WorldWideScience

Sample records for model linking nasa

  1. Linking Formal and Informal Science Education: A Successful Model using Libraries, Volunteers and NASA Resources

    Science.gov (United States)

    Race, M. S.; Lafayette Library; Learning Center Foundation (Lllcf)

    2011-12-01

    In these times of budget cuts, tight school schedules, and limited opportunities for student field trips and teacher professional development, it is especially difficult to expose elementary and middle school students to the latest STEM information-particularly in the space sciences. Using our library as a facilitator and catalyst, we built a volunteer-based, multi-faceted, curriculum-linked program for students and teachers in local middle schools (Grade 8) and showcased new astronomical and planetary science information using mainly NASA resources and volunteer effort. The project began with the idea of bringing free NASA photo exhibits (FETTU) to the Lafayette and Antioch Libraries for public display. Subsequently, the effort expanded by adding layers of activities that brought space and science information to teachers, students and the pubic at 5 libraries and schools in the 2 cities, one of which serves a diverse, underserved community. Overall, the effort (supported by a pilot grant from the Bechtel Foundation) included school and library based teacher workshops with resource materials; travelling space museum visits with hands-on activities (Chabot-to-Go); separate powerpoint presentations for students and adults at the library; and concurrent ancillary space-related themes for young children's programs at the library. This pilot project, based largely on the use of free government resources and online materials, demonstrated that volunteer-based, standards-linked STEM efforts can enhance curriculum at the middle school, with libraries serving a special role. Using this model, we subsequently also obtained a small NASA-Space Grant award to bring star parties and hand-on science activities to three libraries this Fall, linking with numerous Grade 5 teachers and students in two additional underserved areas of our county. It's not necessary to reinvent the wheel, you just collect the pieces and build on what you already have.

  2. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  3. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  4. The space exploration team inquiry model: linking NASA to urban education initiatives

    Science.gov (United States)

    Shope, R. E., III; Chapman, L.

    2001-01-01

    This paper describes how two different NASA programs, one funded by the Office of Space Science, the other by the Office of Equal Opportunity, teamed up with an outstanding high school science teacher to produce effective strategies to teach space science to inner city Latino high school students.

  5. Response model parameter linking

    NARCIS (Netherlands)

    Barrett, Michelle Derbenwick

    2015-01-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require

  6. Publishing NASA Metadata as Linked Open Data for Semantic Mashups

    Science.gov (United States)

    Wilson, Brian; Manipon, Gerald; Hua, Hook

    2014-05-01

    Data providers are now publishing more metadata in more interoperable forms, e.g. Atom or RSS 'casts', as Linked Open Data (LOD), or as ISO Metadata records. A major effort on the part of the NASA's Earth Science Data and Information System (ESDIS) project is the aggregation of metadata that enables greater data interoperability among scientific data sets regardless of source or application. Both the Earth Observing System (EOS) ClearingHOuse (ECHO) and the Global Change Master Directory (GCMD) repositories contain metadata records for NASA (and other) datasets and provided services. These records contain typical fields for each dataset (or software service) such as the source, creation date, cognizant institution, related access URL's, and domain and variable keywords to enable discovery. Under a NASA ACCESS grant, we demonstrated how to publish the ECHO and GCMD dataset and services metadata as LOD in the RDF format. Both sets of metadata are now queryable at SPARQL endpoints and available for integration into "semantic mashups" in the browser. It is straightforward to reformat sets of XML metadata, including ISO, into simple RDF and then later refine and improve the RDF predicates by reusing known namespaces such as Dublin core, georss, etc. All scientific metadata should be part of the LOD world. In addition, we developed an "instant" drill-down and browse interface that provides faceted navigation so that the user can discover and explore the 25,000 datasets and 3000 services. The available facets and the free-text search box appear in the left panel, and the instantly updated results for the dataset search appear in the right panel. The user can constrain the value of a metadata facet simply by clicking on a word (or phrase) in the "word cloud" of values for each facet. The display section for each dataset includes the important metadata fields, a full description of the dataset, potentially some related URL's, and a "search" button that points to an Open

  7. NASA 3D Models: Aquarius

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquarius is making NASA's first space-based global observations of ocean surface salinity, flying 657 kilometers (408 miles) above Earth in a sun-synchronous polar...

  8. NASA 3D Models: Aqua

    Data.gov (United States)

    National Aeronautics and Space Administration — Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water...

  9. NASA 3D Models: Cassini

    Data.gov (United States)

    National Aeronautics and Space Administration — Cassini spacecraft from SPACE rendering package, built by Michael Oberle under NASA contract at JPL. Includes orbiter only, Huygens probe detached. Accurate except...

  10. NASA 3D Models: Terra

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA launched the Earth Observing System's flagship satellite Terra, named for Earth, on December 18, 1999. Terra has been collecting data about Earth's changing...

  11. NASA 3D Models: TRMM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study...

  12. NASA 3D Models: SORCE

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar Radiation and Climate Experiment (SORCE) is a NASA-sponsored satellite mission that is providing state-of-the-art measurements of incoming x-ray,...

  13. Development of NASA's Models and Simulations Standard

    Science.gov (United States)

    Bertch, William J.; Zang, Thomas A.; Steele, Martin J.

    2008-01-01

    From the Space Shuttle Columbia Accident Investigation, there were several NASA-wide actions that were initiated. One of these actions was to develop a standard for development, documentation, and operation of Models and Simulations. Over the course of two-and-a-half years, a team of NASA engineers, representing nine of the ten NASA Centers developed a Models and Simulation Standard to address this action. The standard consists of two parts. The first is the traditional requirements section addressing programmatics, development, documentation, verification, validation, and the reporting of results from both the M&S analysis and the examination of compliance with this standard. The second part is a scale for evaluating the credibility of model and simulation results using levels of merit associated with 8 key factors. This paper provides an historical account of the challenges faced by and the processes used in this committee-based development effort. This account provides insights into how other agencies might approach similar developments. Furthermore, we discuss some specific applications of models and simulations used to assess the impact of this standard on future model and simulation activities.

  14. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  15. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  16. The NASA environmental models of Mars

    Science.gov (United States)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  17. Using NASA UAVSAR Datasets to Link Soil Moisture to Crop Conditions

    Science.gov (United States)

    Davitt, A. W. D.; McDonald, K. C.; Azarderakhsh, M.; Winter, J.

    2015-12-01

    California and The Central Valley are experiencing one of that region's worst, persistent droughts, which represents the continuation of a prolonged drought that started in the early 2000's. Due to the continued drought, many agricultural regions in The Central Valley have been experiencing water shortages, negatively impacting agricultural production and the socio-economics of the region. Due to these impacts, there has been an increased incentive to find new ways to conserve water for use in irrigation. Recent advances in remote sensing techniques provide the ability for end users to better understand field conditions so they may make more informed decisions on irrigation timing and amounts. However, a good understanding of soil moisture and its role in crop health and yield is lacking to support informed water management decisions. Though known to be important, a robust understanding of the role of the spatio-temporal patterns in soil moisture linked to crop health is lacking. Remote sensing platforms such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provide the capacity to obtain within-field measurements to estimate within-field and field-to-field variability in soil moisture. UAVSAR radar images acquired from 2010 to 2014 for Yolo County, California are being examined to determine the suitability of high resolution (field scale) multi-temporal L-band radar backscatter imagery for soil moisture assessment and crop conditions through the growing season. By using such data and linking to in-situ meteorology measurements, modeling (MIMICS), and other remote sensing derived datasets (Sentinel, Landsat, MODIS, and TOPS-SIMS), an integrated monitoring system can potentially support the assessment of agricultural field conditions. This allows growers to optimize the use of limited water supplies through informed water management practices, potentially improving crop conditions and yield in a water stressed region.

  18. The link between aerospace industry and NASA during the Apollo years

    Science.gov (United States)

    Turcat, Nicolas

    2008-01-01

    Made in the frame of a French master on political history of USA in Paris IV La Sorbonne University, this subject is the third part of " The Economy of Apollo during the 60s". Nicolas Turcat is actually preparing his PhD in History of Innovation (DEA—Paris IV La Sorbonne). Our actual subject is " the link between aerospace industry and NASA during the Apollo years". This speech will highlight on some aspects of the link between NASA and aerospace industry. NASA could achieve the Apollo mission safely and under heavy financial pressure during the sixties due to a new type of organization for a civil agency; the contractor system. In fact, Military used it since the 1950s. And we will see how the development of this type of contract permitted a better interaction between the two parts. NASA would make another type of link with universities and technical institutes; a real brain trust was created, and between 1961 and 1967, 10,000 students worked and more than 200 universities on Apollo program. We will try to study briefly the procurement plan and process during the Apollo years. Without entering the " spin-offs debate", we will try to watch different aspects of the impacts and realities of the contractor and subcontractor system. We will see that would create a political debate inside USA when presidents Johnson and Nixon would decide to reduce Apollo program. Which states will benefit Apollo program? Or questions like how the debate at the end of the 1960s will become more and more political? Actually, almost 60% of the country's R&D was focused on Apollo, economical and moreover, political impacts would be great. We will try to study this under the light of different example: and particularly in California. The industrial and military complex was a part of the Apollo program. Apollo reoriented the aim of this complex for making it the first aerospace industry. Since this time, USA had not only acquired space ambition but real space capabilities. But more than

  19. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    Science.gov (United States)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  20. NASA 3D Models: QuikSCAT

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Quick Scatterometer (QuikSCAT) is equipped with a specialized microwave radar that measures near-surface wind speed and direction under all weather and cloud...

  1. NASA 3D Models: Landsat 7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Since 1972, Landsat satellites have...

  2. NASA Handbook for Models and Simulations: An Implementation Guide for NASA-STD-7009

    Science.gov (United States)

    Steele, Martin J.

    2013-01-01

    The purpose of this Handbook is to provide technical information, clarification, examples, processes, and techniques to help institute good modeling and simulation practices in the National Aeronautics and Space Administration (NASA). As a companion guide to NASA-STD- 7009, Standard for Models and Simulations, this Handbook provides a broader scope of information than may be included in a Standard and promotes good practices in the production, use, and consumption of NASA modeling and simulation products. NASA-STD-7009 specifies what a modeling and simulation activity shall or should do (in the requirements) but does not prescribe how the requirements are to be met, which varies with the specific engineering discipline, or who is responsible for complying with the requirements, which depends on the size and type of project. A guidance document, which is not constrained by the requirements of a Standard, is better suited to address these additional aspects and provide necessary clarification. This Handbook stems from the Space Shuttle Columbia Accident Investigation (2003), which called for Agency-wide improvements in the "development, documentation, and operation of models and simulations"' that subsequently elicited additional guidance from the NASA Office of the Chief Engineer to include "a standard method to assess the credibility of the models and simulations."2 General methods applicable across the broad spectrum of model and simulation (M&S) disciplines were sought to help guide the modeling and simulation processes within NASA and to provide for consistent reporting ofM&S activities and analysis results. From this, the standardized process for the M&S activity was developed. The major contents of this Handbook are the implementation details of the general M&S requirements ofNASA-STD-7009, including explanations, examples, and suggestions for improving the credibility assessment of an M&S-based analysis.

  3. Packet radio data link applications in the NASA Langley Research Center Transport Systems Research Vehicle

    Science.gov (United States)

    Easley, Wesley C.; Carter, Donald; Mcluer, David G.

    1994-01-01

    An amateur packet radio system operating in the very high frequency (VHF) range has been implemented in the Transport Systems Research Vehicle at the NASA Langley Research Center to provide an economical, bidirectional, real-time, ground-to-air data link. The packet system has been used to support flight research involving air traffic control (ATC), differential global positioning systems (DGPS), and windshear terminal doppler weather radar (TDWR). A data maximum rate of 2400 baud was used. Operational reliability of the packet system has been very good. Also, its versatility permits numerous specific configurations. These features, plus its low cost, have rendered it very satisfactory for support of data link flight experiments that do not require high data transfer rates.

  4. Linking the GLOBE Program With NASA and NSF Large-Scale Experiments

    Science.gov (United States)

    Filmer, P. E.

    2005-12-01

    NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component

  5. Reconceptualizing the Linked Courses Model

    Science.gov (United States)

    Baxter, Mary

    2008-01-01

    To help students meet the demands of society, the University of Houston is using the framework of learning communities and constructivism to create a cross-disciplinary approach to teaching to provide media-rich thematically linked courses to engage a diverse student population. A case study investigated three semesters of thematically linked…

  6. The Role of the NASA Global Hawk Link Module as an Information Nexus For Atmospheric Mapping Missions

    Science.gov (United States)

    Sullivan, D. V.

    2015-01-01

    The Link Module described in this paper was developed for the NASA Uninhabited Aerial System (UAS) Global Hawk Pacific Mission (GloPAC) Airborne Science Campaign; four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). It was used again during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link Module negotiated all communication over the high bandwidth Ku satellite link, archived all the science data from onboard experiments in a spatially enabled database, routed command and control of the instruments from the Global Hawk Operations Center, and re-transmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. The Link Module NG now being flown in support of the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (A TTREX) mission, has advanced data fusion technologies that are further advancing the Scientific productivity, flexibility and robustness of these systems. On-the-fly traffic shaping has been developed to allow the high definition video, used for critical flight control segments, to dynamically allocate variable bandwidth on demand. Historically, the Link Module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990' s. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the answer to the challenges imposed by extremely

  7. NASA 3D Models: Cassini Assembly

    Data.gov (United States)

    National Aeronautics and Space Administration — Includes orbiter from CAD models. Accurate (to a fault) except no thermal blanketing is shown (this would cover most of the central structure of the spacecraft)....

  8. Fingernail Injuries and NASA's Integrated Medical Model

    Science.gov (United States)

    Kerstman, Eric; Butler, Doug

    2008-01-01

    The goal of space medicine is to optimize both crew health and performance. Currently, expert opinion is primarily relied upon for decision-making regarding medical equipment and supplies flown in space. Evidence-based decisions are preferred due to mass and volume limitations and the expense of space flight. The Integrated Medical Model (IMM) is an attempt to move us in that direction!

  9. Development of the NASA Digital Astronaut Project Muscle Model

    Science.gov (United States)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  10. Link mining models, algorithms, and applications

    CERN Document Server

    Yu, Philip S; Faloutsos, Christos

    2010-01-01

    This book presents in-depth surveys and systematic discussions on models, algorithms and applications for link mining. Link mining is an important field of data mining. Traditional data mining focuses on 'flat' data in which each data object is represented as a fixed-length attribute vector. However, many real-world data sets are much richer in structure, involving objects of multiple types that are related to each other. Hence, recently link mining has become an emerging field of data mining, which has a high impact in various important applications such as text mining, social network analysi

  11. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  12. The October 1973 NASA mission model analysis and economic assessment

    Science.gov (United States)

    1974-01-01

    Results are presented of the 1973 NASA Mission Model Analysis. The purpose was to obtain an economic assessment of using the Shuttle to accommodate the payloads and requirements as identified by the NASA Program Offices and the DoD. The 1973 Payload Model represents a baseline candidate set of future payloads which can be used as a reference base for planning purposes. The cost of implementing these payload programs utilizing the capabilities of the shuttle system is analyzed and compared with the cost of conducting the same payload effort using expendable launch vehicles. There is a net benefit of 14.1 billion dollars as a result of using the shuttle during the 12-year period as compared to using an expendable launch vehicle fleet.

  13. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  14. Seagrass Health Modeling and Prediction with NASA Science Data

    Science.gov (United States)

    Robinson, Harold D.; Easson, Greg; Slattery, Marc; Anderson, Daniel; Blonski, Slawomir; DeCurtins, Robert; Underwood, Lauren

    2010-01-01

    Previous research has demonstrated that MODIS data products can be used as inputs into the seagrass productivity model developed by Fong and Harwell (1994). To further explore this use to predict seagrass productivity, Moderate Resolution Imaging Spectroradiometer (MODIS) custom data products, including Sea Surface Temperature, Light Attenuation, and Chlorophyll-a have been created for use as model parameter inputs. Coastal researchers can use these MODIS data products and model results in conjunction with historical and daily assessment of seagrass conditions to assess variables that affect the productivity of the seagrass beds. Current monitoring practices involve manual data collection (typically on a quarterly basis) and the data is often insufficient for evaluating the dynamic events that influence seagrass beds. As part of a NASA-funded research grant, the University of Mississippi, is working with researchers at NASA and Radiance Technologies to develop methods to deliver MODIS derived model output for the northern Gulf of Mexico (GOM) to coastal and environmental managers. The result of the project will be a data portal that provides access to MODIS data products and model results from the past 5 years, that includes an automated process to incorporate new data as it becomes available. All model parameters and final output will be available through the use National Oceanic and Atmospheric Administration?s (NOAA) Environmental Research Divisions Data Access Program (ERDDAP) tools as well as viewable using Thematic Realtime Environmental Distributed Data Services (THREDDS) and the Integrated Data Viewer (IDV). These tools provide the ability to create raster-based time sequences of model output and parameters as well as create graphs of model parameters versus time. This tool will provide researchers and coastal managers the ability to analyze the model inputs so that the factors influencing a change in seagrass productivity can be determined over time.

  15. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  16. Analysis of NASA Common Research Model Dynamic Data

    Science.gov (United States)

    Balakrishna, S.; Acheson, Michael J.

    2011-01-01

    Recent NASA Common Research Model (CRM) tests at the Langley National Transonic Facility (NTF) and Ames 11-foot Transonic Wind Tunnel (11-foot TWT) have generated an experimental database for CFD code validation. The database consists of force and moment, surface pressures and wideband wing-root dynamic strain/wing Kulite data from continuous sweep pitch polars. The dynamic data sets, acquired at 12,800 Hz sampling rate, are analyzed in this study to evaluate CRM wing buffet onset and potential CRM wing flow separation.

  17. An Update to the NASA Reference Solar Sail Thrust Model

    Science.gov (United States)

    Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.

    2015-01-01

    An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.

  18. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    Science.gov (United States)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  19. Musculoskeletal Modeling Component of the NASA Digital Astronaut Project

    Science.gov (United States)

    Lewandowski, B. E.; Pennline, J. A.; Stalker, A. R.; Mulugeta, L.; Myers, J. G.

    2011-01-01

    The NASA Digital Astronaut Project s (DAP) objective is to provide computational tools that support research of the physiological response to low gravity environments and analyses of how changes cause health and safety risks to the astronauts and to the success of the mission. The spaceflight risk associated with muscle atrophy is impaired performance due to reduced muscle mass, strength and endurance. Risks of early onset of osteoporosis and bone fracture are among the spaceflight risks associated with loss of bone mineral density. METHODS: Tools under development include a neuromuscular model, a biomechanical model and a bone remodeling model. The neuromuscular model will include models of neuromuscular drive, muscle atrophy, fiber morphology and metabolic processes as a function of time in space. Human movement will be modeled with the biomechanical model, using muscle and bone model parameters at various states. The bone remodeling model will allow analysis of bone turnover, loss and adaptation. A comprehensive trade study was completed to identify the current state of the art in musculoskeletal modeling. The DAP musculoskeletal models will be developed using a combination of existing commercial software and academic research codes identified in the study, which will be modified for use in human spaceflight research. These individual models are highly dependent upon each other and will be integrated together once they reach sufficient levels of maturity. ANALYSES: The analyses performed with these models will include comparison of different countermeasure exercises for optimizing effectiveness and comparison of task requirements and the state of strength and endurance of a crew member at a particular time in a mission. DISCUSSION: The DAP musculoskeletal model has the potential to complement research conducted on spaceflight induced changes to the musculoskeletal system. It can help with hypothesis formation, identification of causative mechanisms and

  20. Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

    Science.gov (United States)

    Al-Hamdan, Mohammad; Luvall, Jeff; Crosson, Bill; Estes, Maury; Limaye, Ashutosh; Quattrochi, Dale; Rickman, Doug

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the CDC EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  1. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Science.gov (United States)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  2. Thermal performance modeling of NASA s scientific balloons

    Science.gov (United States)

    Franco, H.; Cathey, H.

    The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed

  3. Does NASA SMAP Improve the Accuracy of Power Outage Models?

    Science.gov (United States)

    Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.

    2016-12-01

    Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.

  4. Fiber link design for the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Science.gov (United States)

    Fżrész, Gábor; Pawluczyk, Rafal; Fournier, Paul; Simcoe, Robert; Woods, Deborah F.

    2016-08-01

    We describe the design of the fiber-optic coupling and light transfer system of the WISDOM (WIYN Spectrograph for DOppler Monitoring) instrument. As a next-generation Precision Radial Velocity (PRV) spectrometer, WISDOM incorporates lessons learned from HARPS about thermal, pressure, and gravity control, but also takes new measures to stabilize the spectrograph illumination, a subject that has been overlooked until recently. While fiber optic links provide more even illumination than a conventional slit, careful engineering of the interface is required to realize their full potential. Conventional round fiber core geometries have been used successfully in conjunction with optical double scramblers, but such systems still retain a memory of the input illumination that is visible in systems seeking sub-m/s PRV precision. Noncircular fibers, along with advanced optical scramblers, and careful optimization of the spectrograph optical system itself are therefore necessary to study Earth-sized planets. For WISDOM, we have developed such a state-of-the-art fiber link concept. Its design is driven primarily by PRV requirements, but it also manages to preserve high overall throughput. Light from the telescope is coupled into a set of six, 32 μm diameter octagonal core fibers, as high resolution is achieved via pupil slicing. The low-OH, step index, fused silica, FBPI-type fibers are custom designed for their numerical aperture that matches the convergence of the feeding beam and thus minimizes focal ratio degradation at the output. Given the demanding environment at the telescope the fiber end tips are mounted in a custom fused silica holder, providing a perfect thermal match. We used a novel process, chemically assisted photo etching, to manufacture this glass fiber holder. A single ball-lens scrambler is inserted into the 25m long fibers. Employing an anti-reflection (AR) coated, high index, cubic-zirconia ball lens the alignment of the scrambler components are

  5. Linking advanced fracture models to structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, Matteo

    2001-07-01

    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  6. Software Engineering Practices in the Development of NASA Unified Weather Research and Forecasting (NU-WRF) Model

    Science.gov (United States)

    Burns, R.; Zhou, S.; Syed, R.

    2010-12-01

    The NASA Unified Weather Research and Forecasting (NU-WRF) Model is an effort to unify several WRF variants developed at NASA and bring together NASA's existing earth science models and assimilation systems that simulate the interaction among clouds, aerosols, atmospheric gases, precipitation, and land surfaces. By developing NU-WRF, the NASA modeling community expects to: (1) facilitate better use of WRF for scientific research, (2) reduce redundancy in major WRF development, (3) prolong the serviceable life span of WRF, and (4) allow better use of NASA high-resolution satellite data for short term climate and weather research. This project involves multiple teams from different organizations and the research goals are still evolving. As a result, software engineering best practices are needed for software life-cycle management and testing, and to ensure reliability of the data being generated. NASA software engineers and scientists have worked together to develop software requirements, scientific use cases, automated regression tests, software release plans, and a revision control system. Nightly automated regression tests are being used on scaled-down versions of the use cases to test if any code changes have unintentionally changed the science results or made the software unstable. Revision control management is needed to track software changes that are made by the many developers involved in the project. The release planning helps to guide the release of NU-WRF versions to the NASA community and allows for making strategic changes in delivery dates and software features as needed. The team of software engineers and scientists have also worked on optimizing, generalizing, and testing existing model preprocessing codes and run scripts for the various models. Finally, the team developed model coupling tools to link WRF with NASA earth science models. NU-WRF 1.0 was based on WRF3.1.1 and was released to the NASA community in July 2010, providing the researchers

  7. NASA Integrated Model Centric Architecture (NIMA) Model Use and Re-Use

    Science.gov (United States)

    Conroy, Mike; Mazzone, Rebecca; Lin, Wei

    2012-01-01

    This whitepaper accepts the goals, needs and objectives of NASA's Integrated Model-centric Architecture (NIMA); adds experience and expertise from the Constellation program as well as NASA's architecture development efforts; and provides suggested concepts, practices and norms that nurture and enable model use and re-use across programs, projects and other complex endeavors. Key components include the ability to effectively move relevant information through a large community, process patterns that support model reuse and the identification of the necessary meta-information (ex. history, credibility, and provenance) to safely use and re-use that information. In order to successfully Use and Re-Use Models and Simulations we must define and meet key organizational and structural needs: 1. We must understand and acknowledge all the roles and players involved from the initial need identification through to the final product, as well as how they change across the lifecycle. 2. We must create the necessary structural elements to store and share NIMA-enabled information throughout the Program or Project lifecycle. 3. We must create the necessary organizational processes to stand up and execute a NIMA-enabled Program or Project throughout its lifecycle. NASA must meet all three of these needs to successfully use and re-use models. The ability to Reuse Models a key component of NIMA and the capabilities inherent in NIMA are key to accomplishing NASA's space exploration goals. 11

  8. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    Science.gov (United States)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  9. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    Science.gov (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  10. NASA's Use of Human Behavior Models for Concept Development and Evaluation

    Science.gov (United States)

    Gore, Brian F.

    2012-01-01

    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  11. Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle

    Science.gov (United States)

    Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.

    2007-01-01

    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.

  12. NASA Workmanship Hot Topics: Water Soluble Flux and ESD Charge Device Model

    Science.gov (United States)

    Plante, Jeannette F.

    2009-01-01

    This slide presentation reviews two topics of interest to NASA Workmanship: (1) Water Soluble Flux (WSF) and Electrostatic Discharge (ESD) safety. In the first topic, WSF, the presentation reviews voiding and the importance of cleanliness in using WSF for welding and soldering operations. The second topic reviews the NASA-HDBK-8739.21 for Human Body Model, and Machine Model safety methods, and challenges associated with the Charged Device Model (CDM)

  13. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    Science.gov (United States)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  14. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  15. Reducing Tick-Borne Disease in Alabama: Linking Health Risk Perception with Spatial Analysis Using the NASA Earth Observing System

    Science.gov (United States)

    Hemmings, S.; Renneboog, N.; Firsing, S.; Capilouto, E.; Harden, J.; Hyden, R.; Tipre, M.; Zhang, Y.

    2010-01-01

    Lyme disease (LD) accounts for most vector-borne disease reports in the U.S., and although its existence in Alabama remains controversial, other tick-borne illnesses (TBI) such as Southern Tick-Associated Rash Illness (STARI) pose a health concern in the state. Phase One of the Marshall Space Flight Center-UAB DEVELOP study of TBI identified the presence of the chain of infection for LD (Ixodes scapularis ticks carrying Borrelia burgdorferi bacteria) and STARI (Amblyomma americanum ticks and an as-yet-unconfirmed agent) in Alabama. Both LD and STARI are associated with the development of erythema migrans rashes around an infected tick bite, and while treatable with oral antibiotics, a review of educational resources available to state residents revealed low levels of prevention information. To improve prevention, recognition, and treatment of TBI in Alabama, Phase Two builds a health communication campaign based on vector habitat mapping and risk perception assessment. NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery identified likely tick habitats using remotely sensed measurements of vegetation vigor (Normalized Difference Vegetation Index) and soil moisture. Likely tick habitats, identified as those containing both high vegetation density and soil moisture, included Oak Mountain State Park, Bankhead National Forest, and Talladega National Forest. To target a high-risk group -- outdoor recreation program participants at Alabama universities -- the study developed a behavior survey instrument based on existing studies of LD risk factors and theoretical constructs from the Social Ecological Model and Health Belief Model. The survey instrument was amended to include geographic variables in the assessment of TBI knowledge, attitudes, and prevention behaviors, and the vector habitat model will be expanded to incorporate additional environmental variables and in situ data. Remotely sensed environmental data combined with

  16. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  17. Loopholes and missing links in protein modeling.

    Science.gov (United States)

    Rossi, Karen A; Weigelt, Carolyn A; Nayeem, Akbar; Krystek, Stanley R

    2007-09-01

    This paper provides an unbiased comparison of four commercially available programs for loop sampling, Prime, Modeler, ICM, and Sybyl, each of which uses a different modeling protocol. The study assesses the quality of results and examines the relative strengths and weaknesses of each method. The set of loops to be modeled varied in length from 4-12 amino acids. The approaches used for loop modeling can be classified into two methodologies: ab initio loop generation (Modeler and Prime) and database searches (Sybyl and ICM). Comparison of the modeled loops to the native structures was used to determine the accuracy of each method. All of the protocols returned similar results for short loop lengths (four to six residues), but as loop length increased, the quality of the results varied among the programs. Prime generated loops with RMSDs modeled loops.

  18. Modeling HVDC links in composite reliability evaluation: issues and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lineu B. de [Sao Paulo Univ., SP (Brazil). Escola Politecnica; Ramos, Dorel S. [Centrais Eletricas de Sao Paulo, SP (Brazil); Morozowski Filho, Marciano [Santa Catarina Univ., Florianopolis, SC (Brazil)

    1992-12-31

    This paper deals with theoretical and practical aspects of HVDC link modeling for composite (generation and transmission) system reliability evaluation purposes. The conceptual framework used in the analysis, as well as the practical aspects, are illustrated through an application example. Initially, two distinct HVDC link operation models are described: synchronous and asynchronous. An analysis of the most significant internal failure modes and their effects on HVDC link transmission capability is presented and a reliability model is proposed. Finally, a historical performance data of the Itaipu HVDC system is shown. 6 refs., 5 figs., 8 tabs.

  19. A VGI data integration framework based on linked data model

    Science.gov (United States)

    Wan, Lin; Ren, Rongrong

    2015-12-01

    This paper aims at the geographic data integration and sharing method for multiple online VGI data sets. We propose a semantic-enabled framework for online VGI sources cooperative application environment to solve a target class of geospatial problems. Based on linked data technologies - which is one of core components of semantic web, we can construct the relationship link among geographic features distributed in diverse VGI platform by using linked data modeling methods, then deploy these semantic-enabled entities on the web, and eventually form an interconnected geographic data network to support geospatial information cooperative application across multiple VGI data sources. The mapping and transformation from VGI sources to RDF linked data model is presented to guarantee the unique data represent model among different online social geographic data sources. We propose a mixed strategy which combined spatial distance similarity and feature name attribute similarity as the measure standard to compare and match different geographic features in various VGI data sets. And our work focuses on how to apply Markov logic networks to achieve interlinks of the same linked data in different VGI-based linked data sets. In our method, the automatic generating method of co-reference object identification model according to geographic linked data is discussed in more detail. It finally built a huge geographic linked data network across loosely-coupled VGI web sites. The results of the experiment built on our framework and the evaluation of our method shows the framework is reasonable and practicable.

  20. NASA 3D Models: ISS (Hi-res)

    Data.gov (United States)

    National Aeronautics and Space Administration — A very high resolution model of the International Space Station in many parts. The download includes an image of the final configuration. This model is provided in...

  1. Scalable Text and Link Analysis with Mixed-Topic Link Models

    CERN Document Server

    Zhu, Yaojia; Getoor, Lise; Moore, Cristopher

    2013-01-01

    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both task...

  2. Extended model of restricted beam for FSO links

    Science.gov (United States)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  3. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation

    Science.gov (United States)

    2012-01-01

    At the request of NASA, the National Research Council's (NRC's) Committee for Evaluation of Space Radiation Cancer Risk Model reviewed a number of changes that NASA proposes to make to its model for estimating the risk of radiation-induced cancer in astronauts. The NASA model in current use was last updated in 2005, and the proposed model would incorporate recent research directed at improving the quantification and understanding of the health risks posed by the space radiation environment. NASA's proposed model is defined by the 2011 NASA report Space Radiation Cancer Risk Projections and Uncertainties 2010 (Cucinotta et al., 2011). The committee's evaluation is based primarily on this source, which is referred to hereafter as the 2011 NASA report, with mention of specific sections or tables cited more formally as Cucinotta et al. (2011). The overall process for estimating cancer risks due to low linear energy transfer (LET) radiation exposure has been fully described in reports by a number of organizations. They include, more recently: (1) The "BEIR VII Phase 2" report from the NRC's Committee on Biological Effects of Ionizing Radiation (BEIR) (NRC, 2006); (2) Studies of Radiation and Cancer from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006), (3) The 2007 Recommendations of the International Commission on Radiological Protection (ICRP), ICRP Publication 103 (ICRP, 2007); and (4) The Environmental Protection Agency s (EPA s) report EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (EPA, 2011). The approaches described in the reports from all of these expert groups are quite similar. NASA's proposed space radiation cancer risk assessment model calculates, as its main output, age- and gender-specific risk of exposure-induced death (REID) for use in the estimation of mission and astronaut-specific cancer risk. The model also calculates the associated uncertainties in REID. The general approach for

  4. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation

    Science.gov (United States)

    2012-01-01

    At the request of NASA, the National Research Council's (NRC's) Committee for Evaluation of Space Radiation Cancer Risk Model reviewed a number of changes that NASA proposes to make to its model for estimating the risk of radiation-induced cancer in astronauts. The NASA model in current use was last updated in 2005, and the proposed model would incorporate recent research directed at improving the quantification and understanding of the health risks posed by the space radiation environment. NASA's proposed model is defined by the 2011 NASA report Space Radiation Cancer Risk Projections and Uncertainties 2010 (Cucinotta et al., 2011). The committee's evaluation is based primarily on this source, which is referred to hereafter as the 2011 NASA report, with mention of specific sections or tables cited more formally as Cucinotta et al. (2011). The overall process for estimating cancer risks due to low linear energy transfer (LET) radiation exposure has been fully described in reports by a number of organizations. They include, more recently: (1) The "BEIR VII Phase 2" report from the NRC's Committee on Biological Effects of Ionizing Radiation (BEIR) (NRC, 2006); (2) Studies of Radiation and Cancer from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006), (3) The 2007 Recommendations of the International Commission on Radiological Protection (ICRP), ICRP Publication 103 (ICRP, 2007); and (4) The Environmental Protection Agency s (EPA s) report EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (EPA, 2011). The approaches described in the reports from all of these expert groups are quite similar. NASA's proposed space radiation cancer risk assessment model calculates, as its main output, age- and gender-specific risk of exposure-induced death (REID) for use in the estimation of mission and astronaut-specific cancer risk. The model also calculates the associated uncertainties in REID. The general approach for

  5. Linking spatial and dynamic models for traffic maneuvers

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal

    2015-01-01

    For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...

  6. A general route diversity model for convergent terrestrial microwave links

    Science.gov (United States)

    Paulson, Kevin S.; Usman, Isa S.; Watson, Robert J.

    2006-06-01

    This research examines route diversity as a fade mitigation technique in the presence of rain for convergent, terrestrial, microwave links. A general model is derived which predicts the joint distribution of rain attenuation on arbitrary pairs of convergent microwave links, directly from the link parameters. It is assumed that pairs of links have joint rain attenuation distributions that are bilognormally distributed. Four of the five distribution parameters can be estimated from International Telecommunication Union recommendation models. A maximum likelihood estimation method was used in a previous paper to estimate the fifth parameter, that is, the covariance or correlation. In this paper an empirical model is reported, linking the correlation of log rain fade with the geometry and radio parameters of the pair of links. From these distributions, the advantage due to route diversity may be calculated for arbitrary fade margins. Furthermore, the predicted diversity statistics vary smoothly and yield plausible extrapolations into low-probability scenarios. Diversity improvement is calculated for a set of example link scenarios.

  7. Analysis of sensory ratings data with cumulative link models

    DEFF Research Database (Denmark)

    Christensen, Rune Haubo Bojesen; Brockhoff, Per B.

    2013-01-01

    Examples of categorical rating scales include discrete preference, liking and hedonic rating scales. Data obtained on these scales are often analyzed with normal linear regression methods or with omnibus Pearson chi2 tests. In this paper we propose to use cumulative link models that allow...... for regression methods similar to linear models while respecting the categorical nature of the observations. We describe how cumulative link models are related to the omnibus chi2 tests and how they can lead to more powerful tests in the non-replicated setting. For replicated categorical ratings data we present...... a quasi-likelihood approach and a mixed effects approach both being extensions of cumulative link models. We contrast population-average and subject-specific interpretations based on these models and discuss how different approaches lead to different tests. In replicated settings, naive tests that ignore...

  8. Model and Implementation of Communication Link Management Supporting High Availability

    Institute of Scientific and Technical Information of China (English)

    Luo Juan; Cao Yang; He Zheng; Li Feng

    2004-01-01

    Despite the rapid evolution in all aspects of computer technology, both the computer hardware and software are prone to numerous failure conditions. In this paper, we analyzed the characteristic of a computer system and the methods of constructing a system , proposed a communication link management model supporting high availability for network applications, Which will greatly increase the high availability of network applications. Then we elaborated on heartbeat or service detect, fail-over, service take-over, switchback and error recovery process of the model. In the process of constructing the communication link, we implemented the link management and service take-over with high availability requirement, and discussed the state and the state transition of building the communication link between the hosts, depicted the message transfer and the start of timer. At Last, we applied the designed high availability system to a network billing system, and showed how the system was constructed and implemented, which perfectly satisfied the system requirements.

  9. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  10. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  11. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling

    Science.gov (United States)

    Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua

    2011-01-01

    Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.

  12. Port-Based Modeling of a Flexible Link

    NARCIS (Netherlands)

    Macchelli, A.; Melchiorri, C.; Stramigioli, S.

    2007-01-01

    In this paper, a simple way to model flexible robotic links is presented. This is different from classical approaches and from the Euler–Bernoulli or Timoshenko theory, in that the proposed model is able to describe large deflections in 3-D space and does not rely on any finite-dimensional approxima

  13. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    Science.gov (United States)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  14. Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    Science.gov (United States)

    Woike, Mark R.

    2008-01-01

    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.

  15. The Trick Simulation Toolkit: A NASA/Opensource Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.

    2016-01-01

    The Trick Simulation Toolkit is a simulation development environment used to create high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its purpose is to generate a simulation executable from a collection of user-supplied models and a simulation definition file. For each Trick-based simulation, Trick automatically provides job scheduling, numerical integration, the ability to write and restore human readable checkpoints, data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed capabilities. This allows simulation developers to concentrate on their domain expertise and the algorithms and equations of their models. Also included in Trick are tools for plotting recorded data and various other supporting utilities and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating systems. This paper describes Trick's design and use at NASA Johnson Space Center.

  16. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  17. Linking knowledge and action through mental models of sustainable agriculture.

    Science.gov (United States)

    Hoffman, Matthew; Lubell, Mark; Hillis, Vicken

    2014-09-01

    Linking knowledge to action requires understanding how decision-makers conceptualize sustainability. This paper empirically analyzes farmer "mental models" of sustainability from three winegrape-growing regions of California where local extension programs have focused on sustainable agriculture. The mental models are represented as networks where sustainability concepts are nodes, and links are established when a farmer mentions two concepts in their stated definition of sustainability. The results suggest that winegrape grower mental models of sustainability are hierarchically structured, relatively similar across regions, and strongly linked to participation in extension programs and adoption of sustainable farm practices. We discuss the implications of our findings for the debate over the meaning of sustainability, and the role of local extension programs in managing knowledge systems.

  18. Distributed parameter estimation for NASA Mini-Mast truss using Timoshenko beam model

    Science.gov (United States)

    Shen, Ji-Yao; Huang, Jen-Kuang; Taylor, Lawrence W., Jr.

    1991-01-01

    A more accurate Timoshenko beam model is used to characterize the bending behavior of the truss. A maximum likelihood estimator for the Timoshenko beam model has been formulated. A closed-form solution of the Timoshenko beam equation, for a uniform cantilevered beam with two concentrated masses, is derived so that the procedure for the estimation of modal characteristics is much improved. The updated model to the NASA Mini-Mast test data is demonstrated.

  19. Using NASA Satellite and Model Analysis for Renewable Energy and Energy Efficiency Applications

    Science.gov (United States)

    Hoell, J. M.; Stackhouse, P. W.; Chandler, W. S.; Whitlock, C. H.; Westberg, D. J.; Zhang, T.

    2009-12-01

    This presentation describes the successful tailoring of NASA research data sets to meet environmental information needs of the renewable energy sector. The data sets currently used for these purposes include the NASA/GEWEX (Global Energy and Water Cycle Experiment) Surface Radiation Budget data set (SRB), the FLASHFlux (Fast Longwave and SHortwave Fluxes from Global CERES and MODIS observations), and the NASA GSFC Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) versions 4.0.3 and 5.0/5.1. These data are available through the Surface meteorology and Solar Energy (SSE) web interface (http://eosweb.larc.nasa.gov/sse). The NASA Earth Science Applied Science program has supported the development of the SSE web interface through a project called the Prediction of World Energy Resource (POWER, http://power.larc.nasa.gov/). The paths of modifying/preparing these data sets for energy applications for the SSE web site are described. These data help engineers, architects, and project analysts develop feasibility studies for renewable energy technology projects, make regional assessments and long-term energy market forecasts. Thus, small-scale projects to regional energy analysis may benefit from this information. The SSE web site has nearly 50,000 users worldwide and version 6.0 is now averaging 250,000 and 60,000 hits and data downloads per month, respectively. Examples of the usage of these data sets are shown to help describe the need and impact of this information. These examples come from the many collaborative partners in this work such as the DOE National Renewable Energy Laboratory (NREL), the Pacific Northwest National Laboratory (PNNL), and the Natural Resources Canada RETScreen project. The presentation also gives potential future data needs of these types of technologies and how NASA data could help contribute to meeting those needs. This is particularly pertinent facing the growing needs to develop clean energy sources to

  20. Linking NASA Environmental Data with a National Public Health Cohort Study and a CDC On-Line System to Enhance Public Health Decision Making

    Science.gov (United States)

    Al-Hamdan, Mohammad; Crosson, William; Economou, Sigrid; Estes, Maurice, Jr.; Estes, Sue; Hemmings, Sarah; Kent, Shia; Puckett, Mark; Quattrochi, Dale; Wade, Gina; McClure, Leslie

    2012-01-01

    The overall goal of this study is to address issues of environmental health and enhance public health decision making by utilizing NASA remotely-sensed data and products. This study is a collaboration between NASA Marshall Space Flight Center, Universities Space Research Association (USRA), the University of Alabama at Birmingham (UAB) School of Public Health and the Centers for Disease Control and Prevention (CDC) National Center for Public Health Informatics. The objectives of this study are to develop high-quality spatial data sets of environmental variables, link these with public health data from a national cohort study, and deliver the linked data sets and associated analyses to local, state and federal end-user groups. Three daily environmental data sets were developed for the conterminous U.S. on different spatial resolutions for the period 2003-2008: (1) spatial surfaces of estimated fine particulate matter (PM2.5) exposures on a 10-km grid utilizing the US Environmental Protection Agency (EPA) ground observations and NASA s MODerate-resolution Imaging Spectroradiometer (MODIS) data; (2) a 1-km grid of Land Surface Temperature (LST) using MODIS data; and (3) a 12-km grid of daily Solar Insolation (SI) and maximum and minimum air temperature using the North American Land Data Assimilation System (NLDAS) forcing data. These environmental datasets were linked with public health data from the UAB REasons for Geographic and Racial Differences in Stroke (REGARDS) national cohort study to determine whether exposures to these environmental risk factors are related to cognitive decline and other health outcomes. These environmental national datasets will also be made available to public health professionals, researchers and the general public via the CDC Wide-ranging Online Data for Epidemiologic Research (WONDER) system, where they can be aggregated to the county, state or regional level as per users need and downloaded in tabular, graphical, and map formats. The

  1. Link performance model for filter bank based multicarrier systems

    Science.gov (United States)

    Petrov, Dmitry; Oborina, Alexandra; Giupponi, Lorenza; Stitz, Tobias Hidalgo

    2014-12-01

    This paper presents a complete link level abstraction model for link quality estimation on the system level of filter bank multicarrier (FBMC)-based networks. The application of mean mutual information per coded bit (MMIB) approach is validated for the FBMC systems. The considered quality measure of the resource element for the FBMC transmission is the received signal-to-noise-plus-distortion ratio (SNDR). Simulation results of the proposed link abstraction model show that the proposed approach is capable of estimating the block error rate (BLER) accurately, even when the signal is propagated through the channels with deep and frequent fades, as it is the case for the 3GPP Hilly Terrain (3GPP-HT) and Enhanced Typical Urban (ETU) models. The FBMC-related results of link level simulations are compared with cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) analogs. Simulation results are also validated through the comparison to reference publicly available results. Finally, the steps of link level abstraction algorithm for FBMC are formulated and its application for system level simulation of a professional mobile radio (PMR) network is discussed.

  2. Synthesis and characterization of new 5-linked pinoresinol lignin models.

    Science.gov (United States)

    Yue, Fengxia; Lu, Fachuang; Sun, Runcang; Ralph, John

    2012-12-14

    Pinoresinol structures, featuring a β-β'-linkage between lignin monomer units, are important in softwood lignins and in dicots and monocots, particularly those that are downregulated in syringyl-specific genes. Although readily detected by NMR spectroscopy, pinoresinol structures largely escaped detection by β-ether-cleaving degradation analyses presumably due to the presence of the linkages at the 5 positions, in 5-5'- or 5-O-4'-structures. In this study, which is aimed at helping better understand 5-linked pinoresinol structures by providing the required data for NMR characterization, new lignin model compounds were synthesized through biomimetic peroxidase-mediated oxidative coupling reactions between pre-formed (free-phenolic) coniferyl alcohol 5-5'- or 5-O-4'-linked dimers and a coniferyl alcohol monomer. It was found that such dimers containing free-phenolic coniferyl alcohol moieties can cross-couple with the coniferyl alcohol producing pinoresinol-containing trimers (and higher oligomers) in addition to other homo- and cross-coupled products. Eight new lignin model compounds were obtained and characterized by NMR spectroscopy, and one tentatively identified cross-coupled β-O-4'-product was formed from a coniferyl alcohol 5-O-4'-linked dimer. It was demonstrated that the 5-5'- and 5-O-4'-linked pinoresinol structures could be readily differentiated by using heteronuclear multiple-bond correlation (HMBC) NMR spectroscopy. With appropriate modification (etherification or acetylation) to the newly obtained model compounds, it would be possible to identify the 5-5'- or 5-O-4'-linked pinoresinol structures in softwood lignins by 2D HMBC NMR spectroscopic methods. Identification of the cross-coupled dibenzodioxocin from a coniferyl alcohol 5-5'-linked moiety suggested that thioacidolysis or derivatization followed by reductive cleavage (DFRC) could be used to detect and identify whether the coniferyl alcohol itself undergoes 5-5'-cross-linking during

  3. A classifier model for detecting pronunciation errors regarding the Nasa Yuwe language’s 32 vowels

    Directory of Open Access Journals (Sweden)

    Roberto Carlos Naranjo Cuervo

    2012-08-01

    Full Text Available The Nasa Yuwe language has 32 oral and nasal vowels thereby leading to one being used instead of the other; such confusion can change the meaning of the spoken word in Nasa Yuwe. A set of classifier models have been developed to support correct learning of this language which is in danger of extinction aimed at detecting confusion in the pronunciation of the 32 vowels; about 85% were obtained after experimenting with a variety of linear and nonlinear classifiers, rates of sensitivity, specificity and accuracy. A support software prototype was designed with these trained classifiers for the correct pronunciation of the language’s vowels.

  4. A model following variable stability system for the NASA ARC X-14B.

    Science.gov (United States)

    Gallagher, J. T.; Saworotnow, I.; Seemann, R.; Gossett, T. D.

    1972-01-01

    A description of the basic design concept, hardware design, and flight evaluation of a Variable Stability System (VSS) installed on the NASA ARC X-14B is presented. The NASA ARC X-14B is a twin-engine, single-seated VTOL aircraft. The VSS is unique in that it employs a general purpose airborne digital computer as an integral part of the hybrid model following flight control system. The system design, analysis and testing phases are discussed in the paper from the application of optimal control techniques in the preliminary design of the system, through the flight demonstration of the VSS hardware.

  5. NASA-STD-7009 Guidance Document for Human Health and Performance Models and Simulations

    Science.gov (United States)

    Walton, Marlei; Mulugeta, Lealem; Nelson, Emily S.; Myers, Jerry G.

    2014-01-01

    Rigorous verification, validation, and credibility (VVC) processes are imperative to ensure that models and simulations (MS) are sufficiently reliable to address issues within their intended scope. The NASA standard for MS, NASA-STD-7009 (7009) [1] was a resultant outcome of the Columbia Accident Investigation Board (CAIB) to ensure MS are developed, applied, and interpreted appropriately for making decisions that may impact crew or mission safety. Because the 7009 focus is engineering systems, a NASA-STD-7009 Guidance Document is being developed to augment the 7009 and provide information, tools, and techniques applicable to the probabilistic and deterministic biological MS more prevalent in human health and performance (HHP) and space biomedical research and operations.

  6. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    Science.gov (United States)

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  7. Overview 2004 of NASA-Stirling Convertor CFD Model Development and Regenerator R and D Efforts

    Science.gov (United States)

    Tew, Roy C.; Dyson, Rodger W.; Wilson, Scott D.; Demko, Rikako

    2004-01-01

    This paper reports on accomplishments in 2004 in (1) development of Stirling-convertor CFD models at NASA Glenn and via a NASA grant, (2) a Stirling regenerator-research effort being conducted via a NASA grant (a follow-on effort to an earlier DOE contract), and (3) a regenerator-microfabrication contract for development of a "next-generation Stirling regenerator." Cleveland State University is the lead organization for all three grant/contractual efforts, with the University of Minnesota and Gedeon Associates as subcontractors. Also, the Stirling Technology Company and Sunpower, Inc. are both involved in all three efforts, either as funded or unfunded participants. International Mezzo Technologies of Baton Rouge, Louisiana is the regenerator fabricator for the regenerator-microfabrication contract. Results of the efforts in these three areas are summarized.

  8. Dynamic modeling of flexible-links planar parallel robots

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a finite element-based method for dynamic modeling of parallel robots with flexible links and rigid moving platform.The elastic displacements of flexible links are investigated while considering the coupling effects between links due to the structural flexibility.The kinematic constraint conditions and dynamic constraint conditions for elastic displacements are presented.Considering the effects of distributed mass,lumped mass,shearing deformation,bending deformation,tensile deformation and lateral displacements,the Kineto-Elasto dynamics (KED) theory and Lagrange formula are used to derive the dynamic equations of planar flexible-links parallel robots.The dynamic behavior of the flexible-links planar parallel robot is well illustrated through numerical simulation of a planar 3-RRR parallel robot.Compared with the results of finite element software SAMCEF,the numerical simulation results show good coherence of the proposed method.The flexibility of links is demonstrated to have a significant impact on the position error and orientation error of the flexiblelinks planar parallel robot.

  9. Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    Science.gov (United States)

    McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter

    2016-07-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  10. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    Science.gov (United States)

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  11. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    Science.gov (United States)

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  12. A Comparison of Results From NASA's Meteoroid Engineering Model to the LDEF Cratering Record

    Science.gov (United States)

    Ehlert, S.; Moorhead, A.; Cooke, W. J.

    2017-01-01

    NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in Low Earth Orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.6 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may suggest improvements to the underlying assumptions that go into future versions of MEM.

  13. Single photon time transfer link model for GNSS satellites

    Science.gov (United States)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef

    2015-05-01

    The importance of optical time transfer serving as a complement to traditional microwave links, has been attested for GNSSes and for scientific missions. Single photon time transfer (SPTT) is a process, allowing to compare (subtract) time readings of two distant clocks. Such a comparison may be then used to synchronize less accurate clock to a better reference, to perform clock characterization and calibration, to calculate mean time out of ensemble of several clocks, displaced in space. The single-photon time transfer is well established in field of space geodesy, being supported by passive retro-reflectors within space segment of five known GNSSes. A truly two-way, active terminals work aboard of Jason-2 (T2L2) - multiphoton operation, GNSS Beidou (Compass) - SPTT, and are going to be launched within recent ACES project (ELT) - SPTT, and GNSS GLONASS - multiphoton operation. However, there is still missing comprehensive theoretical model of two-way (using satellite receiver and retroreflector) SPTT link incorporating all crucial parameters of receiver (both ground and space segment receivers), transmitter, atmosphere effects on uplink and downlink path, influence of retroreflector. The input to calculation of SPTT link performance will be among others: link budget (distance, power, apertures, beam divergence, attenuation, scattering), propagating medium (atmosphere scintillation, beam wander, etc.), mutual Tx/Rx velocity, wavelength. The SPTT model will be evaluated without the properties of real components. These will be added in the further development. The ground-to-space SPTT link performance of typical scenarios are modeled. This work is a part of the ESA study "Comparison of optical time-transfer links."

  14. A mathematical model of N-linked glycoform biosynthesis.

    Science.gov (United States)

    Umaña, P; Bailey, J E

    1997-09-20

    Metabolic engineering of N-linked oligosaccharide biosynthesis to produce novel glycoforms or glycoform distributions of a recombinant glycoprotein can potentially lead to an improved therapeutic performance of the glycoprotein product. Effective engineering of this pathway to maximize the fractions of beneficial glycoforms within the glycoform population of a target glycoprotein can be aided by a mathematical model of the N-linked glycosylation process. A mathematical model is presented here, whose main function is to calculate the expected qualitative trends in the N-linked oligosaccharide distribution resulting from changes in the levels of one or more enzymes involved in the network of enzyme-catalyzed reactions that accomplish N-linked oligosaccharide biosynthesis. It consists of mass balances for 33 different oligosaccharide species N-linked to a specified protein that is being transported through the different compartments of the Golgi complex. Values of the model parameters describing Chinese hamster ovary (CHO) cells were estimated from literature information. A basal set of kinetic parameters for the enzyme-catalyzed reactions acting on free oligosaccharide substrates was also obtained from the literature. The solution of the system for this basal set of parameters gave a glycoform distribution consisting mainly of complex-galactosylated oligosaccharides distributed in structures with different numbers of antennae in a fashion similar to that observed for various recombinant proteins produced in CHO cells. Other simulations indicate that changes in the oligosaccharide distribution could easily result from alteration in glycoprotein productivity within the range currently attainable in industry. The overexpression of N-acetylglucosaminyltransferase III in CHO cells was simulated under different conditions to test the main function of the model. These simulations allow a comparison of different strategies, such as simultaneous overexpression of several

  15. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    Science.gov (United States)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the

  16. Model updating in flexible-link multibody systems

    Science.gov (United States)

    Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A.

    2016-09-01

    The dynamic response of flexible-link multibody systems (FLMSs) can be predicted through nonlinear models based on finite elements, to describe the coupling between rigid- body and elastic behaviour. Their accuracy should be as high as possible to synthesize controllers and observers. Model updating based on experimental measurements is hence necessary. By taking advantage of the experimental modal analysis, this work proposes a model updating procedure for FLMSs and applies it experimentally to a planar robot. Indeed, several peculiarities of the model of FLMS should be carefully tackled. On the one hand, nonlinear models of a FLMS should be linearized about static equilibrium configurations. On the other, the experimental mode shapes should be corrected to be consistent with the elastic displacements represented in the model, which are defined with respect to a fictitious moving reference (the equivalent rigid link system). Then, since rotational degrees of freedom are also represented in the model, interpolation of the experimental data should be performed to match the model displacement vector. Model updating has been finally cast as an optimization problem in the presence of bounds on the feasible values, by also adopting methods to improve the numerical conditioning and to compute meaningful updated inertial and elastic parameters.

  17. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  18. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    Science.gov (United States)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  19. Mutual information model for link prediction in heterogeneous complex networks

    Science.gov (United States)

    Shakibian, Hadi; Moghadam Charkari, Nasrollah

    2017-01-01

    Recently, a number of meta-path based similarity indices like PathSim, HeteSim, and random walk have been proposed for link prediction in heterogeneous complex networks. However, these indices suffer from two major drawbacks. Firstly, they are primarily dependent on the connectivity degrees of node pairs without considering the further information provided by the given meta-path. Secondly, most of them are required to use a single and usually symmetric meta-path in advance. Hence, employing a set of different meta-paths is not straightforward. To tackle with these problems, we propose a mutual information model for link prediction in heterogeneous complex networks. The proposed model, called as Meta-path based Mutual Information Index (MMI), introduces meta-path based link entropy to estimate the link likelihood and could be carried on a set of available meta-paths. This estimation measures the amount of information through the paths instead of measuring the amount of connectivity between the node pairs. The experimental results on a Bibliography network show that the MMI obtains high prediction accuracy compared with other popular similarity indices. PMID:28344326

  20. Revisiting Link Prediction: Evolving Models and Real Data Findings

    CERN Document Server

    Mendoza, Marcelo

    2016-01-01

    The explosive growth of Web 2.0, which was characterized by the creation of online social networks, has reignited the study of factors that could help us understand the growth and dynamism of these networks. Various generative network models have been proposed, including the Barabasi-Albert and Watts-Strogatz models. In this study, we revisit the problem from a perspective that seeks to compare results obtained from these generative models with those from real networks. To this end, we consider the dating network Skout Inc. An analysis is performed on the topological characteristics of the network that could explain the creation of new network links. Afterwards, the results are contrasted with those obtained from the Barabasi-Albert and Watts-Strogatz generative models. We conclude that a key factor that could explain the creation of links originates in its cluster structure, where link recommendations are more precise in Watts-Strogatz segmented networks than in Barabasi-Albert hierarchical networks. This re...

  1. Content Linking for UGC based on Word Embedding Model

    Directory of Open Access Journals (Sweden)

    Zhiqiao Gao

    2015-09-01

    Full Text Available There are huge amounts of User Generated Contents (UGCs consisting of authors’ articles of different themes and readers’ on-line comments on social networks every day. Generally, an article often gives rise to thousands of readers’ comments, which are related to specific points of the originally published article or previous comments. Hence it has suggested the urgent need for automated methods to implement the content linking task, which can also help other related applications, such as information retrieval, summarization and content management. So far content linking is still a relatively new issue. Because of the unsatisfactory of traditional ways based on feature extraction, we look forward to using deeper textual semantic analysis. The Word Embedding model based on deep learning has performed well in Natural Language Processing (NLP, especially in mining deep semantic information recently. Therefore, we study further on the Word Embedding model trained by different neural network models from which we can learn the structure, principles and training ways of the neural network language model in more depth to complete deep semantic feature extraction. With the aid of the semantic features, we expect to do further research on content linking between comments and their original articles from social networks, and finally verify the validity of the proposed method by comparison with traditional ways based on feature extraction.

  2. NASA Perspective and Modeling of Thermal Runaway Propagation Mitigation in Aerospace Batteries

    Science.gov (United States)

    Shack, P.; Iannello, C.; Rickman, S.; Button, R.

    2014-01-01

    NASA has traditionally sought to reduce the likelihood of a single cell thermal runaway (TR) in their aerospace batteries to an absolute minimum by employing rigorous screening program of the cells. There was generally a belief that TR propagation resulting in catastrophic failure of the battery was a forgone conclusion for densely packed aerospace lithium-ion batteries. As it turns out, this may not be the case. An increasing number of purportedly TR propagation-resistant batteries are appearing among NASA partners in the commercial sector and the Department of Defense. In the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. Unfortunately, there are no best-practice guidelines for this work in the Agency, so the first project team attempting to meet these requirements would have an undue burden placed upon them. A NASA engineering Safety Center (NESC) team set out to perform pathfinding activities for meeting those requirements. This presentation will provide contextual background to this effort, as well as initial results in attempting to model and simulate TR heat transfer and propagation within battery designs.

  3. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  4. Open Innovation at NASA: A New Business Model for Advancing Human Health and Performance Innovations

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.; Keeton, Kathryn E.

    2014-01-01

    This paper describes a new business model for advancing NASA human health and performance innovations and demonstrates how open innovation shaped its development. A 45 percent research and technology development budget reduction drove formulation of a strategic plan grounded in collaboration. We describe the strategy execution, including adoption and results of open innovation initiatives, the challenges of cultural change, and the development of virtual centers and a knowledge management tool to educate and engage the workforce and promote cultural change.

  5. Timoshenko beam modeling for parameter estimation of NASA Mini-Mast truss

    Science.gov (United States)

    Shen, Ji Y.; Huang, Jen-Kuang; Taylor, L. W., Jr.

    1993-01-01

    In this paper a distributed parameter model for the estimation of modal characteristics of NASA Mini-Mast truss is proposed. A closed-form solution of the Timoshenko beam equation, for a uniform cantilevered beam with two concentrated masses, is derived so that the procedure and the computational effort for the estimation of modal characteristics are improved. A maximum likelihood estimator for the Timoshenko beam model is also developed. The resulting estimates from test data by using Timoshenko beam model are found to be comparable to those derived from other approaches.

  6. Modeling online social networks based on preferential linking

    Institute of Scientific and Technical Information of China (English)

    Hu Hai-Bo; Guo Jin-Li; Chen Jun

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation,preferential acceptance,and preferential attachment.Based on the linear preference,we propose an analyzable model,which illustrates the mechanism of network growth and reproduces the process of network evolution.Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network.This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks.

  7. Defining Scenarios: Linking Integrated Models, Regional Concerns, and Stakeholders

    Science.gov (United States)

    Hartmann, H. C.; Stewart, S.; Liu, Y.; Mahmoud, M.

    2007-05-01

    Scenarios are important tools for long-term planning, and there is great interest in using integrated models in scenario studies. However, scenario definition and assessment are creative, as well as scientific, efforts. Using facilitated creative processes, we have worked with stakeholders to define regionally significant scenarios that encompass a broad range of hydroclimatic, socioeconomic, and institutional dimensions. The regional scenarios subsequently inform the definition of local scenarios that work with context-specific integrated models that, individually, can address only a subset of overall regional complexity. Based on concerns of stakeholders in the semi-arid US Southwest, we prioritized three dimensions that are especially important, yet highly uncertain, for long-term planning: hydroclimatic conditions (increased variability, persistent drought), development patterns (urban consolidation, distributed rural development), and the nature of public institutions (stressed, proactive). Linking across real-world decision contexts and integrated modeling efforts poses challenges of creatively connecting the conceptual models held by both the research and stakeholder communities.

  8. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    Science.gov (United States)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  9. Modeling Human Blockers in Millimeter Wave Radio Links

    Institute of Scientific and Technical Information of China (English)

    Jonathan S. Lu; Daniel Steinbach; Patrick Cabrol; Philip Pietraski

    2012-01-01

    In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.

  10. A NASA Climate Model Data Services (CDS) End-to-End System to Support Reanalysis Intercomparison

    Science.gov (United States)

    Carriere, L.; Potter, G. L.; McInerney, M.; Nadeau, D.; Shen, Y.; Duffy, D.; Schnase, J. L.; Maxwell, T. P.; Huffer, E.

    2014-12-01

    The NASA Climate Model Data Service (CDS) and the NASA Center for Climate Simulation (NCCS) are collaborating to provide an end-to-end system for the comparative study of the major Reanalysis projects, currently, ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, and JMA JRA25. Components of the system include the full spectrum of Climate Model Data Services; Data, Compute Services, Data Services, Analytic Services and Knowledge Services. The Data includes standard Reanalysis model output, and will be expanded to include gridded observations, and gridded Innovations (O-A and O-F). The NCCS High Performance Science Cloud provides the compute environment (storage, servers, and network). Data Services are provided through an Earth System Grid Federation (ESGF) data node complete with Live Access Server (LAS), Web Map Service (WMS) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) for visualization, as well as a collaborative interface through the Earth System CoG. Analytic Services include UV-CDAT for analysis and MERRA/AS, accessed via the CDS API, for computation services, both part of the CDS Climate Analytics as a Service (CAaaS). Knowledge Services include access to an Ontology browser, ODISEES, for metadata search and data retrieval. The result is a system that provides the ability for both reanalysis scientists and those scientists in need of reanalysis output to identify the data of interest, compare, compute, visualize, and research without the need for transferring large volumes of data, performing time consuming format conversions, and writing code for frequently run computations and visualizations.

  11. Model of the UIC link suspension for freight wagons

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, J. [Warsaw Univ. of Technology, Inst. of Vehicles, ul. Narbutta Warszawa (Poland)

    2003-12-01

    The paper presents a model of the UIC link suspension for freight wagons with emphasis on its longitudinal and lateral characteristics, which influence the lateral dynamics of the vehicle. The functioning of the suspension in the horizontal plane is realised by a number of technical (pivoted) pendulums composing linkages. The main feature of the joints of linkages is internal rolling/sliding in the presence of dry friction. The dissipation of energy by dry friction in the joints is the only source of damping, which influences the lateral dynamics of the vehicle. After detailed modelling of the technical pendulum, phenomenological models of the suspension are built, which reproduce the characteristics of the suspension using simple elements. A three-parameter model with one dry-friction slider and two linear springs reproduces the lateral characteristic of the suspension. A nine-parameter model with four dry-friction sliders and five springs reproduces the longitudinal characteristic. The models, using a method of non-smooth mechanics, may be directly implemented to vehicle/track dynamic simulations. (orig.)

  12. Virtual Models Linked with Physical Components in Construction

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch

    The use of virtual models supports a fundamental change in the working practice of the construction industry. It changes the primary information carrier (drawings) from simple manually created depictions of the building under construction to visually realistic digital representations that also...... components in the construction process and thereby improving the information handling. The present PhD project has examined the potential of establishing such a digital link between virtual models and physical components in construction. This is done by integrating knowledge of civil engineering, software...... engineering and business development in an iterative and user needs centred system development process. The analysis of future business perspectives presents an extensive number of new working processes that can assist in solving major challenges in the construction industry. Three of the most promising...

  13. Improvements in the Scalability of the NASA Goddard Multiscale Modeling Framework for Hurricane Climate Studies

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Chern, Jiun-Dar

    2007-01-01

    Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate.

  14. Mind the Gap: Exploring the Underground of the NASA Space Cancer Risk Model

    Science.gov (United States)

    Chappell, L. J.; Elgart, S. R.; Milder, C. M.; Shavers, M. R.; Semones, E. J.; Huff, J. L.

    2017-01-01

    The REID quantifies the lifetime risk of death from radiation-induced cancer in an exposed astronaut. The NASA Space Cancer Risk (NSCR) 2012 mode incorporates elements from physics, biology, epidemiology, and statistics to generate the REID distribution. The current model quantifies the space radiation environment, radiation quality, and dose-rate effects to estimate a NASA-weighted dose. This weighted dose is mapped to the excess risk of radiation-induced cancer mortality from acute exposures to gamma rays and then transferred to an astronaut population. Finally, the REID is determined by integrating this risk over the individual's lifetime. The calculated upper 95% confidence limit of the REID is used to restrict an astronaut's permissible mission duration (PMD) for a proposed mission. As a statistical quantity characterized by broad, subjective uncertainties, REID estimates for space missions result in wide distributions. Currently, the upper 95% confidence level is over 350% larger than the mean REID value, which can severely limit an astronaut's PMD. The model incorporates inputs from multiple scientific disciplines in the risk estimation process. Physics and particle transport models calculate how radiation moves through space, penetrates spacecraft, and makes its way to the human beings onboard. Epidemiological studies of exposures from atomic bombings, medical treatments, and power plants are used to quantify health risks from acute and chronic low linear energy transfer (LET) ionizing radiation. Biological studies in cellular and animal models using radiation at various LETs and energies inform quality metrics for ions present in space radiation. Statistical methodologies unite these elements, controlling for mathematical and scientific uncertainty and variability. Despite current progress, these research platforms contain knowledge gaps contributing to the large uncertainties still present in the model. The NASA Space Radiation Program Element (SRPE

  15. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  16. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    Science.gov (United States)

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  17. Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes

    Science.gov (United States)

    Wilson, Jeffrey D.

    1987-01-01

    A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.

  18. Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    Science.gov (United States)

    Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.

    2014-01-01

    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.

  19. Modeling and Mapping Oyster Norovirus Outbreak Risks in Gulf of Mexico Using NASA MODIS Aqua Data

    Science.gov (United States)

    Deng, Z.; Wang, J.

    2015-12-01

    Norovirus is a highly infectious virus and the leading cause of foodborne disease outbreaks such as oyster norovirus outbreaks. Currently, there is no vaccine to prevent norovirus infection and no drug to treat it. This paper presents an integrated modeling and mapping framework for predicting the risk of norovirus outbreaks in oyster harvesting waters in the Northern Gulf of Mexico coast. The framework involves (1) the construction of three novel remote sensing algorithms for the retrieval of sea surface salinity, sea surface temperature, and gage height (tide level) using NASA MODIS Aqua data; (2) the development of probability-based Artificial Neural Network (ANN) model for the prediction of oyster norovirus outbreak risk, and (3) the application of the Local Indicators of Spatial Association (LISA) for mapping norovirus outbreak risks in oyster harvesting areas in the Northern Gulf of Mexico using the remotely sensed NASA data, retrieved data from the three remote sensing algorithms, and the ANN model predictions. The three remote sensing algorithms are able to correctly retrieve 94.1% of sea surface salinity, 94.0% of sea surface temperature, and 77.8% of gage height observed along the US coast, including the Pacific coast, the Gulf of Mexico coast, and the Atlantic coast. The gage height, temperature, and salinity are the three most important explanatory variables of the ANN model in terms of spatially distributed input variables. The ANN model is capable of hindcasting/predicting all oyster norovirus outbreaks occurred in oyster growing areas along the Gulf of Mexico coast where environmental data are available. The integrated modeling and mapping framework makes it possible to map daily risks of norovirus outbreaks in all oyster harvesting waters and particularly the oyster growing areas where no in-situ environmental data are available, greatly improving the safety of seafood and reducing outbreaks of foodborne disease.

  20. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    Science.gov (United States)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the

  1. The Linked Dual Representation model of vocal perception and production

    Directory of Open Access Journals (Sweden)

    Sean eHutchins

    2013-11-01

    Full Text Available The voice is one of the most important media for communication, yet there is a wide range of abilities in both the perception and production of the voice. In this article, we review this range of abilities, focusing on pitch accuracy as a particularly informative case, and look at the factors underlying these abilities. Several classes of models have been posited describing the relationship between vocal perception and production, and we review the evidence for and against each class of model. We look at how the voice is different from other musical instruments and review evidence about both the association and the dissociation between vocal perception and production abilities. Finally, we introduce the Linked Dual Representation model, a new approach which can account for the broad patterns in prior findings, including trends in the data which might seem to be countervailing. We discuss how this model interacts with higher-order cognition and examine its predictions about several aspects of vocal perception and production.

  2. Assimilation of freeze-thaw observations into the NASA Catchment land surface model

    Science.gov (United States)

    Farhadi, L.; Reichle, R. H.; Delannoy, G.

    2012-12-01

    The land surface freeze-thaw (F/T) state controls hydrological and carbon cycling and thus affects water and energy exchanges at land surface. In this research an Observing System Simulation Experiment experiment is conducted using synthetically generated measurements of the F/T state for a region in North America (90-110oW longitude, 45-55oN latitude). The synthetic "truth" is generated using the NASA Catchment land surface model forced with surface meteorological fields from the Modern-Era Retrospective Reanalysis for Research and Applications (MERRA). To generate synthetic measurements, the true categorical F/T state is corrupted with a prescribed amount of F/T classification error. The assimilation experiment employs the same Catchment model except that forcing errors (relative to truth) are introduced via the application of meteorological forcing fields from the Global Land Data Assimilation System (GLDAS). A rule-based approach that incorporates model and observational errors is developed and used for assimilating the categorical F/T measurements into the land surface model (F/T analysis). The effect of the F/T analysis on land surface temperature, soil temperature and soil moisture is examined. In a real-world experiment, the synthetic F/T observations are replaced with F/T observations from the Advanced Microwave Scanning Radiometer Enhanced (AMSR-E). The ultimate goal of this project is to provide a framework for the assimilation of SMAP (Soil Moisture Active Passive) F/T observations into the NASA Catchment land surface model.

  3. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    Science.gov (United States)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  4. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  5. Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach

    Science.gov (United States)

    Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

  6. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    Science.gov (United States)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation

  7. Linking Geomechanical Models with Observations of Microseismicity during CCS Operations

    Science.gov (United States)

    Verdon, J.; Kendall, J.; White, D.

    2012-12-01

    During CO2 injection for the purposes of carbon capture and storage (CCS), injection-induced fracturing of the overburden represents a key risk to storage integrity. Fractures in a caprock provide a pathway along which buoyant CO2 can rise and escape the storage zone. Therefore the ability to link field-scale geomechanical models with field geophysical observations is of paramount importance to guarantee secure CO2 storage. Accurate location of microseismic events identifies where brittle failure has occurred on fracture planes. This is a manifestation of the deformation induced by CO2 injection. As the pore pressure is increased during injection, effective stress is decreased, leading to inflation of the reservoir and deformation of surrounding rocks, which creates microseismicity. The deformation induced by injection can be simulated using finite-element mechanical models. Such a model can be used to predict when and where microseismicity is expected to occur. However, typical elements in a field scale mechanical models have decameter scales, while the rupture size for microseismic events are typically of the order of 1 square meter. This means that mapping modeled stress changes to predictions of microseismic activity can be challenging. Where larger scale faults have been identified, they can be included explicitly in the geomechanical model. Where movement is simulated along these discrete features, it can be assumed that microseismicity will occur. However, microseismic events typically occur on fracture networks that are too small to be simulated explicitly in a field-scale model. Therefore, the likelihood of microseismicity occurring must be estimated within a finite element that does not contain explicitly modeled discontinuities. This can be done in a number of ways, including the utilization of measures such as closeness on the stress state to predetermined failure criteria, either for planes with a defined orientation (the Mohr-Coulomb criteria) for

  8. Software engineering and Ada (Trademark) training: An implementation model for NASA

    Science.gov (United States)

    Legrand, Sue; Freedman, Glenn

    1988-01-01

    The choice of Ada for software engineering for projects such as the Space Station has resulted in government and industrial groups considering training programs that help workers become familiar with both a software culture and the intricacies of a new computer language. The questions of how much time it takes to learn software engineering with Ada, how much an organization should invest in such training, and how the training should be structured are considered. Software engineering is an emerging, dynamic discipline. It is defined by the author as the establishment and application of sound engineering environments, tools, methods, models, principles, and concepts combined with appropriate standards, guidelines, and practices to support computing which is correct, modifiable, reliable and safe, efficient, and understandable throughout the life cycle of the application. Neither the training programs needed, nor the content of such programs, have been well established. This study addresses the requirements for training for NASA personnel and recommends an implementation plan. A curriculum and a means of delivery are recommended. It is further suggested that a knowledgeable programmer may be able to learn Ada in 5 days, but that it takes 6 to 9 months to evolve into a software engineer who uses the language correctly and effectively. The curriculum and implementation plan can be adapted for each NASA Center according to the needs dictated by each project.

  9. The NASA Community Coordinated Modeling Center (CCMC) Next Generation Space Weather Data Warehouse

    Science.gov (United States)

    Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Zheng, Y.; Rastaetter, L.; Chulaki, A.; Pembroke, A. D.; Wiegand, C.; Mullinix, R.; Boblitt, J.; Mendoza, A. M. M.; Swindell, M. J., IV; Bakshi, S. S.; Mays, M. L.; Shim, J. S.; Hesse, M.; Collado-Vega, Y. M.; Taktakishvili, A.; MacNeice, P. J.

    2014-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center enables, supports, and performs research and development for next generation space science and space weather models. The CCMC currently hosts a large and expanding collection of state-or-the-art, physics-based space weather models that have been developed by the international research community. There are many tools and services provided by the CCMC that are currently available world-wide, along with the ongoing development of new innovative systems and software for research, discovery, validation, visualization, and forecasting. Over the history of the CCMC's existence, there has been one constant engineering challenge - describing, managing, and disseminating data. To address the challenges that accompany an ever-expanding number of models to support, along with a growing catalog of simulation output - the CCMC is currently developing a flexible and extensible space weather data warehouse to support both internal and external systems and applications. This paper intends to chronicle the evolution and future of the CCMC's data infrastructure, and the current infrastructure re-engineering activities that seek to leverage existing community data model standards like SPASE and the IMPEx Simulation Data Model.

  10. Implementation of a vibrationally linked chemical reaction model for DSMC

    Science.gov (United States)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  11. NASA Thesaurus

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Technical Reports Server (NTRS) and the NTRS...

  12. Preliminary comparison of dose measurements on CRRES to NASA model predictions

    Energy Technology Data Exchange (ETDEWEB)

    Gussenhoven, M.S.; Mullen, E.G.; Brautigan, D.H. (Phillips Lab., Geophysics Directorate, Hanscom AFB, MA (US)); Holeman, E. (Boston Univ., MA (United States). Dept. of Physics); Jordan, C. (Radex Inc., Bedford, MA (US)); Hanser, F.; Dichter, B. (Panametrics, Inc., Waltham, MA (United States))

    1991-12-01

    In this paper, measurements of proton and electron dose from the space radiation dosimeter on the CRRES satellite, in a 18.1{degrees}, 350 km by 33000 km orbit, are compared to the NASA models for solar maximum conditions. Up to the time of the large, solar-initiated particle events near the end of March 1991, the results are similar to those previously reported for solar minimum at low altitudes. That is, prior to the March event, there is excellent agreement between model and measured values for protons and poor agreement for electrons. During the event period a second proton belt was formed at higher altitudes which is not contained in the proton models, and the electrons increased over an order of magnitude for the CRRES orbit. This resulted in poorer agreement between model and measured values for protons during and after the solar proton event and better agreement for electrons during the electron enhancement period. What the data show is that, depending on orbit, both the existing proton and electron models can give large errors in dose that can compromise space system performance and lifetime.

  13. Preliminary comparison of dose measurements on crres to NASA model predictions. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Gussenhoven, M.S.; Mullen, E.G.; Brautigam, D.H.; Holeman, E.; Jordon, C.

    1991-12-01

    Measurements of proton and electron dose from the space radiation dosimeter on the CRRES satellite, in a 18.1 deg, 350 km by 33000km orbit, are compared to the NASA models for solar maximum conditions. Up to the time of the large, solar-initiated particle events near the end of March 1991, the results are similar to those previously reported for solar minimum at low altitudes. That is, prior to the March event, there is excellent agreement between model and measured values for protons and poor agreement for electrons. During the event period a second proton belt was formed at higher altitudes which is not contained in the proton models, and the electrons increased over an order of magnitude for the CRRES orbit. This resulted in poorer agreement between model and measured values for protons during and after the solar proton event and better agreement for electrons during the electron enhancement period. What the data show is that, depending on orbit, both the existing proton and electron models can give large errors in dose that can compromise space system performance and lifetime.

  14. JPL Thermal Design Modeling Philosophy and NASA-STD-7009 Standard for Models and Simulations - A Case Study

    Science.gov (United States)

    Avila, Arturo

    2011-01-01

    The Standard JPL thermal engineering practice prescribes worst-case methodologies for design. In this process, environmental and key uncertain thermal parameters (e.g., thermal blanket performance, interface conductance, optical properties) are stacked in a worst case fashion to yield the most hot- or cold-biased temperature. Thus, these simulations would represent the upper and lower bounds. This, effectively, represents JPL thermal design margin philosophy. Uncertainty in the margins and the absolute temperatures is usually estimated by sensitivity analyses and/or by comparing the worst-case results with "expected" results. Applicability of the analytical model for specific design purposes along with any temperature requirement violations are documented in peer and project design review material. In 2008, NASA released NASA-STD-7009, Standard for Models and Simulations. The scope of this standard covers the development and maintenance of models, the operation of simulations, the analysis of the results, training, recommended practices, the assessment of the Modeling and Simulation (M&S) credibility, and the reporting of the M&S results. The Mars Exploration Rover (MER) project thermal control system M&S activity was chosen as a case study determining whether JPL practice is in line with the standard and to identify areas of non-compliance. This paper summarizes the results and makes recommendations regarding the application of this standard to JPL thermal M&S practices.

  15. Modelling and experimental validation of two-dimensional transverse vibrations in a flexible robot link

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Baungaard, Jens Rane

    1996-01-01

    A general model for a rotating homogenous flexible robot link is developed. The model describes two-dimensional transverse vibrations induced by the actuator due to misalignment of the actuator axis of rotation relative to the link symmetry axis and due to translational acceleration of the link...

  16. A Thermal Management Systems Model for the NASA GTX RBCC Concept

    Science.gov (United States)

    Traci, Richard M.; Farr, John L., Jr.; Laganelli, Tony; Walker, James (Technical Monitor)

    2002-01-01

    The Vehicle Integrated Thermal Management Analysis Code (VITMAC) was further developed to aid the analysis, design, and optimization of propellant and thermal management concepts for advanced propulsion systems. The computational tool is based on engineering level principles and models. A graphical user interface (GUI) provides a simple and straightforward method to assess and evaluate multiple concepts before undertaking more rigorous analysis of candidate systems. The tool incorporates the Chemical Equilibrium and Applications (CEA) program and the RJPA code to permit heat transfer analysis of both rocket and air breathing propulsion systems. Key parts of the code have been validated with experimental data. The tool was specifically tailored to analyze rocket-based combined-cycle (RBCC) propulsion systems being considered for space transportation applications. This report describes the computational tool and its development and verification for NASA GTX RBCC propulsion system applications.

  17. LQG optimal compensator transfer function for the NASA LaRC CSI Evolutionary Model

    Science.gov (United States)

    Balakrishnan, A. V.

    1994-01-01

    Following the general form for LQG optimal compensators for flexible structures with collocated rate sensors we develop an explicit compensator transfer function for the NASA LaRC CSI Evolutionary model in the form: psi(i omega) = g i omega B(sub u)(sup *)(-M(sub b)omega(exp 2) + T(i omega) + i gamma omega B(sub u)Bu(sub u)(sup *))(exp -1)B(sub u) where T(i omega) is a 48 x 48 positive definite matrix whose derivation is the main result of this report. The undamped mode frequencies can be expressed in terms of T(i omega) as the zeros of Det (-omega(exp 2)M(sub b) + T(i omega)) while 'clamped-clamped' modes of the structure (with all nodes clamped) are the poles.

  18. Photogrammetric Tracking of Aerodynamic Surfaces and Aerospace Models at NASA Langley Research Center

    Science.gov (United States)

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-06-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.

  19. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  20. FSO and radio link attenuation: meteorological models verified by experiment

    Science.gov (United States)

    Brazda, Vladimir; Fiser, Ondrej; Svoboda, Jaroslav

    2011-09-01

    Institute of Atmospheric Physics of Czech Academy measures atmospheric attenuation on 60 m experimental FSO link on 830 and 1550 nm for more than three years. Visibility sensors and two 3D sonic anemometers on both transmitting and receiving site, rain gauge and many sensors enabling the refractivity index computation are spaced along the optical link. Meteorological visibility, wind turbulent energy, sonic temperature, structure index and rain rate are correlated with measured attenuation. FSO link attenuation dependence on the above mentioned parameters is analyzed. The paper shows also basic statistical behavior of the long-term FSO signal level and also the simulation of hybrid link techniques.

  1. LINK PREDICTION MODEL FOR PAGE RANKING OF BLOGS

    Directory of Open Access Journals (Sweden)

    S.Geetha

    2012-11-01

    Full Text Available Social Network Analysis is mapping and measuring of relationships and flows of information between people, organizations, computers, or other information or knowledge processing entities. Social media systems such as blogs, LinkedIn, you tube are allows users to share content media, etc. Blog is a social network notepad service with consider on user interactions. In this paper study the link predictionand page ranking using MozRank algorithm using blog websites. It finds out how all the websites on the internet link to each other with the largest Link Intelligence database. As link data is also a component of search engine ranking, understanding the link profile of Search Engine positioning. Here the MozRank algorithm is using backlinks from blog websites and linking websites quality. Good websites with many backlinks which linking the corresponding WebPage give highly value of MozRank. MozRank can be improved a web page's by getting lots of links from semi-popular pages or a few links from very popular pages. The algorithm for page ranking must work differently and MozRank is more comprehensive and accurate than Goggle’s page rank. Another tool is Open Site Explorer that is ability to compare five URL's against each other. Open Site Explorer’s Compare Link Metrics option is how one measures pagelevel metrics, the other domain. This result can help to generate a chart form for the comparative URLs. A comparison chart of the important metrics for these pages is shown which makes it very clear and easy to compare the data between the five URL's.

  2. Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters: The maximum entropy approach

    Science.gov (United States)

    Hsia, Wei-Shen

    1987-01-01

    A stochastic control model of the NASA/MSFC Ground Facility for Large Space Structures (LSS) control verification through Maximum Entropy (ME) principle adopted in Hyland's method was presented. Using ORACLS, a computer program was implemented for this purpose. Four models were then tested and the results presented.

  3. Automated model integration at source code level: An approach for implementing models into the NASA Land Information System

    Science.gov (United States)

    Wang, S.; Peters-Lidard, C. D.; Mocko, D. M.; Kumar, S.; Nearing, G. S.; Arsenault, K. R.; Geiger, J. V.

    2014-12-01

    Model integration bridges the data flow between modeling frameworks and models. However, models usually do not fit directly into a particular modeling environment, if not designed for it. An example includes implementing different types of models into the NASA Land Information System (LIS), a software framework for land-surface modeling and data assimilation. Model implementation requires scientific knowledge and software expertise and may take a developer months to learn LIS and model software structure. Debugging and testing of the model implementation is also time-consuming due to not fully understanding LIS or the model. This time spent is costly for research and operational projects. To address this issue, an approach has been developed to automate model integration into LIS. With this in mind, a general model interface was designed to retrieve forcing inputs, parameters, and state variables needed by the model and to provide as state variables and outputs to LIS. Every model can be wrapped to comply with the interface, usually with a FORTRAN 90 subroutine. Development efforts need only knowledge of the model and basic programming skills. With such wrappers, the logic is the same for implementing all models. Code templates defined for this general model interface could be re-used with any specific model. Therefore, the model implementation can be done automatically. An automated model implementation toolkit was developed with Microsoft Excel and its built-in VBA language. It allows model specifications in three worksheets and contains FORTRAN 90 code templates in VBA programs. According to the model specification, the toolkit generates data structures and procedures within FORTRAN modules and subroutines, which transfer data between LIS and the model wrapper. Model implementation is standardized, and about 80 - 90% of the development load is reduced. In this presentation, the automated model implementation approach is described along with LIS programming

  4. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    Science.gov (United States)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  5. Design and construction of 2 transonic airfoil models for tests in the NASA Langley C.3-M TCT

    Science.gov (United States)

    Schaechterle, G.; Ludewig, K. H.; Stanewsky, E.; Ray, E. J.

    1982-01-01

    As part of a NASA/DFVLR cooperation program two transonic airfoils were tested in the NASA Langley 0.3-m TCT. Model design and construction was carried out by DFVLR. The models designed and constructed performed extremely well under cryogenic conditions. Essentially no permanent changes in surface quality and geometric dimensions occurred during the tests. The aerodynamic results from the TCT tests which demonstrate the large sensitivity of the airfoil CAST 10-Z/DOAZ to Reynolds number changes compared well with results from other facilities at ambient temperatures.

  6. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  7. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  8. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  9. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    Science.gov (United States)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  10. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  11. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    Science.gov (United States)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  12. Curing critical links in oscillator networks as power grid models

    CERN Document Server

    Rohden, Martin; Timme, Marc; Meyer-Ortmanns, Hildegard

    2015-01-01

    Modern societies crucially depend on the robust supply with electric energy. Blackouts of power grids can thus have far reaching consequences. During a blackout, often the failure of a single infrastructure, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Preventing such large-scale outages is thus key for assuring a reliable power supply. Here we present a non-local curing strategy for oscillatory power grid networks based on the global collective redistribution of loads. We first identify critical links and compute residual capacities on alternative paths on the remaining network from the original flows. For each critical link, we upgrade lines that constitute bottlenecks on such paths. We demonstrate the viability of this strategy for random ensembles of network topologies as well as topologies derived from real transmission grids and compare the nonlocal strategy against local back-ups of critical links. These strategies are indep...

  13. Application of NASA Observational Data and Habitat Suitability Modeling to Wavyleaf Basketgrass (Oplismenus hirtellus)

    Science.gov (United States)

    Hawkins, C.; Suss, C.

    2011-12-01

    In 1997, a rapidly spreading invasive grass known as Wavyleaf Basketgrass (Oplismenus hirtellus, WLBG), was found in Maryland's Patapsco Valley State Park. It is a low-lying, trailing perennial grass, branching and rooting at the lower stem nodes. The leaves are short and hairy, and produce a sticky substance that can adhere to passing animals and further its dispersion. WLBG is similar to Japanese stiltgrass, which has taken over Eastern forests in the last 25 years. WLBG, a stoloniferous grass, covers the forest floor, crowds out native herbaceous plants, and negatively alters the habitats of plants and animals in that ecosystem. It has spread beyond the park into the surrounding areas and other parts of Maryland and Virginia. How it arrived to Maryland is still unknown but mitigation efforts are clearly required and are being undertaken by the Maryland Department of Natural Resources (MD DNR) Wildlife and Heritage Service (WHS). The maximum entropy (MaxEnt) method was used to model the potential distribution of WLBG in the Maryland region. MaxEnt models species distributions from presence-only records, making it particularly well-suited for the types of data collected by resource managers such as the WHS. Input into the MaxEnt model were a combination of in situ presence points and covariates (environmental predictors) comprised of environmental data and NASA Earth observation data that are ecologically relevant to WLBG. These environmental predictors include temperature and precipitation data, soil classifications, landcover measures and classifications, and topology data including elevation, aspect, and slope. The remotely sensed data layers include products derived from Landsat 5 and 7, Moderate Resolution Imaging Spectroradiometer (MODIS), and the Shuttle Radar Topography Mission (SRTM). MaxEnt produced a list of top covariate contributors and created habitat suitability maps to predict potential areas where WLBG may spread.

  14. The GIS data model of the Visible and Infrared mapping spectrometer (VIR) onboard NASA/Dawn

    Science.gov (United States)

    Frigeri, Alessandro; De Sanctis, Maria Cristina; Ammannito, Eleonora; Capaccioni, Fabrizio; VIR Team

    2016-10-01

    The spectrometer onboard Dawn mission to Vesta and Ceres (Russell et al., Earth Moon Planet (2007) 101:65-91) is a hyperspectral spectrometer with imaging capability which returns data useful for the determination of the mineral composition of surface materials in their geologic context. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of Vesta's and Ceres' global and local properties (De Sanctis et al., SSR 2011). VIR combines two data channels in one compact instrument. The visible channel covers 0.25-1.05 μm and the infrared channel covers 1-5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291-1304, 1998; Reininger et al. in Proc. SPIE 2819:66-77, 1996) on board the ESA Rosetta mission.Since the beginning of the scientific campaign, VIR calibrated data have been converted into a Geographic Information System (GIS) compatible format. Here we present the GIS data model we developed for VIR, which presents some unique peculiarities due to the specific NASA/Dawn mission design. The model has been developed starting from an object oriented modeling. This object oriented design gives the flexibility which is necessary to face, time to time, the unexpected aspects of remote sensing over planetary surfaces unobserved before with this kind of instruments.

  15. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    Science.gov (United States)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  16. Overview 2004 of NASA Stirling-Convertor CFD-Model Development and Regenerator R&D Efforts

    Science.gov (United States)

    Tew, Roy C.; Dyson, Rodger W.; Wilson, Scott D.; Demko, Rikako

    2005-01-01

    This paper reports on accomplishments in 2004 in development of Stirling-convertor CFD model at NASA GRC and via a NASA grant, a Stirling regenerator-research effort being conducted via a NASA grant (a follow-on effort to an earlier DOE contract), and a regenerator-microfabrication contract for development of a "next-generation Stirling regenerator." Cleveland State University is the lead organization for all three grant/contractual efforts, with the University of Minnesota and Gedeor Associates as subcontractors. Also, the Stirling Technology Co. and Sunpower, Inc. are both involved in all three efforts, either as funded or unfunded participants. International Mezzo Technologies of Baton Rouge, LA is the regenerator fabricator for the regenerator-microfabrication contract. Results of the efforts in these three areas are summarized.

  17. Low-level jets in the NASA Ames Mars general circulation model

    Science.gov (United States)

    Joshi, M. M.; Haberle, R. M.; Barnes, J. R.; Murphy, J. R.; Schaeffer, J.

    1997-03-01

    Previous simulations of the Martian atmosphere have shown how topography acts to confine the low-level Hadley cell flow into intense jets on the eastern flanks of Tharsis and Syrtis Major. We now conduct detailed studies of these jets using the NASA Ames Mars general circulation model (MGCM). The structure of the flow is found to be sensitive to local topography as well as large-scale diabatic heating patterns, consistent with terrestrial studies, and MGCM studies carried out with simplified topography. The summer subtropical zonal winds associated with the Hadley circulation also form spatially confined intense jet cores. Diurnal variations in heating affect jet structure in three distinct ways. Global tides interact with the jets, resulting in effects such as the two reinforcing each other at the summer subtropics near midday, leading to high winds and surface stresses at this time. Slope winds act to change the character of the jets during the course of a day, especially at Syrtis Major and the Hellas basin, where slopes are large. Vertical mixing acts to decrease low-level winds during the late afternoon. The sensitivity of the results to atmospheric dust loading is examined. We finally show how a decrease in boundary layer height due to dust loading actually augments mid-afternoon jet strength near the surface. The resulting increase in maximum surface stress indicates that this is a positive feedback to dust lifting.

  18. Simulations of the Mid-Pliocene Warm Period using the NASA/GISS ModelE2-R Earth System Model

    Directory of Open Access Journals (Sweden)

    M. A. Chandler

    2012-09-01

    Full Text Available Climate reconstructions of the mid-Pliocene Warm Period (mPWP bear many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change. In particular, marine and terrestrial paleoclimate data point to high latitude temperature amplification, with associated decreases in sea ice and land ice and altered vegetation distributions that show expansion of warmer climate biomes into higher latitudes. NASA GISS climate models have been used to study the Pliocene climate since the USGS PRISM project first identified that the mid-Pliocene North Atlantic sea surface temperatures were anomalously warm. Here we present the most recent simulations of the Pliocene using the AR5/CMIP5 version of the GISS Earth System Model known as ModelE2-R. These simulations constitute the NASA contribution to the Pliocene Model Intercomparison Project (PlioMIP Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. We provide discussion of features that show considerable improvement compared with simulations from previous versions of the NASA GISS models, improvement defined here as simulation results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene climate. In some regions even qualitative agreement between model results and paleodata are an improvement over past studies, but the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea in these new simulations is by far the most accurate portrayal ever of this key geographic region by the GISS climate model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterizations in the ocean model, have led to an Earth System Model that will produce more

  19. ModelCenter-Integrated Reduced Order Multi-fidelity Optimization Scheme for NASA MDAO Framework Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During Phase I of this effort, ZONA Technology, Inc. significantly improved the medium fidelity design and analysis capability of NASA's MDAO architecture by...

  20. Model-Based Fault Detection and Diagnosis System for NASA Mars Subsurface Drill Prototype

    Data.gov (United States)

    National Aeronautics and Space Administration — The Drilling Automation for Mars Environment (DAME) project, led by NASA Ames Research Center, is aimed at developing a lightweight, low-power drill prototype that...

  1. Network link dimensioning : a measurement & modeling based approach

    NARCIS (Netherlands)

    Meent, van de Remco

    2006-01-01

    Adequate network link dimensioning requires a thorough insight into the interrelationship between: (i) the traffic offered (in terms of the average load, but also its fluctuations), (ii) the desired level of performance, and (iii) the required bandwidth capacity. It is clear that more capacity is ne

  2. An Assessment of Uncertainties in the NASA GISS ModelE GCM due to Variations in the Representation of Aerosol/Cloud Interactions

    Science.gov (United States)

    Persad, G. G.; Menon, S.; Sednev, I.

    2008-12-01

    Aerosol indirect effects are known to have a significant impact on the evolution of the climate system. However, their representation via cloud/aerosol microphysics remains a major source of uncertainty in climate models. This study assesses uncertainties in the NASA Goddard Institute for Space Studies (GISS) ModelE global climate model produced by different representations of the cloud/aerosol interaction scheme. By varying the complexity of the cloud microphysics scheme included in the model and analyzing the range of results against cloud properties obtained from satellite retrievals, we evaluate the effect of the different schemes on climate. We examine four sets of simulations with the GISS ModelE: (1) using a new aerosol/cloud microphysics package implemented in ModelE (based on the two-moment cloud microphysics scheme recently implemented in CCSM), (2) using a version of the microphysics scheme previously included in ModelE, (3) using prescribed aerosol concentrations and fixed cloud droplet number (the main link between aerosols and the cloud microphysics scheme), and (4) varying the environment conditions with which the new aerosol/cloud microphysics package is run. The global mean cloud properties are analyzed and compared to global mean ranges as obtained from satellite retrievals. Results show that important climate parameters, such as total cloud cover, can be underestimated by 8-15% using the new aerosol/cloud microphysics scheme. Liquid water path (LWP) is particularly affected by variations to the aerosol/cloud microphysics representation, exhibiting both global mean variations of ~20% and strong regional differences. Significant variability in LWP between the various simulations may be attributed to differences in the autoconversion scheme used in the differing representations of aerosol/cloud interactions. These LWP differences significantly affect radiative parameters, such as cloud optical depth and net cloud forcing (used to evaluate the

  3. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  4. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  5. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    Science.gov (United States)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using

  7. NASA's Plan for SDLS Testing

    Science.gov (United States)

    Bailey, Brandon

    2015-01-01

    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  8. A Bayesian model for estimating population means using a link-tracing sampling design.

    Science.gov (United States)

    St Clair, Katherine; O'Connell, Daniel

    2012-03-01

    Link-tracing sampling designs can be used to study human populations that contain "hidden" groups who tend to be linked together by a common social trait. These links can be used to increase the sampling intensity of a hidden domain by tracing links from individuals selected in an initial wave of sampling to additional domain members. Chow and Thompson (2003, Survey Methodology 29, 197-205) derived a Bayesian model to estimate the size or proportion of individuals in the hidden population for certain link-tracing designs. We propose an addition to their model that will allow for the modeling of a quantitative response. We assess properties of our model using a constructed population and a real population of at-risk individuals, both of which contain two domains of hidden and nonhidden individuals. Our results show that our model can produce good point and interval estimates of the population mean and domain means when our population assumptions are satisfied.

  9. An independent pair-link model of simple fluids

    CERN Document Server

    Bonneville, Richard

    2016-01-01

    A new approach to thermodynamics of simple fluids is presented. The partition function is first expressed in the reciprocal space, it is argued that the links (p,q) between 2 molecules can reasonably in the thermodynamical limit be considered as a set nearly independent objects characterized by the dynamical variables . It is then possible to derive an expression of the pair correlation function. The results, which are independent of the exact shape of the intermolecular potential, are applied to the simple case of hard sphere fluids.

  10. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    Science.gov (United States)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  11. How to Develop and Interpret a Credibility Assessment of Numerical Models for Human Research: NASA-STD-7009 Demystified

    Science.gov (United States)

    Nelson, Emily S.; Mulugeta, Lealem; Walton, Marlei; Myers, Jerry G.

    2014-01-01

    In the wake of the Columbia accident, the NASA-STD-7009 [1] credibility assessment was developed as a unifying platform to describe model credibility and the uncertainties in its modeling predictions. This standard is now being adapted by NASAs Human Research Program to cover a wide range of numerical models for human research. When used properly, the standard can improve the process of code development by encouraging the use of best practices. It can also give management more insight in making informed decisions through a better understanding of the models capabilities and limitations.To a newcomer, the abstractions presented in NASA-STD-7009 and the sheer volume of information that must be absorbed can be overwhelming. This talk is aimed at describing the credibility assessment, which is the heart of the standard, in plain terms. It will outline how to develop a credibility assessment under the standard. It will also show how to quickly interpret the graphs and tables that result from the assessment and how to drill down from the top-level view to the foundation of the assessment. Finally, it will highlight some of the resources that are available for further study.

  12. Quantitative Modeling of Entangled Polymer Rheology: Experiments, Tube Models and Slip-Link Simulations

    Science.gov (United States)

    Desai, Priyanka Subhash

    Rheology properties are sensitive indicators of molecular structure and dynamics. The relationship between rheology and polymer dynamics is captured in the constitutive model, which, if accurate and robust, would greatly aid molecular design and polymer processing. This dissertation is thus focused on building accurate and quantitative constitutive models that can help predict linear and non-linear viscoelasticity. In this work, we have used a multi-pronged approach based on the tube theory, coarse-grained slip-link simulations, and advanced polymeric synthetic and characterization techniques, to confront some of the outstanding problems in entangled polymer rheology. First, we modified simple tube based constitutive equations in extensional rheology and developed functional forms to test the effect of Kuhn segment alignment on a) tube diameter enlargement and b) monomeric friction reduction between subchains. We, then, used these functional forms to model extensional viscosity data for polystyrene (PS) melts and solutions. We demonstrated that the idea of reduction in segmental friction due to Kuhn alignment is successful in explaining the qualitative difference between melts and solutions in extension as revealed by recent experiments on PS. Second, we compiled literature data and used it to develop a universal tube model parameter set and prescribed their values and uncertainties for 1,4-PBd by comparing linear viscoelastic G' and G" mastercurves for 1,4-PBds of various branching architectures. The high frequency transition region of the mastercurves superposed very well for all the 1,4-PBds irrespective of their molecular weight and architecture, indicating universality in high frequency behavior. Therefore, all three parameters of the tube model were extracted from this high frequency transition region alone. Third, we compared predictions of two versions of the tube model, Hierarchical model and BoB model against linear viscoelastic data of blends of 1,4-PBd

  13. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    Science.gov (United States)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  14. A link based network route choice model with unrestricted choice set

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Frejinger, Emma; Karlstrom, Anders

    2013-01-01

    This paper considers the path choice problem, formulating and discussing an econometric random utility model for the choice of path in a network with no restriction on the choice set. Starting from a dynamic specification of link choices we show that it is equivalent to a static model...... additive. The model is applied to data recording path choices in a network with more than 3000 nodes and 7000 links....

  15. Linking animal models of psychosis to computational models of dopamine function.

    Science.gov (United States)

    Smith, Andrew J; Li, Ming; Becker, Suzanna; Kapur, Shitij

    2007-01-01

    Psychosis is linked to dysregulation of the neuromodulator dopamine and antipsychotic drugs (APDs) work by blocking dopamine receptors. Dopamine-modulated disruption of latent inhibition (LI) and conditioned avoidance response (CAR) have served as standard animal models of psychosis and antipsychotic action, respectively. Meanwhile, the 'temporal difference' algorithm (TD) has emerged as the leading computational model of dopamine neuron firing. In this report TD is extended to include action at the level of dopamine receptors in order to explain a number of behavioral phenomena including the dose-dependent disruption of CAR by APDs, the temporal dissociation of the effects of APDs on receptors vs behavior, the facilitation of LI by APDs, and the disruption of LI by amphetamine. The model also predicts an APD-induced change to the latency profile of CAR--a novel prediction that is verified experimentally. The model's primary contribution is to link dopamine neuron firing, receptor manipulation, and behavior within a common formal framework that may offer insights into clinical observations.

  16. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    Science.gov (United States)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  17. UAS in the NAS Project: Large-Scale Communication Architecture Simulations with NASA GRC Gen5 Radio Model

    Science.gov (United States)

    Kubat, Gregory

    2016-01-01

    This report provides a description and performance characterization of the large-scale, Relay architecture, UAS communications simulation capability developed for the NASA GRC, UAS in the NAS Project. The system uses a validated model of the GRC Gen5 CNPC, Flight-Test Radio model. Contained in the report is a description of the simulation system and its model components, recent changes made to the system to improve performance, descriptions and objectives of sample simulations used for test and verification, and a sampling and observations of results and performance data.

  18. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  19. NASA space cancer risk model-2014: Uncertainties due to qualitative differences in biological effects of HZE particles

    Science.gov (United States)

    Cucinotta, Francis

    Uncertainties in estimating health risks from exposures to galactic cosmic rays (GCR) — comprised of protons and high-energy and charge (HZE) nuclei are an important limitation to long duration space travel. HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation leading to large uncertainties in predicting risks to humans. Our NASA Space Cancer Risk Model-2012 (NSCR-2012) for estimating lifetime cancer risks from space radiation included several new features compared to earlier models from the National Council on Radiation Protection and Measurements (NCRP) used at NASA. New features of NSCR-2012 included the introduction of NASA defined radiation quality factors based on track structure concepts, a Bayesian analysis of the dose and dose-rate reduction effectiveness factor (DDREF) and its uncertainty, and the use of a never-smoker population to represent astronauts. However, NSCR-2012 did not include estimates of the role of qualitative differences between HZE particles and low LET radiation. In this report we discuss evidence for non-targeted effects increasing cancer risks at space relevant HZE particle absorbed doses in tissue (Mars exploration will be described, and compared to those of our earlier NSCR-2012 model.

  20. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  1. NASA Network

    Science.gov (United States)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  2. Generalized Modelling of the Stabilizer Link and Static Simulation Using FEM

    Science.gov (United States)

    Cofaru, Nicolae Florin; Roman, Lucian Ion; Oleksik, Valentin; Pascu, Adrian

    2016-12-01

    This paper proposes an organological approach of one of the components of front suspension, namely anti-roll power link. There will be realized a CAD 3D modelling of this power link. 3D modelling is generalized and there were used the powers of Catia V5R20 software. Parameterized approach provides a high flexibility in the design, meaning that dimensional and shape changes of the semi-power link are very easy to perform just by changing some parameters. Several new versions are proposed for the anti-roll power link body. At the end of the work, it is made a static analysis of the semi-power link model used in the suspension of vehicles OPEL ASTRA G, ZAFIRA, MERIVA, and constructive optimization of its body.

  3. Use of an Existing Airborne Radon Data Base in the Verification of the NASA/AEAP Core Model

    Science.gov (United States)

    Kritz, Mark A.

    1998-01-01

    The primary objective of this project was to apply the tropospheric atmospheric radon (Rn222) measurements to the development and verification of the global 3-D atmospheric chemical transport model under development by NASA's Atmospheric Effects of Aviation Project (AEAP). The AEAP project had two principal components: (1) a modeling effort, whose goal was to create, test and apply an elaborate three-dimensional atmospheric chemical transport model (the NASA/AEAP Core model to an evaluation of the possible short and long-term effects of aircraft emissions on atmospheric chemistry and climate--and (2) a measurement effort, whose goal was to obtain a focused set of atmospheric measurements that would provide some of the observational data used in the modeling effort. My activity in this project was confined to the first of these components. Both atmospheric transport and atmospheric chemical reactions (as well the input and removal of chemical species) are accounted for in the NASA/AEAP Core model. Thus, for example, in assessing the effect of aircraft effluents on the chemistry of a given region of the upper troposphere, the model must keep track not only of the chemical reactions of the effluent species emitted by aircraft flying in this region, but also of the transport into the region of these (and other) species from other, remote sources--for example, via the vertical convection of boundary layer air to the upper troposphere. Radon, because of its known surface source and known radioactive half-life, and freedom from chemical production or loss, and from removal from the atmosphere by physical scavenging, is a recognized and valuable tool for testing the transport components of global transport and circulation models.

  4. Innovation @ NASA

    Science.gov (United States)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  5. Tools and Algorithms to Link Horizontal Hydrologic and Vertical Hydrodynamic Models and Provide a Stochastic Modeling Framework

    Science.gov (United States)

    Salah, Ahmad M.; Nelson, E. James; Williams, Gustavious P.

    2010-04-01

    We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS) which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.

  6. Tools and Algorithms to Link Horizontal Hydrologic and Vertical Hydrodynamic Models and Provide a Stochastic Modeling Framework

    Directory of Open Access Journals (Sweden)

    Ahmad M Salah

    2010-12-01

    Full Text Available We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.

  7. An alternant method to the traditional NASA hindlimb unloading model in mice.

    Science.gov (United States)

    Ferreira, J Andries; Crissey, Jacqueline M; Brown, Marybeth

    2011-03-10

    The Morey-Holton hindlimb unloading (HU) method is a widely accepted National Aeronautics and Space Administration (NASA) ground-based model for studying disuse-atrophy in rodents. Our study evaluated an alternant method to the gold-standard Morey-Holton HU tail-traction technique in mice. Fifty-four female mice (4-8 mo.) were HU for 14 days (n=34) or 28 days (n=20). Recovery from HU was assessed after 3 days of normal cage ambulation following HU (n=22). Aged matched mice (n=76) served as weight-bearing controls. Prior to HU a tail ring was formed with a 2-0 sterile surgical steel wire that was passed through the 5(th), 6(th), or 7(th) inter-vertebral disc space and shaped into a ring from which the mice were suspended. Vertebral location for the tail-ring was selected to appropriately balance animal body weight without interfering with defecation. We determined the success of this novel HU technique by assessing body weight before and after HU, degree of soleus atrophy, and adrenal mass following HU. Body weight of the mice prior to HU (24.3 ± 2.9g) did not significantly decline immediately after 14d of HU (22.7 ± 1.9g), 28d of HU (21.3 + 2.1g) or after 3 days recovery (24.0 ± 1.8g). Soleus muscle mass significantly declined (-39.1%, and -46.6%) following HU for 14 days and 28 days respectively (pmaintenance of animal body weight, comparable adrenal gland weights, and soleus atrophy following HU, corresponding to expected literature values. The primary advantages of this HU method include: 1) ease of tail examination during suspension; 2) decreased likelihood of cyanotic, inflamed, and/or necrotic tails frequently observed with tail-taping and HU; 3) no possibility of mice chewing the traction tape and coming out of the suspension apparatus; and 4) rapid recovery and normal cage activity immediately after HU.

  8. Final Progress Report for the NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tung, L S; Post, R F; Martinez-Frias, J

    2001-06-27

    The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, was studied for its possible use for launching rockets. Under NASA sponsorship, a small model system was constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating cradle, moving above a ''track'' consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the cradle by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. At present, a 7.8 meter track composed of drive and levitation coils has been built and the electronic drive circuitry performs as designed. A 9 kg cradle that carries the Halbach array of permanent magnets has been built. A mechanical launcher is nearly complete which will provide an initial cradle velocity of 9 m/s into the electronic drive section. We have found that the drag forces from the levitation coils were higher than in our original design. However, measurements of drag force at velocities less than 1 m/s are exactly as predicted by theory. Provided here are recommended design changes to improve the track's performance so that a final velocity of 40

  9. A Tiered Model for Linking Students to the Community

    Science.gov (United States)

    Meyer, Laura Landry; Gerard, Jean M.; Sturm, Michael R.; Wooldridge, Deborah G.

    2016-01-01

    A tiered practice model (introductory, pre-internship, and internship) embedded in the curriculum facilitates community engagement and creates relevance for students as they pursue a professional identity in Human Development and Family Studies. The tiered model integrates high-impact teaching practices (HIP) and student engagement pedagogies…

  10. A Tiered Model for Linking Students to the Community

    Science.gov (United States)

    Meyer, Laura Landry; Gerard, Jean M.; Sturm, Michael R.; Wooldridge, Deborah G.

    2016-01-01

    A tiered practice model (introductory, pre-internship, and internship) embedded in the curriculum facilitates community engagement and creates relevance for students as they pursue a professional identity in Human Development and Family Studies. The tiered model integrates high-impact teaching practices (HIP) and student engagement pedagogies…

  11. Design-oriented analytic model of phase and frequency modulated optical links

    Science.gov (United States)

    Monsurrò, Pietro; Saitto, Antonio; Tommasino, Pasquale; Trifiletti, Alessandro; Vannucci, Antonello; Cimmino, Rosario F.

    2016-07-01

    An analytic design-oriented model of phase and frequency modulated microwave optical links has been developed. The models are suitable for design of broadband high dynamic range optical links for antenna remoting and optical beamforming, where noise and linearity of the subsystems are a concern Digital filter design techniques have been applied to the design of optical filters working as frequency discriminator, that are the bottleneck in terms of linearity for these systems. The models of frequency modulated, phase modulated, and coherent I/Q link have been used to compare performance of the different architectures in terms of linearity and SFDR.

  12. A Model for Linking Organizational Culture and Performance. Innovative Session 6. [AHRD Conference, 2001].

    Science.gov (United States)

    McCullough, Cathy Bolton

    An innovative session was conducted to introduce session participants to a concept and researched model for linking organizational culture and performance. The session goals were as follows: (1) give participants a working knowledge of the link between business culture and key business performance indicators; (2) give participants a hands-on…

  13. AddRemove : A new link model for use in QM/MM studies

    NARCIS (Netherlands)

    Swart, M

    2003-01-01

    The division of a system under study in a quantum mechanical (QM) and a classical system in QM/MM molecular mechanical calculations is sometimes very natural, but a problem arises in the case of bonds crossing the QM/MM boundary. A new link model that uses a capping (link) atom to satisfy the valenc

  14. D1.3 -- Short Report on the First Draft Multi-link Channel Model

    DEFF Research Database (Denmark)

    Pedersen, Troels; Raulefs, Ronald; Steinboeck, Gerhard

    -link large scale parameters, such as rms delay spread, from outdoor to indoor scenarios and for different carrier frequencies. Furthermore indoor radio propagation in in-room scenarios is considered and first modeling approaches, potantially suitable for multi-link channels are presented. A sparse estimator...

  15. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...

  16. Derivation of free energy expressions for tube models from coarse-grained slip-link models

    Science.gov (United States)

    Steenbakkers, Rudi J. A.; Schieber, Jay D.

    2012-07-01

    We present the free energy of a single-chain mean-field model for polymer melt dynamics, which uses a continuous (tube-like) approximation to the discrete entanglements with surrounding chains, but, in contrast to previous tube models, includes fluctuations in the number density of Kuhn steps along the primitive path and in the degree of entanglement. The free energy is obtained from that of the slip-link model with fluctuating entanglement positions [J. D. Schieber and K. Horio, J. Chem. Phys. 132, 074905 (2010)], 10.1063/1.3314727 by taking the continuous limit of (functions of) the discrete Kuhn-step numbers and end-to-end vectors of the strands between entanglements. This coarse-graining from a more-detailed level of description has the advantage that no ad hoc arguments need to be introduced. Moreover, the thermodynamic consistency of the slip-link model [J. D. Schieber, J. Non-Equilib. Thermodyn. 28, 179 (2003)], 10.1515/JNETDY.2003.010 can be preserved. Fluctuations in the positions of entanglements lead to a harmonic bending term in the free energy of the continuous chain, similar to that derived by Read et al. [Macromolecules 41, 6843 (2008)], 10.1021/ma8009855 starting from a modified GLaMM model [R. S. Graham, A. E. Likhtman, T. C. B. McLeish, and S. T. Milner, J. Rheol. 47, 1171 (2003)], 10.1122/1.1595099. If these fluctuations are set to zero, the free energy becomes purely Gaussian and corresponds to the continuous limit of the original slip-link model, with affinely moving entanglements [J. D. Schieber, J. Chem. Phys. 118, 5162 (2003)], 10.1063/1.1553764. The free energy reduces to that of Read et al. under their assumptions of a homogeneous Kuhn-step number density and a constant degree of entanglement. Finally, we show how a transformation of the primitive-path coordinate can be applied to make the degree of entanglement an outcome of the model instead of a variable. In summary, this paper constitutes a first step towards a unified mathematical

  17. Development of a NASA Integrated Technical Workforce Career Development Model Entitled Requisite Occupation Competencies and Knowledge -- the ROCK

    Science.gov (United States)

    Menrad, Robert J.; Larson, Wiley J.

    2008-01-01

    This paper shares the findings of NASA's Integrated Learning and Development Program (ILDP) in its effort to reinvigorate the HANDS-ON practice of space systems engineering and project/program management through focused coursework, training opportunities, on-the job learning and special assignments. Prior to March 2005, NASA responsibility for technical workforce development (the program/project manager, systems engineering, discipline engineering, discipline engineering and associated communities) was executed by two parallel organizations. In March 2005 these organizations merged. The resulting program-ILDP-was chartered to implement an integrated competency-based development model capable of enhancing NASA's technical workforce performance as they face the complex challenges of Earth science, space science, aeronautics and human spaceflight missions. Results developed in collaboration with NASA Field Centers are reported on. This work led to definition of the agency's first integrated technical workforce development model known as the Requisite Occupation Competence and Knowledge (the ROCK). Critical processes and products are presented including: 'validation' techniques to guide model development, the Design-A-CUrriculuM (DACUM) process, and creation of the agency's first systems engineering body-of-knowledge. Findings were validated via nine focus groups from industry and government, validated with over 17 space-related organizations, at an estimated cost exceeding $300,000 (US). Masters-level programs and training programs have evolved to address the needs of these practitioner communities based upon these results. The ROCK reintroduced rigor and depth to the practitioner's development in these critical disciplines enabling their ability to take mission concepts from imagination to reality.

  18. Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions

    Directory of Open Access Journals (Sweden)

    Camaren Peter

    2014-03-01

    Full Text Available In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. We argue that adopting a complexity theory based approach for modeling transitions requires going beyond deterministic frameworks; by adopting a probabilistic, integrative, inclusive and adaptive approach that can support transitions. We also illustrate how this complexity-based modeling framework can be implemented; i.e., how it can be used to select modeling techniques that address particular properties of complex systems that we need to understand in order to model transitions to sustainability. In doing so, we establish a complexity-based approach towards modeling sustainability transitions that caters for the broad range of complex systems’ properties that are required to model transitions to sustainability.

  19. Strengthening the weak link: Built Environment modelling for loss analysis

    Science.gov (United States)

    Millinship, I.

    2012-04-01

    Methods to analyse insured losses from a range of natural perils, including pricing by primary insurers and catastrophe modelling by reinsurers, typically lack sufficient exposure information. Understanding the hazard intensity in terms of spatial severity and frequency is only the first step towards quantifying the risk of a catastrophic event. For any given event we need to know: Are any structures affected? What type of buildings are they? How much damaged occurred? How much will the repairs cost? To achieve this, detailed exposure information is required to assess the likely damage and to effectively calculate the resultant loss. Modelling exposures in the Built Environment therefore plays as important a role in understanding re/insurance risk as characterising the physical hazard. Across both primary insurance books and aggregated reinsurance portfolios, the location of a property (a risk) and its monetary value is typically known. Exactly what that risk is in terms of detailed property descriptors including structure type and rebuild cost - and therefore its vulnerability to loss - is often omitted. This data deficiency is a primary source of variations between modelled losses and the actual claims value. Built Environment models are therefore required at a high resolution to describe building attributes that relate vulnerability to property damage. However, national-scale household-level datasets are often not computationally practical in catastrophe models and data must be aggregated. In order to provide more accurate risk analysis, we have developed and applied a methodology for Built Environment modelling for incorporation into a range of re/insurance applications, including operational models for different international regions and different perils and covering residential, commercial and industry exposures. Illustrated examples are presented, including exposure modelling suitable for aggregated reinsurance analysis for the UK and bespoke high resolution

  20. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    Energy Technology Data Exchange (ETDEWEB)

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  1. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun

    2017-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9

  2. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    Science.gov (United States)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1

  3. A Link Loss Model for the On-Body Propagation Channel for Binaural Hearing Aids

    Science.gov (United States)

    Chandra, Rohit; Johansson, Anders J.

    2013-12-01

    Binaural hearing aids communicate with each other through a wireless link for synchronization. A propagation model is needed to estimate the ear-to-ear link loss for such binaural hearing aids. The link loss is a critical parameter in a link budget to decide the sensitivity of the transceiver. In this paper, we have presented a model for the deterministic component of the ear-to-ear link loss. The model takes into account the dominant paths having most of the power of the creeping wave from the transceiver in one ear to the transceiver in other ear and the effect of the protruding part of the outer ear called pinna. Simulations are done to validate the model using in-the-ear (ITE) placement of antennas at 2.45 GHz on two heterogeneous phantoms of different age-group and body size. The model agrees with the simulations. The ear-to-ear link loss between the antennas for the binaural hearing aids in the homogeneous SAM phantom is compared with a heterogeneous phantom. It is found that the absence of the pinna and the lossless shell in the SAM phantom underestimate the link loss. This is verified by the measurements on a phantom where we have included the pinnas fabricated by 3D-printing.

  4. A simple model linking galaxy and dark matter evolution

    Energy Technology Data Exchange (ETDEWEB)

    Birrer, Simon; Lilly, Simon; Amara, Adam; Paranjape, Aseem; Refregier, Alexandre, E-mail: simon.birrer@phys.ethz.ch, E-mail: simon.lilly@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland)

    2014-09-20

    We construct a simple phenomenological model for the evolving galaxy population by incorporating predefined baryonic prescriptions into a dark matter hierarchical merger tree. The model is based on the simple gas-regulator model introduced by Lilly et al., coupled with the empirical quenching rules of Peng et al. The simplest model already does quite well in reproducing, without re-adjusting the input parameters, many observables, including the main sequence sSFR-mass relation, the faint end slope of the galaxy mass function, and the shape of the star forming and passive mass functions. Similar to observations and/or the recent phenomenological model of Behroozi et al., which was based on epoch-dependent abundance-matching, our model also qualitatively reproduces the evolution of the main sequence sSFR(z) and SFRD(z) star formation rate density relations, the M{sub s} – M{sub h} stellar-to-halo mass relation, and the SFR – M{sub h} relation. Quantitatively the evolution of sSFR(z) and SFRD(z) is not steep enough, the M{sub s} – M{sub h} relation is not quite peaked enough, and, surprisingly, the ratio of quenched to star forming galaxies around M* is not quite high enough. We show that these deficiencies can simultaneously be solved by ad hoc allowing galaxies to re-ingest some of the gas previously expelled in winds, provided that this is done in a mass-dependent and epoch-dependent way. These allow the model galaxies to reduce an inherent tendency to saturate their star formation efficiency, which emphasizes how efficient galaxies around M* are in converting baryons into stars and highlights the fact that quenching occurs at the point when galaxies are rapidly approaching the maximum possible efficiency of converting baryons into stars.

  5. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Science.gov (United States)

    Xin, Q.; Gong, P.; Li, W.

    2015-02-01

    Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  6. NASA's Earth Observations Commercialization Applications Program: A model for government promotion of commercial space opportunities

    Science.gov (United States)

    Macauley, Molly K.

    1995-01-01

    The role of government in promoting space commerce is a topic of discussion in every spacefaring nation. This article describes a new approach to government intervention which, based on its five-year track record, appears to have met with success. The approach, developed in NASA's Earth Observations Commercialization Application Program (EOCAP), offer several lessons for effective government sponsorship of commercial space development in general and of commercial remote sensing in particular.

  7. Linking Experimental Characterization and Computational Modeling in Microstructural Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Melik Cumhar [Univ. of Pittsburgh, PA (United States)

    2002-06-01

    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. In order to accomplish this objective, we studied the grain growth in detail with experimental techniques and computational simulations. We obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure from the Electron Backscattered Diffraction (EBSD) measurements. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 ºC. Two different measures were introduced as methods of comparing experimental and computed microstructures. Modeling with anisotropic mobility explains a significant amount of mismatch between experiment and isotropic modeling. We have shown that isotropic modeling has very little predictive value. Microstructural evolution in columnar Aluminum foils can be correctly modeled with anisotropic parameters. We observed a strong similarity between grain growth experiments and anisotropic three-dimensional simulations.

  8. Linking Experimental Characterization and Computational Modeling in Microstructural Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Melik Cumhur [Univ. of Pittsburgh, PA (United States)

    2002-06-01

    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. In order to accomplish this objective, we studied the grain growth in detail with experimental techniques and computational simulations. We obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure from the Electron Backscattered Diffraction (EBSD) measurements. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 ºC. Two different measures were introduced as methods of comparing experimental and computed microstructures. Modeling with anisotropic mobility explains a significant amount of mismatch between experiment and isotropic modeling. We have shown that isotropic modeling has very little predictive value. Microstructural evolution in columnar Aluminum foils can be correctly modeled with anisotropic parameters. We observed a strong similarity between grain growth experiments and anisotropic three-dimensional simulations.

  9. Linking Experimental Characterization and Computational Modeling in Microstructural Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Melik Cumhur [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. In order to accomplish this objective, we studied the grain growth in detail with experimental techniques and computational simulations. We obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure from the Electron Backscattered Diffraction (EBSD) measurements. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 ºC. Two different measures were introduced as methods of comparing experimental and computed microstructures. Modeling with anisotropic mobility explains a significant amount of mismatch between experiment and isotropic modeling. We have shown that isotropic modeling has very little predictive value. Microstructural evolution in columnar Aluminum foils can be correctly modeled with anisotropic parameters. We observed a strong similarity

  10. Linking Fish Habitat Modelling and Sediment Transport in Running Waters

    Institute of Scientific and Technical Information of China (English)

    Andreas; EISNER; Silke; WIEPRECHT; Matthias; SCHNEIDER

    2005-01-01

    The assessment of ecological status for running waters is one of the major issues within an integrated river basin management and plays a key role with respect to the implementation of the European Water Frame- work Directive (WFD).One of the tools supporting the development of sustainable river management is physi- cal habitat modeling,e.g.,for fish,because fish population are one of the most important indicators for the e- colngical integrity of rivers.Within physical habitat models hydromorphological ...

  11. A Model-Based Systems Engineering Methodology for Employing Architecture In System Analysis: Developing Simulation Models Using Systems Modeling Language Products to Link Architecture and Analysis

    Science.gov (United States)

    2016-06-01

    ENGINEERING METHODOLOGY FOR EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE PRODUCTS TO LINK... ENGINEERING METHODOLOGY FOR EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE PRODUCTS TO LINK...to model-based systems engineering (MBSE) by formally defining an MBSE methodology for employing architecture in system analysis (MEASA) that presents

  12. First attempts of linking modelling, Postharvest behaviour and Melon Genetics

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Santos, Don N.; Obando-Ulloa, J.M.; Moreno, E.; Schouten, R.E.

    2008-01-01

    The onset of climacteric is associated with the end of melon fruit shelf-life. The aim of this research was to develop practical and applicable models of fruit ripening changes (hardness, moisture loss) also able to discriminate between climacteric and non-climacteric behaviour. The decrease in firm

  13. Linking Models for Assessing Agricultural Land Use Change

    NARCIS (Netherlands)

    Janssen, S.J.C.; Athanasiadis, I.N.; Bezlepkina, I.; Knapen, M.J.R.; Li, H.; Dominguez, I.P.; Rizzoli, A.E.; Ittersum, van M.K.

    2011-01-01

    The ex-ante assessment of the likely impacts of policy changes and technological innovations on agriculture can provide insight into policy effects on land use and other resources and inform discussion on the desirability of such changes. Integrated assessment and modeling (IAM) is an approach that

  14. Cross-language linking of news stories on the web using interlingual topic modelling

    OpenAIRE

    De Smet, Wim; Moens, Marie-Francine

    2009-01-01

    We have studied the problem of linking event information across different languages without the use of translation systems or dictionaries. The linking is based on interlingua information obtained through probabilistic topic models trained on comparable corpora written in two languages (in our case English and Dutch). To achieve this goal, we expand the Latent Dirichlet Allocation model to process documents in two languages. We demonstrate the validity of the learned interlingual topics in a...

  15. Links between fluid mechanics and quantum mechanics: a model for information in economics?

    Science.gov (United States)

    Haven, Emmanuel

    2016-05-28

    This paper tallies the links between fluid mechanics and quantum mechanics, and attempts to show whether those links can aid in beginning to build a formal template which is usable in economics models where time is (a)symmetric and memory is absent or present. An objective of this paper is to contemplate whether those formalisms can allow us to model information in economics in a novel way.

  16. NASA Model of "Threat and Error" in Pediatric Cardiac Surgery: Patterns of Error Chains.

    Science.gov (United States)

    Hickey, Edward; Pham-Hung, Eric; Nosikova, Yaroslavna; Halvorsen, Fredrik; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Van Arsdell, Glen

    2017-04-01

    We introduced the National Aeronautics and Space Association threat-and-error model to our surgical unit. All admissions are considered flights, which should pass through stepwise deescalations in risk during surgical recovery. We hypothesized that errors significantly influence risk deescalation and contribute to poor outcomes. Patient flights (524) were tracked in real time for threats, errors, and unintended states by full-time performance personnel. Expected risk deescalation was wean from mechanical support, sternal closure, extubation, intensive care unit (ICU) discharge, and discharge home. Data were accrued from clinical charts, bedside data, reporting mechanisms, and staff interviews. Infographics of flights were openly discussed weekly for consensus. In 12% (64 of 524) of flights, the child failed to deescalate sequentially through expected risk levels; unintended increments instead occurred. Failed deescalations were highly associated with errors (426; 257 flights; p < 0.0001). Consequential errors (263; 173 flights) were associated with a 29% rate of failed deescalation versus 4% in flights with no consequential error (p < 0.0001). The most dangerous errors were apical errors typically (84%) occurring in the operating room, which caused chains of propagating unintended states (n = 110): these had a 43% (47 of 110) rate of failed deescalation (versus 4%; p < 0.0001). Chains of unintended state were often (46%) amplified by additional (up to 7) errors in the ICU that would worsen clinical deviation. Overall, failed deescalations in risk were extremely closely linked to brain injury (n = 13; p < 0.0001) or death (n = 7; p < 0.0001). Deaths and brain injury after pediatric cardiac surgery almost always occur from propagating error chains that originate in the operating room and are often amplified by additional ICU errors. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Linking agent-based models and stochastic models of financial markets.

    Science.gov (United States)

    Feng, Ling; Li, Baowen; Podobnik, Boris; Preis, Tobias; Stanley, H Eugene

    2012-05-29

    It is well-known that financial asset returns exhibit fat-tailed distributions and long-term memory. These empirical features are the main objectives of modeling efforts using (i) stochastic processes to quantitatively reproduce these features and (ii) agent-based simulations to understand the underlying microscopic interactions. After reviewing selected empirical and theoretical evidence documenting the behavior of traders, we construct an agent-based model to quantitatively demonstrate that "fat" tails in return distributions arise when traders share similar technical trading strategies and decisions. Extending our behavioral model to a stochastic model, we derive and explain a set of quantitative scaling relations of long-term memory from the empirical behavior of individual market participants. Our analysis provides a behavioral interpretation of the long-term memory of absolute and squared price returns: They are directly linked to the way investors evaluate their investments by applying technical strategies at different investment horizons, and this quantitative relationship is in agreement with empirical findings. Our approach provides a possible behavioral explanation for stochastic models for financial systems in general and provides a method to parameterize such models from market data rather than from statistical fitting.

  18. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  19. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  20. An integrative model linking feedback environment and organizational citizenship behavior.

    Science.gov (United States)

    Peng, Jei-Chen; Chiu, Su-Fen

    2010-01-01

    Past empirical evidence has suggested that a positive supervisor feedback environment may enhance employees' organizational citizenship behavior (OCB). In this study, we aim to extend previous research by proposing and testing an integrative model that examines the mediating processes underlying the relationship between supervisor feedback environment and employee OCB. Data were collected from 259 subordinate-supervisor dyads across a variety of organizations in Taiwan. We used structural equation modeling to test our hypotheses. The results demonstrated that supervisor feedback environment influenced employees' OCB indirectly through (1) both positive affective-cognition and positive attitude (i.e., person-organization fit and organizational commitment), and (2) both negative affective-cognition and negative attitude (i.e., role stressors and job burnout). Theoretical and practical implications are discussed.

  1. Microbial Life in Soil - Linking Biophysical Models with Observations

    Science.gov (United States)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools

  2. Mathematical problem solving, modelling, applications, and links to other subjects

    OpenAIRE

    Blum, Werner; Niss, Mogens

    1989-01-01

    The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of developm...

  3. Modelling variability in black hole binaries: linking simulations to observations

    CERN Document Server

    Ingram, Adam

    2011-01-01

    Black hole accretion flows show rapid X-ray variability. The Power Spectral Density (PSD) of this is typically fit by a phenomenological model of multiple Lorentzians for both the broad band noise and Quasi-Periodic Oscillations (QPOs). Our previous paper (Ingram & Done 2011) developed the first physical model for the PSD and fit this to observational data. This was based on the same truncated disc/hot inner flow geometry which can explain the correlated properties of the energy spectra. This assumes that the broad band noise is from propagating fluctuations in mass accretion rate within the hot flow, while the QPO is produced by global Lense-Thirring precession of the same hot flow. Here we develop this model, making some significant improvements. Firstly we specify that the viscous frequency (equivalently, surface density) in the hot flow has the same form as that measured from numerical simulations of precessing, tilted accretion flows. Secondly, we refine the statistical techniques which we use to fit...

  4. Reconciling bottom-up and top-down carbon flux estimates using NASA's GEOS-Carb modeling system

    Science.gov (United States)

    Ott, L.; Baker, D. F.; Chatterjee, A.; Collatz, G. J.; Gregg, W. W.; Kawa, S. R.; Oda, T.; Rousseaux, C. S.; Wang, J. S.; Weir, B.

    2016-12-01

    NASA's Carbon Monitoring System (CMS) began in 2010 with the goal of better understanding carbon stocks and fluxes using remote sensing observations. Models play a critical role in achieving this goal by integrating diverse observations of the carbon cycle (e.g. vegetation characteristics, ocean color, night lights, precipitation) to produce estimates of flux, which is not directly observable at a global scale. Built around NASA's Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model and data assimilation system, the GEOS-Carb system supports CMS by providing data-driven, bottom-up and top-down flux estimates and high-resolution global estimates of carbon dioxide concentration. Because all modeling components use a consistent set of meteorological forcing from GEOS-5, this system provides a unique, physically consistent view of the relationship between carbon flux and climate. We will present 1) an overview of the GEOS-Carb modeling system, products, and available web tools, 2) recent results placing 2015, a record-breaking meteorological year, in the context of the 13-year GEOS-Carb record, and 3) future directions in global modeling in support of science policy and satellite mission planning.

  5. NASA Human Spaceflight Scenarios - Do All Our Models Still Say No?

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    Historically, NASA human spaceflight planning has included healthy doses of life cycle cost analysis. Planners put projects and their cost estimates in a budget context. Estimated costs became expected budgets. Regardless, real budgets rarely matched expectations. So plans would come and go as NASA canceled projects. New projects would arise and the cycle would begin again. Repeatedly, NASA schedule and performance ambitions come up against costs growing at double-digit rates while budgets barely rise a couple of percent a year. Significant skepticism greets proposed NASA programs at birth, as cost estimates for new projects are traditionally very high, and worse, far off the mark for those carried forward. In this environment the current "capability driven framework" for NASA human spaceflight evolved, where long term life cycle cost analysis are even viewed as possibly counter-productive. Here, a space exploration project, for example the Space Launch System, focuses on immediate goals. A life cycle is that of a project, not a program, and for only that span of time to a near term milestone like a first test launch. Unfortunately, attempting to avoid some pitfalls in long-term life cycle cost analysis breeds others. Government audits have noted that limiting the scope of cost analysis "does not provide the transparency necessary to assess long-term affordability" making it difficult to understand if NASA "is progressing in a cost-effective and affordable manner." Even in this short-term framework, NASA realizes the importance of long-term considerations, that it must "maximize the efficiency and sustainability of the Exploration Systems development programs", that this is "critical to free resources for re-investment...such as other required deep space exploration capabilities." Assuming the value of long-term life cycle cost analysis, where due diligence meets reconnaissance, and accepting past shortcomings, the work here approaches life cycle cost analysis for

  6. A Dual-Process Model of the Alcohol-Behavior Link for Social Drinking

    Science.gov (United States)

    Moss, Antony C.; Albery, Ian P.

    2009-01-01

    A dual-process model of the alcohol-behavior link is presented, synthesizing 2 of the major social-cognitive approaches: expectancy and myopia theories. Substantial evidence has accrued to support both of these models, and recent neurocognitive models of the effects of alcohol on thought and behavior have provided evidence to support both as well.…

  7. Linking effort and fishing mortality in a mixed fisheries model

    DEFF Research Database (Denmark)

    Thøgersen, Thomas Talund; Hoff, Ayoe; Frost, Hans Staby

    2012-01-01

    in fish stocks has led to overcapacity in many fisheries, leading to incentives for overfishing. Recent research has shown that the allocation of effort among fleets can play an important role in mitigating overfishing when the targeting covers a range of species (multi-species—i.e., so-called mixed...... fisheries), while simultaneously optimising the overall economic performance of the fleets. The so-called FcubEcon model, in particular, has elucidated both the biologically and economically optimal method for allocating catches—and thus effort—between fishing fleets, while ensuring that the quotas...

  8. Model analysis of the link between interest rates and crashes

    Science.gov (United States)

    Broga, Kristijonas M.; Viegas, Eduardo; Jensen, Henrik Jeldtoft

    2016-09-01

    We analyse the effect of distinct levels of interest rates on the stability of the financial network under our modelling framework. We demonstrate that banking failures are likely to emerge early on under sustained high interest rates, and at much later stage-with higher probability-under a sustained low interest rate scenario. Moreover, we demonstrate that those bank failures are of a different nature: high interest rates tend to result in significantly more bankruptcies associated to credit losses whereas lack of liquidity tends to be the primary cause of failures under lower rates.

  9. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

    Directory of Open Access Journals (Sweden)

    George Kastellakis

    2016-11-01

    Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

  10. NASA Applied Sciences' DEVELOP National Program: a unique model cultivating capacity in the geosciences

    Science.gov (United States)

    Ross, K. W.; Favors, J. E.; Childs-Gleason, L. M.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.

    2013-12-01

    The NASA DEVELOP National Program takes a unique approach to cultivating the next generation of geoscientists through interdisciplinary research projects that address environmental and public policy issues through the application of NASA Earth observations. Competitively selected teams of students, recent graduates, and early career professionals take ownership of project proposals outlining basic application concepts and have ten weeks to research core scientific challenges, engage partners and end-users, demonstrate prototypical solutions, and finalize and document their results and outcomes. In this high pressure, results-driven environment emerging geoscience professionals build strong networks, hone effective communication skills, and learn how to call on the varied strengths of a multidisciplinary team to achieve difficult objectives. The DEVELOP approach to workforce development has a variety of advantages over classic apprenticeship-style internship systems. Foremost is the experiential learning of grappling with real-world applied science challenges as a primary actor instead of as an observer or minor player. DEVELOP participants gain experience that fosters personal strengths and service to others, promoting a balance of leadership and teamwork in order to successfully address community needs. The program also advances understanding of Earth science data and technology amongst participants and partner organizations to cultivate skills in managing schedules, risks and resources to best optimize outcomes. Individuals who come through the program gain experience and networking opportunities working within NASA and partner organizations that other internship and academic activities cannot replicate providing not only skill development but an introduction to future STEM-related career paths. With the competitive nature and growing societal role of science and technology in today's global community, DEVELOP fosters collaboration and advances environmental

  11. A Link Loss Model for the On-body Propagation Channel for Binaural Hearing Aids

    CERN Document Server

    Chandra, Rohit

    2013-01-01

    Binaural hearing aids communicate with each other through a wireless link for synchronization. A propagation model is needed to estimate the ear-to-ear link loss for such binaural hearing aids. The link loss is a critical parameter in a link budget to decide the sensitivity of the transceiver. In this paper, we have presented a model for the deterministic component of the ear-to-ear link loss. The model takes into account the dominant paths having most of the power of the creeping wave from the transceiver in one ear to the transceiver in other ear and the effect of the protruding part of the outer ear called pinna. Simulations are done to validate the model using in-the-ear (ITE) placement of antennas at 2.45 GHz on two heterogeneous phantoms of different age-group and body size. The model agrees with the simulations. The ear-to-ear link loss between the antennas for the binaural hearing aids in the homogeneous SAM phantom is compared with a heterogeneous phantom. It is found that the absence of the pinna an...

  12. Long-term Engagement in Authentic Research with NASA (LEARN): Lessons Learned from an Innovative Model for Teacher Research Experiences

    Science.gov (United States)

    Pippin, M. R.; Kollmeyer, R.; Joseph, J.; Yang, M. M.; Omar, A. H.; Harte, T.; Taylor, J.; Lewis, P. M.; Weisman, A.; Hyater-Adams, S.

    2013-12-01

    The NASA LEARN Project is an innovative program that provides long-term immersion in the practice of atmospheric science for middle and high school in-service teachers. Working alongside NASA scientists and using authentic NASA Science Mission Directorate (SMD) Research and Analysis (R&A) related and mission-based research data, teachers develop individual research topics of interest during two weeks in the summer while on-site at NASA Langley. With continued, intensive mentoring and guidance of NASA scientists, the teachers further develop their research throughout the academic year through virtual group meetings and data team meetings mirroring scientific collaborations. At the end of the first year, the LEARN teachers present scientific posters. During summer 2013, Cohort 1 (7 teachers) presented posters at an open session and discussed their research topics with Cohort 2 (6 teachers) and science and educator personnel at Langley. The LEARN experience has had such an impact that 6 teachers from Cohort 1 have elected to continue a second year of research working alongside Cohort 2 and LEARN scientists. In addition, Cohort 1 teachers have brought their LEARN experiences back to their classrooms in a variety of ways. The LEARN project evaluation has provided insights into the outcomes of this research experience for teachers and particularly effective program elements. In particular, the LEARN evaluation has focused on how an extended research experience for teachers spanning a full year influences teacher views of science and classroom integration of scientific principles. Early findings indicate that teachers' perceptions of the scientific enterprise have changed, and that LEARN provided substantial resources to help them take real-world research to their students. Teachers also valued the teamwork and cohort approach. In addition, the LEARN evaluation focuses on the experiences of scientists involved in the LEARN program and how their experiences working with

  13. A cell-based model system links chromothripsis with hyperploidy

    DEFF Research Database (Denmark)

    Mardin, Balca R; Drainas, Alexandros P; Waszak, Sebastian M;

    2015-01-01

    A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has...... remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively...... parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular...

  14. An analysis of single-index model with monotonic link function

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-ping; YANG Xiao-yan; YU Zhou; LIU Xiang-rong

    2008-01-01

    The single-index model with monotonic link function is investigated. Firstly,it is showed that the link function h(·) can be viewed by a graphic method. That is,the plot with the fitted response y on the horizontal axis and the observed y on the vertical axis can be used to visualize the link function. It is pointed out that this graphic approach is also applicable even when the link function is not monotonic. Note that many existing nonparametric smoothers can also be used to assess h(·). Therefore,the I-spline approximation of the link function via maximizing the covariance function with a penalty function is investigated in the present work.The consistency of the criterion is constructed. A small simulation is carried out to evidence the efficiency of the approach proposed in the paper.

  15. A geometric approach to modeling of four- and five-link planar snake-like robot

    Directory of Open Access Journals (Sweden)

    Tomáš Lipták

    2016-10-01

    Full Text Available The article deals with the issue of use of geometric mechanics tools in modelling nonholonomic systems. The introductory part of the article contains fiber bundle theory that we use at creating mathematical model of nonholonomic locomotion system with undulatory movement. Further the determination of general mathematical model for n-link snake-like robot is presented, where we used nonholonomic constraints. The relation between changes of shape and position variables was expressed using the local connection that was used to analyze and control system movement by vector fields. The effect of links number of snake-like robot on its mathematical model was investigated. The last part of this article consists of detailed description of modeling reconstruction equation for four- and five-link snake-like robot.

  16. Modeling and Representing National Climate Assessment Information using Linked Data

    Science.gov (United States)

    Zheng, J.; Tilmes, C.; Smith, A.; Zednik, S.; Fox, P. A.

    2012-12-01

    Every four years, earth scientists work together on a National Climate Assessment (NCA) report which integrates, evaluates, and interprets the findings of climate change and impacts on affected industries such as agriculture, natural environment, energy production and use, etc. Given the amount of information presented in each report, and the wide range of information sources and topics, it can be difficult for users to find and identify desired information. To ease the user effort of information discovery, well-structured metadata is needed that describes the report's key statements and conclusions and provide for traceable provenance of data sources used. We present an assessment ontology developed to describe terms, concepts and relations required for the NCA metadata. Wherever possible, the assessment ontology reuses terms from well-known ontologies such as Semantic Web for Earth and Environmental Terminology (SWEET) ontology, Dublin Core (DC) vocabulary. We have generated sample National Climate Assessment metadata conforming to our assessment ontology and publicly exposed via a SPARQL-endpoint and website. We have also modeled provenance information for the NCA writing activities using the W3C recommendation-candidate PROV-O ontology. Using this provenance the user will be able to trace the sources of information used in the assessment and therefore make trust decisions. In the future, we are planning to implement a faceted browser over the metadata to enhance metadata traversal and information discovery.

  17. Modeling photosynthesis of discontinuous plant canopies by linking Geometric Optical Radiative Transfer model with biochemical processes

    Directory of Open Access Journals (Sweden)

    Q. Xin

    2015-02-01

    Full Text Available Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of which the physical observation departs from the underlying assumption of a homogenous and uniform medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer (GORT model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production (GPP for two deciduous forest stands could explain more than 80% of the variance of flux tower measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art biogeochemical models. The proposed model is complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer process and photosynthetic activities over discontinuous forest canopies.

  18. Design and Impacts of Land-Biogenic-Atmosphere Coupling in the NASA-Unified WRF (NU-WRF) Modeling System

    Science.gov (United States)

    Tan, Qian; Santanello, Joseph A., Jr.; Zhou, Shujia; Tao, Zhining; Peters-Lidard, Christa d.; Chn, Mian

    2011-01-01

    Land-Atmosphere coupling is typically designed and implemented independently for physical (e.g. water and energy) and chemical (e.g. biogenic emissions and surface depositions)-based models and applications. Differences in scale, data requirements, and physics thus limit the ability of Earth System models to be fully coupled in a consistent manner. In order for the physical-chemical-biological coupling to be complete, treatment of the land in terms of surface classification, condition, fluxes, and emissions must be considered simultaneously and coherently across all components. In this study, we investigate a coupling strategy for the NASA-Unified Weather Research and Forecasting (NU-WRF) model that incorporates the traditionally disparate fluxes of water and energy through NASA's LIS (Land Information System) and biogenic emissions through BEIS (Biogenic Emissions Inventory System) and MEGAN (Model of Emissions of Gases and Aerosols from Nature) into the atmosphere. In doing so, inconsistencies across model inputs and parameter data are resolved such that the emissions from a particular plant species are consistent with the heat and moisture fluxes calculated for that land cover type. In turn, the response of the atmospheric turbulence and mixing in the planetary boundary layer (PBL) acts on the identical surface type, fluxes, and emissions for each. In addition, the coupling of dust emission within the NU-WRF system is performed in order to ensure consistency and to maximize the benefit of high-resolution land representation in LIS. The impacts of those self-consistent components on' the simulation of atmospheric aerosols are then evaluated through the WRF-Chem-GOCART (Goddard Chemistry Aerosol Radiation and Transport) model. Overall, this ambitious project highlights the current difficulties and future potential of fully coupled. components. in Earth System models, and underscores the importance of the iLEAPS community in supporting improved knowledge of

  19. Simulating the link between ENSO and summer drought in Southern Africa using regional climate models

    Science.gov (United States)

    Meque, Arlindo; Abiodun, Babatunde J.

    2015-04-01

    This study evaluates the capability of regional climate models (RCMs) in simulating the link between El Niño Southern Oscillation (ENSO) and Southern African droughts. It uses the Standardized Precipitation-Evapotranspiration Index (SPEI, computed using rainfall and temperature data) to identify 3-month drought over Southern Africa, and compares the observed and simulated correlation between ENSO and SPEI. The observation data are from the Climate Research Unit, while the simulation data are from ten RCMs (ARPEGE, CCLM, HIRHAM, RACMO, REMO, PRECIS, RegCM3, RCA, WRF, and CRCM) that participated in the regional climate downscaling experiment (CORDEX) project. The study analysed the rainy season (December-February) data for 19 years (1989-2008). The results show a strong link between ENSO and droughts (SPEI) over Southern Africa. The link is owing to the influence of ENSO on both rainfall and temperature fields, but the correlation between ENSO and temperature is stronger than the correlation between ENSO and rainfall. Hence, using only rainfall to monitor droughts in Southern Africa may underestimate the influence of ENSO on the droughts. Only few CORDEX RCMs simulate the influence of ENSO on Southern African drought as observed. In this regard, the ARPEGE model shows the best simulation, while CRCM shows the worst. The different in the performance may be due to their lateral boundary conditions. The RCA-simulated link between ENSO and Southern African droughts is sensitive to the global dataset used as the lateral boundary conditions. In some cases, using RCA to downscale global circulation models (GCM) simulations adds value to the simulated link between ENSO and the droughts, but in other cases the downscaling adds no value to the link. The added value of RCA to the simulated link decreases as the capability of the GCM to simulate the link increases. This study suggests that downscaling GCM simulations with RCMs over Southern Africa may improve or depreciate the

  20. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries.

    Science.gov (United States)

    Leandro, Jorge; Martins, Ricardo

    2016-01-01

    Pluvial flooding in urban areas is characterized by a gradually varying inundation process caused by surcharge of the sewer manholes. Therefore urban flood models need to simulate the interaction between the sewer network and the overland flow in order to accurately predict the flood inundation extents. In this work we present a methodology for linking 2D overland flow models with the storm sewer model SWMM 5. SWMM 5 is a well-known free open-source code originally developed in 1971. The latest major release saw its structure re-written in C ++ allowing it to be compiled as a command line executable or through a series of calls made to function inside a dynamic link library (DLL). The methodology developed herein is written inside the same DLL in C + +, and is able to simulate the bi-directional interaction between both models during simulation. Validation is done in a real case study with an existing urban flood coupled model. The novelty herein is that the new methodology can be added to SWMM without the need for editing SWMM's original code. Furthermore, it is directly applicable to other coupled overland flow models aiming to use SWMM 5 as the sewer network model.

  1. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  2. Neuro-Sliding-Mode Control of Flexible-Link Manipulators Based on Singularly Perturbed Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; YANG Tangwen; SUN Zengqi

    2009-01-01

    A neuro-sliding-mode control (NSMC) strategy was developed to handle the complex nonlinear dynamics and model uncertainties of flexible-link manipulators. A composite controller was designed based on a singularly perturbed model of flexible-link manipulators when the rigid motion and flexible motion are decoupled. The NSMC is employed to control the slow subsystem to track a desired trajectory with a traditional sliding mode controller to stabilize the fast subsystem which represents the link vibrations. A stability analysis of the flexible modes is also given. Simulations confirm that the NSMC performs better than the tra-ditional sliding-mode control for controlling flexible-link manipulators. The control strategy not only gives good tracking performance for the joint angle, but also effectively suppresses endpoint vibrations. The simulations also show that the control strategy has a strong self-adaptive ability for controlling manipulators with different parameters.

  3. The Modeling and Simulating of Link-16 Based on QualNet%基于QualNet的Link-16建模与仿真

    Institute of Scientific and Technical Information of China (English)

    禹华钢; 周安栋; 刘宏波

    2008-01-01

    针对数据链Link-16的技术特性,参考战术数据链参考模型(Tactical Data Link Reference Model,TDLRM),设计了适合Link-16的协议体系模型.搭建了基于QualNet仿真平台的实际军事网络场景.对Link-16模型进行了模拟仿真,并对仿真结果中接收消息字数这一参数进行了统计分析.该仿真模型可分析各种情况下的Link-16的性能参数,为深入研究Link-16提供参考.

  4. Progress and Status on the Development of NASA's Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W. K.; Blattnig, S. R.; Kress, B. T.; Wiltberger, M. J.; Solomon, S. C.; Kunches, J.; Murray, J. J.

    2008-12-01

    The NASA Applied Sciences Program recently selected a project for funding through the Research Opportunities in Space and Earth Sciences (ROSES) solicitation. The project objective is to develop a nowcast prediction of air-crew radiation exposure from both background galactic cosmic rays (GCR) and solar energetic particle events (SEP) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time radiation dose predictions of biologically harmful radiation at commercial airline altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP reanalysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. In this paper we discuss the concept and design of the NAIRAS model, and present recent progress in the implementation and give examples of the model results. Specifically, we show predictions of representative annual background exposure levels and radiation exposure levels for selected SEP events during solar cycle 23, with emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure. We discuss the key uncertainties and areas that need improvement in both model and data, the timeline for project completion, and access to model results.

  5. Simulation Model of the Future Nordic Power Grid Considering the Impact of HVDC Links

    OpenAIRE

    Aas, Even Strand

    2016-01-01

    As Europe is shifting to an increasingly larger share of non-dispatchable renewable energy sources, the cross-border power flow changes. This thesis considers further development of an existing PowerFactory simulation model designed to fit with new power flow situations influencing the Nordic power system. Today, there are many HVDC links connecting Europe to the Nordic grid, and there are several new links being built and planned. The thesis work is a continuation of an earlier specialisatio...

  6. Instantaneous thermal modeling of the DC-link capacitor in PhotoVoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Ma, Ke; Wang, Huai

    2015-01-01

    Capacitors have been witnessed as one of the weak points in grid-connected PhotoVoltaic (PV) applications, and thus efforts have been devoted to the design of reliable DC-link capacitors in PV applications. Since the hot-spot temperature of the capacitor is one of the failure inducers......, instantaneous thermal modeling approaches considering mission profiles for the DC-link capacitor in single-phase PV systems are explored in this paper. These thermal modelling approaches are based on: a) fast Fourier transform, b) look-up tables, and c) ripple current reconstruction. Moreover, the thermal...... modelling approaches for the DC-link capacitors take into account the instantaneous thermal characteristics, which are more challenging to the capacitor reliability during operation. Such instantaneous thermal modeling approaches enable a translation of instantaneous capacitor power losses to capacitor...

  7. Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

    Science.gov (United States)

    Erickson, G. E.; Burner, A. W.; DeLoach, R.

    1999-01-01

    Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

  8. A Simple Forecasting Model Linking Macroeconomic Policy to Industrial Employment Demand.

    Science.gov (United States)

    Malley, James R.; Hady, Thomas F.

    A study detailed further a model linking monetary and fiscal policy to industrial employment in metropolitan and nonmetropolitan areas of four United States regions. The model was used to simulate the impacts on area and regional employment of three events in the economy: changing real gross national product (GNP) via monetary policy, holding the…

  9. Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBG-Based Shape Sensing

    NARCIS (Netherlands)

    Roesthuis, Roy; Misra, Sarthak

    2016-01-01

    Accurate closed-loop control of continuum manipulators requires integration of both models that describe their motion and methods to evaluate manipulator shape. This work presents a model that approximates the continuous shape of a continuum manipulator by a serial chain of rigid links, connected by

  10. Analysis of a generic model for a bottleneck link in an integrated services communications network

    NARCIS (Netherlands)

    Al-Begain, K.; Heindl, A.; Telek, M.; Litjens, R.; Boucherie, R.J.

    2007-01-01

    We develop and analyse a generic model for performance evaluation, parameter optimisation and dimensioning of a bottleneck link in an integrated services communications network. Possible application areas include ip, atm and gsm/gprs networks. The model enables analytical evaluation for a scenario o

  11. Low-Energy Effective Theories of Quantum Link and Quantum Spin Models

    CERN Document Server

    Schlittgen, B

    2001-01-01

    Quantum spin and quantum link models provide an unconventional regularization of field theory in which classical fields arise via dimensional reduction of discrete variables. This D-theory regularization leads to the same continuum theories as the conventional approach. We show this by deriving the low-energy effective Lagrangians of D-theory models using coherent state path integral techniques. We illustrate our method for the $(2+1)$-d Heisenberg quantum spin model which is the D-theory regularization of the 2-d O(3) model. Similarly, we prove that in the continuum limit a $(2+1)$-d quantum spin model with $SU(N)_L\\times SU(N)_R\\times U(1)_{L=R}$ symmetry is equivalent to the 2-d principal chiral model. Finally, we show that $(4+1)$-d SU(N) quantum link models reduce to ordinary 4-d Yang-Mills theory.

  12. Cumulative t-link threshold models for the genetic analysis of calving ease scores

    Directory of Open Access Journals (Sweden)

    Tempelman Robert J

    2003-09-01

    Full Text Available Abstract In this study, a hierarchical threshold mixed model based on a cumulative t-link specification for the analysis of ordinal data or more, specifically, calving ease scores, was developed. The validation of this model and the Markov chain Monte Carlo (MCMC algorithm was carried out on simulated data from normally and t4 (i.e. a t-distribution with four degrees of freedom distributed populations using the deviance information criterion (DIC and a pseudo Bayes factor (PBF measure to validate recently proposed model choice criteria. The simulation study indicated that although inference on the degrees of freedom parameter is possible, MCMC mixing was problematic. Nevertheless, the DIC and PBF were validated to be satisfactory measures of model fit to data. A sire and maternal grandsire cumulative t-link model was applied to a calving ease dataset from 8847 Italian Piemontese first parity dams. The cumulative t-link model was shown to lead to posterior means of direct and maternal heritabilities (0.40 ± 0.06, 0.11 ± 0.04 and a direct maternal genetic correlation (-0.58 ± 0.15 that were not different from the corresponding posterior means of the heritabilities (0.42 ± 0.07, 0.14 ± 0.04 and the genetic correlation (-0.55 ± 0.14 inferred under the conventional cumulative probit link threshold model. Furthermore, the correlation (> 0.99 between posterior means of sire progeny merit from the two models suggested no meaningful rerankings. Nevertheless, the cumulative t-link model was decisively chosen as the better fitting model for this calving ease data using DIC and PBF.

  13. Pyramidal Edge Detection Method Based on AWFM Filtering and Fuzzy Linking Model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel multiresolution pyramidal edge detector, based on adaptive weighted fuzzy mean(AWFM)filtering and fuzzy linking model, is presented in this paper. The algorithm first constructs a pyramidal structure by repetitive AWFM filtering and subsampling of original image. Then it utilizes multiple heuristic linking criteria between the edge nodes of two adjacent levels and considers the linkage as a fuzzy model, which is trained offline. Through this fuzzy linking model, the boundaries detected at coarse resolution are propagated and refined to the bottom level from the coarse-to fine edge detection. The validation experiment results demonstrate that the proposed approach has superior performance compared with standard fixed resolution detector andprevious multiresolution approach, especially in impulse noise environment.

  14. Sea Ice Outlook for September 2017 July Report - NASA Global Modeling and Assimilation Office

    Science.gov (United States)

    Cullather, Richard I.; Borovikov, Anna Y.; Hackert, Eric C.; Kovach, Robin M.; Marshak, Jelena; Molod, Andrea M.; Pawson, Steven; Suarez, Max J.; Vikhliaev, Yury V.; Zhao, Bin

    2017-01-01

    The GMAO seasonal forecast is produced from coupled model integrations that are initialized every five days, with seven additional ensemble members generated by coupled model breeding and initialized on the date closest to the beginning of the month. The main components of the AOGCM are the GEOS-5 atmospheric model, the MOM4 ocean model, and CICE sea ice model. Forecast fields were re-gridded to the passive microwave grid for averaging.

  15. Sea Ice Outlook for September 2017: June Report - NASA Global Modeling and Assimilation Office

    Science.gov (United States)

    Cullather, Richard I.; Borovikov, Anna Y.; Hackert, Eric C.; Kovach, Robin M.; Marshak, Jelena; Molod, Andrea M.; Pawson, Steven; Suarez, Max J.; Vikhliaev, Yury V.; Zhao, Bin

    2017-01-01

    The GMAO seasonal forecast is produced from coupled model integrations that are initialized every five days, with seven additional ensemble members generated by coupled model breeding and initialized on the date closest to the beginning of the month. The main components of the AOGCM are the GEOS-5 atmospheric model, the MOM4 ocean model, and CICE sea ice model. Forecast fields were re-gridded to the passive microwave grid for averaging.

  16. Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms

    Institute of Scientific and Technical Information of China (English)

    Ding-guo ZHANG

    2009-01-01

    The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4×4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.

  17. Modeling of the ground-to-SSFMB link networking features using SPW

    Science.gov (United States)

    Watson, John C.

    1993-01-01

    This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.

  18. Relay-Linking Models for Prominence and Obsolescence in Evolving Networks

    CERN Document Server

    Singh, Mayank; Goyal, Pawan; Mukherjee, Animesh; Chakrabarti, Soumen

    2016-01-01

    The rate at which nodes in evolving social networks acquire links (friends, citations) shows complex temporal dynamics. Elegant and simple models, such as preferential attachment and link copying, model only rich-gets-richer effects, not aging and decline. Recent aging models are complex and heavily parameterized; most involve estimating 1-3 parameters per node. These parameters are intrinsic: they explain decline in terms of events in the past of the same node, and do not explain, using the network, where the linking attention might go instead. We argue that traditional network characterization, or even per-node linking dynamics, are insufficient to judge the faithfulness of models. We propose a new temporal sketch of an evolving graph, and introduce three new characterizations of a network's temporal dynamics. Then we propose a new family of frugal aging models with no per-node parameters and only 2-3 global parameters. Our model is based on a surprising inversion or undoing of triangle completion, where an...

  19. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking

    Science.gov (United States)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.

    2006-04-01

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  20. A Study of Business Incubators: Models, Best Practices, and Recommendations for NASA and Florida

    Science.gov (United States)

    1997-01-01

    This study was conducted to provide NASA-Kennedy Space Center with information and recommendations to support establishing one or more technology-based business incubators In Florida. The study involved assembling information about incubators: why they succeed, why they fail, how they are organized, and what services they provide. Consequently, this study focuses on widely-recognized "best practices," needed to establish successful technology- based business incubators. The findings are used to optimize the design and implementation of one or more technology-based business incubators to be established in Florida. Recommendations reflect both the essential characteristics of successful incubators and the optimal business demographics in Florida. Appendix A provides a fuller description of the objectives of the study. Technology-based business incubators are an increasing catalyst of new business development across the USi Incubators focus on providing entrepreneurs and small start-up firms with a wide array of support services necessary to bring forth new products and processes based on technologies developed in the nation's federal and private laboratories and universities. Appendix B provides extensive discussion of findings relative to technology- based business incubators.

  1. International Observe the Moon Night: An Effective Model for Public Engagement with NASA Content

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Shaner, A.; Day, B.; Buxner, S.; Wegner, M.

    2015-01-01

    International Observe the Moon Night (InOMN) is an annual world-wide public engagement event designed with the goal of inspiring the public to want to learn more about NASAs contributions to planetary science and exploration, using the Earths Moon as an entryway, and to provide connections to do so [1,2,3]. InOMN will celebrate its 6th anniversary on September 19, 2015.Registration statistics from the past five years show an average of 500 InOMN events are held in 50 countries and 45 U.S. states per year (Figure 1), with over half of the events occurring outside the U.S. Host survey data indicate that approximately 55,000 to 75,000people participate in InOMN events each year. The consistent hosting of InOMN events across the U.S. and around the world indicates an interest by hosts in sharing lunar and planetary science with their local communities, as well as connecting with a larger international group of fellow space enthusiasts on an annual basis.

  2. Global Stability Analysis for an Internet Congestion Control Model with a Time-Varying Link Capacity

    CERN Document Server

    Rezaie, B; Analoui, M; Khorsandi, S

    2009-01-01

    In this paper, a global stability analysis is given for a rate-based congestion control system modeled by a nonlinear delayed differential equation. The model determines the dynamics of a single-source single-link network, with a time-varying capacity of link and a fixed communication delay. We obtain a sufficient delay-independent conditions on system parameters under which global asymptotic stability of the system is guarantied. The proof is based on an extension of Lyapunov-Krasovskii theorem for a class of nonlinear time-delay systems. The numerical simulations for a typical scenario justify the theoretical results.

  3. ON THE DYNAMIC MODELING AND CONTROL OF 2-DOF PLANAR PARALLEL MECHANISM WITH FLEXIBLE LINKS

    Institute of Scientific and Technical Information of China (English)

    Luo Lei; Wang Shigang; Mo Jinqiu; Cai Jianguo

    2005-01-01

    The object of study is about dynamic modeling and control for a 2 degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic and dynamic equations are established according to the characteristics of mixed rigid and flexible structure. By using the singular perturbation approach (SPA), the model of the mechanism can be separated into slow and fast subsystems. Based on the feedback linearization theory and input shaping technique, the large scale rigid motion controller and the flexible link vibration controller can be designed separately to achieve fast and accurate positioning of the PM.

  4. Timoshenko Beam Theory based Dynamic Modeling of Lightweight Flexible Link Robotic Manipulators

    OpenAIRE

    Loudini, Malik

    2010-01-01

    An investigation into the development of flexible link robot manipulators mathematical models, with a high modeling accuracy, using Timoshenko beam theory concepts has been presented. The emphasis has been, essentially, set on obtaining accurate and complete equations of motion that display the most relevant aspects of structural properties inherent to the modeled lightweight flexible robotic structure. In particular, two important damping mechanisms: internal structural viscoelasticity effec...

  5. Selection and mutation in X-linked recessive diseases epidemiological model.

    Science.gov (United States)

    Verrilli, Francesca; Kebriaei, Hamed; Glielmo, Luigi; Corless, Martin; Del Vecchio, Carmen

    2015-01-01

    To describe the epidemiology of X-linked recessive diseases we developed a discrete time, structured, non linear mathematical model. The model allows for de novo mutations (i.e. affected sibling born to unaffected parents) and selection (i.e., distinct fitness rates depending on individual's health conditions). Applying Lyapunov direct method we found the domain of attraction of model's equilibrium point and studied the convergence properties of the degenerate equilibrium where only affected individuals survive.

  6. The Chain-Link Fence Model: A Framework for Creating Security Procedures

    OpenAIRE

    Houghton, Robert F.

    2013-01-01

    A long standing problem in information technology security is how to help reduce the security footprint. Many specific proposals exist to address specific problems in information technology security. Most information technology solutions need to be repeatable throughout the course of an information systems lifecycle. The Chain-Link Fence Model is a new model for creating and implementing information technology procedures. This model was validated by two different methods: the first being int...

  7. Mathematical Model of Bridge-Linked Photovoltaic Arrays Operating Under Irregular Conditions

    OpenAIRE

    Juan D. Bastidas-Rodríguez; Carlos A. Ramos-Paja; Luz A. Trejos-Grisales

    2013-01-01

    This paper presents a mathematical procedure to model a photovoltaic array (N rows and M columns) in bridge-linked configuration operating under regular and irregular conditions. The proposed procedure uses the ideal single-diode model representation for each photovoltaic module and the Shockley equation to represent each bypass diode. To pose the system of NxM non-linear equations required to obtain the voltages of each module of the array, the proposed model apply the Kirchhoff current law ...

  8. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling

    Science.gov (United States)

    Gabel, R.; Lang, P.; Reed, D.

    1993-01-01

    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.

  9. Discovering link communities in complex networks by an integer programming model and a genetic algorithm.

    Science.gov (United States)

    Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua

    2013-01-01

    Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks.

  10. The New Cloud Absorption Radiometer (CAR) Software: One Model for NASA Remote Sensing Virtual Instruments

    Science.gov (United States)

    Roth, Don J.; Rapchun, David A.; Jones, Hollis H.

    2001-01-01

    The Cloud Absorption Radiometer (CAR) instrument has been the most frequently used airborne instrument built in-house at NASA Goddard Space Flight Center, having flown scientific research missions on-board various aircraft to many locations in the United States, Azores, Brazil, and Kuwait since 1983. The CAR instrument is capable of measuring scattered light by clouds in fourteen spectral bands in UV, visible and near-infrared region. This document describes the control, data acquisition, display, and file storage software for the new version of CAR. This software completely replaces the prior CAR Data System and Control Panel with a compact and robust virtual instrument computer interface. Additionally, the instrument is now usable for the first time for taking data in an off-aircraft mode. The new instrument is controlled via a LabVIEW v5. 1.1-developed software interface that utilizes, (1) serial port writes to write commands to the controller module of the instrument, and (2) serial port reads to acquire data from the controller module of the instrument. Step-by-step operational procedures are provided in this document. A suite of other software programs has been developed to complement the actual CAR virtual instrument. These programs include: (1) a simulator mode that allows pretesting of new features that might be added in the future, as well as demonstrations to CAR customers, and development at times when the instrument/hardware is off-location, and (2) a post-experiment data viewer that can be used to view all segments of individual data cycles and to locate positions where 'start' and stop' byte sequences were incorrectly formulated by the instrument controller. The CAR software described here is expected to be the basis for CAR operation for many missions and many years to come.

  11. Queueing model for an ATM multiplexer with unequal input/output link capacities

    Science.gov (United States)

    Long, Y. H.; Ho, T. K.; Rad, A. B.; Lam, S. P. S.

    1998-10-01

    We present a queuing model for an ATM multiplexer with unequal input/output link capacities in this paper. This model can be used to analyze the buffer behaviors of an ATM multiplexer which multiplexes low speed input links into a high speed output link. For this queuing mode, we assume that the input and output slot times are not equal, this is quite different from most analysis of discrete-time queues for ATM multiplexer/switch. In the queuing analysis, we adopt a correlated arrival process represented by the Discrete-time Batch Markovian Arrival Process. The analysis is based upon M/G/1 type queue technique which enables easy numerical computation. Queue length distributions observed at different epochs and queue length distribution seen by an arbitrary arrival cell when it enters the buffer are given.

  12. The Long, Hard Journey: Expanding the Use of NASA Data and Models for Sustainable Development Planning Around the World

    Science.gov (United States)

    Khan, Maudood; Limaye, Ashutosh; Crosson, William; Unal, Alper; Kete, nancy; Rickman, Douglas

    2009-01-01

    In 2007, the National Research Council's committee on Extending Observations and Research Results to Practical Applications recommended that NASA's Applied Science Program (ASP) directly engage with a broader community of users - not just federal agencies. Soon afterwards, scientists at the NASA Marshall Space Flight Center began discussions on a collaborative research project with EMBARQ - the World Resource Institute's Center for Sustainable Transport. The discussions initially focused on how best to utilize satellite observations and atmospheric models for assessing the impact of a proposed transportation project on land use and air quality. Discussions exposed the participants to a broad spectrum of science and policy challenges that these diverse organizations face on a routine basis. It brought into clear focus the need for an observation-modeling system that will allow a proactive approach towards development planning, and the fact that satellite systems do not always provide the spatial and temporal resolution useful for urban-scale applications, underscoring the need for earth system models to bridge this gap. Realizing the significant risk that unplanned urbanization and climate change pose to the social and functional stability of large cities, both organizations decided to expand the scope of their preliminary discussion to include water resources and agriculture. A pilot project, funded by NASA ASP, EMBARQ and Istanbul Technical University focused on quantifying the magnitude and extent of urbanization in Istanbul, and analyzed the combined effect of urbanization and projected climate change on local climate, air quality, and its consequent effects on agricultural productivity. Preliminary results show that Istanbul has undergone a significant amount of Land Use/Land Cover change over the past two decades. While some forested areas have been lost to urban-landscapes, urbanization has mostly occurred over former croplands due to the fact that in

  13. The Long, Hard Journey: Expanding the Use of NASA Data and Models for Sustainable Development Planning Around the World

    Science.gov (United States)

    Khan, Maudood; Limaye, Ashutosh; Crosson, William; Unal, Alper; Kete, nancy; Rickman, Douglas

    2009-01-01

    In 2007, the National Research Council's committee on Extending Observations and Research Results to Practical Applications recommended that NASA's Applied Science Program (ASP) directly engage with a broader community of users - not just federal agencies. Soon afterwards, scientists at the NASA Marshall Space Flight Center began discussions on a collaborative research project with EMBARQ - the World Resource Institute's Center for Sustainable Transport. The discussions initially focused on how best to utilize satellite observations and atmospheric models for assessing the impact of a proposed transportation project on land use and air quality. Discussions exposed the participants to a broad spectrum of science and policy challenges that these diverse organizations face on a routine basis. It brought into clear focus the need for an observation-modeling system that will allow a proactive approach towards development planning, and the fact that satellite systems do not always provide the spatial and temporal resolution useful for urban-scale applications, underscoring the need for earth system models to bridge this gap. Realizing the significant risk that unplanned urbanization and climate change pose to the social and functional stability of large cities, both organizations decided to expand the scope of their preliminary discussion to include water resources and agriculture. A pilot project, funded by NASA ASP, EMBARQ and Istanbul Technical University focused on quantifying the magnitude and extent of urbanization in Istanbul, and analyzed the combined effect of urbanization and projected climate change on local climate, air quality, and its consequent effects on agricultural productivity. Preliminary results show that Istanbul has undergone a significant amount of Land Use/Land Cover change over the past two decades. While some forested areas have been lost to urban-landscapes, urbanization has mostly occurred over former croplands due to the fact that in

  14. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    Science.gov (United States)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  15. Summary goodness-of-fit statistics for binary generalized linear models with noncanonical link functions.

    Science.gov (United States)

    Canary, Jana D; Blizzard, Leigh; Barry, Ronald P; Hosmer, David W; Quinn, Stephen J

    2016-05-01

    Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness-of-fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (TG), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer-Lemeshow (HL) and Pigeon-Heyse (J(2) ) statistics can be applied directly. In a simulation study, TG, HL, and J(2) were used to evaluate the fit of probit, log-log, complementary log-log, and log models, all calculated with a common grouping method. The TG statistic consistently maintained Type I error rates, while those of HL and J(2) were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, TG had more power than HL or J(2) .

  16. Radiative Transfer Modelling Activities in Support of NASA GMAO Data Assimilation

    Science.gov (United States)

    Moradi, I.; McCarty, W.; Kouvaris, L. C.; Susskind, J.; Blaisdell, J. M.

    2016-12-01

    Radiative transfer (RT) models play a very critical role in assimilating satellite radiances into NWP models. The RT models are used as forward operator to simulate satellite radiances from atmopspheric control variables such as pressure, temperature, water vapor, and ozone. However because line-by-line RT models are computationally very expensive, fast RT models have been developed and advanced especially in past two decades to overcome these limitations. Community Radiative Transfer Model (CRTM) developed by Joint Center for Satellite Data Assimilation is widely used in the U.S. as the forward operator for the assimilation of microwave and infrared satellite radiances. This abstract summarizes the GMAO activities in the support of CRTM including generating training coefficients for new instruments as well as developments for assimilating satellite radiances from shortwave infrared channels.

  17. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    Science.gov (United States)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  18. NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations

    Science.gov (United States)

    Frisbie, T. E.; Hall, C. M.

    2006-12-01

    Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.

  19. What Works Clearinghouse Quick Review: "A Model for Success: CART's Linked Learning Program Increases College Enrollment"

    Science.gov (United States)

    What Works Clearinghouse, 2012

    2012-01-01

    The study, "A Model for Success: CART's Linked Learning Program Increases College Enrollment" examined whether students who enrolled in courses at a high school that combined academics and technical education had higher college enrollment rates than students who did not. The research described in this report does not meet What Works…

  20. Modeling radio link performance in UMTS W-CDMA network simulations

    DEFF Research Database (Denmark)

    Klingenbrunn, Thomas; Mogensen, Preben Elgaard

    2000-01-01

    This article presents a method to model the W-CDMA radio receiver performance, which is usable in network simulation tools for third generation mobile cellular systems. The method represents a technique to combine link level simulations with network level simulations. The method is derived from [1...

  1. Chaotic dynamics in the Volterra predator-prey model via linked twist maps

    Directory of Open Access Journals (Sweden)

    Marina Pireddu

    2008-01-01

    Full Text Available We prove the existence of infinitely many periodic solutions and complicated dynamics, due to the presence of a topological horseshoe, for the classical Volterra predator-prey model with a periodic harvesting. The proof relies on some recent results about chaotic planar maps combined with the study of geometric features which are typical of linked twist maps.

  2. Large-Sample Theory for Generalized Linear Models with Non-natural Link and Random Variates

    Institute of Scientific and Technical Information of China (English)

    Jie-li Ding; Xi-ru Chen

    2006-01-01

    For generalized linear models (GLM), in the case that the regressors are stochastic and have different distributions and the observations of the responses may have different dimensionality, the asymptotic theory of the maximum likelihood estimate (MLE) of the parameters are studied under the assumption of a non-natural link function.

  3. Art of science? The challenges of publishing peer reviewed papers based on linked models

    NARCIS (Netherlands)

    Burrell, A.M.

    2008-01-01

    The methodology used in a linked model system is generally too voluminous and of insufficient interest to form the basis of a peer-reviewed journal article. To be readily acceptable to an economics journal, the simulation results should provide economic insight and contribute to the economics litera

  4. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films

    Science.gov (United States)

    Vlachos, Dion G.

    2002-01-01

    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  5. The Chain-Link Fence Model: A Framework for Creating Security Procedures

    Science.gov (United States)

    Houghton, Robert F.

    2013-01-01

    A long standing problem in information technology security is how to help reduce the security footprint. Many specific proposals exist to address specific problems in information technology security. Most information technology solutions need to be repeatable throughout the course of an information systems lifecycle. The Chain-Link Fence Model is…

  6. The Chain-Link Fence Model: A Framework for Creating Security Procedures

    Science.gov (United States)

    Houghton, Robert F.

    2013-01-01

    A long standing problem in information technology security is how to help reduce the security footprint. Many specific proposals exist to address specific problems in information technology security. Most information technology solutions need to be repeatable throughout the course of an information systems lifecycle. The Chain-Link Fence Model is…

  7. Ontologies to Support RFID-Based Link between Virtual Models and Construction Components

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2010-01-01

    the virtual models and the physical components in the construction process can improve the information handling and sharing in construction and building operation management. Such a link can be created by means of Radio Frequency Identification (RFID) technology. Ontologies play an important role...

  8. Linking HR strategy, e-HR goals, architectures, and outcomes: a model and case study evidence.

    NARCIS (Netherlands)

    Reddington, Martin; Martin, Graeme; Bondarouk, T.V.; Bondarouk, Tatiana; Ruel, H.; Ruel, Hubertus Johannes Maria; Looise, J.C.; Looise, Jan C.

    2011-01-01

    Building on our earlier model of the links between HR strategy, e-HR goals, architectures, and outcomes, we illustrate the relationship between some of these elements with data from three global organizations. In doing so, we aim to help academics and practitioners understand this increasingly

  9. The Gender-Linked Language Effect: An Empirical Test of a General Process Model

    Science.gov (United States)

    Mulac, Anthony; Giles, Howard; Bradac, James J.; Palomares, Nicholas A.

    2013-01-01

    The gender-linked language effect (GLLE) is a phenomenon in which transcripts of female communicators are rated higher on Socio-Intellectual Status and Aesthetic Quality and male communicators are rated higher on Dynamism. This study proposed and tested a new general process model explanation for the GLLE, a central mediating element of which…

  10. Application of the NASA A-Train to Evaluate Clouds Simulated by the Weather Research and Forecast Model

    Science.gov (United States)

    Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.

  11. Parallelization of the NASA Goddard Cumulus Ensemble Model for Massively Parallel Computing

    Directory of Open Access Journals (Sweden)

    Hann-Ming Henry Juang

    2007-01-01

    Full Text Available Massively parallel computing, using a message passing interface (MPI, has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE model. The implementation uses the domainresemble concept to design a code structure for both the whole domain and sub-domains after decomposition. Instead of inserting a group of MPI related statements into the model routine, these statements are packed into a single routine. In other words, only a single call statement to the model code is utilized once in a place, thus there is minimal impact on the original code. Therefore, the model is easily modified and/or managed by the model developers and/or users, who have little knowledge of massively parallel computing.

  12. An Update on Experimental Climate Prediction and Analysis Products Being Developed at NASA's Global Modeling and Assimilation Office

    Science.gov (United States)

    Schubert, Siegfried

    2011-01-01

    The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.

  13. GLGM-3: A Degree-ISO Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters

    Science.gov (United States)

    Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

    2010-01-01

    In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(exp -4)/sq l) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of approx.0.2 and approx. 1-2 mm/s in the nominal and extended phases, respectiVely). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

  14. GLGM-3: A Degree-ISO Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters

    Science.gov (United States)

    Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

    2010-01-01

    In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(exp -4)/sq l) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of approx.0.2 and approx. 1-2 mm/s in the nominal and extended phases, respectiVely). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

  15. Dynamical modeling of serial manipulators with flexible links and joints using the method of kinematic influence

    Science.gov (United States)

    Graves, Philip L.

    1989-01-01

    A method of formulating the dynamical equations of a flexible, serial manipulator is presented, using the Method of Kinematic Influence. The resulting equations account for rigid body motion, structural motion due to link and joint flexibilities, and the coupling between these two motions. Nonlinear inertial loads are included in the equations. A finite order mode summation method is used to model flexibilities. The structural data may be obtained from experimental, finite element, or analytical methods. Nonlinear flexibilities may be included in the model.

  16. Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links.

    Science.gov (United States)

    Hulbert, S W; Jiang, Y-H

    2016-05-03

    Autism spectrum disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral assessment with circuit-level analysis in genetically modified models with strong construct validity.

  17. An Ensemble Recentering Kalman Filter with an Application to Argo Temperature Data Assimilation into the NASA GEOS-5 Coupled Model

    Science.gov (United States)

    Keppenne, Christian L.

    2013-01-01

    A two-step ensemble recentering Kalman filter (ERKF) analysis scheme is introduced. The algorithm consists of a recentering step followed by an ensemble Kalman filter (EnKF) analysis step. The recentering step is formulated such as to adjust the prior distribution of an ensemble of model states so that the deviations of individual samples from the sample mean are unchanged but the original sample mean is shifted to the prior position of the most likely particle, where the likelihood of each particle is measured in terms of closeness to a chosen subset of the observations. The computational cost of the ERKF is essentially the same as that of a same size EnKF. The ERKF is applied to the assimilation of Argo temperature profiles into the OGCM component of an ensemble of NASA GEOS-5 coupled models. Unassimilated Argo salt data are used for validation. A surprisingly small number (16) of model trajectories is sufficient to significantly improve model estimates of salinity over estimates from an ensemble run without assimilation. The two-step algorithm also performs better than the EnKF although its performance is degraded in poorly observed regions.

  18. A prosthesis-specific multi-link segment model of lower-limb amputee sprinting.

    Science.gov (United States)

    Rigney, Stacey M; Simmons, Anne; Kark, Lauren

    2016-10-03

    Lower-limb amputees commonly utilize non-articulating energy storage and return (ESAR) prostheses for high impact activities such as sprinting. Despite these prostheses lacking an articulating ankle joint, amputee gait analysis conventionally features a two-link segment model of the prosthetic foot. This paper investigated the effects of the selected link segment model׳s marker-set and geometry on a unilateral amputee sprinter׳s calculated lower-limb kinematics, kinetics and energetics. A total of five lower-limb models of the Ottobock(®) 1E90 Sprinter were developed, including two conventional shank-foot models that each used a different version of the Plug-in-Gait (PiG) marker-set to test the effect of prosthesis ankle marker location. Two Hybrid prosthesis-specific models were then developed, also using the PiG marker-sets, with the anatomical shank and foot replaced by prosthesis-specific geometry separated into two segments. Finally, a Multi-link segment (MLS) model was developed, consisting of six segments for the prosthesis as defined by a custom marker-set. All full-body musculoskeletal models were tested using four trials of experimental marker trajectories within OpenSim 3.2 (Stanford, California, USA) to find the affected and unaffected hip, knee and ankle kinematics, kinetics and energetics. The geometry of the selected lower-limb prosthesis model was found to significantly affect all variables on the affected leg (p variables on the affected leg, and none of the unaffected leg variables. The results indicate that the omission of prosthesis-specific spatial, inertial and elastic properties from full-body models significantly affects the calculated amputee gait characteristics, and we therefore recommend the implementation of a MLS model.

  19. Influences of Models on the Unsteady Pressure Characteristics of the NASA National Transonic Facility

    Science.gov (United States)

    Jones, Gregory; Balakrishna, Sundareswara; DeMoss, Joshua; Goodliff, Scott; Bailey, Matthew

    2015-01-01

    Pressure fluctuations have been measured over the course of several tests in the National Transonic Facility to study unsteady phenomenon both with and without the influence of a model. Broadband spectral analysis will be used to characterize the length scales of the tunnel. Special attention will be given to the large-scale, low frequency data that influences the Mach number and force and moment variability. This paper will also discuss the significance of the vorticity and sound fields that can be related to the Common Research Model and will also highlight the comparisons to an empty tunnel configuration. The effectiveness of vortex generators placed at the interface of the test section and wind tunnel diffuser showed promise in reducing the empty tunnel unsteadiness, however, the vortex generators were ineffective in the presence of a model.

  20. Simulations of the mid-Pliocene Warm Period using two versions of the NASA/GISS ModelE2-R Coupled Model

    Directory of Open Access Journals (Sweden)

    M. A. Chandler

    2013-04-01

    Full Text Available The mid-Pliocene Warm Period (mPWP bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007. Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASA/GISS Earth System Model (ModelE2-R. We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM, which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates. Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasise features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean

  1. UML-based Modeling of Simulation System for Link16 Terminal Machine%基于UML的Link16端机仿真系统建模

    Institute of Scientific and Technical Information of China (English)

    狄元博; 王运栋; 陆小龙; 罗壮─

    2010-01-01

    Link16数据链是用来交换实时战术信息的通信、导航、识别系统,Link16端机仿真系统模拟Link16通信部分的工作原理,完成数据链网络中平台所应实现的信息分发功能.使用UML(统一建模语言,Unified Modeling Language)作为建模工具,对Link16端机仿真系统进行建模,能更好地描述端机仿真系统系统内部各对象之间的关系,使系统的扩充性、可重用性好,易于维护,且开发效率高.

  2. Analytical model and figures of merit for filtered Microwave Photonic Links.

    Science.gov (United States)

    Gasulla, Ivana; Capmany, José

    2011-09-26

    The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems.

  3. Dynamic Modelling and Trajectory Tracking of Parallel Manipulator with Flexible Link

    Directory of Open Access Journals (Sweden)

    Chen Zhengsheng

    2013-09-01

    Full Text Available This paper mainly focuses on dynamic modelling and real‐time control for a parallel manipulator with flexible link. The Lagrange principle and assumed modes method (AMM substructure technique is presented to formulate the dynamic modelling of a two‐degrees‐of‐freedom (DOF parallel manipulator with flexible links. Then, the singular perturbation technique (SPT is used to decompose the nonlinear dynamic system into slow time‐scale and fast time‐scale subsystems. Furthermore, the SPT is employed to transform the differential algebraic equations (DAEs for kinematic constraints into explicit ordinary differential equations (ODEs, which makes real‐time control possible. In addition, a novel composite control scheme is presented; the computed torque control is applied for a slow subsystem and the H technique for the fast subsystem, taking account of the model uncertainty and outside disturbance. The simulation results show the composite control can effectively achieve fast and accurate tracking control.

  4. Quantification of Transport Model Error Impacts on CO2 Inversions Using NASA's GEOS-5 GCM

    Science.gov (United States)

    Ott, L.; Pawson, S.; Weir, B.

    2014-12-01

    Remote sensing observations of CO2 offer the opportunity to reduce uncertainty in global carbon flux estimates. However, a number of studies have shown that inversion flux estimates are strongly influenced by errors in model transport. We will present results from modeling studies designed to quantify how such errors influence simulations of surface and column CO2 mixing ratios. These studies were conducted using the Goddard Earth Observing System, version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM) and the implementation of a suite of tracers associated with errors in boundary layer, convective, and large scale transport. Unlike traditional tagged tracers which are emitted by a certain process or region, error tracers are emitted as air parcels are transported through the atmosphere. The magnitude of error tracer emissions is based on previously published ensembles of AGCM simulations with perturbations to subgrid convective and boundary layer transport, and on comparisons of several reanalysis products to estimate errors in large scale wind fields. Transport error tracers are simulated with several different e-folding lifetimes (e.g. 1, 4, 10, and 30 day) to examine differences between transient and persistent model errors. This quantification of transport error is then used in an illustrative Bayesian synthesis inversion to demonstrate how transport errors influence surface CO2 mixing ratios and how this translates into inferred biosphere flux error.

  5. Assessment of sea ice-atmosphere links in CMIP5 models

    Science.gov (United States)

    Boland, Emma J. D.; Bracegirdle, Thomas J.; Shuckburgh, Emily F.

    2016-09-01

    The Arctic is currently undergoing drastic changes in climate, largely thought to be due to so-called `Arctic amplification', whereby local feedbacks enhance global warming. Recently, a number of observational and modelling studies have questioned what the implications of this change in Arctic sea ice extent might be for weather in Northern Hemisphere midlatitudes, and in particular whether recent extremely cold winters such as 2009/10 might be consistent with an influence from observed Arctic sea ice decline. However, the proposed mechanisms for these links have not been consistently demonstrated. In a uniquely comprehensive cross-season and cross-model study, we show that the CMIP5 models provide no support for a relationship between declining Arctic sea ice and a negative NAM, or between declining Barents-Kara sea ice and cold European temperatures. The lack of evidence for the proposed links is consistent with studies that report a low signal-to-noise ratio in these relationships. These results imply that, whilst links may exist between declining sea ice and extreme cold weather events in the Northern Hemisphere, the CMIP5 model experiments do not show this to be a leading order effect in the long-term. We argue that this is likely due to a combination of the limitations of the CMIP5 models and an indication of other important long-term influences on Northern Hemisphere climate.

  6. Assessment of sea ice-atmosphere links in CMIP5 models

    Science.gov (United States)

    Boland, Emma J. D.; Bracegirdle, Thomas J.; Shuckburgh, Emily F.

    2017-07-01

    The Arctic is currently undergoing drastic changes in climate, largely thought to be due to so-called `Arctic amplification', whereby local feedbacks enhance global warming. Recently, a number of observational and modelling studies have questioned what the implications of this change in Arctic sea ice extent might be for weather in Northern Hemisphere midlatitudes, and in particular whether recent extremely cold winters such as 2009/10 might be consistent with an influence from observed Arctic sea ice decline. However, the proposed mechanisms for these links have not been consistently demonstrated. In a uniquely comprehensive cross-season and cross-model study, we show that the CMIP5 models provide no support for a relationship between declining Arctic sea ice and a negative NAM, or between declining Barents-Kara sea ice and cold European temperatures. The lack of evidence for the proposed links is consistent with studies that report a low signal-to-noise ratio in these relationships. These results imply that, whilst links may exist between declining sea ice and extreme cold weather events in the Northern Hemisphere, the CMIP5 model experiments do not show this to be a leading order effect in the long-term. We argue that this is likely due to a combination of the limitations of the CMIP5 models and an indication of other important long-term influences on Northern Hemisphere climate.

  7. Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions.

    Science.gov (United States)

    Roy, Vivekananda; Evangelou, Evangelos; Zhu, Zhengyuan

    2016-03-01

    Spatial generalized linear mixed models (SGLMMs) are popular models for spatial data with a non-Gaussian response. Binomial SGLMMs with logit or probit link functions are often used to model spatially dependent binomial random variables. It is known that for independent binomial data, the robit regression model provides a more robust (against extreme observations) alternative to the more popular logistic and probit models. In this article, we introduce a Bayesian spatial robit model for spatially dependent binomial data. Since constructing a meaningful prior on the link function parameter as well as the spatial correlation parameters in SGLMMs is difficult, we propose an empirical Bayes (EB) approach for the estimation of these parameters as well as for the prediction of the random effects. The EB methodology is implemented by efficient importance sampling methods based on Markov chain Monte Carlo (MCMC) algorithms. Our simulation study shows that the robit model is robust against model misspecification, and our EB method results in estimates with less bias than full Bayesian (FB) analysis. The methodology is applied to a Celastrus Orbiculatus data, and a Rhizoctonia root data. For the former, which is known to contain outlying observations, the robit model is shown to do better for predicting the spatial distribution of an invasive species. For the latter, our approach is doing as well as the classical models for predicting the disease severity for a root disease, as the probit link is shown to be appropriate. Though this article is written for Binomial SGLMMs for brevity, the EB methodology is more general and can be applied to other types of SGLMMs. In the accompanying R package geoBayes, implementations for other SGLMMs such as Poisson and Gamma SGLMMs are provided.

  8. Implementation of a Transition Model in a NASA Code and Validation Using Heat Transfer Data on a Turbine Blade

    Science.gov (United States)

    Ameri, Ali A.

    2012-01-01

    The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade

  9. Computed Verification for NASA-CRM Model%NASA桘CRM阻力预测模型的计算验证

    Institute of Scientific and Technical Information of China (English)

    戚姝妮; 郭承鹏; 章锦威; 董军

    2015-01-01

    Computational verification is carried out using the in-house unstructured grid flow solver UN-SMB in AVICARI for WB and WBT configurations of NASA-CRM model provided on the 4th AIAA drag prediction conference .Parameters like grid convergence characteristics ,lift-drag curves ,Reynolds number effect,down-wash effect and pressure distribution of the WBT configuration are analyzed with emphasis , and all the computational results are compared with those provided by ONERA on the conference .The a-nalysis results indicate a good agreement with ONERA′s results ,and the drag prediction accuracy of UN-SMB flow solver is verified to some extent .%采用自研的非结构网格解算器UNSMB 进行了AIAA第四届阻力会议提供的NASA-CRM 翼身组合体( WB)以及翼身组合加平尾( WBT)两种构型的计算验证。重点分析了WBT模型的网格收敛特性、升阻力曲线、雷诺数效应、下洗效应以及压力分布等,并把计算结果与阻力预测会议上ONERA的计算结果进行了对比。分析结果显示,非结构混合网格解算器的计算结果与ONERA的计算结果吻合度较好,同时在一定程度上验证与确认了解算器的阻力预测精度。

  10. Soil Moisture Data Assimilation in the NASA Land Information System for Local Modeling Applications and Improved Situational Awareness

    Science.gov (United States)

    Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.

    2014-01-01

    As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model

  11. NASA Astrophysics Technology Needs

    Science.gov (United States)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  12. A linked hydrodynamic and water quality model for the Salton Sea

    Science.gov (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, D.M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  13. Section-level modeling of musical audio for linking performances to scores in Turkish makam music

    OpenAIRE

    Holzapfel, André; Simsekli, Umut; Sentürk, Sertan; Cemgil, Ali Taylan

    2015-01-01

    Section linking aims at relating structural units in the notation of a piece of music to their occurrences in a performance of the piece. In this paper, we address this task by presenting a score-informed hierarchical Hidden Markov Model (HHMM) for modeling musical audio signals on the temporal level of sections present in a composition, where the main idea is to explicitly model the long range and hierarchical structure of music signals. So far, approaches based on HHMM or similar methods we...

  14. Influence of atmospheric turbulence on OAM-based FSO system with use of realistic link model

    Science.gov (United States)

    Li, Ming; Yu, Zhongyuan; Cvijetic, Milorad

    2016-04-01

    We study the influence of atmospheric turbulence on OAM-based free-space optical (FSO) communication by using the Pump turbulence spectrum model which accurately characterizes the realistic FSO link. A comprehensive comparison is made between the Pump and Kolmogorov spectrum models with respect to the turbulence impact. The calculated results show that obtained turbulence-induced crosstalk is lower, which means that a higher channel capacity is projected when the realistic Pump spectrum is used instead of the Kolmogorov spectrum. We believe that our results prove that performance of practical OAM-based FSO is better than one predicted by using the original Kolmogorov turbulence model.

  15. Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties.

    Science.gov (United States)

    Powell, Jeff R; Welsh, Allana; Hallin, Sara

    2015-07-01

    Microorganisms drive biogeochemical processes, but linking these processes to real changes in microbial communities under field conditions is not trivial. Here, we present a model-based approach to estimate independent contributions of microbial community shifts to ecosystem properties. The approach was tested empirically, using denitrification potential as our model process, in a spatial survey of arable land encompassing a range of edaphic conditions and two agricultural production systems. Soil nitrate was the most important single predictor of denitrification potential (the change in Akaike's information criterion, corrected for sample size, ΔAIC(c) = 20.29); however, the inclusion of biotic variables (particularly the evenness and size of denitrifier communities [ΔAIC(c) = 12.02], and the abundance of one denitrifier genotype [ΔAIC(c) = 18.04]) had a substantial effect on model precision, comparable to the inclusion of abiotic variables (biotic R2 = 0.28, abiotic R2 = 0.50, biotic + abiotic R2 = 0.76). This approach provides a valuable tool for explicitly linking microbial communities to ecosystem functioning. By making this link, we have demonstrated that including aspects of microbial community structure and diversity in biogeochemical models can improve predictions of nutrient cycling in ecosystems and enhance our understanding of ecosystem functionality.

  16. Towards Controlling the Glycoform: A Model Framework Linking Extracellular Metabolites to Antibody Glycosylation

    Directory of Open Access Journals (Sweden)

    Philip M. Jedrzejewski

    2014-03-01

    Full Text Available Glycoproteins represent the largest group of the growing number of biologically-derived medicines. The associated glycan structures and their distribution are known to have a large impact on pharmacokinetics. A modelling framework was developed to provide a link from the extracellular environment and its effect on intracellular metabolites to the distribution of glycans on the constant region of an antibody product. The main focus of this work is the mechanistic in silico reconstruction of the nucleotide sugar donor (NSD metabolic network by means of 34 species mass balances and the saturation kinetics rates of the 60 metabolic reactions involved. NSDs are the co-substrates of the glycosylation process in the Golgi apparatus and their simulated dynamic intracellular concentration profiles were linked to an existing model describing the distribution of N-linked glycan structures of the antibody constant region. The modelling framework also describes the growth dynamics of the cell population by means of modified Monod kinetics. Simulation results match well to experimental data from a murine hybridoma cell line. The result is a modelling platform which is able to describe the product glycoform based on extracellular conditions. It represents a first step towards the in silico prediction of the glycoform of a biotherapeutic and provides a platform for the optimisation of bioprocess conditions with respect to product quality.

  17. NASA's Water Solutions Using Remote Sensing

    Science.gov (United States)

    Toll, David

    2012-01-01

    NASA Water Resources works within Earth sciences to leverage investments of space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities into water resources management decision support tools for the sustainable use of water. Earth science satellite observations and modelling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of the water cycle. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. The NASA Water Resources Program has the objective to provide NASA products to help deal with these issues with the goal for the sustainable use of water. The Water Resources program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use (includes evapotranspiration) and irrigation; 3) drought; 4) water quality; and 5) climate and water resources. NASA primarily works with national and international groups such as other US government agencies (NOAA, EPA, USGS, USAID) and various other groups to maximize the widest use of the water products. A summary of NASA's water activities linked to helping solve issues for developing countries will be highlighted.

  18. Early Formulation Model-centric Engineering on NASA's Europa Mission Concept Study

    Science.gov (United States)

    Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, Ivair; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; Wagner, David

    2012-01-01

    The proposed Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions were formulated using current state-of-the-art MBSE facilities: - JPL's TeamX, Rapid Mission Architecting - ESA's Concurrent Design Facility - APL's ACE Concurrent Engineering Facility. When JEO became an official "pre-project" in Sep 2010, we had already developed a strong partnership with JPL's Integrated Model Centric Engineering (IMCE) initiative; decided to apply Architecting and SysML-based MBSE from the beginning, begun laying these foundations to support work in Phase A. Release of Planetary Science Decadal Survey and FY12 President's Budget in March 2011 changed the landscape. JEO reverted to being a pre-phase A study. A conscious choice was made to continue application of MBSE on the Europa Study, refocused for early formulation. This presentation describes the approach, results, and lessons.

  19. Application of Sweeping Jet Actuators on the NASA Hump Model and Comparison with CFDVAL2004 Experiments

    Science.gov (United States)

    Koklu, Mehti

    2017-01-01

    Flow separation control over a wall-mounted hump model was studied experimentally to assess the performance of sweeping jet actuators. Results were compared to that of the 2004 CFD validation experiment (CFDVAL2004), which examined flow separation control with steady suction and unsteady zero-net-mass-flow actuators. Comparisons were carried out at low and high amplitude excitations. In addition to the active flow control methods, a passive flow control method (i.e., vortex generator) was used to complement the dataset. Steady/unsteady surface pressure measurements and surface oilflow visualization were used in the performance assessment of the actuators. The results indicated that the sweeping jet actuators are more effective than the steady suction and unsteady zero-net-mass-flow actuators. For the same momentum coefficient, the sweeping jet actuators produced more flow acceleration upstream of separation, more pressure recovery downstream, and consistently a smaller separation bubble.

  20. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    Science.gov (United States)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Benard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20% semispan), Midspan (64% semispan) and Outboard stations (83% semispan) of a wing based upon a 65% scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 deg C to -1.4 deg C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 deg C to -6.3 deg C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that

  1. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  2. Coupled dynamics of node and link states in complex networks: A model for language competition

    CERN Document Server

    Carro, Adrián; Miguel, Maxi San

    2016-01-01

    Inspired by language competition processes, we present a model of coupled evolution of node and link states. In particular, we focus on the interplay between the use of a language and the preference or attitude of the speakers towards it, which we model, respectively, as a property of the interactions between speakers (a link state) and as a property of the speakers themselves (a node state). Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially inspired network topologies based on a mechanism of triadic closure. As opposed to most of the previous literature, where language extinction is an inevitable outcome of the dynamics, we find a broad range of possible asymptotic configurations, which we classify as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states. Moreover, metastable coexistence states with very long survival times and displaying a non-trivial dynamics are found to be abundant. Interestingly, a system si...

  3. Quantum Link Models with Many Rishon Flavors and with Many Colors

    CERN Document Server

    Bär, O; Schlittgen, B; Wiese, U J

    2002-01-01

    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N_c limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.

  4. Quantum link models with many rishon flavors and with many colors

    Science.gov (United States)

    Bär, O.; Brower, R.; Schlittgen, B.; Wiese, U.-J.

    2002-03-01

    Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N tc limit of this model. In the 't Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.

  5. Simulink models for performance analysis of high speed DQPSK modulated optical link

    Science.gov (United States)

    Sharan, Lucky; Rupanshi, Chaubey, V. K.

    2016-03-01

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  6. Simulink models for performance analysis of high speed DQPSK modulated optical link

    Energy Technology Data Exchange (ETDEWEB)

    Sharan, Lucky, E-mail: luckysharan@pilani.bits-pilani.ac.in; Rupanshi,, E-mail: f2011222@pilani.bits-pilani.ac.in; Chaubey, V. K., E-mail: vkc@pilani.bits-pilani.ac.in [EEE Department, BITS-Pilani, Rajasthan, 333031 (India)

    2016-03-09

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  7. Skin friction measurement on the NASA Common Research Model using global luminescent oil film skin friction meter

    Science.gov (United States)

    Rajendran, Lalit Kishore

    Accurate skin friction measurements are indispensable in the design of more efficient aerodynamic vehicles, and is also the controlling variable in closed loop flow control systems. Spatially and temporally resolved skin friction data is required to calibrate turbulence models used in Computational Fluid Dynamics analysis, and can also provide insight into the nature of near-wall turbulence. Luminescent oil film based techniques offer the ability to make distributed wall shear stress measurements with a relatively simple setup. The Global Luminescent Oil Film Skin Friction Meter (GLOSFM) technique involves calculating the shear stress based on observing the thickness of an oil film, which in turn is directly proportional to its luminescent intensity, provided the oil film is sufficiently thin. This technique is briefly reviewed, with some emphasis on uncertainty quantification, and the formation and propagation of ripples/surface waves on the oil film, as well as their impact on the shear stress measurement. Finally, this technique is used to measure the skin friction field on the wing and fuselage of the NASA Common Research Model, a passenger jet configuration. The issue of repeatability and the effects of tripping the flow are investigated, and the effect of flow parameters like the angle of attack and the Reynolds number are studied.

  8. Innovativeness and its link to interoperability: An investigation using a novel Business Narrative Modelling Language (BNML)

    OpenAIRE

    Oliveira, Manuel Au-Yong; Ferreira, João José Pinto

    2011-01-01

    We intend to use multiple case studies to develop a theoretical model concerning the contemporary phenomenon of organizational innovativeness and its link to interoperability. We are interested in particular in interoperability as pertaining to people and organizations able to operate in conjunction (together) to produce innovation. Interoperability can be defined as “the ability of a system or an organization to work seamless[ly] with other systems or organization[s] without any special effo...

  9. Modelling the performance of the tapered artery heat pipe design for use in the radiator of the solar dynamic power system of the NASA Space Station

    Science.gov (United States)

    Evans, Austin Lewis

    1988-01-01

    The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.

  10. Sensitivity of Tropical Cyclones to Parameterized Convection in the NASA GEOS5 Model

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Reale, Oreste; Lee, Myong-In; Molod, Andrea M.; Suarez, Max J.

    2014-01-01

    The sensitivity of tropical cyclones (TCs) to changes in parameterized convection is investigated to improve the simulation of TCs in the North Atlantic. Specifically, the impact of reducing the influence of the Relaxed Arakawa-Schubert (RAS) scheme-based parameterized convection is explored using the Goddard Earth Observing System version5 (GEOS5) model at 0.25 horizontal resolution. The years 2005 and 2006 characterized by very active and inactive hurricane seasons, respectively, are selected for simulation. A reduction in parameterized deep convection results in an increase in TC activity (e.g., TC number and longer life cycle) to more realistic levels compared to the baseline control configuration. The vertical and horizontal structure of the strongest simulated hurricane shows the maximum lower-level (850-950hPa) wind speed greater than 60 ms and the minimum sea level pressure reaching 940mb, corresponding to a category 4 hurricane - a category never achieved by the control configuration. The radius of the maximum wind of 50km, the location of the warm core exceeding 10 C, and the horizontal compactness of the hurricane center are all quite realistic without any negatively affecting the atmospheric mean state. This study reveals that an increase in the threshold of minimum entrainment suppresses parameterized deep convection by entraining more dry air into the typical plume. This leads to cooling and drying at the mid- to upper-troposphere, along with the positive latent heat flux and moistening in the lower-troposphere. The resulting increase in conditional instability provides an environment that is more conducive to TC vortex development and upward moisture flux convergence by dynamically resolved moist convection, thereby increasing TC activity.

  11. New ghost-node method for linking different models with varied grid refinement

    Science.gov (United States)

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  12. NASA Bioreactor Demonstration System

    Science.gov (United States)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  13. Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error.

    Science.gov (United States)

    Majda, Andrew J; Gershgorin, Boris

    2011-08-02

    Understanding and improving the predictive skill of imperfect models for complex systems in their response to external forcing is a crucial issue in diverse applications such as for example climate change science. Equilibrium statistical fidelity of the imperfect model on suitable coarse-grained variables is a necessary but not sufficient condition for this predictive skill, and elementary examples are given here demonstrating this. Here, with equilibrium statistical fidelity of the imperfect model, a direct link is developed between the predictive fidelity of specific test problems in the training phase where the perfect natural system is observed and the predictive skill for the forced response of the imperfect model by combining appropriate concepts from information theory with other concepts based on the fluctuation dissipation theorem. Here a suite of mathematically tractable models with nontrivial eddy diffusivity, variance, and intermittent non-Gaussian statistics mimicking crucial features of atmospheric tracers together with stochastically forced standard eddy diffusivity approximation with model error are utilized to illustrate this link.

  14. Modelling the multidimensional niche by linking functional traits to competitive performance.

    Science.gov (United States)

    Maynard, Daniel S; Leonard, Kenneth E; Drake, John M; Hall, David W; Crowther, Thomas W; Bradford, Mark A

    2015-07-22

    Linking competitive outcomes to environmental conditions is necessary for understanding species' distributions and responses to environmental change. Despite this importance, generalizable approaches for predicting competitive outcomes across abiotic gradients are lacking, driven largely by the highly complex and context-dependent nature of biotic interactions. Here, we present and empirically test a novel niche model that uses functional traits to model the niche space of organisms and predict competitive outcomes of co-occurring populations across multiple resource gradients. The model makes no assumptions about the underlying mode of competition and instead applies to those settings where relative competitive ability across environments correlates with a quantifiable performance metric. To test the model, a series of controlled microcosm experiments were conducted using genetically related strains of a widespread microbe. The model identified trait microevolution and performance differences among strains, with the predicted competitive ability of each organism mapped across a two-dimensional carbon and nitrogen resource space. Areas of coexistence and competitive dominance between strains were identified,and the predicted competitive outcomes were validated in approximately 95% of the pairings. By linking trait variation to competitive ability, our work demonstrates a generalizable approach for predicting and modelling competitive outcomes across changing environmental contexts.

  15. Technological Innovations from NASA

    Science.gov (United States)

    Pellis, Neal R.

    2006-01-01

    The challenge of human space exploration places demands on technology that push concepts and development to the leading edge. In biotechnology and biomedical equipment development, NASA science has been the seed for numerous innovations, many of which are in the commercial arena. The biotechnology effort has led to rational drug design, analytical equipment, and cell culture and tissue engineering strategies. Biomedical research and development has resulted in medical devices that enable diagnosis and treatment advances. NASA Biomedical developments are exemplified in the new laser light scattering analysis for cataracts, the axial flow left ventricular-assist device, non contact electrocardiography, and the guidance system for LASIK surgery. Many more developments are in progress. NASA will continue to advance technologies, incorporating new approaches from basic and applied research, nanotechnology, computational modeling, and database analyses.

  16. Influence of gender constancy and social power on sex-linked modeling.

    Science.gov (United States)

    Bussey, K; Bandura, A

    1984-12-01

    Competing predictions derived from cognitive-developmental theory and social learning theory concerning sex-linked modeling were tested. In cognitive-developmental theory, gender constancy is considered a necessary prerequisite for the emulation of same-sex models, whereas according to social learning theory, sex-role development is promoted through a vast system of social influences with modeling serving as a major conveyor of sex role information. In accord with social learning theory, even children at a lower level of gender conception emulated same-sex models in preference to opposite-sex ones. Level of gender constancy was associated with higher emulation of both male and female models rather than operating as a selective determinant of modeling. This finding corroborates modeling as a basic mechanism in the sex-typing process. In a second experiment we explored the limits of same-sex modeling by pitting social power against the force of collective modeling of different patterns of behavior by male and female models. Social power over activities and rewarding resources produced cross-sex modeling in boys, but not in girls. This unexpected pattern of cross-sex modeling is explained by the differential sex-typing pressures that exist for boys and girls and socialization experiences that heighten the attractiveness of social power for boys.

  17. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    Science.gov (United States)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  18. Viscoelastic Model of Cross-Linked Polyethylene Including Effects of Temperature and Crystallinity

    Science.gov (United States)

    Olasz, L.; Gudmundson, P.

    2005-12-01

    Characterization of the mechanical behavior of cross-linked polyethylene (XLPE) commonly used in high voltage cable insulation was performed by an extensive set of isothermal uniaxial tensile relaxation tests. Tensile relaxation experiments were complemented by pressure-volume-temperature experiments as well as density and crystallinity measurements. Based on the experimental results, a viscoelastic power law model with four parameters was formulated, incorporating temperature and crystallinity dependence. It was found that a master curve can be developed by both horizontal and vertical shifting of the relaxation curves. The model was evaluated by making comparisons of the predicted stress responses with the measured responses in relaxation tests with transient temperature histories.

  19. Linking individual-tree and whole-stand models for forest growth and yield prediction

    Directory of Open Access Journals (Sweden)

    Quang V Cao

    2014-10-01

    Full Text Available Background Different types of growth and yield models provide essential information for making informed decisions on how to manage forests. Whole-stand models often provide well-behaved outputs at the stand level, but lack information on stand structures. Detailed information from individual-tree models and size-class models typically suffers from accumulation of errors. The disaggregation method, in assuming that predictions from a whole-stand model are reliable, partitions these outputs to individual trees. On the other hand, the combination method seeks to improve stand-level predictions from both whole-stand and individual-tree models by combining them. Methods Data from 100 plots randomly selected from the Southwide Seed Source Study of loblolly pine (Pinus taeda L. were used to evaluate the unadjusted individual-tree model against the disaggregation and combination methods. Results Compared to the whole-stand model, the combination method did not show improvements in predicting stand attributes in this study. The combination method also did not perform as well as the disaggregation method in tree-level predictions. The disaggregation method provided the best predictions of tree- and stand-level survival and growth. Conclusions The disaggregation approach provides a link between individual-tree models and whole-stand models, and should be considered as a better alternative to the unadjusted tree model.

  20. NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew J.; Limon Duparcmeur, Fanny M.

    2016-01-01

    NASA's current distribution of fast-time wake vortex decay and transport models includes APA (Version 3.8) and TDP (Version 2.1). This User's Guide provides detailed information on the model inputs, file formats, and model outputs. A brief description of the Memphis 1995, Dallas/Fort Worth 1997, and the Denver 2003 wake vortex datasets is given along with the evaluation of models. A detailed bibliography is provided which includes publications on model development, wake field experiment descriptions, and applications of the fast-time wake vortex models.

  1. Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its...

  2. Parametric links among Monte Carlo, phase-field, and sharp-interface models of interfacial motion.

    Science.gov (United States)

    Liu, Pu; Lusk, Mark T

    2002-12-01

    Parametric links are made among three mesoscale simulation paradigms: phase-field, sharp-interface, and Monte Carlo. A two-dimensional, square lattice, 1/2 Ising model is considered for the Monte Carlo method, where an exact solution for the interfacial free energy is known. The Monte Carlo mobility is calibrated as a function of temperature using Glauber kinetics. A standard asymptotic analysis relates the phase-field and sharp-interface parameters, and this allows the phase-field and Monte Carlo parameters to be linked. The result is derived without bulk effects but is then applied to a set of simulations with the bulk driving force included. An error analysis identifies the domain over which the parametric relationships are accurate.

  3. Modeling the pairwise key distribution scheme in the presence of unreliable links

    CERN Document Server

    Yagan, Osman

    2011-01-01

    We investigate the secure connectivity of wireless sensor networks under the pairwise key distribution scheme of Chan et al.. Unlike recent work which was carried out under the assumption of full visibility, here we assume a (simplified) communication model where unreliable wireless links are represented as on/off channels. We present conditions on how to scale the model parameters so that the network i) has no secure node which is isolated and ii) is securely connected, both with high probability when the number of sensor nodes becomes large. The results are given in the form of zero-one laws, and exhibit significant differences with corresponding results in the full visibility case. Through simulations these zero-one laws are shown to be valid also under a more realistic communication model, i.e., the disk model.

  4. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  5. Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany

    Directory of Open Access Journals (Sweden)

    Martin Robinius

    2017-07-01

    Full Text Available “Linking the power and transport sectors—Part 1” describes the general principle of “sector coupling” (SC, develops a working definition intended of the concept to be of utility to the international scientific community, contains a literature review that provides an overview of relevant scientific papers on this topic and conducts a rudimentary analysis of the linking of the power and transport sectors on a worldwide, EU and German level. The aim of this follow-on paper is to outline an approach to the modelling of SC. Therefore, a study of Germany as a case study was conducted. This study assumes a high share of renewable energy sources (RES contributing to the grid and significant proportion of fuel cell vehicles (FCVs in the year 2050, along with a dedicated hydrogen pipeline grid to meet hydrogen demand. To construct a model of this nature, the model environment “METIS” (models for energy transformation and integration systems we developed will be described in more detail in this paper. Within this framework, a detailed model of the power and transport sector in Germany will be presented in this paper and the rationale behind its assumptions described. Furthermore, an intensive result analysis for the power surplus, utilization of electrolysis, hydrogen pipeline and economic considerations has been conducted to show the potential outcomes of modelling SC. It is hoped that this will serve as a basis for researchers to apply this framework in future to models and analysis with an international focus.

  6. Introduction to the Special Section: Linking the MMPI-2-RF to Contemporary Models of Psychopathology.

    Science.gov (United States)

    Sellbom, Martin; Arbisi, Paul A

    2017-01-01

    This special section considers 9 independent articles that seek to link the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/ 2011 ) to contemporary models of psychopathology. Sellbom ( this issue ) maps the Specific Problems scales onto hierarchical psychopathology structures, whereas Romero, Toorabally, Burchett, Tarescavage, and Glassmire ( this issue ) and Shkalim, Almagor, and Ben-Porath ( this issue ) show evidence of linking the instruments' scales to diagnostic representations of common higher order psychopathology constructs. McCord, Achee, Cannon, Harrop, and Poynter ( this issue ) link the MMPI-2-RF scales to psychophysiological constructs inspired by the National Institute of Mental Health (NIMH) Research Domain Criteria. Sellbom and Smith ( this issue ) find support for MMPI-2-RF scale hypotheses in covering personality psychopathology in general, whereas Klein Haneveld, Kamphuis, Smid, and Forbey ( this issue ) and Kutchen et al. ( this issue ) demonstrate the utility of the MMPI-2-RF in capturing contemporary conceptualizations of the psychopathic personality. Finally, Franz, Harrop, and McCord ( this issue ) and Rogers et al. ( this issue ) mapped the MMPI-2-RF scales onto more specific transdiagnostic constructs reflecting interpersonal functioning and suicide behavior proneness, respectively.

  7. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives.

    Science.gov (United States)

    Saeed, Aamer; Zaib, Sumera; Ashraf, Saba; Iftikhar, Javeria; Muddassar, Muhammad; Zhang, Kam Y J; Iqbal, Jamshed

    2015-12-01

    Alzheimer's disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04±0.01μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06±0.02μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.

  8. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    Science.gov (United States)

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An atomistic model for cross-linked HNBR elastomers used in seals

    Science.gov (United States)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash

    2015-03-01

    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  10. Neoproterozoic paleogeography of the Tarim Block: An extended or alternative "missing-link" model for Rodinia?

    Science.gov (United States)

    Wen, Bin; Evans, David A. D.; Li, Yong-Xiang

    2017-01-01

    Recent reconstructions of the Rodinia supercontinent and its breakup incorporate South China as a ;missing link; between Australia and Laurentia, and place the Tarim craton adjacent to northwestern Australia on the supercontinent's periphery. However, subsequent kinematic evolution toward Gondwana amalgamation requires complex geometric shuffling between South China and Tarim, which cannot be easily resolved with the stratigraphic records of those blocks. Here we present new paleomagnetic data from early Ediacaran strata of northwest Tarim, and document large-scale rotation at near-constant paleolatitudes during Cryogenian time. The rotation is coeval with Rodinia breakup, and Tarim's paleolatitudes are compatible with its placement between Australia and Laurentia, either by itself as an alternative ;missing link; or joined with South China in that role. At the same time, indications of subduction-related magmatism in Tarim's Neoproterozoic record suggest that Rodinia breakup was dynamically linked to subduction retreat along its northern margin. Such a model is akin to early stages of Jurassic fragmentation within southern Gondwana, and implies more complicated subduction-related dynamics of supercontinent breakup than superplume impingement alone.

  11. America in Space, the First Decade - Space Physics and Astronomy, Man in Space, Exploring the Moon and Planets, Putting Satellites to Work, NASA Spacecraft, Spacecraft Tracking, Linking Man and Spacecraft.

    Science.gov (United States)

    Corliss, William R.; Anderton, David A.

    Included are seven booklets, part of a series published on the occasion of the tenth anniversary of the National Aeronautics and Space Administration (NASA). The publications are intended as overviews of some important activities, programs, and events of NASA. They are written for the layman and cover several science disciplines. Each booklet…

  12. Error Probability Analysis of Free-Space Optical Links with Different Channel Model under Turbulent Condition

    CERN Document Server

    Barua, Bobby; Islam, Md Rezwan

    2012-01-01

    Free space optics (FSO) is a promising solution for the need to very high data rate point-to point communication. FSO communication technology became popular due to its large bandwidth potential, unlicensed spectrum, excellent security and quick and inexpensive setup. Unfortunately, atmospheric turbulence-induced fading is one of the main impairments affecting FSO communications. To design a high performance communication link for the atmospheric FSO channel, it is of great importance to characterize the channel with proper model. In this paper, the modulation format is Q-ary PPM across lasers, with intensity modulation and ideal photodetectors are assumed to investigate the most efficient PDF models for FSO communication under turbulent condition. The performance results are evaluated in terms of symbol error probability (SEP) for different type of channel model and the simulation results confirm the analytical findings.

  13. Numerical Modeling of Force-Stiffness Response of Cross-Linked Actin Networks Using Tensegrity Systems

    Directory of Open Access Journals (Sweden)

    Xian Xu

    2015-01-01

    Full Text Available A three-dimensional tensegrity structure is used as a computational model for cross-linked actin networks. The postbuckling behavior of the members under compression is considered and the constitutive relation of the postbuckling members is modeled as a second-order polynomial. A numerical scheme incorporating the equivalent constitution of the postbuckling members is used to predict the structural response of the tensegrity model under compression loads. The numerical simulation shows that the stiffness of the tensegrity structure nonlinearly increases before member buckling and abruptly decreases to a lower level as soon as members buckle. This result qualitatively mimics the experimentally observed stiffness to compression stress response of cross-linked actin networks. In order to take member length variety into account, a large number of simulations with the length of buckling members varying in the given range are also carried out. It is found that the mean response of the simulations using different buckling member length exhibits more resemblance to the experimental observation.

  14. Probabilistic Model for Free-Space Optical Links Under Continental Fog Conditions

    Directory of Open Access Journals (Sweden)

    Marzuki

    2010-09-01

    Full Text Available The error characteristics of a free-space optical (FSO channel are significantly different from the fiber based optical links and thus require a deep physical understanding of the propagation channel. In particular different fog conditions greatly influence the optical transmissions and thus a channel model is required to estimate the detrimental fog effects. In this paper we shall present the probabilistic model for radiation fog from the measured data over a 80 m FSO link installed at Graz, Austria. The fog events are classified into thick fog, moderate fog, light fog and general fog based on the international code of visibility range. We applied some probability distribution functions (PDFs such as Kumaraswamy, Johnson SB and Logistic distribution, to the actual measured optical attenuations. The performance of each distribution is evaluated by Q-Q and P-P plots. It is found that Kumaraswamy distribution is the best fit for general fog, while Logistic distribution is the optimum choice for thick fog. On the other hand, Johnson SB distribution best fits the moderate and light fog related measured attenuation data. The difference in these probabilistic models and the resultant variation in the received signal strength under different fog types needs to be considered in designing an efficient FSO system.

  15. Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its stru....... Further fundamental extensions and advances to more sophisticated theory models, such as those related to dynamics and expectations (in the structural relations) are left for future papers......This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its......, it is demonstrated how other controversial hypotheses such as Rational Expectations can be formulated directly as restrictions on the CVAR-parameters. A simple example of a "Neoclassical synthetic" AS-AD model is also formulated. Finally, the partial- general equilibrium distinction is related to the CVAR as well...

  16. Linking discrete particle simulation to continuum process modelling for granular matter: Theory and application

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhu; Z.Y. Zhou; Q.F. Hou; A.B. YU

    2011-01-01

    Two approaches are widely used to describe particle systems:the continuum approach at macroscopic scale and the discrete approach at particle scale,Each has its own advantages and disadvantages in the modelling of particle systems.It is of paramount significance to develop a theory to overcome the disadvantages of the two approaches.Averaging method to link the discrete to continuum approach is a potential technique to develop such a theory.This paper introduces an averaging method,including the theory and its application to the particle flow in a hopper and the particle-fluid flow in an ironmaking blast furnace.

  17. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  18. Study of the linked dipole chain model in heavy quark production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, Artem V. [Physical Department, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)]. E-mail: lipatov@theory.sinp.msu.ru; Leif Loennblad [Dept. of Theoretical Physics, Lund (Sweden)]. E-mail: Leif.Lonnblad@thep.lu.se; Zotov, Nikolai P. [D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)]. E-mail: zotov@theory.sinp.msu.ru

    2004-01-01

    We present calculations of charm and beauty production at Tevatron within the framework of k{sub T} -factorization, using the unintegrated gluon distributions as obtained from the Linked Dipole Chain model. The analysis covers transverse momentum and rapidity distributions and the azimuthal correlations between b and b-bar quarks (or rather muons from their decay) which are powerful tests for the different unintegrated gluon distributions. We compare the theoretical results with recent experimental data taken by D{phi} and CDF collaborations at the Tevatron Run I and II. (author)

  19. Supporting Consistency in Linked Specialized Engineering Models Through Bindings and Updating

    Institute of Scientific and Technical Information of China (English)

    Albertus H. Olivier; Gert C. van Rooyen; Berthold Firmenich; Karl E. Beucke

    2008-01-01

    Currently, some commercial software applications support users to work in an integrated environ-ment. However, this is limited to the suite of models provided by the software vendor and consequently it forces all the parties to use the same software. In contrast, the research described in this paper investigates ways of using standard software applications, which may be specialized for different professional domains.These are linked for effective transfer of information and a binding mechanism is provided to support consis-tency. The proposed solution was implemented using a CAD application and an independent finite element application in order to verify the theoretical aspects of this work.

  20. Performance evaluation of generalized M-modeled atmospheric optical communications links

    DEFF Research Database (Denmark)

    Lopez-Gonzalez, Francisco J.; Garrido-Balsellss, José María; Jurado-Navas, Antonio;

    2016-01-01

    , the behavior of the atmospheric optical channel is treated as a superposition of a finite number of Generalized-K distributed sub-channels, controlled by a discrete Negative-Binomial distribution dependent on the turbulence parameters. Unlike other studies, here, the closed-form mathematical expressions......In this paper, the performance analysis of atmospheric optical communications links is analyzed in terms of the average bit error rate. To this end, the optical irradiance scintillation due to the turbulence effects is modeled by a generalization of the M´alaga or M distribution. In particular...

  1. Histological response to injected gluteraldehyde cross-linked bovine collagen based implant in a rat model

    Directory of Open Access Journals (Sweden)

    Cağlar Melda

    2006-02-01

    Full Text Available Abstract Background The aim of present study is to investigate the short and long term histopathological alterations caused by submucosal injection of gluteraldehyde cross-linked bovine collagen based on an experimental rat model. Methods Sixty Sprague-Dawley rats were assigned into two groups as group I and II each containing 30 rats. 0.1 ml of saline solution and 0.1 ml of gluteraldehyde cross-linked bovine collagen were injected into the submucosa of bladder of first (control and second groups, respectively. Both group I and II were further subdivided into 3 other groups as Group IA, IB, IC and Group IIA, IIB, IIC according to the sacrification period. Group IA and IIA, IB and IIB, IC and IIC rats (10 rats for each group were sacrificed 3, 6, and 12 months after surgical procedure, respectively. Two slides prepared from injection site of the bladder were evaluated completely for each rat by being unaware of the groups and at random by two independent senior pathologists to determine the fibroblast invasion, collagen formation, capillary ingrowth and inflammatory reaction. Additionally, randomized brain sections from each rat were also examined to detect migration of the injection material. The measurements were made using an ocular micrometer at ×10 magnification. The results were assessed using t-tests for paired and independent samples, with p Results Migration to the brain was not detected in any group. Significant histopathological changes in the gluteraldehyde cross-linked bovine collagen injected groups were fibroblast invasion in 93.3%, collagen formation in 73.3%, capillary ingrowth in 46.6%, inflamatory reaction in 20%. Conclusion We emphasize that the usage of gluteraldehyde cross-linked bovine collagen in children appears to be safe for endoscopic treatment of vesicoureteral reflux.

  2. A model for the epigenetic switch linking inflammation to cell transformation: deterministic and stochastic approaches.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2014-01-01

    Full Text Available Recently, a molecular pathway linking inflammation to cell transformation has been discovered. This molecular pathway rests on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6, which leads to an epigenetic switch allowing cell transformation. A transient activation of an inflammatory signal, mediated by the oncoprotein Src, activates NF-κB, which elicits the expression of Lin28. Lin28 decreases the expression of Let-7 microRNA, which results in higher level of IL6 than achieved directly by NF-κB. In turn, IL6 can promote NF-κB activation. Finally, IL6 also elicits the synthesis of STAT3, which is a crucial activator for cell transformation. Here, we propose a computational model to account for the dynamical behavior of this positive inflammatory feedback loop. By means of a deterministic model, we show that an irreversible bistable switch between a transformed and a non-transformed state of the cell is at the core of the dynamical behavior of the positive feedback loop linking inflammation to cell transformation. The model indicates that inhibitors (tumor suppressors or activators (oncogenes of this positive feedback loop regulate the occurrence of the epigenetic switch by modulating the threshold of inflammatory signal (Src needed to promote cell transformation. Both stochastic simulations and deterministic simulations of a heterogeneous cell population suggest that random fluctuations (due to molecular noise or cell-to-cell variability are able to trigger cell transformation. Moreover, the model predicts that oncogenes/tumor suppressors respectively decrease/increase the robustness of the non-transformed state of the cell towards random fluctuations. Finally, the model accounts for the potential effect of competing endogenous RNAs, ceRNAs, on the dynamics of the epigenetic switch. Depending on their microRNA targets, the model predicts that ceRNAs could act as oncogenes or tumor suppressors by regulating

  3. Linking nutrient loading and oxygen in the coastal ocean: A new global scale model

    Science.gov (United States)

    Reed, Daniel C.; Harrison, John A.

    2016-03-01

    Recent decades have witnessed an exponential spread of low-oxygen regions in the coastal ocean due at least in-part to enhanced terrestrial nutrient inputs. As oxygen deprivation is a major stressor on marine ecosystems, there is a great need to quantitatively link shifts in nutrient loading with changes in oxygen concentrations. To this end, we have developed and here describe, evaluate, and apply the Coastal Ocean Oxygen Linked to Benthic Exchange And Nutrient Supply (COOLBEANS) model, a first-of-its-kind, spatially explicit (with 152 coastal segments) model, global model of coastal oxygen and nutrient dynamics. In COOLBEANS, benthic oxygen demand (BOD) is calculated using empirical models for aerobic respiration, iron reduction, and sulfate reduction, while oxygen supply is represented by a simple parameterization of exchange between surface and bottom waters. A nutrient cycling component translates shifts in riverine nutrient inputs into changes in organic matter delivery to sediments and, ultimately, oxygen uptake. Modeled BOD reproduces observations reasonably well (Nash-Sutcliffe efficiency = 0.71), and estimates of exchange between surface and bottom waters correlate with stratification. The model examines sensitivity of bottom water oxygen to changes in nutrient inputs and vertical exchange between surface and bottom waters, highlighting the importance of this vertical exchange in defining the susceptibility of a system to oxygen depletion. These sensitivities along with estimated maximum hypoxic areas that are supported by present day nutrient loads are consistent with existing hypoxic regions. Sensitivities are put into context by applying historic changes in nitrogen loading observed in the Gulf of Mexico to the global coastal ocean, demonstrating that such loads would drive many systems anoxic or even sulfidic.

  4. Linking market interaction intensity of 3D Ising type financial model with market volatility

    Science.gov (United States)

    Fang, Wen; Ke, Jinchuan; Wang, Jun; Feng, Ling

    2016-11-01

    Microscopic interaction models in physics have been used to investigate the complex phenomena of economic systems. The simple interactions involved can lead to complex behaviors and help the understanding of mechanisms in the financial market at a systemic level. This article aims to develop a financial time series model through 3D (three-dimensional) Ising dynamic system which is widely used as an interacting spins model to explain the ferromagnetism in physics. Through Monte Carlo simulations of the financial model and numerical analysis for both the simulation return time series and historical return data of Hushen 300 (HS300) index in Chinese stock market, we show that despite its simplicity, this model displays stylized facts similar to that seen in real financial market. We demonstrate a possible underlying link between volatility fluctuations of real stock market and the change in interaction strengths of market participants in the financial model. In particular, our stochastic interaction strength in our model demonstrates that the real market may be consistently operating near the critical point of the system.

  5. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. Compilation and Analysis of 20 and 30 GHz Rain Fade Events at the ACTS NASA Ground Station: Statistics and Model Assessment

    Science.gov (United States)

    Manning, Robert M.

    1996-01-01

    The purpose of the propagation studies within the ACTS Project Office is to acquire 20 and 30 GHz rain fade statistics using the ACTS beacon links received at the NGS (NASA Ground Station) in Cleveland. Other than the raw, statistically unprocessed rain fade events that occur in real time, relevant rain fade statistics derived from such events are the cumulative rain fade statistics as well as fade duration statistics (beyond given fade thresholds) over monthly and yearly time intervals. Concurrent with the data logging exercise, monthly maximum rainfall levels recorded at the US Weather Service at Hopkins Airport are appended to the database to facilitate comparison of observed fade statistics with those predicted by the ACTS Rain Attenuation Model. Also, the raw fade data will be in a format, complete with documentation, for use by other investigators who require realistic fade event evolution in time for simulation purposes or further analysis for comparisons with other rain fade prediction models, etc. The raw time series data from the 20 and 30 GHz beacon signals is purged of non relevant data intervals where no rain fading has occurred. All other data intervals which contain rain fade events are archived with the accompanying time stamps. The definition of just what constitutes a rain fade event will be discussed later. The archived data serves two purposes. First, all rain fade event data is recombined into a contiguous data series every month and every year; this will represent an uninterrupted record of the actual (i.e., not statistically processed) temporal evolution of rain fade at 20 and 30 GHz at the location of the NGS. The second purpose of the data in such a format is to enable a statistical analysis of prevailing propagation parameters such as cumulative distributions of attenuation on a monthly and yearly basis as well as fade duration probabilities below given fade thresholds, also on a monthly and yearly basis. In addition, various subsidiary

  8. Individual-based modeling of fish: Linking to physical models and water quality.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A.

    1997-08-01

    The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

  9. Individual-based modeling of fish: Linking to physical models and water quality.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A.

    1997-08-01

    The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

  10. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  11. A Linked Hydro-Economic Model to Examine the Effects of Water Policy on Rural Poverty

    Science.gov (United States)

    Maneta, M. P.; Torres, M.; Vosti, S. A.; Wallender, W. W.; Howitt, R.; Rodrigues, L. N.; Bassoi, L. H.; Pfeiffer, L.; Young, J.

    2006-12-01

    The sustainable intensification of small-scale agriculture is a necessary condition for reducing rural poverty in developing countries. Increasing the amount of irrigated cropland and the economic efficiency of irrigation are two key components of most intensification strategies. Improved access to water generally increases farm income but richer farmers use a disproportionate share of the available water, decreasing the chances of poor farmers to meet their water needs. Furthermore, water and poverty have strong spatial components that have so far been neglected in water planning. In that sense, too little is known about the short and long term hydrological effects, especially the externality effects of changes in on-farm water use and its implications to nearby farmers. To address this gap in knowledge, a spatially distributed and transient description of changes in surface and groundwater allocation under different agricultural management scenarios is needed. We propose a hydro-economic model providing a realistic spatio-temporal description of the linkages between the economic and hydrologic subsystems. This hydro-economic model is composed of a basin-level 3D spatially distributed transient hydrologic model (MOD-HMS) and a farm-level, spatially distributed agricultural production model. Both models are explicitly linked through the boundary conditions of the hydrologic model. The linkage will account for the spatial and temporal impact of different crop mixes, irrigation techniques and groundwater pumpage on water availability at farm level to assess the effects of policy action on the hydro-economic components of the system.

  12. Dynamically linking economic models to ecological condition for coastal zone management: Application to sustainable tourism planning.

    Science.gov (United States)

    Dvarskas, Anthony

    2017-03-01

    While the development of the tourism industry can bring economic benefits to an area, it is important to consider the long-run impact of the industry on a given location. Particularly when the tourism industry relies upon a certain ecological state, those weighing different development options need to consider the long-run impacts of increased tourist numbers upon measures of ecological condition. This paper presents one approach for linking a model of recreational visitor behavior with an ecological model that estimates the impact of the increased visitors upon the environment. Two simulations were run for the model using initial parameters available from survey data and water quality data for beach locations in Croatia. Results suggest that the resilience of a given tourist location to the changes brought by increasing tourism numbers is important in determining its long-run sustainability. Further work should investigate additional model components, including the tourism industry, refinement of the relationships assumed by the model, and application of the proposed model in additional areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. From top Above to Down Under: Linking the Real World With UnderWorld Models

    Science.gov (United States)

    Mueller, D. R.; Heine, C.; May, D.; Moresi, L.

    2005-12-01

    Intraplate sedimentary basins often show a subsidence behaviour which can not be explained by the classical rift models. It appears that the basement heterogeneity is one of the major factors controlling the formation and long-term evolution of those basins. In our project we have tried to integrate the results of an observational study on global intraplate sedimentary basins with particle-in-cell finite element models. By using the UnderWorld(ex SNARK) and Ellipsis2d codes, we are building a numerical model library for different crustal extension scenarios involving a varying heterogeneous basement architecture and attempting to connect the ``pure'' numerical models with real world data as tightly as possible. The direct linking of numerical models with large scale observations offers a new powerful way to investigate the complex lithosphere dynamics and geological processes that account for the evolution of intraplate basins, and the influence of the basement architecture on basin evolution. Here we present the infrastructure and workflow of this new approach together with a first set of modelling results.

  14. Dynamic hysteresis modelling of entangled cross-linked fibres in shear

    Science.gov (United States)

    Piollet, Elsa; Poquillon, Dominique; Michon, Guilhem

    2016-11-01

    The objective of this paper is to characterize and model the vibration behaviour of entangled carbon fibres cross-linked with epoxy resin. The material is tested in shear, in a double lap configuration. Experimental testing is carried out for frequencies varying from 1 Hz to 80 Hz and for shear strain amplitudes ranging from 5 ·10-4 to 1 ·10-2. Measured shear stress-strain hysteresis loops show a nonlinear behaviour with a low frequency dependency. The hysteresis loops are decomposed in a linear part and three nonlinear parts: a dry friction hysteresis, a stiffening term and a stiction-like overshoot term. The Generalized Dahl Model is used in conjunction with other hysteresis models to develop an appropriate description of the measured hysteresis loops, based on the three nonlinear parts. In particular, a new one-state formulation of the Bliman-Sorine model is developed. A new identification procedure is also introduced for the Dahl model, based on the so-called backbone curve. The model is shown to capture well the complex shapes of the measured hysteresis loops at all amplitudes.

  15. Mixture subclass discriminant analysis link to restricted Gaussian model and other generalizations.

    Science.gov (United States)

    Gkalelis, Nikolaos; Mezaris, Vasileios; Kompatsiaris, Ioannis; Stathaki, Tania

    2013-01-01

    In this paper, a theoretical link between mixture subclass discriminant analysis (MSDA) and a restricted Gaussian model is first presented. Then, two further discriminant analysis (DA) methods, i.e., fractional step MSDA (FSMSDA) and kernel MSDA (KMSDA) are proposed. Linking MSDA to an appropriate Gaussian model allows the derivation of a new DA method under the expectation maximization (EM) framework (EM-MSDA), which simultaneously derives the discriminant subspace and the maximum likelihood estimates. The two other proposed methods generalize MSDA in order to solve problems inherited from conventional DA. FSMSDA solves the subclass separation problem, that is, the situation in which the dimensionality of the discriminant subspace is strictly smaller than the rank of the inter-between-subclass scatter matrix. This is done by an appropriate weighting scheme and the utilization of an iterative algorithm for preserving useful discriminant directions. On the other hand, KMSDA uses the kernel trick to separate data with nonlinearly separable subclass structure. Extensive experimentation shows that the proposed methods outperform conventional MSDA and other linear discriminant analysis variants.

  16. Linking Earth Observations and Models to Societal Information Needs: The Case of Coastal Flooding

    Science.gov (United States)

    Buzzanga, B. A.; Plag, H. P.

    2016-12-01

    Coastal flooding is expected to increase in many areas due to sea level rise (SLR). Many societal applications such as emergency planning and designing public services depend on information on how the flooding spectrum may change as a result of SLR. To identify the societal information needs a conceptual model is needed that identifies the key stakeholders, applications, and information and observation needs. In the context of the development of the Global Earth Observation System of Systems (GEOSS), which is implemented by the Group on Earth Observations (GEO), the Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB) is developed as part of the GEOSS Knowledge Base. A core function of the SEE-IN KB is to facilitate the linkage of societal information needs to observations, models, information and knowledge. To achieve this, the SEE-IN KB collects information on objects such as user types, observational requirements, societal goals, models, and datasets. Comprehensive information concerning the interconnections between instances of these objects is used to capture the connectivity and to establish a conceptual model as a network of networks. The captured connectivity can be used in searches to allow users to discover products and services for their information needs, and providers to search for users and applications benefiting from their products. It also allows to answer "What if?" questions and supports knowledge creation. We have used the SEE-IN KB to develop a conceptual model capturing the stakeholders in coastal flooding and their information needs, and to link these elements to objects. We show how the knowledge base enables the transition of scientific data to useable information by connecting individuals such as city managers to flood maps. Within the knowledge base, these same users can request information that improves their ability to make specific planning decisions. These needs are linked to entities within research

  17. Unintentional role models : links between maternal eating psychopathology and the modelling of eating behaviours\\ud

    OpenAIRE

    2013-01-01

    This study explored the relationships between maternal modelling of eating behaviours with reported symptoms of maternal eating psychopathology, anxiety and depression. Mothers (N = 264) with a child aged 1.5 to 8 years completed three self-report measures designed to assess modelling of eating behaviours, eating psychopathology and levels of anxiety and depression. The study found that higher levels of maternal eating psychopathology were positively associated with eating behaviours that wer...

  18. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    Science.gov (United States)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  19. On the Model Checking of the SpaceWire Link Interface

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-02-01

    Full Text Available In this paper we display a practical approach adopted for the formal verification of SpaceWire using model checking to solve state explosion. SpaceWire is a high-speed, full-duplex serial bus standard which is applied in aerospace, so its functions have a very high accuracy requirements. In order to prove the design of the SpaceWire was faithfully implements the SpaceWire protocol’s specification , we present our experience on the model checking of SpaceWire link interface using the Cadence SMV tool. We applied environment state machine to overcome state explosion and successfully  verified  a number of relevant properties about transmitter and controller of the SpaceWire in reasonable CPU time.  

  20. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  1. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  2. Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements

    Directory of Open Access Journals (Sweden)

    Agüero Ramón

    2010-01-01

    Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.

  3. Disease dynamics in a coupled cholera model linking within-host and between-host interactions.

    Science.gov (United States)

    Wang, Xueying; Wang, Jin

    2016-09-19

    A new modelling framework is proposed to study the within-host and between-host dynamics of cholera, a severe intestinal infection caused by the bacterium Vibrio cholerae. The within-host dynamics are characterized by the growth of highly infectious vibrios inside the human body. These vibrios shed from humans contribute to the environmental bacterial growth and the transmission of the disease among humans, providing a link from the within-host dynamics at the individual level to the between-host dynamics at the population and environmental level. A fast-slow analysis is conducted based on the two different time scales in our model. In particular, a bifurcation study is performed, and sufficient and necessary conditions are derived that lead to a backward bifurcation in cholera epidemics. Our result regarding the backward bifurcation highlights the challenges in the prevention and control of cholera.

  4. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  5. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.

    Science.gov (United States)

    Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K

    2017-09-01

    Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can

  6. Development of conceptual ecological models linking management of the Missouri River to pallid sturgeon population dynamics

    Science.gov (United States)

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2015-01-01

    This report documents the process of developing and refining conceptual ecological models (CEMs) for linking river management to pallid sturgeon (Scaphirhynchus albus) population dynamics in the Missouri River. The refined CEMs are being used in the Missouri River Pallid Sturgeon Effects Analysis to organize, document, and formalize an understanding of pallid sturgeon population responses to past and future management alternatives. The general form of the CEMs, represented by a population-level model and component life-stage models, was determined in workshops held in the summer of 2013. Subsequently, the Missouri River Pallid Sturgeon Effects Analysis team designed a general hierarchical structure for the component models, refined the graphical structure, and reconciled variation among the components and between models developed for the upper river (Upper Missouri & Yellowstone Rivers) and the lower river (Missouri River downstream from Gavins Point Dam). Importance scores attributed to the relations between primary biotic characteristics and survival were used to define a candidate set of working dominant hypotheses about pallid sturgeon population dynamics. These CEMs are intended to guide research and adaptive-management actions to benefit pallid sturgeon populations in the Missouri River.

  7. Variable pore connectivity model linking gas diffusivity and air-phase tortuosity to soil matric potential

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per;

    2012-01-01

    of a variable pore connectivity factor, X, as a function of soil matric potential, expressed as pF (=log |−ψ|), for pF values ranging from 1.0 to 3.5. The new model takes the form of X = X* (F/F*)A with F = 1 + pF−1, where X* is the pore network tortuosity at reference F (F*) and A is a model parameter...... that accounts for water blockage. The X–pF relation can be linked to drained pore size to explain the lower probability of the larger but far fewer air-filled pores at lower pF effectively interconnecting and promoting gas diffusion. The model with X* = 2 and A = 0.5 proved promising for generalizing Dp....../Do predictions across soils of wide geographic contrast and yielded results comparable to those from widely used predictive models. The X–pF model additionally proved valuable for differentiating between soils (providing a unique soil structural fingerprint for each soil layer) and also between the inter...

  8. Stabilizing PID controllers for a single-link biomechanical model with position, velocity, and force feedback.

    Science.gov (United States)

    Iqbal, Kamran; Roy, Anindo

    2004-12-01

    In this paper we address the problem of PID stabilization of a single-link inverted pendulum-based biomechanical model with force feedback, two levels of position and velocity feedback, and with delays in all the feedback loops. The novelty of the proposed model lies in its physiological relevance, whereby both small and medium latency sensory feedbacks from muscle spindle (MS), and force feedback from Golgi tendon organ (GTO) are included in the formulation. The biomechanical model also includes active and passive viscoelastic feedback from Hill-type muscle model and a second-order low-pass function for muscle activation. The central nervous system (CNS) regulation of postural movement is represented by a proportional-integral-derivative (PID) controller. Padé approximation of delay terms is employed to arrive at an overall rational transfer function of the biomechanical model. The Hermite-Biehler theorem is then used to derive stability results, leading to the existence of stabilizing PID controllers. An algorithm for selection of stabilizing feedback gains is developed using the linear matrix inequality (LMI) approach.

  9. Application of commercial microwave link (CML) derived precipitation data in a hydrology model

    Science.gov (United States)

    Smiatek, Gerhard; Chwala, Christian; Kunstmann, Harald

    2017-04-01

    In 2016 very local and extremely intensive convective events caused severe flooding in the Alpine space. Despite the large number of monitoring stations most of the rainfall events were not captured accurately by the existing rain gauge network. As the number of traditional precipitation monitoring sites is in general decreasing, novel rain monitoring techniques are gaining attention. One of the new techniques is the rainfall estimation from signal attenuation in commercial microwave link (CML) networks operated by cellular phone companies. In this contribution, we use CML-derived rainfall information to improve the streamflow forecast of the distributed hydrology model WaSiM-ETH in hindcasting and nowcasting modes. Our model domain covers the complex terrain of the Ammer catchment located in the German Alps. The hydrology model is operated with a spatial resolution of 100m and with an hourly time step. We present two alternative methods of rainfall estimation from CMLs and compare the results to data from rain gauges and a weather radar. Finally, we show the impact of the rainfall data sets on the hydrology model initialization and in discharge simulations of the Ammer River for selected episodes in 2015 and 2016. We found that the densification of the observation network by the CML observations leads to a significant improvement of the model performance.

  10. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  11. Using Coupled Simulation Models to Link Pastoral Decision Making and Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Randall B. Boone

    2011-06-01

    Full Text Available Historically, pastoral people were able to more freely use the services their semi-arid and arid ecosystems provide, and they adapted to changes in ways that improved their well-being. More recently, their ability to adapt has been constrained due to changes from within and from outside their communities. To compare possible responses by pastoral communities, we modeled ecosystem services and tied those services to decisions that people make at the household level. We created an agent-based household model called DECUMA, joined that model with the ecosystem model SAVANNA, and applied the linked models to southeastern Kajiado District, Kenya. The structure of the new agent-based model and linkages between the models are described, and then we demonstrate the model results using a scenario that shows changes in Maasai well-being in response to drought. We then explore two additional but related scenarios, quantifying household well-being if access to a grazing reserve is lost and if access is lost but those most affected are compensated. In the second scenario, households in group ranches abutting the grazing reserve that lost access had large declines in livestock populations, less food energy from animal sources, increased livestock sales and grain purchases, and increased need for supplemental foods. Households in more distant areas showed no changes or had increases in livestock populations because their herds had fewer animals with which to compete for forage. When households neighboring the grazing reserve were compensated for the lease of the lands they had used, they prospered. We describe some benefits and limitations of the agent-based approach.

  12. On the Performance Analysis of Free-Space Optical Links under Generalized Turbulence and Misalignment Models

    KAUST Repository

    AlQuwaiee, Hessa

    2016-11-01

    One of the potential solutions to the radio frequency (RF) spectrum scarcity problem is optical wireless communications (OWC), which utilizes the unlicensed optical spectrum. Long-range outdoor OWC are usually referred to in the literature as free-space optical (FSO) communications. Unlike RF systems, FSO is immune to interference and multi-path fading. Also, the deployment of FSO systems is flexible and much faster than optical fibers. These attractive features make FSO applicable for broadband wireless transmission such as optical fiber backup, metropolitan area network, and last mile access. Although FSO communication is a promising technology, it is negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. These two critical issues have prompted intensive research in the last decade. To quantify the effect of these two factors on FSO system performance, we need effective mathematical models. In this work, we propose and study a generalized pointing error model based on the Beckmann distribution. Then, we aim to generalize the FSO channel model to span all turbulence conditions from weak to strong while taking pointing errors into consideration. Since scintillation in FSO is analogous to the fading phenomena in RF, diversity has been proposed too to overcome the effect of irradiance fluctuations. Thus, several combining techniques of not necessarily independent dual-branch free-space optical links were investigated over both weak and strong turbulence channels in the presence of pointing errors. On another front, improving the performance, enhancing the capacity and reducing the delay of the communication link has been the motivation of any newly developed schemes, especially for backhauling. Recently, there has been a growing interest in practical systems to integrate RF and FSO technologies to solve the last mile bottleneck. As such, we also study in this thesis asymmetric an RF-FSO dual-hop relay

  13. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  14. Putting the five-factor model into context: evidence linking big five traits to narrative identity.

    Science.gov (United States)

    Raggatt, Peter

    2006-10-01

    The study examined relationships between the Big Five personality traits and thematic content extracted from self-reports of life history data. One hundred and five "mature age" university students (M=30.1 years) completed the NEO PI-R trait measure, and the Personality Web Protocol. The protocol examines constituents of identity by asking participants to describe 24 key "attachments" from their life histories (significant events, people, places, objects, and possessions). Participants sorted these attachments into clusters and provided a self-descriptive label for each cluster (e.g., "adventurous self"). It was predicted that the thematic content of these cluster labels would be systematically related to Big Five trait scores (e.g., that labels referring to strength or positive emotions would be linked to Extraversion). The hypothesized links were obtained for each of the Big Five trait domains except Conscientiousness. Results are discussed with a view to broadening our understanding of the Five-Factor Model in relation to units of personality other than traits.

  15. Using the jackknife for estimation in log link Bernoulli regression models.

    Science.gov (United States)

    Lipsitz, Stuart R; Fitzmaurice, Garrett M; Arriaga, Alex; Sinha, Debajyoti; Gawande, Atul A

    2015-02-10

    Bernoulli (or binomial) regression using a generalized linear model with a log link function, where the exponentiated regression parameters have interpretation as relative risks, is often more appropriate than logistic regression for prospective studies with common outcomes. In particular, many researchers regard relative risks to be more intuitively interpretable than odds ratios. However, for the log link, when the outcome is very prevalent, the likelihood may not have a unique maximum. To circumvent this problem, a 'COPY method' has been proposed, which is equivalent to creating for each subject an additional observation with the same covariates except the response variable has the outcome values interchanged (1's changed to 0's and 0's changed to 1's). The original response is given weight close to 1, while the new observation is given a positive weight close to 0; this approach always leads to convergence of the maximum likelihood algorithm, except for problems with convergence due to multicollinearity among covariates. Even though this method produces a unique maximum, when the outcome is very prevalent, and/or the sample size is relatively small, the COPY method can yield biased estimates. Here, we propose using the jackknife as a bias-reduction approach for the COPY method. The proposed method is motivated by a study of patients undergoing colorectal cancer surgery.

  16. Global Modeling and Data Assimilation. Volume 11; Documentation of the Tangent Linear and Adjoint Models of the Relaxed Arakawa-Schubert Moisture Parameterization of the NASA GEOS-1 GCM; 5.2

    Science.gov (United States)

    Suarez, Max J. (Editor); Yang, Wei-Yu; Todling, Ricardo; Navon, I. Michael

    1997-01-01

    A detailed description of the development of the tangent linear model (TLM) and its adjoint model of the Relaxed Arakawa-Schubert moisture parameterization package used in the NASA GEOS-1 C-Grid GCM (Version 5.2) is presented. The notational conventions used in the TLM and its adjoint codes are described in detail.

  17. EEE Links. Volume 5

    Science.gov (United States)

    Humphrey, Robert (Editor)

    1999-01-01

    The EEE Links Newsletter is a quarterly publication produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. The newsletter is produced as an electronic format deliverable made available via the referenced www site administered by Code 562, The newsletter publishes brief articles on topics of interest to NASA programs and projects in the area of electronic parts and packaging. The newsletter does not provide information pertaining to patented or proprietary information. The information provided is at the level of that produced by industry and university researchers and is published at national and international conferences.

  18. Lung and Intestine: A Specific Link in an Ulcerative Colitis Rat Model

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-01-01

    Full Text Available Background. To investigate the link and mechanisms between intestine and lung in the ulcerative colitis (UC rat model. Materials and Methods. We used the UC rat model by immunological sensitization combined with local 2, 4, 6-trinitrobenzene sulfonic acid (TNBS in 50% ethanol enema, observed dynamically animal general state and body weight, examined the histological and functional changes in the colon, lung, liver, and kidney tissues, and detected microvascular endothelium response towards inflammation characterized with the expression of iNOS, TXB2, P-selectin, ICAM-1, and vascular endothelial growth factor A (VEGF-A in the colon and lung tissue. Results. Pulmonary function results suggested ventilator disorder, and pathological findings showed interstitial pneumonia. There were no significant changes in the liver and kidney function and histopathology. The colon and lung tissue iNOS, TXB2, P-selectin, ICAM-1, and VEGF-A expression of the model rats was significantly higher than the normal rats at both time points. Conclusions. Our study is the first to demonstrate the close association between the large intestine and lung in the immune-TNBS-ethanol-induced UC rat model. Different organs and tissues with the same embryonic origin may share the same pathological specificities in a disease. The present study provided a new way of thinking for pathological changes in clinical complex diseases manifested with multiorgan damage.

  19. A Linked Simulation-Optimization (LSO) Model for Conjunctive Irrigation Management using Clonal Selection Algorithm

    Science.gov (United States)

    Islam, Sirajul; Talukdar, Bipul

    2016-09-01

    A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.

  20. MARKAL-MACRO: A linked model for energy-economy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Manne, A.S. [Stanford Univ., CA (United States); Wene, C.O. [Brookhaven National Lab., Upton, NY (United States)]|[Chalmers Univ. of Tech., Goeteborg (Sweden)

    1992-02-01

    MARKAL-MACRO is an experiment in model linkage for energy and economy analysis. This new tool is intended as an improvement over existing methods for energy strategy assessment. It is designed specifically for estimating the costs and analyzing the technologies proposed for reducing environmental risks such as global climate change or regional air pollution. The greenhouse gas debate illustrates the usefulness of linked energy-economy models. A central issue is the coupling between economic growth, the level of energy demands, and the development of an energy system to supply these demands. The debate is often connected with alternative modeling approaches. The competing philosophies may be labeled ``top-down macroeconomic`` and ``bottom-up engineering`` perspectives. MARKAL is a systems engineering (physical process) analysis built on the concept of a Reference Energy System (RES). MARKAL is solved by means of dynamic linear programming. In most applications, the end use demands are fixed, and an economically efficient solution is obtained by minimizing the present value of energy system`s costs throughout the planning horizon. MACRO is a macroeconomic model with an aggregated view of long-term economic growth. The basis input factors of production are capital, labor and individual forms of energy. MACRO is solved by nonlinear optimization.

  1. MARKAL-MACRO: A linked model for energy-economy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Manne, A.S. (Stanford Univ., CA (United States)); Wene, C.O. (Brookhaven National Lab., Upton, NY (United States) Chalmers Univ. of Tech., Goeteborg (Sweden))

    1992-02-01

    MARKAL-MACRO is an experiment in model linkage for energy and economy analysis. This new tool is intended as an improvement over existing methods for energy strategy assessment. It is designed specifically for estimating the costs and analyzing the technologies proposed for reducing environmental risks such as global climate change or regional air pollution. The greenhouse gas debate illustrates the usefulness of linked energy-economy models. A central issue is the coupling between economic growth, the level of energy demands, and the development of an energy system to supply these demands. The debate is often connected with alternative modeling approaches. The competing philosophies may be labeled top-down macroeconomic'' and bottom-up engineering'' perspectives. MARKAL is a systems engineering (physical process) analysis built on the concept of a Reference Energy System (RES). MARKAL is solved by means of dynamic linear programming. In most applications, the end use demands are fixed, and an economically efficient solution is obtained by minimizing the present value of energy system's costs throughout the planning horizon. MACRO is a macroeconomic model with an aggregated view of long-term economic growth. The basis input factors of production are capital, labor and individual forms of energy. MACRO is solved by nonlinear optimization.

  2. Gait Characteristics in a Canine Model of X-linked Myotubular Myopathy

    Science.gov (United States)

    Goddard, Melissa A.; Burlingame, Emily; Beggs, Alan H.; Buj-Bello, Anna; Childers, Martin K.; Marsh, Anthony P.; Kelly, Valerie E.

    2014-01-01

    X-linked myotubular myopathy (XLMTM) is a fatal pediatric disease where affected boys display profound weakness of the skeletal muscles. Possible therapies are under development but robust outcome measures in animal models are required for effective translation to human patients. We established a naturally-occuring canine model, where XLMTM dogs display clinical symptoms similar to those observed in humans. The aim of this study was to determine potential endpoints for the assessment of future treatments in this model. Video-based gait analysis was selected, as it is a well-established method of assessing limb function in neuromuscular disease and measures have been correlated to patient quality of life. XLMTM dogs (N=3) and their true littermate wild type controls (N=3) were assessed at 4–5 time points, beginning at 10 weeks and continuing through 17 weeks. Motion capture and an instrumented carpet were used separately to evaluate spatiotemporal and kinematic changes over time. XLMTM dogs walk more slowly and with shorter stride lengths than wild type dogs, and these differences became greater over time. However, there was no clear difference in angular measures between affected and unaffected dogs. These data demonstrate that spatiotemporal parameters capture functional changes in gait in an XLMTM canine model and support their utility in future therapeutic trials. PMID:25281397

  3. Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Directory of Open Access Journals (Sweden)

    M. Vichi

    2004-01-01

    Full Text Available A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM coupled with the European Regional Seas Ecosystem Model (ERSEM has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (oversaturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics have shown that the nutrient dynamics are linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic, or to coupled nitrification-denitrification (under strong organic inputs. The model indicates the

  4. Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Directory of Open Access Journals (Sweden)

    J. W. Baretta

    2004-08-01

    Full Text Available A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM coupled with the European Regional Seas Ecosystem Model (ERSEM has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (oversaturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics have shown that the nutrient dynamics is linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic, or to coupled nitrification-denitrification (under strong organic inputs. The model indicates the

  5. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality

    Science.gov (United States)

    Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Misra, Vikram; Cryan, Paul M.; Blehert, David S.; Wibbelt, Gudrun; Willis, Craig K.R.

    2013-01-01

    White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid–base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid–base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.

  6. Assessing the potential of using telecommunication microwave links in urban drainage modelling.

    Science.gov (United States)

    Fencl, M; Rieckermann, J; Schleiss, M; Stránský, D; Bareš, V

    2013-01-01

    The ability to predict the runoff response of an urban catchment to rainfall is crucial for managing drainage systems effectively and controlling discharges from urban areas. In this paper we assess the potential of commercial microwave links (MWL) to capture the spatio-temporal rainfall dynamics and thus improve urban rainfall-runoff modelling. Specifically, we perform numerical experiments with virtual rainfall fields and compare the results of MWL rainfall reconstructions to those of rain gauge (RG) observations. In a case study, we are able to show that MWL networks in urban areas are sufficiently dense to provide good information on spatio-temporal rainfall variability and can thus considerably improve pipe flow prediction, even in small subcatchments. In addition, the better spatial coverage also improves the control of discharges from urban areas. This is especially beneficial for heavy rainfall, which usually has a high spatial variability that cannot be accurately captured by RG point measurements.

  7. Zebrafish model for the genetic basis of X-linked retinitis pigmentosa.

    Science.gov (United States)

    Raghupathy, Rakesh Kotapati; McCulloch, Daphne L; Akhtar, Saeed; Al-mubrad, Turki M; Shu, Xinhua

    2013-03-01

    Retinitis pigmentosa (RP) affects 1/4000 individuals in most populations, and X-linked RP (XLRP) is one of the most severe forms of human retinal degeneration. Mutations in both the retinitis pigmentosa GTPase regulator (RPGR) gene and retinitis pigmentosa 2 (RP2) gene account for almost all cases of XLRP. The functional roles of both RPGR and RP2 in the pathogenesis of XLRP are unclear. Due to the surprisingly high degree of functional conservation between human genes and their zebrafish orthologues, the zebrafish has become an important model for human retinal disorders. In this brief review, we summarize the functional characterization of XLRP-causing genes, RPGR and RP2, in zebrafish, and highlight recent studies that provide insight into the cellular functions of both genes. This will not only shed light on disease mechanisms in XLRP but will also provide a solid platform to test RP-causing mutants before proposing XLRP gene therapy trials.

  8. Modeling the pathways linking childhood hyperactivity and substance use disorder in young adulthood.

    Science.gov (United States)

    Tarter, Ralph E; Kirisci, Levent; Feske, Ulrike; Vanyukov, Michael

    2007-06-01

    This study modeled direct and mediated pathways linking childhood hyperactivity and substance use disorder (SUD). Boys (n = 112) were administered the revised Drug Use Screening Inventory at age 12-14 years and the Structured Clinical Interview for DSM-IV at age 22 years. Six newly derived scales having established heritability were conceptually organized into internalizing and externalizing pathways to SUD emanating from childhood hyperactivity. Hyperactivity directly predicts SUD. Neuroticism, conduct problems, and their respective manifestations of social withdrawal and school problems mediated the association between hyperactivity and SUD. Hyperactivity also predicted neuroticism that, in turn, predicted low self-esteem leading to social withdrawal and SUD. These results indicate that hyperactivity is a diathesis for both internalizing and externalizing disturbances that, in turn, portend differential expression of psychosocial maladjustment presaging SUD.

  9. Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaojuan Luo

    2012-01-01

    Full Text Available Based on the complex network theory, a new topological evolving model is proposed. In the evolution of the topology of sensor networks, the energy-aware mechanism is taken into account, and the phenomenon of change of the link and node in the network is discussed. Theoretical analysis and numerical simulation are conducted to explore the topology characteristics and network performance with different node energy distribution. We find that node energy distribution has the weak effect on the degree distribution P(k that evolves into the scale-free state, nodes with more energy carry more connections, and degree correlation is nontrivial disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the network is better clustered and enjoys higher performance in terms of the network efficiency and the average path length for transmitting data.

  10. a Six-Link Kinematic Chain Model of Human Body Using Kane's Method

    Science.gov (United States)

    Rambely, A. S.; Fazrolrozi

    A biomechanics model of six-link kinematic chain of human body is developed by using Kane's method. The kinematic data comprise of six segments; foot, calf, thigh, trunk, upper arm and forearm, are obtained through data collection of walking, running and jumping using the Vicon Nexus system. The motion capture system uses 12 Vicon MX-3+ cameras and 12 Vicon MX-F40 cameras, two DV (50 Hz) cameras and a force plate (100 Hz). Inverse dynamics approach is used to obtain the unknown value of torques produced by joint segments during walking, running and jumping activities. The results show that the largest value of torques produced occurs at the foot segment.

  11. Modeling the link between soil microbial community structure and function in a bottom-up approach

    Science.gov (United States)

    Kaiser, C.; Richter, A.; Franklin, O.; Evans, S. E.; Dieckmann, U.

    2012-12-01

    Understanding mechanisms of soil carbon (C) turnover requires understanding the link between microbial community dynamics and soil decomposition processes. We present here an individual-based model that aims at elucidating this link by a bottom-up approach. Our approach differs from traditional soil C cycling models in that the overall dynamics of soil organic matter turnover emerges as the result of interactions between individual microbes at the soil microsite level, rather than being described by stock and flow rate equations at the bulk soil level. All soil microbes are modeled individually, each belonging to one of several functional groups defined by functional traits. Specifically, functional traits determine (1) growth and turnover rates, (2) production of extracellular enzymes and (3) microbial cell stoichiometry. Our model incorporates competition for space and nutrients (C and nitrogen, N) as well as synergistic interactions between individual microbes in a spatially structured environment represented by a two-dimensional grid. Due to different C and N limitations of different functional groups, community composition is sensitive to the availability of complex and labile C and N. Thus, altered resource availability changes microbial community composition, which in turn affects CO2 and N release from the soil. In our model, microbes constantly alter their own environment through the decomposition of different substrates, thereby exerting a feedback on community composition, which leads to a succession of microbial groups. We used the model's intrinsic link between resource availability, community dynamics and decomposition function to investigate the mechanism underlying the rhizosphere priming effect (i.e. increased decomposition of older soil C triggered by the input of labile C). In particular, we examined the spatial growth of a root releasing exudates of varying C:N ratios under the presence or absence of different functional groups. We find that a

  12. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    Science.gov (United States)

    Graves, T.A.; Kendall, K.C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system. ?? 2011 The Authors. Animal Conservation ?? 2011 The Zoological Society of London.

  13. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  14. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  15. Coupled dynamics of node and link states in complex networks: a model for language competition

    Science.gov (United States)

    Carro, Adrián; Toral, Raúl; San Miguel, Maxi

    2016-11-01

    Inspired by language competition processes, we present a model of coupled evolution of node and link states. In particular, we focus on the interplay between the use of a language and the preference or attitude of the speakers towards it, which we model, respectively, as a property of the interactions between speakers (a link state) and as a property of the speakers themselves (a node state). Furthermore, we restrict our attention to the case of two socially equivalent languages and to socially inspired network topologies based on a mechanism of triadic closure. As opposed to most of the previous literature, where language extinction is an inevitable outcome of the dynamics, we find a broad range of possible asymptotic configurations, which we classify as: frozen extinction states, frozen coexistence states, and dynamically trapped coexistence states. Moreover, metastable coexistence states with very long survival times and displaying a non-trivial dynamics are found to be abundant. Interestingly, a system size scaling analysis shows, on the one hand, that the probability of language extinction vanishes exponentially for increasing system sizes and, on the other hand, that the time scale of survival of the non-trivial dynamical metastable states increases linearly with the size of the system. Thus, non-trivial dynamical coexistence is the only possible outcome for large enough systems. Finally, we show how this coexistence is characterized by one of the languages becoming clearly predominant while the other one becomes increasingly confined to ‘ghetto-like’ structures: small groups of bilingual speakers arranged in triangles, with a strong preference for the minority language, and using it for their intra-group interactions while they switch to the predominant language for communications with the rest of the population.

  16. Compilation and Analysis of 20- and 30-GHz Rain Fade Events at the ACTS NASA Ground Station: Statistics and Model Assessment

    Science.gov (United States)

    Manning, Robert M.

    1995-01-01

    Since the beginning of the operational phase of the NASA Research Center's Advanced Communication Technology Satellite (ACTS), signal-fade measurements have been recorded at the NASA Ground Station located in Cleveland, Ohio, with the use of the 20- and 30-GHz beacon signals. Compilations of the daily data have been statistically analyzed on a monthly and yearly basis. Such analyses have yielded relevant parameters as (1) cumulative monthly and yearly probability distributions of signal attenuation by rain, (2) attenuation duration versus attenuation threshold probabilities, and (3) rate-of-fade probabilities. Not only are such data needed for a realistic data base to support the design and performance analysis of future satellite systems, but they are necessary to assess predictions made with the ACTS Rain Attenuation Prediction Model.

  17. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model.

    Science.gov (United States)

    Parkinson, R J; Bezaire, M; Callaghan, J P

    2011-07-01

    This study examined errors introduced by a posture matching approach (3DMatch) relative to dynamic three-dimensional rigid link and EMG-assisted models. Eighty-eight lifting trials of various combinations of heights (floor, 0.67, 1.2 m), asymmetry (left, right and center) and mass (7.6 and 9.7 kg) were videotaped while spine postures, ground reaction forces, segment orientations and muscle activations were documented and used to estimate joint moments and forces (L5/S1). Posture matching over predicted peak and cumulative extension moment (p posture matching or EMG-assisted approaches (p = 0.7987). Posture matching over predicted cumulative (p posture matching provides a method to analyze industrial lifting exposures that will predict kinetic values similar to those of more sophisticated models, provided necessary corrections are applied. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Dynamic analytic model of mechanism with links fabricated from symmetric laminates

    Institute of Scientific and Technical Information of China (English)

    CAI Gan-wei; CHANG Ping-ping; MA Cun-zhi; WANG Ru-gui; LI Zhao-jun

    2006-01-01

    A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam element was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.

  19. A model linking uncertainty, post-traumatic stress, and health behaviors in childhood cancer survivors.

    Science.gov (United States)

    Lee, Ya-Ling; Gau, Bih-Shya; Hsu, Wen-Ming; Chang, Hsiu-Hao

    2009-01-01

    To consolidate the literature and provide a model to explain the links among uncertainty, post-traumatic stress syndrome, and health behaviors in adolescent and young adult childhood cancer survivors. A systemic review of related literature and theory was used for the proposed model. The literature pertaining to the Uncertainty in Illness Theory, childhood cancer late effects, post-traumatic stress, and health behaviors was reviewed and critiqued from three data sets from 1979-2007: MEDLINE, PsycInfo, and CINAHL. Key words used for the search were uncertainty and post-traumatic stress as well as health behaviors, including smoking, alcohol use, unsafe sex, sunscreen use, and physical inactivity. Childhood cancer survivors living with chronic uncertainty may develop a new view of life and, as a result, adopt more health-promotion behaviors and engage in less health-risk behaviors. However, survivors living with chronic uncertainty may generate symptoms similar to post-traumatic stress disorder and, therefore, adopt fewer health-promotion behaviors and engage in more health-risk behaviors. The uncertainty that pervades the childhood cancer experience can lead to the development of symptoms that resemble those of post-traumatic stress. The symptoms can interfere with the adoption of healthy lifestyle behaviors and avoidance of health-risk behaviors. The theoretically derived model outlined in this article can be used to guide clinical interventions and additional research into the health behaviors of childhood cancer survivors.

  20. Linking river management to species conservation using dynamic landscape scale models

    Science.gov (United States)

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  1. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model

    Science.gov (United States)

    Miner, Brooks E.; De Meester, Luc; Pfrender, Michael E.; Lampert, Winfried; Hairston, Nelson G.

    2012-01-01

    How do genetic variation and evolutionary change in critical species affect the composition and functioning of populations, communities and ecosystems? Illuminating the links in the causal chain from genes up to ecosystems is a particularly exciting prospect now that the feedbacks between ecological and evolutionary changes are known to be bidirectional. Yet to fully explore phenomena that span multiple levels of the biological hierarchy requires model organisms and systems that feature a comprehensive triad of strong ecological interactions in nature, experimental tractability in diverse contexts and accessibility to modern genomic tools. The water flea Daphnia satisfies these criteria, and genomic approaches capitalizing on the pivotal role Daphnia plays in the functioning of pelagic freshwater food webs will enable investigations of eco-evolutionary dynamics in unprecedented detail. Because its ecology is profoundly influenced by both genetic polymorphism and phenotypic plasticity, Daphnia represents a model system with tremendous potential for developing a mechanistic understanding of the relationship between traits at the genetic, organismal and population levels, and consequences for community and ecosystem dynamics. Here, we highlight the combination of traits and ecological interactions that make Daphnia a definitive model system, focusing on the additional power and capabilities enabled by recent molecular and genomic advances. PMID:22298849

  2. Thermal modeling of the NASA-Ames Research Center Cryogenic Optical Test Facility and a single-arch, fused-natural-quartz mirror

    Science.gov (United States)

    Ng, Y. S.; Augason, Gordon C.; Young, Jeffrey A.; Howard, Steven D.; Melugin, Ramsey K.

    1990-01-01

    A thermal model of the dewar and optical system of the Cryogenic Optical Test Facility at NASA-Ames Research Center was developed using the computer codes SINDA and MONTE CARLO. The model was based on the geometry, boundary conditions, and physical properties of the test facility and was developed to investigate heat transfer mechanisms and temperatures in the facility and in test mirrors during cryogenic optical tests. A single-arch, fused-natural-quartz mirror was the first mirror whose thermal loads and temperature distributions were modeled. From the temperature distribution, the thermal gradients in the mirror were obtained. The model predicted that a small gradient should exist for the single arch mirror. This was later verified by the measurement of mirror temperatures. The temperatures, predicted by the model at various locations within the dewar, were in relatively good agreement with the measured temperatures. The model is applicable to both steady-state and transient cooldown operations.

  3. Thermal modeling of the NASA-Ames Research Center Cryogenic Optical Test Facility and a single-arch, fused-natural-quartz mirror

    Science.gov (United States)

    Ng, Y. S.; Augason, Gordon C.; Young, Jeffrey A.; Howard, Steven D.; Melugin, Ramsey K.

    1990-11-01

    A thermal model of the dewar and optical system of the Cryogenic Optical Test Facility at NASA-Ames Research Center was developed using the computer codes SINDA and MONTE CARLO. The model was based on the geometry, boundary conditions, and physical properties of the test facility and was developed to investigate heat transfer mechanisms and temperatures in the facility and in test mirrors during cryogenic optical tests. A single-arch, fused-natural-quartz mirror was the first mirror whose thermal loads and temperature distributions were modeled. From the temperature distribution, the thermal gradients in the mirror were obtained. The model predicted that a small gradient should exist for the single arch mirror. This was later verified by the measurement of mirror temperatures. The temperatures, predicted by the model at various locations within the dewar, were in relatively good agreement with the measured temperatures. The model is applicable to both steady-state and transient cooldown operations.

  4. Linking near- and far-field hydrodynamic models for simulation of desalination plant brine discharges.

    Science.gov (United States)

    Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D

    2013-01-01

    A desalination plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine

  5. Linking soil moisture balance and source-responsive preferential flow models for estimating groundwater recharge

    Science.gov (United States)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2012-04-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a fieldsite in Shropshire, UK. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. However, recharge does not occur until near-positive pressures are achieved at the top of the glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Thus, although the wetting process in the topsoil is highly complex, a soil moisture balance model (SMBM) is shown to be skilful in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table suggests that Stokes type film flow rather than Richards type capillarity dominated flow is occurring and this conjecture is tested using a range of numerical models. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well, when linked to a SMBM as the source of recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils. If the conceptual and numerical models can be shown to be transferable to other ploughed soils, it promises to be a very useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation. Nimmo, J. R. (2010). Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow. Vadose Zone Journal, 9, 295-306.

  6. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.

    Science.gov (United States)

    Postma, Johannes A; Schurr, Ulrich; Fiorani, Fabio

    2014-01-01

    In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.

  7. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. SISP : Simplified Interface for Stochastic Programming Establishing a hard link between mathematical programming modeling languages and SMPS codes

    CERN Document Server

    Condevaux Lanloy, Christian; King, A J

    2002-01-01

    The aim of this article is to propose a general approach to link a stochastic programming enabler to a mathematical programming modeling language. Modelers often choose to formulate their problems in well- tested, general purpose modeling languages such as GAMS and AMPL, but these modeling languages do not currently implement a natural syntax for stochastic programming. Specialized stochastic programming tools are available to efficiently generate and solve large-scale stochastic programs, but they lack many of the convenient features of the modeling languages. The lack of a well developed link between these tools and modeling languages prevents many modelers from accessing a powerful and convenient technique to take into account uncertainties. As an attempt to fill this gap, we will present SISP (Simplified Interface for Stochastic Programming), an interface between Algebraic Modeling Languages and specialized Stochastic Programming solvers, also known as SP solvers. 12 Refs.

  10. Pretest Report for the Full Span Propulsive Wing/Canard Model Test in the NASA Langley 4 x 7 Meter Low Speed Wind Tunnel Second Series Test

    Science.gov (United States)

    Stewart, V. R.

    1986-01-01

    A full span propulsive wing/canard model is to be tested in the NASA Langley Research Center (LaRC) 4 x 7 meter low speed wind tunnel. These tests are a continuation of the tests conducted in Feb. 1984, NASA test No.290, and are being conducted under NASA Contract NAS1-17171. The purpose of these tests is to obtain extensive lateral-directional data with a revised fuselage concept. The wings, canards, and vertical tail of this second test series model are the same as tested in the previous test period. The fuselage and internal flow path have been modified to better reflect an external configuration suitable for a fighter airplane. Internal ducting and structure were changed as required to provide test efficiency and blowing control. The model fuselage tested during the 1984 tests was fabricated with flat sides to provide multiple wing and canard placement variations. The locations of the wing and canard are important variables in configuration development. With the establishment of the desired relative placement of the lifting surfaces, a typically shaped fuselage has been fabricated for these tests. This report provides the information necessary for the second series tests of the propulsive wing/canard model. The discussion in this report is limited to that affected by the model changes and to the second series test program. The pretest report information for test 290 which is valid for the second series test was published in Rockwell report NR 83H-79. This report is presented as Appendix 1 and the modified fuselage stress report is presented as Appendix 2 to this pretest report.

  11. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    Science.gov (United States)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  12. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  13. Web Service Based Approach to Link Heterogeneous Climate-Energy-Economy Models for Climate Change Mitigation Analysis

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Bulavskaya, Tatyana; Niamir, Leila; Dhavala, Kishore

    2016-01-01

    Climate change mitigation analysis requires understanding the causes and identifying the possible alternative actions that could be taken. We linked heterogeneous models that focus on climate, energy, and economy for the purpose of climate change mitigation. The models were originally developed to s

  14. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment

    DEFF Research Database (Denmark)

    Bælum, Jacob; Chambon, Julie Claire Claudia; Scheutz, Charlotte

    2013-01-01

    We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional gene...

  15. Web Service Based Approach to Link Heterogeneous Climate-Energy-Economy Models for Climate Change Mitigation Analysis

    NARCIS (Netherlands)

    Belete, G.F.; Voinov, A.; Bulavskaya, Tatyana; Niamir, Leila; Dhavala, Kishore

    2016-01-01

    Climate change mitigation analysis requires understanding the causes and identifying the possible alternative actions that could be taken. We linked heterogeneous models that focus on climate, energy, and economy for the purpose of climate change mitigation. The models were originally developed to

  16. Linking changes in epithelial morphogenesis to cancer mutations using computational modeling.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Rejniak

    Full Text Available Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini. In order to shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line, MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies onto in silico ones we have generated a means of linking the morphological and molecular scales via computational modeling. Thus, IBCell in combination with 3D acini

  17. The role of ecological models in linking ecological risk assessment to ecosystem services in agroecosystems.

    Science.gov (United States)

    Galic, Nika; Schmolke, Amelie; Forbes, Valery; Baveco, Hans; van den Brink, Paul J

    2012-01-15

    Agricultural practices are essential for sustaining the human population, but at the same time they can directly disrupt ecosystem functioning. Ecological risk assessment (ERA) aims to estimate possible adverse effects of human activities on ecosystems and their parts. Current ERA practices, however, incorporate very little ecology and base the risk estimates on the results of standard tests with several standard species. The main obstacles for a more ecologically relevant ERA are the lack of clear protection goals and the inherent complexity of ecosystems that is hard to approach empirically. In this paper, we argue that the ecosystem services framework offers an opportunity to define clear and ecologically relevant protection goals. At the same time, ecological models provide the tools to address ecological complexity to the degree needed to link measurement endpoints and ecosystem services, and to quantify service provision and possible adverse effects from human activities. We focus on the ecosystem services relevant for agroecosystem functioning, including pollination, biocontrol and eutrophication effects and present modeling studies relevant for quantification of each of the services. The challenges of the ecosystem services approach are discussed as well as the limitations of ecological models in the context of ERA. A broad, multi-stakeholder dialog is necessary to aid the definition of protection goals in terms of services delivered by ecosystems and their parts. The need to capture spatio-temporal dynamics and possible interactions among service providers pose challenges for ecological models as a basis for decision making. However, we argue that both fields are advancing quickly and can prove very valuable in achieving more ecologically relevant ERA. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  19. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model

    Science.gov (United States)

    Bestas, Burcu; Moreno, Pedro M.D.; Blomberg, K. Emelie M.; Mohammad, Dara K.; Saleh, Amer F.; Sutlu, Tolga; Nordin, Joel Z.; Guterstam, Peter; Gustafsson, Manuela O.; Kharazi, Shabnam; Piątosa, Barbara; Roberts, Thomas C.; Behlke, Mark A.; Wood, Matthew J.A.; Gait, Michael J.; Lundin, Karin E.; El Andaloussi, Samir; Månsson, Robert; Berglöf, Anna; Wengel, Jesper; Smith, C.I. Edvard

    2014-01-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton’s tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2′-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro–B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA. PMID:25105368

  20. A model linking sources of stress to approach and avoidance coping styles of Turkish basketball referees.

    Science.gov (United States)

    Anshel, Mark Howard; Sutarso, Toto; Ekmekci, Ridvan; Saraswati, Intan W

    2014-01-01

    Purpose of this study was to externally validate and test a conceptual transient model involving six paths that linked sources of acute stress to avoidance and approach coping styles among Turkish basketball referees. The sample consisted of 125 Turkish basketball referees ranging in age from 18 to 36 years (mean = 25.58. σ = 3.69). The path analysis tested the relationships simultaneously from stressors, in consecutive order, distractions, subpar performance and verbal abuse, to coping styles, first both avoidance-cognitive and approach-cognitive, and then approach-behaviour. Results indicated that the model achieved a good fit and that all paths tested simultaneously were significant. The distractions stressor was positively related to subpar performance, which, in turn, was positively related to verbal abuse. Verbal abuse was negatively associated with an avoidance-cognitive coping style and positively related to the approach-cognitive coping style. The results also supported a crossover effect of both avoidance-cognitive and approach-cognitive on approach-behaviour. One implication of this study is that coping should be studied in naturally occurring stages, a process-oriented approach. Another implication is that approach and avoidance coping styles, each sub-divided into cognitive and behavioural categories, provide a meaningful framework which provides sports officials a coherent structure for learning and improving ways to cope with acute stress experienced during the contest.

  1. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model.

    Science.gov (United States)

    Bestas, Burcu; Moreno, Pedro M D; Blomberg, K Emelie M; Mohammad, Dara K; Saleh, Amer F; Sutlu, Tolga; Nordin, Joel Z; Guterstam, Peter; Gustafsson, Manuela O; Kharazi, Shabnam; Piątosa, Barbara; Roberts, Thomas C; Behlke, Mark A; Wood, Matthew J A; Gait, Michael J; Lundin, Karin E; El Andaloussi, Samir; Månsson, Robert; Berglöf, Anna; Wengel, Jesper; Smith, C I Edvard

    2014-09-01

    X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.

  2. A model linking clinical workforce skill mix planning to health and health care dynamics

    Directory of Open Access Journals (Sweden)

    McDonnell Geoff

    2010-04-01

    Full Text Available Abstract Background In an attempt to devise a simpler computable tool to assist workforce planners in determining what might be an appropriate mix of health service skills, our discussion led us to consider the implications of skill mixing and workforce composition beyond the 'stock and flow' approach of much workforce planning activity. Methods Taking a dynamic systems approach, we were able to address the interactions, delays and feedbacks that influence the balance between the major components of health and health care. Results We linked clinical workforce requirements to clinical workforce workload, taking into account the requisite facilities, technologies, other material resources and their funding to support clinical care microsystems; gave recognition to productivity and quality issues; took cognisance of policies, governance and power concerns in the establishment and operation of the health care system; and, going back to the individual, gave due attention to personal behaviour and biology within the socio-political family environment. Conclusion We have produced the broad endogenous systems model of health and health care which will enable human resource planners to operate within real world variables. We are now considering the development of simple, computable national versions of this model.

  3. Linked Gauss-Diffusion processes for modeling a finite-size neuronal network.

    Science.gov (United States)

    Carfora, M F; Pirozzi, E

    2017-08-02

    A Leaky Integrate-and-Fire (LIF) model with stochastic current-based linkages is considered to describe the firing activity of neurons interacting in a (2×2)-size feed-forward network. In the subthreshold regime and under the assumption that no more than one spike is exchanged between coupled neurons, the stochastic evolution of the neuronal membrane voltage is subject to random jumps due to interactions in the network. Linked Gauss-Diffusion processes are proposed to describe this dynamics and to provide estimates of the firing probability density of each neuron. To this end, an iterated integral equation-based approach is applied to evaluate numerically the first passage time density of such processes through the firing threshold. Asymptotic approximations of the firing densities of surrounding neurons are used to obtain closed-form expressions for the mean of the involved processes and to simplify the numerical procedure. An extension of the model to an (N×N)-size network is also given. Histograms of firing times obtained by simulations of the LIF dynamics and numerical firings estimates are compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Playing the role of weak clique property in link prediction: A friend recommendation model

    Science.gov (United States)

    Ma, Chuang; Zhou, Tao; Zhang, Hai-Feng

    2016-07-01

    An important fact in studying link prediction is that the structural properties of networks have significant impacts on the performance of algorithms. Therefore, how to improve the performance of link prediction with the aid of structural properties of networks is an essential problem. By analyzing many real networks, we find a typical structural property: nodes are preferentially linked to the nodes with the weak clique structure (abbreviated as PWCS to simplify descriptions). Based on this PWCS phenomenon, we propose a local friend recommendation (FR) index to facilitate link prediction. Our experiments show that the performance of FR index is better than some famous local similarity indices, such as Common Neighbor (CN) index, Adamic-Adar (AA) index and Resource Allocation (RA) index. We then explain why PWCS can give rise to the better performance of FR index in link prediction. Finally, a mixed friend recommendation index (labelled MFR) is proposed by utilizing the PWCS phenomenon, which further improves the accuracy of link prediction.

  5. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    Science.gov (United States)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  6. Implementation of the NCAR Community Land Model (CLM) in the NASA/NCAR finite-volume Global Climate Model (fvGCM)

    Science.gov (United States)

    Radakovich, Jon D.; Wang, Guiling; Chern, Jiundar; Bosilovich, Michael G.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen

    2002-01-01

    In this study, the NCAR CLM version 2.0 land-surface model was integrated into the NASA/NCAR fvGCM. The CLM was developed collaboratively by an open interagency/university group of scientists and based on well-proven physical parameterizations and numerical schemes that combine the best features of BATS, NCAR-LSM, and IAP94. The CLM design is a one-dimensional point model with 1 vegetation layer, along with sub-grid scale tiles. The features of the CLM include 10-uneven soil layers with water, ice, and temperature states in each soil layer, and five snow layers, with water flow, refreezing, compaction, and aging allowed. In addition, the CLM utilizes two-stream canopy radiative transfer, the Bonan lake model and topographic enhanced streamflow based on TOPMODEL. The DAO fvGCM uses a genuinely conservative Flux-Form Semi-Lagrangian transport algorithm along with terrain- following Lagrangian control-volume vertical coordinates. The physical parameterizations are based on the NCAR Community Atmosphere Model (CAM-2). For our purposes, the fvGCM was run at 2 deg x 2.5 deg horizontal resolution with 55 vertical levels. The 10-year climate from the fvGCM with CLM2 was intercompared with the climate from fvGCM with LSM, ECMWF and NCEP. We concluded that the incorporation of CLM2 did not significantly impact the fvGCM climate from that of LSM. The most striking difference was the warm bias in the CLM2 surface skin temperature over desert regions. We determined that the warm bias can be partially attributed to the value of the drag coefficient for the soil under the canopy, which was too small resulting in a decoupling between the ground surface and the canopy. We also discovered that the canopy interception was high compared to observations in the Amazon region. A number of experiments were then performed focused on implementing model improvements. In order to correct the warm bias, the drag coefficient for the soil under the canopy was considered a function of LAI (Leaf

  7. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen losses from cropland soil in Europe

    Directory of Open Access Journals (Sweden)

    A. Leip

    2007-07-01

    Full Text Available For the comprehensive assessment of the policy impact on greenhouse gas emissions from agricultural soils both socio-economic aspects and the environmental heterogeneity of the landscape are important factors that must be considered. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI with the bio-geochemistry model DNDC to simulate greenhouse gas fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on wide range of environmental problems such as climate change (greenhouse gas emissions, air pollution and groundwater pollution. Those environmental impacts can be analysed in the context of economic and social indicators as calculated by the economic model. The methodology consists in four steps (i the definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii setting up of environmental model scenarios and model runs; and finally (iv aggregating results for interpretation. We show first results of the nitrogen budget in cropland for the area of fourteen countries of the European Union. These results, in terms of estimated nitrogen fluxes, must still be considered as illustrative as needs for improvements in input data (e.g. the soil map and management data (yield estimates have been identified and will be the focus of future work. Nevertheless, we highlight inter-dependencies between farmer's choices of land uses and the environmental impact of different cultivation systems.

  8. Linking hydrologic and bedload transport models to simulate fluvial response to changing precipitation

    Science.gov (United States)

    Wickert, A. D.; Ng, G. H. C.; Tofelde, S.; Savi, S.; Schildgen, T. F.; Alonso, R. N.; Strecker, M. R.

    2015-12-01

    Changes in precipitation can drive river aggradation or incision through their influence on both hillslope processes, which supply sediment to the channel, and sediment transport capacity, which moves sediment downstream. Whether a particular change in precipitation intensity and/or duration will result in aggradation or incision is difficult to predict due to these competing effects. In particular, fluvial response to climate change is sensitive to (1) thresholds and nonlinearities involved in sediment production and sediment transport, (2) how different modes of sediment production affect the grain size of the sediment provided to the channel, and (3) impacts of drainage basin geometry on sediment storage time and locations of rapid sediment production and/or transport. A better mechanistic understanding of the relationship between rainfall and river bed elevation changes will help us to understand modern river channel response to climate change and decipher the causes for fluvial terrace formation. Here we couple a hydrologic model, the Precipitation-Runoff Modeling System (PRMS), with a model of sediment transport through a fluvial network, sedFlow, to predict patterns of bed elevation change. We first perform schematic example simulations on an idealized synthetic landscape with a single river channel to show how simple fluvial systems can respond to changes in rainfall. We then expand these numerical tests to full fluvial networks, in which the segments of the tributary network propagate signals of aggradation and incision, leading to a more complex response that embodies the interference between magnitudes and time-scales of sediment transfer in the tributary links. We showcase the possible complexity of the fluvial response with an example from the Quebrada del Toro of NW Argentina, which is currently experiencing rapid and spatially-variable aggradation and incision, possibly in response to an increase in extreme rainfall events in the east-central Andes.

  9. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  10. Linking GIS-based models to value ecosystem services in an Alpine region.

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Bebi, Peter; Bishop, Ian D; Schmid, Willy A

    2008-11-01

    Planning frequently fails to include the valuation of public goods and services. This can have long-term negative economic consequences for a region. This is especially the case in mountainous regions such as the Alps, which depend on tourism and where land-use changes can negatively impact key ecosystem services and hence the economy. In this study, we develop a semi-automatic procedure to value ecosystem goods and services. Several existing process-based models linked to economic valuation methods are integrated into a geographic information system (GIS) platform. The model requires the input of a digital elevation model, a land-cover map, and a spatially explicit temperature dataset. These datasets are available for most regions in Europe. We illustrate the approach by valuing four ecosystem services: avalanche protection, timber production, scenic beauty, and habitat, which are supplied by the "Landschaft Davos", an administrative district in the Swiss Alps. We compare the impacts of a human development scenario and a climate scenario on the value of these ecosystem services. Urban expansion and tourist infrastructure developments have a negative impact on scenic beauty and habitats. These impacts outweigh the benefits of the developments in the long-term. Forest expansion, predictable under a climate change scenario, favours natural avalanche protection and habitats. In general, such non-marketed benefits provided by the case-study region more than compensate for the costs of forest maintenance. Finally, we discuss the advantages and disadvantages of the approach. Despite its limitations, we show how this approach could well help decision-makers balance the impacts of different planning options on the economic accounting of a region, and guide them in selecting sustainable and economically feasible development strategies.

  11. Modelling and control of three-phase grid-connected power supply with small DC-link capacitor for electrolysers

    DEFF Research Database (Denmark)

    Török, Lajos; Máthé, Lászlo; Nielsen, Carsten Karup

    2016-01-01

    . By substituting the complex switching model of the power supply with a simplified one, the system dynamics can be better observed. The resonances caused by the small DC link capacitor and grid side inductance can be easier analyzed. A feed forward compensation method is proposed based on the simplified model......-forward compensation signal is created, canceling in such a way the resonance introduced by the grid inductance and the DC-link capacitor from the feed-forward loop. The theoretical work has been validated through experiments on a 5 kW DC power supply used for electrolyser application....

  12. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    Science.gov (United States)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  13. NASA's unique networking environment

    Science.gov (United States)

    Johnson, Marjory J.

    1988-01-01

    Networking is an infrastructure technology; it is a tool for NASA to support its space and aeronautics missions. Some of NASA's networking problems are shared by the commercial and/or military communities, and can be solved by working with these communities. However, some of NASA's networking problems are unique and will not be addressed by these other communities. Individual characteristics of NASA's space-mission networking enviroment are examined, the combination of all these characteristics that distinguish NASA's networking systems from either commercial or military systems is explained, and some research areas that are important for NASA to pursue are outlined.

  14. Fast Outage Probability Simulation for FSO Links with a Generalized Pointing Error Model

    KAUST Repository

    Issaid, Chaouki Ben

    2017-02-07

    Over the past few years, free-space optical (FSO) communication has gained significant attention. In fact, FSO can provide cost-effective and unlicensed links, with high-bandwidth capacity and low error rate, making it an exciting alternative to traditional wireless radio-frequency communication systems. However, the system performance is affected not only by the presence of atmospheric turbulences, which occur due to random fluctuations in the air refractive index but also by the existence of pointing errors. Metrics, such as the outage probability which quantifies the probability that the instantaneous signal-to-noise ratio is smaller than a given threshold, can be used to analyze the performance of this system. In this work, we consider weak and strong turbulence regimes, and we study the outage probability of an FSO communication system under a generalized pointing error model with both a nonzero boresight component and different horizontal and vertical jitter effects. More specifically, we use an importance sampling approach which is based on the exponential twisting technique to offer fast and accurate results.

  15. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Science.gov (United States)

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-Lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  16. Perception-Link Behavior Model: Supporting a Novel Operator Interface for a Customizable Anthropomorphic Telepresence Robot

    Directory of Open Access Journals (Sweden)

    William Gu

    2017-07-01

    Full Text Available A customizable anthropomorphic telepresence robot (CATR is an emerging medium that might have the highest degree of social presence among the existing mediated communication mediums. Unfortunately, there are problems with teleoperating a CATR, and these problems can deteriorate the gesture motion in a CATR. These problems are the disruption during decoupling, discontinuity due to the unstable transmission and jerkiness due to the reactive collision avoidance. From the review, none of the existing interfaces can simultaneously fix all of the problems. Hence, a novel framework with the perception-link behavior model (PLBM was proposed. The PLBM adopts the distributed spatiotemporal representation for all of its input signals. Equipping it with other components, the PLBM can solve the above problems with some limitations. For instance, the PLBM can retrieve missing modalities from its experience during decoupling. Next, the PLBM can handle up to a high level of drop rate in the network connection because it is dealing with gesture style and not pose. For collision prevention, the PLBM can tune the incoming gesture style so that the CATR can deliberately and smoothly avoid a collision. In summary, the framework consists of PLBM being able to increase the user’s presence on a CATR by synthesizing expressive user gestures.

  17. Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology.

    Science.gov (United States)

    Fleet, Tiffany; Stashi, Erin; Zhu, Bokai; Rajapakshe, Kimal; Marcelo, Kathrina L; Kettner, Nicole M; Gorman, Blythe K; Coarfa, Cristian; Fu, Loning; O'Malley, Bert W; York, Brian

    2016-10-01

    Circadian rhythmicity is a fundamental process that synchronizes behavioral cues with metabolic homeostasis. Disruption of daily cycles due to jet lag or shift work results in severe physiological consequences including advanced aging, metabolic syndrome, and even cancer. Our understanding of the molecular clock, which is regulated by intricate positive feedforward and negative feedback loops, has expanded to include an important metabolic transcriptional coregulator, Steroid Receptor Coactivator-2 (SRC-2), that regulates both the central clock of the suprachiasmatic nucleus (SCN) and peripheral clocks including the liver. We hypothesized that an environmental uncoupling of the light-dark phases, termed chronic circadian disruption (CCD), would lead to pathology similar to the genetic circadian disruption observed with loss of SRC-2 We found that CCD and ablation of SRC-2 in mice led to a common comorbidity of metabolic syndrome also found in humans with circadian disruption, non-alcoholic fatty liver disease (NAFLD). The combination of SRC-2(-/-) and CCD results in a more robust phenotype that correlates with human non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) gene signatures. Either CCD or SRC-2 ablation produces an advanced aging phenotype leading to increased mortality consistent with other circadian mutant mouse models. Collectively, our studies demonstrate that SRC-2 provides an essential link between the behavioral activities influenced by light cues and the metabolic homeostasis maintained by the liver.

  18. Link between reduced nephron number and hypertension: studies in a mutant mouse model.

    Science.gov (United States)

    Poladia, Deepali Pitre; Kish, Kayle; Kutay, Benjamin; Bauer, John; Baum, Michel; Bates, Carlton M

    2006-04-01

    Low birth weight (LBW) infants with reduced nephron numbers have significantly increased risk for hypertension later in life, which is a devastating health problem. The risk from a reduction in nephron number alone is not clear. Recently, using conditional knock-out approach, we have developed a mutant mouse with reduced nephron number in utero and no change in birth weight, by deleting fibroblast growth factor receptor 2 (fgfr2) in the ureteric bud. Our purpose was to investigate the role of in utero reduced nephron number alone in absence of LBW as a risk for developing hypertension in adulthood. Using tail cuff blood pressure measurements we observed significant increases in systolic blood pressure in one year old mutant mice versus controls. We also detected cardiac end-organ injury from hypertension as shown by significant increases in normalized heart weights, left ventricular (LV) wall thickness, and LV tissue area. Two-dimensional echocardiography revealed no changes in cardiac output and therefore significant increases in systemic vascular resistance in mutants versus controls. We also observed increases in serum blood urea nitrogen (BUN) levels and histologic evidence of glomerular and renal tubular injury in mutant mice versus controls. Thus, these studies suggest that our mutant mice may serve as a relevant model to study the link between reduction of nephron number in utero and the risk of hypertension and chronic renal failure in adulthood.

  19. Gene Therapy Studies in a Canine Model of X-Linked Severe Combined Immunodeficiency

    Science.gov (United States)

    De Ravin, Suk See; Malech, Harry L.; Sorrentino, Brian P.; Burtner, Christopher; Kiem, Hans-Peter

    2015-01-01

    Abstract Since the occurrence of T cell leukemias in the original human γ-retroviral gene therapy trials for X-linked severe combined immunodeficiency (XSCID), considerable effort has been devoted to developing safer vectors. This review summarizes gene therapy studies performed in a canine model of XSCID to evaluate the efficacy of γ-retroviral, lentiviral, and foamy viral vectors for treating XSCID and a novel method of vector delivery. These studies demonstrate that durable T cell reconstitution and thymopoiesis with no evidence of any serious adverse events and, in contrast to the human XSCID patients, sustained marking in myeloid cells and B cells with reconstitution of normal humoral immune function can be achieved for up to 5 years without any pretreatment conditioning. The presence of sustained levels of gene-marked T cells, B cells, and more importantly myeloid cells for almost 5 years is highly suggestive of transduction of either multipotent hematopoietic stem cells or very primitive committed progenitors. PMID:25603151

  20. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Directory of Open Access Journals (Sweden)

    Satoshi Horino

    Full Text Available X-linked severe combined immunodeficiency (SCID-X1 is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc gene, and characterized by a complete defect of T and natural killer (NK cells. Gene therapy for SCID-X1 using conventional retroviral (RV vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  1. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    Science.gov (United States)

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  2. A model linking biology, behavior and psychiatric diagnoses in perpetrators of domestic violence.

    Science.gov (United States)

    George, David T; Phillips, Monte J; Doty, Linda; Umhau, John C; Rawlings, Robert R

    2006-01-01

    Research indicates that perpetrators of domestic violence have abnormalities in central serotonin and testosterone metabolism, an increased sensitivity to anxiogenic stimuli, and an impaired neuro-connection between their cortex and the amygdala. Clinical evaluations show that perpetrators of domestic violence also have a distinguishing set of behaviors and diagnoses related to anxiety, depression, intermittent explosive disorder, and borderline personality disorder. In this paper we propose a model to understand how the biological abnormalities can potentially explain the behaviors and diagnoses exhibited by the perpetrators. Changes in the perpetrator's neurotransmitters lead to a heightened sensitivity to environmental stimuli, anxiety, and conditioned fear. Lack of cortical input to the amygdala impairs the perpetrator's ability to extinguish anxiety and/or conditioned fear and gives rise to either innate behaviors (e.g., fight, flight, and shut down) or learned fear avoidant behaviors designed to avoid anxiety (e.g., alcohol consumption, self-injurious acts, and obsessive behaviors). Linking conditioned fear and fear avoidance to the behaviors and psychiatric diagnoses will serve to change the way the medical community perceives and treats perpetrators of domestic violence.

  3. Playing the role of weak clique property in link prediction: A friend recommendation model

    CERN Document Server

    Ma, Chuang; Zhang, Hai-Feng

    2016-01-01

    An important fact in studying the link prediction is that the structural properties of networks have significant impacts on the performance of algorithms. Therefore, how to improve the performance of link prediction with the aid of structural properties of networks is an essential problem. By analyzing many real networks, we find a common structure property: nodes are preferentially linked to the nodes with the weak clique structure (abbreviated as PWCS to simplify descriptions). Based on this PWCS phenomenon, we propose a local friend recommendation (FR) index to facilitate link prediction. Our experiments show that the performance of FR index is generally better than some famous local similarity indices, such as Common Neighbor (CN) index, Adamic-Adar (AA) index and Resource Allocation (RA) index. We then explain why PWCS can give rise to the better performance of FR index in link prediction. Finally, a mixed friend recommendation index (labelled MFR) is proposed by utilizing the PWCS phenomenon, which furt...

  4. A SEQUENTIAL MODEL OF INNOVATION STRATEGY—COMPANY NON-FINANCIAL PERFORMANCE LINKS

    Directory of Open Access Journals (Sweden)

    Wakhid Slamet Ciptono

    2006-05-01

    dimensions of innovation strategy (partially mediators to company non-financial performance —productivity or operational reliability. The findings provide empirical evidence extending the previous model of Zahra and Das. These findings also provide a basis for useful recommendations to upstream and downstream SBU managers attempting to implement a sequential model of innovation strategy —company non-financial performance links. This study shows that upstream SBUs rely on external innovation sources. They will acquire innovation policies through business partnership development (such as Joint Operation Body for Enhanced Oil Recovery or JOB-EOR, Joint Operation Body for Production Sharing Contract or JOB-PSC; licensing agreements (Technical Assistance Contract or TAC, Consortium Cooperation System; or acquisition with other firms (Joint Operating Contract or JOC. In contrast, downstream SBUs emphasize on generating internal innovation sources to develop their own in-house R&D efforts. The downstream SBUs should make extensive policies of internal innovation sources in their attempts to control the distribution of oil-based fuel and transmission of natural gas for domestic and international markets effectively. Both policies would enhance understanding and ultimately contribute to the improvement of company financial performance —sales, net profit margin, return on assets.

  5. Evaluation of connectedness between the University courses of Physics and Chemistry basing on the graph model of intersubject links

    Science.gov (United States)

    Gnitetskaya, Tatyana; Ivanova, Elena

    2016-08-01

    An application of the graph model of inter-subject links to University courses of Physics and Chemistry is presented in this article. A part of inter-subject space with directions of inter-subject links from Physics to Chemistry in the group of physical concepts has been shown. The graph model of inter-subject links includes quantitative indicators. Its numerical values are given in the article. The degree of connectedness between the data of Physics and Chemistry courses is discussed for the courses considered. The effect of the courses placement within a curriculum on the value of their connectedness is shown. The placement of courses within a curriculum can provide the study of the courses at the same time or consecutive study, when one course precedes another.

  6. 2012 NASA Range Safety Annual Report

    Science.gov (United States)

    Dumont, Alan G.

    2012-01-01

    This report provides a NASA Range Safety (NRS) overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program (RSP) activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2012 NASA Range Safety Annual Report include a program overview and 2012 highlights; Range Safety Training; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  7. Cross-linking of soybean protein isolate-chitosan coacervate with transglutaminase utilizing capsanthin as the model core.

    Science.gov (United States)

    Huang, G Q; Xiao, J X; Qiu, H W; Yang, J

    2014-01-01

    Transglutaminase (TG) is an alternative coacervate cross-linking agent to aldehydes due to its safety. In this work, the cross-linking conditions of soybean protein isolate (SPI)-chitosan coacervates with TG-utilizing capsanthin as the model core were optimized and its cross-linking effectiveness was compared with that of glutaraldehyde. Results indicated that the optimum capsanthin microcapsule cross-linking conditions were as follows: a suspension pH of 6.0, an incubation duration of 3 h, a TG concentration of 18.75 U/g SPI and a reaction temperature of 45 °C. Under these conditions, TG provided a cross-linking effectiveness comparable with that of glutaraldehyde in regards to microcapsule stability against swelling in 80 °C water and heating at 150 °C. Differential scanning calorimetry analysis revealed that TG cross-linking increased the integrity of the microcapsule walls. It was concluded that the SPI-chitosan coacervation pair has potential applications in the food industry in terms of cross-linker safety and effectiveness.

  8. NASA Guided Dropsonde Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Exquadrum, Inc. proposes to demonstrate the feasibility of an innovative approach to providing NASA with a Guided Dropsonde (NGD). NASA's desire to use existing...

  9. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  10. Chemical Engineering at NASA

    Science.gov (United States)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  11. The GOddard SnoW Impurity Module (GOSWIM) for the NASA GEOS-5 Earth System Model: Preliminary Comparisons with Observations in Sapporo, Japan

    Science.gov (United States)

    Yasunari, Teppei J.; Lau, K.-M.; Mahanama, Sarith P. P.; Colarco, Peter R.; daSilva, Arlindo M.; Aoki, Teruo; Aoki, Kazuma; Murao, Naoto; Yamagata, Sadamu; Kodama, Yuji

    2014-01-01

    The snow darkening module evaluating dust, black carbon, and organic carbon depositions on mass and albedo has been developed for the NASA Goddard Earth Observing System, Version 5 (GEOS-5) Earth System Model, as the GOddard SnoW Impurity Module (GOSWIM). GOSWIM consists of the snow albedo scheme from a previous study (Yasunari et al. 2011) with updates and a newly developed mass concentration scheme, using aerosol depositions from the chemical transport model (GOCART) in GEOS-5. Compared to observations at Sapporo, the numerical experiments, forced by observation-based meteorology and aerosol depositions from GOES-5, better simulated the seasonal migration of snow depth, albedos, and impurities of dust, BC, and OC in the snow surface. However, the magnitude of the impurities is underestimated, compared to the sporadic snow impurity measurements. Increasing the deposition rates of dust and BC could explain the differences on the snow darkening effect between observation and simulation. Ignoring BC deposition can possibly lead to an extension of snow cover duration in Sapporo for four days. Comparing the off-line GOSWIM and the GEOS-5 global simulations, we found that determining better local precipitation and deposition rates of the aerosols are key factors in generating better GOSWIM snow darkening simulation in NASA GEOS-5.

  12. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    Science.gov (United States)

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  13. "Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidrectional Ammonia Flux in CMAQ"

    Science.gov (United States)

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  14. Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidirectional Ammonia Flux in CMAQ

    Science.gov (United States)

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  15. NASA Software Engineering Benchmarking Study

    Science.gov (United States)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  16. Single-step emulation of nonlinear fiber-optic link with gaussian mixture model

    DEFF Research Database (Denmark)

    Borkowski, Robert; Doberstein, Andy; Haisch, Hansjörg

    2015-01-01

    We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission.......We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission....

  17. Demographic links to savings in life cycle models: identification of issues for LDCs.

    Science.gov (United States)

    Raut, L K

    1992-01-01

    The author considers the potential for a link between the recent pattern of demographic transition and intertemporal and inter-country variations in savings rates. Fertility, infant mortality, life expectancy, and levels of female and child labor force participation are among the various demographic factors which affect national savings rates through their effects upon age structure, age-specific individual savings behavior, and their general equilibrium effects upon interest rates, wage rates, and income distribution. The author establishes a simple discrete time life cycle model of savings, explains the issues related to age structure, and discusses the effect of age-specific savings functions, the general equilibrium effects of demographic factors, the effects of life expectancies and child mortalities, and the nature of social security coverages in less developed countries, as well as issues which are especially important for less developed countries. A new strategy for empirically evaluating demographic policies is proposed. That is, one can estimate the age profile of earnings, saving and fertility rates from household survey data. The life tables can then be used to compute the aggregate savings rate and population size. Any demographic policy which affects the fertility rate, life expectancy, and investment in the quality of children will change the aggregate saving and population growth rates. These two aggregate effects could be compared to evaluate demographic policies. The author stresses, however, that changes in different demographic factors will have different short-run and long-run effects upon the savings rate which will also depend upon whether such changes are transitory or permanent.

  18. Spontaneous shaker rat mutant – a new model for X-linked tremor/ataxia

    Directory of Open Access Journals (Sweden)

    Karla P. Figueroa

    2016-05-01

    Full Text Available The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF/Brown Norwegian (BN F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm. In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R to cysteine (C change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3 gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes.

  19. Linking flickering to waves and whole-cell oscillations in a mitochondrial network model.

    Science.gov (United States)

    Nivala, Melissa; Korge, Paavo; Nivala, Michael; Weiss, James N; Qu, Zhilin

    2011-11-02

    It has been shown that transient single mitochondrial depolarizations, known as flickers, tend to occur randomly in space and time. On the other hand, many studies have shown that mitochondrial depolarization waves and whole-cell oscillations occur under oxidative stress. How single mitochondrial flickering events and whole-cell oscillations are mechanistically linked remains unclear. In this study, we developed a Markov model of the inner membrane anion channel in which reactive-oxidative-species (ROS)-induced opening of the inner membrane anion channel causes transient mitochondrial depolarizations in a single mitochondrion that occur in a nonperiodic manner, simulating flickering. We then coupled the individual mitochondria into a network, in which flickers occur randomly and sparsely when a small number of mitochondria are in the state of high superoxide production. As the number of mitochondria in the high-superoxide-production state increases, short-lived or abortive waves due to ROS-induced ROS release coexist with flickers. When the number of mitochondria in the high-superoxide-production state reaches a critical number, recurring propagating waves are observed. The origins of the waves occur randomly in space and are self-organized as a consequence of random flickering and local synchronization. We show that at this critical state, the depolarization clusters exhibit a power-law distribution, a signature of self-organized criticality. In addition, the whole-cell mitochondrial membrane potential changes from exhibiting small random fluctuations to more periodic oscillations as the superoxide production rate increases. These simulation results may provide mechanistic insight into the transition from random mitochondrial flickering to the waves and whole-cell oscillations observed in many experimental studies.

  20. Rain rate intensity model for communication link design across the Indian region

    Science.gov (United States)

    Kilaru, Aravind; Kotamraju, Sarat K.; Avlonitis, Nicholas; Sri Kavya, K. Ch.

    2016-07-01

    A study on rain statistical parameters such as one minute rain intensity, possible number of minute occurrences with respective percentage of time in a year has been evaluated for the purpose of communication link design at Ka, Q, V bands as well as at Free-Space Optical communication links (FSO). To understand possible outage period of a communication links due to rainfall and to investigate rainfall pattern, Automatic Weather Station (AWS) rainfall data is analysed due its ample presence across India. The climates of the examined AWS regions vary from desert to cold climate, heavy rainfall to variable rainfall regions, cyclone effective regions, mountain and coastal regions. In this way a complete and unbiased picture of the rainfall statistics for Indian region is evaluated. The analysed AWS data gives insight into yearly accumulated rainfall, maximum hourly accumulated rainfall, mean hourly accumulated rainfall, number of rainy days and number of rainy hours from 668 AWS locations. Using probability density function the one minute rainfall measurements at KL University is integrated with AWS measurements for estimating number of rain occurrences in terms of one minute rain intensity for annual rainfall accumulated between 100 mm and 5000 mm to give an insight into possible one minute accumulation pattern in an hour for comprehensive analysis of rainfall influence on a communication link for design engineers. So that low availability communications links at higher frequencies can be transformed into a reliable and economically feasible communication links for implementing High Throughput Services (HTS).

  1. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear.

    Science.gov (United States)

    Fessel, Gion; Wernli, Jeremy; Li, Yufei; Gerber, Christian; Snedeker, Jess G

    2012-06-01

    We investigated the hypothesis that exogenous collagen cross-linking can augment intact regions of tendon to mitigate mechanical propagation of partial tears. We first screened the low toxicity collagen cross-linkers genipin, methylglyoxal and ultra-violet (UV) light for their ability to augment tendon stiffness and failure load in rat tail tendon fascicles (RTTF). We then investigated cross-linking effects in load bearing equine superficial digital flexor tendons (SDFT). Data indicated that all three cross-linking agents augmented RTTF mechanical properties but reduced native viscoelasticity. In contrast to effects observed in fascicles, methylglyoxal treatment of SDFT detrimentally affected tendon mechanical integrity, and in the case of UV did not alter tendon mechanics. As in the RTTF experiments, genipin cross-linking of SDFT resulted in increased stiffness, higher failure loads and reduced viscoelasticity. Based on this result we assessed the efficacy of genipin in arresting tendon tear propagation in cyclic loading to failure. Genipin cross-linking secondary to a mid-substance biopsy-punch significantly reduced tissue strains, increased elastic modulus and increased resistance to fatigue failure. We conclude that genipin cross-linking of injured tendons holds potential for arresting tendon tear progression, and that implications of the treatment on matrix remodeling in living tendons should now be investigated.

  2. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis

    Science.gov (United States)

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa

    2016-03-01

    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  3. Mathematical Description of a Flexible Connection of Links and its Applications in Modeling the Joints of Spatial Linkage Mechanisms

    OpenAIRE

    Urbaś,Andrzej

    2016-01-01

    Abstract The general mathematical model of a flexible connection of links by means of spring-damping elements is presented in the paper. The formalism of homogeneous transformation matrices is used to derive formulas for the energy of spring deformation and the Rayleigh dissipation function of the spring-damping elements. The formulas have convenient forms to connect them to Lagrange equations of the second order. The replacement models of the spherical and revolute joint are presented as a p...

  4. Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification.

    Science.gov (United States)

    Curri, Vittorio; Carena, Andrea; Poggiolini, Pierluigi; Bosco, Gabriella; Forghieri, Fabrizio

    2013-02-11

    We show the extension of the Gaussian Noise model, which describes non-linear propagation in uncompensated links of multilevel modulation formats, to systems using Raman amplification. We successfully validate the analytical results by comparison with numerical simulations of Nyquist-WDM PM-16QAM channels transmission over multi-span uncompensated links made of a single fiber type and using hybrid EDFA/Raman amplification with counter-propagating pumps. We analyze two typical high- and low-dispersion fiber types. We show that Raman amplification always induces a limited non-linear interference enhancement compared to the dominant ASE noise reduction.

  5. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  6. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  7. Stochastic modeling and control system designs of the NASA/MSFC Ground Facility for large space structures: The maximum entropy/optimal projection approach

    Science.gov (United States)

    Hsia, Wei-Shen

    1986-01-01

    In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.

  8. Modelling the performance of the monogroove with screen heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station

    Science.gov (United States)

    Evans, Austin Lewis

    1987-01-01

    A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.

  9. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  10. Keratoconus, cross-link-induction, comparison between fitting exponential function and a fitting equation obtained by a mathematical model.

    Science.gov (United States)

    Albanese, A; Urso, R; Bianciardi, L; Rigato, M; Battisti, E

    2009-11-01

    With reference to experimental data in the literature, we present a model consisting of two elastic elements, conceived to simulate resistance to stretching, at constant velocity of elongation, of corneal tissue affected by keratoconus, treated with riboflavin and ultraviolet irradiation to induce cross-linking. The function describing model behaviour adapted to stress and strain values. It was found that the Young's moduli of the two elastic elements increased in cross-linked tissues and that cross-linking treatment therefore increased corneal rigidity. It is recognized that this observation is substantially in line with the conclusion reported in the literature, obtained using an exponential fitting function. It is observed, however, that the latter function implies a condition of non-zero stresses without strain, and does not provide interpretative insights for lack of any biomechanical basis. Above all, the function fits a singular trend, inexplicably claimed to be viscoelastic, with surprising perfection. In any case, using the reported data, the study demonstrates that a fitting equation obtained by a modelling approach not only shows the evident efficacy of the treatment, but also provides orientations for studying modifications induced in cross-linked fibres.

  11. Dynamic Model and Vibration Characteristics of Planar 3-RRR Parallel Manipulator with Flexible Intermediate Links considering Exact Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Lianchao Sheng

    2017-01-01

    Full Text Available Due to the complexity of the dynamic model of a planar 3-RRR flexible parallel manipulator (FPM, it is often difficult to achieve active vibration control algorithm based on the system dynamic model. To establish a simple and efficient dynamic model of the planar 3-RRR FPM to study its dynamic characteristics and build a controller conveniently, firstly, considering the effect of rigid-flexible coupling and the moment of inertia at the end of the flexible intermediate link, the modal function is determined with the pinned-free boundary condition. Then, considering the main vibration modes of the system, a high-efficiency coupling dynamic model is established on the basis of guaranteeing the model control accuracy. According to the model, the modal characteristics of the flexible intermediate link are analyzed and compared with the modal test results. The results show that the model can effectively reflect the main vibration modes of the planar 3-RRR FPM; in addition the model can be used to analyze the effects of inertial and coupling forces on the dynamics model and the drive torque of the drive motor. Because this model is of the less dynamic parameters, it is convenient to carry out the control program.

  12. Feature network models for proximity data : statistical inference, model selection, network representations and links with related models

    NARCIS (Netherlands)

    Frank, Laurence Emmanuelle

    2006-01-01

    Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor variab

  13. 78 FR 2293 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-01-10

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC..., to participate in this meeting by telephone. The WebEx link is https://nasa.webex.com/ ,...

  14. 76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Science.gov (United States)

    2011-09-20

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA... meeting by telephone. The WebEx link is https://nasa.webex.com/ , meeting number 992 537 420, and...

  15. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Science.gov (United States)

    2013-10-25

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA... PSS, to participate in this meeting by telephone. The WebEx link is https://nasa.webex.com/ ,...

  16. 76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Science.gov (United States)

    2011-06-01

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA... meeting by telephone. The WebEx link is https://nasa.webex.com/ , meeting number 990 482 047, and...

  17. NEURO FUZZY LINK BASED CLASSIFIER FOR THE ANALYSIS OF BEHAVIOR MODELS IN SOCIAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Indira Priya Ponnuvel

    2014-01-01

    Full Text Available In this study, a new link based classifier using neuro fuzzy logic has been proposed for analyzing the social behavior based on Weblog dataset. In this system, data are processed using a multistage structure. This system provides a diagnosis using a neuro fuzzy link based classifier that analyses the user’s behavior to specific diagnostic categories based on their cluster category in social networks. It uses random walks method to organize the labels. Since the links present in the social network graph frequently represent relationships among the users with respect to social contacts and behaviours, this work observes the links of the graph in order to identify the relationships represented in the graph between the users of the social network based on some new social network metrics and the past behaviour of the users. This work is useful to provide connection between consolidated features of users based on network data and also using the traditional metrics used in the analysis of social network users. From the experiments conducted in this research work, it is observed that the proposed work provides better classification accuracy due to the application of neuro fuzzy classification method in link analysis.

  18. NASA Tech Briefs, May 2013

    Science.gov (United States)

    2013-01-01

    Topics include: Test Waveform Applications for JPL STRS Operating Environment; Pneumatic Proboscis Heat-Flow Probe; Method to Measure Total Noise Temperature of a Wireless Receiver During Operation; Cursor Control Device Test Battery; Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex; ESD Test Apparatus for Soldering Irons; FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter; Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions; Silicon/Carbon Nanotube Photocathode for Splitting Water; Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor; Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements; RF Reference Switch for Spaceflight Radiometer Calibration; An Offload NIC for NASA, NLR, and Grid Computing; Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures; Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles; Self-Healing Nanocomposites for Reusable Composite Cryotanks; Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications; Aerogel-Based Multilayer Insulation with Micrometeoroid Protection; Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders; Optimized Radiator Geometries for Hot Lunar Thermal Environments; A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars); New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications; Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments; Using a Blender to Assess the Microbial Density of Encapsulated Organisms; Mixed Integer Programming and Heuristic Scheduling for Space Communication; Video Altimeter and Obstruction Detector for an Aircraft; Control Software for Piezo Stepping Actuators; Galactic Cosmic Ray Event-Based Risk Model (GERM) Code; Sasquatch Footprint Tool; and Multi-User Space Link Extension (SLE) System.

  19. Message passing theory for percolation models on multiplex networks with link overlap

    CERN Document Server

    Cellai, Davide; Bianconi, Ginestra

    2016-01-01

    Multiplex networks describe a large variety of complex systems including infrastructures, transportation networks and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers $M$. Specifically we propose and compare two message passing algorithms, that generalize the algorithm widely used to study the percolation transition in multiplex networks without link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading interpretation. The second algorithm describes the emergence of the mutually connected giant component, that is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase diagrams for the percolation and direc...

  20. Different atmospheric effects causing FSO link attenuation: experimental results and modelling in Czech Republic

    Science.gov (United States)

    Fiser, Ondrej; Brazda, Vladimir; Wilfert, Otakar

    2015-10-01

    The four year FSO link attenuation measurement concurrently with most important meteorological parameters was performed at our mountain observatory Milesovka. In this contribution we summarize and classify different atmospheric phenomena after the FSO link attenuation quantity. For all particular phenomena the CD curves, typical events and simple dependences on relevant atmospheric parameter(s) are presented. We consider the following phenomena (approximate specific attenuation in dB/km in brackets): 1. Fog and cloud (hundreds dB/km) 2. Rain and snow (tens dB/km) 3. Atmospheric turbulence (unit dB) 4. Clear air attenuation due to water vapour (unit dB or less)