WorldWideScience

Sample records for model linear equations

  1. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  2. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    Science.gov (United States)

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  3. Stochastic modeling of mode interactions via linear parabolized stability equations

    Science.gov (United States)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  4. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  5. Half-trek criterion for generic identifiability of linear structural equation models

    NARCIS (Netherlands)

    Foygel, R.; Draisma, J.; Drton, M.

    2012-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  6. Half-trek criterion for generic identifiability of linear structural equation models

    NARCIS (Netherlands)

    Foygel, R.; Draisma, J.; Drton, M.

    2011-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  7. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    International Nuclear Information System (INIS)

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  9. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    International Nuclear Information System (INIS)

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  10. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  11. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  12. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  13. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  14. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  15. Linear indices in nonlinear structural equation models : best fitting proper indices and other composites

    NARCIS (Netherlands)

    Dijkstra, T.K.; Henseler, J.

    2011-01-01

    The recent advent of nonlinear structural equation models with indices poses a new challenge to the measurement of scientific constructs. We discuss, exemplify and add to a family of statistical methods aimed at creating linear indices, and compare their suitability in a complex path model with

  16. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  17. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  18. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

    Science.gov (United States)

    Sanz, Luis; Alonso, Juan Antonio

    2017-12-01

    In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

  19. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    International Nuclear Information System (INIS)

    Gene Golub; Kwok Ko

    2009-01-01

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  20. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  1. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    Science.gov (United States)

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  2. Properties of linear integral equations related to the six-vertex model with disorder parameter II

    International Nuclear Information System (INIS)

    Boos, Hermann; Göhmann, Frank

    2012-01-01

    We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)

  3. Dyson-Schwinger equations for the non-linear σ-model

    International Nuclear Information System (INIS)

    Drouffe, J.M.; Flyvbjerg, H.

    1989-08-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived. They are polynomials in N, hence 1/N-expanded ab initio. A finite, closed set of equations is obtained by keeping only the leading term and the first correction term in this 1/N-series. These equations are solved numerically in two dimensions on square lattices measuring 50x50, 100x100, 200x200, and 400x400. They are also solved analytically at strong coupling and at weak coupling in a finite volume. In these two limits the solution is asymptotically identical to the exact strong- and weak-coupling series through the first three terms. Between these two limits, results for the magnetic susceptibility and the mass gap are identical to the Monte Carlo results available for N=3 and N=4 within a uniform systematic error of O(1/N 3 ), i.e. the results seem good to O(1/N 2 ), though obtained from equations that are exact only to O(1/N). This is understood by seeing the results as summed infinite subseries of the 1/N-series for the exact susceptibility and mass gap. We conclude that the kind of 1/N-expansion presented here converges as well as one might ever hope for, even for N as small as 3. (orig.)

  4. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    Science.gov (United States)

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  6. Basic linear partial differential equations

    CERN Document Server

    Treves, Francois

    1975-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  7. Variational linear algebraic equations method

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.

    1982-01-01

    A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

  8. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  9. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  10. A new accurate quadratic equation model for isothermal gas chromatography and its comparison with the linear model

    Science.gov (United States)

    Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

    2013-01-01

    The gas holdup time (tM) is a dominant parameter in gas chromatographic retention models. The difference equation (DE) model proposed by Wu et al. (J. Chromatogr. A 2012, http://dx.doi.org/10.1016/j.chroma.2012.07.077) excluded tM. In the present paper, we propose that the relationship between the adjusted retention time tRZ′ and carbon number z of n-alkanes follows a quadratic equation (QE) when an accurate tM is obtained. This QE model is the same as or better than the DE model for an accurate expression of the retention behavior of n-alkanes and model applications. The QE model covers a larger range of n-alkanes with better curve fittings than the linear model. The accuracy of the QE model was approximately 2–6 times better than the DE model and 18–540 times better than the LE model. Standard deviations of the QE model were approximately 2–3 times smaller than those of the DE model. PMID:22989489

  11. TBA equations for the mass gap in the O(2r) non-linear σ-models

    International Nuclear Information System (INIS)

    Balog, Janos; Hegedues, Arpad

    2005-01-01

    We propose TBA integral equations for 1-particle states in the O(n) non-linear σ-model for even n. The equations are conjectured on the basis of the analytic properties of the large volume asymptotics of the problem, which is explicitly constructed starting from Luscher's asymptotic formula. For small volumes the mass gap values computed numerically from the TBA equations agree very well with results of three-loop perturbation theory calculations, providing support for the validity of the proposed TBA system

  12. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    Science.gov (United States)

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  13. Systems of Inhomogeneous Linear Equations

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  14. Resummation of the 1/N-expansion of the non-linear σ-model by Dyson-Schwinger equations

    International Nuclear Information System (INIS)

    Drouffe, J.M.; Flyvbjerg, H.

    1988-02-01

    Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived and expanded in 1/N. A closed set of equations is obtained by keeping only the leading term and the first correction term in this expansion. These equations are solved numerically in 2 dimensions on square lattices of sizes 50x50 and 100x100. Results for the magnetic susceptibility and the mass gap are compared with predictions of the ordinary 1/N-expansion and with Monte Carlo results. The results obtained with the Dyson-Schwinger equations show the same scaling behavior as found in the Monte Carlo results. This is not the behavior predicted by the perturbative renormalization group. (orig.)

  15. Linearized gyro-kinetic equation

    International Nuclear Information System (INIS)

    Catto, P.J.; Tsang, K.T.

    1976-01-01

    An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated

  16. Linear determining equations for differential constraints

    International Nuclear Information System (INIS)

    Kaptsov, O V

    1998-01-01

    A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed

  17. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  18. Kalman filtering and smoothing for linear wave equations with model error

    International Nuclear Information System (INIS)

    Lee, Wonjung; McDougall, D; Stuart, A M

    2011-01-01

    Filtering is a widely used methodology for the incorporation of observed data into time-evolving systems. It provides an online approach to state estimation inverse problems when data are acquired sequentially. The Kalman filter plays a central role in many applications because it is exact for linear systems subject to Gaussian noise, and because it forms the basis for many approximate filters which are used in high-dimensional systems. The aim of this paper is to study the effect of model error on the Kalman filter, in the context of linear wave propagation problems. A consistency result is proved when no model error is present, showing recovery of the true signal in the large data limit. This result, however, is not robust: it is also proved that arbitrarily small model error can lead to inconsistent recovery of the signal in the large data limit. If the model error is in the form of a constant shift to the velocity, the filtering and smoothing distributions only recover a partial Fourier expansion, a phenomenon related to aliasing. On the other hand, for a class of wave velocity model errors which are time dependent, it is possible to recover the filtering distribution exactly, but not the smoothing distribution. Numerical results are presented which corroborate the theory, and also propose a computational approach which overcomes the inconsistency in the presence of model error, by relaxing the model

  19. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  20. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  1. Structural equation and log-linear modeling: a comparison of methods in the analysis of a study on caregivers' health

    Directory of Open Access Journals (Sweden)

    Rosenbaum Peter L

    2006-10-01

    Full Text Available Abstract Background In this paper we compare the results in an analysis of determinants of caregivers' health derived from two approaches, a structural equation model and a log-linear model, using the same data set. Methods The data were collected from a cross-sectional population-based sample of 468 families in Ontario, Canada who had a child with cerebral palsy (CP. The self-completed questionnaires and the home-based interviews used in this study included scales reflecting socio-economic status, child and caregiver characteristics, and the physical and psychological well-being of the caregivers. Both analytic models were used to evaluate the relationships between child behaviour, caregiving demands, coping factors, and the well-being of primary caregivers of children with CP. Results The results were compared, together with an assessment of the positive and negative aspects of each approach, including their practical and conceptual implications. Conclusion No important differences were found in the substantive conclusions of the two analyses. The broad confirmation of the Structural Equation Modeling (SEM results by the Log-linear Modeling (LLM provided some reassurance that the SEM had been adequately specified, and that it broadly fitted the data.

  2. Invariant imbedding equations for linear scattering problems

    International Nuclear Information System (INIS)

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  3. Modelling the short term interest with stochastic differential equation in continuous time: linear versus non-linear mode

    OpenAIRE

    2014-01-01

    M.Com. (Financial Economics) Recently, there has been a growth in the bond market. This growth has brought with it an ever-increasing volume and range of interest rate depended derivative products known as interest rate derivatives. Amongst the variables used in pricing these derivative products is the short-term interest rate. A numbers of short-term interest rate models that are used to fit the short-term interest rate exist. Therefore, understanding the features characterised by various...

  4. Isomorphism of Intransitive Linear Lie Equations

    Directory of Open Access Journals (Sweden)

    Jose Miguel Martins Veloso

    2009-11-01

    Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.

  5. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  6. Linear q-nonuniform difference equations

    International Nuclear Information System (INIS)

    Bangerezako, Gaspard

    2010-01-01

    We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)

  7. Linear and quasi-linear equations of parabolic type

    CERN Document Server

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  8. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  9. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  10. An algebraic method to develop well-posed PML models Absorbing layers, perfectly matched layers, linearized Euler equations

    International Nuclear Information System (INIS)

    Rahmouni, Adib N.

    2004-01-01

    In 1994, Berenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique proposed by Berenger (loc. cit.) leads to a system which has lost the most important properties of the original one: strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model [IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper can be extended to various hyperbolic problems

  11. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  12. Mathematical Model for Electric Field Sensor Based on Whispering Gallery Modes Using Navier’s Equation for Linear Elasticity

    Directory of Open Access Journals (Sweden)

    Amir R. Ali

    2017-01-01

    Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper.

  13. A guide to developing resource selection functions from telemetry data using generalized estimating equations and generalized linear mixed models

    Directory of Open Access Journals (Sweden)

    Nicola Koper

    2012-03-01

    Full Text Available Resource selection functions (RSF are often developed using satellite (ARGOS or Global Positioning System (GPS telemetry datasets, which provide a large amount of highly correlated data. We discuss and compare the use of generalized linear mixed-effects models (GLMM and generalized estimating equations (GEE for using this type of data to develop RSFs. GLMMs directly model differences among caribou, while GEEs depend on an adjustment of the standard error to compensate for correlation of data points within individuals. Empirical standard errors, rather than model-based standard errors, must be used with either GLMMs or GEEs when developing RSFs. There are several important differences between these approaches; in particular, GLMMs are best for producing parameter estimates that predict how management might influence individuals, while GEEs are best for predicting how management might influence populations. As the interpretation, value, and statistical significance of both types of parameter estimates differ, it is important that users select the appropriate analytical method. We also outline the use of k-fold cross validation to assess fit of these models. Both GLMMs and GEEs hold promise for developing RSFs as long as they are used appropriately.

  14. Computing with linear equations and matrices

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1983-01-01

    Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)

  15. Diffusion phenomenon for linear dissipative wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.

  16. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  17. Dual exponential polynomials and linear differential equations

    Science.gov (United States)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  18. Simplified Linear Equation Solvers users manual

    Energy Technology Data Exchange (ETDEWEB)

    Gropp, W. [Argonne National Lab., IL (United States); Smith, B. [California Univ., Los Angeles, CA (United States)

    1993-02-01

    The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.

  19. Diffusive limits for linear transport equations

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  20. Spectral theories for linear differential equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)

  1. A primer on linear models

    CERN Document Server

    Monahan, John F

    2008-01-01

    Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F

  2. Solvable linear potentials in the Dirac equation

    International Nuclear Information System (INIS)

    Dominguez-Adame, F.; Gonzalez, M.A.

    1990-01-01

    The Dirac equation for some linear potentials leading to Schroedinger-like oscillator equations for the upper and lower components of the Dirac spinor have been solved. Energy levels for the bound states appear in pairs, so that both particles and antiparticles may be bound with the same energy. For weak coupling, the spacing between levels is proportional to the coupling constant while in the strong limit those levels are depressed compared to the nonrelativistic ones

  3. Emmy Noether and Linear Evolution Equations

    Directory of Open Access Journals (Sweden)

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  4. The importance of statistical modelling in clinical research : Comparing multidimensional Rasch-, structural equation and linear regression models for analyzing the depression of relatives of psychiatric patients.

    Science.gov (United States)

    Alexandrowicz, Rainer W; Jahn, Rebecca; Friedrich, Fabian; Unger, Anne

    2016-06-01

    Various studies have shown that caregiving relatives of schizophrenic patients are at risk of suffering from depression. These studies differ with respect to the applied statistical methods, which could influence the findings. Therefore, the present study analyzes to which extent different methods may cause differing results. The present study contrasts by means of one data set the results of three different modelling approaches, Rasch Modelling (RM), Structural Equation Modelling (SEM), and Linear Regression Modelling (LRM). The results of the three models varied considerably, reflecting the different assumptions of the respective models. Latent trait models (i. e., RM and SEM) generally provide more convincing results by correcting for measurement error and the RM specifically proves superior for it treats ordered categorical data most adequately.

  5. Sensitivity analysis for linear structural equation models, longitudinal mediation with latent growth models and blended learning in biostatistics education

    Science.gov (United States)

    Sullivan, Adam John

    In chapter 1, we consider the biases that may arise when an unmeasured confounder is omitted from a structural equation model (SEM) and sensitivity analysis techniques to correct for such biases. We give an analysis of which effects in an SEM are and are not biased by an unmeasured confounder. It is shown that a single unmeasured confounder will bias not just one but numerous effects in an SEM. We present sensitivity analysis techniques to correct for biases in total, direct, and indirect effects when using SEM analyses, and illustrate these techniques with a study of aging and cognitive function. In chapter 2, we consider longitudinal mediation with latent growth curves. We define the direct and indirect effects using counterfactuals and consider the assumptions needed for identifiability of those effects. We develop models with a binary treatment/exposure followed by a model where treatment/exposure changes with time allowing for treatment/exposure-mediator interaction. We thus formalize mediation analysis with latent growth curve models using counterfactuals, makes clear the assumptions and extends these methods to allow for exposure mediator interactions. We present and illustrate the techniques with a study on Multiple Sclerosis(MS) and depression. In chapter 3, we report on a pilot study in blended learning that took place during the Fall 2013 and Summer 2014 semesters here at Harvard. We blended the traditional BIO 200: Principles of Biostatistics and created ID 200: Principles of Biostatistics and epidemiology. We used materials from the edX course PH207x: Health in Numbers: Quantitative Methods in Clinical & Public Health Research and used. These materials were used as a video textbook in which students would watch a given number of these videos prior to class. Using surveys as well as exam data we informally assess these blended classes from the student's perspective as well as a comparison of these students with students in another course, BIO 201

  6. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  7. On index-2 linear implicit difference equations

    NARCIS (Netherlands)

    Nguyen Huu Du, [No Value; Le Cong Loi, [No Value; Trinh Khanh Duy, [No Value; Vu Tien Viet, [No Value

    2011-01-01

    This paper deals with an index-2 notion for linear implicit difference equations (LIDEs) and with the solvability of initial value problems (IVPs) for index-2 LIDEs. Besides, the cocycle property as well as the multiplicative ergodic theorem of Oseledets type are also proved. (C) 2010 Elsevier Inc.

  8. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  9. Introduction to linear systems of differential equations

    CERN Document Server

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  10. Nonoscillation of half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Matucci, S.; Řehák, Pavel

    2010-01-01

    Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384

  11. On a representation of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Neuman, František

    2010-01-01

    Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184

  12. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.

  13. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Science.gov (United States)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  14. [Process monitoring of dissolution of valsartan and hydrochlorothiazide tablets by fiber-chemical sensor assisted by mathematical separation model of linear equations].

    Science.gov (United States)

    Ding, Hai-Yan; Li, Gai-Ru; Yu, Ying-Ge; Guo, Wei; Zhi, Ling; Li, Xin-Xia

    2014-04-01

    A method for on-line monitoring the dissolution of Valsartan and hydrochlorothiazide tablets assisted by mathematical separation model of linear equations was established. UV spectrums of valsartan and hydrochlorothiazide were overlapping completely at the maximum absorption wavelength respectively. According to the Beer-Lambert principle of absorbance additivity, the absorptivity of Valsartan and hydrochlorothiazide was determined at the maximum absorption wavelength, and the dissolubility of Valsartan and hydrochlorothiazide tablets was detected by fiber-optic dissolution test (FODT) assisted by the mathematical separation model of linear equations and compared with the HPLC method. Results show that two ingredients were real-time determined simultaneously in given medium. There was no significant difference for FODT compared with HPLC (p > 0.05). Due to the dissolution behavior consistency, the preparation process of different batches was stable and with good uniformity. The dissolution curves of valsartan were faster and higher than hydrochlorothiazide. The dissolutions at 30 min of Valsartan and hydrochlorothiazide were concordant with US Pharmacopoeia. It was concluded that fiber-optic dissolution test system assisted by the mathematical separation model of linear equations that can detect the dissolubility of Valsartan and hydrochlorothiazide simultaneously, and get dissolution profiles and overall data, which can directly reflect the dissolution speed at each time. It can provide the basis for establishing standards of the drug. Compared to HPLC method with one-point data, there are obvious advantages to evaluate and analyze quality of sampling drug by FODT.

  15. linear-quadratic-linear model

    Directory of Open Access Journals (Sweden)

    Tanwiwat Jaikuna

    2017-02-01

    Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  16. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  17. Quantum osp-invariant non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  18. Linear measure functional differential equations with infinite delay

    OpenAIRE

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  19. Dark energy cosmology with generalized linear equation of state

    International Nuclear Information System (INIS)

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  20. Schwarz maps of algebraic linear ordinary differential equations

    Science.gov (United States)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  1. Construction of a Roe linearization for the ideal MHD equations

    International Nuclear Information System (INIS)

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  2. Novel algorithm of large-scale simultaneous linear equations

    International Nuclear Information System (INIS)

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-01-01

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.

  3. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  4. Linear models with R

    CERN Document Server

    Faraway, Julian J

    2014-01-01

    A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz

  5. Stability of Linear Equations--Algebraic Approach

    Science.gov (United States)

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  6. Oscillation theory of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  7. Development of a shortleaf pine individual-tree growth equation using non-linear mixed modeling techniques

    Science.gov (United States)

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2010-01-01

    Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...

  8. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  9. Geometric Insight into Scalar Combination of Linear Equations

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 14; Issue 11. Geometric Insight into Scalar Combination of Linear Equations. Ranjit Konkar. Classroom Volume 14 Issue 11 November 2009 pp 1092-1097 ... Keywords. Linear algebra; linear dependence; linear combination; family of lines; family of planes.

  10. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  11. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  12. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  13. Linear orbit parameters for the exact equations of motion

    International Nuclear Information System (INIS)

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  14. GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.

  15. On some perturbation techniques for quasi-linear parabolic equations

    Directory of Open Access Journals (Sweden)

    Igor Malyshev

    1990-01-01

    Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in “explicit” form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.

  16. A General Linear Method for Equating with Small Samples

    Science.gov (United States)

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  17. Chaotic dynamics and diffusion in a piecewise linear equation

    International Nuclear Information System (INIS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-01-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems

  18. Chaotic dynamics and diffusion in a piecewise linear equation

    Science.gov (United States)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  19. Iterative solution of linear equations in ODE codes. [Krylov subspaces

    Energy Technology Data Exchange (ETDEWEB)

    Gear, C. W.; Saad, Y.

    1981-01-01

    Each integration step of a stiff equation involves the solution of a nonlinear equation, usually by a quasi-Newton method that leads to a set of linear problems. Iterative methods for these linear equations are studied. Of particular interest are methods that do not require an explicit Jacobian, but can work directly with differences of function values using J congruent to f(x + delta) - f(x). Some numerical experiments using a modification of LSODE are reported. 1 figure, 2 tables.

  20. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  1. Linear algebra a first course with applications to differential equations

    CERN Document Server

    Apostol, Tom M

    2014-01-01

    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

  2. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne

    2003-01-01

    Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

  3. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  4. Solving polynomial differential equations by transforming them to linear functional-differential equations

    OpenAIRE

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  5. Resonance tongues in the linear Sitnikov equation

    Science.gov (United States)

    Misquero, Mauricio

    2018-04-01

    In this paper, we deal with a Hill's equation, depending on two parameters e\\in [0,1) and Λ >0, that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the (e,Λ )-plane presents unusual resonance tongues emerging from points (0,(n/2)^2), n=1,2,\\ldots The tongues bounded by curves of eigenvalues corresponding to 2π -periodic solutions collapse into a single curve of coexistence (for which there exist two independent 2π -periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of e\\in [0,1). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small Λ -interval [1, 9 / 8] as e→ 1^-. We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov (N+1)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.

  6. KAM for the non-linear Schroedinger equation

    CERN Document Server

    Eliasson, L H

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...

  7. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  8. Parameterized Linear Longitudinal Airship Model

    Science.gov (United States)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  9. Linear and nonlinear analogues of the Schroedinger equation in the contextual approach in quantum mechanics

    International Nuclear Information System (INIS)

    Khrennikov, A.Yu.

    2005-01-01

    One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru

  10. Subroutine for series solutions of linear differential equations

    International Nuclear Information System (INIS)

    Tasso, H.; Steuerwald, J.

    1976-02-01

    A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de

  11. On a class of fourth order linear recurrence equations

    Directory of Open Access Journals (Sweden)

    Sui-Sun Cheng

    1984-01-01

    Full Text Available This paper is concerned with sequences that satisfy a class of fourth order linear recurrence equations. Basic properties of such sequences are derived. In addition, we discuss the oscillatory and nonoscillatory behavior of such sequences.

  12. Exact solution of some linear matrix equations using algebraic methods

    Science.gov (United States)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  13. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  14. Linear matrix differential equations of higher-order and applications

    Directory of Open Access Journals (Sweden)

    Mustapha Rachidi

    2008-07-01

    Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.

  15. Local energy decay for linear wave equations with variable coefficients

    Science.gov (United States)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  16. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...

  17. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  18. Focal decompositions for linear differential equations of the second order

    Directory of Open Access Journals (Sweden)

    L. Birbrair

    2003-01-01

    two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.

  19. Asymptotic properties for half-linear difference equations

    Czech Academy of Sciences Publication Activity Database

    Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo

    2006-01-01

    Roč. 131, č. 4 (2006), s. 347-363 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/04/0580 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear second order difference equation * nonoscillatory solutions * Riccati difference equation Subject RIV: BA - General Mathematics

  20. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  1. An implicit spectral formula for generalized linear Schroedinger equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  2. Slave equations for spin models

    International Nuclear Information System (INIS)

    Catterall, S.M.; Drummond, I.T.; Horgan, R.R.

    1992-01-01

    We apply an accelerated Langevin algorithm to the simulation of continuous spin models on the lattice. In conjunction with the evolution equation for the spins we use slave equations to compute estimators for the connected correlation functions of the model. In situations for which the symmetry of the model is sufficiently strongly broken by an external field these estimators work well and yield a signal-to-noise ratio for the Green function at large time separations more favourable than that resulting from the standard method. With the restoration of symmetry, however, the slave equation estimators exhibit an intrinsic instability associated with the growth of a power law tail in the probability distributions for the measured quantities. Once this tail has grown sufficiently strong it results in a divergence of the variance of the estimator which then ceases to be useful for measurement purposes. The instability of the slave equation method in circumstances of weak symmetry breaking precludes its use in determining the mass gap in non-linear sigma models. (orig.)

  3. Visual construction of characteristic equations of linear electric circuits

    Directory of Open Access Journals (Sweden)

    V.V. Kostyukov

    2013-12-01

    Full Text Available A visual identification method with application of partial circuits is developed for characteristic equation coefficients of transients in linear electric circuits. The method is based on interrelationship between the roots of algebraic polynomial and its coefficients. The method is illustrated with an example of a third-order linear electric circuit.

  4. A local-global problem for linear differential equations

    NARCIS (Netherlands)

    Put, Marius van der; Reversat, Marc

    2008-01-01

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  5. A local-global problem for linear differential equations

    NARCIS (Netherlands)

    Put, Marius van der; Reversat, Marc

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  6. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  7. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  8. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  9. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  10. Non linear viscoelastic models

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2011-01-01

    Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....

  11. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  12. Periodic feedback stabilization for linear periodic evolution equations

    CERN Document Server

    Wang, Gengsheng

    2016-01-01

    This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

  13. Infinite sets of conservation laws for linear and nonlinear field equations

    International Nuclear Information System (INIS)

    Mickelsson, J.

    1984-01-01

    The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

  14. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    International Nuclear Information System (INIS)

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  15. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    Science.gov (United States)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  16. HESS Opinions: Linking Darcy's equation to the linear reservoir

    Science.gov (United States)

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  17. Solution of linear transport equation using Chebyshev polynomials and Laplace transform

    International Nuclear Information System (INIS)

    Cardona, A.V.; Vilhena, M.T.M.B. de

    1994-01-01

    The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)

  18. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Science.gov (United States)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  19. High-order quantum algorithm for solving linear differential equations

    International Nuclear Information System (INIS)

    Berry, Dominic W

    2014-01-01

    Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

  20. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  1. Linear Einstein equations and Kerr-Schild maps

    International Nuclear Information System (INIS)

    Gergely, Laszlo A

    2002-01-01

    We prove that given a solution of the Einstein equations g ab for the matter field T ab , an autoparallel null vector field l a and a solution (l a l c , T ac ) of the linearized Einstein equation on the given background, the Kerr-Schild metric g ac + λl a l c (λ arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor T ac + λT ac + λ 2 l (a T c)b l b . The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed spacetime due to Guerses and Guersey

  2. A Hamiltonian functional for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  3. Linearized pseudo-Einstein equations on the Heisenberg group

    Science.gov (United States)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  4. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  5. New non-linear modified massless Klein-Gordon equation

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  6. Exact non-linear equations for cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  7. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  8. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  9. Preliminary results in implementing a model of the world economy on the CYBER 205: A case of large sparse nonsymmetric linear equations

    Science.gov (United States)

    Szyld, D. B.

    1984-01-01

    A brief description of the Model of the World Economy implemented at the Institute for Economic Analysis is presented, together with our experience in converting the software to vector code. For each time period, the model is reduced to a linear system of over 2000 variables. The matrix of coefficients has a bordered block diagonal structure, and we show how some of the matrix operations can be carried out on all diagonal blocks at once.

  10. Constructive Development of the Solutions of Linear Equations in Introductory Ordinary Differential Equations

    Science.gov (United States)

    Mallet, D. G.; McCue, S. W.

    2009-01-01

    The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…

  11. Nonoscillation criteria for half-linear second order difference equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej; Řehák, Pavel

    2001-01-01

    Roč. 42, - (2001), s. 453-464 ISSN 0898-1221 R&D Projects: GA ČR GA201/98/0677; GA ČR GA201/99/0295 Keywords : half-linear difference equation%nonoscillation criteria%variational principle Subject RIV: BA - General Mathematics Impact factor: 0.383, year: 2001

  12. Lie symmetries and differential galois groups of linear equations

    NARCIS (Netherlands)

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  13. Asymptotic formulae for solutions of half-linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2017-01-01

    Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581

  14. On oscillation of second-order linear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, A.; Šremr, Jiří

    2011-01-01

    Roč. 54, - (2011), s. 69-81 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear second-order ordinary differential equation * Kamenev theorem * oscillation Subject RIV: BA - General Mathematics http://www.rmi.ge/jeomj/memoirs/vol54/abs54-4.htm

  15. Exponential estimates for solutions of half-linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2015-01-01

    Roč. 147, č. 1 (2015), s. 158-171 ISSN 0236-5294 Institutional support: RVO:67985840 Keywords : half-linear differential equation * decreasing solution * increasing solution * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.469, year: 2015 http://link.springer.com/article/10.1007%2Fs10474-015-0522-9

  16. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  17. On nonnegative solutions of second order linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander; Vodstrčil, Petr

    2004-01-01

    Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics

  18. Radial solutions to semilinear elliptic equations via linearized operators

    Directory of Open Access Journals (Sweden)

    Phuong Le

    2017-04-01

    Full Text Available Let $u$ be a classical solution of semilinear elliptic equations in a ball or an annulus in $\\mathbb{R}^N$ with zero Dirichlet boundary condition where the nonlinearity has a convex first derivative. In this note, we prove that if the $N$-th eigenvalue of the linearized operator at $u$ is positive, then $u$ must be radially symmetric.

  19. Minimal solution of linear formed fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  20. Insights into the School Mathematics Tradition from Solving Linear Equations

    Science.gov (United States)

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  1. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  2. Asymptotic solutions and spectral theory of linear wave equations

    International Nuclear Information System (INIS)

    Adam, J.A.

    1982-01-01

    This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)

  3. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  4. Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

    International Nuclear Information System (INIS)

    Goreac, D.

    2009-01-01

    The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case

  5. Experimental quantum computing to solve systems of linear equations.

    Science.gov (United States)

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  6. Linear fractional diffusion-wave equation for scientists and engineers

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...

  7. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  8. What happens to linear properties as we move from the Klein-Gordon equation to the sine-Gordon equation

    International Nuclear Information System (INIS)

    Kovalyov, Mikhail

    2010-01-01

    In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.

  9. Oscillatory solutions of the Cauchy problem for linear differential equations

    Directory of Open Access Journals (Sweden)

    Gro Hovhannisyan

    2015-06-01

    Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.

  10. Infinite sets of conservation laws for linear and non-linear field equations

    International Nuclear Information System (INIS)

    Niederle, J.

    1984-01-01

    The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

  11. Refined Fuchs inequalities for systems of linear differential equations

    International Nuclear Information System (INIS)

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  12. Inhomogeneous linear equation in Rota-Baxter algebra

    OpenAIRE

    Pietrzkowski, Gabriel

    2014-01-01

    We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.

  13. A general method for enclosing solutions of interval linear equations

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2012-01-01

    Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012

  14. Disformal invariance of continuous media with linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Celoria, Marco [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, L' Aquila, I-67100 Italy (Italy); Matarrese, Sabino [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, L' Aquila, I-67010 Italy (Italy)

    2017-02-01

    We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.

  15. A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations

    NARCIS (Netherlands)

    Dorren, H.J.S.

    1998-01-01

    It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of

  16. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    OpenAIRE

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  17. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  18. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  19. Runge-Kutta Methods for Linear Ordinary Differential Equations

    Science.gov (United States)

    Zingg, David W.; Chisholm, Todd T.

    1997-01-01

    Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.

  20. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  1. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  2. Approximate solution to neutron transport equation with linear anisotropic scattering

    International Nuclear Information System (INIS)

    Coppa, G.; Ravetto, P.; Sumini, M.

    1983-01-01

    A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)

  3. General solutions of second-order linear difference equations of Euler type

    Directory of Open Access Journals (Sweden)

    Akane Hongyo

    2017-01-01

    Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.

  4. First order linear ordinary differential equations in associative algebras

    Directory of Open Access Journals (Sweden)

    Gordon Erlebacher

    2004-01-01

    Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.

  5. A Solution to the Fundamental Linear Fractional Order Differential Equation

    Science.gov (United States)

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  6. Linear stochastic differential equations with anticipating initial conditions

    DEFF Research Database (Denmark)

    Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib

    In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....

  7. Oscillation of solutions of some higher order linear differential equations

    Directory of Open Access Journals (Sweden)

    Hong-Yan Xu

    2009-11-01

    Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.

  8. Introduction to generalized linear models

    CERN Document Server

    Dobson, Annette J

    2008-01-01

    Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...

  9. Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations

    Science.gov (United States)

    Sitompul, R. S. I.; Budayasa, I. K.; Masriyah

    2018-01-01

    This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.

  10. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    International Nuclear Information System (INIS)

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  11. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  12. Solving the Linear 1D Thermoelasticity Equations with Pure Delay

    Directory of Open Access Journals (Sweden)

    Denys Ya. Khusainov

    2015-01-01

    Full Text Available We propose a system of partial differential equations with a single constant delay τ>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as τ→0. Finally, we deduce an explicit solution representation for the delay problem.

  13. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  14. (Non) linear regression modelling

    NARCIS (Netherlands)

    Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.

    2012-01-01

    We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or

  15. Equations for the non linear evolution of the resistive tearing modes in toroidal plasmas

    International Nuclear Information System (INIS)

    Edery, D.; Pellat, R.; Soule, J.L.

    1979-09-01

    Following the tokamak ordering, we simplify the resistive MHD equations in toroidal geometry. We obtain a closed system of non linear equations for two scalar potentials of the magnetic and velocity fields and for plasma density and temperature. If we expand these equations in the inverse of aspect ratio they are exact to the two first orders. Our formalism should correctly describe the mode coupling by curvature effects /1/ and the toroidal displacement of magnetic surfaces /2/. It provides a natural extension of the well known cylindrical model /3/ and is now being solved on computer

  16. Supporting second grade lower secondary school students’ understanding of linear equation system in two variables using ethnomathematics

    Science.gov (United States)

    Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.

    2018-03-01

    The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.

  17. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  18. Explorative methods in linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

  19. Optimal overlapping of waveform relaxation method for linear differential equations

    International Nuclear Information System (INIS)

    Yamada, Susumu; Ozawa, Kazufumi

    2000-01-01

    Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)

  20. Parallel computation for solving the tridiagonal linear system of equations

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  1. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  2. Linear analysis of the momentum cooling Fokker-Planck equation

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.

    1989-01-01

    In order to optimize the extraction scheme used to take antiprotons out of the accumulator, it is necessary to understand the basic processes involved. At present, six antiproton bunches per Tevatron store are removed sequentially by RF unstacking from the accumulator. The phase space dynamics of this process, with its accompanying phase displacement deceleration and phase space dilution of portions of the stack, can be modelled by numerical solution of the longitudinal equations of motion for a large number of particles. We have employed the tracking code ESME for this purpose. In between RF extractions, however, the stochastic cooling system is turned on for a short time, and we must take into account the effect of momentum stochastic cooling on the antiproton energy spectrum. This process is described by the Fokker-Planck equation, which models the evolution of the antiproton stack energy distribution by accounting for the cooling through an applied coherent drag force and the competing heating of the stack due to diffusion, which can arise from intra-beam scattering, amplifier noise and coherent (Schottky) effects. In this note we examine the aspects of the Fokker-Planck in the regime where the nonlinear terms due to Schottky effects are small. This discussion ultimately leads to solution of the equation in terms of an orthonormal set of functions which are closely related to the quantum simple-harmonic oscillator wave-functions. 5 refs

  3. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    International Nuclear Information System (INIS)

    Mueller, E.

    2007-01-01

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  4. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, E.

    2007-12-15

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  5. A three operator split-step method covering a larger set of non-linear partial differential equations

    Science.gov (United States)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  6. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

  7. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  8. Handbook of structural equation modeling

    CERN Document Server

    Hoyle, Rick H

    2012-01-01

    The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu

  9. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  10. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  11. Linear homotopy solution of nonlinear systems of equations in geodesy

    Science.gov (United States)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  12. On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    International Nuclear Information System (INIS)

    Man, Yiu-Kwong

    2010-01-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)

  13. Solutions to estimation problems for scalar hamilton-jacobi equations using linear programming

    KAUST Repository

    Claudel, Christian G.; Chamoin, Timothee; Bayen, Alexandre M.

    2014-01-01

    This brief presents new convex formulations for solving estimation problems in systems modeled by scalar Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula, we show that the constraints resulting from a HJ equation are convex, and can be written as a set of linear inequalities. We use this fact to pose various (and seemingly unrelated) estimation problems related to traffic flow-engineering as a set of linear programs. In particular, we solve data assimilation and data reconciliation problems for estimating the state of a system when the model and measurement constraints are incompatible. We also solve traffic estimation problems, such as travel time estimation or density estimation. For all these problems, a numerical implementation is performed using experimental data from the Mobile Century experiment. In the context of reproducible research, the code and data used to compute the results presented in this brief have been posted online and are accessible to regenerate the results. © 2013 IEEE.

  14. Running vacuum cosmological models: linear scalar perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  15. Generalized Ordinary Differential Equation Models.

    Science.gov (United States)

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  16. Stationary solutions of linear stochastic delay differential equations: applications to biological systems.

    Science.gov (United States)

    Frank, T D; Beek, P J

    2001-08-01

    Recently, Küchler and Mensch [Stochastics Stochastics Rep. 40, 23 (1992)] derived exact stationary probability densities for linear stochastic delay differential equations. This paper presents an alternative derivation of these solutions by means of the Fokker-Planck approach introduced by Guillouzic [Phys. Rev. E 59, 3970 (1999); 61, 4906 (2000)]. Applications of this approach, which is argued to have greater generality, are discussed in the context of stochastic models for population growth and tracking movements.

  17. Decoherence of histories and hydrodynamic equations for a linear oscillator chain

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    2003-01-01

    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities

  18. Linear analysis of neoclassical tearing mode based on the four-field reduced neoclassical MHD equation

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Yagi, Masatoshi; Itoh, Sanae-I.

    2003-01-01

    The linear neoclassical tearing mode is investigated using the four-field reduced neoclassical MHD equations, in which the fluctuating ion parallel flow and ion neoclassical viscosity are taken into account. The dependences of the neoclassical tearing mode on collisionality, diamagnetic drift and q profile are investigated. These results are compared with the results from the conventional three-field model. It is shown that the linear neoclassical tearing mode is stabilized by the ion neoclassical viscosity in the banana regime even if Δ' > 0. (author)

  19. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    International Nuclear Information System (INIS)

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-01-01

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  20. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  1. Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes

    Science.gov (United States)

    Seaman, Brian; Osler, Thomas J.

    2004-01-01

    A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…

  2. On a Linear Equation Arising in Isometric Embedding of Torus-like Surface

    Institute of Scientific and Technical Information of China (English)

    Chunhe LI

    2009-01-01

    The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.

  3. Contact symmetries of general linear second-order ordinary differential equations: letter to the editor

    NARCIS (Netherlands)

    Martini, Ruud; Kersten, P.H.M.

    1983-01-01

    Using 1-1 mappings, the complete symmetry groups of contact transformations of general linear second-order ordinary differential equations are determined from two independent solutions of those equations, and applied to the harmonic oscillator with and without damping.

  4. Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  5. Some additional remarks on the cumulant expansion for linear stochastic differential equations

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumular expasions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  6. Decomposable log-linear models

    DEFF Research Database (Denmark)

    Eriksen, Poul Svante

    can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...

  7. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  8. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  9. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    Science.gov (United States)

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  10. Linear and Generalized Linear Mixed Models and Their Applications

    CERN Document Server

    Jiang, Jiming

    2007-01-01

    This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested

  11. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  12. Appearance of eigen modes for the linearized Vlasov-Poisson equation

    International Nuclear Information System (INIS)

    Degond, P.

    1983-01-01

    In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr

  13. Linear measure functional differential equations with infinite delay

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract

  14. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  15. Scilab software as an alternative low-cost computing in solving the linear equations problem

    Science.gov (United States)

    Agus, Fahrul; Haviluddin

    2017-02-01

    Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

  16. Multicollinearity in hierarchical linear models.

    Science.gov (United States)

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Performance prediction of gas turbines by solving a system of non-linear equations

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J

    1998-09-01

    This study presents a novel method for implementing the performance prediction of gas turbines from the component models. It is based on solving the non-linear set of equations that corresponds to the process equations, and the mass and energy balances for the engine. General models have been presented for determining the steady state operation of single components. Single and multiple shad arrangements have been examined with consideration also being given to heat regeneration and intercooling. Emphasis has been placed upon axial gas turbines of an industrial scale. Applying the models requires no information of the structural dimensions of the gas turbines. On comparison with the commonly applied component matching procedures, this method incorporates several advantages. The application of the models for providing results is facilitated as less attention needs to be paid to calculation sequences and routines. Solving the set of equations is based on zeroing co-ordinate functions that are directly derived from the modelling equations. Therefore, controlling the accuracy of the results is easy. This method gives more freedom for the selection of the modelling parameters since, unlike for the matching procedures, exchanging these criteria does not itself affect the algorithms. Implicit relationships between the variables are of no significance, thus increasing the freedom for the modelling equations as well. The mathematical models developed in this thesis will provide facilities to optimise the operation of any major gas turbine configuration with respect to the desired process parameters. The computational methods used in this study may also be adapted to any other modelling problems arising in industry. (orig.) 36 refs.

  18. Localized solutions of non-linear Klein--Gordon equations

    International Nuclear Information System (INIS)

    Werle, J.

    1977-05-01

    Nondissipative, stationary solutions for a class of nonlinear Klein-Gordon equations for a scalar field were found explicitly. Since the field is different from zero only inside a sphere of definite radius, the solutions are called quantum droplets

  19. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  20. Applicability of refined Born approximation to non-linear equations

    International Nuclear Information System (INIS)

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  1. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  2. Ising models and soliton equations

    International Nuclear Information System (INIS)

    Perk, J.H.H.; Au-Yang, H.

    1985-01-01

    Several new results for the critical point of correlation functions of the Hirota equation are derived within the two-dimensional Ising model. The recent success of the conformal-invariance approach in the determination of a critical two-spin correration function is analyzed. The two-spin correlation function is predicted to be rotationally invariant and to decay with a power law in this approach. In the approach suggested here systematic corrections due to the underlying lattice breaking the rotational invariance are obtained

  3. POSITIVE SOLUTIONS TO SEMI-LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we study the existence of positive periodic solution to some second- order semi-linear differential equation in Banach space.By the fixed point index theory, we prove that the semi-linear differential equation has two positive periodic solutions.

  4. On the Linearized Darboux Equation Arising in Isometric Embedding of the Alexandrov Positive Annulus

    Institute of Scientific and Technical Information of China (English)

    Chunhe LI

    2013-01-01

    In the present paper,the solvability condition of the linearized Gauss-Codazzi system and the solutions to the homogenous system are given.In the meantime,the Solvability of a relevant linearized Darboux equation is given.The equations are arising in a geometric problem which is concerned with the realization of the Alexandrov's positive annulus in R3.

  5. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    International Nuclear Information System (INIS)

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  6. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  7. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Science.gov (United States)

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  8. An Evaluation of Five Linear Equating Methods for the NEAT Design

    Science.gov (United States)

    Mroch, Andrew A.; Suh, Youngsuk; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    This study uses the results of two previous papers (Kane, Mroch, Suh, & Ripkey, this issue; Suh, Mroch, Kane, & Ripkey, this issue) and the literature on linear equating to evaluate five linear equating methods along several dimensions, including the plausibility of their assumptions and their levels of bias and root mean squared difference…

  9. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Science.gov (United States)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. linear model are compared to those

  10. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  11. A canonical form of the equation of motion of linear dynamical systems

    Science.gov (United States)

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  12. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  13. On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Dietrich, K.; Vautherin, D.

    1985-01-01

    We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr

  14. A non linear half space problem for radiative transfer equations. Application to the Rosseland approximation

    International Nuclear Information System (INIS)

    Sentis, R.

    1984-07-01

    The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms

  15. Hyers-Ulam stability for second-order linear differential equations with boundary conditions

    Directory of Open Access Journals (Sweden)

    Pasc Gavruta

    2011-06-01

    Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.

  16. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    Science.gov (United States)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  17. From the hypergeometric differential equation to a non-linear Schrödinger one

    International Nuclear Information System (INIS)

    Plastino, A.; Rocca, M.C.

    2015-01-01

    We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.

  18. An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...

  19. Integration of differential equations by the pseudo-linear (PL) approximation

    International Nuclear Information System (INIS)

    Bonalumi, Riccardo A.

    1998-01-01

    A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method

  20. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  1. Unbounded solutions of quasi-linear difference equations

    Czech Academy of Sciences Publication Activity Database

    Cecchi, M.; Došlá, Zuzana; Marini, M.

    2003-01-01

    Roč. 45, 10-11 (2003), s. 1113-1123 ISSN 0898-1221 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * possitive increasing solution * strongly increasing solution Subject RIV: BA - General Mathematics Impact factor: 0.498, year: 2003

  2. Ten-Year-Old Students Solving Linear Equations

    Science.gov (United States)

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  3. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  4. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  5. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    Science.gov (United States)

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  6. The Embedding Method for Linear Partial Differential Equations

    Indian Academy of Sciences (India)

    The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...

  7. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  8. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  9. Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations

    Directory of Open Access Journals (Sweden)

    Petr Hasil

    2016-08-01

    Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.

  10. Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation

    International Nuclear Information System (INIS)

    Mielke, E.W.; Scherzer, R.

    1980-10-01

    As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)

  11. Anisotropic compacts stars on paraboloidal spacetime with linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.O. [The Maharaja Sayajirao University of Baroda, Department of Mathematics, Faculty of Science, Vadodara, Gujarat (India); Pandya, D.M. [Pandit Deendayal Petroleum University, Department of Mathematics and Computer Science, Gandhinagar, Gujarat (India)

    2017-06-15

    New exact solutions of Einstein's field equations (EFEs) by assuming a linear equation of state, p{sub r} = α(ρ-ρ{sub R}), where p{sub r} is the radial pressure and ρ{sub R} is the surface density, are obtained on the background of a paraboloidal spacetime. By assuming estimated mass and radius of strange star candidate 4U 1820-30, various physical and energy conditions are used for estimating the range of parameter α. The suitability of the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX J1808.4-3658 has been explored and respective ranges of α, for which all physical and energy conditions are satisfied throughout the distribution, are obtained. (orig.)

  12. The Cauchy problem for non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  13. Linear relativistic gyrokinetic equation in general magnetically confined plasmas

    International Nuclear Information System (INIS)

    Tsai, S.T.; Van Dam, J.W.; Chen, L.

    1983-08-01

    The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained

  14. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  15. Nonabelian Gauged Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    Yongbin RUAN

    2017-01-01

    The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.

  16. KAM for the non-linear Schroedinger equation a short presentation

    CERN Document Server

    Eliasson, H L

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep \\frac{\\p F}{\\p \\bar u}(x,u,\\bar u) ;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real and $F$ is a real analytic function in $\\Re u$, $\\Im u$ and $x$. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it ...

  17. Differential equations and integrable models: the SU(3) case

    International Nuclear Information System (INIS)

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  18. An Etude in non-linear Dyson-Schwinger Equations

    International Nuclear Information System (INIS)

    Kreimer, Dirk; Yeats, Karen

    2006-01-01

    We show how to use the Hopf algebra structure of quantum field theory to derive nonperturbative results for the short-distance singular sector of a renormalizable quantum field theory in a simple but generic example. We discuss renormalized Green functions G R (α,L) in such circumstances which depend on a single scale L=lnq 2 /μ 2 and start from an expansion in the scale G R (α,L)=1+-bar k γ k (α)L k . We derive recursion relations between the γ k which make full use of the renormalization group. We then show how to determine the Green function by the use of a Mellin transform on suitable integral kernels. We exhibit our approach in an example for which we find a functional equation relating weak and strong coupling expansions

  19. Perturbations of linear delay differential equations at the verge of instability.

    Science.gov (United States)

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  20. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    International Nuclear Information System (INIS)

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  1. Stability of the trivial solution for linear stochastic differential equations with Poisson white noise

    International Nuclear Information System (INIS)

    Grigoriu, Mircea; Samorodnitsky, Gennady

    2004-01-01

    Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method

  2. An implicit iterative scheme for solving large systems of linear equations

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  3. On a class of strongly degenerate and singular linear elliptic equation

    International Nuclear Information System (INIS)

    Duong Minh Duc, D.M.; Le Dung.

    1992-11-01

    We consider a class of strongly degenerate linear elliptic equation. The boundedness and the Holder regularity of the weak solutions in the weighted Sobolev-Hardy spaces will be studied. (author). 9 refs

  4. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Directory of Open Access Journals (Sweden)

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.

  5. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    Science.gov (United States)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  6. Optimal Homotopy Asymptotic Method for Solving the Linear Fredholm Integral Equations of the First Kind

    Directory of Open Access Journals (Sweden)

    Mohammad Almousa

    2013-01-01

    Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

  7. Some applications of linear difference equations in finance with wolfram|alpha and maple

    Directory of Open Access Journals (Sweden)

    Dana Rıhová

    2014-12-01

    Full Text Available The principle objective of this paper is to show how linear difference equations can be applied to solve some issues of financial mathematics. We focus on the area of compound interest and annuities. In both cases we determine appropriate recursive rules, which constitute the first order linear difference equations with constant coefficients, and derive formulas required for calculating examples. Finally, we present possibilities of application of two selected computer algebra systems Wolfram|Alpha and Maple in this mathematical area.

  8. Solving Linear Equations by Classical Jacobi-SR Based Hybrid Evolutionary Algorithm with Uniform Adaptation Technique

    OpenAIRE

    Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar

    2013-01-01

    Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...

  9. Growth of meromorphic solutions of higher-order linear differential equations

    Directory of Open Access Journals (Sweden)

    Wenjuan Chen

    2009-01-01

    Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.

  10. Solution of linear ordinary differential equations by means of the method of variation of arbitrary constants

    DEFF Research Database (Denmark)

    Mejlbro, Leif

    1997-01-01

    An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....

  11. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  12. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  13. A linear functional differential equation with distributions in the input

    Directory of Open Access Journals (Sweden)

    Vadim Z. Tsalyuk

    2003-10-01

    Full Text Available This paper studies the functional differential equation $$ dot x(t = int_a^t {d_s R(t,s, x(s} + F'(t, quad t in [a,b], $$ where $F'$ is a generalized derivative, and $R(t,cdot$ and $F$ are functions of bounded variation. A solution is defined by the difference $x - F$ being absolutely continuous and satisfying the inclusion $$ frac{d}{dt} (x(t - F(t in int_a^t {d_s R(t,s,x(s}. $$ Here, the integral in the right is the multivalued Stieltjes integral presented in cite{VTs1} (in this article we review and extend the results in cite{VTs1}. We show that the solution set for the initial-value problem is nonempty, compact, and convex. A solution $x$ is said to have memory if there exists the function $x$ such that $x(a = x(a$, $x(b = x(b$, $ x(t in [x(t-0,x(t+0]$ for $t in (a,b$, and $frac{d}{dt} (x(t - F(t = int_a^t {d_s R(t,s,{x}(s}$, where Lebesgue-Stieltjes integral is used. We show that such solutions form a nonempty, compact, and convex set. It is shown that solutions with memory obey the Cauchy-type formula $$ x(t in C(t,ax(a + int_a^t C(t,s, dF(s. $$

  14. Factorization of a class of almost linear second-order differential equations

    International Nuclear Information System (INIS)

    Estevez, P G; Kuru, S; Negro, J; Nieto, L M

    2007-01-01

    A general type of almost linear second-order differential equations, which are directly related to several interesting physical problems, is characterized. The solutions of these equations are obtained using the factorization technique, and their non-autonomous invariants are also found by means of scale transformations

  15. The H-N method for solving linear transport equation: theory and application

    International Nuclear Information System (INIS)

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  16. Bounded solutions of self-adjoint second order linear difference equations with periodic coeffients

    Directory of Open Access Journals (Sweden)

    Encinas A.M.

    2018-02-01

    Full Text Available In this work we obtain easy characterizations for the boundedness of the solutions of the discrete, self–adjoint, second order and linear unidimensional equations with periodic coefficients, including the analysis of the so-called discrete Mathieu equations as particular cases.

  17. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    International Nuclear Information System (INIS)

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  18. Could solitons be adiabatic invariants attached to certain non linear equations

    International Nuclear Information System (INIS)

    Lochak, P.

    1984-01-01

    Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)

  19. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    Science.gov (United States)

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  20. Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Santos, Ilmar

    2015-01-01

    An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...

  1. Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields

    International Nuclear Information System (INIS)

    Kramer, D.; Neugebauer, G.

    1981-01-01

    The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)

  2. GDTM-Padé technique for the non-linear differential-difference equation

    Directory of Open Access Journals (Sweden)

    Lu Jun-Feng

    2013-01-01

    Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.

  3. Non-linear partial differential equations an algebraic view of generalized solutions

    CERN Document Server

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  4. Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces

    Directory of Open Access Journals (Sweden)

    Yongjin Li

    2013-08-01

    Full Text Available We prove the Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces. That is, if y is an approximate solution of the differential equation $y''+ alpha y'(t +eta y = 0$ or $y''+ alpha y'(t +eta y = f(t$, then there exists an exact solution of the differential equation near to y.

  5. Asymptotic behavior of solutions of linear multi-order fractional differential equation systems

    OpenAIRE

    Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.

    2017-01-01

    In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...

  6. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Directory of Open Access Journals (Sweden)

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  7. Comparison and oscillation theory of linear differential equations

    CERN Document Server

    Swanson, Charles Andrew

    1968-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  8. The Use of BBC (Box, Board, and Comics Media in The Systems of Linear Equation

    Directory of Open Access Journals (Sweden)

    P D Widyastuti

    2017-12-01

    Full Text Available Mathematics is one of the lessons in school. Starting from elementary school, junior high school, senior high school, even college. Mathematics is abstract and identic with numbers, so the author guessed that maybe this is the reason why students consider that mathematics is a difficult lesson. In fact, the learners deliver the material step by step. First, the teacher introduced something concrete to the students (related to the surrounding environment. After that, teacher introduced something more abstract to the students. Sometimes, the transition from concrete to abstract become the problem in the learning process. One of the materials that convert concrete to abstract is systems of linear equations in 8th grade because in this stage students are introduced to more coefficients and variables. This article will discuss how to use media in the form of BBC (Box, Board, and Comics on systems of linear equations. This research is about Research and Development (R &D. The procedures of comics followed the ADDIE model which included analysis, design, development, implementation, and evaluation. This research aims to create a valid media based on the validation by the and students’ responses which can be proven that BBC (Box, Board, and Comics media are interesting and worthy to use in the classroom.

  9. Control functions in nonseparable simultaneous equations models

    OpenAIRE

    Blundell, R.; Matzkin, R. L.

    2014-01-01

    The control function approach (Heckman and Robb (1985)) in a system of linear simultaneous equations provides a convenient procedure to estimate one of the functions in the system using reduced form residuals from the other functions as additional regressors. The conditions on the structural system under which this procedure can be used in nonlinear and nonparametric simultaneous equations has thus far been unknown. In this paper, we define a new property of functions called control function ...

  10. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  11. Non-monotone positive solutions of second-order linear differential equations: existence, nonexistence and criteria

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2016-10-01

    Full Text Available We study non-monotone positive solutions of the second-order linear differential equations: $(p(tx'' + q(t x = e(t$, with positive $p(t$ and $q(t$. For the first time, some criteria as well as the existence and nonexistence of non-monotone positive solutions are proved in the framework of some properties of solutions $\\theta (t$ of the corresponding integrable linear equation: $(p(t\\theta''=e(t$. The main results are illustrated by many examples dealing with equations which allow exact non-monotone positive solutions not necessarily periodic. Finally, we pose some open questions.

  12. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  13. Moduli spaces for linear differential equations and the Painlev'e equations

    NARCIS (Netherlands)

    Put, Marius van der; Saito, Masa-Hiko

    2009-01-01

    In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and

  14. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    Science.gov (United States)

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  15. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  16. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    Science.gov (United States)

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  17. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  18. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

  19. Linear models in the mathematics of uncertainty

    CERN Document Server

    Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

    2013-01-01

    The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

  20. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  1. Solutions of the linearized Bach-Einstein equation in the static spherically symmetric case

    International Nuclear Information System (INIS)

    Schmidt, H.J.

    1985-01-01

    The Bach-Einstein equation linearized around Minkowski space-time is completely solved. The set of solutions depends on three parameters; a two-parameter subset of it becomes asymptotically flat. In that region the gravitational potential is of the type phi = -m/r + epsilon exp (-r/l). Because of the different asymptotic behaviour of both terms, it became necessary to linearize also around the Schwarzschild solution phi = -m/r. The linearized equation resulting in this case is discussed using qualitative methods. The result is that for m = 2l phi = -m/r + epsilon r -2 exp (-r/l) u, where u is some bounded function; m is arbitrary and epsilon again small. Further, the relation between the solution of the linearized and the full equation is discussed. (author)

  2. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  3. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    Science.gov (United States)

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  4. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    Science.gov (United States)

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  5. Linear Logistic Test Modeling with R

    Science.gov (United States)

    Baghaei, Purya; Kubinger, Klaus D.

    2015-01-01

    The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

  6. Eight equation model for arbitrary shaped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2006-01-01

    Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)

  7. Robust estimation for ordinary differential equation models.

    Science.gov (United States)

    Cao, J; Wang, L; Xu, J

    2011-12-01

    Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.

  8. Expressions for linearized perturbations in ideal-fluid cosmological models

    International Nuclear Information System (INIS)

    Ratra, B.

    1988-01-01

    We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times

  9. Generalized linear mixed models modern concepts, methods and applications

    CERN Document Server

    Stroup, Walter W

    2012-01-01

    PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data

  10. Sensitivity Analysis in Structural Equation Models: Cases and Their Influence

    Science.gov (United States)

    Pek, Jolynn; MacCallum, Robert C.

    2011-01-01

    The detection of outliers and influential observations is routine practice in linear regression. Despite ongoing extensions and development of case diagnostics in structural equation models (SEM), their application has received limited attention and understanding in practice. The use of case diagnostics informs analysts of the uncertainty of model…

  11. An introduction to linear ordinary differential equations using the impulsive response method and factorization

    CERN Document Server

    Camporesi, Roberto

    2016-01-01

    This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.

  12. Dissipative behavior of some fully non-linear KdV-type equations

    Science.gov (United States)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  13. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Linander, Hampus; Nilsson, Bengt E.W. [Department of Physics, Theoretical PhysicsChalmers University of Technology, S-412 96 Göteborg (Sweden)

    2016-07-05

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F=0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 “translation”, “Lorentz” and “dilatation”) properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  14. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Directory of Open Access Journals (Sweden)

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30

  15. Linear and nonlinear properties of numerical methods for the rotating shallow water equations

    Science.gov (United States)

    Eldred, Chris

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal

  16. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  17. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Science.gov (United States)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  18. Composite Linear Models | Division of Cancer Prevention

    Science.gov (United States)

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty

  19. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  20. Differential Equations Models to Study Quorum Sensing.

    Science.gov (United States)

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  1. Local linearization methods for the numerical integration of ordinary differential equations: An overview

    International Nuclear Information System (INIS)

    Jimenez, J.C.

    2009-06-01

    Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

  2. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  3. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  4. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  5. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    International Nuclear Information System (INIS)

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  6. Computer programs for the solution of systems of linear algebraic equations

    Science.gov (United States)

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  7. On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity

    International Nuclear Information System (INIS)

    Aristov, Anatoly I

    2011-01-01

    We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.

  8. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  9. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  10. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  11. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  12. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Adams, M L [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B; Zika, M R [Lawrence Livermore National Lab., Livermore, CA (United States)

    2005-07-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  13. Spectrum of the linearized operator for the Ginzburg-Landau equation

    Directory of Open Access Journals (Sweden)

    Tai-Chia Lin

    2000-06-01

    Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.

  14. Improved harmonic balance approach to periodic solutions of non-linear jerk equations

    International Nuclear Information System (INIS)

    Wu, B.S.; Lim, C.W.; Sun, W.P.

    2006-01-01

    An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach

  15. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Science.gov (United States)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  16. On the economical solution method for a system of linear algebraic equations

    Directory of Open Access Journals (Sweden)

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  17. Asymptotic integration of a linear fourth order differential equation of Poincaré type

    Directory of Open Access Journals (Sweden)

    Anibal Coronel

    2015-11-01

    Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.

  18. Nodal methods with non linear feedback for the three dimensional resolution of the diffusion's multigroup equations

    International Nuclear Information System (INIS)

    Ferri, A.A.

    1986-01-01

    Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es

  19. A discrete homotopy perturbation method for non-linear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  20. A first course in structural equation modeling

    CERN Document Server

    Raykov, Tenko

    2012-01-01

    In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one.Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner's guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software.Highlights of the Second Edition include: Review of latent change (growth) analysis models at an introductory level Coverage of the popular Mplus program Updated examples of LISREL and EQS A CD that contains all of the text's LISREL, EQS, and Mplus examples.A First Course in Structural Equation Modeling is intended as an introductory book for students...

  1. Role of statistical linearization in the solution of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  2. Path integral solution of linear second order partial differential equations I: the general construction

    International Nuclear Information System (INIS)

    LaChapelle, J.

    2004-01-01

    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette

  3. q-analogue of summability of formal solutions of some linear q-difference-differential equations

    Directory of Open Access Journals (Sweden)

    Hidetoshi Tahara

    2015-01-01

    Full Text Available Let \\(q\\gt 1\\. The paper considers a linear \\(q\\-difference-differential equation: it is a \\(q\\-difference equation in the time variable \\(t\\, and a partial differential equation in the space variable \\(z\\. Under suitable conditions and by using \\(q\\-Borel and \\(q\\-Laplace transforms (introduced by J.-P. Ramis and C. Zhang, the authors show that if it has a formal power series solution \\(\\hat{X}(t,z\\ one can construct an actual holomorphic solution which admits \\(\\hat{X}(t,z\\ as a \\(q\\-Gevrey asymptotic expansion of order \\(1\\.

  4. Actuarial statistics with generalized linear mixed models

    NARCIS (Netherlands)

    Antonio, K.; Beirlant, J.

    2007-01-01

    Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics

  5. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    International Nuclear Information System (INIS)

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  6. On the prolongation structure and Backlund transformation for new non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Mukherjee, J.

    1986-07-01

    We have considered the complete integrability of two nonlinear equations which are some kind of extensions of usual Sine-Gordon and Sinh-Gordon equations. The first one is of non-autonomous version of Sinh-Gordon system and the second is closely related to the usual Sine-Gordon theory. The first problem indicates how (x,t) dependent non-linear equations can be treated in the prolongation theory and how a Backlund map can be constructed. The second one is a variation of the usual Sine-Gordon equation and suggests that there may be other equations (similar to Sine-Gordon) which are completely integrable. In both cases we have been able to construct the Lax pair. We then construct an auto-Backlund map by following the idea of Konno and Wadati, for the generation of multisolution states. (author)

  7. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  8. On the existence of eigenmodes of linear quasi-periodic differential equations and their relation to the MHD continuum

    International Nuclear Information System (INIS)

    Salat, A.

    1981-12-01

    The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f(ω 1 t,ω 2 t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω 1 , ω 2 a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained. The equation considered is a model for the magneto-hydrodynamic 'continuum' in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently irrational magnetic surfaces. (orig.)

  9. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  10. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  11. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  12. Modeling and analysis of linear hyperbolic systems of balance laws

    CERN Document Server

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  13. Comparing linear probability model coefficients across groups

    DEFF Research Database (Denmark)

    Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt

    2015-01-01

    of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....

  14. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    Science.gov (United States)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  15. Hardy inequality on time scales and its application to half-linear dynamic equations

    Directory of Open Access Journals (Sweden)

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  16. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  17. An Explicit Enclosure of the Solution Set of Overdetermined Interval Linear Equations

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2017-01-01

    Roč. 24, February (2017), s. 1-10 ISSN 1573-1340 Institutional support: RVO:67985807 Keywords : interval linear equations * interval hull * unit midpoint * enclosure Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://interval.louisiana.edu/ reliable -computing-journal/volume-24/ reliable -computing-24-pp-001-010.pdf

  18. Solutions of half-linear differential equations in the classes Gamma and Pi

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel; Taddei, V.

    2016-01-01

    Roč. 29, 7-8 (2016), s. 683-714 ISSN 0893-4983 Institutional support: RVO:67985840 Keywords : half-linear differential equation * positive solution * asymptotic formula Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2016 http://projecteuclid.org/euclid.die/1462298681

  19. Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy

    International Nuclear Information System (INIS)

    Zhou, B.

    1997-01-01

    The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics

  20. Comparison of nonlinearities in oscillation theory of half-linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2008-01-01

    Roč. 121, č. 2 (2008), s. 93-105 ISSN 0236-5294 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential equation * comparison theorem * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 0.317, year: 2008

  1. The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations

    Science.gov (United States)

    Buendía, Gabriela; Cordero, Francisco

    2013-01-01

    In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…

  2. Improved Pedagogy for Linear Differential Equations by Reconsidering How We Measure the Size of Solutions

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-01-01

    For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…

  3. A generalized variational algebra and conserved densities for linear evolution equations

    International Nuclear Information System (INIS)

    Abellanas, L.; Galindo, A.

    1978-01-01

    The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)

  4. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  5. Inhomogeneous Linear Random Differential Equations with Mutual Correlations between Multiplicative, Additive and Initial-Value Terms

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1981-01-01

    The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation

  6. Oscillation and nonoscillation results for solutions of half-linear equations with deviated argument

    Czech Academy of Sciences Publication Activity Database

    Drábek, P.; Kufner, Alois; Kuliev, K.

    2017-01-01

    Roč. 447, č. 1 (2017), s. 371-382 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : half-linear equation * oscillatory solution * nonoscillatory solution Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16306059

  7. Peculiarities in power type comparison results for half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2012-01-01

    Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616

  8. Myshkis type oscillation criteria for second-order linear delay differential equations

    Czech Academy of Sciences Publication Activity Database

    Opluštil, Z.; Šremr, Jiří

    2015-01-01

    Roč. 178, č. 1 (2015), s. 143-161 ISSN 0026-9255 Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillation criteria Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2015 http://link.springer.com/article/10.1007%2Fs00605-014-0719-y

  9. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    International Nuclear Information System (INIS)

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  10. Linear hyperbolic functional-differential equations with essentially bounded right-hand side

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Lomtatidze, Alexander; Maghakyan, A.; Šremr, Jiří

    2011-01-01

    Roč. 2011, - (2011), s. 242965 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear functional-differential equation of hyperbolic type * Darboux problem * unique solvability Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/242965/

  11. Some oscillation criteria for the second-order linear delay differential equation

    Czech Academy of Sciences Publication Activity Database

    Opluštil, Z.; Šremr, Jiří

    2011-01-01

    Roč. 136, č. 2 (2011), s. 195-204 ISSN 0862-7959 Institutional research plan: CEZ:AV0Z10190503 Keywords : second-order linear differential equation with a delay * oscillatory solution Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/141582

  12. On the multisummability of WKB solutions of certain singularly perturbed linear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Yoshitsugu Takei

    2015-01-01

    Full Text Available Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.

  13. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    Science.gov (United States)

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  14. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  15. Remark on periodic boundary-value problem for second-order linear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Dosoudilová, M.; Lomtatidze, Alexander

    2018-01-01

    Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html

  16. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    Science.gov (United States)

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  17. Linear Equating for the NEAT Design: A Rejoinder and Some Further Comments

    Science.gov (United States)

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2010-01-01

    This article presents the authors' rejoinder to commentaries on linear equating and the NEAT design. The authors appreciate the insightful work of the commentary writers. Each has made a number of interesting points, many of which the authors had not considered at all. Before responding to some of those points, the authors reiterate what they see…

  18. On the solution of a class of fuzzy system of linear equations

    Indian Academy of Sciences (India)

    J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...

  19. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  20. Spaghetti Bridges: Modeling Linear Relationships

    Science.gov (United States)

    Kroon, Cindy D.

    2016-01-01

    Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…

  1. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  2. A model unified field equation

    International Nuclear Information System (INIS)

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    The classical solutions of a unified field theory in a two-dimensional space-time are considered. This system, a model of a interacting mesons and baryons, illustrates how the particle can be built from a wave-packet of mesons and how reciprocally the meson appears as a tightly bound combination of particle and antiparticle. (author). 6 refs

  3. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    Science.gov (United States)

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  4. Vortices, semi-local vortices in gauged linear sigma model

    International Nuclear Information System (INIS)

    Kim, Namkwon

    1998-11-01

    We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

  5. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  6. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  7. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  8. Analytical approach to linear fractional partial differential equations arising in fluid mechanics

    International Nuclear Information System (INIS)

    Momani, Shaher; Odibat, Zaid

    2006-01-01

    In this Letter, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear fractional partial differential equations arising in fluid mechanics. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these methods, the solution takes the form of a convergent series with easily computable components. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of the two methods

  9. Differential equation models for sharp threshold dynamics.

    Science.gov (United States)

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  10. Extended Linear Models with Gaussian Priors

    DEFF Research Database (Denmark)

    Quinonero, Joaquin

    2002-01-01

    In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....

  11. Linear mixed models for longitudinal data

    CERN Document Server

    Molenberghs, Geert

    2000-01-01

    This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...

  12. Linear mixed models in sensometrics

    DEFF Research Database (Denmark)

    Kuznetsova, Alexandra

    quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer...... an open-source software tool ConsumerCheck was developed in this project and now is available for everyone. will represent a major step forward when concerns this important problem in modern consumer driven product development. Standard statistical software packages can be used for some of the purposes......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...

  13. The structure of solutions of the matrix linear unilateral polynomial equation with two variables

    Directory of Open Access Journals (Sweden)

    N. S. Dzhaliuk

    2017-07-01

    Full Text Available We investigate the structure of solutions of the matrix linear polynomial equation $A(\\lambdaX(\\lambda+B(\\lambdaY(\\lambda=C(\\lambda,$ in particular, possible degrees of the solutions. The solving of this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix coefficients in triangular forms with invariant factors on the main diagonals, to which the matrices $A (\\lambda, B(\\lambda$ \\ and \\ $C(\\lambda$ are reduced by means of semiscalar equivalent transformations. On the basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solutions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree are established. An effective method for constructing minimal degree solutions of the equations is suggested. In this article, unlike well-known results about the estimations of the degrees of the solutions of the matrix polynomial equations in which both matrix coefficients are regular or at least one of them is regular, we have considered the case when the matrix polynomial equation has arbitrary matrix coefficients $A(\\lambda$ and $B(\\lambda.$ 

  14. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    Science.gov (United States)

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  15. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  16. Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions

    Science.gov (United States)

    Tisdell, Christopher C.

    2017-11-01

    For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.

  17. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  18. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  19. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  20. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  1. Quadratic-linear pattern in cancer fractional radiotherapy. Equations for a computering program

    International Nuclear Information System (INIS)

    Burgos, D.; Bullejos, J.; Garcia Puche, J.L.; Pedraza, V.

    1990-01-01

    Knowledge of equivalence between different tratment schemes with the same iso-effect is the essential thing in clinical cancer radiotherapy. For this purpose it is very useful the group of ideas derived from quadratic-linear pattern (Q-L) proposed in order to analyze cell survival curve to radiation. Iso-effect definition caused by several irradiation rules is done by extrapolated tolerance dose (ETD). Because equations for ETD are complex, a computering program have been carried out. In this paper, iso-effect equations for well defined therapeutic situations and flow diagram proposed for resolution, have been studied. (Author)

  2. A critical oscillation constant as a variable of time scales for half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2010-01-01

    Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7

  3. Higher derivative discontinuous solutions to linear ordinary differential equations: a new route to complexity?

    International Nuclear Information System (INIS)

    Datta, Dhurjati Prasad; Bose, Manoj Kumar

    2004-01-01

    We present a new one parameter family of second derivative discontinuous solutions to the simplest scale invariant linear ordinary differential equation. We also point out how the construction could be extended to generate families of higher derivative discontinuous solutions as well. The discontinuity can occur only for a subset of even order derivatives, viz., 2nd, 4th, 8th, 16th,.... The solutions are shown to break the discrete parity (reflection) symmetry of the underlying equation. These results are expected to gain significance in the contemporary search of a new dynamical principle for understanding complex phenomena in nature

  4. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...

  5. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  6. Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations

    Directory of Open Access Journals (Sweden)

    Matt Challacombe

    2014-03-01

    Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.

  7. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  8. Nonlinear fluctuation-induced rate equations for linear birth-death processes

    International Nuclear Information System (INIS)

    Honkonen, J.

    2008-01-01

    The Fock-space approach to the solution of master equations for the one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov's ecological model and Lanchester's model of modern warfare

  9. Nonlinear fluctuations-induced rate equations for linear birth-death processes

    Science.gov (United States)

    Honkonen, J.

    2008-05-01

    The Fock-space approach to the solution of master equations for one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability of occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov’s ecological model and Lanchester’s model of modern warfare.

  10. Global dynamics for switching systems and their extensions by linear differential equations

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  11. Global dynamics for switching systems and their extensions by linear differential equations.

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  12. Updating Linear Schedules with Lowest Cost: a Linear Programming Model

    Science.gov (United States)

    Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata

    2017-10-01

    Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.

  13. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Teresa S. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: baileyte@tamu.edu; Adams, Marvin L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: mladams@tamu.edu; Yang, Brian [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Zika, Michael R. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)], E-mail: zika@llnl.gov

    2008-04-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  14. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2005-07-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  15. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    International Nuclear Information System (INIS)

    Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.

    2008-01-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids

  16. A linear model of population dynamics

    Science.gov (United States)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  17. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    International Nuclear Information System (INIS)

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  18. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  19. Adaptive Finite Element Method for Optimal Control Problem Governed by Linear Quasiparabolic Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Wanfang Shen

    2012-01-01

    Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.

  20. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional- differential equations * functional- differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076.xml

  1. On one two-point BVP for the fourth order linear ordinary differential equation

    Czech Academy of Sciences Publication Activity Database

    Mukhigulashvili, Sulkhan; Manjikashvili, M.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 265-275 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : fourth order linear ordinary differential equations * two-point boundary value problems Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0077/gmj-2016-0077.xml

  2. On oscillations of solutions to second-order linear delay differential equations

    Czech Academy of Sciences Publication Activity Database

    Opluštil, Z.; Šremr, Jiří

    2013-01-01

    Roč. 20, č. 1 (2013), s. 65-94 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillatory solution Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-1/gmj-2013-0001/gmj-2013-0001.xml?format=INT

  3. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  4. On oscillations of solutions to second-order linear delay differential equations

    Czech Academy of Sciences Publication Activity Database

    Opluštil, Z.; Šremr, Jiří

    2013-01-01

    Roč. 20, č. 1 (2013), s. 65-94 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillatory solution Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-1/gmj-2013-0001/gmj-2013-0001. xml ?format=INT

  5. On one two-point BVP for the fourth order linear ordinary differential equation

    Czech Academy of Sciences Publication Activity Database

    Mukhigulashvili, Sulkhan; Manjikashvili, M.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 265-275 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : fourth order linear ordinary differential equations * two-point boundary value problems Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0077/gmj-2016-0077. xml

  6. Remark on zeros of solutions of second-order linear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Dosoudilová, M.; Lomtatidze, Alexander

    2016-01-01

    Roč. 23, č. 4 (2016), s. 571-577 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order linear equation * zeros of solutions * periodic boundary value problem Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2016.23.issue-4/gmj-2016-0052/gmj-2016-0052. xml

  7. Multi-point boundary value problems for linear functional-differential equations

    Czech Academy of Sciences Publication Activity Database

    Domoshnitsky, A.; Hakl, Robert; Půža, Bedřich

    2017-01-01

    Roč. 24, č. 2 (2017), s. 193-206 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : boundary value problems * linear functional-differential equations * functional-differential inequalities Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0076/gmj-2016-0076. xml

  8. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    Science.gov (United States)

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  9. A General Construction of Linear Differential Equations with Solutions of Prescribed Properties

    Czech Academy of Sciences Publication Activity Database

    Neuman, František

    2004-01-01

    Roč. 17, č. 1 (2004), s. 71-76 ISSN 0893-9659 R&D Projects: GA AV ČR IAA1019902; GA ČR GA201/99/0295 Institutional research plan: CEZ:AV0Z1019905 Keywords : construction of linear differential equations * prescribed qualitative properties of solutions Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2004

  10. Remark on zeros of solutions of second-order linear ordinary differential equations

    Czech Academy of Sciences Publication Activity Database

    Dosoudilová, M.; Lomtatidze, Alexander

    2016-01-01

    Roč. 23, č. 4 (2016), s. 571-577 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order linear equation * zero s of solutions * periodic boundary value problem Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2016.23.issue-4/gmj-2016-0052/gmj-2016-0052.xml

  11. An algorithm for computing the hull of the solution set of interval linear equations

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2011-01-01

    Roč. 435, č. 2 (2011), s. 193-201 ISSN 0024-3795 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * interval hull * algorithm * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 0.974, year: 2011

  12. A Lie-Deprit perturbation algorithm for linear differential equations with periodic coefficients

    OpenAIRE

    Casas Pérez, Fernando; Chiralt Monleon, Cristina

    2014-01-01

    A perturbative procedure based on the Lie-Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear di erential equations with periodic coe cients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous sys- tem and also to its characteristic ...

  13. A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate

    Directory of Open Access Journals (Sweden)

    Min Sun

    2014-01-01

    Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

  14. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A novel algebraic procedure for solving non-linear evolution equations of higher order

    International Nuclear Information System (INIS)

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  16. A linear model of ductile plastic damage

    International Nuclear Information System (INIS)

    Lemaitre, J.

    1983-01-01

    A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr

  17. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  18. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    Science.gov (United States)

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  19. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    Science.gov (United States)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  20. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  1. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr

  2. Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation

    International Nuclear Information System (INIS)

    Bonnet, M.; Meurant, G.

    1978-01-01

    The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr

  3. An implicit meshless scheme for the solution of transient non-linear Poisson-type equations

    KAUST Repository

    Bourantas, Georgios

    2013-07-01

    A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.

  4. An implicit meshless scheme for the solution of transient non-linear Poisson-type equations

    KAUST Repository

    Bourantas, Georgios; Burganos, Vasilis N.

    2013-01-01

    A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.

  5. A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism

    Energy Technology Data Exchange (ETDEWEB)

    Yavari, M., E-mail: yavari@iaukashan.ac.ir [Islamic Azad University, Kashan Branch (Iran, Islamic Republic of)

    2016-06-15

    We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.

  6. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    Science.gov (United States)

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  7. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  8. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Science.gov (United States)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  9. Ground Motion Models for Future Linear Colliders

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2000-01-01

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

  10. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  11. Stochastic fractional differential equations: Modeling, method and analysis

    International Nuclear Information System (INIS)

    Pedjeu, Jean-C.; Ladde, Gangaram S.

    2012-01-01

    By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.

  12. On the classical theory of ordinary linear differential equations of the second order and the Schroedinger equation for power law potentials

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1983-01-01

    The power law potentials in the Schroedinger equation solved recently are shown to come from the classical treatment of the singularities of a linear, second order differential equation. This allows to enlarge the class of solvable power law potentials. (Author) [pt

  13. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  14. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schoedinger equation admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The admissible potentials come into families evolved from equations having a fixed number of elementary singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  15. Existence and uniqueness to the Cauchy problem for linear and semilinear parabolic equations with local conditions⋆

    Directory of Open Access Journals (Sweden)

    Rubio Gerardo

    2011-03-01

    Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.

  16. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    Science.gov (United States)

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  17. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, S. A. M.; Ansbacher, W. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada) and Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements

  18. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  19. A parallel algorithm for solving linear equations arising from one-dimensional network problems

    International Nuclear Information System (INIS)

    Mesina, G.L.

    1991-01-01

    One-dimensional (1-D) network problems, such as those arising from 1- D fluid simulations and electrical circuitry, produce systems of sparse linear equations which are nearly tridiagonal and contain a few non-zero entries outside the tridiagonal. Most direct solution techniques for such problems either do not take advantage of the special structure of the matrix or do not fully utilize parallel computer architectures. We describe a new parallel direct linear equation solution algorithm, called TRBR, which is especially designed to take advantage of this structure on MIMD shared memory machines. The new method belongs to a family of methods which split the coefficient matrix into the sum of a tridiagonal matrix T and a matrix comprised of the remaining coefficients R. Efficient tridiagonal methods are used to algebraically simplify the linear system. A smaller auxiliary subsystem is created and solved and its solution is used to calculate the solution of the original system. The newly devised BR method solves the subsystem. The serial and parallel operation counts are given for the new method and related earlier methods. TRBR is shown to have the smallest operation count in this class of direct methods. Numerical results are given. Although the algorithm is designed for one-dimensional networks, it has been applied successfully to three-dimensional problems as well. 20 refs., 2 figs., 4 tabs

  20. Local Ray-Based Traveltime Computation Using the Linearized Eikonal Equation

    KAUST Repository

    Almubarak, Mohammed S.

    2013-05-01

    The computation of traveltimes plays a critical role in the conventional implementations of Kirchhoff migration. Finite-difference-based methods are considered one of the most effective approaches for traveltime calculations and are therefore widely used. However, these eikonal solvers are mainly used to obtain early-arrival traveltime. Ray tracing can be used to pick later traveltime branches, besides the early arrivals, which may lead to an improvement in velocity estimation or in seismic imaging. In this thesis, I improved the accuracy of the solution of the linearized eikonal equation by constructing a linear system of equations (LSE) based on finite-difference approximation, which is of second-order accuracy. The ill-conditioned LSE is initially regularized and subsequently solved to calculate the traveltime update. Numerical tests proved that this method is as accurate as the second-order eikonal solver. Later arrivals are picked using ray tracing. These traveltimes are binned to the nearest node on a regular grid and empty nodes are estimated by interpolating the known values. The resulting traveltime field is used as an input to the linearized eikonal algorithm, which improves the accuracy of the interpolated nodes and yields a local ray-based traveltime. This is a preliminary study and further investigation is required to test the efficiency and the convergence of the solutions.

  1. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2009-01-01

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  2. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  3. Optimal designs for linear mixture models

    NARCIS (Netherlands)

    Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

    1975-01-01

    In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this

  4. Optimal designs for linear mixture models

    NARCIS (Netherlands)

    Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

    1975-01-01

    In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of

  5. Linear factor copula models and their properties

    KAUST Repository

    Krupskii, Pavel; Genton, Marc G.

    2018-01-01

    We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.

  6. Linear factor copula models and their properties

    KAUST Repository

    Krupskii, Pavel

    2018-04-25

    We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.

  7. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  8. On Attainability of Optimal Solutions for Linear Elliptic Equations with Unbounded Coefficients

    Directory of Open Access Journals (Sweden)

    P. I. Kogut

    2011-12-01

    Full Text Available We study an optimal boundary control problem (OCP associated to a linear elliptic equation —div (Vj/ + A(xVy = f describing diffusion in a turbulent flow. The characteristic feature of this equation is the fact that, in applications, the stream matrix A(x = [a,ij(x]i,j=i,...,N is skew-symmetric, ац(х = —a,ji(x, measurable, and belongs to L -space (rather than L°°. An optimal solution to such problem can inherit a singular character of the original stream matrix A. We show that optimal solutions can be attainable by solutions of special optimal boundary control problems.

  9. Engineering equations for characterizing non-linear laser intensity propagation in air with loss.

    Science.gov (United States)

    Karr, Thomas; Stotts, Larry B; Tellez, Jason A; Schmidt, Jason D; Mansell, Justin D

    2018-02-19

    The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.

  10. Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass

    DEFF Research Database (Denmark)

    D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar

    2012-01-01

    and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...... flexors. Results: Males were signifantly stronger than females across all age groups. Elbow peak torque (EPT) was better preserved from 60s to 70s whereas knee peak torque (KPT) reduced significantly (PGender, thigh mass and age best...... predicted KPT (R2=0.60). Gender, forearm mass and age best predicted EPT (R2=0.75). Good crossvalidation was established for both elbow and knee models. Conclusion: This cross-sectional study of muscle strength created and validated strength scaled equations of EPT and KPT using only gender, segment mass...

  11. Ordinary Differential Equation Models for Adoptive Immunotherapy.

    Science.gov (United States)

    Talkington, Anne; Dantoin, Claudia; Durrett, Rick

    2018-05-01

    Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.

  12. Structural Equation Modeling with the Smartpls

    Directory of Open Access Journals (Sweden)

    Christian M. Ringle

    2014-05-01

    Full Text Available The objective of this article is to present a didactic example of Structural Equation Modeling using the software SmartPLS 2.0 M3. The program mentioned uses the method of Partial Least Squares and seeks to address the following situations frequently observed in marketing research: Absence of symmetric distributions of variables measured by a theory still in its beginning phase or with little “consolidation”, formative models, and/or a limited amount of data. The growing use of SmartPLS has demonstrated its robustness and the applicability of the model in the areas that are being studied. 

  13. Diagnostics for Linear Models With Functional Responses

    OpenAIRE

    Xu, Hongquan; Shen, Qing

    2005-01-01

    Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...

  14. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  15. Study of a Model Equation in Detonation Theory

    KAUST Repository

    Faria, Luiz

    2014-04-24

    Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut+ 1/2 (u2-uu (0-, t))x=f (x, u (0-, t)), x > 0, t < 0. It describes a detonation shock at x = 0 with the reaction zone in x > 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. © 2014 Society for Industrial and Applied Mathematics.

  16. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations

    KAUST Repository

    Bagci, Hakan

    2014-11-11

    We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off-diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner.

  17. Comparison of different methods for the solution of sets of linear equations

    International Nuclear Information System (INIS)

    Bilfinger, T.; Schmidt, F.

    1978-06-01

    The application of the conjugate-gradient methods as novel general iterative methods for the solution of sets of linear equations with symmetrical systems matrices led to this paper, where a comparison of these methods with the conventional differently accelerated Gauss-Seidel iteration was carried out. In additon, the direct Cholesky method was also included in the comparison. The studies referred mainly to memory requirement, computing time, speed of convergence, and accuracy of different conditions of the systems matrices, by which also the sensibility of the methods with respect to the influence of truncation errors may be recognized. (orig.) 891 RW [de

  18. Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method

    Directory of Open Access Journals (Sweden)

    Olumuyiwa A. Agbolade

    2017-01-01

    Full Text Available The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.

  19. Development and adjustment of programs for solving systems of linear equations

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  20. Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Azizallah Alvandi

    2017-06-01

    Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.