Kalman filter estimation model in flood forecasting
Husain, Tahir
Elementary precipitation and runoff estimation problems associated with hydrologic data collection networks are formulated in conjunction with the Kalman Filter Estimation Model. Examples involve the estimation of runoff using data from a single precipitation station and also from a number of precipitation stations. The formulations demonstrate the role of state-space, measurement, and estimation equations of the Kalman Filter Model in flood forecasting. To facilitate the formulation, the unit hydrograph concept and antecedent precipitation index is adopted in the estimation model. The methodology is then applied to estimate various flood events in the Carnation Creek of British Columbia.
Generic Kalman Filter Software
Lisano, Michael E., II; Crues, Edwin Z.
2005-01-01
the basis of the aforementioned templates. The GKF software can be used to develop many different types of unfactorized Kalman filters. A developer can choose to implement either a linearized or an extended Kalman filter algorithm, without having to modify the GKF software. Control dynamics can be taken into account or neglected in the filter-dynamics model. Filter programs developed by use of the GKF software can be made to propagate equations of motion for linear or nonlinear dynamical systems that are deterministic or stochastic. In addition, filter programs can be made to operate in user-selectable "covariance analysis" and "propagation-only" modes that are useful in design and development stages.
Data assimilation in integrated hydrological modeling using ensemble Kalman filtering
Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh
2015-01-01
Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...
Data assimilation in integrated hydrological modeling using ensemble Kalman filtering
Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh;
2015-01-01
Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...
Recursive three-dimensional model reconstruction based on Kalman filtering.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-06-01
A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter (EKF) for the estimation of the object's pose. The second step is a set of EKFs, one for each model point, for the refinement of the positions of the model features in the three-dimensional (3-D) space. These two steps alternate from frame to frame. The initial model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real-world objects. Analytical and empirical comparisons are made among our approach, the interleaved bundle adjustment method, and the Kalman filtering-based recursive algorithm by Azarbayejani and Pentland. Our approach outperformed the other two algorithms in terms of computation speed without loss in the quality of model reconstruction.
A numerical storm surge forecast model with Kalman filter
Yu Fujiang; Zhang Zhanhai; Lin Yihua
2001-01-01
Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.
Nonlinear Kalman Filtering in Affine Term Structure Models
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;
2014-01-01
The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...
Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models
El Gharamti, Mohamad
2010-12-01
Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.
Kalman Filter for Generalized 2-D Roesser Models
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
Brad Baxter; Liam Graham; Stephen Wright
2007-01-01
We relax the assumption of full information that underlies most dynamic general equilibrium models, and instead assume agents optimally form estimates of the states from an incomplete information set. We derive a version of the Kalman filter that is endogenous to agents' optimising decisions, and state conditions for its convergence. We show the (restrictive) conditions under which the endogenous Kalman filter will at least asymptotically reveal the true states. In general we show that incomp...
Streamflow Data Assimilation in SWAT Model Using Extended Kalman Filter
Sun, L.; Nistor, I.; Seidou, O.
2014-12-01
Although Extended Kalman Filter (EKF) is regarded as the de facto method for the application of Kalman Filter in non-linear system, it's application to complex distributed hydrological models faces a lot of challenges. Ensemble Kalman Filter (EnKF) is often preferred because it avoids the calculation of the linearization Jacobian Matrix and the propagation of estimation error covariance. EnKF is however difficult to apply to large models because of the huge computation demand needed for parallel propagation of ensemble members. This paper deals with the application of EKF in stream flow prediction using the SWAT model in the watershed of Senegal River, West Africa. In the Jacobian Matrix calculation, SWAT is regarded as a black box model and the derivatives are calculated in the form of differential equations. The state vector is the combination of runoff, soil, shallow aquifer and deep aquifer water contents. As an initial attempt, only stream flow observations are assimilated. Despite the fact that EKF is a sub-optimal filter, the coupling of EKF significantly improves the estimation of daily streamflow. The results of SWAT+EKF are also compared to those of a simpler quasi linear streamflow prediction model where both state and parameters are updated with the EKF.
Statistical Process Control of a Kalman Filter Model
Gamse, Sonja; Nobakht-Ersi, Fereydoun; Sharifi, Mohammad A.
2014-01-01
For the evaluation of measurement data, different functional and stochastic models can be used. In the case of time series, a Kalman filtering (KF) algorithm can be implemented. In this case, a very well-known stochastic model, which includes statistical tests in the domain of measurements and in the system state domain, is used. Because the output results depend strongly on input model parameters and the normal distribution of residuals is not always fulfilled, it is very important to perform all possible tests on output results. In this contribution, we give a detailed description of the evaluation of the Kalman filter model. We describe indicators of inner confidence, such as controllability and observability, the determinant of state transition matrix and observing the properties of the a posteriori system state covariance matrix and the properties of the Kalman gain matrix. The statistical tests include the convergence of standard deviations of the system state components and normal distribution beside standard tests. Especially, computing controllability and observability matrices and controlling the normal distribution of residuals are not the standard procedures in the implementation of KF. Practical implementation is done on geodetic kinematic observations. PMID:25264959
Statistical Process Control of a Kalman Filter Model
Sonja Gamse
2014-09-01
Full Text Available For the evaluation of measurement data, different functional and stochastic models can be used. In the case of time series, a Kalman filtering (KF algorithm can be implemented. In this case, a very well-known stochastic model, which includes statistical tests in the domain of measurements and in the system state domain, is used. Because the output results depend strongly on input model parameters and the normal distribution of residuals is not always fulfilled, it is very important to perform all possible tests on output results. In this contribution, we give a detailed description of the evaluation of the Kalman filter model. We describe indicators of inner confidence, such as controllability and observability, the determinant of state transition matrix and observing the properties of the a posteriori system state covariance matrix and the properties of the Kalman gain matrix. The statistical tests include the convergence of standard deviations of the system state components and normal distribution beside standard tests. Especially, computing controllability and observability matrices and controlling the normal distribution of residuals are not the standard procedures in the implementation of KF. Practical implementation is done on geodetic kinematic observations.
Statistical process control of a Kalman filter model.
Gamse, Sonja; Nobakht-Ersi, Fereydoun; Sharifi, Mohammad A
2014-09-26
For the evaluation of measurement data, different functional and stochastic models can be used. In the case of time series, a Kalman filtering (KF) algorithm can be implemented. In this case, a very well-known stochastic model, which includes statistical tests in the domain of measurements and in the system state domain, is used. Because the output results depend strongly on input model parameters and the normal distribution of residuals is not always fulfilled, it is very important to perform all possible tests on output results. In this contribution, we give a detailed description of the evaluation of the Kalman filter model. We describe indicators of inner confidence, such as controllability and observability, the determinant of state transition matrix and observing the properties of the a posteriori system state covariance matrix and the properties of the Kalman gain matrix. The statistical tests include the convergence of standard deviations of the system state components and normal distribution beside standard tests. Especially, computing controllability and observability matrices and controlling the normal distribution of residuals are not the standard procedures in the implementation of KF. Practical implementation is done on geodetic kinematic observations.
Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan
2006-01-01
. The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....
Application of Kalman Filter on modelling interest rates
Long H. Vo
2014-03-01
Full Text Available This study aims to test the feasibility of using a data set of 90-day bank bill forward rates from the Australian market to predict spot interest rates. To achieve this goal I utilized the application of Kalman Filter in a state space model with time-varying state variable. It is documented that in the case of short-term interest rates,the state space model yields robust predictive power. In addition, this predictive power of implied forward rate is heavily impacted by the existence of a time-varying risk premium in the term structure.
Model Calibration of Exciter and PSS Using Extended Kalman Filter
Kalsi, Karanjit; Du, Pengwei; Huang, Zhenyu
2012-07-26
Power system modeling and controls continue to become more complex with the advent of smart grid technologies and large-scale deployment of renewable energy resources. As demonstrated in recent studies, inaccurate system models could lead to large-scale blackouts, thereby motivating the need for model calibration. Current methods of model calibration rely on manual tuning based on engineering experience, are time consuming and could yield inaccurate parameter estimates. In this paper, the Extended Kalman Filter (EKF) is used as a tool to calibrate exciter and Power System Stabilizer (PSS) models of a particular type of machine in the Western Electricity Coordinating Council (WECC). The EKF-based parameter estimation is a recursive prediction-correction process which uses the mismatch between simulation and measurement to adjust the model parameters at every time step. Numerical simulations using actual field test data demonstrate the effectiveness of the proposed approach in calibrating the parameters.
Multilevel ensemble Kalman filter
Chernov, Alexey
2016-01-06
This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
Andreasen, Martin Møller
This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second. T...
Stubberud, Allen R.
2017-01-01
When considering problems of linear sequential estimation, two versions of the Kalman filter, the continuous-time version and the discrete-time version, are often used. (A hybrid filter also exists.) In many applications in which the Kalman filter is used, the system to which the filter is applied is a linear continuous-time system, but the Kalman filter is implemented on a digital computer, a discrete-time device. The two general approaches for developing a discrete-time filter for implementation on a digital computer are: (1) approximate the continuous-time system by a discrete-time system (called discretization of the continuous-time system) and develop a filter for the discrete-time approximation; and (2) develop a continuous-time filter for the system and then discretize the continuous-time filter. Generally, the two discrete-time filters will be different, that is, it can be said that discretization and filter generation are not, in general, commutative operations. As a result, any relationship between the discrete-time and continuous-time versions of the filter for the same continuous-time system is often obfuscated. This is particularly true when an attempt is made to generate the continuous-time version of the Kalman filter through a simple limiting process (the sample period going to zero) applied to the discrete-time version. The correct result is, generally, not obtained. In a 1961 research report, Kalman showed that the continuous-time Kalman filter can be obtained from the discrete-time Kalman filter by taking limits as the sample period goes to zero if the white noise process for the continuous-time version is appropriately defined. Using this basic concept, a discrete-time Kalman filter can be developed for a continuous-time system as follows: (1) discretize the continuous-time system using Kalman's technique; and (2) develop a discrete-time Kalman filter for that discrete-time system. Kalman's results show that the discrete-time filter generated in
Scheme of adaptive polarization filtering based on Kalman model
Song Lizhong; Qi Haiming; Qiao Xiaolin; Meng Xiande
2006-01-01
A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering.
Robust Kriged Kalman Filtering
Baingana, Brian; Dall' Anese, Emiliano; Mateos, Gonzalo; Giannakis, Georgios B.
2015-11-11
Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.
Wei Zhu
2016-06-01
Full Text Available In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF, interacting multiple models unscented Kalman filter (IMMUKF, 5CKF and the optimal mode transition matrix IMM (OMTM-IMM.
Zhu, Wei; Wang, Wei; Yuan, Gannan
2016-06-01
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
Sørensen, Jacob Viborg Tornfeldt; Madsen, Henrik; Madsen, H.
2006-01-01
sensitivity study of three well known Kalman filter approaches for the assimilation of water levels in a three dimensional hydrodynamic modelling system. The filters considered are the ensemble Kalman filter (EnKF), the reduced rank square root Kalman filter (RRSQRT) and the steady Kalman filter...... is to be encouraged in this perspective. However, the predicted uncertainty of the assimilation results are sensitive to the parameters and hence must be applied with care. The sensitivity study further demonstrates the effectiveness of the steady Kalman filter in the given system as well as the great impact...
Lall, Pradeep; Wei, Junchao; Davis, J Lynn
2014-06-24
Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have
Identification of hydrological model parameter variation using ensemble Kalman filter
Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao
2016-12-01
Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.
2011-01-01
Modeling phase is fundamental both in the analysis process of a dynamic system and the design of a control system. If this phase is in-line is even more critical and the only information of the system comes from input/output data. Some adaptation algorithms for fuzzy system based on extended Kalman filter are presented in this paper, which allows obtaining accurate models without renounce the computational efficiency that characterizes the Kalman filter, and allows ...
Multilevel Mixture Kalman Filter
Xiaodong Wang
2004-11-01
Full Text Available The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.
Adaptive Kalman Filter of Transfer Alignment with Un-modeled Wing Flexure of Aircraft
无
2008-01-01
The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.
Nataliya Chukhrova
2017-05-01
Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.
Multilevel ensemble Kalman filtering
Hoel, Haakon
2016-01-08
The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.
Nonlinear Kalman Filtering in Affine Term Structure Models
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;
When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... Monte Carlo experiment demonstrates that the unscented Kalman fi…lter is much more accurate than its extended counterpart in fi…ltering the states and forecasting swap rates and caps. Our fi…ndings suggest that the unscented Kalman fi…lter may prove to be a good approach for a number of other problems...... in fi…xed income pricing with nonlinear relationships between the state vector and the observations, such as the estimation of term structure models using coupon bonds and the estimation of quadratic term structure models....
Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters
Hoteit, Ibrahim
2010-09-19
Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.
A mollified Ensemble Kalman filter
Bergemann, Kay
2010-01-01
It is well recognized that discontinuous analysis increments of sequential data assimilation systems, such as ensemble Kalman filters, might lead to spurious high frequency adjustment processes in the model dynamics. Various methods have been devised to continuously spread out the analysis increments over a fixed time interval centered about analysis time. Among these techniques are nudging and incremental analysis updates (IAU). Here we propose another alternative, which may be viewed as a hybrid of nudging and IAU and which arises naturally from a recently proposed continuous formulation of the ensemble Kalman analysis step. A new slow-fast extension of the popular Lorenz-96 model is introduced to demonstrate the properties of the proposed mollified ensemble Kalman filter.
Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models
Mandel, Jan; Beezley, Jonathan D.; Coen, Janice L.; Kim, Minjeong
2007-01-01
Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on semi-empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.
Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models
Mandel, Jan; Coen, Janice L; Kim, Minjeong
2007-01-01
Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.
Tracking speckle displacement by double Kalman filtering
Donghui Li; Li Guo
2006-01-01
@@ A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter, and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to verify the double-Kalman-filter tracker's ability of tracking laser speckle's constant displacement.
Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter
Pavel Brandstetter
2013-01-01
Full Text Available The paper deals with a speed estimation of the induction motor using observer with Model Reference Adaptive System and Kalman Filter. For simulation, Hardware in Loop Simulation method is used. The first part of the paper includes the mathematical description of the observer for the speed estimation of the induction motor. The second part describes Kalman filter. The third part describes Hardware in Loop Simulation method and its realization using multifunction card MF 624. In the last section of the paper, simulation results are shown for different changes of the induction motor speed which confirm high dynamic properties of the induction motor drive with sensorless control.
Souza, André L. G.; Ishihara, João Y.; Ferreira, Henrique C.; Borges, Renato A.; Borges, Geovany A.
2016-12-01
The present work proposes a new approach for an antenna pointing system for satellite tracking. Such a system uses the received signal to estimate the beam pointing deviation and then adjusts the antenna pointing. The present work has two contributions. First, the estimation is performed by a Kalman filter based conical scan technique. This technique uses the Kalman filter avoiding the batch estimator and applies a mathematical manipulation avoiding the linearization approximations. Secondly, a control technique based on the model predictive control together with an explicit state feedback solution are obtained in order to reduce the computational burden. Numerical examples illustrate the results.
An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models
Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R.
2007-01-01
In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…
CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS
Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...
Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel
2015-10-01
A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).
Accounting for model error due to unresolved scales within ensemble Kalman filtering
Mitchell, Lewis
2014-01-01
We propose a method to account for model error due to unresolved scales in the context of the ensemble transform Kalman filter (ETKF). The approach extends to this class of algorithms the deterministic model error formulation recently explored for variational schemes and extended Kalman filter. The model error statistic required in the analysis update is estimated using historical reanalysis increments and a suitable model error evolution law. Two different versions of the method are described; a time-constant model error treatment where the same model error statistical description is time-invariant, and a time-varying treatment where the assumed model error statistics is randomly sampled at each analysis step. We compare both methods with the standard method of dealing with model error through inflation and localization, and illustrate our results with numerical simulations on a low order nonlinear system exhibiting chaotic dynamics. The results show that the filter skill is significantly improved through th...
Multilevel ensemble Kalman filtering
Hoel, Hakon
2016-06-14
This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.
Sørensen, Jacob Viborg Tornfeldt; Madsen, Henrik; Madsen, H.
2006-01-01
sensitivity study of three well known Kalman filter approaches for the assimilation of water levels in a three dimensional hydrodynamic modelling system. The filters considered are the ensemble Kalman filter (EnKF), the reduced rank square root Kalman filter (RRSQRT) and the steady Kalman filter....... A sensitivity analysis of key parameters in the schemes is undertaken for a setup in an idealised bay. The sensitivity of the resulting root mean square error (RMSE) is shown to be low to moderate. Hence the schemes are robust within an acceptable range and their application even with misspecified parameters...... is to be encouraged in this perspective. However, the predicted uncertainty of the assimilation results are sensitive to the parameters and hence must be applied with care. The sensitivity study further demonstrates the effectiveness of the steady Kalman filter in the given system as well as the great impact...
Model-Based Engine Control Architecture with an Extended Kalman Filter
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Wit, de A.J.W.; Diepen, van C.A.
2007-01-01
Uncertainty in spatial and temporal distribution of rainfall in regional crop yield simulations comprises a major fraction of the error on crop model simulation results. In this paper we used an Ensemble Kalman filter (EnKF) to assimilate coarse resolution satellite microwave sensor derived soil
Mixtures of skewed Kalman filters
Kim, Hyoungmoon
2014-01-01
Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew. t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments. © 2013 Elsevier Inc.
El Gharamti, Mohamad
2012-04-01
Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model in the same porous medium. Because of different sources of uncertainties, this coupled model might not be able to accurately track the contaminant state. Incorporating observations through the process of data assimilation can guide the model toward the true trajectory of the system. The Kalman filter (KF), or its nonlinear invariants, can be used to tackle this problem. To overcome the prohibitive computational cost of the KF, the singular evolutive Kalman filter (SEKF) and the singular fixed Kalman filter (SFKF) are used, which are variants of the KF operating with low-rank covariance matrices. Experimental results suggest that under perfect and imperfect model setups, the low-rank filters can provide estimates as accurate as the full KF but at much lower computational effort. Low-rank filters are demonstrated to significantly reduce the computational effort of the KF to almost 3%. © 2012 American Society of Civil Engineers.
Unscented Kalman filter for SINS alignment
Zhou Zhanxin; Gao Yanan; Chen Jiabin
2007-01-01
In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment.Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment.The UKF has good performance in case of small initial misalignment.
Huang, Lei
2015-09-30
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required.
FENG Bo; MA Hong-Bin; FU Meng-Yin; WANG Shun-Ting
2013-01-01
Kalman filtering techniques have been widely used in many applications,however,standard Kalman filters for linear Gaussian systems usually cannot work well or even diverge in the presence of large model uncertainty.In practical applications,it is expensive to have large number of high-cost experiments or even impossible to obtain an exact system model.Motivated by our previous pioneering work on finite-model adaptive control,a framework of finite-model Kalman filtering is introduced in this paper.This framework presumes that large model uncertainty may be restricted by a finite set of known models which can be very different from each other.Moreover,the number of known models in the set can be flexibly chosen so that the uncertain model may always be approximated by one of the known models,in other words,the large model uncertainty is "covered" by the "convex hull" of the known models.Within the presented framework according to the idea of adaptive switching via the minimizing vector distance principle,a simple finite-model Kalman filter,MVDP-FMKF,is mathematically formulated and illustrated by extensive simulations.An experiment of MEMS gyroscope drift has verified the effectiveness of the proposed algorithm,indicating that the mechanism of finite-model Kalman filter is useful and efficient in practical applications of Kalman filters,especially in inertial navigation systems.
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.
Li, Zhencai; Wang, Yang; Liu, Zhen
2016-01-01
The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state-space NN, and the unscented Kalman filter is used to train NN's weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model.
Kalman filtering theory and practice with MATLAB
Grewal, M
2015-01-01
The definitive textbook and professional reference on Kalman Filtering fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
Barthélémy, S.; Ricci, S.; Pannekoucke, O.; Thual, O.; Malaterre, P.O.
2013-01-01
This study describes the emulation of an Ensemble Kalman Filter (EnKF) algorithm on a 1-D flood wave propagation model. This model is forced at the upstream boundary with a random variable with gaussian statistics and a correlation function in time with gaussian shape. This allows for, in the case without assimilation, the analytical study of the covariance functions of the propagated signal anomaly. This study is validated numerically wit...
KALMAN FILTERING CORRECTION IN REAL-TIME FORECASTING WITH HYDRODYNAMIC MODEL
WU Xiao-ling; WANG Chuan-hai; CHEN Xi; XIANG Xiao-hua; ZHOU Quan
2008-01-01
Accurate and reliable flood forecast is crucial for efficient real-time river management, including flood control, flood warning, reservoir operation and river regulation. In order to improve the estimate of the initial state of the forecasting system and to reduce the errors in the forecast period a data assimilation procedure was often need. The Kalman filter was proven to be an efficient method to adjust real-time flood series and improve the initial conditions before the forecast. A new model integrating the hydraulic model with the Kalman filter for real-time correction of flood forecast was developed and applied in the Three Gorges interzone of the Yangtze River. The method was calibrated and verified against the observed flood stage and discharge during Three Gorges Dam construction periods (2004). The results demonstrate that the new model incorporates an accurate and fast updating technique can improve the reliability of the flood forecast.
Identification of parameters in nonlinear geotechnical models using extenden Kalman filter
Nestorović Tamara
2014-01-01
Full Text Available Direct measurement of relevant system parameters often represents a problem due to different limitations. In geomechanics, measurement of geotechnical material constants which constitute a material model is usually a very diffcult task even with modern test equipment. Back-analysis has proved to be a more effcient and more economic method for identifying material constants because it needs measurement data such as settlements, pore pressures, etc., which are directly measurable, as inputs. Among many model parameter identification methods, the Kalman filter method has been applied very effectively in recent years. In this paper, the extended Kalman filter – local iteration procedure incorporated with finite element analysis (FEA software has been implemented. In order to prove the effciency of the method, parameter identification has been performed for a nonlinear geotechnical model.
Steady-State Performance of Kalman Filter for DPLL
QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming
2009-01-01
For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.
Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems
Man Hong
2013-01-01
Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.
Thermal Error Modeling of the CNC Machine Tool Based on Data Fusion Method of Kalman Filter
Haitong Wang
2017-01-01
Full Text Available This paper presents a modeling methodology for the thermal error of machine tool. The temperatures predicted by modified lumped-mass method and the temperatures measured by sensors are fused by the data fusion method of Kalman filter. The fused temperatures, instead of the measured temperatures used in traditional methods, are applied to predict the thermal error. The genetic algorithm is implemented to optimize the parameters in modified lumped-mass method and the covariances in Kalman filter. The simulations indicate that the proposed method performs much better compared with the traditional method of MRA, in terms of prediction accuracy and robustness under a variety of operating conditions. A compensation system is developed based on the controlling system of Siemens 840D. Validated by the compensation experiment, the thermal error after compensation has been reduced dramatically.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng
2016-06-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.
Canfield, Stephen
1999-01-01
This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.
Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*
Hoteit, Ibrahim
2012-02-01
This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.
Kalman filtering implementation with Matlab
Kleinbauer, Rachel
2004-01-01
1960 und 1961 veröffentlichte Rudolf Emil Kalmen seine Arbeiten über einen rekursiven prädiktiven Filter, der auf dem Gebrauch von rekursiven Algorithmen basiert. Damit revolutionierte er das Feld der Schätzverfahren. Seitdem ist der sogenannte Kalman Filter Gegenstand ausführlicher Forschung und findet bis heute Anwendung in zahlreichen Gebieten. Der Kalman Filter schätzt den Zustand eines dynamischen Systems, auch wenn die exakte Form dieses Systems unbekannt ist. Der Filter ist sehr lei...
Non-linear DSGE Models and The Central Difference Kalman Filter
Andreasen, Martin Møller
solved up to third order. A Monte Carlo study shows that this QML estimator is basically unbiased and normally distributed infi…nite samples for DSGE models solved using a second order or a third order approximation. These results hold even when structural shocks are Gaussian, Laplace distributed......This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...
Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.
L(U) Wei-cai; XU Shao-quan
2004-01-01
Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcoming, Kalman filtering algorithm for this series is established,and its correctness and validity are verified with the test data obtained on the movable platform in plane. The results show that Kalman filtering can improve the correctness, reliability and stability of the deformation information series.
Bootstrapping Nonlinear Least Squares Estimates in the Kalman Filter Model.
1986-01-01
Bias Bootstrapa 3.933 x 103 0.651 x 103 -0.166 x 10-- b b Newton - Rapshon 1.380 x 10- 0.479 x 10- 10_c 0_ c , e -.., Emperical 3.605 x 10 -0.026 x 10...most cases, parameter estimation for the KF model has been accomplished by maximum likelihood techniques involving the use of scoring or Newton ...is well behaved, the Newton -Raphson and scoring procedures enjoy quadratic convergence in the neighborhood of the maximum and one has a ready-made
Relationships between observer and Kalman Filter models for human dynamic spatial orientation.
Selva, Pierre; Oman, Charles M
2012-01-01
How does the central nervous system (CNS) combine sensory information from semicircular canal, otolith, and visual systems into perceptions of rotation, translation and tilt? Over the past four decades, a variety of input-output ("black box") mathematical models have been proposed to predict human dynamic spatial orientation perception and eye movements. The models have proved useful in vestibular diagnosis, aircraft accident investigation, and flight simulator design. Experimental refinement continues. This paper briefly reviews the history of two widely known model families, the linear "Kalman Filter" and the nonlinear "Observer". Recent physiologic data supports the internal model assumptions common to both. We derive simple 1-D and 3-D examples of each model for vestibular inputs, and show why - despite apparently different structure and assumptions - the linearized model predictions are dynamically equivalent when the four free model parameters are adjusted to fit the same empirical data, and perceived head orientation remains near upright. We argue that the motion disturbance and sensor noise spectra employed in the Kalman Filter formulation may reflect normal movements in daily life and perceptual thresholds, and thus justify the interpretation that the CNS cue blending scheme may well minimize least squares angular velocity perceptual errors.
Data assimilation with the ensemble Kalman filter in a numerical model of the North Sea
Ponsar, Stéphanie; Luyten, Patrick; Dulière, Valérie
2016-08-01
Coastal management and maritime safety strongly rely on accurate representations of the sea state. Both dynamical models and observations provide abundant pieces of information. However, none of them provides the complete picture. The assimilation of observations into models is one way to improve our knowledge of the ocean state. Its application in coastal models remains challenging because of the wide range of temporal and spatial variabilities of the processes involved. This study investigates the assimilation of temperature profiles with the ensemble Kalman filter in 3-D North Sea simulations. The model error is represented by the standard deviation of an ensemble of model states. Parameters' values for the ensemble generation are first computed from the misfit between the data and the model results without assimilation. Then, two square root algorithms are applied to assimilate the data. The impact of data assimilation on the simulated temperature is assessed. Results show that the ensemble Kalman filter is adequate for improving temperature forecasts in coastal areas, under adequate model error specification.
A SAS/IML program using the Kalman filter for estimating state space models.
Gu, Fei; Yung, Yiu-Fai
2013-03-01
To help disseminate the knowledge and software implementation of a state space model (SSM), this article provides a SAS/IML (SAS Institute, 2010) program for estimating the parameters of general linear Gaussian SSMs using the Kalman filter algorithm. In order to use this program, the user should have SAS installed on a computer and have a valid license for SAS/IML. Since the code is completely open, it is expected that this program can be used not only by applied researchers, but also by quantitative methodologists who are interested in improving their methods and promoting SSM as a research instrument.
Design of Kalman filters for mobile robots
Larsen, Thomas Dall; Hansen, Karsten L.; Andersen, Nils Axel
1999-01-01
Kalman filters have for a long time been widely used on mobile robots as a location estimator. Many different Kalman filter designs have been proposed, using models of various complexity. In this paper, two different design methods are evaluated and compared. Focus is put on the common setup where...... the mobile robot is equipped with a dual encoder system supported by some additional absolute measurements. A common filter type for this setup is the odometric filter, where readings from the odometry system on the robot are used together with the geometry of the robot movement as a model of the robot....... If additional kinematic assumptions are made, for instance regarding the velocity of the robot, an augmented model can be used instead. This kinematic filter has some advantages when used intelligently, and it is shown how this type of filter can be used to suppress noise on encoder readings and velocity...
Tsunami Modeling and Prediction Using a Data Assimilation Technique with Kalman Filters
Barnier, G.; Dunham, E. M.
2016-12-01
Earthquake-induced tsunamis cause dramatic damages along densely populated coastlines. It is difficult to predict and anticipate tsunami waves in advance, but if the earthquake occurs far enough from the coast, there may be enough time to evacuate the zones at risk. Therefore, any real-time information on the tsunami wavefield (as it propagates towards the coast) is extremely valuable for early warning systems. After the 2011 Tohoku earthquake, a dense tsunami-monitoring network (S-net) based on cabled ocean-bottom pressure sensors has been deployed along the Pacific coast in Northeastern Japan. Maeda et al. (GRL, 2015) introduced a data assimilation technique to reconstruct the tsunami wavefield in real time by combining numerical solution of the shallow water wave equations with additional terms penalizing the numerical solution for not matching observations. The penalty or gain matrix is determined though optimal interpolation and is independent of time. Here we explore a related data assimilation approach using the Kalman filter method to evolve the gain matrix. While more computationally expensive, the Kalman filter approach potentially provides more accurate reconstructions. We test our method on a 1D tsunami model derived from the Kozdon and Dunham (EPSL, 2014) dynamic rupture simulations of the 2011 Tohoku earthquake. For appropriate choices of model and data covariance matrices, the method reconstructs the tsunami wavefield prior to wave arrival at the coast. We plan to compare the Kalman filter method to the optimal interpolation method developed by Maeda et al. (GRL, 2015) and then to implement the method for 2D.
Dreano, Denis
2015-04-27
A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.
A class of quaternion Kalman filters.
Jahanchahi, Cyrus; Mandic, Danilo P
2014-03-01
The existing Kalman filters for quaternion-valued signals do not operate fully in the quaternion domain, and are combined with the real Kalman filter to enable the tracking in 3-D spaces. Using the recently introduced HR-calculus, we develop the fully quaternion-valued Kalman filter (QKF) and quaternion-extended Kalman filter (QEKF), allowing for the tracking of 3-D and 4-D signals directly in the quaternion domain. To consider the second-order noncircularity of signals, we employ the recently developed augmented quaternion statistics to derive the widely linear QKF (WL-QKF) and widely linear QEKF (WL-QEKF). To reduce computational requirements of the widely linear algorithms, their efficient implementation are proposed and it is shown that the quaternion widely linear model can be simplified when processing 3-D data, further reducing the computational requirements. Simulations using both synthetic and real-world circular and noncircular signals illustrate the advantages offered by widely linear over strictly linear quaternion Kalman filters.
Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter
Sheng JIN; Dian-hai WANG; Cheng XU; Dong-fang MA
2013-01-01
In this paper; a prediction model is developed that combines a Gaussian mixture model (GMM) and a Kalman filter for online forecasting of traffic safety on expressways.Raw time-to-collision (TTC) samples are divided into two categories:those representing vehicles in risky situations and those in safe situations.Then,the GMM is used to model the bimodal distribution of the TTC samples,and the maximum likelihood (ML) estimation parameters of the TTC distribution are obtained using the expectation-maximization (EM) algorithm.We propose a new traffic safety indicator,named the proportion of exposure to traffic conflicts (PETTC),for assessing the risk and predicting the safety of expressway traffic.A Kalman filter is applied to forecast the short-term safety indicator,PETTC,and solves the online safety prediction problem.A dataset collected from four different expressway locations is used for performance estimation.The test results demonstrate the precision and robustness of the prediction model under different traffic conditions and using different datasets.These results could help decision-makers to improve their online traffic safety forecasting and enable the optimal operation of expressway traffic management systems.
A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
Meldi, M.; Poux, A.
2017-10-01
A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.
Indirect Kalman Filter in Mobile Robot Application
Surachai Panich
2010-01-01
Full Text Available Problem statement: The most successful applications of Kalman filtering are to linearize about some nominal trajectory in state space that does not depend on the measurement data. The resulting filter is usually referred to as simply a linearized Kalman filter. Approach: This study introduced mainly indirect Kalman filter to estimate robots position. A developed differential encoder system integrated accelerometer is experimental tested in square shape. Results: Experimental results confirmed that indirect Kalman filter improves the accuracy and confidence of position estimation. Conclusion: In summary, we concluded that indirect Kalman filter has good potential to reduce error of measurement data.
Kalman Filtering with Real-Time Applications
Chui, Charles K
2009-01-01
Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
M. Manimozhi
2014-05-01
Full Text Available Fault Detection and Isolation (FDI using Linear Kalman Filter (LKF is not sufficient for effective monitoring of nonlinear processes. Most of the chemical plants are nonlinear in nature while operating the plant in a wide range of process variables. In this study we present an approach for designing of Multi Model Adaptive Linear Kalman Filter (MMALKF for Fault Detection and Isolation (FDI of a nonlinear system. The uses a bank of adaptive Kalman filter, with each model based on different fault hypothesis. In this study the effectiveness of the MMALKF has been demonstrated on a spherical tank system. The proposed method is detecting and isolating the sensor and actuator soft faults which occur sequentially or simultaneously.
RAPID TRANSFER ALIGNMENT USING FEDERATED KALMAN FILTER
GUDong-qing; QINYong-yuan; PENGRong; LIXin
2005-01-01
The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the calculation burden on the computer and the difficulty to meet a high filtering updating rate desired by rapid TA. The federated Kalman filter (FKF) for the rapid TA is proposed to solve the dilemma. The structure and the algorithm of the FKF, which can perform parallel computation and has less calculation burden, are designed.The wing flexure motion is modeled, and then the 12-order velocity matching local filter and the 15-order attitud ematching local filter are devised. Simulation results show that the proposed EKE for the rapid TA almost has the same performance as the CKF. Thus the calculation burden of the proposed FKF for the rapid TA is markedly decreased.
JIN Zhi-jian; WANG Feng-hua; ZHU Zi-shu
2007-01-01
Electric arc furnaces (EAFs) represent one of the most disturbing loads in the subtransmission or transmission electric power systems. Therefore, it is necessary to build a practical model to descript the behavior of EAF in the simulation of power system for power quality issues. This paper deals with the modeling of EAF based on the combination of extended Kalman filter to identify the parameter of arc current and the power balance equation to obtain the dynamic, multi-valued u-i characteristics of EAF load. The whole EAF systems are simulated by means of power system blockset in Matlab to validate the proposed EAF model. This model can also be used to assess the impact of the new plant or highly varying nonlinear loads that exhibit chaos in power systems.
Enhanced Kalman Filtering for a 2D CFD NS Wind Farm Flow Model
Doekemeijer, B. M.; van Wingerden, J. W.; Boersma, S.; Pao, L. Y.
2016-09-01
Wind turbines are often grouped together for financial reasons, but due to wake development this usually results in decreased turbine lifetimes and power capture, and thereby an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by operating turbines at their optimal control settings. Most state-of-the-art control algorithms are open-loop and rely on low fidelity, static flow models. Closed-loop control relying on a dynamic model and state observer has real potential to further decrease wind's LCOE, but is often too computationally expensive for practical use. In this paper two time-efficient Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes equations in two dimensions to predict the flow in wind farms at low computational cost. The filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a high fidelity simulation model represents the true wind farm show that these filters are 101 —102 times faster than a regular KF with comparable or better performance, correcting for wake dynamics that are not modeled in WFSim (noticeably, wake meandering and turbine hub effects). This is a first big step towards real-time closed-loop control for wind farms.
REAL-TIME FLOOD FORECASTING MODELING OF 1D UNSTEADY CHANNEL FLOW AND KALMAN FILTER
无
2001-01-01
The model of 1D unsteady channel flow combined with the Kalmanfilter for real-time channel flood forecasting was attempted in this study. The suitable upstream and downstream boundary conditions were suggested. The system equation was given by the linearization of the finitedifference equations of the mass conservation and momentum equations as well as the boundary conditions. In the Kalman filter updating model, because the number of measurement variable is less then that of state-space variables, the measurement error covariance matrix could be estimated in real time through the innovation sequence, and the system error covariance matrix needs to be estimated preliminarily. A real example of flood forecasting in the Huaihe River was given to explain how the method works. The results show that the model is reasonable and effective.
The Local Ensemble Transform Kalman Filter (LETKF) with a Global NWP Model on the Cubed Sphere
Shin, Seoleun; Kang, Ji-Sun; Jo, Youngsoon
2016-07-01
We develop an ensemble data assimilation system using the four-dimensional local ensemble transform kalman filter (LEKTF) for a global hydrostatic numerical weather prediction (NWP) model formulated on the cubed sphere. Forecast-analysis cycles run stably and thus provide newly updated initial states for the model to produce ensemble forecasts every 6 h. Performance of LETKF implemented to the global NWP model is verified using the ECMWF reanalysis data and conventional observations. Global mean values of bias and root mean square difference are significantly reduced by the data assimilation. Besides, statistics of forecast and analysis converge well as the forecast-analysis cycles are repeated. These results suggest that the combined system of LETKF and the global NWP formulated on the cubed sphere shows a promising performance for operational uses.
Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.
2007-01-01
The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis st
El Gharamti, Mohamad
2014-02-01
The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.
Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics
Zhaoxia PU; Joshua HACKER
2009-01-01
This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.
Kalman filtering with real-time applications
Chui, Charles K
2017-01-01
This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help de...
Fukumori, Ichiro; Malanotte-Rizzoli, Paola
1995-01-01
A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kalman filter based on approximation of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.
Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter
Jing Li
2016-01-01
Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.
Godinez, Humberto C; Fierro, Alexandre O; Guimond, Stephen R; Kao, Jim
2011-01-01
In this work we present the assimilation of dual-Doppler radar observations for rapidly intensifying hurricane Guillermo (1997) using the Ensemble Kalman Filter (EnKF) to determine key model parameters. A unique aspect of Guillermo was that during the period of radar observations strong convective bursts, attributable to wind shear, formed primarily within the eastern semicircle of the eyewall. To reproduce this observed structure within a hurricane model, background wind shear of some magnitude must be specified; as well as turbulence and surface parameters appropriately specified so that the impact of the shear on the simulated hurricane vortex can be realized. To first illustrate the complex nonlinear interactions induced by changes in these parameters, an ensemble of 120 simulations have been conducted in which individual members were formulated by sampling the parameters within a certain range via a Latin hypercube approach. Next, data from the 120 simulations and two distinct derived fields of observati...
Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models
Ait-El-Fquih, Boujemaa
2015-08-13
This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.
Szczęsna, Agnieszka; Pruszowski, Przemysław
2016-01-01
Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.
New efficient optimizing techniques for Kalman filters and numerical weather prediction models
Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis
2016-06-01
The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.
Hierarchical Bayes Ensemble Kalman Filtering
Tsyrulnikov, Michael
2015-01-01
Ensemble Kalman filtering (EnKF), when applied to high-dimensional systems, suffers from an inevitably small affordable ensemble size, which results in poor estimates of the background error covariance matrix ${\\bf B}$. The common remedy is a kind of regularization, usually an ad-hoc spatial covariance localization (tapering) combined with artificial covariance inflation. Instead of using an ad-hoc regularization, we adopt the idea by Myrseth and Omre (2010) and explicitly admit that the ${\\bf B}$ matrix is unknown and random and estimate it along with the state (${\\bf x}$) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components ${\\bf P}$ and ${\\bf Q}$ of the ${\\bf B}$ matrix into the extended control vector $({\\bf x},{\\bf P},{\\bf Q})$. Similarly, we break the traditional backgrou...
Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2016-01-01
HVDC transmission is an integral part of various power system networks. This article presents an Unscented Kalman Filter dynamic state estimator algorithm that considers the presence of HVDC links. The AC - DC power flow analysis, which is implemented as power flow solver for Dynamic State...
Kalman filter-based microphone array signal processing using the equivalent source model
Bai, Mingsian R.; Chen, Ching-Cheng
2012-10-01
This paper demonstrates that microphone array signal processing can be implemented by using adaptive model-based filtering approaches. Nearfield and farfield sound propagation models are formulated into state-space forms in light of the Equivalent Source Method (ESM). In the model, the unknown source amplitudes of the virtual sources are adaptively estimated by using Kalman filters (KFs). The nearfield array aimed at noise source identification is based on a Multiple-Input-Multiple-Output (MIMO) state-space model with minimal realization, whereas the farfield array technique aimed at speech quality enhancement is based on a Single-Input-Multiple-Output (SIMO) state-space model. Performance of the nearfield array is evaluated in terms of relative error of the velocity reconstructed on the actual source surface. Numerical simulations for the nearfield array were conducted with a baffled planar piston source. From the error metric, the proposed KF algorithm proved effective in identifying noise sources. Objective simulations and subjective experiments are undertaken to validate the proposed farfield arrays in comparison with two conventional methods. The results of objective tests indicated that the farfield arrays significantly enhanced the speech quality and word recognition rate. The results of subjective tests post-processed with the analysis of variance (ANOVA) and a post-hoc Fisher's least significant difference (LSD) test have shown great promise in the KF-based microphone array signal processing techniques.
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
V. R. N. Pauwels
2013-04-01
Full Text Available In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the Discrete Kalman Filter, and the state variables using the Ensemble Kalman Filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware Ensemble Kalman Filter. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Liquid Level Estimation in Dynamic Condition using Kalman Filter
Sagar Kapale
2016-08-01
Full Text Available The aim of this paper is to estimate true liquid level of tank from noisy measurements due to dynamic conditions using kalman filter algorithm. We proposed kalman filter based approach to reduce noise in liquid level measurement system due to effect like sloshing. The function of kalman filter is to reduce error in liquid level measurement that produced from sensor resulting from effect like sloshing in dynamic environment. A prototype model was constructed and placed in dynamic condition, level data was acquired using ultrasonic sensor to verify the effectiveness of kalman filter. The tabulated data are shown for comparison of accuracy and error analysis between both measurements with Kalman filter and statistical averaging filter. After several test with different liquid levels and analysis of the recorded data, the technique shows the usefulness in liquid level measurement application in dynamic condition.
Implementation of Kalman Filter with Python Language
Laaraiedh, Mohamed
2012-01-01
In this paper, we investigate the implementation of a Python code for a Kalman Filter using the Numpy package. A Kalman Filtering is carried out in two steps: Prediction and Update. Each step is investigated and coded as a function with matrix input and output. These different functions are explained and an example of a Kalman Filter application for the localization of mobile in wireless networks is given.
National Aeronautics and Space Administration — This article discusses several aspects of uncertainty represen- tation and management for model-based prognostics method- ologies based on our experience with Kalman...
National Aeronautics and Space Administration — Estimation of aerodynamic models for the control of damaged aircraft using an innovative differential vortex lattice method tightly coupled with an extended Kalman...
A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM
Jianjun Ni
2014-01-01
Full Text Available Robot simultaneous localization and mapping (SLAM problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.
Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering
El Gharamti, Mohamad
2013-10-01
Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the
Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters
Hoteit, Ibrahim; Pham, Dinh-Tuan
2011-01-01
This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that, the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. We show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an "ensemble of Kalman filters" operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, we consider the construction of the PKF through an "ensemble" of ensemble Kalman filters (EnKFs) instead, ...
Briseño, Jessica; Herrera, Graciela S.
2010-05-01
Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one
In vitro identification of four-element windkessel models based on iterated unscented Kalman filter.
Huang, Huan; Yang, Ming; Zang, Wangfu; Wu, Shunjie; Pang, Yafei
2011-09-01
Mock circulatory loops (MCLs) have been widely used to test left ventricular assist devices. The hydraulic properties of the mock systemic arterial system are usually described by two alternative four-element windkessel (W4) models. Compared with three-element windkessel model, their parameters, especially the inertial term, are much more difficult to estimate. In this paper, an estimator based on the iterated unscented Kalman filter (IUKF) algorithm is proposed to identify model parameters. Identifiability of these parameters for different measurements is described. Performance of the estimator for different model structures is first evaluated using numerical simulation data contaminated with artificial noise. An MCL is developed to test the proposed algorithm. Parameter estimates for different models are compared with the calculated values derived from the mechanical and hydraulic properties of the MCL to validate model structures. In conclusion, the W4 model with an inertance and an aortic characteristic resistance arranged in series is proposed to represent the mock systemic arterial system. Once model structure is appropriately selected, IUKF can provide reasonable estimation accuracy in a limited time and may be helpful for future clinical applications.
Rigatos, G; Rigatou, E; Djida, J D
2015-01-01
The derivative-free nonlinear Kalman filter is proposed for state estimation and fault diagnosis in distributed parameter systems of the wave-type and particularly in the Peyrard-Bishop-Dauxois model of DNA dynamics. At a first stage, a nonlinear filtering approach is introduced for estimating the dynamics of the Peyrard-Bishop-Dauxois 1D nonlinear wave equation, through the processing of a small number of measurements. It is shown that the numerical solution of the associated partial differential equation results in a set of nonlinear ordinary differential equations. With the application of a diffeomorphism that is based on differential flatness theory it is shown that an equivalent description of the system is obtained in the linear canonical (Brunovsky) form. This transformation enables to obtain local estimates about the state vector of the DNA model through the application us of the standard Kalman filter recursion. At a second stage, the local statistical approach to fault diagnosis is used to perform fault diagnosis for this distributed parameter system by processing with statistical tools the differences (residuals) between the output of the Kalman filter and the measurements obtained from the distributed parameter system. Optimal selection of the fault threshold is succeeded by using the local statistical approach to fault diagnosis. The efficiency of the proposed filtering approach in the problem of fault diagnosis for parametric change detection, in nonlinear wave-type models of DNA dynamics, is confirmed through simulation experiments.
Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States); Mahdi, Adam, E-mail: amahdi@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States)
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
Andreasen, Martin Møller
. The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported...
Hong-jun BAO
2011-03-01
Full Text Available A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning’s roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning’s roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning’s roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.
Zhang, Hongjuan; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Vrugt, Jasper A.; Vereecken, Harry
2016-04-01
Land surface models (LSMs) resolve the water and energy balance with different parameters and state variables. Many of the parameters of these models cannot be measured directly in the field, and require calibration against flux and soil moisture data. Two LSMs are used in our work: Variable Infiltration Capacity Hydrologic Model (VIC) and the Community Land Model (CLM). Temporal variations in soil moisture content at 5, 20 and 50 cm depth in the Rollesbroich experimental watershed in Germany are simulated in both LSMs. Data assimilation (DA) provides a good way to jointly estimate soil moisture content and soil properties of the resolved soil domain. Four DA methods combined with the two LSMs are used in our work: the Ensemble Kalman Filter (EnKF) using state augmentation or dual estimation, the Residual Resampling Particle Filter (RRPF) and Markov chain Monte Carlo Particle Filter (MCMCPF). These four DA methods are tuned and calibrated for a five month period, and subsequently evaluated for another five month period. Performances of the two LSMs and the four DA methods are compared. Our results show that all DA methods improve the estimation of soil moisture content of the VIC and CLM models, especially if the soil hydraulic properties (VIC), the maximum baseflow velocity (VIC) and/or soil texture (CLM) are jointly estimated with soil moisture content. The augmentation and dual estimation methods performed slightly better than RRPF and MCMCPF in the evaluation period. The differences in simulated soil moisture content between CLM and VIC were larger than variations among the DA methods. The CLM performed better than the VIC model. The strong underestimation of soil moisture content in the third layer of the VIC model is likely related to an inadequate parameterization of groundwater drainage.
Non-intrusive Ensemble Kalman filtering for large scale geophysical models
Amour, Idrissa; Kauranne, Tuomo
2016-04-01
Advanced data assimilation techniques, such as variational assimilation methods, present often challenging implementation issues for large-scale models, both because of computational complexity and because of complexity of implementation. We present a non-intrusive wrapper library that addresses this problem by isolating the direct model and the linear algebra employed in data assimilation from each other completely. In this approach we have adopted a hybrid Variational Ensemble Kalman filter that combines Ensemble propagation with a 3DVAR analysis stage. The inverse problem of state and covariance propagation from prior to posterior estimates is thereby turned into a time-independent problem. This feature allows the linear algebra and minimization steps required in the variational step to be conducted outside the direct model and no tangent linear or adjoint codes are required. Communication between the model and the assimilation module is conducted exclusively via standard input and output files of the model. This non-intrusive approach is tested with the comprehensive 3D lake and shallow sea model COHERENS that is used to forecast and assimilate turbidity in lake Säkylän Pyhäjärvi in Finland, using both sparse satellite images and continuous real-time point measurements as observations.
Low-cost adaptive square-root cubature Kalman filter for systems with process model uncer tainty
An Zhang; Shuida Bao; Wenhao Bi; Yuan Yuan
2016-01-01
A novel low-cost adaptive square-root cubature Kalman filter (LCASCKF) is proposed to enhance the robustness of pro-cess models while only increasing the computational load slightly. It is wel-known that the Kalman filter cannot handle uncertainties in a process model, such as initial state estimation errors, parameter mismatch and abrupt state changes. These uncertainties severely affect filter performance and may even provoke divergence. A strong tracking filter (STF), which utilizes a suboptimal fading fac-tor, is an adaptive approach that is commonly adopted to solve this problem. However, if the strong tracking SCKF (STSCKF) uses the same method as the extended Kalman filter (EKF) to introduce the suboptimal fading factor, it greatly increases the computational load. To avoid this problem, a low-cost introductory method is proposed and a hypothesis testing theory is applied to detect uncertainties. The computational load analysis is performed by counting the total number of floating-point operations and it is found that the computational load of LCASCKF is close to that of SCKF. Experimental results prove that the LCASCKF performs as wel as STSCKF, while the increase in computational load is much lower than STSCKF.
Sun, Xiaodian; Jin, Li; Xiong, Momiao
2008-01-01
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
Kullback-Leibler Divergence Approach to Partitioned Update Kalman Filter
Raitoharju, Matti; García-Fernández, Ángel F.; Piché, Robert
2016-01-01
Kalman filtering is a widely used framework for Bayesian estimation. The partitioned update Kalman filter applies a Kalman filter update in parts so that the most linear parts of measurements are applied first. In this paper, we generalize partitioned update Kalman filter, which requires the use oft the second order extended Kalman filter, so that it can be used with any Kalman filter extension. To do so, we use a Kullback-Leibler divergence approach to measure the nonlinearity of the measure...
Star-sensor-based predictive Kalman filter for satelliteattitude estimation
林玉荣; 邓正隆
2002-01-01
A real-time attitude estimation algorithm, namely the predictive Kalman filter, is presented. This algorithm can accurately estimate the three-axis attitude of a satellite using only star sensor measurements. The implementation of the filter includes two steps: first, predicting the torque modeling error, and then estimating the attitude. Simulation results indicate that the predictive Kalman filter provides robust performance in the presence of both significant errors in the assumed model and in the initial conditions.
A Recursive Kalman Filter Forecasting Approach
Douglas R. Kahl; Johannes Ledolter
1983-01-01
This paper examines the forecasting accuracy and the cost effectiveness of time series models with time-varying coefficients. A simulation study investigates the potential forecasting benefits of a proposed Kalman filter type adaptive estimation and forecasting approach. It is found that: (1) When appropriate, the time-varying coefficient approach leads to better forecasts than the constant coefficient procedures. (2) A simple decision rule, which indicates whether time-varying coefficient mo...
Adaptable Iterative and Recursive Kalman Filter Schemes
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Baker Syed
2011-01-01
Full Text Available Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF, rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.
Baker, Syed Murtuza; Poskar, C Hart; Junker, Björn H
2011-10-11
In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.
Nie, Suping; Zhu, Jiang; Luo, Yong
2010-05-01
The purpose of this study is to explore the performances of different model error scheme in soil moisture data assimilation. Based on the ensemble Kalman filter (EnKF) and the atmosphere-vegetation interaction model (AVIM), point-scale analysis results for three schemes, 1) covariance inflation (CI), 2) direct random disturbance (DRD), and 3) error source random disturbance (ESRD), are combined under conditions of different observational error estimations, different observation layers, and different observation intervals using a series of idealized experiments. The results shows that all these schemes obtain good assimilation results when the assumed observational error is an accurate statistical representation of the actual error used to perturb the original truth value, and the ESRD scheme has the least root mean square error (RMSE). Overestimation or underestimation of the observational errors can affect the assimilation results of CI and DRD schemes sensitively. The performances of these two schemes deteriorate obviously while the ESRD scheme keeps its capability well. When the observation layers or observation interval increase, the performances of both CI and DRD schemes decline evidently. But for the ESRD scheme, as it can assimilate multi-layer observations coordinately, the increased observations improve the assimilation results further. Moreover, as the ESRD scheme contains a certain amount of model error estimation functions in its assimilation process, it also has a good performance in assimilating sparse-time observations.
Giovanni Capellari
2015-12-01
Full Text Available Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation, whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated.
Capellari, Giovanni; Azam, Saeed Eftekhar; Mariani, Stefano
2015-12-22
Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated.
A local ensemble transform Kalman filter data assimilation system for the NCEP global model
Szunyogh, Istvan; Kostelich, Eric J.; Gyarmati, Gyorgyi; Kalnay, Eugenia; Hunt, Brian R.; Ott, Edward; Satterfield, Elizabeth; Yorke, James A.
2008-01-01
The accuracy and computational efficiency of a parallel computer implementation of the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme on the model component of the 2004 version of the Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP) is investigated. Numerical experiments are carried out at model resolution T62L28. All atmospheric observations that were operationally assimilated by NCEP in 2004, except for satellite radiances, are assimilated with the LETKF. The accuracy of the LETKF analyses is evaluated by comparing it to that of the Spectral Statistical Interpolation (SSI), which was the operational global data assimilation scheme of NCEP in 2004. For the selected set of observations, the LETKF analyses are more accurate than the SSI analyses in the Southern Hemisphere extratropics and are comparably accurate in the Northern Hemisphere extratropics and in the Tropics. The computational wall-clock times achieved on a Beowulf cluster of 3.6 GHz Xeon processors make our implementation of the LETKF on the NCEP GFS a widely applicable analysis-forecast system, especially for research purposes. For instance, the generation of four daily analyses at the resolution of the NCAR-NCEP reanalysis (T62L28) for a full season (90 d), using 40 processors, takes less than 4 d of wall-clock time.
Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang
2015-10-01
The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.
Ensemble Kalman Filter Data Assimilation with the ParFlow Hydrologic Model
Williams, J. L., III
2015-12-01
Hydrometeorological research has shown that simulations of atmospheric processes benefit from sophisticated land surface formulations. Moisture and energy fluxes between the land surface and lower atmosphere are influenced strongly not only by atmospheric conditions, but by terrestrial hydrologic processes, soil moisture distribution in particular. By improving the representation of hydrologic processes, better predictive skill can be achieved in a fully-coupled weather forcasting model. Further improvements in the model can be realized by incorporating observed data values into the hydrologic model. This work applies the Ensemble Kalman Filter functionality included in the Data Assimilation Assimilation Research Testbed (DART), a collection of data assimilation tools maintained at the National Center for Atmospheric Research, to the ParFlow hydrologic model—the hydrologic component of the TerrSysMP fully coupled hydrologic - land surface - atmospheric model system. This generalized data assimilation tool allows observations of variables in the hydrologic component of the system to be incorporated into the overall error covariance matrix thus guiding the development of quantities that define the model state. Single dimension column tests, and a three-dimensional idealized catchment drainage and dry-out test were performed with the ParFlow-DART system to evaluate the effects of assimilating pressure head, soil moisture, and outflow observations on the development of the model through time. The data assimilation system was then applied to the hydrologic portion a fully-coupled (subsurface, land surface, and atmosphere) simulation over the North Rhine-Westphalia region in western Germany to demonstrate the utility of this system in a non-idealized and realistic forecasting situation. The success of these tests will allow the ParFlow-DART system to be developed into a complete data assimilation package for the TerrSysMP fully-coupled modeling system.
Data Assimilation for Vadose Zone Flow Modeling Using the Ensemble Kalman Filter
Zhang, Y.; Schaap, M. G.; Zha, Y.; Xue, L.
2015-12-01
The natural system is open and complex and the hydraulic parameters needed for describing flow and transport in the vadose zone are often poorly known, making it prone to multiple interpretations, mathematical descriptions and uncertainty. Quite often a reasonable "handle" on a sites flow characteristics can be gained only through direct observation of the flow processes itself, determination of the spatial- and probability distributions of material properties combined with computationally expensive inversions of the Richards equation. In groundwater systems, the ensemble Kalman filter (EnKF) has proven to be an effective alternative to model inversions by assimilating observations directly into an ensemble of groundwater models from which time and/or space-variable variable probabilistic quantities of the flow process can be derived. Application of EnKF to Richards equation-type unsaturated flow problems, however, is more challenging than in groundwater systems because the relation of state and model parameters is strongly nonlinear. In addition, the type of functional dependence of moisture content and hydraulic conductivity on matric potential leads to high-dimensional (in the parameter space) problems even under conditions where closed-form expressions of these models such as van Genuchten-Mualem formulations are used. In this study, we updated soil water retention parameters and hydraulic conductivity together and used Restart EnKF, which rerun the nonlinear model from the initial time to obtain the updated state variables, in synthetic cases to explore the factors that may influence estimation results, including the initial estimate, the ensemble size, the observation error, and the assimilation interval. We embedded the EnKF into the Bayesian model averaging framework to enhance the model reliability and reduce predictive uncertainties. This approach is evaluated from a 15 m deep semi-arid highly heterogeneous and anisotropic vadose zone site at the
Spectral diagonal ensemble Kalman filters
Kasanický, Ivan; Vejmelka, Martin
2015-01-01
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
Aguirre, Luis Antonio; Teixeira, Bruno Otávio S.; Tôrres, Leonardo Antônio B.
2005-08-01
This paper addresses the problem of state estimation for nonlinear systems by means of the unscented Kalman filter (UKF). Compared to the traditional extended Kalman filter, the UKF does not require the local linearization of the system equations used in the propagation stage. Important results using the UKF have been reported recently but in every case the system equations used by the filter were considered known. Not only that, such models are usually considered to be differential equations, which requires that numerical integration be performed during the propagation phase of the filter. In this paper the dynamical equations of the system are taken to be difference equations—thus avoiding numerical integration—and are built from data without prior knowledge. The identified models are subsequently implemented in the filter in order to accomplish state estimation. The paper discusses the impact of not knowing the exact equations and using data-driven models in the context of state and joint state-and-parameter estimation. The procedure is illustrated by means of examples that use simulated and measured data.
Kalman filter data assimilation: targeting observations and parameter estimation.
Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex
2014-06-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
A "Dressed" Ensemble Kalman Filter Using the Hybrid Coordinate Ocean Model in the Pacific
WAN Liying; ZHU Jiang; WANG Hui; YAN Changxiang; Laurent BERTINO
2009-01-01
The computational cost required by the Ensemble Kalman Filter (EnKF) is much larger than that of some simpler assimilation schemes,such as Optimal Interpolation (OI) or three-dimension variational assimilation (3DVAR).Ensemble optimal interpolation (EnOI),a crudely simplified implementation of EnKF,is sometimes used as a substitute in some oceanic applications and requires much less computational time than EnKF.In this paper,to compromise between computational cost and dynamic covaxiance,we use the idea of "dressing" a small size dynamical ensemble with a larger number of static ensembles in order to form an approximate dynamic covaxiance.The term "dressing" means that a dynamical ensemble seed from model runs is perturbed by adding the anomalies of some static ensembles.This dressing EnKF (DrEnKF for short) scheme is tested in assimilation of real altimetry data in the Pacific using the HYbrid Coordinate Ocean Model (HYCOM) over a four-year period.Ten dynamical ensemble seeds are each dressed by 10 static ensemble members selected from a 100-member static ensemble.Results are compared to two EnKF assimilation runs that use 10 and 100 dynamical ensemble members.Both temperature and salinity fields from the DrEnKF and the EnKF are compared to observations from Argo floats and an OI SST dataset.The results show that the DrEnKF and the 100-member EnKF yield similar root mean square errors (RMSE)at every model level. Error covariance matrices from the DrEnKF and the 100-member EnKF are also compared and show good agreement.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation
Simon, Dan; Simon, Donald L.
2003-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.
Kalman-Takens filtering in the presence of dynamical noise
Hamilton, Franz; Sauer, Timothy
2016-01-01
The use of data assimilation for the merging of observed data with dynamical models is becoming standard in modern physics. If a parametric model is known, methods such as Kalman filtering have been developed for this purpose. If no model is known, a hybrid Kalman-Takens method has been recently introduced, in order to exploit the advantages of optimal filtering in a nonparametric setting. This procedure replaces the parametric model with dynamics reconstructed from delay coordinates, while using the Kalman update formulation to assimilate new observations. We find that this hybrid approach results in comparable efficiency to parametric methods in identifying underlying dynamics, even in the presence of dynamical noise. By combining the Kalman-Takens method with an adaptive filtering procedure we are able to estimate the statistics of the observational and dynamical noise. This solves a long standing problem of separating dynamical and observational noise in time series data, which is especially challenging w...
Evaluation of Local Ensemble Transform Kalman Filter System for the Global FSU Atmospheric Model
Cintra, R. S.; Cocke, S.
2014-12-01
This paper shows the results of a implementation of the data assimilation system to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University/USA. The better quality of forecasts is given the more accurate the estimate of the initial conditions. The process of combining observations and short-range forecast to obtain an analysis is called data assimilation. The data assimilation system called "Local ensemble transform Kalman filter (LETKF) is implemented. A prediction estimates ensemble in state space represents the model errors in that scheme. The LETKF is tested with the AGCM Florida State University Global Spectral Model (FSUGSM). The model is a multilevel (27 vertical levels) spectral primitive equation model with a vertical σ-coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in two types of the synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity) to evaluate the LETKF system for FSUGSM. The data assimilation experiments are based on observational systems simulation experiments where the "nature" is assumed to be known, and adding random noise to the nature run. The first experiment, the "nature" fields are the FSUGSM forecasts without data assimilation, afterwards, we use the "National Centers for Environment Prediction" reanalysis to obtain the "nature" fields. The observations are localized at every other grid point of the model. The forecast ensemble size is 20 members. The numerical experiments have a one-month assimilation cycle, for the period 01/01/2001 to 31/01/2001 at (00, 06, 12 and 18 GMT) for each day. We compare the behavior of the model by comparing with its forecast, observations and nature fields. A
A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation
Altaf, Muhammad
2014-08-01
This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.
Belkhatir, Zehor
2015-11-23
This paper discusses the estimation of distributed Cerebral Blood Flow (CBF) using spatiotemporal traveling wave model. We consider a damped wave partial differential equation that describes a physiological relationship between the blood mass density and the CBF. The spatiotemporal model is reduced to a finite dimensional system using a cubic b-spline continuous Galerkin method. A Kalman Filter with Unknown Inputs without Direct Feedthrough (KF-UI-WDF) is applied on the obtained reduced differential model to estimate the source term which is the CBF scaled by a factor. Numerical results showing the performances of the adopted estimator are provided.
Radio Channel State Prediction by Kalman Filter
Peter Ziacik
2005-01-01
Full Text Available In this article there is the description Kalman filter using as a radio channel state predictor. Simulator of prediction has been created in MATLAB environment and it is capable to simulate the prediction of radio signal envelope by Clark’s model of radio channel, which is implemented to the simulator. Simulations were realized for prediction range 0.41 ms and 6.24 ms and as comparing criterion we used the prediction error. It is clear from simulations, that with the duration of prediction the prediction error is enlarging, which may cause the erroneous decision of adaptation algorithms.
Estimation of Kalman filter gain from output residuals
Juang, Jer-Nan; Chen, Chung-Wen; Phan, Minh
1993-01-01
This paper presents a procedure to estimate the Kalman filter gain from input-output measurement data with a given system model. The system model can be a finite element model or an experimental model from any identification method. The procedure consists of three basic steps. First, the stochastic portion related to the residuals of the response is computed. Second, the coefficients of a linear difference model for the stochastic portion are estimated by a least-squares solution that minimizes the filter residual. Third, the Kalman filter gain is computed from these model coefficients. Experimental results are presented to illustrate the usefulness of the developed procedure.
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
Barthélémy, S.; Ricci, S.; Pannekoucke, O.; Thual, O.; Malaterre, P. O.
2013-06-01
This study describes the emulation of an Ensemble Kalman Filter (EnKF) algorithm on a 1-D flood wave propagation model. This model is forced at the upstream boundary with a random variable with gaussian statistics and a correlation function in time with gaussian shape. This allows for, in the case without assimilation, the analytical study of the covariance functions of the propagated signal anomaly. This study is validated numerically with an ensemble method. In the case with assimilation with one observation point, where synthetical observations are generated by adding an error to a true state, the dynamic of the background error covariance functions is not straightforward and a numerical approach using an EnKF algorithm is prefered. First, those numerical experiments show that both background error variance and correlation length scale are reduced at the observation point. This reduction of variance and correlation length scale is propagated downstream by the dynamics of the model. Then, it is shown that the application of a Best Linear Unbiased Estimator (BLUE) algorithm using the background error covariance matrix converged from the EnKF algorithm, provides the same results as the EnKF but with a cheaper computational cost, thus allowing for the use of data assimilation in the context of real time flood forecasting. Moreover it was demonstrated that the reduction of background error correlation length scale and variance at the observation point depends on the error observation statistics. This feature is quantified by abacus built from linear regressions over a limited set of EnKF experiments. These abacus that describe the background error variance and the correlation length scale in the neighboring of the observation point combined with analytical expressions that describe the background error variance and the correlation length scale away from the observation point provide parametrized models for the variance and the correlation length scale. Using this
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
S. Barthélémy
2013-06-01
Full Text Available This study describes the emulation of an Ensemble Kalman Filter (EnKF algorithm on a 1-D flood wave propagation model. This model is forced at the upstream boundary with a random variable with gaussian statistics and a correlation function in time with gaussian shape. This allows for, in the case without assimilation, the analytical study of the covariance functions of the propagated signal anomaly. This study is validated numerically with an ensemble method. In the case with assimilation with one observation point, where synthetical observations are generated by adding an error to a true state, the dynamic of the background error covariance functions is not straightforward and a numerical approach using an EnKF algorithm is prefered. First, those numerical experiments show that both background error variance and correlation length scale are reduced at the observation point. This reduction of variance and correlation length scale is propagated downstream by the dynamics of the model. Then, it is shown that the application of a Best Linear Unbiased Estimator (BLUE algorithm using the background error covariance matrix converged from the EnKF algorithm, provides the same results as the EnKF but with a cheaper computational cost, thus allowing for the use of data assimilation in the context of real time flood forecasting. Moreover it was demonstrated that the reduction of background error correlation length scale and variance at the observation point depends on the error observation statistics. This feature is quantified by abacus built from linear regressions over a limited set of EnKF experiments. These abacus that describe the background error variance and the correlation length scale in the neighboring of the observation point combined with analytical expressions that describe the background error variance and the correlation length scale away from the observation point provide parametrized models for the variance and the correlation length
LI JunWei; LIN BoLiang; SUN ZhiHui; GENG XueFei
2009-01-01
On the basis of measurable time series of mainline and ramp flows from traffic counts and the assumption of travel time distributions, this research presents a dynamic system model and its on-line estimation algorithm for recursive estimation of Ume-varying origin-destination (OD) matrices in expressway corridors. The proposed model employs a macro-traffic flow model to estimate travel times of OD flows and uses parameters of the traffic model as state variables, which are added to the constrained function of the system. To improve the model efficiency, we revise the travel time distribution based on the feature of normal distribution. The research employs a newly developed filtering technique, called unscented Kalman filter. The proposed model is evaluated with simulation experiments.Numerical analyses with respect to the sensitivity of the selection of initial parameters on the estimation results indicate that the proposed model is sufficiently reasonable and stable for real-world applications.
无
2009-01-01
On the basis of measurable time series of mainline and ramp flows from traffic counts and the assumption of travel time distributions, this research presents a dynamic system model and its on-line estimation algorithm for recursive estimation of time-varying origin-destination (OD) matrices in expressway corridors. The proposed model employs a macro-traffic flow model to estimate travel times of OD flows and uses parameters of the traffic model as state variables, which are added to the constrained function of the system. To improve the model efficiency, we revise the travel time distribution based on the feature of normal distribution. The research employs a newly developed filtering technique, called unscented Kalman filter. The proposed model is evaluated with simulation experiments. Numerical analyses with respect to the sensitivity of the selection of initial parameters on the estimation results indicate that the proposed model is sufficiently reasonable and stable for real-world appli-cations.
Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2016-01-01
Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve...... the stability of power system. State estimation with EKF and UKF methods can be used for monitoring and estimating the dynamic state variables of multi-machine power systems, which are generator rotor speed and rotor angle. This paper uses Powerfactory to solve power flow analysis of simulations, then a non......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...
VLBI TRF determination via Kalman filtering
Soja, Benedikt; Karbon, Maria; Nilsson, Tobias; Glaser, Susanne; Balidakis, Kyriakos; Heinkelmann, Robert; Schuh, Harald
2015-04-01
The determination of station positions is one of the primary tasks for space geodetic techniques. Station coordinate offsets are usually determined with respect to a linear coordinate model after removing elastic displacements caused by mass redistributions within the Earth's system. In operational VLBI analysis, the coordinate offsets are estimated in a least-squares adjustment as a constant over the duration of a 24-hour VLBI experiment. Terrestrial reference frames (TRF) are usually derived by adjusting the normal equations that contain the 24-hour constant offsets in order to estimate a linear model, possibly including breaks, for the station positions. We have created a VLBI TRF solution without the assumption of negligible subdaily motion and of linear behavior on longer time scales by applying a Kalman filter. As a preparation for the upcoming VLBI Global Observing System (VGOS), which aims for continuous observations that are available in real-time, a Kalman filter has been implemented into the VLBI software VieVS@GFZ. In addition to the real-time capability, the filter offers the possibility of stochastically modeling the parameters of interest. For station coordinates, changes in a subdaily time frame occur, for instance, from un- or mismodeled geophysical effects. The models for tidal and non-tidal ocean, atmosphere, and hydrology loading are known to have deficiencies and inconsistencies which propagate into the estimated station coordinates. The stochastic model of the Kalman filter can be adapted to take these subdaily effects into account. Comparing the resulting station coordinate time series with daily values from a least squares fit, we have investigated to what extent and in which regions the loading models currently have deficiencies. Due to the high correlation between station height and tropospheric delays, it is possible that errors in one group of parameters are partly absorbed by the other group. To detect problems with correlations and to
Harmonic Detection at Initialization With Kalman Filter
Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa
2014-01-01
the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized......Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...
El Gharamti, Mohamad
2015-11-26
The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model’s state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.
Leeuwenburgh, O.; Burgers, G.
2003-04-01
An ocean data assimilation and forecast system for the Equatorial Pacific is presented. The Ensemble Kalman Filter is used to combine several types of real data with a reduced-gravity shallow-water model containing a simplified SST equation. A preliminary version of this assimilation system has been found in the past to produce skillful forecasts of Nino 3 and Nino 4 SST anomalies when artifical data obtained from model runs are used. The small size and simplicity of the model now allows us to experiment with different types of real data, ensemble sizes, assimilation frequency, etc. Forecasts are made by coupling a statistical atmosphere to the ocean model. We make a comparison between assimilation of subsurface temperature information and sea surface temperature and height into a model forced by observed winds, and assimilation of both ocean data and observed winds into the coupled model. The influence of model error can be studied by introducing changes to the model parameterizations or by comparing the difference in skill between the real data case and a twin experiment setup. The results are compared with the historical record of SST anomalies and will serve as a benchmark for the implementation of the Ensemble Kalman Filter with more elaborate models.
Impulse control in Kalman-like filtering problems
Michael V. Basin
1998-01-01
Full Text Available This paper develops the impulse control approach to the observation process in Kalman-like filtering problems, which is based on impulsive modeling of the transition matrix in an observation equation. The impulse control generates the jumps of the estimate variance from its current position down to zero and, as a result, enables us to obtain the filtering equations for the Kalman estimate with zero variance for all post-jump time moments. The filtering equations for the estimates with zero variances are obtained in the conventional linear filtering problem and in the case of scalar nonlinear state and nonlinear observation equations.
Hongjie Wu
2013-01-01
Full Text Available State of charge (SOC is a critical factor to guarantee that a battery system is operating in a safe and reliable manner. Many uncertainties and noises, such as fluctuating current, sensor measurement accuracy and bias, temperature effects, calibration errors or even sensor failure, etc. pose a challenge to the accurate estimation of SOC in real applications. This paper adds two contributions to the existing literature. First, the auto regressive exogenous (ARX model is proposed here to simulate the battery nonlinear dynamics. Due to its discrete form and ease of implemention, this straightforward approach could be more suitable for real applications. Second, its order selection principle and parameter identification method is illustrated in detail in this paper. The hybrid pulse power characterization (HPPC cycles are implemented on the 60AH LiFePO4 battery module for the model identification and validation. Based on the proposed ARX model, SOC estimation is pursued using the extended Kalman filter. Evaluation of the adaptability of the battery models and robustness of the SOC estimation algorithm are also verified. The results indicate that the SOC estimation method using the Kalman filter based on the ARX model shows great performance. It increases the model output voltage accuracy, thereby having the potential to be used in real applications, such as EVs and HEVs.
A Novel Robust Interval Kalman Filter Algorithm for GPS/INS Integrated Navigation
Chen Jiang
2016-01-01
Full Text Available Kalman filter is widely applied in data fusion of dynamic systems under the assumption that the system and measurement noises are Gaussian distributed. In literature, the interval Kalman filter was proposed aiming at controlling the influences of the system model uncertainties. The robust Kalman filter has also been proposed to control the effects of outliers. In this paper, a new interval Kalman filter algorithm is proposed by integrating the robust estimation and the interval Kalman filter in which the system noise and the observation noise terms are considered simultaneously. The noise data reduction and the robust estimation methods are both introduced into the proposed interval Kalman filter algorithm. The new algorithm is equal to the standard Kalman filter in terms of computation, but superior for managing with outliers. The advantage of the proposed algorithm is demonstrated experimentally using the integrated navigation of Global Positioning System (GPS and the Inertial Navigation System (INS.
Deterministic Kalman filtering in a behavioral framework
Fagnani, F; Willems, JC
1997-01-01
The purpose of this paper is to obtain a deterministic version of the Kalman filtering equations. We will use a behavioral description of the plant, specifically, an image representation. The resulting algorithm requires a matrix spectral factorization. We also show that the filter can be implemente
Keppenne, Christian L.
2013-01-01
A two-step ensemble recentering Kalman filter (ERKF) analysis scheme is introduced. The algorithm consists of a recentering step followed by an ensemble Kalman filter (EnKF) analysis step. The recentering step is formulated such as to adjust the prior distribution of an ensemble of model states so that the deviations of individual samples from the sample mean are unchanged but the original sample mean is shifted to the prior position of the most likely particle, where the likelihood of each particle is measured in terms of closeness to a chosen subset of the observations. The computational cost of the ERKF is essentially the same as that of a same size EnKF. The ERKF is applied to the assimilation of Argo temperature profiles into the OGCM component of an ensemble of NASA GEOS-5 coupled models. Unassimilated Argo salt data are used for validation. A surprisingly small number (16) of model trajectories is sufficient to significantly improve model estimates of salinity over estimates from an ensemble run without assimilation. The two-step algorithm also performs better than the EnKF although its performance is degraded in poorly observed regions.
Reduced Kalman Filters for Clock Ensembles
Greenhall, Charles A.
2011-01-01
This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.
Distributed Kalman Filter via Gaussian Belief Propagation
Bickson, Danny; Dolev, Danny
2008-01-01
Recent result shows how to compute distributively and efficiently the linear MMSE for the multiuser detection problem, using the Gaussian BP algorithm. In the current work, we extend this construction, and show that operating this algorithm twice on the matching inputs, has several interesting interpretations. First, we show equivalence to computing one iteration of the Kalman filter. Second, we show that the Kalman filter is a special case of the Gaussian information bottleneck algorithm, when the weight parameter $\\beta = 1$. Third, we discuss the relation to the Affine-scaling interior-point method and show it is a special case of Kalman filter. Besides of the theoretical interest of this linking estimation, compression/clustering and optimization, we allow a single distributed implementation of those algorithms, which is a highly practical and important task in sensor and mobile ad-hoc networks. Application to numerous problem domains includes collaborative signal processing and distributed allocation of ...
Varouchakis, Emmanouil
2017-04-01
Reliable temporal modelling of groundwater level is significant for efficient water resources management in hydrological basins and for the prevention of possible desertification effects. In this work we propose a stochastic data driven approach of temporal monitoring and prediction that can incorporate auxiliary information. More specifically, we model the temporal (mean annual and biannual) variation of groundwater level by means of a discrete time autoregressive exogenous variable model (ARX model). The ARX model parameters and its predictions are estimated by means of the Kalman filter adaptation algorithm (KFAA). KFAA is suitable for sparsely monitored basins that do not allow for an independent estimation of the ARX model parameters. Three new modified versions of the original form of the ARX model are proposed and investigated: the first considers a larger time scale, the second a larger time delay in terms of the groundwater level input and the third considers the groundwater level difference between the last two hydrological years, which is incorporated in the model as a third input variable. We apply KFAA to time series of groundwater level values from Mires basin in the island of Crete. In addition to precipitation measurements, we use pumping data as exogenous variables. We calibrate the ARX model based on the groundwater level for the years 1981 to 2006 and use it to successfully predict the mean annual and biannual groundwater level for recent years (2007-2010).
Restricted Kalman Filtering Theory, Methods, and Application
Pizzinga, Adrian
2012-01-01
In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th
Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
Stordal, Andreas Størksen; Karlsen, Hans A.; Nævdal, Geir; Hans J. Skaug; Vallès, Brice
2010-01-01
The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist, but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter (EnKF) is a more robust method that has shown promising results with a small sample size, but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with a Gauss...
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence
Kelly, David; Majda, Andrew J.; Tong, Xin T.
2015-01-01
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335
Kalman filtering approach to blind equalization
Kutlu, Mehmet
1993-12-01
Digital communication systems suffer from the channel distortion problem which introduces errors due to intersymbol interference. The solution to this problem is provided by equalizers which use a training sequence to adapt to the channel. However in many cases in which a training sequence is unfeasible, the channel must be adapted blindly. Most of the blind equalization algorithms known so far have problems of convergence to local minima. Our intention is to offer an alternative approach by using extended Kalman filtering and hidden Markov models. They seem to yield more efficient algorithms which take the statistics of the transmitted sequence into consideration. The theoretical development of these new algorithms is discussed in this thesis. Also these algorithms have been simulated under different conditions. The results of simulations and comparisons with existing systems are provided. The models for simulations are presented as MATLAB codes.
Kalman Filter Application to Symmetrical Fault Detection during Power Swing
Khodaparast, Jalal; Silva, Filipe Miguel Faria da; Khederzadeh, M.;
2016-01-01
capability of Kalman Filter. The proposed index is calculated by assessing the difference between predicted and actual samples of impedance. The predicted impedance samples are obtained using Kalman filter and Taylor expansion, which is used in this paper to track the phasor precisely. Second order of Taylor...... expansion is used to decrease corrugation effect of impedance estimation and increase the reliability of proposed method. The instantaneous estimation and prediction capability of Kalman filter are two reasons for proposing utilizing Kalman filter....
Bao Han
2015-01-01
Full Text Available The obstacle motion state estimation is an essential task in intelligent vehicle. The ASCL group has developed such a system that uses a radar and GPS/INS. When running on the road, the acceleration of the vehicle is always changing, so it is hard for constant velocity (CV model and constant acceleration (CA model to describe the motion state of the vehicle. This paper introduced Current Statistical (CS model from military field, which uses the modified Rayleigh distribution to describe acceleration. The adaptive Kalman filter based on CS model was used to estimate the motion state of the target. We conducted simulation experiments and real vehicle tests, and the results showed that the estimation of position, velocity, and acceleration can be precise.
Adaptive robust Kalman filtering for precise point positioning
Guo, Fei; Zhang, Xiaohong
2014-10-01
The optimality of precise point postioning (PPP) solution using a Kalman filter is closely connected to the quality of the a priori information about the process noise and the updated mesurement noise, which are sometimes difficult to obtain. Also, the estimation enviroment in the case of dynamic or kinematic applications is not always fixed but is subject to change. To overcome these problems, an adaptive robust Kalman filtering algorithm, the main feature of which introduces an equivalent covariance matrix to resist the unexpected outliers and an adaptive factor to balance the contribution of observational information and predicted information from the system dynamic model, is applied for PPP processing. The basic models of PPP including the observation model, dynamic model and stochastic model are provided first. Then an adaptive robust Kalmam filter is developed for PPP. Compared with the conventional robust estimator, only the observation with largest standardized residual will be operated by the IGG III function in each iteration to avoid reducing the contribution of the normal observations or even filter divergence. Finally, tests carried out in both static and kinematic modes have confirmed that the adaptive robust Kalman filter outperforms the classic Kalman filter by turning either the equivalent variance matrix or the adaptive factor or both of them. This becomes evident when analyzing the positioning errors in flight tests at the turns due to the target maneuvering and unknown process/measurement noises.
A modified iterative ensemble Kalman filter data assimilation method
Xu, Baoxiong; Bai, Yulong; Wang, Yizhao; Li, Zhe; Ma, Boyang
2017-08-01
High nonlinearity is a typical characteristic associated with data assimilation systems. Additionally, iterative ensemble based methods have attracted a large amount of research attention, which has been focused on dealing with nonlinearity problems. To solve the local convergence problem of the iterative ensemble Kalman filter, a modified iterative ensemble Kalman filter algorithm was put forward, which was based on a global convergence strategy from the perspective of a Gauss-Newton iteration. Through self-adaption, the step factor was adjusted to enable every iteration to approach expected values during the process of the data assimilation. A sensitivity experiment was carried out in a low dimensional Lorenz-63 chaotic system, as well as a Lorenz-96 model. The new method was tested via ensemble size, observation variance, and inflation factor changes, along with other aspects. Meanwhile, comparative research was conducted with both a traditional ensemble Kalman filter and an iterative ensemble Kalman filter. The results showed that the modified iterative ensemble Kalman filter algorithm was a data assimilation method that was able to effectively estimate a strongly nonlinear system state.
Reduced-order Kalman filtering with incomplete observability
Yonezawa, K.
1980-01-01
Kalman filtering is considered with reference to linear stochastic dynamic systems without complete observability. It is shown that the canonical decomposition theorem can be extended to the stochastic case and the matrix Riccati equation of the Kalman filter is order-reducible if some states are not observable. The inclusion of unobservable states in Kalman filtering makes the unobservable states 'asymptotically' observable in the filter if these unobservable states are dynamically connected to observable states and asymptotically stable. The reduced-order Kalman filter saves computation time when compared to the conventional Kalman filter.
Phan, Anh Tuan; Ho, Duc Du; Hermann, Gilles; Wira, Patrice
2015-12-01
For power quality issues like reducing harmonic pollution, reactive power and load unbalance, the estimation of the fundamental frequency of a power lines in a fast and precise way is essential. This paper introduces a new state-space model to be used with an extended Kalman filter (EKF) for estimating the frequency of distorted power system signals in real-time. The proposed model takes into account all the characteristics of a general three-phase power system and mainly the unbalance. Therefore, the symmetrical components of the power system, i.e., their amplitude and phase angle values, can also be deduced at each iteration from the proposed state-space model. The effectiveness of the method has been evaluated. Results and comparisons of online frequency estimation and symmetrical components identification show the efficiency of the proposed method for disturbed and time-varying signals.
Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.
2004-01-01
A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.
Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...
Simpson, Elizabeth C.
1989-01-01
Motion estimation is a field of great interest because of its many applications in areas such as robotics and image coding. The optic flow method is one such scheme which, although fairly accurate, is prone to error in the presence of noise. This thesis describes the use of the reduced order model Kalman filter (ROMKF) in reducing errors in displacement estimation due to degradation of the sequence. The implementation of filtering and motion estimation algorithms on the SUN workstation is also discussed. Results from preliminary testing were used to determine the degrees of freedom available for the ROMKF in the SUN software. The tests indicated that increasing the state to the left leads to slight improvement over the minimum state case. Therefore, the software uses the minimum model, with the option of adding states to the left only. The ROMKF was then used in conjunction with a hierarchical pel recursive motion estimation algorithm. Applying the ROMKF to the degraded displacements themselves generally yielded slight improvements in cases with noise degradation and noise plus blur. Filtering the images of the degraded sequence prior to motion estimation was less effective in these cases. Both methods performed badly in the case of blur alone, resulting in increased displacement errors. This is thought to be due in part to filter artifacts. Some improvements were obtained by varying the filter parameters when filtering the displacements directly. This result suggests that further study in varying filter parameters may lead to better results. The results of this thesis indicate that the ROMKF can play a part in reducing motion estimation errors from degraded sequences. However, more work needs to be done before the use of the ROMKF can be a practical solution.
A Tool for Kalman Filter Tuning
Åkesson, Bernt Magnus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad
2007-01-01
The Kalman filter requires knowledge about the noise statistics. In practical applications, however, the noise covariances are generally not known. A method for estimating noise covariances from process data has been investigated. The method gives a least-squares estimate of the noise covariances...
Towards self-organizing Kalman filters
Sijs, J.; Papp, Z.
2012-01-01
Distributed Kalman filtering is an important signal processing method for state estimation in large-scale sensor networks. However, existing solutions do not account for unforeseen events that are likely to occur and thus dramatically changing the operational conditions (e.g. node failure, communica
Industrial applications of the Kalman filter
Auger, François; Hilairet, Mickael; Guerrero, Josep M.
2013-01-01
The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 70s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal...
Q-Method Extended Kalman Filter
Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.
2012-01-01
A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.
Selection of noise parameters for Kalman filter
Ka-Veng Yuen; Ka-In Hoi; Kai-Meng Mok
2007-01-01
The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likklihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation.
A distributed Kalman filter with global covariance
Sijs, J.; Lazar, M.
2011-01-01
Most distributed Kalman filtering (DKF) algorithms for sensor networks calculate a local estimate of the global state-vector in each node. An important challenge within distributed estimation is that all sensors in the network contribute to the local estimate in each node. In this paper, a novel DKF
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-07-12
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.
Gharamti, M. E.
2015-05-11
The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances. Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model
Deconvolution Kalman filtering for force measurements of revolving wings
Vester, R.; Percin, M.; van Oudheusden, B.
2016-09-01
The applicability of a deconvolution Kalman filtering approach is assessed for the force measurements on a flat plate undergoing a revolving motion, as an alternative procedure to correct for test setup vibrations. The system identification process required for the correct implementation of the deconvolution Kalman filter is explained in detail. It is found that in the presence of a relatively complex forcing history, the DK filter is better suited to filter out structural test rig vibrations than conventional filtering techniques that are based on, for example, low-pass or moving-average filtering. The improvement is especially found in the characterization of the generated force peaks. Consequently, more reliable force data is obtained, which is vital to validate semi-empirical estimation models, but is also relevant to correlate identified flow phenomena to the force production.
2014-12-27
work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of...purpose it is then assumed the bulk of the model state corrections resulting from local and remote observations are being performed through routine... local state : xı ¼ Z xi¼1;...;n xipðxi¼1;...;nÞdxi¼1;...;n ¼ Z xj–i pðxj–i n xiÞdxj–i Z xi xipðxiÞdxi ¼ wimi ð2Þ In here p(xi = 1, . . . ,n) is the joint
Kalman Filter Based Tracking in an Video Surveillance System
SULIMAN, C.
2010-05-01
Full Text Available In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results.
Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.
Xie, Xianming
2016-08-22
A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.
Autonomous orbit determination via Kalman filtering of gravity gradients
Sun; Chen,De; Macabiau, Christophe; Han
2016-01-01
International audience; Spaceborne gravity gradients are proposed in this paper to provide autonomous orbit determination capabilities for near Earth satellites. The gravity gradients contain useful position information which can be extracted by matching the observations with a precise gravity model. The extended Kalman filter is investigated as the principal estimator. The stochastic model of orbital motion, the measurement equation and the model configuration are discussed for the filter de...
Dynamically constrained uncertainty for the Kalman filter covariance in the presence of model error
Grudzien, Colin; Carrassi, Alberto; Bocquet, Marc
2017-04-01
The forecasting community has long understood the impact of dynamic instability on the uncertainty of predictions in physical systems and this has led to innovative filtering design to take advantage of the knowledge of process models. The advantages of this combined approach to filtering, including both a dynamic and statistical understanding, have included dimensional reductions and robust feature selection in the observational design of filters. In the context of a perfect models we have shown that the uncertainty in prediction is damped along the directions of stability and the support of the uncertainty conforms to the dominant system instabilities. Our current work likewise demonstrates this constraint on the uncertainty for systems with model error, specifically, - we produce analytical upper bounds on the uncertainty in the stable, backwards orthogonal Lyapunov vectors in terms of the local Lyapunov exponents and the scale of the additive noise. - we demonstrate that for systems with model noise, the least upper bound on the uncertainty depends on the inverse relationship of the leading Lyapunov exponent and the observational certainty. - we numerically compute the invariant scaling factor of the model error which determines the asymptotic uncertainty. This dynamic scaling of model error is identifiable independently of the noise and is computable directly in terms of the system's dynamic invariants -- in this way the physical process itself may mollify the growth of modelling errors. For systems with strongly dissipative behaviour, we demonstrate that the growth of the uncertainty can be confined to the unstable-neutral modes independently of the filtering process, and we connect the observational design to take advantage of a dynamic characteristic of the filtering error.
Matzuka, Brett; Mehlsen, Jesper; Tran, Hien
2015-01-01
, while the second uses the ensemble transform Kalman filter (ETKF) [1], [12], [13], [35]. In addition, we show that the delayed rejection adaptive Metropolis (DRAM) algorithm can be used for predicting parameter uncertainties within the spline methodology, which is compared with the variability obtained...
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Chien-Hao Tseng
2016-07-01
Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.
Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H
2013-05-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.
Juxiu Tong; Bill X. Hu; Hai Huang; Luanjin Guo; Jinzhong Yang
2014-03-01
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.
Kalman filtering and Standard Quantum Limits for broadband measurement
Mabuchi, H
1998-01-01
I utilize the Caves-Milburn model for continuous position measurements to formulate a broadband version of the Standard Quantum Limit (SQL) for monitoring the position of a free mass, and illustrate the use of Kalman filtering to recover the SQL for estimating a weak classical force that acts on a quantum-mechanical test particle under continuous observation.
Forecasting with the Standardized Self-Perturbed Kalman Filter
Grassi, Stefano; Nonejad, Nima; Santucci de Magistris, Paolo
compared to other on-line, classical and Bayesian methods. The standardized self-perturbed Kalman filter is adopted to forecast the equity premium on the S&P500 index under several model specifications, and to investigate to what extent and how realized variance can be exploited to predict excess returns....
Ensemble Kalman filtering with residual nudging
Xiaodong Luo
2012-10-01
Full Text Available Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF by (in effect adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.
Ensemble Kalman filtering with residual nudging
Luo, X.
2012-10-03
Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.
Dual extended Kalman filtering in recurrent neural networks(1).
Leung, Chi-Sing; Chan, Lai-Wan
2003-03-01
In the classical deterministic Elman model, the estimation of parameters must be very accurate. Otherwise, the system performance is very poor. To improve the system performance, we can use a Kalman filtering algorithm to guide the operation of a trained recurrent neural network (RNN). In this case, during training, we need to estimate the state of hidden layer, as well as the weights of the RNN. This paper discusses how to use the dual extended Kalman filtering (DEKF) for this dual estimation and how to use our proposing DEKF for removing some unimportant weights from a trained RNN. In our approach, one Kalman algorithm is used for estimating the state of the hidden layer, and one recursive least square (RLS) algorithm is used for estimating the weights. After training, we use the error covariance matrix of the RLS algorithm to remove unimportant weights. Simulation showed that our approach is an effective joint-learning-pruning method for RNNs under the online operation.
LAI Rui-xun; FANG Hong-wei; HE Guo-jian; YU Xin; YANG Ming; WANG Ming
2013-01-01
In this paper,both state variables and parameters of one-dimensional open channel model are estimated using a framework of the Ensemble Kalman Filter (EnKF).Compared with observation,the predicted accuracy of water level and discharge are improved while the parameters of the model are identified simultaneously.With the principles of the EnKF,a state-space description of the Saint-Venant equation is constructed by perturbing the measurements with Gaussian error distribution.At the same time,the roughness,one of the key parameters in one-dimensional open channel,is also considered as a state variable to identify its value dynamically.The updated state variables and the parameters are then used as the initial values of the next time step to continue the assimilation process.The usefulness and the capability of the dual EnKF are demonstrated in the lower Yellow River during the water-sediment regulation in 2009.In the optimization process,the errors between the prediction and the observation are analyzed,and the rationale of inverse roughness is discussed.It is believed that (1) the flexible approach of the dual EnKF can improve the accuracy of predicting water level and discharge,(2) it provides a probabilistic way to identify the model error which is feasible to implement but hard to handle in other filter systems,and (3) it is practicable for river engineering and management.
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements.
Xiong, Binyu; Zhao, Jiyun; Wei, Zhongbao; Skyllas-Kazacos, Maria
2014-09-01
State of charge (SOC) estimation is a key issue for battery management since an accurate estimation method can ensure safe operation and prevent the over-charge/discharge of a battery. Traditionally, open circuit voltage (OCV) method is utilized to estimate the stack SOC and one open flow cell is needed in each battery stack [1,2]. In this paper, an alternative method, extended Kalman filter (EKF) method, is proposed for SOC estimation for VRBs. By measuring the stack terminal voltages and applied currents, SOC can be predicted with a state estimator instead of an additional open circuit flow cell. To implement EKF estimator, an electrical model is required for battery analysis. A thermal-dependent electrical circuit model is proposed to describe the charge/discharge characteristics of the VRB. Two scenarios are tested for the robustness of the EKF. For the lab testing scenarios, the filtered stack voltage tracks the experimental data despite the model errors. For the online operation, the simulated temperature rise is observed and the maximum SOC error is within 5.5%. It is concluded that EKF method is capable of accurately predicting SOC using stack terminal voltages and applied currents in the absence of an open flow cell for OCV measurement.
Quang Truong, Dinh; Ahn, Kyoung Kwan
2014-07-01
An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique.
Ines Baccouche
2017-05-01
Full Text Available Accurate modeling of the nonlinear relationship between the open circuit voltage (OCV and the state of charge (SOC is required for adaptive SOC estimation during the lithium-ion (Li-ion battery operation. Online SOC estimation should meet several constraints, such as the computational cost, the number of parameters, as well as the accuracy of the model. In this paper, these challenges are considered by proposing an improved simplified and accurate OCV model of a nickel manganese cobalt (NMC Li-ion battery, based on an empirical analytical characterization approach. In fact, composed of double exponential and simple quadratic functions containing only five parameters, the proposed model accurately follows the experimental curve with a minor fitting error of 1 mV. The model is also valid at a wide temperature range and takes into account the voltage hysteresis of the OCV. Using this model in SOC estimation by the extended Kalman filter (EKF contributes to minimizing the execution time and to reducing the SOC estimation error to only 3% compared to other existing models where the estimation error is about 5%. Experiments are also performed to prove that the proposed OCV model incorporated in the EKF estimator exhibits good reliability and precision under various loading profiles and temperatures.
Ensemble Kalman filtering without the intrinsic need for inflation
M. Bocquet
2011-10-01
Full Text Available The main intrinsic source of error in the ensemble Kalman filter (EnKF is sampling error. External sources of error, such as model error or deviations from Gaussianity, depend on the dynamical properties of the model. Sampling errors can lead to instability of the filter which, as a consequence, often requires inflation and localization. The goal of this article is to derive an ensemble Kalman filter which is less sensitive to sampling errors. A prior probability density function conditional on the forecast ensemble is derived using Bayesian principles. Even though this prior is built upon the assumption that the ensemble is Gaussian-distributed, it is different from the Gaussian probability density function defined by the empirical mean and the empirical error covariance matrix of the ensemble, which is implicitly used in traditional EnKFs. This new prior generates a new class of ensemble Kalman filters, called finite-size ensemble Kalman filter (EnKF-N. One deterministic variant, the finite-size ensemble transform Kalman filter (ETKF-N, is derived. It is tested on the Lorenz '63 and Lorenz '95 models. In this context, ETKF-N is shown to be stable without inflation for ensemble size greater than the model unstable subspace dimension, at the same numerical cost as the ensemble transform Kalman filter (ETKF. One variant of ETKF-N seems to systematically outperform the ETKF with optimally tuned inflation. However it is shown that ETKF-N does not account for all sampling errors, and necessitates localization like any EnKF, whenever the ensemble size is too small. In order to explore the need for inflation in this small ensemble size regime, a local version of the new class of filters is defined (LETKF-N and tested on the Lorenz '95 toy model. Whatever the size of the ensemble, the filter is stable. Its performance without inflation is slightly inferior to that of LETKF with optimally tuned inflation for small interval between updates, and
Nonlinear Kalman filtering in the presence of additive noise
Kraszewski, Tomasz; Czopik, Grzegorz
2017-04-01
Each modern navigation or localization system designed for ground, water or air objects should provide information on the estimated parameters continuously and as accurately as possible. The implementation of such a process requires the application to operate on non-linear transformations. The defined expectations necessitate the use of nonlinear filtering elements with particular emphasis on the extended Kalman filter. The article presents the simulation research elements of this filter type in the aspect of the possibility of its practical implementation. In the initial phase of the study the conclusion was based on nonlinear one-dimensional model. The possibility of improving the precision of the output through the use of unscented Kalman filters was also analyzed.
Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Liu, Xiaohui
2011-07-01
In this paper, a mathematical model for sandwich-type lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extended Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also for inspecting the effects from various design parameters in both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes in the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize, and design the properties of lateral flow immunoassay devices. © 2011 IEEE
Performance enhancement for GPS positioning using constrained Kalman filtering
Guo, Fei; Zhang, Xiaohong; Wang, Fuhong
2015-08-01
Over the past decades Kalman filtering (KF) algorithms have been extensively investigated and applied in the area of kinematic positioning. In the application of KF in kinematic precise point positioning (PPP), it is often the case where some known functional or theoretical relations exist among the unknown state parameters, which can be and should be made use of to enhance the performance of kinematic PPP, especially in an urban and forest environment. The central task of this paper is to effectively blend the commonly used GNSS data and internal/external additional constrained information to generate an optimal PPP solution. This paper first investigates the basic algorithm of constrained Kalman filtering. Then two types of PPP model with speed constraints and trajectory constraints, respectively, are proposed. Further validation tests based on a variety of situations show that the positioning performances (positioning accuracy, reliability and continuity) from the constrained Kalman filter are significantly superior to those from the conventional Kalman filter, particularly under extremely poor observation conditions.
Lu, Gan; Bo, Xiong
2012-12-01
In this paper, a new method to break chaotic direct sequence spread spectrum (CD3S) communication systems is proposed. Here, the CD3S communication system transmitting different information symbols is considered as a combination of two subsystems which are driven by two different chaotic dynamic models, respectively. At every single time moment, the CD3S signal can be regarded as generated by the subsystem corresponding to the information symbol transmitted. Then, based on the multiple model form of CD3S signals, an interacting multiple model unscented Kalman filter with model switching detection mechanism is exploited to track the CD3S signals. The l(2)-norm of tracking errors is used to choose the model which best matches the intercepted signals. Thus, the information symbols are recovered indirectly. Compared with the existing methods, the proposed algorithm can: (1) reduce the influence of a low spreading factor; (2) calculate the spreading factor using the length of time intervals between model switching; and (3) be more effective under scenarios of low signal-to-noise ratio or multipath fading. Simulation results verify the superiority of the proposed method.
Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob
2013-01-01
This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.
Ballabrera-Poy, Joaquim; Busalacchi, Antonio J.; Murtugudde, Ragu
2000-01-01
A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N. In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions I up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.
无
2007-01-01
Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.
Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max
1999-01-01
A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.
Coelho, Emanuel F.; Hogan, P.; Jacobs, G.; Thoppil, P.; Huntley, H. S.; Haus, B. K.; Lipphardt, B. L.; Kirwan, A. D.; Ryan, E. H.; Olascoaga, J.; Beron-Vera, F.; Poje, A. C.; Griffa, A.; Özgökmen, T. M.; Mariano, A. J.; Novelli, G.; Haza, A. C.; Bogucki, D.; Chen, S. S.; Curcic, M.; Iskandarani, M.; Judt, F.; Laxague, N.; Reniers, A. J. H. M.; Valle-Levinson, A.; Wei, M.
2015-03-01
In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter's observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories.
Gharamti, M. E.
2014-03-01
Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system\\'s processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.
Gharamti, M. E.; Kadoura, A.; Valstar, J.; Sun, S.; Hoteit, I.
2014-03-01
Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system's processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.
On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles
Luo, Xiaodong
2010-09-19
The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].
Gerasimos G. Rigatos
2011-12-01
Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor
A Kalman Filtering Perspective for Multiatlas Segmentation.
Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S; Bouix, Sylvain; Tannenbaum, Allen
In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity-neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy.
Umar Iqbal
2010-01-01
Full Text Available Present land vehicle navigation relies mostly on the Global Positioning System (GPS that may be interrupted or deteriorated in urban areas. In order to obtain continuous positioning services in all environments, GPS can be integrated with inertial sensors and vehicle odometer using Kalman filtering (KF. For car navigation, low-cost positioning solutions based on MEMS-based inertial sensors are utilized. To further reduce the cost, a reduced inertial sensor system (RISS consisting of only one gyroscope and speed measurement (obtained from the car odometer is integrated with GPS. The MEMS-based gyroscope measurement deteriorates over time due to different errors like the bias drift. These errors may lead to large azimuth errors and mitigating the azimuth errors requires robust modeling of both linear and nonlinear effects. Therefore, this paper presents a solution based on Parallel Cascade Identification (PCI module that models the azimuth errors and is augmented to KF. The proposed augmented KF-PCI method can handle both linear and nonlinear system errors as the linear parts of the errors are modeled inside the KF and the nonlinear and residual parts of the azimuth errors are modeled by PCI. The performance of this method is examined using road test experiments in a land vehicle.
Bing Luo
2012-07-01
Full Text Available COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System. Since the ultra-tight GPS/INS (Inertial Navigation System integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF, and INS’s accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load.
Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing
2012-01-01
COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load.
Du, Tien Duc; Ngo-Duc, Thanh; Kieu, Chanh
2017-07-01
This study presents an approach to assimilate tropical cyclone (TC) real-time reports and the University of Wisconsin-Cooperative Institute for Meteorological Satellite Studies (CIMSS) Atmospheric Motion Vectors (AMV) data into the Weather Research and Forecasting (WRF) model for TC forecast applications. Unlike current methods in which TC real-time reports are used to either generate a bogus vortex or spin up a model initial vortex, the proposed approach ingests the TC real-time reports through blending a dynamically consistent synthetic vortex structure with the CIMSS-AMV data. The blended dataset is then assimilated into the WRF initial condition, using the local ensemble transform Kalman filter (LETKF) algorithm. Retrospective experiments for a number of TC cases in the northwestern Pacific basin during 2013-2014 demonstrate that this approach could effectively increase both the TC circulation and enhance the large-scale environment that the TCs are embedded in. Further evaluation of track and intensity forecast errors shows that track forecasts benefit more from improvement in the large-scale flow at 4-5-day lead times, whereas the intensity improvement is minimal. While the difference between the track and intensity improvement could be due to a specific model configuration, this result appears to be consistent with the recent reports of insignificant impacts of inner core data assimilation in operational TC models at the long range of 4-5 days. The new approach will be most beneficial for future regional TC models that are directly initialized from very high-resolution global models whose storm initial locations are sufficiently accurate at the initial analysis that there is no need to carry out any artificial vortex removal or filtering steps.
Multivariate localization methods for ensemble Kalman filtering
Roh, S.
2015-05-08
In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.
Multivariate localization methods for ensemble Kalman filtering
Roh, S.
2015-12-03
In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.
Multivariate localization methods for ensemble Kalman filtering
S. Roh
2015-05-01
Full Text Available In ensemble Kalman filtering (EnKF, the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.
Ensemble Kalman filtering with residual nudging
Luo, Xiaodong; 10.3402/tellusa.v64i0.17130
2012-01-01
Covariance inflation and localization are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/o...
Multivariate localization methods for ensemble Kalman filtering
Roh, S.; Jun, M.; Szunyogh, I.; Genton, M. G.
2015-12-01
In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.
Switching Kalman filter for failure prognostic
Lim, Chi Keong Reuben; Mba, David
2015-02-01
The use of condition monitoring (CM) data to predict remaining useful life have been growing with increasing use of health and usage monitoring systems on aircraft. There are many data-driven methodologies available for the prediction and popular ones include artificial intelligence and statistical based approach. The drawback of such approaches is that they require a lot of failure data for training which can be scarce in practice. In lieu of this, methods using state-space and regression-based models that extract information from the data history itself have been explored. However, such methods have their own limitations as they utilize a single time-invariant model which does not represent changing degradation path well. This causes most degradation modeling studies to focus only on segments of their CM data that behaves close to the assumed model. In this paper, a state-space based method; the Switching Kalman Filter (SKF), is adopted for model estimation and life prediction. The SKF approach however, uses multiple models from which the most probable model is inferred from the CM data using Bayesian estimation before it is applied for prediction. At the same time, the inference of the degradation model itself can provide maintainers with more information for their planning. This SKF approach is demonstrated with a case study on gearbox bearings that were found defective from the Republic of Singapore Air Force AH64D helicopter. The use of in-service CM data allows the approach to be applied in a practical scenario and results showed that the developed SKF approach is a promising tool to support maintenance decision-making.
Ensemble Kalman filtering in presence of inequality constraints
van Leeuwen, P. J.
2009-04-01
Kalman filtering is presence of constraints is an active area of research. Based on the Gaussian assumption for the probability-density functions, it looks hard to bring in extra constraints in the formalism. On the other hand, in geophysical systems we often encounter constraints related to e.g. the underlying physics or chemistry, which are violated by the Gaussian assumption. For instance, concentrations are always non-negative, model layers have non-negative thickness, and sea-ice concentration is between 0 and 1. Several methods to bring inequality constraints into the Kalman-filter formalism have been proposed. One of them is probability density function (pdf) truncation, in which the Gaussian mass from the non-allowed part of the variables is just equally distributed over the pdf where the variables are alolwed, as proposed by Shimada et al. 1998. However, a problem with this method is that the probability that e.g. the sea-ice concentration is zero, is zero! The new method proposed here does not have this drawback. It assumes that the probability-density function is a truncated Gaussian, but the truncated mass is not distributed equally over all allowed values of the variables, but put into a delta distribution at the truncation point. This delta distribution can easily be handled with in Bayes theorem, leading to posterior probability density functions that are also truncated Gaussians with delta distributions at the truncation location. In this way a much better representation of the system is obtained, while still keeping most of the benefits of the Kalman-filter formalism. In the full Kalman filter the formalism is prohibitively expensive in large-scale systems, but efficient implementation is possible in ensemble variants of the kalman filter. Applications to low-dimensional systems and large-scale systems will be discussed.
J. Rasmussen
2015-02-01
Full Text Available Groundwater head and stream discharge is assimilated using the Ensemble Transform Kalman Filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members, an adaptive localization method is used. The performance of the adaptive localization method is compared to the more common local analysis localization. The relationship between filter performance in terms of hydraulic head and discharge error and the number of ensemble members is investigated for varying numbers and spatial distributions of groundwater head observations and with or without discharge assimilation and parameter estimation. The study shows that (1 more ensemble members are needed when fewer groundwater head observations are assimilated, and (2 assimilating discharge observations and estimating parameters requires a much larger ensemble size than just assimilating groundwater head observations. However, the required ensemble size can be greatly reduced with the use of adaptive localization, which by far outperforms local analysis localization.
Silva, Mónica A; Jonsen, Ian; Russell, Deborah J F; Prieto, Rui; Thompson, Dave; Baumgartner, Mark F
2014-01-01
Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF). The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS) algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs) fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina) tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to "true" GPS locations. Data on 6 fin whales (Balaenoptera physalus) were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM) fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were model estimates (5.6 ± 5.6 km) was nearly half that of LS estimates (11.6 ± 8.4 km). Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales' behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates.
Adaptive Federal Kalman Filtering for SINS/GPS Integrated System
杨勇; 缪玲娟
2003-01-01
A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estimation's error covariance matrix and the spectral radius of update measurement noise variance-covariance matrix for the proper choice of the filter weight and hence the filter gain factors. Theoretical analysis and results from simulation in which the SINS/GPS was compared to conventional Kalman filter are presented. Results show that the algorithm of this adaptive federal Kalman filter is simpler than that of the conventional one. Furthermore, it outperforms the conventional Kalman filter when the system is undertaken measurement malfunctions because of its possession of adaptive ability. This filter can be used in the vehicle integrated navigation system.
Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)
2001-01-01
A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.
Sun, Leqiang; Seidou, Ousmane; Nistor, Ioan; Goïta, Kalifa; Magagi, Ramata
2016-12-01
The Extended Kalman Filter (EKF) is used to assimilate in situ surface soil moisture and streamflow observation at the outlet of an experimental watershed outlet into a semi-distributed SWAT (Soil and Water Assessment Tool) model. Watershed scale, instead of HRU scale soil moisture was used in state vector to reduce computational burden. Numerical experiments were designed to select the best state vector which consists of streamflow and soil moisture in all vertical soil layers. Compared to open-loop model and direct-insert method, the estimate of both soil moisture and streamflow has been improved by EKF assimilation. The combined assimilation of surface soil moisture and streamflow outperforms the assimilation with only surface soil moisture or streamflow especially in the estimate of full profile soil moisture. The NSC has been improved to 0.63 from -4.45 and the RMSE has been reduced to 12.34 mm from 47.44 mm in open-loop. Such improvement is also reflected in the short term forecast of soil moisture. The improvement of streamflow prediction is relatively moderate in both simulation and forecast mode compared to quality of the soil moisture prediction. The quantification of the model error, especially the error covariance between different state variables, was found to be critical to the estimate of the state variable corresponding to the error covariance.
韩建国; 孙才红; 李彦琴
2003-01-01
The problem of variable sampling time interval which appears in application of Kalman Filtering is analyzed and the corresponding filtering process with or without present transition matrix is suggested, then an application experiment for astronomical surveying is introduced. In this process, the known stochastically variable sampling time intervals play the roles as deterministic input sequences of the state-space description, and the corresponding matrix and (if needed) state transition matrix can be established by performing real-time and structure-linear system identification.
An introduction to Kalman filtering with Matlab examples
Kovvali, Narayan; Spanias, Andreas
2013-01-01
The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensi
Reservoir History Matching Using Ensemble Kalman Filters with Anamorphosis Transforms
Aman, Beshir M.
2012-12-01
This work aims to enhance the Ensemble Kalman Filter performance by transforming the non-Gaussian state variables into Gaussian variables to be a step closer to optimality. This is done by using univariate and multivariate Box-Cox transformation. Some History matching methods such as Kalman filter, particle filter and the ensemble Kalman filter are reviewed and applied to a test case in the reservoir application. The key idea is to apply the transformation before the update step and then transform back after applying the Kalman correction. In general, the results of the multivariate method was promising, despite the fact it over-estimated some variables.
Weighted ensemble transform Kalman filter for image assimilation
Sebastien Beyou
2013-01-01
Full Text Available This study proposes an extension of the Weighted Ensemble Kalman filter (WEnKF proposed by Papadakis et al. (2010 for the assimilation of image observations. The main focus of this study is on a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF, incorporating directly as a measurement model a non-linear image reconstruction criterion. This technique has been compared to the original WEnKF on numerical and real world data of 2-D turbulence observed through the transport of a passive scalar. In particular, it has been applied for the reconstruction of oceanic surface current vorticity fields from sea surface temperature (SST satellite data. This latter technique enables a consistent recovery along time of oceanic surface currents and vorticity maps in presence of large missing data areas and strong noise.
Observation Quality Control with a Robust Ensemble Kalman Filter
Roh, Soojin
2013-12-01
Current ensemble-based Kalman filter (EnKF) algorithms are not robust to gross observation errors caused by technical or human errors during the data collection process. In this paper, the authors consider two types of gross observational errors, additive statistical outliers and innovation outliers, and introduce a method to make EnKF robust to gross observation errors. Using both a one-dimensional linear system of dynamics and a 40-variable Lorenz model, the performance of the proposed robust ensemble Kalman filter (REnKF) was tested and it was found that the new approach greatly improves the performance of the filter in the presence of gross observation errors and leads to only a modest loss of accuracy with clean, outlier-free, observations.
Detection of Harmonic Occurring using Kalman Filtering
Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed
2014-01-01
As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics......./current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...
Robust tracking with spatio-velocity snakes: Kalman filtering approach
Peterfreund, N.
1998-12-31
Using results from robust Kalman filtering, we present a new Kalman filter-based snake model for tracking of nonrigid objects in combined spatio-velocity space. The proposed model is the stochastic version of the velocity snake, an active contour model for combined tracking of position and velocity of nonrigid boundaries. The proposed model uses image gradient and optical flow measurements along the contour as system measurements. An optical-flow based measurement error is used to detect and reject image measurements which correspond to image clutter or to other objects. The method was applied to object tracking of both rigid and nonrigid objects, resulting in good tracking results and robustness to image clutter, occlusions and numerical noise. 19 refs., 3 figs.
Robust tracking with spatio-velocity snakes: Kalman filtering approach
Peterfreund, N.
1997-06-01
Using results from robust Kalman filtering, the author presents a new Kalman filter-based snake model for tracking of nonrigid objects in combined spatio-velocity space. The proposed model is the stochastic version of the velocity snake, an active contour model for combined tracking of position and velocity of nonrigid boundaries. The proposed model uses image gradient and optical flow measurements along the contour as system measurements. An optical-flow based measurement error is used to detect and reject image measurements which correspond to image clutter or to other objects. The method was applied to object tracking of both rigid and nonrigid objects, resulting in good tracking results and robustness to image clutter, occlusions and numerical noise.
Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation
Yang, Yaguang; Zhou, Zhiqiang
2016-01-01
Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.
A flexible additive inflation scheme for treating model error in ensemble Kalman Filters
Sommer, Matthias; Janjic, Tijana
2017-04-01
Data assimilation algorithms require an accurate estimate of the uncertainty of the prior, background, field. However, the background error covariance derived from the ensemble of numerical model simulations does not adequately represent the uncertainty of it. This is partially due to the sampling error that arises from the use of a small number of ensemble members to represent the background error covariance. It is also partially a consequence of the fact that the model does not represent its own error. Several mechanisms have been introduced so far aiming at alleviating the detrimental e ffects of misrepresented ensemble covariances, allowing for the successful implementation of ensemble data assimilation techniques for atmospheric dynamics. One of the established approaches in ensemble data assimilation is additive inflation which perturbs each ensemble member with a sample from a given distribution. This results in a fixed rank of the model error covariance matrix. Here, a more flexible approach is suggested where the model error samples are treated as additional synthetic ensemble members which are used in the update step of data assimilation but are not forecast. In this way, the rank of the model error covariance matrix can be chosen independently of the ensemble. The eff ect of this altered additive inflation method on the performance of the filter is analyzed here in an idealised experiment. It is shown that the additional synthetic ensemble members can make it feasible to achieve convergence in an otherwise divergent setting of data assimilation. The use of this method also allows for a less stringent localization radius.
Series load induction heating inverter state estimator using Kalman filter
Szelitzky T.
2011-12-01
Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.
Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering
Li Guangxu
2015-01-01
Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.
Suboptimal distributed Kalman filtering fusion with feedback
Zhao Minhua; Zhu Zhuanmin; Shi Meng; Peng Qinke; Huang Yongxuan
2005-01-01
In order to improve the accuracy of fusion algorithm, feedback is introduced into Kalman filtering fusion. Fusion center broadcasts its latest estimated states to the local sensors, which can improve the performance of local tracking error through reducing the covariance of each local error, and only needs calculating the trace of error variance matrices without calculating the inverse of error variance matrices. Simulation results show that it can reduce the computational complexity and the covariance of error, and it is convenient for engineering applications.
Kalman-median Compound Filter for Gaussian and Impulse Noise Reduction on Digital Images
山森, 一人; 山田, 義治; 相川, 勝
2013-01-01
This paper proposes an image restoration method from degraded images which include additive gaussian noise and impulse noise. This method tries to achieve image restoration by using combination of canonical state space model kalman filter and median filter. Kalman filter estimates internal state of a dynamic system based on system model. The canonical state space models are described by two equations; state equation that expresses a transition process of the region including the focusing pixe...
Thiboult, A.; Anctil, F.
2015-10-01
Forecast reliability and accuracy is a prerequisite for successful hydrological applications. This aim may be attained by using data assimilation techniques such as the popular Ensemble Kalman filter (EnKF). Despite its recognized capacity to enhance forecasting by creating a new set of initial conditions, implementation tests have been mostly carried out with a single model and few catchments leading to case specific conclusions. This paper performs an extensive testing to assess ensemble bias and reliability on 20 conceptual lumped models and 38 catchments in the Province of Québec with perfect meteorological forecast forcing. The study confirms that EnKF is a powerful tool for short range forecasting but also that it requires a more subtle setting than it is frequently recommended. The success of the updating procedure depends to a great extent on the specification of the hyper-parameters. In the implementation of the EnKF, the identification of the hyper-parameters is very unintuitive if the model error is not explicitly accounted for and best estimates of forcing and observation error lead to overconfident forecasts. It is shown that performance are also related to the choice of updated state variables and that all states variables should not systematically be updated. Additionally, the improvement over the open loop scheme depends on the watershed and hydrological model structure, as some models exhibit a poor compatibility with EnKF updating. Thus, it is not possible to conclude in detail on a single ideal manner to identify an optimal implementation; conclusions drawn from a unique event, catchment, or model are likely to be misleading since transferring hyper-parameters from a case to another may be hazardous. Finally, achieving reliability and bias jointly is a daunting challenge as the optimization of one score is done at the cost of the other.
SIMULASI FILTER KALMAN UNTUK ESTIMASI SUDUT DENGAN MENGGUNAKAN SENSOR GYROSCOPE
Wahyudi Wahyudi
2012-02-01
Full Text Available The Kalman filter is a recursive solution to the process linear filtering problem that can remove the noisefrom signal and then the information can useful. The process that use Kalman filter must be approximatedas two equations of linear system, state equation and output equation. Computation of Kalman filter isminimizes the mean of the square error. This paper explore the basic consepts of the Kalman filteralgorithm and simulate its to filter data of gyroscope to get a rotation. The measurement noise covariancedetermines how much information from the sample is used. If measurement noise covariance is high showthat the measurement isn’t very accurate. The process noise covariance contributes to the overalluncertainty of the estimate as it is added to the error covariance matrix in each time step. If the errorcovariance matrix is small the Kalman filter incorporates a lot less of the measurement into estimate ofrotation.
Relationship between Allan variances and Kalman Filter parameters
Vandierendonck, A. J.; Mcgraw, J. B.; Brown, R. G.
1984-01-01
A relationship was constructed between the Allan variance parameters (H sub z, H sub 1, H sub 0, H sub -1 and H sub -2) and a Kalman Filter model that would be used to estimate and predict clock phase, frequency and frequency drift. To start with the meaning of those Allan Variance parameters and how they are arrived at for a given frequency source is reviewed. Although a subset of these parameters is arrived at by measuring phase as a function of time rather than as a spectral density, they all represent phase noise spectral density coefficients, though not necessarily that of a rational spectral density. The phase noise spectral density is then transformed into a time domain covariance model which can then be used to derive the Kalman Filter model parameters. Simulation results of that covariance model are presented and compared to clock uncertainties predicted by Allan variance parameters. A two state Kalman Filter model is then derived and the significance of each state is explained.
A Multiresolution Ensemble Kalman Filter using Wavelet Decomposition
Hickmann, Kyle S
2015-01-01
We present a method of using classical wavelet based multiresolution analysis to separate scales in model and observations during data assimilation with the ensemble Kalman filter. In many applications, the underlying physics of a phenomena involve the interaction of features at multiple scales. Blending of observational and model error across scales can result in large forecast inaccuracies since large errors at one scale are interpreted as inexact data at all scales. Our method uses a transformation of the observation operator in order to separate the information from different scales of the observations. This naturally induces a transformation of the observation covariance and we put forward several algorithms to efficiently compute the transformed covariance. Another advantage of our multiresolution ensemble Kalman filter is that scales can be weighted independently to adjust each scale's effect on the forecast. To demonstrate feasibility we present applications to a one dimensional Kuramoto-Sivashinsky (...
Autonomous Orbit Determination via Kalman Filtering of Gravity Gradients
Sun, Xiucong; Macabiau, Christophe; Han, Chao
2016-01-01
Spaceborne gravity gradients are proposed in this paper to provide autonomous orbit determination capabilities for near Earth satellites. The gravity gradients contain useful position information which can be extracted by matching the observations with a precise gravity model. The extended Kalman filter is investigated as the principal estimator. The stochastic model of orbital motion, the measurement equation and the model configuration are discussed for the filter design. An augmented state filter is also developed to deal with unknown significant measurement biases. Simulations are conducted to analyze the effects of initial errors, data-sampling periods, orbital heights, attitude and gradiometer noise levels, and measurement biases. Results show that the filter performs well with additive white noise observation errors. Degraded observability for the along-track position is found for the augmented state filter. Real flight data from the GOCE satellite are used to test the algorithm. Radial and cross-track...
Multiple Fading Factors Kalman Filter for SINS Static Alignment Application
GAO Weixi; MIAO Lingjuan; NI Maolin
2011-01-01
To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately,single fading factor Kalman filter is suitable for simple systems.But for complex systems with multi-variable,it may not be sufficient to use single fading factor as a multiplier for the covariance matrices.In this paper,a new multiple fading factors Kalman filtering algorithm is presented.By calculating the unbiased estimate of the innovation sequence covariance using fenestration,the fading factor matrix is obtained.Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix,the algorithm provides different rates of fading for different filter channels.The proposed algorithm is applied to strapdown inertial navigation system(SINS) initial alignment,and simulation and experimental results demonstrate that,the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values.The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters.Therefore,it is of significant value in practical applications.
Acoustic cardiac signals analysis: a Kalman filter-based approach.
Salleh, Sheik Hussain; Hussain, Hadrina Sheik; Swee, Tan Tian; Ting, Chee-Ming; Noor, Alias Mohd; Pipatsart, Surasak; Ali, Jalil; Yupapin, Preecha P
2012-01-01
Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.
Kalman Filter Tracking on Parallel Architectures
Cerati Giuseppe
2016-01-01
Full Text Available Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.
Kalman Filter Tracking on Parallel Architectures
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2016-11-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.
Kalman Filter Tracking on Parallel Architectures
Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-12-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter [2]. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.
Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles
2013-07-01
micro- electromechanical system ( MEMS ) gyroscopes have been able to measure the spin-rates of fin- stabilized projectiles such as mortars, which...model, the statistics of the gyroscope and accelerometer noise are measureable, and can be easily incorporated into an extended Kalman filtering...tradeoff between affordability, durability, and performance. Automotive-grade MEMS components have been used in the harsh gun-launch environment for
Kalman Filter Based Tracking in an Video Surveillance System
SULIMAN, C.; CRUCERU, C.; Moldoveanu, F.
2010-01-01
In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtaine...
An iterative ensemble Kalman filter for reservoir engineering applications
Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.
2009-01-01
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the
An iterative ensemble Kalman filter for reservoir engineering applications
Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.
2009-01-01
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distributi
Filtering Meteoroid Flights Using Multiple Unscented Kalman Filters
Sansom, E. K.; Bland, P. A.; Rutten, M. G.; Paxman, J.; Towner, M. C.
2016-11-01
Estimator algorithms are immensely versatile and powerful tools that can be applied to any problem where a dynamic system can be modeled by a set of equations and where observations are available. A well designed estimator enables system states to be optimally predicted and errors to be rigorously quantified. Unscented Kalman filters (UKFs) and interactive multiple models can be found in methods from satellite tracking to self-driving cars. The luminous trajectory of the Bunburra Rockhole fireball was observed by the Desert Fireball Network in mid-2007. The recorded data set is used in this paper to examine the application of these two techniques as a viable approach to characterizing fireball dynamics. The nonlinear, single-body system of equations, used to model meteoroid entry through the atmosphere, is challenged by gross fragmentation events that may occur. The incorporation of the UKF within an interactive multiple model smoother provides a likely solution for when fragmentation events may occur as well as providing a statistical analysis of the state uncertainties. In addition to these benefits, another advantage of this approach is its automatability for use within an image processing pipeline to facilitate large fireball data analyses and meteorite recoveries.
Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation
Simon, Dan; Simon, Donald L.
2006-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion.
Data assimilation in the early phase: Kalman filtering RIMPUFF
Astrup, P.; Turcanu, C.; Puch, R.O.;
2004-01-01
of RODOS (Realtime Online DecisiOn Support system for nuclear emergencies) – has been developed. It is built on the Kalman filtering algorithm and it assimilates 10-minute averaged gamma dose rates measured atground level stations. Since the gamma rates are non-linear functions of the state vector...... variables, the applied Kalman filter is the so-called Extended Kalman filter. In more ways the implementation is non standard: 1) the number of state vectorvariables varies with time, and 2) the state vector variables are prediction updated with 1-minute time steps but only Kalman filtered every 10 minutes......, and this based on time averaged measurements. Given reasonable conditions, i.e. a spatially densedistribution of gamma monitors and a realistic wind field, the developed ADUM module is found to be able to enhance the prediction of the gamma dose field. Based on some of the Kalman filtering parameters, another...
On sequential observation processing in localized ensemble Kalman filters
Nerger, Lars
2014-01-01
The different variants of current ensemble square-root Kalman filters assimilate either all observations at once or perform a sequence in which batches of observations or each single observation is assimilated. The sequential observation processing is used in filter algorithms like the ensemble adjustment Kalman filter (EAKF) and the ensemble square-root filter (EnSRF) and can result in computationally efficient algorithms because matrix inversions in the observation space are reduced to the ...
SUBSTANTIATION OF THE PUBLIC DEBT SUSTAINABILITY USING KALMAN FILTER
Bolos Marcel
2011-12-01
Full Text Available Global economic conditions have pushed many countries into the delicate situation of contracting foreign loans, leading overnight at alarming volumes of public debt. The need for control and relevant analysis for the sustainability of a country's public debt has led us to use the Kalman filter in predicting future values of the key indicators of public debt. The development of a mathematical model of analysis for public services and the budget deficit was necessary to objectively assess the level of the public debt sustainability.Knowing future values of the public debt or the future evolutions of the revenues for the operational budget, offers the posibility of a better handling of the operational expenditures and finally a better balance for the public budget deficit.Using the mathematical mechanism of Kalman filters implemented in Matlab programming language, we generated the estimated future values of the proposed model proposed and key indicators, the results confirming the fears of a low public debt sustainability for Romania.We predicted the future values for the debt service, the public external debt and the operational public revenues,expenditures and deficit, and compared them, to obtain an image of the future evolution and position of the sustainability of the public debt. The work in this paper is an innovative one for the public science sector, and the results obtained are promising for future researches. The values estimated by the Kalman filter are an orientation for the future public policies, and indicate a rather stable but negative evolution for the public debt service. The sustainability of the public debt depends on the decisions taken for the correction of the estimated values, in changing the negative evolution of the budgetary indicators into a positive one.Taking all this into consideration we will conclude that the mathematical mecanism of the Kalman filters offers valuable informations for Government and future
Dikpati, Mausumi; Anderson, Jeffrey L.; Mitra, Dhrubaditya
2016-09-01
We implement an Ensemble Kalman Filter procedure using the Data Assimilation Research Testbed for assimilating “synthetic” meridional flow-speed data in a Babcock-Leighton-type flux-transport solar dynamo model. By performing several “observing system simulation experiments,” we reconstruct time variation in meridional flow speed and analyze sensitivity and robustness of reconstruction. Using 192 ensemble members including 10 observations, each with 4% error, we find that flow speed is reconstructed best if observations of near-surface poloidal fields from low latitudes and tachocline toroidal fields from midlatitudes are assimilated. If observations include a mixture of poloidal and toroidal fields from different latitude locations, reconstruction is reasonably good for ≤slant 40 % error in low-latitude data, even if observational error in polar region data becomes 200%, but deteriorates when observational error increases in low- and midlatitude data. Solar polar region observations are known to contain larger errors than those in low latitudes; our forward operator (a flux-transport dynamo model here) can sustain larger errors in polar region data, but is more sensitive to errors in low-latitude data. An optimal reconstruction is obtained if an assimilation interval of 15 days is used; 10- and 20-day assimilation intervals also give reasonably good results. Assimilation intervals \\lt 5 days do not produce faithful reconstructions of flow speed, because the system requires a minimum time to develop dynamics to respond to flow variations. Reconstruction also deteriorates if an assimilation interval \\gt 45 days is used, because the system’s inherent memory interferes with its short-term dynamics during a substantially long run without updating.
Kalman Filter for Spinning Spacecraft Attitude Estimation
Markley, F. Landis; Sedlak, Joseph E.
2008-01-01
This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.
D. R. Allen
2015-02-01
Full Text Available The feasibility of extracting wind information from stratospheric ozone observations is tested using ensemble Kalman filter (EnKF data assimilation (DA and a global shallow water model that includes advection of an ozone-like tracer. Simulated observations are created from a truth run (TR that resembles the Northern Hemisphere winter stratosphere with a polar vortex disturbed by planetary-scale wave forcing. Ozone observations mimic sampling of a polar-orbiting satellite, while geopotential height observations are randomly placed in space and time. EnKF experiments are performed assimilating ozone, height, or both over a 10 day period. The DA is also implemented using two different pairs of flow variables: zonal and meridional wind (EnKF-uv and streamfunction and velocity potential (EnKF-ψ χ. Each experiment is tuned for optimal localization length, while the ensemble spread is adaptively inflated using the TR. The experiments are evaluated using the maximum wind extraction potential (WEP. Ozone-only assimilation improves winds (WEP = 46% for EnKF-uv, and 58% for EnKF-ψ χ, but suffers from spurious gravity wave generation. Application of nonlinear normal mode initialization (NMI greatly reduces the unwanted imbalance and increases the WEP for EnKF-uv (84% and EnKF-ψ χ (81%. Assimilation of only height observations also improved the winds (WEP = 59% for EnKF-uv, and 67% for EnKF-ψ χ, with much less imbalance compared to the ozone experiment. The assimilation of both height and ozone performed the best, with WEP increasing to ~ 87% (~ 90% with NMI for both EnKF-uv and EnKF-ψ χ, demonstrating that wind extraction from ozone assimilation can be beneficial even in a data-rich environment. Ozone assimilation particularly improves the tropical winds, which are not well constrained by height observations due to lack of geostrophy.
Allen, D. R.; Hoppel, K. W.; Kuhl, D. D.
2015-05-01
The feasibility of extracting wind information from stratospheric ozone observations is tested using ensemble Kalman filter (EnKF) data assimilation (DA) and a global shallow water model that includes advection of an ozone-like tracer. Simulated observations are created from a truth run (TR) that resembles the Northern Hemisphere winter stratosphere with a polar vortex disturbed by planetary-scale wave forcing. Ozone observations mimic sampling of a polar-orbiting satellite, while geopotential height observations are randomly placed in space and time. EnKF experiments are performed assimilating ozone, height, or both, over a 10-day period. The DA is also implemented using two different pairs of flow variables: zonal and meridional wind (EnKF-uv) and stream function and velocity potential (EnKF-ψχ). Each experiment is tuned for optimal localization length, while the ensemble spread is adaptively inflated using the TR. The experiments are evaluated using the maximum wind extraction potential (WEP). Ozone only assimilation improves winds (WEP = 46% for EnKF-uv, and 58% for EnKF-ψχ), but suffers from spurious gravity wave generation. Application of nonlinear normal mode initialization (NMI) greatly reduces the unwanted imbalance and increases the WEP for EnKF-uv (84%) and EnKF-ψχ (81%). Assimilation of only height observations also improved the winds (WEP = 60% for EnKF-uv, and 69% for EnKF-ψχ), with much less imbalance compared to the ozone experiment. The assimilation of both height and ozone performed the best, with WEP increasing to ~87% (~90% with NMI) for both EnKF-uv and EnKF-ψχ, demonstrating that wind extraction from ozone assimilation can be beneficial even in a data-rich environment. Ozone assimilation particularly improves the tropical winds, which are not well constrained by height observations due to lack of geostrophy.
Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María
2016-04-01
Snow plays a crucial role in the hydrological regime in mountainous catchments, which increases in semiarid regions, where the recurrence of drought period makes it necessary to accurate the determination of the water availability from the snowpack. Physically based approaches constitute one of the best ways to reproduce the snow dynamics over these highly variable conditions. Moreover, they allow further understanding the processes involved, the snowpack behaviour and evolution. However, in some cases the complexity of the modelled process and the non-availability of all the required data for such models, avoid a correct representation of certain aspects. In these cases, data assimilation techniques can help to improve model performance and may also act as an indirect tool to understand the represented processes. This work assesses snow dynamics on a pixel scale (30x30m) in a Mediterranean site (Sierra Nevada Mountain, southern Spain) combining physical snow modelling (WiMMed, a physically based hydrological model developed for Mediterranean environments), ground sensing information (terrestrial photography) and data assimilation techniques (Ensemble Transform Kalman Filter), throughout a study period of two hydrological years: 2009-2010 and 2010-2011. Snow cover fraction and averaged snow depth were obtained from the terrestrial photography images and used as observations in the assimilation scheme. The model performance was evaluated using different combinations of the variables assimilated: 1) only snow cover fraction, 2) only snow depth, 3) and both variables. The results show how the assimilation enhances the model performance. This improvement is higher if the variable assimilated is snow depth, with RMSE= 0.14 m2m-2and RMSE=12.16 mm for snow cover and snow depth respectively. However, this enhancement varies throughout the study period. During short snowmelt cycles, for example, the assimilation of the snow cover fraction is the most efficient. Nevertheless
A new iterative speech enhancement scheme based on Kalman filtering
Li, Chunjian; Andersen, Søren Vang
2005-01-01
Subtraction filter is introduced as an initialization procedure. Iterations are then made sequential inter-frame, exploiting the fact that the AR model changes slowly between neighboring frames. The proposed algorithm is computationally more efficient than a baseline EM algorithm due to its fast convergence...... for a high temporal resolution estimation of this variance. A Local Variance Estimator based on a Prediction Error Kalman Filter is designed for this high temporal resolution variance estimation. To achieve fast convergence and avoid local maxima of the likelihood function, a Weighted Power Spectral...
Three-dimensional motion tracking by Kalman filtering
Gao, Jean; Kosaka, Akio; Kak, Avinash C.
2000-10-01
In this paper, a 3D semantic object motion tracking method based on Kalman filtering is proposed. First, we use a specially designed Color Image Segmentation Editor (CISE) to devise shapes that more accurately describe the object to be tracked. CISE is an integration of edge and region detection, which is based on edge-linking, split-and-merge and the energy minimization for active contour detection. An ROI is further segmented into single motion blobs by considering the constancy of the motion parameters in each blob. Over short time intervals, each blob can be tracked separately and, over longer times, the blobs can be allowed to fragment and coalesce into new blobs as motion evolves. The tracking of each blob is based on a Kalman filter derived from linearization of a constraint equation satisfied by the pinhole model of a camera. The Kalman filter allows the tracker to project the uncertainties associated with a blob center (or with the coordinates of any other features) into the next frame. This projected uncertainty region can then be searched rot eh pixels belonging to the blob. Future work includes investigation of the effects of illumination changes and simultaneous tracking of multiple targets.
Botto, Anna; Camporese, Matteo
2017-04-01
Hydrological models allow scientists to predict the response of water systems under varying forcing conditions. In particular, many physically-based integrated models were recently developed in order to understand the fundamental hydrological processes occurring at the catchment scale. However, the use of this class of hydrological models is still relatively limited, as their prediction skills heavily depend on reliable parameter estimation, an operation that is never trivial, being normally affected by large uncertainty and requiring huge computational effort. The objective of this work is to test the potential of data assimilation to be used as an inverse modeling procedure for the broad class of integrated hydrological models. To pursue this goal, a Bayesian data assimilation (DA) algorithm based on a Monte Carlo approach, namely the ensemble Kalman filter (EnKF), is combined with the CATchment HYdrology (CATHY) model. In this approach, input variables (atmospheric forcing, soil parameters, initial conditions) are statistically perturbed providing an ensemble of realizations aimed at taking into account the uncertainty involved in the process. Each realization is propagated forward by the CATHY hydrological model within a parallel R framework, developed to reduce the computational effort. When measurements are available, the EnKF is used to update both the system state and soil parameters. In particular, four different assimilation scenarios are applied to test the capability of the modeling framework: first only pressure head or water content are assimilated, then, the combination of both, and finally both pressure head and water content together with the subsurface outflow. To demonstrate the effectiveness of the approach in a real-world scenario, an artificial hillslope was designed and built to provide real measurements for the DA analyses. The experimental facility, located in the Department of Civil, Environmental and Architectural Engineering of the
FUZZY OPTIMIZATION USING EXTENDED KALMAN FILTER
M.DIVYA
2013-01-01
Full Text Available Fuzzy Logic is based on the idea that in fuzzy sets each element in the set can assume a value from 0 to 1, not only 0 or 1, as in crisp set theory. The degree of membership function is defined as the gradation in the extent to which an element is belonging to the relevant sets. Optimizing the membership functions of a fuzzy system can be viewed as a system identification problem for nonlinear dynamic system. In this paper two input and one output fuzzy controller is designed for the dynamic process of aircraft. The addition of an EKF in the feedback loop improved the system response by blocking possible effects of measurement error based on Predictor-Corrector algorithm. An Extended Kalman Filter approach to optimize the membership functions of the inputs and outputs of the fuzzy controller. The performance of the fuzzy system before and after the optimization are compared, as well as the membership functions.
Kalman Filter Tracking on Parallel Architectures
Cerati, Giuseppe; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-01-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has...
Kalman Filter Tracking on Parallel Architectures
Cerati, Giuseppe; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevz; Wittich, Peter; Wuerthwein, Frank; Yagil, Avi
2016-01-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. To stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector sy...
Vehicle Tracking Using Kalman Filter and Features
Amir Salarpour
2011-09-01
Full Text Available Vehicle tracking has a wide variety of applications. The image resolution of the video available from most traffic camera system is low. In many cases for tracking multi object, distinguishing them from another isn’t easy because of their similarity. In this paper we describe a method, for tracking multiple objects, where the objects are vehicles. The number of vehicles is unknown and varies. We detect all moving objects, and for tracking of vehicle we use the kalman filter and color feature and distance of it from one frame to the next. So the method can distinguish and tracking all vehicles individually. The proposed algorithm can be applied to multiple moving objects.
Optimized object tracking technique using Kalman filter
Liana Ellen Taylor
2016-07-01
Full Text Available This paper focused on the design of an optimized object tracking technique which would minimize the processing time required in the object detection process while maintaining accuracy in detecting the desired moving object in a cluttered scene. A Kalman filter based cropped image is used for the image detection process as the processing time is significantly less to detect the object when a search window is used that is smaller than the entire video frame. This technique was tested with various sizes of the window in the cropping process. MATLAB® was used to design and test the proposed method. This paper found that using a cropped image with 2.16 multiplied by the largest dimension of the object resulted in significantly faster processing time while still providing a high success rate of detection and a detected center of the object that was reasonably close to the actual center.
Global Systems for Mobile Position Tracking Using Kalman and Lainiotis Filters
Nicholas Assimakis
2014-01-01
Full Text Available We present two time invariant models for Global Systems for Mobile (GSM position tracking, which describe the movement in x-axis and y-axis simultaneously or separately. We present the time invariant filters as well as the steady state filters: the classical Kalman filter and Lainiotis Filter and the Join Kalman Lainiotis Filter, which consists of the parallel usage of the two classical filters. Various implementations are proposed and compared with respect to their behavior and to their computational burden: all time invariant and steady state filters have the same behavior using both proposed models but have different computational burden. Finally, we propose a Finite Impulse Response (FIR implementation of the Steady State Kalman, and Lainiotis filters, which does not require previous estimations but requires a well-defined set of previous measurements.
VLBI real-time analysis by Kalman Filtering
Karbon, Maria; Soja, Benedikt; Nilson, Tobias; Heinkelmann, Robert; Liu, Li; Lu, Ciuxian; Xu, Minghui; Raposo-Pulido, Virginia; Mora-Diaz, Julian; Schuh, Harald
2014-05-01
Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques. It provides the full set of Earth Orientation Parameter (EOP) and is unique for observing long term Universal Time (UT1) and precession/nutation. Currently the VLBI products are delivered with a delay of about two weeks from the moment of the observation. However, the need for near-real time estimates of the parameters is increasing, e.g. for satellite based navigation and positioning or for enabling precise tracking of interplanetary spacecraft. The goal is thus to reduce the time span between observation and the final result to less than one day. This can be archived by replacing the classical least squares method with an adaptive Kalman filter. We have developed a Kalman filter for VLBI data analysis. This method has the advantage that it is simultaneously possible to estimate stationary parameters, e.g. station positions, and to model the highly variable stochastic behavior of non-stationary parameters like clocks or atmospheric parameters. The filter is able to perform without any human interaction, making it a completely autonomous tool. In this work we describe the filter and discuss its application for EOP determination and prediction. We discuss the implementation of the stochastic models to statistically account for unpredictable changes in EOP. Furthermore, additional data like results from other techniques can be included to improve the performance. For example, atmospheric angular momentum calculated from numerical weather models can be introduced to supplement the short-term prediction of UT1 and polar motion. This Kalman filter will be extended and embedded in the newly developed Vienna VLBI Software (VieVS) as a completely autonomous tool enabling the VLBI analysis in near real-time and providing all the parameters of interest with the highest possible accuracy.
Francois Counillon
2014-03-01
Full Text Available Here, we firstly demonstrate the potential of an advanced flow dependent data assimilation method for performing seasonal-to-decadal prediction and secondly, reassess the use of sea surface temperature (SST for initialisation of these forecasts. We use the Norwegian Climate Prediction Model (NorCPM, which is based on the Norwegian Earth System Model (NorESM and uses the deterministic ensemble Kalman filter to assimilate observations. NorESM is a fully coupled system based on the Community Earth System Model version 1, which includes an ocean, an atmosphere, a sea ice and a land model. A numerically efficient coarse resolution version of NorESM is used. We employ a twin experiment methodology to provide an upper estimate of predictability in our model framework (i.e. without considering model bias of NorCPM that assimilates synthetic monthly SST data (EnKF-SST. The accuracy of EnKF-SST is compared to an unconstrained ensemble run (FREE and ensemble predictions made with near perfect (i.e. microscopic SST perturbation initial conditions (PERFECT. We perform 10 cycles, each consisting of a 10-yr assimilation phase, followed by a 10-yr prediction. The results indicate that EnKF-SST improves sea level, ice concentration, 2 m atmospheric temperature, precipitation and 3-D hydrography compared to FREE. Improvements for the hydrography are largest near the surface and are retained for longer periods at depth. Benefits in salinity are retained for longer periods compared to temperature. Near-surface improvements are largest in the tropics, while improvements at intermediate depths are found in regions of large-scale currents, regions of deep convection, and at the Mediterranean Sea outflow. However, the benefits are often small compared to PERFECT, in particular, at depth suggesting that more observations should be assimilated in addition to SST. The EnKF-SST system is also tested for standard ocean circulation indices and demonstrates decadal
Zero Gyro Kalman Filtering in the Presence of a Reaction Wheel Failure
Hur-Diaz, Sun; Wirzburger, John; Smith, Dan; Myslinski, Mike
2007-01-01
Typical implementation of Kalman filters for spacecraft attitude estimation involves the use of gyros for three-axis rate measurements. When there are less than three axes of information available, the accuracy of the Kalman filter depends highly on the accuracy of the dynamics model. This is particularly significant during the transient period when a reaction wheel with a high momentum fails, is taken off-line, and spins down. This paper looks at how a reaction wheel failure can affect the zero-gyro Kalman filter performance for the Hubble Space Telescope and what steps are taken to minimize its impact.
Pike, D.H.; Morrison, G.W.; Westley, G.W.
1977-10-01
The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.
Baker Syed; Poskar C; Junker Björn
2011-01-01
Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. Wh...
Software Would Largely Automate Design of Kalman Filter
Chuang, Jason C. H.; Negast, William J.
2005-01-01
Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.
S. Skachko
2014-01-01
Full Text Available The Ensemble Kalman filter (EnKF assimilation method is applied to the tracer transport using the same stratospheric transport model as in the 4D-Var assimilation system BASCOE. This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2-test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS ozone observations during an 8 month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the Observation-minus-Forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases smaller than 5% and standard deviation errors smaller than 10% in most of the stratosphere. Since the biases are markedly similar, they have most probably the same causes: these can be deficiencies in the model and in the observation dataset, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble
National Aeronautics and Space Administration — The problem of estimating the aerodynamic models for flight control of damaged aircraft using an innovative differential vortex lattice method tightly coupled with...
Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.
Applying Kalman filtering to investigate tropospheric effects in VLBI
Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald
2014-05-01
Very Long Baseline Interferometry (VLBI) currently provides results, e.g., estimates of the tropospheric delays, with a delay of more than two weeks. In the future, with the coming VLBI2010 Global Observing System (VGOS) and increased usage of electronic data transfer, it is planned that the time between observations and results is decreased. This may, for instance, allow the integration of VLBI-derived tropospheric delays into numerical weather prediction models. Therefore, future VLBI analysis software packages need to be able to process the observational data autonomously in near real-time. For this purpose, we have extended the Vienna VLBI Software (VieVS) by a Kalman filter module. This presentation describes the filter and discusses its application for tropospheric studies. Instead of estimating zenith wet delays as piece-wise linear functions in a least-squares adjustment, the Kalman filter allows for more sophisticated stochastic modeling. We start with a random walk process to model the time-dependent behavior of the zenith wet delays. Other possible approaches include the stochastic model described by turbulence theory, e.g. the model by Treuhaft and Lanyi (1987). Different variance-covariance matrices of the prediction error, depending on the time of the year and the geographic latitude, have been tested. In winter and closer to the poles, lower variances and covariances are appropriate. The horizontal variations in tropospheric delays have been investigated by comparing three different strategies: assumption of a horizontally stratified troposphere, using north and south gradients modeled, e.g., as Gauss-Markov processes, and applying a turbulence model assuming correlations between observations in different azimuths. By conducting Monte-Carlo simulations of current standard VLBI networks and of future VGOS networks, the different tropospheric modeling strategies are investigated. For this purpose, we use the simulator module of VieVS which takes into
2012-09-01
different decisions as com- pared to an unmanned aerial vehicle (UAV) mission reconfig- uration based on prognostics indication on power train fail- ures...Degradation Modeling Training Trajectories Test Trajectory Parameter Estimation State-space Representation Prognostics Dynamic System Realization Health...and ASME. Kai Goebel received the degree of Diplom-Ingenieur from the Technische University Munchen, Germany in 1990. He received the M.S. and Ph.D
Longitudinal Factor Score Estimation Using the Kalman Filter.
Oud, Johan H.; And Others
1990-01-01
How longitudinal factor score estimation--the estimation of the evolution of factor scores for individual examinees over time--can profit from the Kalman filter technique is described. The Kalman estimates change more cautiously over time, have lower estimation error variances, and reproduce the LISREL program latent state correlations more…
Subspace System Identification of the Kalman Filter
David Di Ruscio
2003-07-01
Full Text Available Some proofs concerning a subspace identification algorithm are presented. It is proved that the Kalman filter gain and the noise innovations process can be identified directly from known input and output data without explicitly solving the Riccati equation. Furthermore, it is in general and for colored inputs, proved that the subspace identification of the states only is possible if the deterministic part of the system is known or identified beforehand. However, if the inputs are white, then, it is proved that the states can be identified directly. Some alternative projection matrices which can be used to compute the extended observability matrix directly from the data are presented. Furthermore, an efficient method for computing the deterministic part of the system is presented. The closed loop subspace identification problem is also addressed and it is shown that this problem is solved and unbiased estimates are obtained by simply including a filter in the feedback. Furthermore, an algorithm for consistent closed loop subspace estimation is presented. This algorithm is using the controller parameters in order to overcome the bias problem.
Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick
2015-08-01
Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.
H. Zhang
2017-09-01
Full Text Available Land surface models (LSMs use a large cohort of parameters and state variables to simulate the water and energy balance at the soil–atmosphere interface. Many of these model parameters cannot be measured directly in the field, and require calibration against measured fluxes of carbon dioxide, sensible and/or latent heat, and/or observations of the thermal and/or moisture state of the soil. Here, we evaluate the usefulness and applicability of four different data assimilation methods for joint parameter and state estimation of the Variable Infiltration Capacity Model (VIC-3L and the Community Land Model (CLM using a 5-month calibration (assimilation period (March–July 2012 of areal-averaged SPADE soil moisture measurements at 5, 20, and 50 cm depths in the Rollesbroich experimental test site in the Eifel mountain range in western Germany. We used the EnKF with state augmentation or dual estimation, respectively, and the residual resampling PF with a simple, statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The performance of the calibrated LSM models was investigated using SPADE water content measurements of a 5-month evaluation period (August–December 2012. As expected, all DA methods enhance the ability of the VIC and CLM models to describe spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich site, particularly if the maximum baseflow velocity (VIC or fractions of sand, clay, and organic matter of each layer (CLM are estimated jointly with the model states of each soil layer. The differences between the soil moisture simulations of VIC-3L and CLM are much larger than the discrepancies among the four data assimilation methods. The EnKF with state augmentation or dual estimation yields the best performance of VIC-3L and CLM during the calibration and evaluation period, yet results are in close agreement with the PF using MCMC resampling. Overall, CLM demonstrated the
IAE-adaptive Kalman filter for INS/GPS integrated navigation system
Bian Hongwei; Jin Zhihua; Tian Weifeng
2006-01-01
A marine INS/GPS adaptive navigation system is presented in this paper. GPS with two antenna providing vessel's altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.
Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation
Simon, Dan; Simon, Donald L.
2005-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.
Non-linear Kalman filters for calibration in radio interferometry
Tasse, Cyril
2014-01-01
We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...
4-D-Var or ensemble Kalman filter?
Kalnay, Eugenia; LI, HONG; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim
2007-01-01
We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more a...
Li Shu; Zhuo Jiashou; Ren Qingwen
2000-01-01
In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.
Amor Chowdhury
2016-09-01
Full Text Available The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.
Chowdhury, Amor; Sarjaš, Andrej
2016-09-15
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.
离散Kalman滤波器的UML建模与实现%UML Modeling of Discrete Kalman Filter and Its Realization
雷文华
2011-01-01
离散卡尔曼滤波器的理论比较抽象.为了能较直观地理解离散卡尔曼滤波器,采用面向对象分析的方法对离散卡尔曼滤波器的具体实现过程进行了UML建模,给出了离散卡尔曼滤波器的用例图、类图、时序图和活动图,使得比较抽象的卡尔曼滤波过程变得直观、形象、易于理解,并且适合于实际编程实现.通过Matlab语言编程实现了一个具体实验的离散卡尔曼滤波算法,给出了卡尔曼滤波器的程序代码,实现的滤波达到了预期的效果.该算法对工程技术上具体实现离散卡尔曼滤波器的编程有一定的参考价值.%As an abstract concept, it is different to master the theory of Kalman filter and comprehend its pratical meaning. The basic concept and pratical meaning of the discrete Kalman filter are discussed in this paper. The theory and UML modeling of the discrete Kalman filter, and its realization in Matlab are elaborated in simple terms.
Wang, Rui; Li, Yanxiao; Sun, Hui; Chen, Zengqiang
2017-07-11
The modern civil aircrafts use air ventilation pressurized cabins subject to the limited space. In order to monitor multiple contaminants and overcome the hypersensitivity of the single sensor, the paper constructs an output correction integrated sensor configuration using sensors with different measurement theories after comparing to other two different configurations. This proposed configuration works as a node in the contaminant distributed wireless sensor monitoring network. The corresponding measurement error models of integrated sensors are also proposed by using the Kalman consensus filter to estimate states and conduct data fusion in order to regulate the single sensor measurement results. The paper develops the sufficient proof of the Kalman consensus filter stability when considering the system and the observation noises and compares the mean estimation and the mean consensus errors between Kalman consensus filter and local Kalman filter. The numerical example analyses show the effectiveness of the algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Qiguang Zhu
2014-05-01
Full Text Available To resolve the difficulty in establishing accurate priori noise model for the extended Kalman filtering algorithm, propose the fractional-order Darwinian particle swarm optimization (PSO algorithm has been proposed and introduced into the fuzzy adaptive extended Kalman filtering algorithm. The natural selection method has been adopted to improve the standard particle swarm optimization algorithm, which enhanced the diversity of particles and avoided the premature. In addition, the fractional calculus has been used to improve the evolution speed of particles. The PSO algorithm after improved has been applied to train fuzzy adaptive extended Kalman filter and achieve the simultaneous localization and mapping. The simulation results have shown that compared with the geese particle swarm optimization training of fuzzy adaptive extended Kalman filter localization and mapping algorithm, has been greatly improved in terms of localization and mapping.
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
An Adaptive Kalman Filter Excisor for Suppressing Narrowband Interference
1993-11-01
interferences in- connues. Le filtre de Kalman doit alors "apprendre" ý ajuster un de ses param~tres pour effectuer le meilleur traitement. L’erreur est...4"L l B"• -- -- - - -.- ,_, . An~. A)7cQ 0 -QGOP II liii 111111 IIa( Naional 06fenso I ’ I Deence nitonals I "It AN ADAPTIVE KALMAN FILTER EXCISOR...Ottawa 0 A o~ oO Best Available COpy 4INational Defense Defence nationals AN ADAPTIVE KALMAN FILTER EXCISOR FOR SUPPRESSING NARROWBAND INTERFERENCE by
Local Ensemble Kalman Particle Filters for efficient data assimilation
Robert, Sylvain
2016-01-01
Ensemble methods such as the Ensemble Kalman Filter (EnKF) are widely used for data assimilation in large-scale geophysical applications, as for example in numerical weather prediction (NWP). There is a growing interest for physical models with higher and higher resolution, which brings new challenges for data assimilation techniques because of the presence of non-linear and non-Gaussian features that are not adequately treated by the EnKF. We propose two new localized algorithms based on the Ensemble Kalman Particle Filter (EnKPF), a hybrid method combining the EnKF and the Particle Filter (PF) in a way that maintains scalability and sample diversity. Localization is a key element of the success of EnKFs in practice, but it is much more challenging to apply to PFs. The algorithms that we introduce in the present paper provide a compromise between the EnKF and the PF while avoiding some of the problems of localization for pure PFs. Numerical experiments with a simplified model of cumulus convection based on a...
Kinematic landslide monitoring with Kalman filtering
M. Acar
2008-03-01
Full Text Available Landslides are serious geologic disasters that threat human life and property in every country. In addition, landslides are one of the most important natural phenomena, which directly or indirectly affect countries' economy. Turkey is also the country that is under the threat of landslides. Landslides frequently occur in all of the Black Sea region as well as in many parts of Marmara, East Anatolia, and Mediterranean regions. Since these landslides resulted in destruction, they are ranked as the second important natural phenomenon that comes after earthquake in Turkey. In recent years several landslides happened after heavy rains and the resulting floods. This makes the landslide monitoring and mitigation techniques an important study subject for the related professional disciplines in Turkey. The investigations on surface deformations are conducted to define the boundaries of the landslide, size, level of activity and direction(s of the movement, and to determine individual moving blocks of the main slide.
This study focuses on the use of a kinematic deformation analysis based on Kalman Filtering at a landslide area near Istanbul. Kinematic deformation analysis has been applied in a landslide area, which is located to the north of Istanbul city. Positional data were collected using GPS technique. As part of the study, conventional static deformation analysis methodology has also been applied on the same data. The results and comparisons are discussed in this paper.
李丽华; 彭军还
2014-01-01
In order to detect the deformation in real-time of the GPS time series and improve its reliability, the multiple Kalman filters model with shaping filter was proposed. Two problems were solved: firstly, because the GPS real-time deformation series with a high sampling rate contain coloured noise, the multiple Kalman filter model requires the white noise, and the multiple Kalman filters model is augmented by a shaping filter in order to reduce the colored noise; secondly, the multiple Kalman filters model with shaping filter can detect the deformation epoch in real-time and improve the quality of GPS measurements for the real-time deformation applications. Based on the comparisons of the applications in different GPS time series with different models, the advantages of the proposed model were illustrated. The proposed model can reduce the colored noise, detect the smaller changes, and improve the precision of the detected deformation epoch.%提出的整形多卡尔曼滤波模型可进行形变的实时检测并提高其可靠性。多卡尔曼滤波模型的扩展主要针对GNSS时间形变序列含有有色噪声的情况，而多卡尔曼滤波模型只能应用于白噪声的情况下，故采用整形滤波扩展多卡尔曼滤波模型去除有色噪声的影响。提出的模型可以提高结果的精度且实时进行变形监测，可用于灾害预警系统。通过对比该模型与其他模型(卡尔曼滤波模型，整形卡尔曼滤波模型，多卡尔曼滤波模型)发现，所改进的模型在检测形变的实时性和可靠性方面优于其他模型。
Attitude Estimation Using Kalman Filtering: External Acceleration Compensation Considerations
Romy Budhi Widodo
2016-01-01
Full Text Available Attitude estimation is often inaccurate during highly dynamic motion due to the external acceleration. This paper proposes extended Kalman filter-based attitude estimation using a new algorithm to overcome the external acceleration. This algorithm is based on an external acceleration compensation model to be used as a modifying parameter in adjusting the measurement noise covariance matrix of the extended Kalman filter. The experiment was conducted to verify the estimation accuracy, that is, one-axis and multiple axes sensor movement. Five approaches were used to test the estimation of the attitude: (1 the KF-based model without compensating for external acceleration, (2 the proposed KF-based model which employs the external acceleration compensation model, (3 the two-step KF using weighted-based switching approach, (4 the KF-based model which uses the threshold-based approach, and (5 the KF-based model which uses the threshold-based approach combined with a softened part approach. The proposed algorithm showed high effectiveness during the one-axis test. When the testing conditions employed multiple axes, the estimation accuracy increased using the proposed approach and exhibited external acceleration rejection at the right timing. The proposed algorithm has fewer parameters that need to be set at the expense of the sharpness of signal edge transition.
Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics
Kobayashi, Takahisa; Simon, Donald L.
2006-01-01
In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.
Motion estimation using point cluster method and Kalman filter.
Senesh, M; Wolf, A
2009-05-01
The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal
He, L.; Chen, J. M.; Liu, J.; Mo, G.; Zhen, T.; Chen, B.; Wang, R.; Arain, M.
2013-12-01
Terrestrial ecosystem models have been widely used to simulate carbon, water and energy fluxes and climate-ecosystem interactions. In these models, some vegetation and soil parameters are determined based on limited studies from literatures without consideration of their seasonal variations. Data assimilation (DA) provides an effective way to optimize these parameters at different time scales . In this study, an ensemble Kalman filter (EnKF) is developed and applied to optimize two key parameters of an ecosystem model, namely the Boreal Ecosystem Productivity Simulator (BEPS): (1) the maximum photosynthetic carboxylation rate (Vcmax) at 25 °C, and (2) the soil water stress factor (fw) for stomatal conductance formulation. These parameters are optimized through assimilating observations of gross primary productivity (GPP) and latent heat (LE) fluxes measured in a 74 year-old pine forest, which is part of the Turkey Point Flux Station's age-sequence sites. Vcmax is related to leaf nitrogen concentration and varies slowly over the season and from year to year. In contrast, fw varies rapidly in response to soil moisture dynamics in the root-zone. Earlier studies suggested that DA of vegetation parameters at daily time steps leads to Vcmax values that are unrealistic. To overcome the problem, we developed a three-step scheme to optimize Vcmax and fw. First, the EnKF is applied daily to obtain precursor estimates of Vcmax and fw. Then Vcmax is optimized at different time scales assuming fw is unchanged from first step. The best temporal period or window size is then determined by analyzing the magnitude of the minimized cost-function, and the coefficient of determination (R2) and Root-mean-square deviation (RMSE) of GPP and LE between simulation and observation. Finally, the daily fw value is optimized for rain free days corresponding to the Vcmax curve from the best window size. The optimized fw is then used to model its relationship with soil moisture. We found that
Power system static state estimation using Kalman filter algorithm
Saikia Anupam
2016-01-01
Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.
Consensus+Innovations Distributed Kalman Filter With Optimized Gains
Das, Subhro; Moura, Jose M. F.
2017-01-01
In this paper, we address the distributed filtering and prediction of time-varying random fields represented by linear time-invariant (LTI) dynamical systems. The field is observed by a sparsely connected network of agents/sensors collaborating among themselves. We develop a Kalman filter type consensus+innovations distributed linear estimator of the dynamic field termed as Consensus+Innovations Kalman Filter. We analyze the convergence properties of this distributed estimator. We prove that the mean-squared error of the estimator asymptotically converges if the degree of instability of the field dynamics is within a pre-specified threshold defined as tracking capacity of the estimator. The tracking capacity is a function of the local observation models and the agent communication network. We design the optimal consensus and innovation gain matrices yielding distributed estimates with minimized mean-squared error. Through numerical evaluations, we show that, the distributed estimator with optimal gains converges faster and with approximately 3dB better mean-squared error performance than previous distributed estimators.
A Hierarchical Bayes Ensemble Kalman Filter
Tsyrulnikov, Michael; Rakitko, Alexander
2017-01-01
A new ensemble filter that allows for the uncertainty in the prior distribution is proposed and tested. The filter relies on the conditional Gaussian distribution of the state given the model-error and predictability-error covariance matrices. The latter are treated as random matrices and updated in a hierarchical Bayes scheme along with the state. The (hyper)prior distribution of the covariance matrices is assumed to be inverse Wishart. The new Hierarchical Bayes Ensemble Filter (HBEF) assimilates ensemble members as generalized observations and allows ordinary observations to influence the covariances. The actual probability distribution of the ensemble members is allowed to be different from the true one. An approximation that leads to a practicable analysis algorithm is proposed. The new filter is studied in numerical experiments with a doubly stochastic one-variable model of "truth". The model permits the assessment of the variance of the truth and the true filtering error variance at each time instance. The HBEF is shown to outperform the EnKF and the HEnKF by Myrseth and Omre (2010) in a wide range of filtering regimes in terms of performance of its primary and secondary filters.
Hierarchical Bayes Ensemble Kalman Filter for geophysical data assimilation
Tsyrulnikov, Michael; Rakitko, Alexander
2016-04-01
In the Ensemble Kalman Filter (EnKF), the forecast error covariance matrix B is estimated from a sample (ensemble), which inevitably implies a degree of uncertainty. This uncertainty is especially large in high dimensions, where the affordable ensemble size is orders of magnitude less than the dimensionality of the system. Common remedies include ad-hoc devices like variance inflation and covariance localization. The goal of this study is to optimize the account for the inherent uncertainty of the B matrix in EnKF. Following the idea by Myrseth and Omre (2010), we explicitly admit that the B matrix is unknown and random and estimate it along with the state (x) in an optimal hierarchical Bayes analysis scheme. We separate forecast errors into predictability errors (i.e. forecast errors due to uncertainties in the initial data) and model errors (forecast errors due to imperfections in the forecast model) and include the two respective components P and Q of the B matrix into the extended control vector (x,P,Q). Similarly, we break the traditional forecast ensemble into the predictability-error related ensemble and model-error related ensemble. The reason for the separation of model errors from predictability errors is the fundamental difference between the two sources of error. Model error are external (i.e. do not depend on the filter's performance) whereas predictability errors are internal to a filter (i.e. are determined by the filter's behavior). At the analysis step, we specify Inverse Wishart based priors for the random matrices P and Q and conditionally Gaussian prior for the state x. Then, we update the prior distribution of (x,P,Q) using both observation and ensemble data, so that ensemble members are used as generalized observations and ordinary observations are allowed to influence the covariances. We show that for linear dynamics and linear observation operators, conditional Gaussianity of the state is preserved in the course of filtering. At the forecast
Skew redundant MEMS IMU calibration using a Kalman filter
Jafari, M.; Sahebjameyan, M.; Moshiri, B.; Najafabadi, T. A.
2015-10-01
In this paper, a novel calibration procedure for skew redundant inertial measurement units (SRIMUs) based on micro-electro mechanical systems (MEMS) is proposed. A general model of the SRIMU measurements is derived which contains the effects of bias, scale factor error and misalignments. For more accuracy, the effect of lever arms of the accelerometers to the center of the table are modeled and compensated in the calibration procedure. Two separate Kalman filters (KFs) are proposed to perform the estimation of error parameters for gyroscopes and accelerometers. The predictive error minimization (PEM) stochastic modeling method is used to simultaneously model the effect of bias instability and random walk noise on the calibration Kalman filters to diminish the biased estimations. The proposed procedure is simulated numerically and has expected experimental results. The calibration maneuvers are applied using a two-axis angle turntable in a way that the persistency of excitation (PE) condition for parameter estimation is met. For this purpose, a trapezoidal calibration profile is utilized to excite different deterministic error parameters of the accelerometers and a pulse profile is used for the gyroscopes. Furthermore, to evaluate the performance of the proposed KF calibration method, a conventional least squares (LS) calibration procedure is derived for the SRIMUs and the simulation and experimental results compare the functionality of the two proposed methods with each other.
Identifying Bearing Rotordynamic Coefficients using an Extended Kalman Filter
Miller, Bard A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter s performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor-bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Kalman filter based fault diagnosis of networked control system with white noise
Yanwei WANG; Ying ZHENG
2005-01-01
The networked control system NCS is regarded as a sampled control system with output time-variant delay.White noise is considered in the model construction of NCS.By using the Kalman filter theory to compute the filter parameters,a Kalman filter is constructed for this NCS.By comparing the output of the filter and the practical system,a residual is generated to diagnose the sensor faults and the actuator faults.Finally,an example is given to show the feasibility of the approach.
Multimodal Degradation Prognostics Based on Switching Kalman Filter Ensemble.
Lim, Pin; Goh, Chi Keong; Tan, Kay Chen; Dutta, Partha
2017-01-01
For accurate prognostics, users have to determine the current health of the system and predict future degradation pattern of the system. An increasingly popular approach toward tackling prognostic problems involves the use of switching models to represent various degradation phases, which the system undergoes. Such approaches have the advantage of determining the exact degradation phase of the system and being able to handle nonlinear degradation models through piecewise linear approximation. However, limitations of such existing methods include, limited applicability due to the discretization of predicted remaining useful life, insufficient robustness due to the use of single models and others. This paper circumvents these limitations by proposing a hybrid of ensemble methods with switching methods. The proposed method first implements a switching Kalman filter (SKF) to classify between various linear degradation phases, then predict the future propagation of fault dimension using appropriate Kalman filters for each phase. This proposed method achieves both continuous and discrete prediction values representing the remaining life and degradation phase of the system, respectively. The proposed framework is shown via a case study on benchmark simulated aeroengine data sets. The evaluation of the proposed framework shows that the proposed method achieves better accuracy and robustness against noise compared with other methods reported in the literature. The results also indicate the effectiveness of the SKF in detecting the switching point between various degradation modes.
Reduced-Order Kalman Filtering for Processing Relative Measurements
Bayard, David S.
2008-01-01
A study in Kalman-filter theory has led to a method of processing relative measurements to estimate the current state of a physical system, using less computation than has previously been thought necessary. As used here, relative measurements signifies measurements that yield information on the relationship between a later and an earlier state of the system. An important example of relative measurements arises in computer vision: Information on relative motion is extracted by comparing images taken at two different times. Relative measurements do not directly fit into standard Kalman filter theory, in which measurements are restricted to those indicative of only the current state of the system. One approach heretofore followed in utilizing relative measurements in Kalman filtering, denoted state augmentation, involves augmenting the state of the system at the earlier of two time instants and then propagating the state to the later time instant.While state augmentation is conceptually simple, it can also be computationally prohibitive because it doubles the number of states in the Kalman filter. When processing a relative measurement, if one were to follow the state-augmentation approach as practiced heretofore, one would find it necessary to propagate the full augmented state Kalman filter from the earlier time to the later time and then select out the reduced-order components. The main result of the study reported here is proof of a property called reduced-order equivalence (ROE). The main consequence of ROE is that it is not necessary to augment with the full state, but, rather, only the portion of the state that is explicitly used in the partial relative measurement. In other words, it suffices to select the reduced-order components first and then propagate the partial augmented state Kalman filter from the earlier time to the later time; the amount of computation needed to do this can be substantially less than that needed for propagating the full augmented
Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning
XIAO Kun; FANG Shao-ji; PANG Yong-jie
2007-01-01
To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.
Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J
2014-05-01
In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.
Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan
2014-03-01
An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control.
Unscented Kalman filtering in the additive noise case
无
2010-01-01
The unscented Kalman filter(UKF) has four implementations in the additive noise case,according to whether the state is augmented with noise vectors and whether a new set of sigma points is redrawn from the predicted state(which is so-called resampling) for the observation prediction.This paper concerns the differences of performances for those implementations,such as accuracy,adaptability,computational complexity,etc.The conditionally equivalent relationships between the augmented and non-augmented unscented transforms(UTs) are proved for several sampling strategies that are commonly used.Then,we find that the augmented and non-augmented UKFs have the same filter results with the additive measurement noise,but only have the same state predictions with the additive process noise.Resampling is not believed to be necessary in some researches.However,we find out that resampling can be helpful for an adaptive Kalman gain.This will improve the convergence and accuracy of the filter when the large scale state modeling bias or unknown maneuvers occur.Finally,some universal designing principles for a practical UKF are given as follows:1) for the additive observation noise case,it’s better to use the non-augmented UKF;2) for the additive process noise case,when the small state modeling bias or maneuvers are involved,the non-resampling algorithms with state whether augmented or not are candidates for filters;3) the resampling and non-augmented algorithm is the only choice while the large state modeling bias or maneuvers are latent.
Yuan, Guangmin; Yuan, Weizheng; Xue, Liang; Xie, Jianbing; Chang, Honglong
2015-10-30
In this paper, the performance of two Kalman filter (KF) schemes based on the direct estimated model and differencing estimated model for input rate signal was thoroughly analyzed and compared for combining measurements of a sensor array to improve the accuracy of microelectromechanical system (MEMS) gyroscopes. The principles for noise reduction were presented and KF algorithms were designed to obtain the optimal rate signal estimates. The input rate signal in the direct estimated KF model was modeled with a random walk process and treated as the estimated system state. In the differencing estimated KF model, a differencing operation was established between outputs of the gyroscope array, and then the optimal estimation of input rate signal was achieved by compensating for the estimations of bias drifts for the component gyroscopes. Finally, dynamic simulations and experiments with a six-gyroscope array were implemented to compare the dynamic performance of the two KF models. The 1σ error of the gyroscopes was reduced from 1.4558°/s to 0.1203°/s by the direct estimated KF model in a constant rate test and to 0.5974°/s by the differencing estimated KF model. The estimated rate signal filtered by both models could reflect the amplitude variation of the input signal in the swing rate test and displayed a reduction factor of about three for the 1σ noise. Results illustrate that the performance of the direct estimated KF model is much higher than that of the differencing estimated KF model, with a constant input signal or lower dynamic variation. A similarity in the two KFs' performance is observed if the input signal has a high dynamic variation.
Guangmin Yuan
2015-10-01
Full Text Available In this paper, the performance of two Kalman filter (KF schemes based on the direct estimated model and differencing estimated model for input rate signal was thoroughly analyzed and compared for combining measurements of a sensor array to improve the accuracy of microelectromechanical system (MEMS gyroscopes. The principles for noise reduction were presented and KF algorithms were designed to obtain the optimal rate signal estimates. The input rate signal in the direct estimated KF model was modeled with a random walk process and treated as the estimated system state. In the differencing estimated KF model, a differencing operation was established between outputs of the gyroscope array, and then the optimal estimation of input rate signal was achieved by compensating for the estimations of bias drifts for the component gyroscopes. Finally, dynamic simulations and experiments with a six-gyroscope array were implemented to compare the dynamic performance of the two KF models. The 1σ error of the gyroscopes was reduced from 1.4558°/s to 0.1203°/s by the direct estimated KF model in a constant rate test and to 0.5974°/s by the differencing estimated KF model. The estimated rate signal filtered by both models could reflect the amplitude variation of the input signal in the swing rate test and displayed a reduction factor of about three for the 1σ noise. Results illustrate that the performance of the direct estimated KF model is much higher than that of the differencing estimated KF model, with a constant input signal or lower dynamic variation. A similarity in the two KFs’ performance is observed if the input signal has a high dynamic variation.
State-Of-Charge Estimation of Li-Ion Battery Using Extended Kalman Filter
Feng Jin
2013-07-01
Full Text Available The Li-ion battery is studied base on its equivalent circuit PNGV model. The model parameters are identified by HPPC test. The discrete state space equation is established according to the model. The basic theory of extended Kalman filter algorithm is studied and then the filtering algorithm is set up under the noisy environments. Finally, a kind of electric car is used for testing under the UDDS driving condition. The difference between the simulation value using extended Kalman filter under the noisy environment and the theoretical value is compared. The result indicated that the extended Kalman filter keeps an excellent precision in state of charge estimation of Li-ion battery and performs well when disturbance happens.
Modified Extended Kalman Filtering for Tracking with Insufficient and Intermittent Observations
Pengpeng Chen
2015-01-01
Full Text Available This paper is concerned with the Kalman filtering problem for tracking a single target on the fixed-topology wireless sensor networks (WSNs. Both the insufficient anchor coverage and the packet dropouts have been taken into consideration in the filter design. The resulting tracking system is modeled as a multichannel nonlinear system with multiplicative noise. Noting that the channels may be correlated with each other, we use a general matrix to express the multiplicative noise. Then, a modified extended Kalman filtering algorithm is presented based on the obtained model to achieve high tracking accuracy. In particular, we evaluate the effect of various parameters on the tracking performance through simulation studies.
Larsen, Thomas Dall; Bak, Martin; Andersen, Nils Axel
1998-01-01
A Kalman filter using encoder readings as inputs and vision measurements as observations is designed as a location estimator for an autonomously guided vehicle (AGV). To reduce the effect of modelling errors an augmented filter that estimates the true system parameters is designed. The traditional...
Control of underactuated robotic systems with the use of the derivative-free nonlinear Kalman filter
Rigatos, Gerasimos G.; Siano, Pierluigi
2013-10-01
The Derivative-free nonlinear Kalman Filter is used for developing a robust controller which can be applied to underactuated MIMO robotic systems. Using differential flatness theory it is shown that the model of a closed-chain 2-DOF robotic manipulator can be transformed to linear canonical form. For the linearized equivalent of the robotic system it is shown that a state feedback controller can be designed. Since certain elements of the state vector of the linearized system can not be measured directly, it is proposed to estimate them with the use of a novel filtering method, the so-called Derivative-free nonlinear Kalman Filter. Moreover, by redesigning the Kalman Filter as a disturbance observer, it is is shown that one can estimate simultaneously external disturbances terms that affect the robotic model or disturbance terms which are associated with parametric uncertainty.
RSSI based indoor tracking in sensor networks using Kalman filters
Tøgersen, Frede Aakmann; Skjøth, Flemming; Munksgaard, Lene;
2010-01-01
We propose an algorithm for estimating positions of devices in a sensor network using Kalman filtering techniques. The specific area of application is monitoring the movements of cows in a barn. The algorithm consists of two filters. The first filter enhances the signal-to-noise ratio...... of the observed signal strengths and gives interpolated values at specific timestamps. Information from the first filter is transferred to the second filter which estimates the positions. Methods for estimating the parameters of the filters are given and these provide a straightforward calibration of the system...
Nonlinear dynamical system identification using unscented Kalman filter
Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan
2016-11-01
Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai
2017-10-01
With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.
Improved Kalman Filter-Based Speech Enhancement with Perceptual Post-Filtering
WEIJianqiang; DULimin; YANZhaoli; ZENGHui
2004-01-01
In this paper, a Kalman filter-based speech enhancement algorithm with some improvements of previous work is presented. A new technique based on spectral subtraction is used for separation speech and noise characteristics from noisy speech and for the computation of speech and noise Autoregressive (AR) parameters. In order to obtain a Kalman filter output with high audible quality, a perceptual post-filter is placed at the output of the Kalman filter to smooth the enhanced speech spectra.Extensive experiments indicate that this newly proposed method works well.
一种新型自适应联邦滤波方法在战术导弹导航系统中的应用%Model noise Kalman filter algorithm for electro-optical tracking
刘英; 田蔚风; 赵健康; 鲍其莲; 朱士青
2012-01-01
In order to reduce the sensitivity of the filtering performance to the model noise in the target state space model, the method of updating the system noise covariance and measurement noise variance was proposed. By combining it with nonlinear Kalman filter, an adaptive nonlinear Kalman filter was constituted which is suitable for applying in electro-optical target tracking. Meanwhile it was applied in nonlinear measurement electro-optical tracking system, and compared with those of extended Kalman filter and anscented Kalman filter. The Matlab simulation results show that this method can adjust measurement noise covariance and system noise covariance in real time, and can effectively avoid the problem of filter performance degradation caused by the inaccurately statistical properties of the measurement noise and system noise, and the performance by the model noise Kalman filter significantly outperforms those of the extended Kalman filter and the unscented Kalman filter.%为满足复杂的环境下战术导弹导航系统的高可靠性导航的要求,对战术导弹的多传感器组合导航进行了研究.提出了一种基于新型自适应联邦卡尔曼滤波的巡航导弹SINS/GPS/EC组合导航方法,根据联邦滤波的分散滤波结构,分别建立了各滤波器的模型,进行了仿真试验验证.仿真结果表明,采用新型自适应联邦卡尔曼滤波算法的导航精度比采用集中卡尔曼滤波算法提高幅度不大,略高一些,但从自适应联邦卡尔曼滤波器的容错性比集中卡尔曼滤波器好得多,便于各导航子系统的故障检查和隔离.本文设计自适应联邦SINS/GPS/EC滤波器的在子系统较多的组合导航设计中具有高可靠性、低计算量、低成本和小体积等优势,具有工程应用价值.
The path prediction of cyclones with Kalman filters
Taskin, Dogan
1990-01-01
Approved for public release; distribution unlimited. The Kalman filter is used to provide estimates of the position and velocity of a storm based upon observation of the storm's longitude and latitude. Nonstationary noise is shown to degrade the performance of the filter and cause tracking divergence. Time varying values for the noise covariance matricies R and Q, and the addition of an external forcing function to the filter, effectively compensated for this tracking error. Results for th...
谢志刚; 陈自力
2011-01-01
Unmanned Powered Parafoil( UPP)of special flight characteristics is studied, and establish a 9-DOF nonlinear dynamic e-quation. A observer/kalman filter identification(OKID)method and advanced subspace observer/kalman filter identification(OKID)is researched. Using the flight data, the longitudinal slate space models of UPP is identified and derived, and the identified model pitch angle response characters and identified precision are also analysed. The consistent and effective of the identification method are verified in a simulation experiment, and the validity of the identified longitudinal model is also tested in the fly.%对具有独特飞行特性的无人动力伞(Unmanned Powered Parafoil,UPP)进行了研究,建立了无人动力伞九自由度非线性动力学方程,研究了观测器/卡尔曼滤波辨识算法和改进的子空间观测器/卡尔曼滤波辨识算法.根据系统的飞行数据,辨识得到系统的纵向状态空间模型,分析了两种辨识模型的俯仰角响应特性和辨识精度.仿真结果表明子空间观测器/卡尔曼滤波辨识算法的一致和有效估计,能有效辨识无人动力伞的纵向动态模型.
Kalaroni, Sofia; Tsiaras, Kostas; Economou-Amilli, Athena; Petihakis, George; Politikos, Dimitrios; Triantafyllou, George
2013-04-01
Within the framework of the European project OPEC (Operational Ecology), a data assimilation system was implemented to describe chlorophyll-a concentrations of the North Aegean, as well the impact on the European anchovy (Engraulis encrasicolus) biomass distribution provided by a bioenergetics model, related to the density of three low trophic level functional groups of zooplankton (heterotrophic flagellates, microzooplankton and mesozooplankton). The three-dimensional hydrodynamic-biogeochemical model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter and its variant that uses a fixed correction base (SFEK). For the initialization, SEEK filter uses a reduced order error covariance matrix provided by the dominant Empirical Orthogonal Functions (EOF) of model. The assimilation experiments were performed for year 2003 using SeaWiFS chlorophyll-a data during which the physical model uses the atmospheric forcing obtained from the regional climate model HIRHAM5. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical parameters and the overall quality of the forecasts.
Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL
2015-03-15
This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.
Dikpati, Mausumi; Mitra, Dhrubaditya
2014-01-01
Accurate knowledge of time-variation in meridional flow-speed and profile is crucial for estimating a solar cycle's features, which are ultimately responsible for causing space climate variations. However, no consensus has been reached yet about the Sun's meridional circulation pattern observations and theories. By implementing an Ensemble Kalman Filter (EnKF) data assimilation in a Babcock-Leighton solar dynamo model using Data Assimilation Research Testbed (DART) framework, we find that the best reconstruction of time-variation in meridional flow-speed can be obtained when ten or more observations are used with an updating time of 15 days and a $\\le 10\\%$ observational error. Increasing ensemble-size from 16 to 160 improves reconstruction. Comparison of reconstructed flow-speed with "true-state" reveals that EnKF data assimilation is very powerful for reconstructing meridional flow-speeds and suggests that it can be implemented for reconstructing spatio-temporal patterns of meridional circulation.
QIN Jun; YAN Guangjian; LIU Shaomin; LIANG Shunlin; ZHANG Hao; WANG Jindi; LI Xiaowen
2006-01-01
The use of a priori knowledge in remote sensing inversion has great implications for ensuring the stability of inversion process and reducing uncertainties in retrieved results, especially under the condition of insufficient observations. Common optimization algorithms have difficulties in providing posterior distribution and thus cannot directly acquire uncertainties in inversion results, which is of no benefit to remote sensing application. In this article, ensemble Kalman filter (EnKF) has been introduced to retrieve surface geophysical parameters from remote sensing observations, which has the capability of not merely obtaining inversion results but also giving its posterior distribution. To show the advantage of EnKF, it is compared to standard MODIS AMBRALS algorithm and highly efficient global optimization method SCE-UA. The inversion abilities of kernel-driven BRDF models with different kernel combinations at several main cover types are emphatically discussed when observations are deficient and a priori knowledge is introduced into inversion.
Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst
2016-05-01
Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated.
Xiaogu ZHENG
2009-01-01
An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assimilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts. This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by minimizing -2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied to Kalman filtering data assimilation with imperfect models when the model error statistics are not known. A simple nonlinear model (Burgers' equation model) is used to demonstrate the efficacy of the proposed approach.
A THEORETICAL STUDY ON SIMPLIFIED KALMAN FILTER IN DATA ASSIMILATION
Ma Zhai-pu; Huang Da-ji; Zhang Ben-zhao
2003-01-01
In this paper, we put forward a new method to reduce the calculation amount of the gain matrix of Kalman filter in data assimilation. We rewrite the vector describing the total state variables with two vectors whose dimensions are small and thus obtain the main parts and the trivial parts of the state variables. On the basis of the rewrittten formula, we not only develop a reduced Kalman filter scheme, but also obtain the transition equations about truncation errors, with which the validity of the main parts acting for the total state variables can be evaluated quantitatively. The error transition equations thus offer an indirect testimony to the rationality of the main parts.
An ARMA Modeling Method and Its Application in Kalman Filtering%ARMA建模及其在Kalman滤波中的应用
王可东; 熊少锋
2012-01-01
An ARMA modeling method is proposed to compensate for the random errors of the inertial sensor' s output. In the method, the length of samples for modeling was determined by combining runs test method for ensuring the stationarity of the samples with coefficients of variation of sample variances firstly. Then, the random error of the inertia! Sensor is processed as the colored noise governed by an ARMA model and superimposes by a white noise. The ARMA model parameters are derived by filtering the samples. In the following, the colored noises governed by the ARMA(6,4) model are simulated to study the effect of the model accuracy on the Kalman filtering performance by comparing the Kalman filtering results of the derived ARM A (6,4) model with the ones of an approximated AR(2) model. Finally, the model reduction method based on the observability degree analysis is proposed to improve the real time performance of the modeling method with an acceptable accuracy degradation in applications. The modeling method is applied to process the random noise of an accelerometer. The standard deviations of the Kalman filtering residuals of the high-order model and the reduced order model are just 1/66 and 1/28 of one of the unprocessed noise respectively, proving the effectiveness of the modeling method.%提出了一种补偿惯性传感器随机误差的自回归滑动平均(ARMA)建模方法,在该方法中,首先,将时间序列平稳性检验的轮次法和样本方差变差系数相结合,以确定合适的建模样本长度；其次,将惯性传感器的随机误差看成是真实状态叠加白噪声,通过对观测数据做滤波处理,给出了求解模型参数的算法；随后,构建一组符合ARMA(6,4)模型分布的有色噪声,基于准确建立的ARMA(6,4)模型和AR(2)近似模型构建Kalman滤波器,以研究建模精度和Kalman滤波输出之间的关系；最后,探讨了基于状态可观测度分析的模型降阶方法,在保证精度情况下提高模
Wet Refractivity Tomography with an hnproved Kalman-Filter Method
无
2006-01-01
An improved retrieval method, which uses the solution with a Gaussian constraint as the initial state variables for the Kalman Filtering (KF) method, was developed to retrieve the wet refractivity profiles from slant wet delays (SWD) extracted by the double-differenced (DD) GPS method. The accuracy of the GPS-derived SWDs is also tested in this study against the measurements of a water vapor radiometer (WVR) and a weather model. It is concluded that the GPS-derived SWDs have similar accuracy to those measured with WVR and are much higher in quality than those derived from the weather model used. The developed method is used to retrieve the 3D wet refractivity distribution in the Hong Kong region. The retrieved profiles agree well with the radiosonde observations, with a difference of about 4 mm km-1 in the low levels. The accurate profiles obtained with this method are applicable in a number of meteorological applications.
Tracking whole hand kinematics using extended Kalman filter.
Fu, Qiushi; Santello, Marco
2010-01-01
This paper describes the general procedure, model construction, and experimental results of tracking whole hand kinematics using extended Kalman filter (EKF) based on data recorded from active surface markers. We used a hand model with 29 degrees of freedom that consists of hand global posture, wrist, and digits. The marker protocol had 4 markers on the distal forearm and 20 markers on the dorsal surface of the joints of the digits. To reduce computational load, we divided the state space into four sub-spaces, each of which were estimated with an EKF in a specific order. We tested our framework and found reasonably accurate results (2-4 mm tip position error) when sampling tip to tip pinch at 120 Hz.
Constraining the Ensemble Kalman Filter for improved streamflow forecasting
Maxwell, Deborah; Jackson, Bethanna; McGregor, James
2016-04-01
Data assimilation techniques such as the Kalman Filter and its variants are often applied to hydrological models with minimal state volume/capacity constraints. Flux constraints are rarely, if ever, applied. Consequently, model states can be adjusted beyond physically reasonable limits, compromising the integrity of model output. In this presentation, we investigate the effect of constraining the Ensemble Kalman Filter (EnKF) on forecast performance. An EnKF implementation with no constraints is compared to model output with no assimilation, followed by a 'typical' hydrological implementation (in which mass constraints are enforced to ensure non-negativity and capacity thresholds of model states are not exceeded), and then a more tightly constrained implementation where flux as well as mass constraints are imposed to limit the rate of water movement within a state. A three year period (2008-2010) with no significant data gaps and representative of the range of flows observed over the fuller 1976-2010 record was selected for analysis. Over this period, the standard implementation of the EnKF (no constraints) contained eight hydrological events where (multiple) physically inconsistent state adjustments were made. All were selected for analysis. Overall, neither the unconstrained nor the "typically" mass-constrained forecasts were significantly better than the non-filtered forecasts; in fact several were significantly degraded. Flux constraints (in conjunction with mass constraints) significantly improved the forecast performance of six events relative to all other implementations, while the remaining two events showed no significant difference in performance. We conclude that placing flux as well as mass constraints on the data assimilation framework encourages physically consistent state updating and results in more accurate and reliable forward predictions of streamflow for robust decision-making. We also experiment with the observation error, and find that this
Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill
Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.
2008-06-01
The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved.
Methodology for adapting the parameters of a fuzzy system using the extended Kalman filter
2011-01-01
When we try to analyze and to control a system whose model was obtained only based on input/output data, accuracy is essential in the model. On the other hand, to make the procedure practical, the modeling stage must be computationally efficient. In this regard, this paper presents the application of extended Kalman filter for the parametric adaptation of a fuzzy model.
Esteban, Segundo; Girón-Sierra, Jose M; Polo, Óscar R; Angulo, Manuel
2016-10-31
Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.
Segundo Esteban
2016-10-01
Full Text Available Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.
Cuff-less blood pressure measurement using pulse arrival time and a Kalman filter
Zhang, Qiang; Chen, Xianxiang; Fang, Zhen; Xue, Yongjiao; Zhan, Qingyuan; Yang, Ting; Xia, Shanhong
2017-02-01
The present study designs an algorithm to increase the accuracy of continuous blood pressure (BP) estimation. Pulse arrival time (PAT) has been widely used for continuous BP estimation. However, because of motion artifact and physiological activities, PAT-based methods are often troubled with low BP estimation accuracy. This paper used a signal quality modified Kalman filter to track blood pressure changes. A Kalman filter guarantees that BP estimation value is optimal in the sense of minimizing the mean square error. We propose a joint signal quality indice to adjust the measurement noise covariance, pushing the Kalman filter to weigh more heavily on measurements from cleaner data. Twenty 2 h physiological data segments selected from the MIMIC II database were used to evaluate the performance. Compared with straightforward use of the PAT-based linear regression model, the proposed model achieved higher measurement accuracy. Due to low computation complexity, the proposed algorithm can be easily transplanted into wearable sensor devices.
A Hybrid Extended Kalman Filter as an Observer for a Pot-Electro-Magnetic Actuator
Schmidt, Simon; Mercorelli, Paolo
2017-01-01
This paper deals with an application in which a hybrid extended Kalman Filter (HEKF) is used to estimate state variables in a U-shaped electro-magnetic actuator to be used in mechanical systems. In this context a hybrid Kalman Filter is the one which switches between different models. The paper proposes a hybrid model for an extended Kalman Filter to be used as an observer to estimate the state and to control the force of the actuator. Applications include position, velocity and force control in automotive, engine and manufacturing systems. This work is focused on the estimation of state variables of the actuator. Simulated results show the effectiveness of the proposed approach.
Convergence study in extended Kalman filter-based training of recurrent neural networks.
Wang, Xiaoyu; Huang, Yong
2011-04-01
Recurrent neural network (RNN) has emerged as a promising tool in modeling nonlinear dynamical systems, but the training convergence is still of concern. This paper aims to develop an effective extended Kalman filter-based RNN training approach with a controllable training convergence. The training convergence problem during extended Kalman filter-based RNN training has been proposed and studied by adapting two artificial training noise parameters: the covariance of measurement noise (R) and the covariance of process noise (Q) of Kalman filter. The R and Q adaption laws have been developed using the Lyapunov method and the maximum likelihood method, respectively. The effectiveness of the proposed adaption laws has been tested using a nonlinear dynamical benchmark system and further applied in cutting tool wear modeling. The results show that the R adaption law can effectively avoid the divergence problem and ensure the training convergence, whereas the Q adaption law helps improve the training convergence speed.
Parallelized unscented Kalman filters for carrier recovery in coherent optical communication.
Jignesh, Jokhakar; Corcoran, Bill; Lowery, Arthur
2016-07-15
We show that unscented Kalman filters can be used to mitigate local oscillator phase noise and to compensate carrier frequency offset in coherent single-carrier optical communication systems. A parallel processing architecture implementing the unscented Kalman filter is proposed, improving upon a previous parallelized linear Kalman filter (LKF) implementation.
Kalman Filtering with Intermittent Observations: Weak Convergence and Moderate Deviations
Kar, Soummya
2009-01-01
The paper considers the problem of Kalman filtering with intermittent observations, where the observation packet arrival process is modeled as a Bernoulli process. We start by extending the results of \\cite{Riccati-weakconv} to show that the sequence of random conditional error covariance matrices converges in distribution to a unique invariant distribution $\\mathbb{\\mu}^{\\bar{\\gamma}}$, as long as the packet arrival probability $\\bar{\\gamma}>0$. We completely characterize the sequence ${\\mathbb{\\mu}^{\\bar{\\gamma}}}$ of invariant distributions as $\\bar{\\gamma}\\uparrow 1$, by showing that the sequence ${\\mathbb{\\mu}^{\\bar{\\gamma}}}$ satisfies a moderate deviations principle (MDP) with a good rate function $I$, which is explicitly characterized. We then study the sequence of invariant distributions ${\\mathbb{\\mu}^{\\bar{\\gamma}}}$ as $\\bar{\\gamma}\\uparrow 1$. We show that, as $\\bar{\\gamma}\\uparrow 1$, ...
Predicting breeding values in animals by kalman filter
Karacaören, Burak; Janss, Luc; Kadarmideen, Haja
2012-01-01
The aim of this study was to investigate usefulness of Kalman Filter (KF) Random Walk methodology (KF-RW) for prediction of breeding values in animals. We used body condition score (BCS) from dairy cattle for illustrating use of KF-RW. BCS was measured by Swiss Holstein Breeding Association during...... May 2004-March 2005 for 7 times approximately at monthly intervals from dairy cows (n=80) stationed at the Chamau research farm of Eidgenössische Technische Hochschule (ETH), Switzerland. Benefits of KF were demonstrated using random walk models via simulations. Breeding values were predicted over...... for variance components were found (with standard errors) 0.03 (0.006) for animal genetic variance 0.04 (0.007) for permanent environmental variance and 0.21 (0.02) for error variance. Since KF gives online estimation of breeding values and does not need to store or invert matrices, this methodology could...
Alignment of the LHCb detector with Kalman filter fitted tracks
Amoraal, J M
2009-01-01
The LHCb detector, operating at the Large Hadron Collider at CERN, is a single arm spectrometer optimised for the detection of forward b and anti-b production for b physics studies. The reconstruction of vertices and tracks is done by silicon micro-strip and gaseous straw-tube based detectors. To obtain excellent momentum, mass and vertex resolutions, the detectors need to be aligned well within the hit resolution for a given detector. We present a general and easy to configure alignment framework which uses the closed from method of alignment with Kalman filter fitted tracks to determine the alignment parameters. This allows us to use the standard LHCb track model and fit, and correctly take complexities such as multiple scattering and energy loss corrections into account. With this framework it is possible to align any detector for any degree of freedom.
Attitude Determination for MAVs Using a Kalman Filter
LIU Cheng; ZHOU Zhaoying; FU Xu
2008-01-01
This paper presents a Kalman filter to effectively and economically determine the Euler angles for micro aerial vehicles(MAVs),whose size and payload are severely limited.The filter uses data from a series of micro-electro mechanical system sensors to determine the selected 3 vanables of the direction cosine matrix and the bias of the rata gyro sensors as state elements in a dynamic model,with the gravitational acceleration to build a measurement model.For high speed maneuvers,rigid motion equations are used to correct the measurements of the gravitational acceleration.The filter is designed to automatically tune its gain based on the dynamic system state.Simulations indicate that the Euler angles can be determined with standard deviations less than 3.The algorithm was successfully implemented in a miniature attitude measurement system suitable for MAVs.Aerobatic flights show that the attitude determination algorithm works effectively.The attitude determination algorithm is effective and economical,and can also be applied to bionic rebofishs and land vehicles,whose size and payload are also greatly limited.
Tsiaras, Kostas P.
2017-04-20
A hybrid ensemble data assimilation scheme (HYBRID), combining a flow-dependent with a static background covariance, was developed and implemented for assimilating satellite (SeaWiFS) Chl-a data into a marine ecosystem model of the Mediterranean. The performance of HYBRID was assessed against a model free-run, the ensemble-based singular evolutive interpolated Kalman (SEIK) and its variant with static covariance (SFEK), with regard to the assimilated variable (Chl-a) and non-assimilated variables (dissolved inorganic nutrients). HYBRID was found more efficient than both SEIK and SFEK, reducing the Chl-a error by more than 40% in most areas, as compared to the free-run. Data assimilation had a positive overall impact on nutrients, except for a deterioration of nitrates simulation by SEIK in the most productive area (Adriatic). This was related to SEIK pronounced update in this area and the phytoplankton limitation on phosphate that lead to a built up of excess nitrates. SEIK was found more efficient in productive and variable areas, where its ensemble exhibited important spread. SFEK had an effect mostly on Chl-a, performing better than SEIK in less dynamic areas, adequately described by the dominant modes of its static covariance. HYBRID performed well in all areas, due to its “blended” covariance. Its flow-dependent component appears to track changes in the system dynamics, while its static covariance helps maintaining sufficient spread in the forecast. HYBRID sensitivity experiments showed that an increased contribution from the flow-dependent covariance results in a deterioration of nitrates, similar to SEIK, while the improvement of HYBRID with increasing flow-dependent ensemble size quickly levels off.
Laborie, Vanessya; Hissel, François; Sergent, Philippe; Fayet, Laurence; de Bruyn, Bertrand; Le Pelletier, Thierry
2014-05-01
Operational flood forecasting nowadays usually makes use of hydraulic numerical models fed by hydrological (rainfall-runoff) models. Those latter, which allow to obtain discharges to inject at the input of hydraulic numerical models, are very often calibrated once and for all only for specific events. In other hydrological situations, their results significantly differ from measurements at hydrometric stations of the watershed. The use of data assimilation methods may then be useful to "incorporate" available observations during an event as they become available and therefore to "readjust" the forecasts of the model by bringing them back as close as possible to the reality. A numerical flood forecasting model has been developed for the Service in charge of flood forecasting for Oise and Aisne watersheds. It is divided into two models : the first model is a hydrological numerical model which provides discharges at each station of the watersheds of the Oise and Aisne rivers. It is based on the software HYDRABV-SCS-PQ developed by HYDRATEC and feeds a numerical hydraulic model with the input discharges at different points (Hirson for the Oise river, Verrières and Amblaincourt on the Aisne river), as well as the discharges of the main tributaries.CEREMA has developed an extended Kalman filter based on the hydrological model SCS-PQ which aim is to assimilate available discharges data at several hydrometric stations of the watershed and, by this way, improve flood forecasts. While this method often relies on assumptions about the differentiability of the underlying model, special techniques were applied here to account for the numerous thresholds where the hydrological model is not differentiable. The object of the presentation is to explain the methodology used and describe several results obtained for two periods (2007-2008 and 2009-2010) for the station of Hirson on the Oise river. For these two periods, Nash coefficients have been significantly improved using Kalman
Reducing Support Vector Machine Classification Error by Implementing Kalman Filter
Muhsin Hassan
2013-08-01
Full Text Available The aim of this is to demonstrate the capability of Kalman Filter to reduce Support Vector Machine classification errors in classifying pipeline corrosion depth. In pipeline defect classification, it is important to increase the accuracy of the SVM classification so that one can avoid misclassification which can lead to greater problems in monitoring pipeline defect and prediction of pipeline leakage. In this paper, it is found that noisy data can greatly affect the performance of SVM. Hence, Kalman Filter + SVM hybrid technique has been proposed as a solution to reduce SVM classification errors. The datasets has been added with Additive White Gaussian Noise in several stages to study the effect of noise on SVM classification accuracy. Three techniques have been studied in this experiment, namely SVM, hybrid of Discrete Wavelet Transform + SVM and hybrid of Kalman Filter + SVM. Experiment results have been compared to find the most promising techniques among them. MATLAB simulations show Kalman Filter and Support Vector Machine combination in a single system produced higher accuracy compared to the other two techniques.
On the Kalman Filter error covariance collapse into the unstable subspace
Trevisan, A.; Palatella, L.
2011-03-01
When the Extended Kalman Filter is applied to a chaotic system, the rank of the error covariance matrices, after a sufficiently large number of iterations, reduces to N+ + N0 where N+ and N0 are the number of positive and null Lyapunov exponents. This is due to the collapse into the unstable and neutral tangent subspace of the solution of the full Extended Kalman Filter. Therefore the solution is the same as the solution obtained by confining the assimilation to the space spanned by the Lyapunov vectors with non-negative Lyapunov exponents. Theoretical arguments and numerical verification are provided to show that the asymptotic state and covariance estimates of the full EKF and of its reduced form, with assimilation in the unstable and neutral subspace (EKF-AUS) are the same. The consequences of these findings on applications of Kalman type Filters to chaotic models are discussed.
Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach
Jinliang Zhang
2015-01-01
Full Text Available Extended Kalman filter (EKF has been widely applied for sensorless direct torque control (DTC in induction machines (IMs. One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.
Adaptive system noise covariance for performance enhancement of Kalman filter-based algorithms
Lee, Vika; Chan, Keith C. C.; Leung, Henry
1996-06-01
Several designs of Kalman filters and the interacting multiple models algorithm were used in real tracking tasks involving high dynamic targets. The data were obtained through the joint effort of the defense departments of Canada and the US. Their performance, measured in terms of positional deviation and the number of track losses, are rather unsatisfactory even though they perform particularly well when using simulated data. To identify the reasons behind, we compared and analyzed the differences between the model assumptions behind the design of these Kalman filters and the model required for accurate tracking of these targets. In this paper, we discussed our findings. Moreover, based on the characteristics of real tracking data, we present an alternative methodology for measuring the effectiveness of various Kalman filter based trackers in stressful environmental. It can also be used to explain the well known characteristics of Kalman filter. A lower bound for the deviation, obtained from this equation, shows that deviation could be too large to manage if noise bandwidth is as high as the real data instead of a pre-assumed magnitude. Instead of having to redesign many existing Kalman filters to suit for stressful environment, we developed a design-independent module that can be added to different types of Kalman filters based trackers to enhance their performance in the tracking high dynamic targets. The module is called adaptive systems noise covariance estimation. It is not only safe (i.e. almost no negative effect) but it can sometimes even double the performance of trackers in stressful environment.
Mean-field Ensemble Kalman Filter
Law, Kody
2015-01-07
A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu
2014-01-01
for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...... the temperature distribution inside the primary heat exchanger by engaging a detailed and distributed model of the system and available measurements. Simulation results prove the robustness of the unscented Kalman filter with respect to process noise, measurement disturbances and initial conditions....
Application of Extended Kalman Filter to Tactical Ballistic Missile Re-entry Problem
Bhowmik, Subrata
2007-01-01
The objective is to investigate the advantages and performance of Extended Kalman Filter for the estimation of non-linear system where linearization takes place about a trajectory that was continually updated with the state estimates resulting from the measurement. Here tactile ballistic missile Re-entry problem is taken as a nonlinear system model and Extended Kalman Filter technique is used to estimate the positions and velocities at the X and Y direction at different values of ballistic coefficients. The result shows that the method gives better estimation with the increase of ballistic coefficient.
Development of Real-Time Error Ellipses as an Indicator of Kalman Filter Performance.
1984-03-01
S q often than 3 to 5 seconds. However, before the HP-86 can e considered feasible for real-time Kalman filtr procssinz, more investigaz ion i: needi...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Development of Real-Time Error Master’s Thesis; Ellipses as an Indicator of Kalman March 1984 Filter...SUPP.LEETARY NOTES 19. KEY WORDS (Cmntine on reveo ole, It ndeeaey md Identil by block number) Error Ellipsoids; Kalman Filter; Extended Kalman Filter
Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter
Leeuwenburgh, O.; Arts, R.
2012-01-01
The Ensemble Kalman Filter (EnKF), in combination with travel-time parameterization, provides a robust and flexible method for quantitative multi-model history matching to time-lapse seismic data. A disadvantage of the parameterization in terms of travel-times is that it requires simulation of model
王铁成; 李伟力; 孙建伟
2003-01-01
A mathematical model has been built up for compound cage rotor induction machine with the rotor re-sistance and leakage inductance in the model identified through Kalman filtering method. Using the identifiedparameters, simulation studies are performed, and simulation results are compared with testing results.
Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter
Luo, Xiaodong
2011-12-01
A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H∞ filter is more robust than the Kalman filter, in the sense that the estimation error in the H∞ filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter. The original form of the H∞ filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H∞ filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H∞ filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation.
Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng; Wang, Meng
2016-09-20
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.
Research on Kalman-filter based multisensor data fusion
无
2007-01-01
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc.Various multisensor data fusion methods have been extensively investigated by researchers,of which Klaman filtering is one of the most important.Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown.states of a dynamic system,which has found widespread application in many areas.The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods.then a new method of state fusion is proposed.Finally the simulation results demonstrate the effectiveness of the introduced method.
A new Approach for Kalman filtering on Mobile Robots in the presence of uncertainties
Larsen, Thomas Dall; Andersen, Nils Axel; Ravn, Ole
1999-01-01
In many practical Kalman filter applications, the quantity of most significance for the estimation error is the process noise matrix. When filters are stabilized or performance is sought to be improved, tuning of this matrix is the most common method. This tuning process cannot be done before...... the filter is implemented, as it is primarily made necessary by modelling errors. In this paper, two different methods for modelling the process noise are described and evaluated; a traditional one based on Gaussian noise models and a new one based on propagating modelling uncertainties. We discuss which...... method to use and how to tune the filter to achieve the lowest estimation error....
An aperiodic phenomenon of the unscented Kalman filter in filtering noisy chaotic signals
无
2007-01-01
A non-periodic oscillatory behavior of the unscented Kalman filter (UKF) when used to filter noisy contaminated chaotic signals is reported. We show both theoretically and experimentally that the gain of the UKF may not converge or diverge but oscillate aperiodically. More precisely, when a nonlinear system is periodic, the Kalman gain and error covariance of the UKF converge to zero. However, when the system being considered is chaotic, the Kalman gain either converges to a fixed point with a magnitude larger than zero or oscillates aperiodically.
Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou
2014-04-01
Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.
The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.
Eberle, Claudia; Ament, Christoph
2011-01-01
Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.
Penny, S. G.; Kalnay, E.; Carton, J. A.; Hunt, B. R.; Ide, K.; Miyoshi, T.; Chepurin, G. A.
2013-11-01
The most widely used methods of data assimilation in large-scale oceanography, such as the Simple Ocean Data Assimilation (SODA) algorithm, specify the background error covariances and thus are unable to refine the weights in the assimilation as the circulation changes. In contrast, the more computationally expensive Ensemble Kalman Filters (EnKF) such as the Local Ensemble Transform Kalman Filter (LETKF) use an ensemble of model forecasts to predict changes in the background error covariances and thus should produce more accurate analyses. The EnKFs are based on the approximation that ensemble members reflect a Gaussian probability distribution that is transformed linearly during the forecast and analysis cycle. In the presence of nonlinearity, EnKFs can gain from replacing each analysis increment by a sequence of smaller increments obtained by recursively applying the forecast model and data assimilation procedure over a single analysis cycle. This has led to the development of the "running in place" (RIP) algorithm by Kalnay and Yang (2010) and Yang et al. (2012a,b) in which the weights computed at the end of each analysis cycle are used recursively to refine the ensemble at the beginning of the analysis cycle. To date, no studies have been carried out with RIP in a global domain with real observations. This paper provides a comparison of the aforementioned assimilation methods in a set of experiments spanning seven years (1997-2003) using identical forecast models, initial conditions, and observation data. While the emphasis is on understanding the similarities and differences between the assimilation methods, comparisons are also made to independent ocean station temperature, salinity, and velocity time series, as well as ocean transports, providing information about the absolute error of each. Comparisons to independent observations are similar for the assimilation methods but the observation-minus-background temperature differences are distinctly lower for
Impact and point prediction using a neural extended Kalman filter with multiple sensors
Stubberud, Stephen C.; Kramer, Kathleen A.
2007-04-01
The neural extended Kalman filter is an adaptive estimation technique that has been shown to learn on-line the maneuver model of the trajectory of a target. This improved motion model can be used to better predict the location of a target at given point in time, especially when the target, such as a mortar shell, has limited maneuvering capabilities. In this paper, the neural extended Kalman filter is used to predict, with multiple-sensor-systems provided measurement reports, impact point and impact time of a ballistic-like projectile when the drag on the shell was not accurately modeled in the motion model. In previous work, the neural extended Kalman filter was shown to work well with a single sensor with a uniform sample rate. Multiple sensors can incorporate two major differences into the problem. The first difference is that of the multiple aspect angles and uncertainty that are used in the model adaptation. The second difference is that of a non-uniform update rate of the measurements to the tracking system. While most tracking systems can easily handle this difference, the adaptation of the neural network training parameters can be deleteriously affected by these variations. The first of these two differences, potential concerns to the neural extended Kalman filter's implementation, is investigated in this effort. In this effort, performance of this adaptive and predictive scheme with multiple sensors in a three dimensional space is shown to provide a quality impact estimate.
Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics.
Orban de Xivry, Jean-Jacques; Coppe, Sébastien; Blohm, Gunnar; Lefèvre, Philippe
2013-10-30
The brain makes use of noisy sensory inputs to produce eye, head, or arm motion. In most instances, the brain combines this sensory information with predictions about future events. Here, we propose that Kalman filtering can account for the dynamics of both visually guided and predictive motor behaviors within one simple unifying mechanism. Our model relies on two Kalman filters: (1) one processing visual information about retinal input; and (2) one maintaining a dynamic internal memory of target motion. The outputs of both Kalman filters are then combined in a statistically optimal manner, i.e., weighted with respect to their reliability. The model was tested on data from several smooth pursuit experiments and reproduced all major characteristics of visually guided and predictive smooth pursuit. This contrasts with the common belief that anticipatory pursuit, pursuit maintenance during target blanking, and zero-lag pursuit of sinusoidally moving targets all result from different control systems. This is the first instance of a model integrating all aspects of pursuit dynamics within one coherent and simple model and without switching between different parallel mechanisms. Our model suggests that the brain circuitry generating a pursuit command might be simpler than previously believed and only implement the functional equivalents of two Kalman filters whose outputs are optimally combined. It provides a general framework of how the brain can combine continuous sensory information with a dynamic internal memory and transform it into motor commands.
Orchard navigation using derivative free Kalman filtering
Hansen, Søren; Bayramoglu, Enis; Andersen, Jens Christian
2011-01-01
This paper describes the use of derivative free filters for mobile robot localization and navigation in an orchard. The localization algorithm fuses odometry and gyro measurements with line features representing the surrounding fruit trees of the orchard. The line features are created on basis of 2......D laser scanner data by a least square algorithm. The three derivative free filters are compared to an EKF based localization method on a typical run covering four rows in the orchard. The Matlab R toolbox Kalmtool is used for easy switching between different filter implementations without the need...
Paris law parameter identification based on the Extended Kalman Filter
Melgar M.
2016-01-01
Full Text Available Aircraft structures are commonly subjected to repeated loading cycles leading to fatigue damage. Fatigue data can be extrapolated by fatigue models which are adopted to describe the fatigue damage behaviour. Such models depend on their parameters for accurate prediction of the fatigue life. Therefore, several methods have been developed for estimating the model parameters for both linear and nonlinear systems. It is useful for a broad class of parameter identification problems when the dynamic model is not known. In this paper, the Paris law is used as fatigue-crack-length growth model on a metallic component under loading cycles. The Extended Kalman Filter (EKF is proposed as estimation method. Simulated crack length data is used to validate the estimation method. Based on experimental data obtained from fatigue experiment, the crack length and model parameters are estimated. Accurate model parameters allow a more realistic prediction of the fatigue life, consequently, the remaining useful life (RUL of component can be accurately computed. In this sense, maintenance performance could be improved.
A convergence result for the unscented Kalman-Bucy filter using contraction theory
Maree, J. P.; Imsland, L.; Jouffroy, J.
2013-01-01
This paper applies contraction theory to establish necessary conditions for contraction, hence, exponential convergence of the unscented Kalman-Bucy Filter. It follows that regions of contraction can subsequently be defined, given such necessary conditions. Both state and measurement models are I...
Distance parameterization for efficient seismic history matching the ensemble Kalman Filters
Leeuwenburgh, O.; Arts, R.J.
2014-01-01
The availability of multiple history matched models is essential for proper handling of uncertainty in determining the optimal development of producing hydrocarbon fields. The ensemble Kalman Filter in particular is becoming recognized as an efficient method for quantitative conditioning of multiple
Inexpensive CubeSat attitude estimation using COTS components and Unscented Kalman Filtering
Larsen, Jesper Abildgaard; Vinther, Kasper
2011-01-01
constraint requires a redesign of the Unscented Kalman Filter. Therefore, a quaternion error state is introduced. Emphasis has been put in making the implementation accessible to other CubeSat by using realistic models of COTS components used for attitude sensing and simulations have shown that the extra...
Detecting land cover change using an extended Kalman filter on MODIS NDVI time-series data
Kleynhans, W
2011-05-01
Full Text Available . The NDVI time series for each of these pixels was modeled as a triply (mean, phase, and amplitude) modulated cosine function, and an extended Kalman filter was used to estimate the parameters of the modulated cosine function through time. A spatial...
Assimilating Remotely Sensed Surface Soil Moisture into SWAT using Ensemble Kalman Filter
In this study, a 1-D Ensemble Kalman Filter has been used to update the soil moisture states of the Soil and Water Assessment Tool (SWAT) model. Experiments were conducted for the Cobb Creek Watershed in southeastern Oklahoma for 2006-2008. Assimilation of in situ data proved limited success in the ...
Hydrologic data assimilation has become an important tool for improving hydrologic model predictions by utilizing observations from ground, aircraft, and satellite sensors. Among existing data assimilation methods, the ensemble Kalman filter (EnKF) provides a robust framework for optimally updating ...
Shi, Yuning; Davis, Kenneth J.; Zhang, Fuqing; Duffy, Christopher J.; Yu, Xuan
2015-09-01
The capability of an ensemble Kalman filter (EnKF) to simultaneously estimate multiple parameters in a physically-based land surface hydrologic model using multivariate field observations is tested at a small watershed (0.08 km2). Multivariate, high temporal resolution, in situ measurements of discharge, water table depth, soil moisture, and sensible and latent heat fluxes encompassing five months of 2009 are assimilated. It is found that, for five out of the six parameters, the EnKF estimated parameter values from different test cases converge strongly, and the estimates after convergence are close to the manually calibrated parameter values. The EnKF estimated parameters and manually calibrated parameters yield similar model performance, but the EnKF sequential method significantly decreases the time and labor required for calibration. The results demonstrate that, given a limited number of multi-state, site-specific observations, an automated sequential calibration method (EnKF) can be used to optimize physically-based land surface hydrologic models.
Unscented Kalman Filter Applied to the Spacecraft Attitude Estimation with Euler Angles
Roberta Veloso Garcia
2012-01-01
Full Text Available The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite (China Brazil Earth Resources Satellite. The real-time estimator used in this work for attitude determination is the Unscented Kalman Filter. This filter is a new alternative to the extended Kalman filter usually applied to the estimation and control problems of attitude and orbit. This algorithm is capable of carrying out estimation of the states of nonlinear systems, without the necessity of linearization of the nonlinear functions present in the model. This estimation is possible due to a transformation that generates a set of vectors that, suffering a nonlinear transformation, preserves the same mean and covariance of the random variables before the transformation. The performance will be evaluated and analyzed through the comparison between the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.
An Unbiased Unscented Transform Based Kalman Filter for 3D Radar
WANGGuohong; XIUJianjuan; HEYou
2004-01-01
As a derivative-free alternative to the Extended Kalman filter (EKF) in the framework of state estimation, the Unscented Kalman filter (UKF) has potential applications in nonlinear filtering. By noting the fact that the unscented transform is generally biased when converting the radar measurements from spherical coordinates into Cartesian coordinates, a new filtering algorithm for 3D radar, called Unbiased unscented Kalman filter (UUKF), is proposed. The new algorithm is validated by Monte Carlo simulation runs. Simulation results show that the UUKF is more effective than the UKF, EKF and the Converted measurement Kalman filter (CMKF).
Erna Apriliani; Dieky Adzkiya; Arief Baihaqi
2011-01-01
Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ense...
万伟; 张凤云; 杨斌
2016-01-01
为了快速、准确地诊断出移动机器人的故障,将交互多模型算法和无味卡尔曼滤波(IMM_UKF)结合起来,通过各个故障模型的概率大小来判断故障是否发生。仿真结果证明, IMM_UKF 的估计准确度要高于 IMM_EKF,能够准确判断故障。%In order to diagnose the fault of the mobile robot quickly and accurately, the interacting multiple model algorithm and unscented Kalman filtering are combined to solve the issue of fault diagnosis of nonlinear systems, by assessing the occurrence of the fault by the probability of each faulted model. Compared with the extended Kalman filter, it is successfully improves the accuracy of calculation.
Unscented Kalman Filter for Autonomous Warship Attitude Determination
FU Jian-guo; WANG Xiao-tong; JIN Lian-gan; MA Ye
2005-01-01
To address a problem of autonomous attitude determination algorithm using gravitational field and geomagnetic field observation, a new recursive optimization autonomous attitude estimation algorithm is proposed. The algorithm is based on unscented Kalman filter(UKF), and can synchronously provide the attitude rate information. The simulated results show that the measurement precision of the method could be increased by 2 times compared to that of the common methods.
Robust Optical User Motion Tracking Using a Kalman Filter
Dorfmüller-Ulhaas, Klaus
2007-01-01
Optical tracking has a great future in applications of virtual and augmented reality. It will assist to enhance the acceptance of virtual reality user interfaces, since optical tracking allows wireless interaction and precise tracking. Existing commercial motion capture systems are neither working reliably in real-time. Additionally, only few optical trackers can smooth and predict motion and include a motion estimator supplying similar results to the presented approach. A Kalman filter formu...
Adaptive high-gain extended kalman filter and applications
Boizot, Nicolas Richard
2010-01-01
The work concerns the ``observability problem” --- the reconstruction of a dynamic process's full state from a partially measured state--- for nonlinear dynamic systems. The Extended Kalman Filter (EKF) is a widely-used observer for such nonlinear systems. However it suffers from a lack of theoretical justifications and displays poor performance when the estimated state is far from the real state, e.g. due to large perturbations, a poor initial state estimate, etc… We propose a solution to...
Improvements of Analog Neural Networks Based on Kalman Filter
Z. Raida
2002-04-01
Full Text Available In the paper, original improvements of recurrent analog neuralnetworks, which are based on Kalman filter, are presented. Theseimprovements eliminate some disadvantages of the classical Kalmanneural network and enable a real time processing of quickly changingsignals, which appear in adaptive antennas and similar applications.This goal is reached using such circuit elements, which increase theconvergence rate of the network and decrease the dependence ofconvergence rate on the ratio of eigenvalues of the correlation matrixof input signals.
Implementation of a Parallel Kalman Filter for Stratospheric Chemical Tracer Assimilation
Chang, Lang-Ping; Lyster, Peter M.; Menard, R.; Cohn, S. E.
1998-01-01
A Kalman filter for the assimilation of long-lived atmospheric chemical constituents has been developed for two-dimensional transport models on isentropic surfaces over the globe. An important attribute of the Kalman filter is that it calculates error covariances of the constituent fields using the tracer dynamics. Consequently, the current Kalman-filter assimilation is a five-dimensional problem (coordinates of two points and time), and it can only be handled on computers with large memory and high floating point speed. In this paper, an implementation of the Kalman filter for distributed-memory, message-passing parallel computers is discussed. Two approaches were studied: an operator decomposition and a covariance decomposition. The latter was found to be more scalable than the former, and it possesses the property that the dynamical model does not need to be parallelized, which is of considerable practical advantage. This code is currently used to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite. Tests of the code examined the variance transport and observability properties. Aspects of the parallel implementation, some timing results, and a brief discussion of the physical results will be presented.
State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter
Bizhong Xia
2015-06-01
Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.
Sebastien Massart [CERFACS / URA 1875, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, (France)
2005-07-01
Imperviousness of French nuclear power plants containments has to secure radioactive products confinement during incident or accident. Temporal evolution of containments is obtained through the numerical model Code Aster that purpose is to detect if some fissure could appear and as a consequence, imperviousness lost. In parallel, sensors are placed all around the containments to follow real time deformations. In this paper, Kalman filter analysis of an extensometer data is used to optimize eight parameters of the numerical model Code Aster. This method allows us to improve the concrete delayed behaviors modelization and supplies uncertainties to the forecast of the containment evolution. (author)
Orchard navigation using derivative free Kalman filtering
Hansen, Søren; Bayramoglu, Enis; Andersen, Jens Christian
2011-01-01
This paper describes the use of derivative free filters for mobile robot localization and navigation in an orchard. The localization algorithm fuses odometry and gyro measurements with line features representing the surrounding fruit trees of the orchard. The line features are created on basis of 2...
A cognition-based method to ease the computational load for an extended Kalman filter.
Li, Yanpeng; Li, Xiang; Deng, Bin; Wang, Hongqiang; Qin, Yuliang
2014-12-03
The extended Kalman filter (EKF) is the nonlinear model of a Kalman filter (KF). It is a useful parameter estimation method when the observation model and/or the state transition model is not a linear function. However, the computational requirements in EKF are a difficulty for the system. With the help of cognition-based designation and the Taylor expansion method, a novel algorithm is proposed to ease the computational load for EKF in azimuth predicting and localizing under a nonlinear observation model. When there are nonlinear functions and inverse calculations for matrices, this method makes use of the major components (according to current performance and the performance requirements) in the Taylor expansion. As a result, the computational load is greatly lowered and the performance is ensured. Simulation results show that the proposed measure will deliver filtering output with a similar precision compared to the regular EKF. At the same time, the computational load is substantially lowered.
IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter
Cho, K.; Hyoung-Wook, C.; Jo, Y.
2016-12-01
Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.
An adaptive Kalman filter for ECG signal enhancement.
Vullings, Rik; de Vries, Bert; Bergmans, Jan W M
2011-04-01
The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate.
Cahit Tağı ÇELİK
2004-01-01
Full Text Available Monitoring the Crustal Movement in Geodesy is performed by the deformation survey and analysis. If monitoring the crustal movements involves more than two epochs of survey campaign then from the plate tectonic theory, stations do not move randomly from one epoch to the other, therefore Kalman Filter may be suitable to use. However, if sudden movements happened in the crust in particular earthquake happened, the crust moves very fast in a very short period of time. When Kalman Filter used for monitoring these movements, from associated epoch, for a number of epochs the results may be biased. In the paper, comparison of two methods for elimination of the above mentioned biases have been performed. These methods are Fading Memory Filter and Adaptive Kalman Filter for an unknown bias.
Application of the Kalman Filter to Estimate the State of an Aerobraking Maneuver
Willer Gomes dos Santos
2013-01-01
Full Text Available This paper presents a study about the application of a Kalman filter to estimate the position and velocity of a spacecraft in an aerobraking maneuver around the Earth. The cis-lunar aerobraking of the Hiten spacecraft as well as an aerobraking in a LEO orbit are simulated in this paper. The simulator developed considers a reference trajectory and a trajectory perturbed by external disturbances combined with nonidealities of sensors and actuators. It is able to operate in closed loop controlling the trajectory at each instant of time using a PID controller and propulsive jets. A Kalman filter utilizes the sensor data to estimate the state of the spacecraft. The estimation algorithms and propagation equations used in this process are presented. The U.S. Standard Atmosphere is adopted as the atmospheric model. The main results are compared with the case where the Kalman filter is not used. Therefore, it was possible to perform an analysis of the Kalman filter importance applied to an aerobraking maneuver.
Kalman filtering for time-delayed linear systems
LU Xiao; WANG Wei
2006-01-01
This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.
Xiao, D.; Shi, Y.; Li, L.
2015-12-01
Parameter estimation is generally required for land surface models (LSMs) and hydrologic models to reproduce observed water and energy fluxes in different watersheds. Using soil moisture observations for parameter estimation in addition to discharge and land surface temperature observations can improve the prediction of land surface and subsurface processes. Due to their representativity, point measurements cannot capture the watershed-scale soil moisture conditions and may lead to notable bias in watershed soil moisture predictions if used for model calibration. The intermediate-scale cosmic-ray soil moisture observing system (COSMOS) provides average soil water content measurement over a footprint of 0.34 m2 and depths up to 50 cm, and may provide better calibration data for low-order watersheds. In this study, we will test using COSMOS observations for Flux-PIHM parameter and state estimation via the ensemble Kalman filter (EnKF). Flux-PIHM is a physically-based land surface hydrologic model that couples the Penn State Integrated Hydrologic Model (PIHM) with the Noah land surface model. Synthetic data experiments will be performed at the Shale Hills watershed (area: 0.08 km2, smaller than COSMOS footprint) and the Garner Run watershed (1.34 km2, larger than COSMOS footprint) in the Shale Hills Susquehanna Critical Zone Observatory in central Pennsylvania. COSMOS observations will be assimilated into Flux-PIHM using the EnKF, in addition to discharge and land surface temperature (LST) observations. The accuracy of EnKF estimated parameters and water and energy flux predictions will be evaluated. In addition, the results will be compared with assimilating point soil moisture measurement (in addition to discharge and LST), to assess the effects of using different scales of soil moisture observations for parameter estimation. The results at Shale Hills and Garner Run will be compared to test whether performance of COSMOS data assimilation is affected by the size of
2014-09-01
attitude estimate. 1. INTRODUCTION The utility of using brightness ( radiometric flux intensity) measurements to determine a space object (SO)’s...a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Comparison of Unscented Kalman Filter and Unscented Schmidt
Vehicle State Information Estimation with the Unscented Kalman Filter
Hongbin Ren
2014-01-01
Full Text Available The vehicle state information plays an important role in the vehicle active safety systems; this paper proposed a new concept to estimate the instantaneous vehicle speed, yaw rate, tire forces, and tire kinemics information in real time. The estimator is based on the 3DoF vehicle model combined with the piecewise linear tire model. The estimator is realized using the unscented Kalman filter (UKF, since it is based on the unscented transfer technique and considers high order terms during the measurement and update stage. The numerical simulations are carried out to further investigate the performance of the estimator under high friction and low friction road conditions in the MATLAB/Simulink combined with the Carsim environment. The simulation results are compared with the numerical results from Carsim software, which indicate that UKF can estimate the vehicle state information accurately and in real time; the proposed estimation will provide the necessary and reliable state information to the vehicle controller in the future.
Automated septum thickness measurement--a Kalman filter approach.
Snare, Sten Roar; Mjølstad, Ole Christian; Orderud, Fredrik; Dalen, Håvard; Torp, Hans
2012-11-01
Interventricular septum thickness in end-diastole (IVSd) is one of the key parameters in cardiology. This paper presents a fast algorithm, suitable for pocket-sized ultrasound devices, for measurement of IVSd using 2D B-mode parasternal long axis images. The algorithm is based on a deformable model of the septum and the mitral valve. The model shape is estimated using an extended Kalman filter. A feasibility study using 32 unselected recordings is presented. The recordings originate from a database consisting of subjects from a normal healthy population. Five patients with suspected hypertrophy were included in the study. Reference B-mode measurements were made by two cardiologists. A paired t-test revealed a non-significant mean difference, compared to the B-mode reference, of (mean±SD) 0.14±1.36 mm (p=0.532). Pearson's correlation coefficient was 0.79 (p<0.001). The results are comparable to the variability between the two cardiologists, which was found to be 1.29±1.23 mm (p<0.001). The results indicate that the method has potential as a tool for rapid assessment of IVSd. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering
Panomruttanarug, Benjamas; Higuchi, Kohji
This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.
Adaptive error covariances estimation methods for ensemble Kalman filters
Zhen, Yicun, E-mail: zhen@math.psu.edu [Department of Mathematics, The Pennsylvania State University, University Park, PA 16802 (United States); Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, The Pennsylvania State University, University Park, PA 16802 (United States)
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.
Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad
2016-12-01
Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.
Data assimilation the ensemble Kalman filter
Evensen, Geir
2007-01-01
Data Assimilation comprehensively covers data assimilation and inverse methods, including both traditional state estimation and parameter estimation. This text and reference focuses on various popular data assimilation methods, such as weak and strong constraint variational methods and ensemble filters and smoothers. It is demonstrated how the different methods can be derived from a common theoretical basis, as well as how they differ and/or are related to each other, and which properties characterize them, using several examples. Rather than emphasize a particular discipline such as oceanography or meteorology, it presents the mathematical framework and derivations in a way which is common for any discipline where dynamics is merged with measurements. The mathematics level is modest, although it requires knowledge of basic spatial statistics, Bayesian statistics, and calculus of variations. Readers will also appreciate the introduction to the mathematical methods used and detailed derivations, which should b...
Ming Liu
2015-01-01
Full Text Available This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation. The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model. Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.
Analysis of dynamic deformation processes with adaptive KALMAN-filtering
Eichhorn, Andreas
2007-05-01
In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.
Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering
FENG Yu-hu
2005-01-01
By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.
Unscented Kalman filters for polarization state tracking and phase noise mitigation.
Jignesh, Jokhakar; Corcoran, Bill; Zhu, Chen; Lowery, Arthur
2016-09-19
Simultaneous polarization and phase noise tracking and compensation is proposed based on an unscented Kalman filter (UKF). We experimentally demonstrate the tracking under noise-loading and after 800-km single-mode fiber transmission with 20-Gbaud QPSK and 16-QAM signals. These experiments show that the proposed UKF outperforms both conventional blind tracing algorithms and a previously proposed extended Kalman filter, at the cost of higher complexity. Additionally, we propose and test modified Kalman filter algorithms to reduce computational complexity.
Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Mecikalski, John R.
2012-11-01
Studies that have assimilated remotely sensed soil moisture (SM) into land surface models (LSMs) have generally focused on retrievals from microwave (MW) sensors. However, retrievals from thermal infrared (TIR) sensors have also been shown to add unique information, especially where MW sensors are not able to provide accurate retrievals (due to, e.g., dense vegetation). In this study, we examine the assimilation of a TIR product based on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse (ALEXI) model and the MW-based VU Amsterdam NASA surface SM product generated with the Land Parameter Retrieval Model (LPRM). A set of data assimilation experiments using an ensemble Kalman filter are performed over the contiguous United States to assess the impact of assimilating ALEXI and LPRM SM retrievals in isolation and together in a dual-assimilation case. The relative skill of each assimilation case is assessed through a data denial approach where a LSM is forced with an inferior precipitation data set. The ability of each assimilation case to correct for precipitation errors is quantified by comparing with a simulation forced with a higher-quality precipitation data set. All three assimilation cases (ALEXI, LPRM, and Dual assimilation) show relative improvements versus the open loop (i.e., reduced RMSD) for surface and root zone SM. In the surface zone, the dual assimilation case provides the largest improvements, followed by the LPRM case. However, the ALEXI case performs best in the root zone. Results from the data denial experiment are supported by comparisons between assimilation results and ground-based SM observations from the Soil Climate Analysis Network.
Kailei Liu; Zhijia Li; Cheng Yao; Ji Chen; Ke Zhang; Muhammad Saifullah
2016-01-01
The Kalman filter (KF) updating method has been widely used as an efficient measure to assimilate real-time hydrological variables for reducing forecast uncertainty and providing improved forecasts. However, the accuracy of the KF relies much on the estimates of the state transition matrix and is limited due to the errors inherit from parameters and variables of the flood forecasting models. A new real-time updating approach (named KN2K) is produced by coupling the k-nearest neighbor (KNN) procedure with the KF for flood forecasting models. The nonparametric KNN algorithm, which can be utilized to predict the response of a system on the basis of the k most representative predictors, is still efficient when the descriptions for input-output mapping are insufficient. In this study, the KNN procedure is used to provide more accurate estimates of the state transition matrix to extend the applicability of the KF. The updating performance of KN2K is investigated in the middle reach of the Huai River based on a one-dimensional hydraulic model with the lead times ranging from 2 to 12 h. The forecasts from the KN2K are compared with the observations, the original forecasts and the KF-updated forecasts. The results indicate that the KN2K method, with the Nash-Sutcliffe efficiency larger than 0.85 in the 12-h-ahead forecasts, has a significant advantage in accuracy and robustness compared to the KF method. It is demonstrated that improved updating results can be obtained through the use of KNN procedure. The tests show that the KN2K method can be used as an effective tool for real-time flood forecasting.
Robust double gain unscented Kalman filter for small satellite attitude estimation
Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun
2017-08-01
Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).
Multi-sensor Data Processing and Fusing Based on Kalman Filtering
Bian Guangrong
2013-01-01
Full Text Available The background of this paper is the warehouse target localization and tracking system which is composed of a number of wireless sensor nodes. Firstly this paper established a model of warehouse target localization and tracking system, then a model of multi-sensor data preprocessing and data fusion was established, and self-adaptive linear recursive method was used to eliminate outliers of the original measured data. Then least squares fitting filter was used to do filtering and denoising for the measured data. In the end, the data which were measured by multi-sensor can be fused by Kalman Filtering algorithm. Data simulation analysis shows that the use of kalman filtering algorithm for the fusion of the data measured by multi-sensor is to obtain more accurate warehouse target location data, so as to increase the positioning and tracking accuracy of the warehouse target localization and tracking system. Key Words:Wireless Sensor Network,Data Fusion,Kalman Filtering
Enhancement of Spanish Oesophageal Speech vowels using coherent subband modulator Kalman filtering.
Ishaq, Rizwan; Zapirain, Begoña García
2016-01-01
This paper proposes an Oesophageal Speech (OES) enhancement method, based on Kalman filtering. The Kalman filter is applied to modulators of OES frequency subbands instead of the fullband signal. The OES frequency subbands are decomposed into modulators and carriers components using coherent demodulation. In comparison with fullband Kalman filtering and pole stabilization, the proposed technique shows better results. The system performance is evaluated objectively and subjectively using the Harmonic to Noise Ratio (HNR) and Mean Opinion Score (MOS) respectively. Results have shown that Kalman filter in subband modulators processing is robust and efficient, improving the HNR by 4 to 5 dB for all Spanish vowels.
Reduction of power line interference in electrocardiographic signals by dual Kalman filtering
Luis David Avendaño Valencia
2010-04-01
Full Text Available This paper presents a filter for reducing powerline interference in electrocardiographic signals (ECG, based on dual parameter and state estimation using with a Kalman filter. Two models were used to represent power-line interference and ECG signal. Both models were combined to simulate the ECG signal whose state was estimated for separating the ECG signal from the interference. The proposed algorithm was fine-tuned and compared using a set of tests relying on the QT arrhythmia database. Tuning tests were done for tracking clean ECG; these results were used for setting the algorithm’s parameters for later filtering tests. Exhaustive filtering tests were carried out on artificially corrupted database registers for given signal to noise ratios; performance curves were thus obtained, leading to comparing the proposed algorithm with other filtering methods. The proposed algorithm was compared to an recursive infinite impulse response filter (IIR and a Kalman filter based on a simpler model. A filtering algorithm was thus obtained which is robust for changes in interference amplitude and keeps these properties for different types of ECG morphologies.
Bds/gps Integrated Positioning Method Research Based on Nonlinear Kalman Filtering
Ma, Y.; Yuan, W.; Sun, H.
2017-09-01
In order to realize fast and accurate BDS/GPS integrated positioning, it is necessary to overcome the adverse effects of signal attenuation, multipath effect and echo interference to ensure the result of continuous and accurate navigation and positioning. In this paper, pseudo-range positioning is used as the mathematical model. In the stage of data preprocessing, using precise and smooth carrier phase measurement value to promote the rough pseudo-range measurement value without ambiguity. At last, the Extended Kalman Filter(EKF), the Unscented Kalman Filter(UKF) and the Particle Filter(PF) algorithm are applied in the integrated positioning method for higher positioning accuracy. The experimental results show that the positioning accuracy of PF is the highest, and UKF is better than EKF.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Kalman filtering to suppress spurious signals in Adaptive Optics control
Poyneer, L; Veran, J P
2010-03-29
In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.
Kalman Filter Estimation of Spinning Spacecraft Attitude using Markley Variables
Sedlak, Joseph E.; Harman, Richard
2004-01-01
There are several different ways to represent spacecraft attitude and its time rate of change. For spinning or momentum-biased spacecraft, one particular representation has been put forward as a superior parameterization for numerical integration. Markley has demonstrated that these new variables have fewer rapidly varying elements for spinning spacecraft than other commonly used representations and provide advantages when integrating the equations of motion. The current work demonstrates how a Kalman filter can be devised to estimate the attitude using these new variables. The seven Markley variables are subject to one constraint condition, making the error covariance matrix singular. The filter design presented here explicitly accounts for this constraint by using a six-component error state in the filter update step. The reduced dimension error state is unconstrained and its covariance matrix is nonsingular.
Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms
Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin
2013-01-01
Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.
Mohd. Azam, Sazuan Nazrah
2017-01-01
In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... dynamics of the system of stochastic differential equations is linearized to produce the deterministic-stochastic linear transfer function. Then the linear transfer function is discretized to produce a linear discrete-time state space model that has a deterministic and a stochastic component. The filtered...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....
Azam, Sazuan N. M.
2017-01-01
In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing dynamics of the system of stochastic differential equations is linearized to produce the deterministic-stochastic linear transfer function. Then the linear transfer function is discretized to produce a linear discrete-time state space model that has a deterministic and a stochastic component. The filtered part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations.
E. L. Dmitrieva
2016-05-01
Full Text Available Basic peculiarities of nonlinear Kalman filtering algorithm applied to processing of interferometric signals are considered. Analytical estimates determining statistical characteristics of signal values prediction errors were obtained and analysis of errors histograms taking into account variations of different parameters of interferometric signal was carried out. Modeling of the signal prediction procedure with known fixed parameters and variable parameters of signal in the algorithm of nonlinear Kalman filtering was performed. Numerical estimates of prediction errors for interferometric signal values were obtained by formation and analysis of the errors histograms under the influence of additive noise and random variations of amplitude and frequency of interferometric signal. Nonlinear Kalman filter is shown to provide processing of signals with randomly variable parameters, however, it does not take into account directly the linearization error of harmonic function representing interferometric signal that is a filtering error source. The main drawback of the linear prediction consists in non-Gaussian statistics of prediction errors including cases of random deviations of signal amplitude and/or frequency. When implementing stochastic filtering of interferometric signals, it is reasonable to use prediction procedures based on local statistics of a signal and its parameters taken into account.
An Adjoint-Based Adaptive Ensemble Kalman Filter
Song, Hajoon
2013-10-01
A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.
Quantifying Monte Carlo uncertainty in ensemble Kalman filter
Thulin, Kristian; Naevdal, Geir; Skaug, Hans Julius; Aanonsen, Sigurd Ivar
2009-01-15
This report is presenting results obtained during Kristian Thulin PhD study, and is a slightly modified form of a paper submitted to SPE Journal. Kristian Thulin did most of his portion of the work while being a PhD student at CIPR, University of Bergen. The ensemble Kalman filter (EnKF) is currently considered one of the most promising methods for conditioning reservoir simulation models to production data. The EnKF is a sequential Monte Carlo method based on a low rank approximation of the system covariance matrix. The posterior probability distribution of model variables may be estimated fram the updated ensemble, but because of the low rank covariance approximation, the updated ensemble members become correlated samples from the posterior distribution. We suggest using multiple EnKF runs, each with smaller ensemble size to obtain truly independent samples from the posterior distribution. This allows a point-wise confidence interval for the posterior cumulative distribution function (CDF) to be constructed. We present a methodology for finding an optimal combination of ensemble batch size (n) and number of EnKF runs (m) while keeping the total number of ensemble members ( m x n) constant. The optimal combination of n and m is found through minimizing the integrated mean square error (MSE) for the CDFs and we choose to define an EnKF run with 10.000 ensemble members as having zero Monte Carlo error. The methodology is tested on a simplistic, synthetic 2D model, but should be applicable also to larger, more realistic models. (author). 12 refs., figs.,tabs
Feng, Jie; Ding, Ruiqiang; Li, Jianping; Liu, Deqiang
2016-09-01
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more components in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random perturbation (RP) technique, and the BV method, as well as its improved version—the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.
When long memory meets the Kalman filter
Grassi, Stefano; Santucci de Magistris, Paolo
2014-01-01
shifts. Missing values and several alternative sources of misspecification are also considered. It emerges that the state space methodology provides a valuable alternative for the estimation of the long memory models, under different data generating processes, which are common in financial and economic......The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level...
Kalman filter based algorithms for PANDA rate at FAIR
Prencipe, Elisabetta; Ritman, James [IKP, Forschungszentrum Juelich (Germany); Rauch, Johannes [E18, Technische Universitaet Muenchen (Germany); Collaboration: PANDA-Collaboration
2015-07-01
PANDA at the future FAIR facility in Darmstadt is an experiment with a cooled antiproton beam in a range between 1.5 and 15 GeV/c, allowing a wide physics program in nuclear and particle physics. High average reaction rates up to 2.10{sup 7} interactions/s are expected. PANDA is the only experiment worldwide, which combines a solenoid field and a dipole field in an experiment with a fixed target topology. The tracking system must be able to reconstruct high momenta in the laboratory frame. The tracking system of PANDA involves the presence of a high performance silicon vertex detector, a GEM detector, a Straw-Tubes central tracker, a forward tracking system, and a luminosity monitor. The first three of those, are inserted in a solenoid homogeneous magnetic field (B=2 T), the latter two are inside a dipole magnetic field (B=2 Tm), The offline tracking algorithm is developed within the PandaRoot framework, which is a part of the FAIRRoot project. The algorithm is based on a tool containing the Kalman Filter equations and a deterministic annealing filter (GENFIT). The Kalman-Filter-based routines can perform extrapolations of track parameters and covariance matrices. In GENFIT2, the Runge-Kutta track representation is available. First results of an implementation of GENFIT2 in PandaRoot are presented. Resolutions and efficiencies for different beam momenta and different track hypotheses are shown.
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
Xi Liu
2016-09-01
Full Text Available A new algorithm called maximum correntropy unscented Kalman filter (MCUKF is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC, the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.
Ensemble Kalman filters for dynamical systems with unresolved turbulence
Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Lee, Yoonsang [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates)
2014-09-15
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy
When long memory meets the Kalman filter
Grassi, Stefano; Santucci de Magistris, Paolo
2014-01-01
The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level...... series. Two empirical applications highlight the practical usefulness of the proposed state space methods....
An Extended Kalman Filter with a Computed Mean Square Error Bound
Hexner, Gyorgy; Weiss, Haim
2014-01-01
The paper proposes a new recursive filter for non-linear systems that inherently computes a valid bound on the mean square estimation error. The proposed filter, bound based extended Kalman, (BEKF) is in the form of an extended Kalman filter. The main difference of the proposed filter from the conventional extended Kalman filter is in the use of a computed mean square error bound matrix, to calculate the filter gain, and to serve as bound on the actual mean square error. The paper shows that ...
Adaptive training of feedforward neural networks by Kalman filtering
Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)
1995-02-01
Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).
Optimal subband Kalman filter for normal and oesophageal speech enhancement.
Ishaq, Rizwan; García Zapirain, Begoña
2014-01-01
This paper presents the single channel speech enhancement system using subband Kalman filtering by estimating optimal Autoregressive (AR) coefficients and variance for speech and noise, using Weighted Linear Prediction (WLP) and Noise Weighting Function (NWF). The system is applied for normal and Oesophageal speech signals. The method is evaluated by Perceptual Evaluation of Speech Quality (PESQ) score and Signal to Noise Ratio (SNR) improvement for normal speech and Harmonic to Noise Ratio (HNR) for Oesophageal Speech (OES). Compared with previous systems, the normal speech indicates 30% increase in PESQ score, 4 dB SNR improvement and OES shows 3 dB HNR improvement.
Telescope Multi-Field Wavefront Control with a Kalman Filter
Lou, John Z.; Redding, David; Sigrist, Norbert; Basinger, Scott
2008-01-01
An effective multi-field wavefront control (WFC) approach is demonstrated for an actuated, segmented space telescope using wavefront measurements at the exit pupil, and the optical and computational implications of this approach are discussed. The integration of a Kalman Filter as an optical state estimator into the wavefront control process to further improve the robustness of the optical alignment of the telescope will also be discussed. Through a comparison of WFC performances between on-orbit and ground-test optical system configurations, the connection (and a possible disconnection) between WFC and optical system alignment under these circumstances are analyzed. Our MACOS-based computer simulation results will be presented and discussed.
Application of Unscented Kalman Filter in Satellite Orbit Simulation
ZHAO Dongming; CAI Zhiwu
2006-01-01
A new estimate method is proposed, which takes advantage of the unscented transform method, thus the true mean and covariance are approximated more accurately. The new method can be applied to non-linear systems without the linearization process necessary for the EKF, and it does not demand a Gaussian distribution of noise and what's more, its ease of implementation and more accurate estimation features enables it to demonstrate its good performance in the experiment of satellite orbit simulation. Numerical experiments show that the application of the unscented Kalman filter is more effective than the EKF.
ASSIMILATION OF COARSE-SCALEDATAUSINGTHE ENSEMBLE KALMAN FILTER
Efendiev, Yalchin
2011-01-01
Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches. Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.
The extended Kalman filter for forecast of algal bloom dynamics.
Mao, J Q; Lee, Joseph H W; Choi, K W
2009-09-01
A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the
Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario
Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell
2010-01-01
Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.
Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario
Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell
2010-01-01
Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.
Noise adaptive fading Kalman filter for free-space laser communication beacon tracking.
Li, Lixing; Huang, Yongmei; Wang, Qiang; Yang, Fasheng
2016-10-20
We proposed a prediction algorithm for laser communication pointing, acquisition, and tracking (PAT) subsystems in order to further improve PAT accuracy and reduce the effect of processing delay. In terms of this prediction algorithm, a fading Kalman filter is employed, with the observation noise obtained by the gray value distribution of the laser images. Moreover, to better fit the dynamics of a laser target, the two-stage dynamic model has been chosen as the state transition model for Kalman filtering. In addition, the two-stage dynamic model has been modified by accommodating its form to a change of time lag, thereby compensating the effect of time delay. A series of horizontal path (17 km) experiments under different atmospheric conditions were conducted in the fields. According to the experimental results, the algorithm we proposed could effectively reduce the tracking error and improve pointing accuracy.
Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation
Simon, Donald L.; Garg, Sanjay
2011-01-01
An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Jenita Subash
2011-12-01
Full Text Available Users of geospatial data in government, military, industry, research, and other sectors have need foraccurate display of roads and other terrain information in areas where there are ongoing operations orlocations of interest. Hence, road extraction that is significantly more automated than the employment ofcostly and scarce human resources has become a challenging technical issue for the geospatialcommunity. An automatic road extraction based on Extended Kalman Filtering (EKF and variablestructured multiple model particle filter (VS-MMPF from satellite images is addressed. EKF traces themedian axis of a single road segment while VS-MMPF traces all road branches initializing at theintersection. In case of Local Linearization Particle filter (LLPF, a large number of particles are usedand therefore high computational expense is usually required in order to attain certain accuracy androbustness. The basic idea is to reduce the whole sampling space of the multiple model system to the modesubspace by marginalization over the target subspace and choose better importance function for modestate sampling. The core of the system is based on profile matching. During the estimation, new referenceprofiles were generated and stored in the road template memory for future correlation analysis, thuscovering the space of road profiles. .
Rigatos, Gerasimos
2016-07-01
The Derivative-free nonlinear Kalman Filter is used for developing a communication system that is based on a chaotic modulator such as the Duffing system. In the transmitter's side, the source of information undergoes modulation (encryption) in which a chaotic signal generated by the Duffing system is the carrier. The modulated signal is transmitted through a communication channel and at the receiver's side demodulation takes place, after exploiting the estimation provided about the state vector of the chaotic oscillator by the Derivative-free nonlinear Kalman Filter. Evaluation tests confirm that the proposed filtering method has improved performance over the Extended Kalman Filter and reduces significantly the rate of transmission errors. Moreover, it is shown that the proposed Derivative-free nonlinear Kalman Filter can work within a dual Kalman Filtering scheme, for performing simultaneously transmitter-receiver synchronisation and estimation of unknown coefficients of the communication channel.
Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter
Hairong Chu
2017-01-01
Full Text Available In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.
Characterizing Curvilinear Features Using the Localized Normal-Score Ensemble Kalman Filter
Haiyan Zhou
2012-01-01
Full Text Available The localized normal-score ensemble Kalman filter is shown to work for the characterization of non-multi-Gaussian distributed hydraulic conductivities by assimilating state observation data. The influence of type of flow regime, number of observation piezometers, and the prior model structure are evaluated in a synthetic aquifer. Steady-state observation data are not sufficient to identify the conductivity channels. Transient-state data are necessary for a good characterization of the hydraulic conductivity curvilinear patterns. Such characterization is very good with a dense network of observation data, and it deteriorates as the number of observation piezometers decreases. It is also remarkable that, even when the prior model structure is wrong, the localized normal-score ensemble Kalman filter can produce acceptable results for a sufficiently dense observation network.
River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking
King Hann Lim
2012-01-01
Full Text Available A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.
Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.
Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang
2017-01-14
In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.
A Tensor Network Kalman filter with an application in recursive MIMO Volterra system identification
Batselier, Kim; Chen, Zhongming; Wong, Ngai
2016-01-01
This article introduces a Tensor Network Kalman filter, which can estimate state vectors that are exponentially large without ever having to explicitly construct them. The Tensor Network Kalman filter also easily accommodates the case where several different state vectors need to be estimated simultaneously. The key lies in rewriting the standard Kalman equations as tensor equations and then implementing them using Tensor Networks, which effectively transforms the exponential storage cost and...
Reconstruction of spacecraft rotational motion using a Kalman filter
Pankratov, V. A.; Sazonov, V. V.
2016-05-01
Quasi-static microaccelerations of four satellites of the Foton series (nos. 11, 12, M-2, M-3) were monitored as follows. First, according to measurements of onboard sensors obtained in a certain time interval, spacecraft rotational motion was reconstructed in this interval. Then, along the found motion, microacceleration at a given onboard point was calculated according to the known formula as a function of time. The motion was reconstructed by the least squares method using the solutions to the equations of satellite rotational motion. The time intervals in which these equations make reconstruction possible were from one to five orbital revolutions. This length is increased with the modulus of the satellite angular velocity. To get an idea on microaccelerations and satellite motion during an entire flight, the motion was reconstructed in several tens of such intervals. This paper proposes a method for motion reconstruction suitable for an interval of arbitrary length. The method is based on the Kalman filter. We preliminary describe a new version of the method for reconstructing uncontrolled satellite rotational motion from magnetic measurements using the least squares method, which is essentially used to construct the Kalman filter. The results of comparison of both methods are presented using the data obtained on a flight of the Foton M-3.
Method for Improving Indoor Positioning Accuracy Using Extended Kalman Filter
Seoung-Hyeon Lee
2016-01-01
Full Text Available Beacons using bluetooth low-energy (BLE technology have emerged as a new paradigm of indoor positioning service (IPS because of their advantages such as low power consumption, miniaturization, wide signal range, and low cost. However, the beacon performance is poor in terms of the indoor positioning accuracy because of noise, motion, and fading, all of which are characteristics of a bluetooth signal and depend on the installation location. Therefore, it is necessary to improve the accuracy of beacon-based indoor positioning technology by fusing it with existing indoor positioning technology, which uses Wi-Fi, ZigBee, and so forth. This study proposes a beacon-based indoor positioning method using an extended Kalman filter that recursively processes input data including noise. After defining the movement of a smartphone on a flat two-dimensional surface, it was assumed that the beacon signal is nonlinear. Then, the standard deviation and properties of the beacon signal were analyzed. According to the analysis results, an extended Kalman filter was designed and the accuracy of the smartphone’s indoor position was analyzed through simulations and tests. The proposed technique achieved good indoor positioning accuracy, with errors of 0.26 m and 0.28 m from the average x- and y-coordinates, respectively, based solely on the beacon signal.
3D hand tracking using Kalman filter in depth space
Park, Sangheon; Yu, Sunjin; Kim, Joongrock; Kim, Sungjin; Lee, Sangyoun
2012-12-01
Hand gestures are an important type of natural language used in many research areas such as human-computer interaction and computer vision. Hand gestures recognition requires the prior determination of the hand position through detection and tracking. One of the most efficient strategies for hand tracking is to use 2D visual information such as color and shape. However, visual-sensor-based hand tracking methods are very sensitive when tracking is performed under variable light conditions. Also, as hand movements are made in 3D space, the recognition performance of hand gestures using 2D information is inherently limited. In this article, we propose a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter. We detect hand candidates using motion clusters and predefined wave motion, and track hand locations using Kalman filter. To verify the effectiveness of the proposed method, we compare the performance of the proposed method with the visual-based method. Experimental results show that the performance of the proposed method out performs visual-based method.
Tractography from HARDI using an intrinsic unscented Kalman filter.
Cheng, Guang; Salehian, Hesamoddin; Forder, John R; Vemuri, Baba C
2015-01-01
A novel adaptation of the unscented Kalman filter (UKF) was recently introduced in literature for simultaneous multitensor estimation and fiber tractography from diffusion MRI. This technique has the advantage over other tractography methods in terms of computational efficiency, due to the fact that the UKF simultaneously estimates the diffusion tensors and propagates the most consistent direction to track along. This UKF and its variants reported later in literature however are not intrinsic to the space of diffusion tensors. Lack of this key property can possibly lead to inaccuracies in the multitensor estimation as well as in the tractography. In this paper, we propose a novel intrinsic unscented Kalman filter (IUKF) in the space of diffusion tensors which are symmetric positive definite matrices, that can be used for simultaneous recursive estimation of multitensors and propagation of directional information for use in fiber tractography from diffusion weighted MR data. In addition to being more accurate, IUKF retains all the advantages of UKF mentioned above. We demonstrate the accuracy and effectiveness of the proposed method via experiments publicly available phantom data from the fiber cup-challenge (MICCAI 2009) and diffusion weighted MR scans acquired from human brains and rat spinal cords.
ERP Estimation using a Kalman Filter in VLBI
Karbon, M.; Soja, B.; Nilsson, T.; Heinkelmann, R.; Liu, L.; Lu, C.; Mora-Diaz, J. A.; Raposo-Pulido, V.; Xu, M.; Schuh, H.
2014-12-01
Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques, providing the full set of Earth Orientation Parameters (EOP), and it is unique for observing long term Universal Time (UT1). For applications such as satellite-based navigation and positioning, accurate and continuous ERP obtained in near real-time are essential. They also allow the precise tracking of interplanetary spacecraft. One of the goals of VGOS (VLBI Global Observing System) is to provide such near real-time ERP. With the launch of this next generation VLBI system, the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts not only to reach 1 mm accuracy on a global scale but also to reduce the time span between the collection of VLBI observations and the availability of the final results substantially. Project VLBI-ART contributes to these objectives by implementing an elaborate Kalman filter, which represents a perfect tool for analyzing VLBI data in quasi real-time. The goal is to implement it in the GFZ version of the Vienna VLBI Software (VieVS) as a completely automated tool, i.e., with no need for human interaction. Here we present the methodology and first results of Kalman filtered EOP from VLBI data.
A Comparative Analysis of Kalman Filters Using a Hypervelocity Missile Simulation.
1981-12-01
qoa.1.ity TIT " 5 1oth expehns[V, ,,! bulky. Y i 3.1.3 Obst , rv;dmility. For .n ;roposed model, ohservability was a .jkey IS,,. IO b, cuapl,.etily...Patterson AFB, 1980. 15. Wors]ey, William I., Comparison of Three Extended Kalman Filters for Air-to-Air Tracking. M.S. thesis. right-Patterson Air Force
Characterizing Curvilinear Features Using the Localized Normal-Score Ensemble Kalman Filter
Haiyan Zhou; Liangping Li; J. Jaime Gómez-Hernández
2012-01-01
The localized normal-score ensemble Kalman filter is shown to work for the characterization of non-multi-Gaussian distributed hydraulic conductivities by assimilating state observation data. The influence of type of flow regime, number of observation piezometers, and the prior model structure are evaluated in a synthetic aquifer. Steady-state observation data are not sufficient to identify the conductivity channels. Transient-state data are necessary for a good characterization of the hydraul...
Secure Tracking in Sensor Networks using Adaptive Extended Kalman Filter
Fard, Ali P
2012-01-01
Location information of sensor nodes has become an essential part of many applications in Wireless Sensor Networks (WSN). The importance of location estimation and object tracking has made them the target of many security attacks. Various methods have tried to provide location information with high accuracy, while lots of them have neglected the fact that WSNs may be deployed in hostile environments. In this paper, we address the problem of securely tracking a Mobile Node (MN) which has been noticed very little previously. A novel secure tracking algorithm is proposed based on Extended Kalman Filter (EKF) that is capable of tracking a Mobile Node (MN) with high resolution in the presence of compromised or colluding malicious beacon nodes. It filters out and identifies the malicious beacon data in the process of tracking. The proposed method considerably outperforms the previously proposed secure algorithms in terms of either detection rate or MSE. The experimental data based on different settings for the netw...
Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems
Min Chul Kim
2011-10-01
Full Text Available Recently, the range of available Radio Frequency Identification (RFID tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error (MSE than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.
Salmon, BP
2012-07-01
Full Text Available In this paper, the internal operations of an Extended Kalman Filter is investigated to see if any useful information can be derived to detect land cover change in a MODIS time series. The Extended Kalman Filter expands its internal covariance if a...
Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.
Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon
2011-01-01
Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.
Yunsick Sung
2016-11-01
Full Text Available Given that location information is the key to providing a variety of services in sustainable indoor computing environments, it is required to obtain accurate locations. Locations can be estimated by three distances from three fixed points. Therefore, if the distance between two points can be measured or estimated accurately, the location in indoor environments can be estimated. To increase the accuracy of the measured distance, noise filtering, signal revision, and distance estimation processes are generally performed. This paper proposes a novel framework for estimating the distance between a beacon and an access point (AP in a sustainable indoor computing environment. Diverse types of received strength signal indications (RSSIs are used for WiFi, Bluetooth, and radio signals, and the proposed distance estimation framework is unique in that it is independent of the specific wireless signal involved, being based on the Bluetooth signal of the beacon. Generally, RSSI measurement, noise filtering, and revision are required for distance estimation using RSSIs. The employed RSSIs are first measured from an AP, with multiple APs sometimes used to increase the accuracy of the distance estimation. Owing to the inevitable presence of noise in the measured RSSIs, the application of noise filtering is essential, and further revision is used to address the inaccuracy and instability that characterizes RSSIs measured in an indoor environment. The revised RSSIs are then used to estimate the distance. The proposed distance estimation framework uses one AP to measure the RSSIs, a Kalman filter to eliminate noise, and a log-distance path loss model to revise the measured RSSIs. In the experimental implementation of the framework, both a RSSI filter and a Kalman filter were respectively used for noise elimination to comparatively evaluate the performance of the latter for the specific application. The Kalman filter was found to reduce the accumulated errors by 8
Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin
2011-01-01
Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly
Application of Kalman Filtering Techniques for Microseismic Event Detection
Baziw, E.; Weir-Jones, I.
- Microseismic monitoring systems are generally installed in areas of induced seismicity caused by human activity. Induced seismicity results from changes in the state of stress which may occur as a result of excavation within the rock mass in mining (i.e., rockbursts), and changes in hydrostatic pressures and rock temperatures (e.g., during fluid injection or extraction) in oil exploitation, dam construction or fluid disposal. Microseismic monitoring systems determine event locations and important source parameters such as attenuation, seismic moment, source radius, static stress drop, peak particle velocity and seismic energy. An essential part of the operation of a microseismic monitoring system is the reliable detection of microseismic events. In the absence of reliable, automated picking techniques, operators rely upon manual picking. This is time-consuming, costly and, in the presence of background noise, very prone to error. The techniques described in this paper not only permit the reliable identification of events in cluttered signal environments they have also enabled the authors to develop reliable automated event picking procedures. This opens the way to use microseismic monitoring as a cost-effective production/operations procedure. It has been the experience of the authors that in certain noisy environments, the seismic monitoring system may trigger on and subsequently acquire substantial quantities of erroneous data, due to the high energy content of the ambient noise. Digital filtering techniques need to be applied on the microseismic data so that the ambient noise is removed and event detection simplified. The monitoring of seismic acoustic emissions is a continuous, real-time process and it is desirable to implement digital filters which can also be designed in the time domain and in real-time such as the Kalman Filter. This paper presents a real-time Kalman Filter which removes the statistically describable background noise from the recorded
The scale mismatch between remotely sensed observations and crop growth models simulated state variables decreases the reliability of crop yield estimates. To overcome this problem, we used a two-step data assimilation phases: first we generated a complete leaf area index (LAI) time series by combin...
Alternatives to an extended Kalman Filter for target image tracking
Leuthauser, P. R.
1981-12-01
Four alternative filters are compared to an extended Kalman filter (EKF) algorithm for tracking a distributed (elliptical) source target in a closed loop tracking problem, using outputs from a forward looking (FLIR) sensor as measurements. These were (1) an EKF with (second order) bias correction term, (2) a constant gain EKF, (3) a constant gain EKF with bias correction term, and (4) a statistically linearized filter. Estimates are made of both actual target motion and of apparent motion due to atmospheric jitter. These alternative designs are considered specifically to address some of the significant biases exhibited by an EKF due to initial acquisition difficulties, unmodelled maneuvering by the target, low signal-to-noise ratio, and real world conditions varying significantly from those assumed in the filter design (robustness). Filter performance was determined with a Monte Carlo study under both ideal and non ideal conditions for tracking targets on a constant velocity cross range path, and during constant acceleration turns of 5G, 10G, and 20G.
Shen, Zheqi; Tang, Youmin
2016-04-01
The ensemble Kalman particle filter (EnKPF) is a combination of two Bayesian-based algorithms, namely, the ensemble Kalman filter (EnKF) and the sequential importance resampling particle filter(SIR-PF). It was recently introduced to address non-Gaussian features in data assimilation for highly nonlinear systems, by providing a continuous interpolation between the EnKF and SIR-PF analysis schemes. In this paper, we first extend the EnKPF algorithm by modifying the formula for the computation of the covariancematrix, making it suitable for nonlinear measurement functions (we will call this extended algorithm nEnKPF). Further, a general form of the Kalman gain is introduced to the EnKPF to improve the performance of the nEnKPF when the measurement function is highly nonlinear (this improved algorithm is called mEnKPF). The Lorenz '63 model and Lorenz '96 model are used to test the two modified EnKPF algorithms. The experiments show that the mEnKPF and nEnKPF, given an affordable ensemble size, can perform better than the EnKF for the nonlinear systems with nonlinear observations. These results suggest a promising opportunity to develop a non-Gaussian scheme for realistic numerical models.
Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher
2017-08-29
Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.
Comparison of Kalman filter and optimal smoother estimates of spacecraft attitude
Sedlak, J.
1994-01-01
Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a balance is reached between the gain of information from new measurements and the loss of information during propagation. The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error covariance by including future as well as past measurements in each estimate. This paper investigates whether such benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true state vector and noise statistics are exactly known.
Inexpensive CubeSat attitude estimation using COTS components and Unscented Kalman Filtering
Larsen, Jesper Abildgaard; Vinther, Kasper
2011-01-01
This paper describes a quaternion implementation of an Unscented Kalman Filter for attitude estimation on CubeSats using measurements of a sun vector, a magnetic field vector and angular velocity. Using unit quaternions provides a singularity free attitude parameterization. However, the unity...... constraint requires a redesign of the Unscented Kalman Filter. Therefore, a quaternion error state is introduced. Emphasis has been put in making the implementation accessible to other CubeSat by using realistic models of COTS components used for attitude sensing and simulations have shown that the extra...... computational cost of estimating bias in measurements is worthwhile. The simulations where performed in a simulation environment for the CubeSat AAUSAT3, where robustness has been an important factor during tuning of the attitude estimators. The results indicate that it is possible to achieve acceptable Cube...
Using Kalman Filter to Guarantee QoS Robustness of Web Server
无
2006-01-01
The exponential growth of the Internet coupled with the increasing popularity of dynamically generated content on the World Wide Web, has created the need for more and faster Web servers capable of serving the over 100 million Internet users. To converge the control method has emerged as a promising technique to solve the Web QoS problem. In this paper, a model of adaptive session is presented and a session flow self-regulating algorism based on Kalman Filter are proposed towards Web Server. And a Web QoS self-regulating scheme is advanced. To attain the goal of on-line system identification, the optimized estimation of QoS parameters is fulfilled by utilizing Kalman Filter in full domain. The simulation results shows that the proposed scheme can guarantee the QoS with both robustness and stability .
P. Kalyana Sundaram
2016-11-01
Full Text Available The paper presents a novel method for the assessment of the power quality disturbances in the distribution system using the Kalman filter and fuzzy expert system. In this method the various classes of disturbance signals are developed through the Matlab Simulink on the test system model. The characteristic features of the disturbance signals are extracted based on the Kalman filter technique. The obtained features such as amplitude and slope are given as the two inputs to the fuzzy expert system. It applied some rules on these inputs to assess the various PQ disturbances. Fuzzy classifier has been carried out and tested for various power quality disturbances. The results clearly demonstrate that the proposed method in the distribution system has the ability to detect and classify PQ events.
Extended and Unscented Kalman Filtering Applied to a Flexible-Joint Robot with Jerk Estimation
Mohammad Ali Badamchizadeh
2010-01-01
Full Text Available Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.
Lemanski, W.J.
1989-03-01
The success of the Strategic Defense Initiative depends directly on significant advances in both computer hardware and software development technologies. Parallel architectures and the Ada programming language have advantages that make them candidates for use in SDI command and control computer systems. This thesis examines those advantages in the context of an SDI-type application: implementation of a Kalman-filter tracking system. This research consists of three parts. The first is a set of software engineering guidelines developed for use in creating parallel designs suitable for implementation in Ada. These guidelines cover the design process from initial problem analysis to final detailed design. Methods of problem decomposition are discussed, as are language partitioning strategies. Justification is provided for using the Ada task construct for process boundaries, and Ada multitasking design issues are reviewed. A parallel software design methodology is also described.
Andrew D Lowther
Full Text Available Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.
Lowther, Andrew D; Lydersen, Christian; Fedak, Mike A; Lovell, Phil; Kovacs, Kit M
2015-01-01
Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs) to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE) for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.
Penalized Ensemble Kalman Filters for High Dimensional Non-linear Systems
Hou, Elizabeth; Hero, Alfred O
2016-01-01
The ensemble Kalman filter (EnKF) is a data assimilation technique that uses an ensemble of models, updated with data, to track the time evolution of a non-linear system. It does so by using an empirical approximation to the well-known Kalman filter. Unfortunately, its performance suffers when the ensemble size is smaller than the state space, as is often the case for computationally burdensome models. This scenario means that the empirical estimate of the state covariance is not full rank and possibly quite noisy. To solve this problem in this high dimensional regime, a computationally fast and easy to implement algorithm called the penalized ensemble Kalman filter (PEnKF) is proposed. Under certain conditions, it can be proved that the PEnKF does not require more ensemble members than state dimensions in order to have good performance. Further, the proposed approach does not require special knowledge of the system such as is used by localization methods. These theoretical results are supported with superior...
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction.
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-12-09
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces
Li, Simin; Li, Jie; Li, Zheng
2016-01-01
Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170