equilibrium data for binary systems. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  16. 芳香族偶氮苯封端的液晶聚氨酯膜的制备及其液晶性能%Synthesis and Liquid Crystalline Properties of Liquid Crystalline Polyurethane Film with Aromatic Azo Benzene End Capping

    Institute of Scientific and Technical Information of China (English)

    吴宁; 赵殊; 王婧; 黄竹君

    2012-01-01

    以苯胺或对硝基苯胺为主要原料,经重氮偶合反应制得液晶基元对氨基偶氮苯(LC1)或对硝基偶氮苯胺( LC2),再用聚氨酯预聚体[由聚乙二醇(PEG400,含-OH)和二苯基甲烷二异氰酸酯(MDI,含-NCO)制得,r=n(-OH)∶n(-NCO)]封端合成了一系列偶氮液晶聚氨酯膜LCPU'1和LCPU'2,其结构和液晶性能经UV,IR,TGA,POM与XRD表征.结果表明,LCPU'1和LCPU'2为具有良好热稳定性的热致型向列型液晶聚氨酯.LCPU3/41的接触角较大,耐水性相对较佳,硬度也相对适中.%Aromatic azo benzene liquid crystalline units,LC,or LC2,were prepared by diazo coupling reaction from aniline or p-nitroaniline. A series of azo liquid crystalline polyurethane films ( LCPUr1 and LCPUr2) were synthesized by the end capping reaction of LC1 or LC2 with polyurethane prepolymer which were prepared by different ratio [ r = n ( -OH ) : n ( -NCO ) ] polyethylene glycol (PEG400,containing-OH) and 4,4'-diphenylmethane diisocyanate(MDI,containing-NCO). The structures and film properties of LC and LCPU were characterized by UV,IR,TGA,DSC,POM and XRD. The results indicated that LCPUr1 and LCPUr2 were thermotropic nematic liquid crystalline polyurethane and showed good thermal stability. LCPU3/41 exhibited a relatively modest value of static contact angle,the water resistance and hardness properties.

  17. Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules

    Energy Technology Data Exchange (ETDEWEB)

    Latheef, I.M.; Huckman, M.E.; Anthony, R.G.

    2000-05-01

    A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batch values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.

  18. Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant

    NARCIS (Netherlands)

    van Delden, RA; Huck, NPM; Feringa, BL; Delden, Richard A. van; Gelder, Marc B. van; Huck, Nina P.M.

    2003-01-01

    Using thin films of a cholesteric mixture of acrylates 2 and 3 doped with the chiroptical molecular switch (M)-trans-1, photo-control of the reflection color between red and green is possible. This doped liquid-crystal (LC) film can be used for photoinduced writing, color reading, and photoinduced l

  19. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagi Reddy, M.V.V. [Department of Physics, The Hindu College, Machilipatnam 521 001 (India); Pisipati, V.G.K.M., E-mail: venkata_pisipati@hotmail.co [Liquid Crystal Research Centre, Department of Electronics and Communication Engineering, Koneru Lakshmaiah University, Vaddeswaram 522 502 (India); Madhavi Latha, D. [Liquid Crystal Research Centre, Department of Electronics and Communication Engineering, Koneru Lakshmaiah University, Vaddeswaram 522 502 (India); Datta Prasad, P.V. [Department of Physics, The Hindu College, Machilipatnam 521 001 (India)

    2011-02-15

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with {alpha}T [thermal expansion coefficient ({alpha}) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: {yields} The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. {yields} The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. {yields} The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. {yields} These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  20. Compaction properties of crystalline pharmaceutical ingredients according to the Walker model and nanomechanical attributes.

    Science.gov (United States)

    Egart, M; Ilić, I; Janković, B; Lah, N; Srčič, S

    2014-09-10

    This study investigates the extent to which single-crystal mechanical properties of selected active ingredients (famotidine, nifedipine, olanzapine, piroxicam) influence their bulk compressibility and compactibility. Nanomechanical attributes of oriented single crystals were determined with instrumented nanoindentation, and bulk deformational properties were assessed with the Walker and Heckel models as well as the elastic relaxation index. Good correlations were established between bulk and single-crystal plasticity parameters: the Walker coefficient and indentation hardness. The Walker model showed more practical value for evaluating bulk deformational properties of the APIs investigated because their properties differed more distinctly compared to the Heckel model. In addition, it was possible to predict the elastic properties of the materials investigated at the bulk level because a correlation between the elastic relaxation index and compliance was established. The value of using indentation hardness for crystalline APIs was also confirmed because their compactibility at the bulk level was able to be predicted. Mechanically interlocked structures were characteristic of most polymorphic forms investigated, resulting in single crystals having isotropic mechanical properties. It was revealed that in such cases good correlations between single and bulk mechanical properties can be expected. The results imply that innate crystal deformational properties define their compressibility and compactibility properties to a great extent. Copyright © 2014. Published by Elsevier B.V.

  1. Terahertz vibrations of crystalline acyclic and cyclic diglycine: benchmarks for London force correction models.

    Science.gov (United States)

    Juliano, Thomas R; Korter, Timothy M

    2013-10-10

    Terahertz spectroscopy provides direct information concerning weak intermolecular forces in crystalline molecular solids and therefore acts as an excellent method for calibrating and evaluating computational models for noncovalent interactions. In this study, the low-frequency vibrations of two dipeptides were compared, acyclic diglycine and cyclic diglycine, as benchmark systems for gauging the performance of semiempirical London force correction approaches. The diglycine samples were investigated using pulsed terahertz spectroscopy from 10 to 100 cm(-1) and then analyzed using solid-state density functional theory (DFT) augmented with existing London force corrections, as well as a new parametrization (DFT-DX) based on known experimental values. The two diglycine molecules provide a useful test for the applied models given their similarities, but more importantly the differences in the intermolecular forces displayed by each. It was found that all of the considered London force correction models were able to generate diglycine crystal structures of similar accuracy, but considerable variation occurred in their abilities to predict terahertz frequency vibrations. The DFT-DX parametrization was particularly successful in this investigation and shows promise for the improved analysis of low-frequency spectra.

  2. Band transport model for discotic liquid crystals

    Science.gov (United States)

    Lever, L. J.; Kelsall, R. W.; Bushby, R. J.

    2005-07-01

    A theoretical model is presented for charge transport in discotic liquid crystals in which a charge is delocalized over more than one lattice site. As such, charge transport is via a banded conduction process in a narrow bandwidth system and takes place over coherent lengths of a few molecules. The coherent lengths are disrupted by the geometrical disorder of the system and are treated as being terminated by quantum tunnel barriers. The transmission probabilities at these barriers have been calculated as a function of the charge carrier energy. Phononic interactions are also considered and the charge carrier scattering rates are calculated for intermolecular and intramolecular vibrations. The results of the calculations have been used to develop a Monte Carlo simulation of the charge transport model. Simulated data are presented and used to discuss the nature of the tunnel barriers required to reproduce experimental data. We find that the model successfully reproduces experimental time of flight data including temperature dependence.

  3. Modelling liquid crystal elastomers and potential application as a reversibly switchable adhesive

    Science.gov (United States)

    Adams, James

    2013-03-01

    Liquid crystal elastomers (LCEs) are rubbery materials that composed of liquid crystalline polymers (LCPs) crosslinked into a network. The rod-like mesogens incorporated into the LCPs are have random orientations in the high temperature isotropic phase, but can adopt the canonical liquid crystalline phases as the temperature is lowered. Smectic liquid crystal elastomers have highly anisotropic mechanical behaviour. This arises in side chain smectic-A systems because the smectic layers behave as if they are embedded in the rubber matrix. The macroscopic mechanical behaviour of these solids is sensitive to the buckling of the layers, so is a multiscale problem. A coarse grained free energy that includes the fine-scale buckling of the layers has been developed, which enables continuum modelling of these systems. In the first part of this talk I present a model of the mechanical behaviour of side chain smectic elastomers. The properties of nematic LCEs, such as their high loss tangent, and mechanical strain hardening, might enable them to be used as reversibly switchable pressure sensitive adhesive (PSA). PSAs are typically made from viscoelastic polymers. The quality of their adhesion can be measured by the tack energy, which is the work required to separate two bodies. To obtain a high tack energy a PSA should be capable of a large strain. It should strain soften at low strain to produce crack blunting, and then strain harden at high strain to stiffen the fibrils formed late in the debonding process. I will present a model of the tack energy of weakly crosslinked nematic polymers. To describe the constitutive properties of this system the nematic dumbbell model of Maffettone et al. was used. This constutitive model was then combined with the block model of Yamaguchi et al. describing PSAs. It was found that the parallel orientation of the nematic has a higher tack energy than both the isotropic and the perpendicular director orientation. This work is supported by

  4. Management of posteriorly dislocated crystalline lens with perfluorocarbon liquid and fibrin glue-assisted scleral-fixated intraocular lens implantation.

    Science.gov (United States)

    Lee, Soo Jung; Kim, In Geun; Park, Jung Min

    2013-03-01

    We describe a technique that uses a 23-gauge transconjunctival sutureless vitrectomy with perfluorocarbon liquid (PFCL) and phacoemulsification to manage a dropped nucleus. The PFCL is injected into the vitreous space until the dislocated lens reaches the iris plane and is then removed using phacoemulsification in the anterior chamber. After intraocular lens (IOL) implantation, a 23-gauge forceps is passed through the sclerotomy to grasp the IOL haptic, which is pulled onto the ocular surface. Tunnels are made at the edge of the flap with a 26-gauge needle into which the 2 haptics are tucked for additional stability. The scleral flaps and conjunctiva are then glued using biological glue. Perfluorocarbon liquid reduces lens repulsion and blocks the transmission of the ultrasound stream to the retina. The fibrin glue-assisted sutureless IOL implantation technique could reduce complications and suture-related problems.

  5. Electro-optic properties of nematic and ferroelectric liquid crystalline nanocolloids doped with partially reduced graphene oxide

    Science.gov (United States)

    Lapanik, Valeri; Timofeev, Sergei; Haase, Wolfgang

    2016-02-01

    Flakes of partially reduced graphene oxide (PRGO) were doped in nematic liquid crystals (NLCs) and ferroelectric liquid crystals (FLCs), respectively. The dielectric and electro-optical properties of NLCs doped with those flakes have been investigated. Threshold voltage and switching times are reduced by 30%-50%. This is primarily due to the decrease of the elastic properties of the nanocolloids compared to the non-doped nematics. The influence of the PRGO flakes on the spontaneous polarization, tilt angle and switching time of FLCs was investigated too. Such flakes reduce the response time by 40%-60%, increases spontaneous polarization by 20%-25% and increase the tilt angle by 15%-20%.

  6. Geothermal modelling of faulted metamorphic crystalline crust: a new model of the Continental Deep Drilling Site KTB (Germany)

    Science.gov (United States)

    Szalaiová, Eva; Rabbel, Wolfgang; Marquart, Gabriele; Vogt, Christian

    2015-11-01

    The area of the 9.1-km-deep Continental Deep Drillhole (KTB) in Germany is used as a case study for a geothermal reservoir situated in folded and faulted metamorphic crystalline crust. The presented approach is based on the analysis of 3-D seismic reflection data combined with borehole data and hydrothermal numerical modelling. The KTB location exemplarily contains all elements that make seismic prospecting in crystalline environment often more difficult than in sedimentary units, basically complicated tectonics and fracturing and low-coherent strata. In a first step major rock units including two known nearly parallel fault zones are identified down to a depth of 12 km. These units form the basis of a gridded 3-D numerical model for investigating temperature and fluid flow. Conductive and advective heat transport takes place mainly in a metamorphic block composed of gneisses and metabasites that show considerable differences in thermal conductivity and heat production. Therefore, in a second step, the structure of this unit is investigated by seismic waveform modelling. The third step of interpretation consists of applying wavenumber filtering and log-Gabor-filtering for locating fractures. Since fracture networks are the major fluid pathways in the crystalline, we associate the fracture density distribution with distributions of relative porosity and permeability that can be calibrated by logging data and forward modelling of the temperature field. The resulting permeability distribution shows values between 10-16 and 10-19 m2 and does not correlate with particular rock units. Once thermohydraulic rock properties are attributed to the numerical model, the differential equations for heat and fluid transport in porous media are solved numerically based on a finite difference approach. The hydraulic potential caused by topography and a heat flux of 54 mW m-2 were applied as boundary conditions at the top and bottom of the model. Fluid flow is generally slow and

  7. Mesomorphic ionic hyperbranched polymers: effect of structural parameters on liquid-crystalline properties and on the formation of gold nanohybrids

    Science.gov (United States)

    Nguyen, Hong Hanh; Serrano, Clara Valverde; Lavedan, Pierre; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Viguerie, Nancy Lauth-De; Marty, Jean-Daniel

    2014-03-01

    Branched thermotropic liquid crystals were successfully obtained from ionic interactions between hyperbranched polyamidoamine and sodium dodecylsulfate. These complexes present columnar rectangular and lamellar thermotropic mesophases as demonstrated by polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering. The relationships between the structural characteristics of the polymers (size of the hyperbranched core, hyperbranched or dendritic nature of the core, and substitution ratio) and the mesomorphic properties were studied. In situ formation of gold nanoparticles was then performed. The templating effect of the liquid crystal mesophase resulted in the formation of isotropic nanoparticles, the size of which was dictated by the local organization of the mesophase and by the molar mass of the hyperbranched complex.Branched thermotropic liquid crystals were successfully obtained from ionic interactions between hyperbranched polyamidoamine and sodium dodecylsulfate. These complexes present columnar rectangular and lamellar thermotropic mesophases as demonstrated by polarized optical microscopy, differential scanning calorimetry, and small-angle X-ray scattering. The relationships between the structural characteristics of the polymers (size of the hyperbranched core, hyperbranched or dendritic nature of the core, and substitution ratio) and the mesomorphic properties were studied. In situ formation of gold nanoparticles was then performed. The templating effect of the liquid crystal mesophase resulted in the formation of isotropic nanoparticles, the size of which was dictated by the local organization of the mesophase and by the molar mass of the hyperbranched complex. Electronic supplementary information (ESI) available: NMR, DSC, POM and SAXS data for hyperbranched complexes and associated hybrids. See DOI: 10.1039/c3nr05913h

  8. Beyer’s non-linearity parameter ( B/ A) in benzylidene aniline Schiff base liquid crystalline systems

    Science.gov (United States)

    Nagi Reddy, M. V. V.; Pisipati, V. G. K. M.; Madhavi Latha, D.; Datta Prasad, P. V.

    2011-02-01

    The non-linearity parameter B/ A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO. m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/ A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number ( n+ m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient ( α) and temperature ( T)] and sound velocity ( u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials.

  9. Gemini型表面活性剂在离子液体中构筑的溶致液晶%Lyotropic liquid crystalline phases formed by Gemini surfactants in anionic liquid

    Institute of Scientific and Technical Information of China (English)

    宋冰蕾; 陈涛; 田金年; 裴晓梅; 孟丽

    2015-01-01

    通过差示扫描量热仪(DSC)、X 射线衍射仪(XRD)、热台偏光显微镜(POM)和红外光谱仪等手段研究了Gemini表面活性剂在硝酸乙基铵(EAN)中构筑的溶致液晶体系(lyotropic liquid crystal,LLc)的性质.结果表明,在液晶区内,所形成的溶致液晶均为层状介晶A相(SmA),且EAN主要存在于液晶相分子层的极性亚层中;液晶相稳定存在的温度区间随Gemini表面活性剂的浓度、尾链长度的增加而变大,随联接链的增加表现出先增大再减小的趋势;羟基削弱了离子头基与反离子间的相互作用,进而缩小了液晶相稳定存在的温度区间.%The lyotropic liquid crystals formed by Gemini surfactants in ethyl ammonium nitrate (EAN) were investigated by differential scanning calorimetry(DSC),X ray diffractometer(XRD),polarizing microscope(POM) equipped with a hot stage and FTIR. All the surfactants form smectic A phase(SmA) in liquid crystalline region. The EAN molecules mainly exist in the polar sublayers of liquid crystals. The temperature ranges of liquid crystal phase increase with increasing Gemini surfactant alkyl chain length while show maximum with the increase of spacer length. The hydroxyl groups decrease the interactions between the ionic head groups and counterions. The temperature range of liquid crystal state is thus narrowed.

  10. The Performance Analysis of the Supramolecular Liquid-Crystalline Polymers Based on Weak Intermolecular Force%弱分子间力超分子液晶性能的分析

    Institute of Scientific and Technical Information of China (English)

    康永

    2012-01-01

    Supramolecular liquid crystalline is a various supramolecular liquid crystalline composite system, and it is constructed by the weaker intermolecular interaction of the hydrogen bonding, ion interac- tion, charge transfer interaction, hydrophobic interaction and Vander Waal's force and so on. It possesses dynamic functionality of the transmissibility of the quality or charge, the information stored func- tions, molecular sensing, environmentally friendly character and low energy consumption processability. The factors affecting the performance of supramolecular liquid crystalline are analyzed and researched, and the classification of the supramolecular liquid crystalline is introduced.%超分子液晶是利用氢键、离子相互作用、电荷转移相互作用、疏水相互作用及范德华力等弱分子间相互作用构筑的多种超分子液晶复合体系。超分子液晶复合体系具有质量或电荷传输性、传递性、信息储存功能、分子传感等动态功能性、环境友好性及低能耗加工性等特点。对超分子液晶的性能影响因素进行了深入分析与研究,并对超分子液晶分类进行了介绍。

  11. Combined main-chain/side-chain ionic liquid crystalline polymer based on ‘jacketing’ effect: Design, synthesis, supra-molecular self-assembly and photophysical properties

    Directory of Open Access Journals (Sweden)

    L. Weng

    2015-06-01

    Full Text Available Reasonably fabricating ordered structures of ionic polymers is very important for the development of novel functional materials. By combining the ions and liquid cry stalline polymer, we successfully designed and synthesized a series of novel combined main-chain/side-chain ionic liquid crystalline polymer (MCSC-ILCPs containing imidazolium groups and different counter-anions, poly (2,5-bis{[6-(4-butoxy-4'-imidazolium biphenylhexyl]oxycarbonyl}styrene salts poly(BImBHCS-X with the following types of counter-anions (Br¯, BF4¯, PF6¯ and TFSI¯. Combined technologies confirmed the chemical structures of the monomers and polymers with imidazolium cation and different counter-anions. Differential scanning calorimetry (DSC, polarized light microscopy (PLM and one- and two-dimensional wide-angle X-ray diffraction (1D and 2D WAXD results illustrated that the LC structures and the transitions of ordered structures depended on the nature of the counter-anion employed. The polymers with Br¯ and BF4¯ counter-anions exhibited smectic A (SmA LC behavior below the isotropic temperature. The another one, poly(BImBHCS–TFSI with the large volume of the TFSI¯ anion destroyed the packing of the LC ordered structure resulting in an amorphous structure. The photophysical properties of the polymers prepared can be adjusted by tuning the ionic interaction of the polymers by switching the counter-anion.

  12. Photoinduced dichroism and optical anisotropy in a liquid-crystalline azobenzene side chain polymer caused by anisotropic angular distribution of trans and cis isomers

    Science.gov (United States)

    Blinov, Lev M.; Kozlovsky, Mikhail V.; Ozaki, Masanori; Skarp, Kent; Yoshino, Katsumi

    1998-10-01

    Photochromism has been studied for two comb-like liquid-crystalline copolymers (I) and (II) containing azobenzene chromophores in their side chains. In a smectic glass phase of both copolymers, upon short-time irradiation by UV light, long-living cis isomers are observed. Both copolymers manifest the photoinduced anisotropy, the physical mechanisms of which seem to be quite different. In spin-coated films of polymer (II), the origin of the anisotropy is a strong stable dichroism, which is due to an enrichment and depletion of the chosen angular direction, correspondingly, with trans and cis isomers of the azobenzene chromophores. Polymer (I) manifests no dichroism at all, and its induced optical anisotropy may be accounted for by a rather slow chromophore reorientation. In copolymer (II) a considerable reorientation of the mesogenic groups also occurs as a secondary phenomenon at the stage of the cis isomer formation only. This observation shed more light on the general process of the light-induced molecular reorientation in polymers, liquid crystals, and Langmuir-Blodgett films, which is of great importance for holographic information recording.

  13. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    Science.gov (United States)

    Dessirier, B.; Frampton, A.; Fransson, Å.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  14. Modeling of closed-loop recycling liquid-liquid chromatography: Analytical solutions and model analysis.

    Science.gov (United States)

    Kostanyan, Artak E

    2015-08-07

    In closed-loop recycling (CLR) chromatography, the effluent from the outlet of a column is directly returned into the column through the sample feed line and continuously recycled until the required separation is reached. To select optimal operating conditions for the separation of a given feed mixture, an appropriate mathematical description of the process is required. This work is concerned with the analysis of models for the CLR separations. Due to the effect of counteracting mechanisms on separation of solutes, analytical solutions of the models could be helpful to understand and optimize chromatographic processes. The objective of this work was to develop analytical expressions to describe the CLR counter-current (liquid-liquid) chromatography (CCC). The equilibrium dispersion and cell models were used to describe the transport and separation of solutes inside a CLR CCC column. The Laplace transformation is applied to solve the model equations. Several possible CLR chromatography methods for the binary and complex mixture separations are simulated.

  15. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes

    Science.gov (United States)

    Chua, Y. Z.; Young-Gonzales, A. R.; Richert, R.; Ediger, M. D.; Schick, C.

    2017-07-01

    Physical vapor deposition has been used to prepare glasses of ethanol. Upon heating, the glasses transformed into the supercooled liquid phase and then crystallized into the plastic crystal phase. The dynamic glass transition of the supercooled liquid is successfully measured by AC nanocalorimetry, and preliminary results for the plastic crystal are obtained. The frequency dependences of these dynamic glass transitions observed by AC nanocalorimetry are in disagreement with conclusions from previously published dielectric spectra of ethanol. Existing dielectric loss spectra have been carefully re-evaluated considering a Debye peak, which is a typical feature in the dielectric loss spectra of monohydroxy alcohols. The re-evaluated dielectric fits reveal a prominent dielectric Debye peak, a smaller and asymmetrically broadened peak, which is identified as the signature of the structural α-relaxation and a Johari-Goldstein secondary relaxation process. This new assignment of the dielectric processes is supported by the observation that the AC nanocalorimetry dynamic glass transition temperature, Tα, coincides with the dielectric structural α-relaxation process rather than the Debye process. The combined results from dielectric spectroscopy and AC nanocalorimetry on the plastic crystal of ethanol suggest the occurrence of a Debye process also in the plastic crystal phase.

  16. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J

    2013-01-01

    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  17. Mesomorphous structure change by tail chain number in ionic liquid crystalline complexes of linear polymer and amphiphiles

    Institute of Scientific and Technical Information of China (English)

    Zhi Yu Cheng; Bi Ye Ren; Shu Ying He; Xin Xing Liu; Zhen Tong

    2011-01-01

    Three polymer-amphiphile complexes were prepared by combining poly(allylamine hydrochloride) (PAH) with the potassium salt of mono-, di-, and trisubstituted benzoic acid dendrons (4-octyloxybenzoic acid, 3,5-dioctyloxybenzoic acid, and 3,4,5-trioctyloxybenzoic acid). The solid structure and properties were monitored with FT-IR, XRD, TG, DSC, and polarized optical microscope (POM). Difference in the tail chain number of the dendritic amphiphile induced two different mesomorphous structures: lamella for the mono-, disubstituted dendron containing complexes and hexagonal column for the trisubstituted dendron containing complexes. These corresponded to the ionic thermotropic liquid crystal SmA and φh phases, respectively. This finding is significant for design of functional nanostructures based on the ionic complexation of polymers and amphiphiles.

  18. Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams.

    Science.gov (United States)

    Hrozhyk, Uladzimir A; Serak, Svetlana V; Tabiryan, Nelson V; Hoke, Landa; Steeves, Diane M; Kimball, Brian R

    2010-04-12

    This study compares optical switching capabilities of liquid crystal (LC) materials based on different classes of azobenzene dyes. LCs based on molecules containing benzene rings with nearly symmetrical pi-pi conjugation respond more efficiently to a cw beam than to a nanosecond laser pulse and maintain the changes induced by the beam for tens of hours. Using azo dye molecules containing two benzene rings with push-pull pi-pi conjugation we demonstrate high photosensitivity to both a cw beam as well as nanosecond laser pulse with only 1 s relaxation of light-induced changes in material properties. Even faster, 1 ms restoration time is obtained for azo dye molecules containing hetaryl (benzothiazole) ring with enhanced push-pull pi-pi conjugation. These materials respond most efficiently to pulsed excitation while discriminating cw radiation.

  19. Generalized breakup and coalescence models for population balance modelling of liquid-liquid flows

    CERN Document Server

    Traczyk, Marcin; Thompson, Chris

    2015-01-01

    Population balance framework is a useful tool that can be used to describe size distribution of droplets in a liquid-liquid dispersion. Breakup and coalescence models provide closures for mathematical formulation of the population balance equation (PBE) and are crucial for accu- rate predictions of the mean droplet size in the flow. Number of closures for both breakup and coalescence can be identified in the literature and most of them need an estimation of model parameters that can differ even by several orders of magnitude on a case to case basis. In this paper we review the fundamental assumptions and derivation of breakup and coalescence ker- nels. Subsequently, we rigorously apply two-stage optimization over several independent sets of experiments in order to identify model parameters. Two-stage identification allows us to estab- lish new parametric dependencies valid for experiments that vary over large ranges of important non-dimensional groups. This be adopted for optimization of parameters in breakup...

  20. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.