WorldWideScience

Sample records for model intestinal epithelia

  1. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  2. Paracellular calcium transport across renal and intestinal epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Rievaj, Juraj; Dimke, Henrik

    2014-01-01

    constituents creating the paracellular shunt across intestinal and renal epithelium, the transport pathway responsible for the majority of transepithelial Ca(2+) flux. More specifically, passive paracellular Ca(2+) absorption occurs across the majority of the intestine in addition to the renal proximal tubule...... absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular...... and thick ascending limb of Henle's loop. Importantly, recent studies demonstrated that Ca(2+) transport through the paracellular shunt is significantly regulated. Therefore, we have summarized the evidence for different modes of paracellular Ca(2+) flux across renal and intestinal epithelia and highlighted...

  3. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy.

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    Full Text Available BACKGROUND: Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18 in the large intestinal epithelia. AIMS: To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB, a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. METHODS: The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR and release of the CAP-18 peptide/protein in stool (Western blot. PRINCIPAL FINDINGS: Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. CONCLUSION: Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from

  4. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia.

    Science.gov (United States)

    Perea, Daniel; Guiu, Jordi; Hudry, Bruno; Konstantinidou, Chrysoula; Milona, Alexandra; Hadjieconomou, Dafni; Carroll, Thomas; Hoyer, Nina; Natarajan, Dipa; Kallijärvi, Jukka; Walker, James A; Soba, Peter; Thapar, Nikhil; Burns, Alan J; Jensen, Kim B; Miguel-Aliaga, Irene

    2017-10-16

    Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders such as Hirschsprung disease. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca.

    Directory of Open Access Journals (Sweden)

    Lidia Sonakowska

    Full Text Available The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.

  6. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca).

    Science.gov (United States)

    Sonakowska, Lidia; Włodarczyk, Agnieszka; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena Maria

    2016-01-01

    The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.

  7. Assessing survival of dairy propionibacteria in gastrointestinal conditions and adherence to intestinal epithelia.

    Science.gov (United States)

    Zárate, Gabriela; González, Silvia; Chaia, Adriana Pérez

    2004-01-01

    The genus Propionibacterium consists of two principal groups, cutaneous and classical or dairy. Cutaneous species are predominant members of the microbial population of human skin and have also been isolated from the feces of humans and other vertebrate animals. They are often considered opportunistic organisms and have been occasionally associated with infections in humans. Dairy propionibacteria are microorganisms extensively used in the industry for manufacture of Swiss-type cheeses and biological production of propionic acid and vitamin B12. They can be isolated from soil, vegetables, silage, raw milk, and dairy products such as kefir and different cheeses with "eyes."In the last decade, several studies have demonstrated probiotic properties for members of the genus Propionibacterium. The effects claimed are based on the production of bacteriocins, vitamins, stimulation of growth of other colonic bacteria like bifidobacteria, beneficial modification of the composition and metabolic activities of the intestinal microflora, immunomodulation, and antimutagenic activity. It is thought that to produce many of these health benefits, the probiotic microorganisms must be able to survive the transit through the hostile conditions of the gastrointestinal tract (GIT) and remain at high levels in the intestine, avoiding removal by peristaltic contractions of the gut. In this sense, microorganisms with a short generation time or the ability to adhere to the intestinal mucosa will survive for prolonged periods in the body of the host. Therefore, two desirable properties for probiotic microorganisms are (1) resistance to gastric acidity, bile, and pancreatic enzymes; and (2) adhesion ability to mucosal surfaces. Dairy bacteria are traditionally not considered to persist as normal inhabitants of the human intestinal tract. Therefore, survival under GIT conditions and adherence are important properties to be considered, and tests to study them would be useful tools. In the

  8. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia

    DEFF Research Database (Denmark)

    Perea, Daniel; Guiu, Jordi; Hudry, Bruno

    2017-01-01

    with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic...... role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders...

  9. Functional changes with feeding in the gastro-intestinal epithelia of the Burmese python (Python molurus).

    Science.gov (United States)

    Helmstetter, Cécile; Reix, Nathalie; T'Flachebba, Mathieu; Pope, Robert K; Secor, Stephen M; Le Maho, Yvon; Lignot, Jean-Hervé

    2009-09-01

    The morphology of the digestive system in fasting and refed Burmese pythons was determined, as well as the localization of the proton (H(+), K(+)-ATPase) and sodium (Na(+), K(+)-ATPase) pumps. In fasting pythons, oxyntopeptic cells located within the fundic glands are typically non-active, with a thick apical tubulovesicular system and numerous zymogen granules. They become active Immediately after feeding but return to a non-active state 3 days after the Ingestion of the prey. The proton pump, expressed throughout the different fasting/feeding states, is either sequestered in the tubulovesicular system in non-active cells or located along the apical digitations extending within the crypt lumen in active cells. The sodium pump is rapidly upregulated in fed animals and is classically located along the baso-lateral membranes of the gastric oxyntopeptic cells. In the Intestine, it is only expressed along the lateral membranes of the enterocytes, i.e., above the lateral spaces and not along the basal side of the cells. Thus, solute transport within the Intestinal lining is mainly achieved through the apical part of the cells and across the lateral spaces while absorbed fat massively crosses the entire height of the cells and flows into the Intercellular spaces. Therefore, in the Burmese python, the gastrointestinal cellular system quickly upregulates after feeding, due to Inexpensive cellular changes, passive mechanisms, and the progressive activation and synthesis of key enzymes such as the sodium pump. This cell plasticity also allows anticipation of the next fasting and feeding periods.

  10. Membrane lipid microenvironment modulates thermodynamic properties of the Na+-K+-ATPase in branchial and intestinal epithelia in euryhaline fish in vivo

    Directory of Open Access Journals (Sweden)

    Mario Diaz

    2016-12-01

    Full Text Available We have analyzed the effects of different native membrane lipid composition on the thermodynamic properties of the Na+-K+-ATPase in different epithelia from the gilthead seabream Sparus aurata. Thermodynamic parameters of activation for the Na+-K+-ATPase, as well as contents of lipid classes and fatty acids from polar lipids were determined for gill epithelia and enterocytes isolated from pyloric caeca, anterior intestine and posterior intestine. Arrhenius analyses of control animals revealed differences in thermal discontinuity values (Td and activation energies determined at both sides of Td between intestinal and gill epithelia. Eyring plots disclosed important differences in enthalpy of activation (H‡ and entropy of activation (S‡ between enterocytes and branchial cells. Induction of n-3 LCPUFA deficiency dramatically altered membrane lipid composition in enterocytes, being the most dramatic changes the increase in 18:1n-9 (oleic acid and the reduction of n-3 LCPUFA (mainly DHA, docosahexaenoic acid. Strikingly, branchial cells were much more resistant to diet-induced lipid alterations than enterocytes, indicating the existence of potent lipostatic mechanisms preserving membrane lipid matrix in gill epithelia. Paralleling lipid alterations, values of Ea1, H‡ and S‡ for the Na+-K+-ATPase were all increased, while Td values vanished, in LCPUFA deficient enterocytes. In turn, Differences in thermodynamic parameters were highly correlated with specific changes in fatty acids, but not with individual lipid classes including cholesterol in vivo. Thus, Td was positively related to 18:1n-9 and negatively to DHA. Td, Ea1 and H‡ were exponentially related to DHA/18:1n-9 ratio. The exponential nature of these relationships highlights the strong impact of subtle changes in the contents of oleic acid and DHA in setting the thermodynamic properties of epithelial Na+-K+-ATPase in vivo. The effects are consistent with physical

  11. A new cell-based FE model for the mechanics of embryonic epithelia.

    Science.gov (United States)

    Brodland, G Wayne; Viens, Denis; Veldhuis, Jim H

    2007-04-01

    In order to overcome a significant stiffening artefact associated with current finite element (FE) models for the mechanics of embryonic epithelia, two new FE formulations were developed. Cell-cell interfacial tensions gamma are represented by constant-force rod elements as in previous models. However, the viscosity of the cytoplasm with its embedded organelles and filament networks is modeled using viscous triangular elements, it is modeled using either radial and circumferential dashpots or an orthogonal dashpot system rather than the viscous triangular elements typical of previous two-dimensional FE models. The models are tested against tissue (epithelium) stretching because it gives rise to significant changes in cell shape and against cell sorting because it involves high rates of cell rearrangement. The orthogonal dashpot system is found to capture cell size and shape effects well, give the model cells characteristics that are consistent with those of real cells, provide high computational efficiency and hold promise for future three-dimensional analyses.

  12. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    Science.gov (United States)

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  13. Expression of Trans- and Paracellular Calcium and Magnesium Transport Proteins in Renal and Intestinal Epithelia During Lactation

    DEFF Research Database (Denmark)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per

    2017-01-01

    Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk...

  14. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.

    Science.gov (United States)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per; Skjødt, Karsten; Alexander, R Todd; Dimke, Henrik

    2017-09-01

    Significant alterations in maternal calcium (Ca 2+ ) and magnesium (Mg 2+ ) balance occur during lactation. Ca 2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca 2+ transport. Mg 2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca 2+ and Mg 2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca 2+ , but not Mg 2+ , rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca 2+ and Mg 2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D 28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca 2+ and Mg 2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca 2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca 2+ uptake by the kidney. Copyright © 2017 the American Physiological Society.

  15. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    NARCIS (Netherlands)

    Gordon, S.; Daneshian, M.; Bouwstra, J.A.; Caloni, F.; Constant, S.; Davies, D.E.; Dandekar, G.; Guzman, C.A.; Fabian, E.; Haltner, E.; Hartung, T.; Hasiwa, N.; Hayden, P.; Kandarova, H.; Khare, S.; Krug, H.F.; Kneuer, C.; Leist, M.; Lian, G.; Marx, U.; Metzger, M.; Ott, K.; Prieto, P.; Roberts, M.S.; Roggen, E.L.; Tralau, T.; Braak, van den C.; Walles, H.; Lehr, C.M.

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields,

  16. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Zhou Bingsheng; Nichols, Joel; Playle, Richard C.; Wood, Chris M.

    2005-01-01

    'Reconstructed' gill epithelia on filter supports were grown in primary culture from dispersed gill cells of freshwater rainbow trout (Oncorhynchus mykiss). This preparation contains both pavement cells and chloride cells, and after 7-9 days in culture, permits exposure of the apical surface to true freshwater while maintaining blood-like culture media on the basolateral surface, and exhibits a stable transepithelial resistance (TER) and transepithelial potential (TEP) under these conditions. These epithelia were used to develop a possible in vitro version of the biotic ligand model (BLM) for silver; the in vivo BLM uses short-term gill binding of the metal to predict acute silver toxicity as a function of freshwater chemistry. Radio-labeled silver ( 110m Ag as AgNO 3 ) was placed on the apical side (freshwater), and the appearance of 110m Ag in the epithelia (binding) and in the basolateral media (flux) over 3 h were monitored. Silver binding (greater than the approximate range 0-100 μg l -1 ) and silver flux were concentration-dependent with a 50% saturation point (apparent K d ) value of about 10 μg l -1 or 10 -7 M, very close to the 96-h LC50 in vivo in the same water chemistry. There were no adverse effects of silver on TER, TEP, or Na + , K + -ATPase activity, though the latter declined over longer exposures, as in vivo. Silver flux over 3 h was small ( + and dissolved organic carbon (humic acid) concentrations, increased by elevations in freshwater Cl - and reductions in pH, and insensitive to elevations in Ca 2+ . With the exception of the pH response, these effects were qualitatively and quantitatively similar to in vivo BLM responses. The results suggest that an in vitro BLM approach may provide a simple and cost-effective way for evaluating the protective effects of site-specific waters

  17. Modeling intestinal disorders using zebrafish.

    Science.gov (United States)

    Zhao, X; Pack, M

    2017-01-01

    Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The TNO gastro-intestinal model (TIM)

    NARCIS (Netherlands)

    Minekus, M.

    2015-01-01

    The TNO Gastro–Intestinal Model (TIM) is a multi–compartmental model, designed to realistically simulate conditions in the lumen of the gastro–intestinal tract. TIM is successfully used to study the gastro–intestinal behavior of a wide variety of feed, food and pharmaceutical products. Experiments

  19. Sodium recirculation and isotonic transport in toad small intestine

    DEFF Research Database (Denmark)

    Nedergaard, Signe Nielsen; Larsen, Erik Hviid; Ussing, Hans H.

    1999-01-01

    Small intestine; leaky epithelia; solute-coupled water transport; Na*O+ recirculation; lateral intercellular space; flux ratio analysi......Small intestine; leaky epithelia; solute-coupled water transport; Na*O+ recirculation; lateral intercellular space; flux ratio analysi...

  20. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  1. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  2. Effects of digested onion extracts on intestinal gene expression: an interspecies comparison using different intestine models

    NARCIS (Netherlands)

    Hulst, M.M.; Meulen, van der J.; Hoekman, A.J.W.; Smits, M.A.

    2016-01-01

    Applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as

  3. Volume regulation in epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Hoffmann, Else Kay

    2016-01-01

    We review studies on regulatory volume decrease (RVD) and regulatory volume increase (RVI) of major ion and water transporting vertebrate epithelia. The rate of RVD and RVI is faster in cells of high osmotic permeability like amphibian gallbladder and mammalian proximal tubule as compared...... function of iso-osmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na+ recirculation mechanisms have been identified. A large number of transporters and ion channels involved in cell volume...... regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell...

  4. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  5. NTPDase2+ cells generate lingual epithelia and papillae

    Directory of Open Access Journals (Sweden)

    Li eFeng

    2012-11-01

    Full Text Available The tongue epithelium is one of the most rapidly self-renewing tissues in adult mammals. Multiple stem cell populations are currently believed to exist in tongue epithelia. Keratin 14 (K14 positive cells differentiate into either lingual epithelia or lingual papillae, while ecto-nucleoside triphosphate diphosphohydrolase 2 (NTPDase2 is associated with neural stem cells and astrocyte-like cells ensheathing the migrating neuroblasts. Here, using a transgenic mouse expressing rtTA from the mouse NTPDase2 promoter, we generated an inducible model by treatment with Doxycycline. By immunohistochemical analysis and in situ hybridization, we found exclusive expression of NTPDase2 in lingual epithelia and lingual papillae. Using inducible genetic cell fate mapping, we further showed that the NTPDase2+ cells generated lingual papillae and epithelia in the adult tongue. Finally, building on our previously proposed paradigm of cell migration stream, a model is further described here for lingual epithelia cell genesis. In short, the current results not only extend our understanding of the cell migration stream in lingual epithelia and lingual papillae, but they also support the concept of multiple stem cell populations in lingual epithelia and papillae.

  6. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  7. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP technique to study the effect of food compounds. In vitro digested yellow (YOd and white onion extracts (WOd were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.

  8. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    Science.gov (United States)

    de Wit, Nicole J W; Hulst, Marcel; Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F H; Smits, Mari; Mes, Jurriaan J; Hendriksen, Peter J M

    2016-01-01

    Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.

  9. A Revised Model for Dosimetry in the Human Small Intestine

    Energy Technology Data Exchange (ETDEWEB)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  10. A Revised Model for Dosimetry in the Human Small Intestine

    International Nuclear Information System (INIS)

    John Poston; Bhuiyan, Nasir U.; Redd, R. Alex; Neil Parham; Jennifer Watson

    2005-01-01

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents

  11. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC.

    Science.gov (United States)

    Minghetti, Matteo; Drieschner, Carolin; Bramaz, Nadine; Schug, Hannah; Schirmer, Kristin

    2017-12-01

    The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow trout (Oncorhynchus mykiss). In order to exploit the opportunities arising from RTgutGC cells for exploring fish intestinal physiology and toxicology, we present here the establishment of cells on commercially available permeable membrane supports and evaluate its suitability as a model of polarized intestinal epithelia. Within 3 weeks of culture, RTgutGC cells show epithelial features by forming tight junctions and desmosomes between adjacent cells. Cells develop a transepithelial electrical resistance comparable to in vivo measured values, reflecting the leaky nature of the fish intestine. Immunocytochemistry reveals evidence of polarization, such as basolateral localization of Na + /K + -ATPase (NKA) and apical localization of the tight junction protein ZO-1. NKA mRNA abundance was induced as physiological response toward a saltwater buffer, mimicking the migration of rainbow trout from fresh to seawater. Permeation of fluorescent molecules proved the barrier function of the cells, with permeation coefficients being comparable to those reported in fish. Finally, we demonstrate that cells on permeable supports are more resistant to the toxicity elicited by silver ions than cells grown the conventional way, likely due to improved cellular silver excretion.

  12. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    Science.gov (United States)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  13. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    Science.gov (United States)

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.

  14. Precision cut intestinal slices are an appropriate ex vivo model to study NSAID-induced intestinal toxicity in rats

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; van der Bij, Hendrik A.; Groothuis, Geny M. M.

    2014-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used therapeutic agents, however, they are associated with a high prevalence of intestinal side effects. In this investigation, rat precision cut intestinal slices (PCIS) were evaluated as an ex vivo model to study NSAID-induced intestinal

  15. Dimethyloxalylglycine preserves the intestinal microvasculature and protects against intestinal injury in a neonatal mouse NEC model: role of VEGF signaling.

    Science.gov (United States)

    Bowker, Rakhee M; Yan, Xiaocai; Managlia, Elizabeth; Liu, Shirley X L; Marek, Catherine; Tan, Xiao-Di; De Plaen, Isabelle G

    2018-02-01

    BackgroundNecrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by intestinal necrosis. Hypoxia-inducible factor-1α (HIF-1α) has a critical role in cellular oxygen homeostasis. Here, we hypothesized that prolyl hydroxylase (PHD) inhibition, which stabilizes HIF-1α, protects against NEC by promoting intestinal endothelial cell proliferation and improving intestinal microvascular integrity via vascular endothelial growth factor (VEGF) signaling.MethodsTo assess the role of PHD inhibition in a neonatal mouse NEC model, we administered dimethyloxalylglycine (DMOG) or vehicle to pups before or during the NEC protocol, and determined mortality and incidence of severe intestinal injury. We assessed intestinal VEGF by western blot analysis and quantified endothelial cell and epithelial cell proliferation following immunofluorescence.ResultsDMOG decreased mortality and incidence of severe NEC, increased intestinal VEGF expression, and increased intestinal villus endothelial and epithelial cell proliferation in experimental NEC. Inhibiting VEGFR2 signaling eliminated DMOG's protective effect on intestinal injury severity, survival, and endothelial cell proliferation while sparing DMOG's protective effect on intestinal epithelial cell proliferation.ConclusionDMOG upregulates intestinal VEGF, promotes endothelial cell proliferation, and protects against intestinal injury and mortality in experimental NEC in a VEGFR2 dependent manner. DMOG's protective effect on the neonatal intestinal mucosa may be mediated via VEGFR2 dependent improvement of the intestinal microvasculature.

  16. Digestion modeling in the small intestine: impact of dietary fiber.

    Science.gov (United States)

    Taghipoor, M; Barles, G; Georgelin, C; Licois, J R; Lescoat, P

    2014-12-01

    In this work, the modeling of the digestion in the small intestine is developed by investigating specifically the effects of dietary fiber. As our previous model, this new version takes into account the three main phenomena of digestion: transit of the bolus, degradation of feedstuffs and absorption through the intestinal wall. However the two main physiochemical characteristics of dietary fiber, namely viscosity and water holding capacity, lead us to substantially modify our initial model by emphasizing the role of water and its intricated dynamics with dry matter in the bolus. Various numerical simulations given by this new model are qualitatively in agreement with the positive effect of insoluble dietary fiber on the velocity of bolus and on its degradation all along the small intestine. These simulations reproduce the negative effect of soluble dietary fiber on digestion as it has been experimentally observed. Although, this model is generic and contains a large number of parameters but, to the best of our knowledge, it is among the first qualitative dynamical models of fiber influence on intestinal digestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. [Intestinal lengthening techniques: an experimental model in dogs].

    Science.gov (United States)

    Garibay González, Francisco; Díaz Martínez, Daniel Alberto; Valencia Flores, Alejandro; González Hernández, Miguel Angel

    2005-01-01

    To compare two intestinal lengthening procedures in an experimental dog model. Intestinal lengthening is one of the methods for gastrointestinal reconstruction used for treatment of short bowel syndrome. The modification to the Bianchi's technique is an alternative. The modified technique decreases the number of anastomoses to a single one, thus reducing the risk of leaks and strictures. To our knowledge there is not any clinical or experimental report that studied both techniques, so we realized the present report. Twelve creole dogs were operated with the Bianchi technique for intestinal lengthening (group A) and other 12 creole dogs from the same race and weight were operated by the modified technique (Group B). Both groups were compared in relation to operating time, difficulties in technique, cost, intestinal lengthening and anastomoses diameter. There were no statistical difference in the anastomoses diameter (A = 9.0 mm vs. B = 8.5 mm, p = 0.3846). Operating time (142 min vs. 63 min) cost and technique difficulties were lower in group B (p anastomoses (of Group B) and intestinal segments had good blood supply and were patent along their full length. Bianchi technique and the modified technique offer two good reliable alternatives for the treatment of short bowel syndrome. The modified technique improved operating time, cost and technical issues.

  18. Repeated mechanical lengthening of intestinal segments in a novel model.

    Science.gov (United States)

    Scott, Andrew; Sullins, Veronica F; Steinberger, Doug; Rouch, Joshua D; Wagner, Justin P; Chiang, Elvin; Lee, Steven L; Wu, Benjamin M; Dunn, James C Y

    2015-06-01

    Currently, animal models used for mechanical intestinal lengthening utilize a single lengthening procedure prior to analysis or restoration back into continuity. Here we developed a novel surgical model to examine the feasibility of repeated lengthening of intestinal segments. A Roux-en-Y jejunojejunostomy with a blind Roux limb was created in rats. An encapsulated polycaprolactone spring was placed into a 1cm segment of the Roux limb. After 4 weeks, a second encapsulated PCL spring was inserted into a 1cm portion of the lengthened segment. After another 4 weeks, the repeatedly lengthened segments were retrieved for histological analyses. Jejunal segments of the Roux limb were successfully lengthened from 1.0 cm to 2.6 ± 0.7 cm. Four weeks after the second PCL spring placement, 1.0 cm of the previously lengthened segment increased to 2.7 ± 0.8 cm. Stronger mechanical force was required to achieve subsequent re-lengthening. Lengthened and re-lengthened segments had increased smooth muscle thickness and crypt depth when compared to normal jejunal mucosa. Using the Roux-en-Y model, previously lengthened segments of intestine can be successfully re-lengthened. Intestinal segments may be subjected to multiple lengthening procedures to achieve clinically significant length for the treatment of short bowel syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia.

    Directory of Open Access Journals (Sweden)

    Olivier Cases

    Full Text Available Myopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS and Stickler syndromes, both characterized by HM. To clearly establish the link between Lrp2 and congenital HM we inactivated Lrp2 in the mouse forebrain including the neural retina and the retinal and ciliary pigment epithelia. High resolution in vivo MRI imaging and ophthalmological analyses showed that the adult Lrp2-deficient eyes were 40% longer than the control ones mainly due to an excessive elongation of the vitreal chamber. They had an apparently normal intraocular pressure and developed chorioretinal atrophy and posterior scleral staphyloma features reminiscent of human myopic retinopathy. Immunomorphological and ultrastructural analyses showed that increased eye lengthening was first observed by post-natal day 5 (P5 and that it was accompanied by a rapid decrease of the bipolar, photoreceptor and retinal ganglion cells, and eventually the optic nerve axons. It was followed by scleral thinning and collagen fiber disorganization, essentially in the posterior pole. We conclude that the function of LRP2 in the ocular tissues is necessary for normal eye growth and that the Lrp2-deficient eyes provide a unique tool to further study human HM.

  20. Topological defects in epithelia govern cell death and extrusion

    Science.gov (United States)

    Saw, Thuan Beng; Doostmohammadi, Amin; Nier, Vincent; Kocgozlu, Leyla; Thampi, Sumesh; Toyama, Yusuke; Marcq, Philippe; Lim, Chwee Teck; Yeomans, Julia M.; Ladoux, Benoit

    2017-04-01

    Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting

  1. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  2. Structural Design of Oligopeptides for Intestinal Transport Model.

    Science.gov (United States)

    Hong, Seong-Min; Tanaka, Mitsuru; Koyanagi, Riho; Shen, Weilin; Matsui, Toshiro

    2016-03-16

    Glycyl-sarcosine (Gly-Sar) is a well-known model substrate for the intestinal uptake of dipeptides through peptide transporter 1 (PepT1). However, there are no other model peptides larger than tripeptides to evaluate their intestinal transport ability. In this study, we designed new oligopeptides based on the Gly-Sar structure in terms of protease resistance. Gly-Sar-Sar was found to be an appropriate transport model for tripeptides because it does not degrade during the transport across the rat intestinal membrane, while Gly-Gly-Sar was degraded to Gly-Sar during the 60 min transport. Caco-2 cell transport experiments revealed that the designed oligopeptides based on Gly-Sar-Sar showed a significantly (p transport ability by factors of 1/10-, 1/25-, and 1/40-fold for Gly-Sar-Sar, Gly-Sar-Sar-Sar, and Gly-Sar-Sar-Sar-Sar, respectively, compared to Gly-Sar (apparent permeability coefficient: 38.6 ± 11.4 cm/s). Cell experiments also showed that the designed tripeptide and Gly-Sar were transported across Caco-2 cell via PepT1, whereas the tetra- and pentapeptides were transported through the paracellular tight-junction pathway.

  3. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor.

    Science.gov (United States)

    Xu, Ling-fen; Teng, Xu; Guo, Jing; Sun, Mei

    2012-02-01

    Intestinal barrier dysfunction plays an important role in the pathogenesis of inflammatory bowel disease (IBD). To evaluate the effect of intestinal trefoil factor (ITF) on increased intestinal permeability and its association with tight junction proteins, an in vitro intestinal epithelia barrier model was established with Caco-2 cells and treated with platelet-activating factor (PAF). We found that exposing cells to 0.3 M ITF (30 min before or 30 min after PAF treatment) attenuated the PAF-induced changes in transepithelial electrical resistance and Lucifer yellow flux. A quantitative RT-PCR and western blot analysis revealed that ITF suppressed PAF-induced downregulation of tight junction proteins claudin-1 and ZO-1 expression; furthermore, an abnormal localization and distribution of these proteins was inhibited, as assessed by immunofluorescence staining. These results suggest that ITF decreases mucosal permeability and shows potential as a therapy for treating IBD.

  4. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    Science.gov (United States)

    2016-08-01

    intestinal lumen Cell Migration Radiation damages proliferating crypt cells, causing mitotic arrest and delaying regeneration Burns can...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...the small intestine , reducing the density of the gut barrier. A reduced epithelial lining can result in suppressed nutrient absorption, bacterial

  5. Bacterial translocation and intestinal injury in experimental necrotizing enterocolitis model.

    Science.gov (United States)

    Ciftci, I; Ozdemir, M; Aktan, M; Aslan, K

    2012-01-01

    To study the occurrence of bacterial translocation and to assess the impact of breastfeeding on bacterial translocation in the animal model of necrotizing enterocolitis. A total of 20 neonate Sprague-Dawley rats were enrolled in the study. Rats were randomly allocated into either control or study group just after birth. Ten newborn rats in the control group were left with their mother to be breast-fed. In contrary, necrotizing enterocolitis group consisted of neonates that were separated from their mothers, housed in an incubator and were gavaged with a special rodent formula three times daily. Survival rates, weight changes, and morphologic scoring obtained after microscopic evaluation were determined as microbiologic evaluation criteria. All the rats in the control group survived, while 1 (10 %) rat died in the necrotizing enterocolitis group. Mortality rates of the two groups were similar. All the formula-fed animals in the necrotizing enterocolitis group had significant weight loss compared to the breast milk-fed rats in the control group (pmicrorganisms in the bowel pass through the intestinal barrier and reach the liver and the spleen via the hematogenous route. This condition is closely related to the impairment of physiological and functional features of the intestinal barrier and is independent from the degree of intestinal injury. Bacterial translocation should be remembered in cases suspected of necrotizing enterocolitis, and a rapid and effective treatment algorithm should be applied in such circumstances (Tab. 3, Fig. 3, Ref. 21). Full Text in PDF www.elis.sk.

  6. Computational approaches for modeling human intestinal absorption and permeability.

    Science.gov (United States)

    Subramanian, Govindan; Kitchen, Douglas B

    2006-07-01

    Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate.

  7. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor.

    Science.gov (United States)

    Kadono, Keitaro; Akabane, Takafumi; Tabata, Kenji; Gato, Katsuhiko; Terashita, Shigeyuki; Teramura, Toshio

    2010-07-01

    This study aimed to establish a practical and convenient method of predicting intestinal availability (F(g)) in humans for highly permeable compounds at the drug discovery stage, with a focus on CYP3A4-mediated metabolism. We constructed a "simplified F(g) model," described using only metabolic parameters, assuming that passive diffusion is dominant when permeability is high and that the effect of transporters in epithelial cells is negligible. Five substrates for CYP3A4 (alprazolam, amlodipine, clonazepam, midazolam, and nifedipine) and four for both CYP3A4 and P-glycoprotein (P-gp) (nicardipine, quinidine, tacrolimus, and verapamil) were used as model compounds. Observed fraction of drug absorbed (F(a)F(g)) values for these compounds were calculated from in vivo pharmacokinetic (PK) parameters, whereas in vitro intestinal intrinsic clearance (CL(int,intestine)) was determined using human intestinal microsomes. The CL(int,intestine) for the model compounds corrected with that of midazolam was defined as CL(m,index) and incorporated into a simplified F(g) model with empirical scaling factor. Regardless of whether the compound was a P-gp substrate, the F(a)F(g) could be reasonably fitted by the simplified F(g) model, and the value of the empirical scaling factor was well estimated. These results suggest that the effects of P-gp on F(a) and F(g) are substantially minor, at least in the case of highly permeable compounds. Furthermore, liver intrinsic clearance (CL(int,liver)) can be used as a surrogate index of intestinal metabolism based on the relationship between CL(int,liver) and CL(m,index). F(g) can be easily predicted using a simplified F(g) model with the empirical scaling factor, enabling more confident selection of drug candidates with desirable PK profiles in humans.

  8. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  9. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming.

    Science.gov (United States)

    Colins, Andrea; Gerdtzen, Ziomara P; Nuñez, Marco T; Salgado, J Cristian

    2017-01-01

    Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex

  10. Precision-cut intestinal slices as an in vitro model to predict NSAID induced intestinal toxicity

    NARCIS (Netherlands)

    Niu, Xiaoyu; van der Bijl, Henk; Groothuis, Geny; de Graaf, Inge

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are associated with high prevalence of gastro-intestinal side-effects. In vivo studies suggest that uncoupling of oxidative phosphorylation is an important cause of the toxicity and that the toxicity is aggravated by enterohepatic circulation.

  11. Digestion of starch in a dynamic small intestinal model.

    Science.gov (United States)

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  12. Local and Remote Postconditioning Decrease Intestinal Injury in a Rabbit Ischemia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Mu Yang

    2016-01-01

    Full Text Available Intestinal ischemia/reperfusion (I/R injury is a significant problem that is associated with high morbidity and mortality in critical settings. This injury may be ameliorated using postconditioning protocol. In our study, we created a rabbit intestinal I/R injury model to analyze the effects of local ischemia postconditioning (LIPo and remote ischemia postconditioning (RIPo on intestinal I/R injury. We concluded that LIPo affords protection in intestinal I/R injury in a comparable fashion with RIPo by decreasing oxidative stress, neutrophil activation, and apoptosis.

  13. Pathology of Rodent Models of Intestinal Cancer: Progress Report and Recommendations

    Science.gov (United States)

    Washington, Mary Kay; Powell, Anne E.; Sullivan, Ruth; Sundberg, John; Wright, Nicholas; Coffey, Robert J.; Dove, William F.

    2013-01-01

    In October 2010, a pathology review of rodent models of intestinal neoplasia was held at The Jackson Laboratory. This review complemented 2 other concurrent events: a workshop on methods of modeling colon cancer in rodents and a conference on current issues in murine and human colon cancer. We summarize the results of the pathology review and the committee’s recommendations for tumor nomenclature. A virtual high-resolution image slide box of these models has been developed. This report discusses significant recent developments in rodent modeling of intestinal neoplasia, including the role of stem cells in cancer and the creation of models of metastatic intestinal cancer. PMID:23415801

  14. Fluid transport phenomena in ocular epithelia.

    Science.gov (United States)

    Candia, Oscar A; Alvarez, Lawrence J

    2008-03-01

    This article discusses three largely unrecognized aspects related to fluid movement in ocular tissues; namely, (a) the dynamic changes in water permeability observed in corneal and conjunctival epithelia under anisotonic conditions, (b) the indications that the fluid transport rate exhibited by the ciliary epithelium is insufficient to explain aqueous humor production, and (c) the evidence for fluid movement into and out of the lens during accommodation. We have studied each of these subjects in recent years and present an evaluation of our data within the context of the results of others who have also worked on electrolyte and fluid transport in ocular tissues. We propose that (1) the corneal and conjunctival epithelia, with apical aspects naturally exposed to variable tonicities, are capable of regulating their water permeabilities as part of the cell-volume regulatory process, (2) fluid may directly enter the anterior chamber of the eye across the anterior surface of the iris, thereby representing an additional entry pathway for aqueous humor production, and (3) changes in lens volume occur during accommodation, and such changes are best explained by a net influx and efflux of fluid.

  15. Human organoids: a model system for intestinal diseases

    OpenAIRE

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the diseased intestine to take up certain food. A cell layer, the epithelium, covers the intestine, and harbors the main functions of the intestine: uptake, digestion of food, and a barrier against unwanted...

  16. Prenatal Intestinal Obstruction Affects the Myenteric Plexus and Causes Functional Bowel Impairment in Fetal Rat Experimental Model of Intestinal Atresia

    Science.gov (United States)

    Khen-Dunlop, Naziha; Sarnacki, Sabine; Victor, Anais; Grosos, Celine; Menard, Sandrine; Soret, Rodolphe; Goudin, Nicolas; Pousset, Maud; Sauvat, Frederique; Revillon, Yann; Cerf-Bensussan, Nadine; Neunlist, Michel

    2013-01-01

    Background Intestinal atresia is a rare congenital disorder with an incidence of 3/10 000 birth. About one-third of patients have severe intestinal dysfunction after surgical repair. We examined whether prenatal gastrointestinal obstruction might effect on the myenteric plexus and account for subsequent functional disorders. Methodology/Principal Findings We studied a rat model of surgically induced antenatal atresia, comparing intestinal samples from both sides of the obstruction and with healthy rat pups controls. Whole-mount preparations of the myenteric plexus were stained for choline acetyltransferase (ChAT) and nitric oxide synthase (nNOS). Quantitative reverse transcription PCR was used to analyze mRNAs for inflammatory markers. Functional motility and permeability analyses were performed in vitro. Phenotypic studies were also performed in 8 newborns with intestinal atresia. In the experimental model, the proportion of nNOS-immunoreactive neurons was similar in proximal and distal segments (6.7±4.6% vs 5.6±4.2%, p = 0.25), but proximal segments contained a higher proportion of ChAT-immunoreactive neurons (13.2±6.2% vs 7.5±4.3%, p = 0.005). Phenotypic changes were associated with a 100-fold lower concentration-dependent contractile response to carbachol and a 1.6-fold higher EFS-induced contractile response in proximal compared to distal segments. Transcellular (p = 0.002) but not paracellular permeability was increased. Comparison with controls showed that modifications involved not only proximal but also distal segments. Phenotypic studies in human atresia confirmed the changes in ChAT expression. Conclusion Experimental atresia in fetal rat induces differential myenteric plexus phenotypical as well as functional changes (motility and permeability) between the two sides of the obstruction. Delineating these changes might help to identify markers predictive of motility dysfunction and to define guidelines for post-surgical care. PMID:23667464

  17. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    OpenAIRE

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclo...

  18. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Minmin Li

    2015-01-01

    Full Text Available The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2 and cyclooxygenase- (COX- 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models.

  19. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models.

    Science.gov (United States)

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models.

  20. Genetic Factors in Animal Models of Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    R Balfour Sartor

    1995-01-01

    Full Text Available The critical importance of host genetic susceptibility in determining chronicity, aggressiveness and complications of intestinal inflammation is clearly demonstrated by studies of inbred rodents, transgenic rats and spontaneous mutants. Inbred Lewis rats challenged by purified bacterial cell wall polymers, indomethacin or small bowel bacterial overgrowth develop chronic granulomatous intestinal inflammation with fibrosis and extraintestinal manifestations, whereas Fischer (major histocompatibility complex identical to Lewis and Buffalo rats identically stimulated demonstrate only self-limited enterocolitis with no chronic inflammation, fibrosis, granulomas or extraintestinal inflammation. Similar differential patterns of intestinal inflammation are apparent in inbred mouse strains challenged with trinitrobenzene-sulphonic acid, Citrobacter freundii or backcrossed with T cell receptor deficient (knockout mice. The dominant role of genetic background in induction of intestinal inflammation is further documented by spontaneous colitis which develops in spontaneously mutant mice, cotton-top tamarins, human leukocyte antigen-B27/ β2 microglobulin transgenic rats and mice with targeted deletions of certain immunoregulatory cytokine and T lymphocyte genes. Identification of the immunological mechanisms of host genetic susceptibility and the genetic basis of spontaneous colitis should provide new insights into the pathogenesis of human inflammatory bowel disease.

  1. In Silico Modelling of the Human Intestinal Microflora

    NARCIS (Netherlands)

    Kamerman, Derk Jan; Wilkinson, Michael H.F.

    2002-01-01

    The ecology of the human intestinal microflora and its interaction with the host are poorly understood. Though more and more data are being acquired, in part using modern molecular methods, development of a quantitative theory has not kept pace with this development. This is in part due to the

  2. Effects of synbiotics on intestinal mucosal barrier in rat model

    Directory of Open Access Journals (Sweden)

    Zhigang Xue

    2017-06-01

    Conclusions: Probiotics can improve the concentration of colonic probiotics, while synbiotics can improve probiotics concentration and mucosa thickness in colon, decrease L/M ratio and bacterial translocation. Synbiotics shows more protective effects on intestinal mucosal barrier in rats after cecectomy and gastrostomy and the intervention of specific antibiotics.

  3. A genetically inducible porcine model of intestinal cancer

    DEFF Research Database (Denmark)

    Callesen, Morten M.; Árnadóttir, Sigrid S.; Lyskjær, Iben

    2017-01-01

    of intestinal cancer. Transgenic (TG) minipigs were generated using somatic cell nuclear transfer by handmade cloning. The pigs encode two TG cassettes: (a) an Flp recombinase-inducible oncogene cassette containing KRAS-G12D, cMYC, SV40LT - which inhibits p53 - and pRB and (b) a 4-hydroxytamoxifen (4-OHT...

  4. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition

    DEFF Research Database (Denmark)

    Xiao, Weidong; Feng, Yongjia; Holst, Jens Juul

    2014-01-01

    Small intestine luminal nutrient sensing may be crucial for modulating physiological functions. However, its mechanism of action is incompletely understood. We used a model of enteral nutrient deprivation, or total parenteral nutrition (TPN), resulting in intestinal mucosal atrophy and decreased...... was regulated by T1R3 and mGluR5, suggesting a novel negative regulator pathway for IEC proliferation not previously described. Loss of luminal nutrients with TPN administration may widely affect intestinal taste sensing. GLM has previously unrecognized actions on IEC growth and EBF. Restoring luminal sensing...

  5. All-trans-retinoic acid attenuates intestinal injury in a neonatal rat model of necrotizing enterocolitis.

    Science.gov (United States)

    Ozdemir, Ramazan; Yurttutan, Sadık; Sari, Fatma Nur; Oncel, Mehmet Yekta; Erdeve, Omer; Unverdi, Hatice Germen; Uysal, Bülent; Dilmen, Ugur

    2013-01-01

    Ischemia/reperfusion-induced intestinal injury is mediated by reactive oxygen species and inflammatory mediators. This study was designed to evaluate whether all-trans-retinoic acid (ATRA) administration can attenuate intestinal injury and to analyze the antioxidant and anti-inflammatory effects of ATRA in a neonatal rat model of necrotizing enterocolitis (NEC). Twenty-nine Wistar albino rat pups were randomly divided into 3 groups: group 1 = control, group 2 = NEC and saline, and group 3 = NEC and ATRA treatment. NEC was induced by hyperosmolar enteral formula feeding and exposure to hypoxia after cold stress at +4°C and oxygen. Pups in group 3 were injected intraperitoneally with ATRA (0.5 mg/kg body weight) once a day prior to each NEC procedure, beginning on postnatal day 1 and daily through postnatal day 4. The pups were killed on the 4th day and their intestinal tissues were harvested for biochemical and histopathological analysis. Mucosal injury scores and intestinal malondialdehyde levels in group 2 were found to be significantly higher than other groups (p Intestinal superoxide dismutase and glutathione peroxidase activities in group 3 were significantly higher than group 2 (p = 0.04 and p = 0.04, respectively). Intestinal tissue tumor necrosis factor-α levels were significantly reduced with ATRA treatment in group 3 compared to group 2 (p intestinal injury through its anti-inflammatory and antioxidant properties. Copyright © 2013 S. Karger AG, Basel.

  6. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  7. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.

    Science.gov (United States)

    Fasano, A; Not, T; Wang, W; Uzzau, S; Berti, I; Tommasini, A; Goldblum, S E

    2000-04-29

    We identified zonulin, a novel human protein analogue to the Vibrio cholerae derived Zonula occludens toxin, which induces tight junction disassembly and a subsequent increase in intestinal permeability in non-human primate intestinal epithelia. Zonulin expression was raised in intestinal tissues during the acute phase of coeliac disease, a clinical condition in which tight junctions are opened and permeability is increased.

  8. Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models

    Directory of Open Access Journals (Sweden)

    Nikolce Gjorevski

    2017-01-01

    Full Text Available Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.

  9. Combination of dehydroepiandrosterone and orthovanadate administration reduces intestinal leukocyte recruitment in models of experimental sepsis.

    Science.gov (United States)

    Al-Banna, Nadia; Pavlovic, Dragan; Sharawi, Nivin; Bac, Vo Hoai; Jaskulski, Mathis; Balzer, Claudius; Weber, Stefan; Nedeljkov, Vladimir; Lehmann, Christian

    2014-09-01

    Dehydroepiandrosterone (DHEA) was shown to improve the immune function and survival in experimental sepsis. This study examined the effect of DHEA on intestinal leukocyte recruitment during experimental sepsis, considering factors of gender (male, female and ovariectomized female animals) and combined treatment using orthovanadate (OV) in two models of sepsis. Male rats underwent colon ascendens stent peritonitis (CASP) or endotoxemia. DHEA was administered after induction of experimental sepsis. Changes in leukocyte adherence and capillary perfusion (measured as intestinal functional capillary density - FCD) were assessed using intravital microscopy. While DHEA increased baseline leukocyte adherence in control animals, DHEA reduced leukocyte adherence and increased FCD in male animals with CASP. These effects were also observed in DHEA-treated ovariectomized female rats with CASP. Similarly, the administration of DHEA reduced the number of adherent leukocytes to intestinal venules by 30% in the endotoxemia model. The combined treatment of DHEA and OV significantly reduced adherence of leukocytes to intestinal venules and improved FCD. Our results indicate that DHEA is able to reduce intestinal leukocyte recruitment induced by experimental sepsis. Combination of DHEA with OV inhibits leukocyte adherence to intestinal endothelium, similar to what is achieved by the single administration of DHEA but with significantly improved FCD. These findings suggest a potential role for DHEA and OV in clinical sepsis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Naturally occurring glycoalkaloids in potatoes aggravate intestinal inflammation in two mouse models of inflammatory bowel disease.

    Science.gov (United States)

    Iablokov, Vadim; Sydora, Beate C; Foshaug, Rae; Meddings, Jon; Driedger, Darcy; Churchill, Tom; Fedorak, Richard N

    2010-11-01

    Inflammatory bowel disease (IBD) may be initiated following disruption of the intestinal epithelial barrier. This disruption, in turn, permits luminal antigens unfettered access to the mucosal immune system and leads to an uncontrolled inflammatory response. Glycoalkaloids, which are found in potatoes, disrupt cholesterol-containing membranes such as those of the intestinal epithelium. Glycoalkaloid ingestion through potatoes may play a role in the initiation and/or perpetuation of IBD. To determine if commercial and high glycoalkaloids containing fried potato skins aggravate intestinal inflammation using two different animal models of IBD. Fried potato skins from commercial potatoes containing low/medium glycoalkaloid levels and high glycoalkaloids potatoes were fed for 20 days to interleukin 10 gene-deficient mice and dextran sodium sulfate-induced colitic mice. Intestinal permeability, mucosal cytokine and myeloperoxidase levels and body weight were determined to assess intestinal injury. Deep frying potato skins markedly increased glycoalkaloid content. Interleukin 10 gene-deficient mice fed fried commercial potato skins with medium glycoalkaloid content exhibited significantly elevated levels of ileal IFN-γ relative to controls. Mice in the dextran sodium sulfate colitis model that were fed the same strain of potatoes demonstrated significantly elevated levels of pro-inflammatory cytokines IFN-γ, TNF-α, and IL-17 in the colon in addition to an enhanced colonic permeability. Inflammatory response was intensified when the mice were fed potatoes with higher glycoalkaloid contents. Our results demonstrate that consumption of potato skins containing glycoalkaloids can significantly aggravate intestinal inflammation in predisposed individuals.

  11. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  12. Correlating cell behavior with tissue topology in embryonic epithelia.

    Directory of Open Access Journals (Sweden)

    Sebastian A Sandersius

    2011-04-01

    Full Text Available Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.

  13. The human intestinal microbiome: a new frontier of human biology.

    Science.gov (United States)

    Hattori, Masahira; Taylor, Todd D

    2009-02-01

    To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health.

  14. Small intestinal mucosa expression of putative chaperone fls485

    Directory of Open Access Journals (Sweden)

    Raupach Kerstin

    2010-03-01

    Full Text Available Abstract Background Maturation of enterocytes along the small intestinal crypt-villus axis is associated with significant changes in gene expression profiles. fls485 coding a putative chaperone protein has been recently suggested as a gene involved in this process. The aim of the present study was to analyze fls485 expression in human small intestinal mucosa. Methods fls485 expression in purified normal or intestinal mucosa affected with celiac disease was investigated with a molecular approach including qRT-PCR, Western blotting, and expression strategies. Molecular data were corroborated with several in situ techniques and usage of newly synthesized mouse monoclonal antibodies. Results fls485 mRNA expression was preferentially found in enterocytes and chromaffine cells of human intestinal mucosa as well as in several cell lines including Rko, Lovo, and CaCo2 cells. Western blot analysis with our new anti-fls485 antibodies revealed at least two fls485 proteins. In a functional CaCo2 model, an increase in fls485 expression was paralleled by cellular maturation stage. Immunohistochemistry demonstrated fls485 as a cytosolic protein with a slightly increasing expression gradient along the crypt-villus axis which was impaired in celiac disease Marsh IIIa-c. Conclusions Expression and synthesis of fls485 are found in surface lining epithelia of normal human intestinal mucosa and deriving epithelial cell lines. An interdependence of enterocyte differentiation along the crypt-villus axis and fls485 chaperone activity might be possible.

  15. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research

    Science.gov (United States)

    Gonzalez, Liara M.; Moeser, Adam J.

    2014-01-01

    Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury. PMID:25414098

  16. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    Energy Technology Data Exchange (ETDEWEB)

    Valuckaite, V.; Zaborina, O.; Long, J.; Hauer-Jensen, M.; Wang, J.; Holbrook, C.; Zaborin, A.; Drabik, K.; Katdare, M.; Mauceri, H.; Weichselbaum, R.; Firestone, M. A.; Lee, K. Y.; Chang, E. B.; Matthews, J.; Alverdy, J. C.; Materials Science Division; Univ. of Chicago; Univ. of Arkansas

    2009-12-01

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgically placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.

  17. Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat-Biophysical Model and Predictions Based on Caco-2.

    Science.gov (United States)

    Lozoya-Agullo, Isabel; Gonzalez-Alvarez, Isabel; Zur, Moran; Fine-Shamir, Noa; Cohen, Yael; Markovic, Milica; Garrigues, Teresa M; Dahan, Arik; Gonzalez-Alvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Avdeef, Alex

    2017-12-29

    The effective rat intestinal permeability (P eff ) was deconvolved using a biophysical model based on parameterized paracellular, aqueous boundary layer, transcellular permeabilities, and the villus-fold surface area expansion factor. Four types of rat intestinal perfusion data were considered: single-pass intestinal perfusion (SPIP) in the jejunum (n = 40), and colon (n = 15), closed-loop (Doluisio type) in the small intestine (n = 78), and colon (n = 74). Moreover, in vitro Caco-2 permeability values were used to predict rat in vivo values in the rat data studied. Comparable number of molecules permeate via paracellular water channels as by the lipoidal transcellular route in the SPIP method, although in the closed-loop method, the paracellular route appears dominant in the colon. The aqueous boundary layer thickness in the small intestine is comparable to that found in unstirred in vitro monolayer assays; it is thinner in the colon. The mucosal surface area in anaesthetized rats is 0.96-1.4 times the smooth cylinder calculated value in the colon, and it is 3.1-3.6 times in the small intestine. The paracellular permeability of the intestine appeared to be greater in rat than human, with the colon showing more leakiness (higher P para ) than the small intestine. Based on log intrinsic permeability values, the correlations between the in vitro and in vivo models ranged from r 2 0.82 to 0.92. The SPIP-Doluisio method comparison indicated identical log permeability selectivity trend with negligible bias.

  18. Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Hao

    2015-08-01

    Full Text Available Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC in a human bronchial epithelial cell line (16HBE14o-, and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172, but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS, Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.

  19. Oregano Essential Oil Improves Intestinal Morphology and Expression of Tight Junction Proteins Associated with Modulation of Selected Intestinal Bacteria and Immune Status in a Pig Model

    Directory of Open Access Journals (Sweden)

    Yi Zou

    2016-01-01

    Full Text Available Oregano essential oil (OEO has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P<0.05 endotoxin level in serum and increased (P<0.05 villus height and expression of occludin and zonula occludens-1 (ZO-1 in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P<0.05 population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P<0.05 of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK, protein kinase B (Akt, and nuclear factor κB (NF-κB signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs.

  20. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  1. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yuxia Xiong

    2018-02-01

    Full Text Available Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP. Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg or normal saline (control immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET, interleukin 1β (IL-1β, tumor necrosis factor α (TNF-α, nitric oxide (NO, myeloperoxidase (MPO, capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3, apoptosis-associated speck-like protein containing a CARD domain (ASC, casepase-1, secretary immunoglobulin A (SIgA, regulatory T cells (Tregs, and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while

  2. Transcriptional modulation of intestinal innate defense/inflammation genes by preterm infant microbiota in a humanized gnotobiotic mouse model.

    Science.gov (United States)

    Lu, Lei; Yu, Yueyue; Guo, Yuee; Wang, Yunwei; Chang, Eugene B; Claud, Erika C

    2015-01-01

    It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development. Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium. Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes.

  3. The small intestine and irritable bowel syndrome (IBS): a batch process model.

    Science.gov (United States)

    Dobson, Brian C

    2008-11-01

    Faults in a batch process model of the small intestine create the symptoms of all types of irritable bowel syndrome. The model has three sequential processing sections corresponding to the natural divisions of the intestine. It is governed by a brain controller that is divided into four sub-controllers, each with a unique neurotransmitter. Each section has a sub-controller to manage transport. Sensors in the walls of the intestine provide input and output goes to the muscles lining the walls of the intestine. The output controls the speed of the food soup, moves it in both directions, mixes it, controls absorption, and transfers it to the next section at the correct speed (slow). The fourth sub-controller manages the addition of chemicals. It obtains input from the first section of the process via the signalling hormone Cholecystokinin and sends output to the muscles that empty the gall bladder and pancreas. The correct amounts of bile salts and enzymes are then added to the first section. The sub-controllers produce output only when input is received. When output is missing the enteric nervous system applies a default condition. This default condition normally happens when no food is in the intestine. If food is in the intestine and a transport sub-controller fails to provide output then the default condition moves the food soup to the end of that section. The movement is in one direction only (forward), at a speed dependent on the amount and type of fibre present. Cereal, bean and vegetable fibre causes high speeds. This default high speed transport causes irritable bowel syndrome. A barrier is created when a section moving fast at the default speed, precedes a section controlled by a transport sub-controller. Then the sub-controller constricts the intestine to stop the fast flow. The barrier causes constipation, cramping, and bloating. Diarrhoea results when the section terminating the process moves at the fast default speed. Two problems can occur to prevent

  4. Glucose transport by epithelia prepared from harvested enterocytes

    DEFF Research Database (Denmark)

    Kimura, Yasuhiro; van der Merwe, Marie; Bering, Stine Brandt

    2015-01-01

    of epithelial function and was demonstrated by cellular accumulation of tracer (14)C D-glucose and Ussing chamber based short-circuit currents. Assessment of the epithelia by light and immunofluorescent microscopy revealed the harvested enterocytes remain differentiated and establish cell-cell connections...... transporter SGLT-1. Similarly, accumulation of (14)C D-glucose by the epithelia was inhibited by phloridzin, but not phloretin, and was stimulated by pre-exposure to AMP and adenosine, apparently by a microtubule-based mechanism that is disrupted by nocodazole, with the magnitudes of responses to adenosine......, forskolin, and health status exceeding those we have measured using intact tissues. Our findings indicate that epithelia prepared from harvested enterocytes provide an alternative approach for comparative studies of the characteristics of nutrient transport by the upper villus epithelium and the responses...

  5. Determination of Autophagy in the Caco-2 Spontaneously Differentiating Model of Intestinal Epithelial Cells.

    Science.gov (United States)

    Tunçer, Sinem; Banerjee, Sreeparna

    2017-08-27

    The Caco-2 colorectal cancer cell line is widely used as a model for intestinal differentiation and barrier function. These cells, upon reaching confluency, spontaneously differentiate into enterocyte-like cells, synthesize intestinal enzymes, and form domes. Caco-2 cells also undergo autophagy in the course of differentiation. The criteria to establish the induction of autophagy in cells are already well established. Here, we describe the protocol for the spontaneous differentiation of Caco-2 cells and the detection of autophagy using Western blot, flow cytometry, and immunofluorescence.

  6. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    Existing in vitro models of the human intestine such as the established epithelial cell line, Caco-2, cultured on porous membranes have been extensively used for assessing and predicting permeability and absorption of oral drugs in the pharmaceutical industries. However, such in vitro human intes...

  7. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Science.gov (United States)

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia.

    Science.gov (United States)

    Glover, Chris N; Niyogi, Som; Blewett, Tamzin A; Wood, Chris M

    2016-09-01

    In most animals, the acquisition of the essential trace metal iron (Fe) is achieved by the gut, but in hagfishes, the skin is a nutrient absorbing epithelium, and thus may also play a role in Fe uptake. In the current study, the absorption of Fe, as Fe(II), across the intestinal and cutaneous epithelia of Pacific hagfish (Eptatretus cirrhatus) was investigated. Both epithelia absorbed Fe, with saturation at lower tested concentrations, superseded by a diffusive component at higher Fe exposure concentrations. Affinity constants (Km) of 9.4 and 137μM, and maximal Fe transport rates (Jmax) of 0.81 and 0.57nmolcm(-2)h(-1) were determined for the skin and the gut, respectively. This characterises the skin as a relatively high-affinity Fe transport epithelium. The majority of the absorbed Fe in the skin remained in the tissue, whereas in the gut, most absorbed Fe was found in the serosal fluid, suggesting distinct mechanisms of Fe handling between the two epithelia. To determine if reduced dissolved oxygen altered Fe transport, hagfish were subjected to hypoxia for 24h, before Fe transport was again assessed. Hypoxia had no effect on Fe transport across gut or skin, likely owing to the relative lack of change in haematological variables, and thus an unaltered Fe demand under such conditions. These data are the first to kinetically characterise the absorption of a nutritive trace metal across the epithelia of hagfish and add to the growing understanding of the role of the skin in nutritive transport in this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model.

    Directory of Open Access Journals (Sweden)

    Marianne Sødring

    Full Text Available Red and processed meats are considered risk factors for colorectal cancer (CRC; however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat, and hemin in combination with nitrite (a model of processed meat on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.

  10. Intestine-Specific Mttp Deletion Decreases Mortality and Prevents Sepsis-Induced Intestinal Injury in a Murine Model of Pseudomonas aeruginosa Pneumonia

    Science.gov (United States)

    Dominguez, Jessica A.; Xie, Yan; Dunne, W. Michael; Yoseph, Benyam P.; Burd, Eileen M.; Coopersmith, Craig M.; Davidson, Nicholas O.

    2012-01-01

    Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by

  11. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia.

    Directory of Open Access Journals (Sweden)

    Jessica A Dominguez

    Full Text Available The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO, which exhibit a block in chylomicron assembly together with lipid malabsorption.Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0% dying compared to 5/17 (29% control mice (p<0.05. This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice.These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and

  12. Emergence and Dynamics of Polar Order in Developing Epithelia

    Science.gov (United States)

    Farhadifar, Reza

    2011-03-01

    Planar Cell Polarity (PCP) is a conserved process in many vertebrate and invertebrate tissues, and is fundamental for the coordination of cell behavior and patterning. A well-studied example is the orientational pattern of hairs in the wing of the adult fruit fly Drosophila, which is an important model organism in biology. The Drosophila wing is an epithelium, i.e., a two-dimensional sheet of cells, which grows from a few cells to thousands of cells during the course of development. In the wing epithelium, planar polarity is established by an anisotropic distribution of PCP proteins within cells. The distribution of these proteins in a given cell affects the polarity of neighboring cells, such that at the end of wing development a large-scale PCP orientational order emerges. Here we present a theoretical study of planar polarity in developing epithelia based on a vertex model, which takes into account cell mechanics, cell adhesion, and cell division, combined with experimental results obtained from time-lapse imaging of the wing development. We show that in experiment, polarity order does not develop de novo at the end of wing development, but rather cells are initially polarized at an angle with respect to their final polarity axis. During wing development, the polarity axes of cells reorient towards their final direction. We identify a basic mechanism to generate such a large-scale initial polarization, based on the growth of a small number of cells with an initially random PCP distribution. Finally, we study the effect of shear and oriented cell division on dynamics of PCP order, showing that these two processes can robustly reorient the polarity axes of cells.

  13. Epicatechin Used in the Treatment of Intestinal Inflammatory Disease: An Analysis by Experimental Models

    Directory of Open Access Journals (Sweden)

    Paulo César de Paula Vasconcelos

    2012-01-01

    Full Text Available Background. This study was pathway of (−-epicatechin (EC in the prevention and treatment of intestine inflammation in acute and chronic rat models. Methods. Intestine inflammation was induced in rats using TNBS. The morphological, inflammatory, immunohistochemical, and immunoblotting characteristics of colon samples were examined. The effects of EC were evaluated in an acute model at doses of 5, 10, 25, and 50 mg/kg by gavage for 5 days. The chronic colitis model was induced 1st day, and treated for 21 days. For the colitis relapse model, the induction was repeated on 14th. Results. EC10 and EC50 effectively reduced the lesion size, as assessed macroscopically; and confirmed by microscopy for EC10. The glutathione levels were higher in EC10 group but decreased COX-2 expression and increased cell proliferation (PC were observed, indicating an anti-inflammatory activity and a proliferation-stimulating effect. In the chronic colitis model, EC10 showed lower macroscopic and microscopic lesion scores and increase in glutathione levels. As in the acute model, a decrease in COX-2 expression and an increase in PC in EC10, the chronic model this increase maybe by the pathway EGF expression. Conclusion. These results confirm the activity of EC as an antioxidant that reduces of the lesion and that has the potential to stimulate tissue healing, indicating useful for preventing and treating intestine inflammation.

  14. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Science.gov (United States)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  15. Chemical form of selenium affects its uptake and transport in the human intestinal cell model, Caco-2

    Science.gov (United States)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources of...

  16. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  17. Mucin glycoarray in gastric and gallbladder epithelia

    Directory of Open Access Journals (Sweden)

    Ganesh Iniya

    2007-06-01

    Full Text Available Abstract Background Mucins are critical cytoprotective glycoproteins and alterations of epithelial gastric mucins have been described in different pathological conditions. The purpose of the present study was to evaluate the putative usefulness of mucins in understanding the progression of gastric cancer and gallstone formation in a better perspective. Methods Formalin-fixed paraffin-embedded gastric biopsy specimens and surgically resected gallbladder tissue samples were sectioned. Alcian Blue (AB staining was performed to identify sialomucins (staining blue at pH 2.5 and sulfomucins (staining brown at pH 1.0 and then Periodic acid-Schiff's (PAS staining to visualize the neutral mucins (staining magenta. Results In normal gastric and gallbladder mucosae, we found that neutral mucins were predominant, whereas in intestinal metaplasia, gastric carcinoma and stone-containing gallbladder, a significant increase of acidic mucins was found. Conclusion We suggest that the sulfomucins have a greater role in gallstone formation than the neutral mucins and also that the sialomucins and sulfomucins play an important role in cancer progression and metastasis. Our results challenge the glycobiologists to delve deeper in elucidating the role of mucins in gastric malignancy and in gallstone formation.

  18. Intestinal epithelial apoptosis initiates gross bowel necrosis in an experimental rat model of neonatal necrotizing enterocolitis.

    Science.gov (United States)

    Jilling, Tamas; Lu, Jing; Jackson, Michele; Caplan, Michael S

    2004-04-01

    The histopathology of necrotizing enterocolitis (NEC) is characterized by destruction of the mucosal layer in initial stages and by transmural necrosis of the intestinal wall in advanced stages of the disease. To test the hypothesis that enhanced epithelial apoptosis is an initial event underlying the gross histologic changes, we analyzed epithelial apoptosis and tissue morphology in an animal model of NEC and evaluated the effect of caspase inhibition on the incidence of experimental NEC in this model. Apoptosis was analyzed with terminal deoxynucleotidyltransferase-mediated dUTP-FITC nick end labeling (TUNEL) staining in intestinal sections and by measuring caspase 3 activity from intestinal lysates of neonatal rats subjected to formula feeding and cold/asphyxia stress (FFCAS) and from mother-fed (MF) controls. Morphologic evaluation was based on hematoxylin and eosin staining of intestinal sections. FFCAS resulted in histologic changes consistent with NEC, which were absent from MF animals. FFCAS was also associated with a significantly increased rate of nuclear DNA fragmentation in the small intestinal epithelium compared with MF. Elevated tissue caspase 3 activity confirmed the presence of apoptosis in samples with increased DNA fragmentation. Analysis of the coincidence of morphologic damage and apoptosis in corresponding tissue sections indicated that apoptosis precedes gross morphologic changes in this model. Furthermore, supplementation of formula with 8 boc-aspartyl(OMe)-fluoromethylketone, a pan-caspase inhibitor, significantly reduced the incidences of apoptosis and experimental NEC. These findings indicate that in neonatal rats FFCAS induces epithelial apoptosis that serves as an underlying cause for subsequent gross tissue necrosis.

  19. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  20. Molecular handling of cadmium in transporting epithelia

    International Nuclear Information System (INIS)

    Zalups, Rudolfs K.; Ahmad, Sarfaraz

    2003-01-01

    Cadmium (Cd) is an industrial and environmental pollutant that affects adversely a number of organs in humans and other mammals, including the kidneys, liver, lungs, pancreas, testis, and placenta. The liver and kidneys, which are the primary organs involved in the elimination of systemic Cd, are especially sensitive to the toxic effects of Cd. Because Cd ions possess a high affinity for sulfhydryl groups and thiolate anions, the cellular and molecular mechanisms involved in the handling and toxicity of Cd in target organs can be defined largely by the molecular interactions that occur between Cd ions and various sulfhydryl-containing molecules that are present in both the intracellular and extracellular compartments. A great deal of scientific data have been collected over the years to better define the toxic effects of Cd in the primary target organs. Notwithstanding all of the new developments made and information gathered, it is surprising that very little is known about the cellular and molecular mechanisms involved in the uptake, retention, and elimination of Cd in target epithelial cells. Therefore, the primary purpose of this review is to summarize and put into perspective some of the more salient current findings, assertions, and hypotheses pertaining to the transport and handling of Cd in the epithelial cells of target organs. Particular attention has been placed on the molecular mechanisms involved in the absorption, retention, and secretion of Cd in small intestinal enterocytes, hepatocytes, and tubular epithelial cells lining both proximal and distal portions of the nephron. The purpose of this review is not only to provide a summary of published findings but also to provide speculations and testable hypotheses based on contemporary findings made in other areas of research, with the hope that they may promote and serve as the impetus for future investigations designed to define more precisely the cellular mechanisms involved in the transport and

  1. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model

    Science.gov (United States)

    Jiang, Chun-Bin; Cheng, Mei-Lien; Liu, Chia-Yuan; Chang, Szu-Wen; Chiang Chiau, Jen-Shiu; Lee, Hung-Chang

    2015-01-01

    Background and Aims Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Methods Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. Results Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (Pprobiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (Pprobiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in the future. PMID:26406888

  2. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model.

    Science.gov (United States)

    Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival

    2015-09-01

    Our aim is to develop and to validate the in situ closed loop perfusion method in rat colon and to compare with small intestine and Caco-2 cell models. Correlations with human oral fraction absorbed (Fa) and human colon fraction absorbed (Fa_colon) were developed to check the applicability of the rat colon model for controlled release (CR) drug screening. Sixteen model drugs were selected and their permeabilities assessed in rat small intestine and colon, and in Caco-2 monolayers. Correlations between colon/intestine/Caco-2 permeabilities versus human Fa and human Fa_colon have been explored to check model predictability and to apply a BCS approach in order to propose a cut off value for CR screening. Rat intestine perfusion with Doluisio's method and single-pass technique provided a similar range of permeabilities demonstrating the possibility of combining data from different laboratories. Rat colon permeability was well correlated with Caco-2 cell-4 days model reflecting a higher paracellular permeability. Rat colon permeabilities were also higher than human colon ones. In spite of the magnitude differences, a good sigmoidal relationship has been shown between rat colon permeabilities and human colon fractions absorbed, indicating that rat colon perfusion can be used for compound classification and screening of CR candidates. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Insights into the pathogenesis of enteropathogenic E. coli using an improved intestinal enterocyte model.

    Directory of Open Access Journals (Sweden)

    Paul Dean

    Full Text Available Enteropathogenic E. coli (EPEC is a human pathogen that targets the small intestine, causing severe and often fatal diarrhoea in infants. A defining feature of EPEC disease is the loss (effacement of absorptive microvilli (MV from the surface of small intestinal enterocytes. Much of our understanding of EPEC pathogenesis is derived from studies using cell lines such as Caco-2 - the most extensively used small intestinal model. However, previous work has revealed fundamental differences between Caco-2 cells and in vivo differentiated enterocytes in relation to MV effacement. This, and the high heterogeneity and low transfection efficiency of the Caco-2 cell line prompted the isolation of several sub-clones (NCL-1-12 to identify a more tractable and improved in vivo-like cell model. Along with established Caco-2 clones (TC-7, BBE1, sub-clones were assessed for growth rate, apical surface morphology, epithelial barrier function and transfection efficiency. TC-7 cells provided the best all-round clone and exhibited highest levels of ectopic gene expression following cell polarisation. Novel alterations in EGFP-labelled mitochondria, that were not previously documented in non-polarised cell types, highlighted the potential of the TC-7 model for defining dynamic enterocyte-specific changes during infection. Crucially, the TC-7 cell line also mimicked ex vivo derived enterocytes with regard to MV effacement, enabling a better dissection of the process. Effacement activity caused by the EPEC protein Map in the Caco-2 but not ex vivo model, was linked to a defect in suppressing its Cdc42-dependent functionality. MV effacement activity of the EPEC protein EspF in the TC-7 model was dependent on its N-WASP binding motif, which is also shown to play an essential role in epithelial barrier dysfunction. Together, this study highlights the many advantages of using TC-7 cells as a small intestinal model to study host-pathogen interactions.

  4. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  5. VSL#3 Probiotic Upregulates Intestinal Mucosal Alkaline Sphingomyelinase and Reduces Inflammation

    Directory of Open Access Journals (Sweden)

    Isaac Soo

    2008-01-01

    Full Text Available BACKGROUND: Alkaline sphingomyelinase, an enzyme found exclusively in bile and the intestinal brush border, hydrolyzes sphingomyelin into ceramide, sphingosine and sphingosine-1-phosphate, thereby inducing epithelial apoptosis. Reduced levels of alkaline sphingomyelinase have been found in premalignant and malignant intestinal epithelia and in ulcerative colitis tissue. Probiotic bacteria can be a source of sphingomyelinase.

  6. Protective effect of lactobacillus acidophilus and isomaltooligosaccharide on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2008-01-01

    Objective: To investigate the protective effect of synbiotics combined lactobacillus acidophilus and iso-malto-oligosaccharide (IMO) on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea(AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 5 days. The synbiotics was orally administered to the AAD rats daily at three different strengths for 7 days. The intestinal flora and intestinal mucus SIgA levels were determined on d6, d9 and d13. The histopathological changes of ileal mucosa were studied on d13. Results: In the prepared AAD model rats (on d6) there were lower intestinal mucus SIgA levels and intestinal flora disorders were demonstrated. The intestinal floras of the rats administering synbiotics were readjusted to the similar pattern of healthy rats with bacterial translocation corrected on d13 and the levels of SIgA were not significantly different from of the control (P>0.05). The histopathological picture was basically normal in the treated models on d13. Conclusion: The synbiotics combined lactobacillus acidophilus and isomaltooligosaccharide possessed good protective effect on the intestinal mucosal barrier in lincomycin induced rat models of AAD. (authors)

  7. The Metabolic Inhibition Model Which Predicts the Intestinal Absorbability and Metabolizability of Drug: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Mizuma Takashi

    1998-01-01

    Full Text Available The intestinal absorption of analgesic peptides (leucine enkephalin and kyotorphin and modified peptides in rat were studied. Although these peptides were not absorbed, the absorbability (absorption clearance of these peptides were increased in the presence of peptidase inhibitors. In order to kinetically analyze these phenomena, we proposed the metabolic inhibition model, which incorporated the metabolic clearance (metabolizability with the absorption clearance. Metabolic activity was determined with intestinal homogenates. The higher the metabolic clearance was, the lower was the absorption clearance. The relationships between the absorption clearance and the metabolic clearance of the experimental data as well as of the theoretical values were hyperbolic. This model predicted the maximum absorption clearances of cellobiose-coupled leucine enkephalin (0.654 &mgr;l/min/cm and kyotorphin (0.247 &mgr;l/min/cm. Details of the experimental methods are described.

  8. Intestinal absorption and renal reabsorption of calcium throughout postnatal development.

    Science.gov (United States)

    Beggs, Megan R; Alexander, R Todd

    2017-04-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving

  9. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  10. Autophagy and Macropinocytosis: Keeping an Eye on the Corneal/Limbal Epithelia.

    Science.gov (United States)

    Peng, Han; Park, Jong Kook; Lavker, Robert M

    2017-01-01

    Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.

  11. Mice overexpressing CD97 in intestinal epithelial cells provide a unique model for mammalian postnatal intestinal cylindrical growth

    NARCIS (Netherlands)

    Aust, Gabriela; Kerner, Christiane; Gonsior, Susann; Sittig, Doreen; Schneider, Hartmut; Buske, Peter; Scholz, Markus; Dietrich, Norman; Oldenburg, Sindy; Karpus, Olga N.; Galle, Jörg; Amasheh, Salah; Hamann, Jörg

    2013-01-01

    Postnatal enlargement of the mammalian intestine comprises cylindrical and luminal growth, associated with crypt fission and crypt/villus hyperplasia, respectively, which subsequently predominate before and after weaning. The bipartite adhesion G protein-coupled receptor CD97 shows an expression

  12. Selection of ESBL-Producing E. coli in a Mouse Intestinal Colonization Model.

    Science.gov (United States)

    Hertz, Frederik Boëtius; Nielsen, Karen Leth; Frimodt-Møller, Niels

    2018-01-01

    Asymptomatic human carriage of antimicrobially drug-resistant pathogens prior to infection is increasing worldwide. Further investigation into the role of this fecal reservoir is important for combatting the increasing antimicrobial resistance problems. Additionally, the damage on the intestinal microflora due to antimicrobial treatment is still not fully understood. Animal models are powerful tools to investigate bacterial colonization subsequent to antibiotic treatment. In this chapter we present a mouse-intestinal colonization model designed to investigate how antibiotics select for an ESBL-producing E. coli isolate. The model can be used to study how antibiotics with varying effect on the intestinal flora promote the establishment of the multidrug-resistant E. coli. Colonization is successfully investigated by sampling and culturing stool during the days following administration of antibiotics. Following culturing, a precise identification of the bacterial strain found in mice feces is applied to ensure that the isolate found is in fact identical to the strain used for inoculation. For this purpose random amplified of polymorphic DNA (RAPD) PCR specifically developed for E. coli is applied. This method allows us to distinguish E. coli with more than 99.95% genome similarity using a duplex PCR method.

  13. Na+ -K+ -2Cl- Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia.

    Science.gov (United States)

    Delpire, Eric; Gagnon, Kenneth B

    2018-03-25

    Two genes encode the Na + -K + -2Cl - cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na + , 1K + , and 2Cl - across the plasma membrane of cells. Na + -K + -2Cl - cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na + /K + pump. In many cells, NKCC1 accumulates Cl - above its electrochemical potential equilibrium, thereby facilitating Cl - channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca 2+ channels, leading to Ca 2+ influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl - conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl - . In combination with the Na + /K + pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl - -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K + -driven fluid secretion in inner ear, and possibly in Na + -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na + /K + pump participates in reabsorbing 30% of the glomerular-filtered Na + . Overall, many critical physiological functions are maintained by the activity of the two Na + -K + -2Cl - cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  14. Effect of Da-Cheng-Qi Decoction on Pancreatitis-Associated Intestinal Dysmotility in Patients and in Rat Models

    Directory of Open Access Journals (Sweden)

    Jianlei Zhao

    2015-01-01

    Full Text Available The impairment of intestinal motility and related infectious complications are the predominant clinical phenomenon in patients with severe acute pancreatitis (SAP. We aimed to investigate the effects of Da-Cheng-Qi decoction (DCQD on the gastrointestinal injury in SAP patients and the potential mechanism involved in rats. DCQD was enema administered to 70 patients for 7 days in West China Hospital. Mortality and organ failure during admission were observed and blood samples for laboratory analysis were collected. We also experimentally examined plasma inflammatory cytokines in rat serum and carried the morphometric studies of the gut. Intestinal propulsion index and serum and tissue vasoactive intestinal peptide (VIP were also detected. Though DCQD did not affect the overall incidence of organ failure, it shortened the average time of paralytic intestinal obstruction and decreased the morbidity of infectious complications in patients with SAP. Compared with untreated rats, the DCQD lowered the levels of proinflammatory cytokine and decreased the mean pathological intestinal lesion scores. The VIP level in intestinal tissue or serum in DCQD group was obviously lowered and intestinal propulsion index was significantly improved. In conclusion, DCQD has good effect on pancreatitis-associated intestinal dysmotility in patients and in rat models.

  15. Effect of da-cheng-qi decoction on pancreatitis-associated intestinal dysmotility in patients and in rat models.

    Science.gov (United States)

    Zhao, Jianlei; Zhong, Cejun; He, Zhiyu; Chen, Guangyuan; Tang, Wenfu

    2015-01-01

    The impairment of intestinal motility and related infectious complications are the predominant clinical phenomenon in patients with severe acute pancreatitis (SAP). We aimed to investigate the effects of Da-Cheng-Qi decoction (DCQD) on the gastrointestinal injury in SAP patients and the potential mechanism involved in rats. DCQD was enema administered to 70 patients for 7 days in West China Hospital. Mortality and organ failure during admission were observed and blood samples for laboratory analysis were collected. We also experimentally examined plasma inflammatory cytokines in rat serum and carried the morphometric studies of the gut. Intestinal propulsion index and serum and tissue vasoactive intestinal peptide (VIP) were also detected. Though DCQD did not affect the overall incidence of organ failure, it shortened the average time of paralytic intestinal obstruction and decreased the morbidity of infectious complications in patients with SAP. Compared with untreated rats, the DCQD lowered the levels of proinflammatory cytokine and decreased the mean pathological intestinal lesion scores. The VIP level in intestinal tissue or serum in DCQD group was obviously lowered and intestinal propulsion index was significantly improved. In conclusion, DCQD has good effect on pancreatitis-associated intestinal dysmotility in patients and in rat models.

  16. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nakadate

    2016-01-01

    Full Text Available Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.

  17. CDP-choline reduces severity of intestinal injury in a neonatal rat model of necrotizing enterocolitis.

    Science.gov (United States)

    Cetinkaya, Merih; Cansev, Mehmet; Cekmez, Ferhat; Tayman, Cuneyt; Canpolat, Fuat Emre; Kafa, Ilker M; Uysal, Sema; Tunc, Turan; Sarici, S Umit

    2013-07-01

    Cytidine 5'-diphosphocholine (CDP-choline) is an endogenous intermediate in the biosynthesis of phosphatidylcholine, a contributor to the mucosal defense of the intestine. The aim of this study was to evaluate the possible cytoprotective effect of CDP-choline treatment on intestinal cell damage, membrane phospholipid content, inflammation, and apoptosis in a neonatal rat model of necrotizing enterocolitis (NEC). We divided a total of 30 newborn pups into three groups: control, NEC, and NEC + CDP-choline. We induced NEC by enteral formula feeding, exposure to hypoxia-hyperoxia, and cold stress. We administered CDP-choline intraperitoneally at 300 mg/kg/d for 3 d starting from the first day of life. We evaluated apoptosis macroscopically and histopathologically in combination with proinflammatory cytokines in the gut samples. Moreover, we determined membrane phospholipid levels as well as activities of xanthine oxidase, superoxide dismutase, glutathione peroxidase, and myeloperoxidase enzymes and the malondialdehyde content of intestinal tissue. Mean clinical sickness score, macroscopic gut assessment score, and intestinal injury score were significantly improved, whereas mean apoptosis score and caspase-3 levels were significantly reduced in pups in the NEC + CDP-choline group compared with the NEC group. Tissue proinflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) levels as well as tissue malondialdehyde content and myeloperoxidase activities were reduced, whereas glutathione peroxidase and superoxide dismutase activities were preserved in the NEC + CDP-choline group. In addition, NEC damage reduced intestinal tissue membrane phospholipids, whereas CDP-choline significantly enhanced total phospholipid and phosphatidylcholine levels. Long-term follow-up in additional experiments revealed increased body weight, decreased clinical sickness scores, and enhanced survival in CDP-choline-receiving versus saline-receiving pups with NEC

  18. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  19. Plasmodium berghei ANKA causes intestinal malaria associated with dysbiosis.

    Science.gov (United States)

    Taniguchi, Tomoyo; Miyauchi, Eiji; Nakamura, Shota; Hirai, Makoto; Suzue, Kazutomo; Imai, Takashi; Nomura, Takahiro; Handa, Tadashi; Okada, Hiroko; Shimokawa, Chikako; Onishi, Risa; Olia, Alex; Hirata, Jun; Tomita, Haruyoshi; Ohno, Hiroshi; Horii, Toshihiro; Hisaeda, Hajime

    2015-10-27

    Gastrointestinal symptoms, such as abdominal pain and diarrhea, are frequently observed in patients with Plasmodium falciparum malaria. However, the correlation between malaria intestinal pathology and intestinal microbiota has not been investigated. In the present study, infection of C57BL/6 mice with P. berghei ANKA (PbA) caused intestinal pathological changes, such as detachment of epithelia in the small intestines and increased intestinal permeability, which correlated with development with experimental cerebral malaria (ECM). Notably, an apparent dysbiosis occurred, characterized by a reduction of Firmicutes and an increase in Proteobacteria. Furthermore, some genera of microbiota correlated with parasite growth and/or ECM development. By contrast, BALB/c mice are resistant to ECM and exhibit milder intestinal pathology and dysbiosis. These results indicate that the severity of cerebral and intestinal pathology coincides with the degree of alteration in microbiota. This is the first report demonstrating that malaria affects intestinal microbiota and causes dysbiosis.

  20. In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and Young Infants)

    DEFF Research Database (Denmark)

    Kamstrup, Danna; Berthelsen, Ragna; Sassene, Philip Jonas

    2017-01-01

    , it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition...... of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization...... taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times...

  1. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  2. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Qingchao Zhu

    Full Text Available Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001. Meanwhile, Prevotella (55.22% vs. 26.19%, Lactobacillus (3.71% vs. 2.32% and Treponema (3.04% vs. 2.43%, were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively. We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant

  3. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation.

    Science.gov (United States)

    Harris, J Kirk; El Kasmi, Karim C; Anderson, Aimee L; Devereaux, Michael W; Fillon, Sophie A; Robertson, Charles E; Wagner, Brandie D; Stevens, Mark J; Pace, Norman R; Sokol, Ronald J

    2014-01-01

    Parenteral nutrition (PN) has been a life-saving treatment in infants intolerant of enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI) in a significant number of PN-dependent infants. We have previously reported a novel PNALI mouse model in which PN infusion combined with intestinal injury results in liver injury. In this model, lipopolysaccharide activation of toll-like receptor 4 signaling, soy oil-derived plant sterols, and pro-inflammatory activation of Kupffer cells (KCs) played key roles. The objective of this study was to explore changes in the intestinal microbiome associated with PNALI. Microbiome analysis in the PNALI mouse identified specific alterations within colonic microbiota associated with PNALI and further association of these communities with the lipid composition of the PN solution. Intestinal inflammation or soy oil-based PN infusion alone (in the absence of enteral feeds) caused shifts within the gut microbiota. However, the combination resulted in accumulation of a specific taxon, Erysipelotrichaceae (23.8% vs. 1.7% in saline infused controls), in PNALI mice. Moreover, PNALI was markedly attenuated by enteral antibiotic treatment, which also was associated with significant reduction of Erysipelotrichaceae (0.6%) and a Gram-negative constituent, the S24-7 lineage of Bacteroidetes (53.5% in PNALI vs. 0.8%). Importantly, removal of soy oil based-lipid emulsion from the PN solution resulted in significant reduction of Erysipelotrichaceae as well as attenuation of PNALI. Finally, addition of soy-derived plant sterol (stigmasterol) to fish oil-based PN restored Erysipelotrichaceae abundance and PNALI. Soy oil-derived plant sterols and the associated specific bacterial groups in the colonic microbiota are associated with PNALI. Products from these bacteria may directly trigger activation of KCs and promote PNALI. Furthermore, the results indicate that lipid modification of PN solutions may alter

  4. The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity

    OpenAIRE

    Wang, Feng; Guo, Rui-Xia; Li, Wen-Xing; Yu, Bao-Feng; Han, Bai; Liu, Li-Xin; Han, De-Wu

    2017-01-01

    The present study aimed to investigate the effects of intestinal endotoxemia (IETM) in a rat model of aluminum neurotoxicity established by D-galactose and aluminum trichloride (AlCl3). Adult Wistar rats were administered D-galactose and AlCl3 to create the aluminum neurotoxicity model. The learning and memory abilities of the rats were subsequently observed using a Morris water maze test and the serum levels of lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, diam...

  5. Resveratrol and curcumin as protective agents in an experimental rat model of intestinal ischemia and reperfusion.

    Science.gov (United States)

    Cucolas, Cristina; Daneasa, Alexandra Ioana; Olteanu, Diana; Decea, Nicoleta; Moldovan, Remus; Tabaran, Flaviu; Filip, Gabriela Adriana

    2016-05-30

    The aim of this study was to evaluate the protective effects of resveratrol and curcumin in an experimental rat model of intestinal ischemia-reperfusion (I/R). Forty-eight adult Wistar rats were used: 12 animals undergoing the sham surgery and 36 animals undergoing laparotomy, with 15 min of mesentric artery clamping. The animals from the latter group (n = 12) were pretreated, for 1 week, with vehicle (CTR), resveratrol (RES), and curcumin (CUR). After 1 h and 6 h of reperfusion, respectively, cyclooxigenase (COX)-2, mucin-1, E-cadherin, nuclear factor (NK)-κB expressions, and tumor necrosis factor related apoptosis-inducing ligand (TRAIL) were assessed in the small intestine. Oxidative stress markers were determined in tissue homogenate and serum, and histopathological analysis was performed. Pretreatment with RES decreased the expression of COX-2 and NF-κB at both intervals and increased E-cadherin (p < 0.05) and mucin-1 production after 1 h. CUR had a beneficial effect on COX-2, NF-κB, and E-cadherin expressions, both after 1 h and after 6 h (p < 0.0001). The two compounds increased TRAIL levels and had a protective effect on oxidative stress and histopathological lesions, both after 1 h and after 6 h. Our results suggested that RES and CUR had beneficial effects in intestinal I/R and may represent a promising option for complementary treatment of this pathological condition.

  6. Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2017-09-01

    Full Text Available Colorectal cancer (CRC is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.

  7. Colitis promotes adaptation of an intestinal nematode: a Heligmosomoides polygyrus mouse model system.

    Directory of Open Access Journals (Sweden)

    Katarzyna Donskow-Łysoniewska

    Full Text Available The precise mechanism of the very effective therapeutic effect of gastrointestinal nematodes on some autoimmune diseases is not clearly understood and is currently being intensively investigated. Treatment with living helminths has been initiated to reverse intestinal immune-mediated diseases in humans. However, little attention has been paid to the phenotype of nematodes in the IBD-affected gut and the consequences of nematode adaptation. In the present study, exposure of Heligmosomoides polygyrus larvae to the changed cytokine milieu of the intestine during colitis reduced inflammation in an experimental model of dextran sulphate sodium (DSS- induced colitis, but increased nematode establishment in the moderate-responder BALB/c mouse strain. We used mass spectrometry in combination with two-dimensional Western blotting to determine changes in protein expression and changes in nematode antigens recognized by IgG1 in mice with colitis. We show that nematode larvae immunogenicity is changed by colitis as soon as 6 days post-infection; IgG1 did not recognize highly conserved proteins Lev-11 (isoform 1 of tropomyosin α1 chain, actin-4 isoform or FTT-2 isoform a (14-3-3 family protein. These results indicate that changes in the small intestine provoked by colitis directly influence the nematode proteome. The unrecognized proteins seem to be key antigenic epitopes able to induce protective immune responses. The proteome changes were associated with weak immune recognition and increased larval adaptation and worm growth, altered localization in the intestine and increased survival of males but reduced worm fecundity. In this report, the mechanisms influencing nematode survival and the consequences of changed immunogenicity that reflect the immune response at the site colonized by the parasite in mice with colitis are described. The results are relevant to the use of live parasites to ameliorate IBD.

  8. Endocytic reawakening of motility in jammed epithelia

    Science.gov (United States)

    Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V.; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio

    2017-05-01

    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.

  9. Wood combustion particles induce adverse effects to normal and diseased airway epithelia.

    Science.gov (United States)

    Krapf, Manuel; Künzi, Lisa; Allenbach, Sandrine; Bruns, Emily A; Gavarini, Ilaria; El-Haddad, Imad; Slowik, Jay G; Prévôt, André S H; Drinovec, Luka; Močnik, Griša; Dümbgen, Lutz; Salathe, Matthias; Baumlin, Nathalie; Sioutas, Constantinos; Baltensperger, Urs; Dommen, Josef; Geiser, Marianne

    2017-04-19

    Residential wood burning is a major source of poorly characterized, deleterious particulate matter, whose composition and toxicity may vary with wood type, burning condition and photochemical age. The causative link between ambient wood particle constituents and observed adverse health effects is currently lacking. Here we investigate the relationship between chemical properties of primary and atmospherically aged wood combustion particles and acute toxicity in human airway epithelial cells. Emissions from a log wood burner were diluted and injected into a smog chamber for photochemical aging. After concentration-enrichment and removal of oxidizing gases, directly emitted and atmospherically aged particles were deposited on cell cultures at the air-liquid interface for 2 hours in an aerosol deposition chamber mimicking physiological conditions in lungs. Cell models were fully differentiated normal and diseased (cystic fibrosis and asthma) human bronchial epithelia (HBE) and the bronchial epithelial cell line BEAS-2B. Cell responses were assessed at 24 hours after aerosol exposure. Atmospherically relevant doses of wood combustion particles significantly increased cell death in all but the asthma cell model. Expression of oxidative stress markers increased in HBE from all donors. Increased cell death and inflammatory responses could not be assigned to a single chemical fraction of the particles. Exposure to primary and aged wood combustion particles caused adverse effects to airway epithelia, apparently induced by several interacting components.

  10. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  11. Hymenaea stigonocarpa Mart. ex Hayne: A tropical medicinal plant with intestinal anti-inflammatory activity in TNBS model of intestinal inflammation in rats.

    Science.gov (United States)

    Orsi, Patrícia Rodrigues; Seito, Leonardo Noboru; Di Stasi, Luiz Claudio

    2014-01-01

    Stem bark and fruit pulp of Hymenaea stigonocarpa Mart ex. Hayne (Fabaceae) has been popularly used to treat inflammation and gastrointestinal diseases including ulcers, diarrhea and gastric pain. The aim of this study was to investigate the intestinal anti-inflammatory activity of a methanol extract derived from the stem bark and diet with fruit pulp of Hymenaea stigonocarpa in the TNBS model of intestinal inflammation in rats. The intestinal anti-inflammatory activity of stem bark extract (100, 200 and 400mg/kg) and fruit pulp (10% and 5% in diet) was measured against the intestinal inflammatory process induced by TNBS (trinitrobenzesulphonic acid) in rats. The protective effects were evaluated as follows: evaluation of intestinal damage (damage score, extension of lesion, colon weight/length ratio), incidence of diarrhea and adherence to adjacent organs, colon glutathione (GSH) and malondialdehyde (MDA) contents, myeloperoxidase (MPO) and alkaline phosphatase (AP) activities. In addition, in vitro studies on lipid peroxidation in rat brain membranes and phytochemical profile were performed with both stem bark and fruit pulp. Treatment with 100, 200 and 400mg/kg of stem bark extract and 10% fruit pulp flour showed protective effects in the TNBS-induced colon damage, which was related to inhibition of MPO and AP activities, reduction in colon MDA content, and counteraction of GSH depletion induced by inflammatory process. A concentration-dependent inhibitory effect on the lipid peroxidation in rat brain membranes for stem bark and fruit pulp was determined, with an IC50 value of 5.25 ± 0.23 μg/mL and 27.33 ± 0.09 μg/mL, respectively. Similar phytochemical composition was observed in fruit and stem bark, including mainly flavonoids, condensed tannins and terpenes. Stem bark extract and fruit pulp flour of Hymenaea stigonocarpa prevented TNBS-induced colonic damage in rats and this protective effect were associated to an improvement of intestinal oxidative

  12. Intestinal Conditioning After Cardiac Arrest: The Use of Normothermic Extracorporeal Membrane Oxygenation in the Non-Heart-Beating Animal Model.

    Science.gov (United States)

    Guo, Mingxiao; Yao, Danhua; Li, Linlin; Lu, Chunlei; Li, Yousheng; Li, Jieshou

    2016-08-01

    The effect of normothermic extracorporeal membrane oxygenation (NECMO) on small bowel preservation in a clinically relevant large animal model of expected donation after cardiac death (eDCD) was evaluated. Thirty domestic crossbred donor pigs were divided into five groups. The first group served as the live donation (LD) group, the second group served as the donation after cardiac death (DCD) group, and the remaining were further assigned into three subgroups: E1 group (1 h NECMO support), E3 group (3 h NECMO support), and E5 group (5 h NECMO support). Pathology, electron microscopy, energy metabolism, cell apoptosis, and tight junction (TJ) protein expression level of intestinal mucosa and the level of plasma d-lactic acid were evaluated in normal, cardiac death and at the end of extracorporeal support, respectively. The mean arterial pressure and PaO2 were maintained over 60 and 267 mm Hg during NECMO support, respectively. One hour of extracorporeal support could improve the energy status in intestines of the DCD group. Although the histologic damage and apoptosis of the E1 group had no significant difference with those of the LD and DCD groups (P > 0.05), the levels of intestinal mucosa TJ protein decreased (P intestinal mucosa damage and intestinal permeability gradually increased, as well as the content of adenosine triphosphate in intestinal mucosa. The normothermic extracorporeal support for 1 h in DCD is beneficial for improving the energy status and viability of the bowel. However, the integrity of intestinal mucosa was destroyed gradually as extracorporeal support time went by. And the activation of intestinal epithelial apoptosis and hyperoxia might be the factors that lead to intestinal mucosa injury. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models.

    Science.gov (United States)

    Liu, Yulan; Wang, Xiuying; Hou, Yongqing; Yin, Yulong; Qiu, Yinsheng; Wu, Guoyao; Hu, Chien-An Andy

    2017-08-01

    Animal models are needed to study and understand a human complex disease. Because of their similarities in anatomy, structure, physiology, and pathophysiology, the pig has proven its usefulness in studying human gastrointestinal diseases, such as inflammatory bowel disease, ischemia/reperfusion injury, diarrhea, and cancer. To understand the pathogenesis of these diseases, a number of experimental models generated in pigs are available, for example, through surgical manipulation, chemical induction, microbial infection, and genetic engineering. Our interests have been using amino acids as therapeutics in pig and human disease models. Amino acids not only play an important role in protein biosynthesis, but also exert significant physiological effects in regulating immunity, anti-oxidation, redox regulation, energy metabolism, signal transduction, and animal behavior. Recent studies in pigs have shown that specific dietary amino acids can improve intestinal integrity and function under normal and pathological conditions that protect the host from different diseases. In this review, we summarize several pig models in intestinal diseases and how amino acids can be used as therapeutics in treating pig and human diseases.

  14. Intestinal bacterial overgrowth includes potential pathogens in the carbohydrate overload models of equine acute laminitis.

    Science.gov (United States)

    Onishi, Janet C; Park, Joong-Wook; Prado, Julio; Eades, Susan C; Mirza, Mustajab H; Fugaro, Michael N; Häggblom, Max M; Reinemeyer, Craig R

    2012-10-12

    Carbohydrate overload models of equine acute laminitis are used to study the development of lameness. It is hypothesized that a diet-induced shift in cecal bacterial communities contributes to the development of the pro-inflammatory state that progresses to laminar failure. It is proposed that vasoactive amines, protease activators and endotoxin, all bacterial derived bioactive metabolites, play a role in disease development. Questions regarding the oral bioavailability of many of the bacterial derived bioactive metabolites remain. This study evaluates the possibility that a carbohydrate-induced overgrowth of potentially pathogenic cecal bacteria occurs and that bacterial translocation contributes toward the development of the pro-inflammatory state. Two groups of mixed-breed horses were used, those with laminitis induced by cornstarch (n=6) or oligofructan (n=6) and non-laminitic controls (n=8). Cecal fluid and tissue homogenates of extra-intestinal sites including the laminae were used to enumerate Gram-negative and -positive bacteria. Horses that developed Obel grade2 lameness, revealed a significant overgrowth of potentially pathogenic Gram-positive and Gram-negative intestinal bacteria within the cecal fluid. Although colonization of extra-intestinal sites with potentially pathogenic bacteria was not detected, results of this study indicate that cecal/colonic lymphadenopathy and eosinophilia develop in horses progressing to lameness. It is hypothesized that the pro-inflammatory state in carbohydrate overload models of equine acute laminitis is driven by an immune response to the rapid overgrowth of Gram-positive and Gram-negative cecal bacterial communities in the gut. Further equine research is indicated to study the immunological response, involving the lymphatic system that develops in the model. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Characterization of the withdrawal phase in a swine controlled intestinal donation after circulatory death model.

    Science.gov (United States)

    Guo, Mingxiao; Li, Linlin; Lu, Chunlei

    2014-10-04

    Transplantation of donation after cardiac death (DCD) intestine has higher rates of organ failure and complications. Fortunately, this is less grievous in a subclass of DCD called controlled (CDCD), those with irreversible but incomplete brain injury. The aim of the paper is to establish a CDCD porcine model which is closely mimicking human CDCD scenario, and investigate the physiologic changes from withdrawal of ventilatory support to circulatory arrest. Ten domestic crossbred pigs were anesthetized and ventilated with room air. Once all baseline data was taken, atracurium besilate (0.9 mg/kg, 3×ED95) was administered and the ventilator was discontinued while the animal was under deep anesthesia to establish the porcine CDCD model. Meanwhile, heparin (150~200 U/kg) was administered after discontinuation of the ventilator. The time to death and the changes of arterial blood gases and hemodynamic parameters were monitored every 5 minutes until circulatory arrest. In addition, histopathology, ultrastructures (via electron microscope) and expression of tight junction proteins of intestinal mucosa were observed at the baseline and the time of death. The mean time to death was approximately (21.8±3.12 min. Within 5 minutes of removal of the ventilator, there was a hyperdynamic period. Systolic blood pressure and heart rate quickly increased to 118.5±10.4 mmHg and 108.2±4.94 bpm, respectively. Blood pressure and heart rate then reduced rapidly until circulatory arrest. Moreover, the PaO2 quickly dropped to 17.4±3.13 mmHg, the blood gases throughout the apneic time showed a rapid hypercapnia and acidosis. In addition, warm ischemia damaged intestinal mucosa and reduced TJ proteins expression. A new swine CDCD model, simulating three stages of "withdrawal of ventilation, systemic anticoagulation and determination of death", which closely mimics the human DCD scenario and can thus be used in studies related to organ transplantation, was successfully established.

  16. Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model.

    Science.gov (United States)

    Brégeon, Jérémy; Coron, Emmanuel; Da Silva, Anna Christina Cordeiro; Jaulin, Julie; Aubert, Philippe; Chevalier, Julien; Vergnolle, Nathalie; Meurette, Guillaume; Neunlist, Michel

    2016-08-01

    Reducing intestinal epithelial barrier (IEB) dysfunctions is recognized as being of major therapeutic interest for various intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability. Here, we report in a pig model that SNS enhances morphological and functional recovery of IEB following mucosal injury induced via 2,4,6-trinitrobenzenesulfonic acid. These effects are associated with an increased expression of tight junction proteins such as ZO-1 and FAK. These results establish that SNS enhances intestinal barrier repair in acute mucosal injury. They further set the scientific basis for future use of SNS as a complementary or alternative therapeutic option for the treatment of gut disorders with IEB dysfunctions such as inflammatory bowel diseases or irritable bowel syndrome. Intestinal epithelial barrier (IEB) dysfunctions, such as increased permeability or altered healing, are central to intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability, but its ability to modulate IEB repair remains unknown. This study aimed to characterize the impact of SNS on mucosal repair following 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced lesions. Six pigs were stimulated by SNS 3 h prior to and 3 h after TNBS enema, while sham animals (n = 8) were not stimulated. The impact of SNS on mucosal changes was evaluated by combining in vivo imaging, histological and functional methods. Biochemical and transcriptomic approaches were used to analyse the IEB and mucosal inflammatory response. We observed that SNS enhanced the recovery from TNBS-induced increase in transcellular permeability. At 24 h, TNBS-induced alterations of mucosal morphology were significantly less in SNS compared with sham animals. SNS reduced TNBS-induced changes in ZO-1 expression and its epithelial pericellular distribution, and also increased pFAK/FAK expression compared with sham. Interestingly, SNS increased the mucosal density of neutrophils

  17. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells, with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD, implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  18. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    Science.gov (United States)

    Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L

    2017-01-01

    There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  19. A mathematical model for the peristaltic flow of chyme movement in small intestine.

    Science.gov (United States)

    Tripathi, Dharmendra

    2011-10-01

    A mathematical model based on viscoelastic fluid (fractional Oldroyd-B model) flow is considered for the peristaltic flow of chyme in small intestine, which is assumed to be in the form of an inclined cylindrical tube. The peristaltic flow of chyme is modeled more realistically by assuming that the peristaltic rush wave is a sinusoidal wave, which propagates along the tube. The governing equations are simplified by making the assumptions of long wavelength and low Reynolds number. Analytical approximate solutions of problem are obtained by using homotopy analysis method and convergence of the obtained series solution is properly checked. For the realistic values of the emerging parameters such as fractional parameters, relaxation time, retardation time, Reynolds number, Froude number and inclination of tube, the numerical results for the pressure difference and the frictional force across one wavelength are computed and discussed the roles played by these parameters during the peristaltic flow. On the basis of this study, it is found that the first fractional parameter, relaxation time and Froude number resist the movement of chyme, while, the second fractional parameter, retardation time, Reynolds number and inclination of tube favour the movement of chyme through the small intestine during pumping. It is further revealed that size of trapped bolus reduces with increasing the amplitude ratio whereas it is unaltered with other parameters. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Model prodrugs designed for the intestinal peptide transporter. A synthetic approach for coupling of hydroxy-containing compounds to dipeptides

    DEFF Research Database (Denmark)

    Friedrichsen, G M; Nielsen, C U; Steffansen, B

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  1. Model prodrugs for the intestinal peptide transporter. a synthetic approach for coupling of hydroxy-containing compounds to dieptides

    DEFF Research Database (Denmark)

    Friedrichsen, G; Nielsen, Carsten Uhd; Steffansen, Bente

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  2. Effect of Ozone on Intestinal Epithelial Homeostasis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Igor Sukhotnik

    2015-01-01

    Full Text Available Background: The positive effects of ozone therapy have been described in many gastrointestinal disorders. The mechanisms of this positive effect of ozone therapy are poorly understood. The purpose of the present study was to investigate whether the use of ozone may potentiate the gut intestinal mucosal homeostasis in a rat model. Methods: Adult rats weighing 250–280 g were randomly assigned to one of three experimental groups of 8 rats each: 1 Control rats were given 2 mL of water by gavage and intraperitoneally (IP for 5 days; 2 O3-PO rats were treated with 2 mL of ozone/oxygen mixture by gavage and 2 mL of water IP for 5 days; 3 O3-IP rats were treated with 2 mL of water by gavage and 2 mL of ozone/oxygen mixture IP for 5 days. Rats were sacrificed on day 6. Bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, and cell proliferation and apoptosis were evaluated following sacrifice. Results: The group of O3-IP rats demonstrated a greater jejunal and ileal villus height and crypt depth, a greater enterocyte proliferation index in jejunum, and lower enterocyte apoptosis in ileum compared to control animals. Oral administration of the ozone/oxygen mixture resulted in a less significant effect on cell turnover. Conclusions: Treatment with an ozone/oxygen mixture stimulates intestinal cell turnover in a rat model. Intraperitoneal administration of ozone resulted in a more significant intestinal trophic effect than oral administration.

  3. SURVIVAL OF MICROORGANISMS FROM MODERN PROBIOTICS IN MODEL CONDITIONS OF THE INTESTINE

    Directory of Open Access Journals (Sweden)

    Kabluchko TV

    2017-03-01

    Full Text Available Introduction. The staye of intestinal microflora affects the work of the whole organism. When composition of normal ibtestine microflora changes, its restoration is required. In our days a wide variety of probiotic drugs are available on the market which can be used to solve this problem. Most bacteria having probiotic properties represent the families Lactobacillus and Bifidobacterium, which have poor resistance to acidic content of the stomach and toxic effects of bile salts. Various studies have clearly shown that in a person with normal acidic and bile secretion, the lactobacilli and bifidobacteria are not detected after the passage through the duodenum, i.e., they perish before reaching the small intestines. In this study we compared the survival of different microorganisms which are contained in 9 probiotic drugs in a model of gastric and intestinal environments. Material and methods. In the laboratory of SI: “Mechnikov Institute Microbiology and Immunology, National Ukrainian Academy Medical Sciences" the in vitro experiments have been evaluated to test the ability of different probiotic bacteria which were contained in 9 probiotic drugs to survive the impact of the model environment of the stomach and duodenum. Bacillus coagulans persistence was evaluated under impact of simulated environment of the stomach and duodenum, it also was assessed by the quantity of CFU by incubation on culture medium. The following were studied: Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus bulgaricus, Bifidobacterium bifidum, Bifidobacterium longum , Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium animalis subsp. Lactis BB-12, Saccharomyces boulardii, Bacillus coagulans, Bacillus clausii, Enterococcus faecium. Microorganisms were incubated for 3 hours in a model environment of the stomach (pepsin 3 g / l, hydrochloric acid of 160 mmol / l, pH 2

  4. The intestinal microenvironment in sepsis.

    Science.gov (United States)

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  5. Stem Cell-Derived Human Intestinal Organoids as an Infection Model for Rotaviruses

    Science.gov (United States)

    Finkbeiner, Stacy R.; Zeng, Xi-Lei; Utama, Budi; Atmar, Robert L.; Shroyer, Noah F.; Estes, Mary K.

    2012-01-01

    ABSTRACT Directed differentiation of stem cell lines into intestine-like tissue called induced human intestinal organoids (iHIOs) is now possible (J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells, Nature 470:105-109, 2011). We tested iHIOs as a new model to cultivate and study fecal viruses. Protocols for infection of iHIOs with a laboratory strain of rotavirus, simian SA11, were developed. Proof-of-principle analyses showed that iHIOs support replication of a gastrointestinal virus, rotavirus, on the basis of detection of nonstructural viral proteins (nonstructural protein 4 [NSP4] and NSP2) by immunofluorescence, increased levels of viral RNA by quantitative reverse transcription-PCR (qRT-PCR), and production of infectious progeny virus. iHIOs were also shown to support replication of 12/13 clinical rotavirus isolates directly from stool samples. An unexpected finding was the detection of rotavirus infection not only in the epithelial cells but also in the mesenchymal cell population of the iHIOs. This work demonstrates that iHIOs offer a promising new model to study rotaviruses and other gastrointestinal viruses. PMID:22761392

  6. Intrinsic myenteric denervation: a new model to increase the intestinal absorptive surface in short-bowel syndrome.

    Science.gov (United States)

    Garcia, S B; Kawasaky, M C; Silva, J C; Garcia-Rodrigues, A C; Borelli-Bovo, T J; Iglesias, A C; Zucoloto, S

    1999-08-01

    Short-bowel syndrome (SBS) is caused by resection of massive portions of the small intestine and is characterized by symptoms related to malabsorption, of which severe weight loss is the most apparent. Surgical treatments for SBS are not yet satisfactory. In rats, the myenteric denervation by benzalkonium chloride (BAC) leads to development of megaileum with visceral dilatation and mucosal hyperplasia and increases the intestinal transit time. Such operation in the remaining intestinal segment after massive small bowel resection could increase the duration of contact between luminal nutrients and ileal mucosal epithelium, and furthermore, it could increase the superficial area of the mucosa. Thus, our aim in this study was to evaluate the epithelial morphology and body weight changes of animals after intrinsic ileal denervation associated with extensive small intestine resection. Wistar rats were submitted to resection of 80% of small intestinal length (Group R). Another group (B) of animals also received topical serosal application of BAC 0.3%. Control animals were submitted to simulated surgery (Group C). Animals were weighed weekly and sacrificed after 90 days. Intestinal walls were collected for histological procedure and morphometry. At the end of the experimental period all groups showed weight increase, which was reduced in the R group (P < 0.01). Interestingly, the denervated Group B showed a marked increase in weight, similar to the control animals. Morphometric analysis of the mucosal layer area showed a major increase in mucosal surface area, mainly in Group B. Our results showed that the ileal intrinsic denervation associated with massive intestinal resection induced an increase in the superficial absorptive area and was able to improve the postsurgical conditions for the animals, with accentuated weight increase. This procedure may be a useful model for further studies related to the role of the enteric nervous system on intestinal adaptations after

  7. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  8. Alkaline Phosphatase for the Prevention of Intestinal and Renal Injury in a Rat Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0090 TITLE: Alkaline Phosphatase for the Prevention of Intestinal and Renal Injury in a Rat Model of Cardiopulmonary...TYPE Annual 3. DATES COVERED 8/15/2016—8/14/2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Alkaline Phosphatase for the Prevention of Intestinal... prevention of intestinal and kidney injury after pediatric cardiopulmonary bypass with deep hypothermic circulatory arrest. In this model, we place 5-10kg

  9. A model to study intestinal and hepatic metabolism of propranolol in the dog.

    Science.gov (United States)

    Mills, P C; Siebert, G A; Roberts, M S

    2004-02-01

    A model to investigate hepatic drug uptake and metabolism in the dog was developed for this study. Catheters were placed in the portal and hepatic veins during exploratory laparotomy to collect pre- and posthepatic blood samples at defined intervals. Drug concentrations in the portal vein were taken to reflect intestinal uptake and metabolism of an p.o. administered drug (propranolol), while differences in drug and metabolite concentrations between portal and hepatic veins reflected hepatic uptake and metabolism. A significant difference in propranolol concentration between hepatic and portal veins confirmed a high hepatic extraction of this therapeutic agent in the dog. This technically uncomplicated model may be used experimentally or clinically to determine hepatic function and metabolism of drugs that may be administered during anaesthesia and surgery.

  10. Dephosphorylation of myo-inositol phosphates in the in vitro intestinal Caco-2 cell model.

    Science.gov (United States)

    Briviba, Karlis; Schollenberger, Margit; Rodehutscord, Markus; Greiner, Ralf

    2018-02-01

    Plant and microbial phytases present in raw materials can cause a dephosphorylation of phytate (myo-inositol hexakisphosphate) (InsP 6 )) during food processing resulting in a broad range of different myo-inositol phosphates such as pentakisphosphate (InsP 5 ) and tetrakisphosphate (InsP 4 ) in foods. Here, we investigated whether the human intestinal epithelium is able to dephosphorylate myo-inositol phosphates (InsP 6 , InsP 5 -, InsP 4 -, InsP 3 -isomers) using an in vitro model with differentiated human Caco-2 cells cultured on semipermeable inserts. Incubation of InsP 6 and an InsP 5 -isomer with cells for 3 h showed no dephosphorylation of both InsPs. Treatment of cells with a mixture of different InsP 4 -isomers, however, caused a formation of about 3.5% of an InsP 3 -isomer (Ins(1,5,6)P 3 ) and treatment with a mixture of different InsP 3 -isomers caused about 20% formation of InsP 2 -isomers, respectively. Thus, human intestinal cells can contribute to the dephosphorylation of myo-inositol phosphates of partly dephosphorylated forms such as InsP 3 and InsP 4 .

  11. Intestinal trefoil factor in treatment of neonatal necrotizing enterocolitis in the rat model.

    Science.gov (United States)

    Shi, Lei; Zhang, Bing-Hong; Yu, Hong-Gang; Yu, Jie-Ping; Xi, Juan-Li

    2007-01-01

    Neonatal necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of premature infants. The role of cytokines and growth factors in the pathophysiology of NEC is not yet clearly defined. Among these factors, the intestinal trefoil factor (ITF) is known as cytoprotective to the gut. We studied the cytoprotective effect of trefoil factor in the 1-day-old Wistar rat pup model following hypoxic-ischemic cold stress. In the present study, thirty 1-day-old Wistar rat pups were randomly divided into three groups: Group 1, normal controls: Group 2, NEC; Group 3, NEC+ITF. Experimental NEC was induced by exposure to hypoxia for 60 s followed by cold stress at 4 degrees C for 10 min. The animals were euthanized at development of NEC, and at 96 h the intestinal tissue was processed and examined for histological changes of NEC. The pathological lesions indicated severe separation of the submucosa and lamina propria and tissue necrosis in Group 2, and slight submucosal and lamina propria separation in Group 3. There were no histopathological changes in the controls. The mean of histological grade of group 2 was 2.8 (range 2-4), and 1.2 (range 0-2) in group 3. A difference was found when the two groups were compared (P<0.05). ITF may provide a new way for the therapy of NEC in rats.

  12. Primary culture of intestinal epithelial cells as a potential model for Toxoplasma gondii enteric cycle studies

    Directory of Open Access Journals (Sweden)

    Marcos de Assis Moura

    2009-09-01

    Full Text Available The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.

  13. Antibiotic selection of Escherichia coli sequence type 131 in a mouse intestinal colonization model

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2014-01-01

    day, antibiotic treatment was initiated and given subcutaneously once a day for three consecutive days. CFU of E. coli ST131, Bacteroides, and Gram-positive aerobic bacteria in fecal samples were studied, with intervals, until day 8. Bacteroides was used as an indicator organism for impact on the Gram......-negative anaerobic population. For three antibiotics, prolonged colonization was investigated with additional fecal CFU counts determined on days 10 and 14 (cefotaxime, dicloxacillin, and clindamycin). Three antibiotics (cefotaxime, dicloxacillin, and clindamycin) promoted overgrowth of E. coli ST131 (P ...The ability of different antibiotics to select for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli remains a topic of discussion. In a mouse intestinal colonization model, we evaluated the selective abilities of nine common antimicrobials (cefotaxime, cefuroxime, dicloxacillin...

  14. Protective Effects of L-Carnitine on Intestinal Ischemia/Reperfusion Injury in a Rat Model

    OpenAIRE

    Yuan, Yong; Guo, Hao; Zhang, Yi; Zhou, Dong; Gan, Ping; Liang, Dao Ming; Chen, Jia Yong

    2011-01-01

    Background Ischemia/reperfusion (IR) injury of the intestine is a major problem in abdominal pathological condition and is associated with a high morbidity and mortality. The purpose of the study is to determine whether the L-carnitine can prevent the harmful effects of small intestinal IR injury in rats. Methods Thirty Sprague-Dawley rats were randomly divided into three groups. Sham operated group (S), for shamoperated, the IR group for rats submitted to 45-minute of intestinal ischemia and...

  15. Maternal administration of cannabidiol promotes an anti-inflammatory effect on the intestinal wall in a gastroschisis rat model

    Directory of Open Access Journals (Sweden)

    G.H. Callejas

    2018-03-01

    Full Text Available Gastroschisis (GS is an abdominal wall defect that results in histological and morphological changes leading to intestinal motility perturbation and impaired absorption of nutrients. Due to its anti-inflammatory, antioxidant, and neuroprotective effects, cannabidiol (CBD has been used as a therapeutic agent in many diseases. Our aim was to test the effect of maternal CBD in the intestine of an experimental model of GS. Pregnant rats were treated over 3 days with CBD (30 mg/kg after the surgical induction of GS (day 18.5 of gestation and compared to controls. Fetuses were divided into 4 groups: 1 control (C; 2 C+CBD (CCBD; 3 gastroschisis (G, and 4 G+CBD (GCBD. On day 21.5 of gestation, the fetuses were harvested and evaluated for: a body weight (BW, intestinal weight (IW, and IW/BW ratio; b histometric analysis of the intestinal wall; c immunohistochemically analysis of inflammation (iNOS and nitrite/nitrate level. BW: GCBD was lower than CCBD (P<0.005, IW and IW/BW ratio: GCBD was smaller than G (P<0.005, GCBD presented lower thickness in all parameters compared to G (P<0.005, iNOS and nitrite/nitrate were lower concentration in GCBD than to G (P<0.005. Maternal use of CBD had a beneficial effect on the intestinal loops of GS with decreased nitrite/nitrate and iNOS expression.

  16. [Establishment and comparison of stoma and stoma-free heterotopic small intestine transplantation models in mice].

    Science.gov (United States)

    Meng, Ning; Pan, Zhijian; Liu, Yadong; Xu, Xin; Shen, Jiliang; Shen, Bo

    2016-03-01

    To establish stoma and stoma-free murine models of heterotopic small intestine transplantation in order to choose a more effective and reliable model. A total of 140 male 8-10 weeks age C57BL/6(B6) mice weighted 25-30 g were enrolled in the experiment. Syngeneic heterotopic small intestine transplantation was performed between C57BL/6 mice, and recipient mice were divided into either stoma or stoma-free group. Heterotopic small intestine transplantation was performed in 70 mice, with 35 mice in each group. After closing the proximal end of the graft by ligation, the distal end of graft was exteriorized as a stoma then secured to the skin of the abdominal wall in stoma group. In stoma-free group, the distal end of graft was anastomosed end-to-side to the recipient ileum. Successful rate of operation, two-week survival rate, operation time, associated complications, postoperative care time and body weight change were recorded and compared between two groups. The successful rate of stoma group was 65.7%, while it was 80.0% of stoma-free group (χ(2)=1.806, P=0.179). The operation time of donor in stoma group was (48.1±6.6) minutes, while it was (47.2±5.9) minutes in stoma-free group (t=0.598, P=0.552). The operation time of recipient in stoma group was (77.9±9.1) minutes, while it was (76.4±8.3) minutes in stoma-free group (t=0.683, P=0.497). The cold ischemic time of graft in stoma group was (34.7±4.0) minutes, while it was (33.9±4.6) minutes in stoma-free group(t=0.667, P=0.507). The two-week survival rate of stoma group was 45.7%, and it was 77.1% of stoma-free group(χ(2)=7.295, P=0.007). The stoma group had more complications[54.3%(19/35) vs. 22.9%(8/35), χ(2)=7.295, P=0.007], which needed more postoperative care time(191 min vs. 35 min). The weight loss in stoma group in the third day after operation was more significant [(81.52±5.20)% vs. (85.46±4.65)%, t=2.856, P=0.006]. By 2 weeks after operation, the weight of mice in both groups retruned to 95% of

  17. Anti-inflammatory intestinal activity ofCombretum duarteanumCambess. in trinitrobenzene sulfonic acid colitis model.

    Science.gov (United States)

    de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria

    2017-02-28

    To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum ( Cd ). Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. Both Cd -EtOHE and Cd -HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease.

  18. Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption

    DEFF Research Database (Denmark)

    Bøgh, Marie; Baldursdóttir, Stefania G; Müllertz, Anette

    2014-01-01

    to establish a more representative in vitro model for the intestinal mucosa. The rheological profile of a biosimilar mucus mixture composed of purified gastric mucin, lipids and protein in buffer was optimized by supplementing with an anionic polymer to display viscoelastic properties and a microstructure...

  19. Effect of erythropoietin on intestinal injury and bacterial translocation in neonatal rat model of necrotizing enterocolitis

    Directory of Open Access Journals (Sweden)

    Xiao-qing CHEN

    2012-05-01

    Full Text Available Objective  To observe the influence of erythropoietin (EPO on intestinal histopathological changes and bacterial translocation (BT in neonatal rat model of necrotizing enterocolitis (NEC, and explore the protective effect of EPO against NEC. Methods  Seventy-five three-day-old SD rat pups were randomly divided into three groups (25 in each group: normal control group, NEC model group and EPO intervention group. The rat pups in normal control group were placed together with their mothers and breast fed, receiving no other intervention. NEC model group rats were separated from their mothers, housed in an incubator, and gavaged with rat-milk substitute, then experienced hypoxia (breathing 100% nitrogen gas for 90s and cold stress (4℃ for 10min three times daily for 3 days. EPO intervention group rats were fed with the substitute of rat-milk supplemented with 0.1U/ml of EPO, and they were also given hypoxia and cold stress similar to that of the NEC model group. Blood samples were obtained via cardiac puncture, and 2-cm-length of terminal ileum proximal to the ileocecal valve were obtained from the animals on the 4th day. The histopathological changes in terminal ileum were scored after hematoxylin-eosin (HE staining, and the scores ≥2 were defined as NEC. To determine the incidence of bacterial translocation, 16S rRNA real-time fluorescence quantitative PCR was used to detect the bacterial DNA in blood samples. Results  Compared with the NEC model group, the mean rank-sum rate of the intestinal histopathological score (39.4583 vs 53.8696, NEC incidence [25%(6/24 vs 57%(13/23] and bacterial translocation rate [17% (4/24 vs 65%(15/23] in EPO intervention group were significantly lowered (P < 0.05, P < 0.01. Conclusion  Enteral EPO administration is not only effective for reduction of the severity and incidence of NEC, but also for decrease of the bacterial translocation rate in neonatal rat models.

  20. Octreotide in Intestinal Lymphangiectasia: Lack of a Clinical Response and Failure to Alter Lymphatic Function in a Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    S Makhija

    2004-01-01

    Full Text Available Intestinal lymphangiectasia, which can be classified as primary or secondary, is an unusual cause of protein-losing enteropathy. The main clinical features include edema, fat malabsorption, lymphopenia and hypoalbuminemia. Clinical management generally includes a low-fat diet and supplementation with medium chain triglycerides. A small number of recent reports advocate the use of octreotide in intestinal lymphangiectasia. It is unclear why octreotide was used in these studies; although octreotide can alter splanchnic blood flow and intestinal motility, its actions on lymphatic function has never been investigated. A case of a patient with intestinal lymphangiectasia who required a shunt procedure after failing medium chain triglycerides and octreotide therapy is presented. During the management of this case, all existing literature on intestinal lymphangiectasia and all the known actions of octreotide were reviewed. Because some of the case reports suggested that octreotide may improve the clinical course of intestinal lymphangiectasia by altering lymphatic function, a series of experiments were undertaken to assess this. In an established guinea pig model, the role of octreotide in lymphatic function was examined. In this model system, the mesenteric lymphatic vessels responded to 5-hydroxytryptamine with a decrease in constriction frequency, while histamine administration markedly increased lymphatic constriction frequency. Octreotide failed to produce any change in lymphatic function when a wide range of concentrations were applied to the mesenteric lymphatic vessel preparation. In conclusion, in this case, octreotide failed to induce a clinical response and laboratory studies showed that octreotide did not alter lymphatic function. Thus, the mechanisms by which octreotide induced clinical responses in the cases reported elsewhere in the literature remain unclear, but the present study suggests that it does not appear to act via increasing

  1. Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model.

    Science.gov (United States)

    O'Connor, Gregory; Jeffrey, Elisabeth; Madorma, Derik; Marcillo, Alexander; Abreu, Maria T; Deo, Sapna K; Dietrich, W Dalton; Daunert, Sylvia

    2018-03-23

    Although there has been a significant amount of research focused on the pathophysiology of Spinal Cord Injury (SCI), there is limited information on the consequences of SCI on remote organs. SCI can produce significant effects on a variety of organ systems, including the gastrointestinal tract. Patients with SCI often suffer from severe, debilitating bowel dysfunction in addition to their physical disabilities, which is of major concern for these individuals due to the adverse impact on their quality of life. Herein, we report on our investigation into the effects of SCI and subsequent antibiotic treatment on the intestinal tissue and microbiota. For that, we employed a thoracic SCI rat model and investigated changes to the microbiota, pro-inflammatory cytokine levels, and bacterial communication molecule levels post injury and gentamicin treatment for seven days. We discovered significant changes, the most interesting being the differences in the gut microbiota beta diversity of 8-week SCI animals compared to control animals at the family, genus, and species level. Specifically, 35 Operational Taxonomic Units (OTUs) were enriched in the SCI animal group and 3 were identified at species level; Lactobacillus intestinalis, Clostridium disporicum, and Bifidobacterium choerinum. In contrast, Clostridium saccharogumia was identified as depleted in the SCI animal group. Pro-inflammatory cytokines IL-12, MIP-2, and TNF-α, were found to be significantly elevated in intestinal tissue homogenate 4-weeks post-SCI compared to 8-weeks post-injury. Further, levels of IL-1β, IL-12, and MIP-2 significantly correlated with changes in beta diversity 8-weeks post-SCI. Our data provide a greater understanding of the early effects of SCI on the microbiota and gastrointestinal tract, highlighting the need for further investigation to elucidate the mechanism underlying these effects.

  2. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; Young, W.; McNabb, W.C.; Baarlen, van P.; Moughan, P.J.; Wells, J.M.; Roy, N.C.

    2015-01-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique

  3. Preservation of intestinal microvascular Po2 during normovolemic hemodilution in a rat model

    NARCIS (Netherlands)

    van Bommel, J.; Siegemund, M.; Henny, C. P.; van den Heuvel, D. A.; Trouwborst, A.; Ince, C.

    2000-01-01

    The effect of hemodilution on the intestinal microcirculatory oxygenation is not clear. The aim of this study was to determine the effect of moderate normovolemic hemodilution on intestinal microvascular partial oxygen pressure (Po2) and its relation to the mesenteric venous Po2 (Pmvo2).

  4. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage.

    Science.gov (United States)

    Shaban, Lamyaa; Chen, Ying; Fasciano, Alyssa C; Lin, Yinan; Kaplan, David L; Kumamoto, Carol A; Mecsas, Joan

    2018-04-01

    Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O 2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate.

    Science.gov (United States)

    Liu, F; Killian, J K; Yang, M; Walker, R L; Hong, J A; Zhang, M; Davis, S; Zhang, Y; Hussain, M; Xi, S; Rao, M; Meltzer, P A; Schrump, D S

    2010-06-24

    Limited information is available regarding epigenomic events mediating initiation and progression of tobacco-induced lung cancers. In this study, we established an in vitro system to examine epigenomic effects of cigarette smoke in respiratory epithelia. Normal human small airway epithelial cells and cdk-4/hTERT-immortalized human bronchial epithelial cells (HBEC) were cultured in normal media with or without cigarette smoke condensate (CSC) for up to 9 months under potentially relevant exposure conditions. Western blot analysis showed that CSC mediated dose- and time-dependent diminution of H4K16Ac and H4K20Me3, while increasing relative levels of H3K27Me3; these histone alterations coincided with decreased DNA methyltransferase 1 (DNMT1) and increased DNMT3b expression. Pyrosequencing and quantitative RT-PCR experiments revealed time-dependent hypomethylation of D4Z4, NBL2, and LINE-1 repetitive DNA sequences; up-regulation of H19, IGF2, MAGE-A1, and MAGE-A3; activation of Wnt signaling; and hypermethylation of tumor suppressor genes such as RASSF1A and RAR-beta, which are frequently silenced in human lung cancers. Array-based DNA methylation profiling identified additional novel DNA methylation targets in soft-agar clones derived from CSC-exposed HBEC; a CSC gene expression signature was also identified in these cells. Progressive genomic hypomethylation and locoregional DNA hypermethylation induced by CSC coincided with a dramatic increase in soft-agar clonogenicity. Collectively, these data indicate that cigarette smoke induces 'cancer-associated' epigenomic alterations in cultured respiratory epithelia. This in vitro model may prove useful for delineating early epigenetic mechanisms regulating gene expression during pulmonary carcinogenesis.

  6. An increased CD25-positive intestinal regulatory T lymphocyte population is dependent upon Cox-2 activity in the Apcmin/+ model.

    Science.gov (United States)

    Faluyi, O O; Fitch, P; Howie, S E M

    2018-01-01

    Only mismatch repair (MMR)-deficient colorectal cancer (CRC) appears to respond well to programmed death (PD)-1 inhibition at the present time. Emerging evidence suggests a role for micro-environmental factors such as CD25 + cells modulating response to PD-1 inhibition. In the Apc Min/+ model of familial adenomatous polyposis (MMR-proficient CRC), increased Cyclooxygenase-2 (Cox-2) expression by cells which include alternatively activated mononuclear phagocytes promotes intestinal tumorigenesis by mechanisms which may include immune suppression. To gain insight into this, we compared regulatory T cell (T reg ) populations between Apc Min/+ and wild-type mice prior to and after the phase of increased intestinal Cox-2-dependent prostaglandin E 2 (PGE 2 ) production. There was no difference in systemic T reg function or numbers between Apc Min/+ and wild-type mice. However, increased numbers of small intestinal CD25 + T regs were observed with increased Cox-2 activity in the absence of any difference in the expression of Tgf-β or Tslp between Apc Min/+ and wild-type mice. Cox-2 inhibitor therapy (Celecoxib) reversed the increase in Apc Min/+ intestinal CD25 + T reg numbers, without decreasing numbers of CD25 + systemic T regs . Forkhead box protein 3 (FoxP3 + ) and Cox-2 + cells were co-localized to the interstitium of adenomas of Apc min/+ mice. These results suggest selective dependence of an 'activated T reg ' phenotype on paracrine Cox-2 activity in Apc Min/+ small intestine. For therapeutic potential, further studies are required to evaluate the relevance of these findings to human cancer as well as the functional significance of CD25 + intestinal T regs in cancer. © 2017 British Society for Immunology.

  7. The optimal intestinal segment length for experimental size-mismatched intestinal transplantation: Defining the maximum length with the lowest blood flow needs in a porcine model.

    Science.gov (United States)

    Frongia, Giovanni; Majlesara, Ali; Saffari, Arash; Emami, Golnaz; Golriz, Mohammad; Günther, Patrick; Mehrabi, Arianeb

    2018-03-01

    Transplanted Intestinal Segments (IS) must match the perfusion capacities of the recipient. This can be challenging during a size-mismatched SBTX. In this study, we defined the maximum IS length with lowest blood flow needs in a porcine model by evaluating the physiological perfusion rates of different IS lengths. Blood flow in the SMA, aorta segment four, and general circulatory parameters were monitored before and after sequential intestinal resection. IS lengths of 30 cm, 60 cm, 120 cm, and 300 cm (n = 8 each) were compared. The IS blood flow requirements increased with IS length (30 cm: 19.5 ± 3.4 mL/min; 60 cm: 16.9 ± 6.7 mL/min; 120 cm: 34.9 ± 8.5 mL/min; 300 cm: 62.9 ± 11.6 mL/min). Absolute IS blood flow (P = .004), percentage IS blood flow uptake from the SMA (P = .001), and percentage IS blood flow uptake from the aorta (P = .005) increased significantly between 60 cm and 120 cm. We concluded that 60 cm was the maximum IS length before blood flow demands significantly increased in a porcine model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. PVA gel as a potential adhesion barrier: a safety study in a large animal model of intestinal surgery.

    Science.gov (United States)

    Renz, Bernhard W; Leitner, Kurt; Odermatt, Erich; Worthley, Daniel L; Angele, Martin K; Jauch, Karl-Walter; Lang, Reinhold A

    2014-03-01

    Intra-abdominal adhesions following surgery are a major source of morbidity and mortality including abdominal pain and small bowel obstruction. This study evaluated the safety of PVA gel (polyvinyl alcohol and carboxymethylated cellulose gel) on intestinal anastomoses and its potential effectiveness in preventing adhesions in a clinically relevant large animal model. Experiments were performed in a pig model with median laparotomy and intestinal anastomosis following small bowel resection. The primary endpoint was the safety of PVA on small intestinal anastomoses. We also measured the incidence of postoperative adhesions in PVA vs. control groups: group A (eight pigs): stapled anastomosis with PVA gel compared to group B (eight pigs), which had no PVA gel; group C (eight pigs): hand-sewn anastomosis with PVA gel compared to group B (eight pigs), which had no anti-adhesive barrier. Animals were sacrificed 14 days after surgery and analyzed. All anastomoses had a patent lumen without any stenosis. No anastomoses leaked at an intraluminal pressure of 40 cmH2O. Thus, anastomoses healed very well in both groups, regardless of whether PVA was administered. PVA-treated animals, however, had significantly fewer adhesions in the area of stapled anastomoses. The hand-sewn PVA group also had weaker adhesions and trended towards fewer adhesions to adjacent organs. These results suggest that PVA gel does not jeopardize the integrity of intestinal anastomoses. However, larger trials are needed to investigate the potential of PVA gel to prevent adhesions in gastrointestinal surgery.

  9. Mechanical Elongation of the Small Intestine: Evaluation of Techniques for Optimal Screw Placement in a Rodent Model

    Directory of Open Access Journals (Sweden)

    P. A. Hausbrandt

    2013-01-01

    Full Text Available Introduction. The aim of this study was to evaluate techniques and establish an optimal method for mechanical elongation of small intestine (MESI using screws in a rodent model in order to develop a potential therapy for short bowel syndrome (SBS. Material and Methods. Adult female Sprague Dawley rats (n=24 with body weight from 250 to 300 g (Σ=283 were evaluated using 5 different groups in which the basic denominator for the technique involved the fixation of a blind loop of the intestine on the abdominal wall with the placement of a screw in the lumen secured to the abdominal wall. Results. In all groups with accessible screws, the rodents removed the implants despite the use of washers or suits to prevent removal. Subcutaneous placement of the screw combined with antibiotic treatment and dietary modifications was finally successful. In two animals autologous transplantation of the lengthened intestinal segment was successful. Discussion. While the rodent model may provide useful basic information on mechanical intestinal lengthening, further investigations should be performed in larger animals to make use of the translational nature of MESI in human SBS treatment.

  10. Evaluation of an FDA approved library against laboratory models of human intestinal nematode infections.

    Science.gov (United States)

    Keiser, Jennifer; Panic, Gordana; Adelfio, Roberto; Cowan, Noemi; Vargas, Mireille; Scandale, Ivan

    2016-07-01

    Treatment options for infections with soil-transmitted helminths (STH) - Ascaris lumbricoides, Trichuris trichiura and the two hookworm species, Ancylostoma duodenale and Necator americanus - are limited despite their considerable global health burden. The aim of the present study was to test the activity of an openly available FDA library against laboratory models of human intestinal nematode infections. All 1,600 drugs were first screened against Ancylostoma ceylanicum third-stage larvae (L3). Active compounds were scrutinized and toxic compounds, drugs indicated solely for topical use, and already well-studied anthelmintics were excluded. The remaining hit compounds were tested in parallel against Trichuris muris first-stage larvae (L1), Heligmosomoides polygyrus third-stage larvae (L3), and adult stages of the three species in vitro. In vivo studies were performed in the H. polygyrus and T. muris mice models. Fifty-four of the 1,600 compounds tested revealed an activity of > 60 % against A. ceylanicum L3 (hit rate of 3.4 %), following incubation at 200 μM for 72 h. Twelve compounds progressed into further screens. Adult A. ceylanicum were the least affected (1/12 compounds active at 50 μM), while eight of the 12 test compounds revealed activity against T. muris L1 (100 μM) and adults (50 μM), and H. polygyrus L3 (200 μM). Trichlorfon was the only compound active against all stages of A. ceylanicum, H. polygyrus and T. muris. In addition, trichlorfon achieved high worm burden reductions of 80.1 and 98.9 %, following a single oral dose of 200 mg/kg in the T. muris and H. polygyrus mouse model, respectively. Drug screening on the larval stages of intestinal parasitic nematodes is feasible using small libraries and important given the empty drug discovery and development pipeline for STH infections. Differences and commonalities in drug activities across the different STH species and stages were confirmed. Hits identified might serve as a

  11. Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.; Graaf, A.A. de; Maathuis, A.; Waard, P. de; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, W.M. de; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  12. The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity.

    Science.gov (United States)

    Wang, Feng; Guo, Rui-Xia; Li, Wen-Xing; Yu, Bao-Feng; Han, Bai; Liu, Li-Xin; Han, De-Wu

    2017-08-01

    The present study aimed to investigate the effects of intestinal endotoxemia (IETM) in a rat model of aluminum neurotoxicity established by D-galactose and aluminum trichloride (AlCl3). Adult Wistar rats were administered D‑galactose and AlCl3 to create the aluminum neurotoxicity model. The learning and memory abilities of the rats were subsequently observed using a Morris water maze test and the serum levels of lipopolysaccharide (LPS), tumor necrosis factor (TNF)‑α, interleukin (IL)‑1, diamine oxidase (DAO), glutamine (Gln) and glutaminase were measured. The expression of S‑100β in the serum was detected using an enzyme‑linked immunosorbent assay. The expression levels of the amyloid β‑protein (Aβ) precursor (APP), presenilin 1 (PS1), β‑site APP‑cleaving enzyme (BACE), zona occludens protein (ZO)‑1 and Aβ 1‑40 in the brain of rats were detected via reverse‑transcription polymerase chain reaction, western blotting and immunohistochemistry. The levels of LPS, TNF‑α, IL‑1, DAO, Gln and S‑100β in serum and the mRNA and protein expression levels of APP, PS1, BACE and Aβ1‑40 in the brain were markedly increased in the model rats compared with controls. The level of glutaminase in the serum and the expression of ZO‑1 in the brain were decreased in the model rats compared with controls. IETM was present in the rat model of aluminum neurotoxicity established by D‑galactose and AlCl3 and may be important in the development of this neurotoxicity.

  13. Intestinal Obstruction

    Science.gov (United States)

    ... the obstruction along the intestines. Treatment Suction via nasogastric tube Fluids given by vein Surgery for strangulation Sometimes ... nose and placed in the stomach (called a nasogastric tube) or into the intestine. Suction is applied to ...

  14. Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models

    Directory of Open Access Journals (Sweden)

    Lilach Golan

    2011-01-01

    Enterohemorrhagic Escherichia coli (EHEC O157:H7 is an important cause of diarrhea, hemorrhagic colitis and hemolytic uremic syndrome in humans worldwide. The two major virulence determinants of EHEC are the Shiga toxins (Stx and the type III secretion system (T3SS, including the injected effectors. Lack of a good model system hinders the study of EHEC virulence. Here, we investigated whether bovine and human intestinal xenografts in SCID mice can be useful for studying EHEC and host tissue interactions. Fully developed, germ-free human and bovine small intestine and colon were established by subcutaneous transplantation of human and bovine fetal gut into SCID mice. Xenografts were allowed to develop for 3–4 months and thereafter were infected by direct intraluminal inoculation of Stx-negative derivatives of EHEC O157:H7, strain EDL933. The small intestine and colon xenografts closely mimicked the respective native tissues. Upon infection, EHEC induced formation of typical attaching and effacing lesions and tissue damage that resembled hemorrhagic colitis in colon xenografts. By contrast, xenografts infected with an EHEC mutant deficient in T3SS remained undamaged. Furthermore, EHEC did not attach to or damage the epithelium of small intestinal tissue, and these xenografts remained intact. EHEC damaged the colon in a T3SS-dependent manner, and this model is therefore useful for studying the molecular details of EHEC interactions with live human and bovine intestinal tissue. Furthermore, we demonstrate that Stx and gut microflora are not essential for EHEC virulence in the human gut.

  15. Changes in Enteric Neurons of Small Intestine in a Rat Model of Irritable Bowel Syndrome with Diarrhea.

    Science.gov (United States)

    Li, Shan; Fei, Guijun; Fang, Xiucai; Yang, Xilin; Sun, Xiaohong; Qian, Jiaming; Wood, Jackie D; Ke, Meiyun

    2016-04-30

    Physical and/or emotional stresses are important factors in the exacerbation of symptoms in irritable bowel syndrome (IBS). Several lines of evidence support that a major impact of stress on the gastrointestinal tract occurs via the enteric nervous system. We aimed to evaluate histological changes in the submucosal plexus (SMP) and myenteric plexus (MP) of the distal ileum in concert with the intestinal motor function in a rat model of IBS with diarrhea. The rat model was induced by heterotypic chronic and acute stress (CAS). The intestinal transit was measured by administering powdered carbon by gastric gavage. Double immunohistochemical fluorescence staining with whole-mount preparations of SMP and MP of enteric nervous system was used to assess changes in expression of choline acetyltransferase, vasoactive intestinal peptide, or nitric oxide synthase in relation to the pan neuronal marker, anti-Hu. The intestinal transit ratio increased significantly from control values of 50.8% to 60.6% in the CAS group. The numbers of enteric ganglia and neurons in the SMP were increased in the CAS group. The proportions of choline acetyltransferase- and vasoactive intestinal peptide-immunoreactive neurons in the SMP were increased (82.1 ± 4.3% vs. 76.0 ± 5.0%, P = 0.021; 40.5 ± 5.9% vs 28.9 ± 3.7%, P = 0.001), while nitric oxide synthase-immunoreactive neurons in the MP were decreased compared with controls (23.3 ± 4.5% vs 32.4 ± 4.5%, P = 0.002). These morphological changes in enteric neurons to CAS might contribute to the dysfunction in motility and secretion in IBS with diarrhea.

  16. Keratin 8 expression in head and neck epithelia

    Directory of Open Access Journals (Sweden)

    Berghaus Alexander

    2008-09-01

    Full Text Available Abstract Background The intermediate filament forming protein keratin 8 (K8 is a tumour-associated antigen, which was shown to be over-expressed in a variety of malignancies. Here, we present a study of K8 expression in squamous epithelia of the head and neck area, including normal mucosa, hyperplastic and dysplastic leukoplakia, carcinomas of different sub-localisations, and lymph node metastases. Methods K8 expression was assessed upon immunohistochemistry with specific antibodies in cryosections of primary tumours of the head and neck area. Results K8 expression was characteristic of transformed tissue and marked early stages of disease, i.e. dysplastic oral leukoplakia, but not normal or hyperplastic epithelium. With the exception of carcinomas of the larynx and the tongue, K8 expression also strictly differentiated carcinomas from normal epithelium of the same origin. Furthermore, K8high was characteristic of cells, which had detached from the sites of primary tumours and had been invading the surrounding tissue at the time point of surgery. Conclusion K8 is an excellent marker for head and neck malignancies, which allows for early detection as well as for visualisation of potentially disseminating tumour cells in vivo.

  17. Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia.

    Directory of Open Access Journals (Sweden)

    Shinsaku Tokuda

    Full Text Available The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.

  18. Dietary Putrescine Reduces the Anticarcinogenic Intestinal Activity of Sulindac in a Murine Model of Familial Adenomatous Polyposis

    Science.gov (United States)

    Ignatenko, Natalia A.; Besselsen, David G.; Basu Roy, Upal K.; Stringer, David E.; Blohm-Mangone, Karen A.; Padilla-Torres, Jose L.; Guillen-R, Jose M.; Gerner, Eugene W.

    2013-01-01

    The nonsteroidal antiinflammatory drug sulindac displays chemopreventive activity in patients with familial adenomatous polyposis (FAP). Sulindac metabolites induce apoptosis in colon tumor cells, in part, by a polyamine-dependent mechanism that can be suppressed with exogenous putrescine. To determine the relevance of this mechanism in animals, we treated ApcMin/+ mice, a model of human FAP, with sulindac alone or in combination with dietary putrescine. Sulindac increased steady-state RNA levels and enzymatic activity of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase and intestinal levels of monoacetylspermidine, spermidine, and spermine in the small intestine of mice. Sulindac also decreased the activity of the biosynthetic enzyme ornithine decarboxylase but not adenosylmethionine decarboxylase (AMD). Dietary putrescine increased intestinal putrescine contents, whereas the combination of dietary putrescine and sulindac yielded the highest levels of intestinal putrescine and correlated with a statistically significant reduction in AMD enzyme activity. Dietary putrescine did not statistically significantly increase tumorigenesis, although it significantly increased the grade of adenoma dysplasia (P putrescine. These data suggest that sulindac exerts at least some of its anticarcinogenic effects in mice via a polyamine-dependent mechanism. Because high concentrations of putrescine can be found in certain dietary components, it may be advantageous to restrict dietary putrescine consumption in patients undergoing treatment with sulindac. PMID:17474863

  19. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  20. Absence of intestinal inflammation and postoperative ileus in a mouse model of laparoscopic surgery

    NARCIS (Netherlands)

    Gomez-Pinilla, Pedro J.; Binda, Maria M.; Lissens, Ann; Di Giovangiulio, Martina; van Bree, Sjoerd H.; Nemethova, Andrea; Stakenborg, Nathalie; Farro, Giovanna; Bosmans, Goele; Matteoli, Gianluca; Deprest, Jan; Boeckxstaens, Guy E.

    2014-01-01

    Postoperative ileus (POI) is characterized by impaired gastrointestinal motility resulting from intestinal handling-associated inflammation. The introduction of laparoscopic surgery has dramatically reduced the duration of POI. However, it remains unclear to what extent this results in a reduction

  1. Dosimetry of paranasal sinus and mastoid epithelia in radium-exposed humans

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1981-01-01

    Dose calculations for 228 Ra and 226 Ra are presented for the sinus and mastoid epithelia and lead to the conclusion that the isotopes are of comparable dosimetric significance for the production of carcinomas in patients exposed to comparable levels

  2. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  3. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Directory of Open Access Journals (Sweden)

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  4. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    Science.gov (United States)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  5. Intestinal Transportations of Main Chemical Compositions of Polygoni Multiflori Radix in Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2014-01-01

    Full Text Available Context. Polygoni Multiflori Radix (PMR is originated from the root of Polygonum multiflorum Thunb. and used in oriental countries for centuries. However, little researches pay close attention to the absorption of its major constituents. Objective. Transepithelial transport of TSG, RL, PL, and four anthraquinones is carried out. Materials and Methods. Caco-2 cell monolayer, which represented a well-established model for the study of intestinal transport of nutrients and xenobiotics, was used in this paper. Results. The apparent permeability coefficients (Papp in the Caco-2 cell monolayers were TSG (2.372 × 10−9 < EG (2.391 × 10−9 < EN (2.483 × 10−9 < PL (4.917 × 10−9 < RN (1.707 × 10−8 < RL (1.778 × 10−8 < AE (1.952 × 10−8. Thus, RN, RL, and AE were considered partly absorbed, while other constituents were hardly absorbed. Discussion and Conclusion. Glycosides showed poor permeabilities than aglycones. In the meantime, TSG and EN gave out poor recovery rates in this assay, which indicated that TSG and EN may accumulate or metabolise in the Caco-2 cells. In silico prediction indicated that Gibbs energy (r=0.751, p<0.05 and heat of form (r=0.701, p<0.05 were strongly positively correlated with Papp.

  6. Intestinal Transportations of Main Chemical Compositions of Polygoni Multiflori Radix in Caco-2 Cell Model

    Science.gov (United States)

    Li, Na; Lin, Pei; Li, Yunfei; Mao, Xiaojian; Bao, Getuzhaori; Zhao, Ronghua

    2014-01-01

    Context. Polygoni Multiflori Radix (PMR) is originated from the root of Polygonum multiflorum Thunb. and used in oriental countries for centuries. However, little researches pay close attention to the absorption of its major constituents. Objective. Transepithelial transport of TSG, RL, PL, and four anthraquinones is carried out. Materials and Methods. Caco-2 cell monolayer, which represented a well-established model for the study of intestinal transport of nutrients and xenobiotics, was used in this paper. Results. The apparent permeability coefficients (P app) in the Caco-2 cell monolayers were TSG (2.372 × 10−9) < EG (2.391 × 10−9) < EN (2.483 × 10−9) < PL (4.917 × 10−9) < RN (1.707 × 10−8) < RL (1.778 × 10−8) < AE (1.952 × 10−8). Thus, RN, RL, and AE were considered partly absorbed, while other constituents were hardly absorbed. Discussion and Conclusion. Glycosides showed poor permeabilities than aglycones. In the meantime, TSG and EN gave out poor recovery rates in this assay, which indicated that TSG and EN may accumulate or metabolise in the Caco-2 cells. In silico prediction indicated that Gibbs energy (r = 0.751, p < 0.05) and heat of form (r = 0.701, p < 0.05) were strongly positively correlated with P app. PMID:24693324

  7. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro

    Science.gov (United States)

    Kasper, Jennifer Y; Hermanns, Maria Iris; Cavelius, Christian; Kraegeloh, Annette; Jung, Thomas; Danzebrink, Rolf; Unger, Ronald E; Kirkpatrick, Charles James

    2016-01-01

    The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells

  8. Insights into Campylobacter jejuni colonization of the mammalian intestinal tract using a novel mouse model of infection.

    Science.gov (United States)

    Stahl, Martin; Vallance, Bruce A

    2015-01-01

    A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. We recently published that mice deficient in Single IgG Interleukin-1 related receptor (SIGIRR), a repressor of MyD88-dependent innate immune signaling, were highly susceptible to enteric infection by murine bacterial pathogens. Subsequently, we successfully employed these mice as an animal model for the human pathogen C. jejuni and gained substantial new insights into infection by this pathogen. The infected mice developed significant intestinal inflammation, primarily via TLR4 stimulation. Furthermore, the resulting gastroenteritis was dependent on C. jejuni pathogenesis as bacterial strains suffering mutations in key virulence factors were attenuated in causing disease. The ability to infect SIGIRR-deficient mice with C. jejuni sheds new light onto how these bacteria colonize the mucus layer of the intestinal tract, invade epithelial cells, and raises new prospects for studying the virulence strategies and pathogenesis of C. jejuni.

  9. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. Results : In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most...... with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in relation to optimal treatment strategies. The modeling approach used in the study is generic......Background : This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains...

  10. Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models

    OpenAIRE

    Golan, Lilach; Gonen, Erez; Yagel, Simcha; Rosenshine, Ilan; Shpigel, Nahum Y.

    2010-01-01

    SUMMARY Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important cause of diarrhea, hemorrhagic colitis and hemolytic uremic syndrome in humans worldwide. The two major virulence determinants of EHEC are the Shiga toxins (Stx) and the type III secretion system (T3SS), including the injected effectors. Lack of a good model system hinders the study of EHEC virulence. Here, we investigated whether bovine and human intestinal xenografts in SCID mice can be useful for studying EHEC and...

  11. Demethoxycurcumin from Curcuma longa rhizome suppresses iNOS induction in an in vitro inflamed human intestinal mucosa model.

    Science.gov (United States)

    Somchit, Mayura; Changtam, Chatchawan; Kimseng, Rungruedi; Utaipan, Tanyarath; Lertcanawanichakul, Monthon; Suksamrarn, Apichart; Chunglok, Warangkana

    2014-01-01

    It is known that inducible nitric oxide synthase (iNOS)/nitric oxide (NO) plays an integral role during intestinal inflammation, an important factor for colon cancer development. Natural compounds from Curcuma longa L. (Zingiberaceae) have long been a potential source of bioactive materials with various beneficial biological functions. Among them, a major active curcuminoid, demethoxycurcumin (DMC) has been shown to possess anti-inflammatory properties in lipopolysaccharide (LPS)-activated macrophages or microglia cells. However, the role of DMC on iNOS expression and NO production in an in vitro inflamed human intestinal mucosa model has not yet been elucidated. This study concerned inhibitory effects on iNOS expression and NO production of DMC in inflamed human intestinal Caco-2 cells. An in vitro model was generated and inhibitory effects on NO production of DMC at 65 μM for 24-96 h were assessed by monitoring nitrite levels. Expression of iNOS mRNA and protein was also investigated. DMC significantly decreased NO secretion by 35-41% in our inflamed cell model. Decrease in NO production by DMC was concomitant with down-regulation of iNOS at mRNA and protein levels compared to proinflammatory cytokine cocktail and LPS-treated controls. Mechanism of action of DMC may be partly due to its potent inhibition of the iNOS pathway. Our findings suggest that DMC may have potential as a therapeutic agent against inflammation-related diseases, especially in the gut.

  12. Novel Polyfermentor intestinal model (PolyFermS for controlled ecological studies: validation and effect of pH.

    Directory of Open Access Journals (Sweden)

    Annina Zihler Berner

    Full Text Available In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study we describe a novel Polyfermentor Intestinal Model (PolyFermS designed to compare the effects of different treatments on the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models, the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be developed for the direct comparison of different

  13. Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model

    Directory of Open Access Journals (Sweden)

    Sydney Moser

    2016-07-01

    Full Text Available While the potential of dietary phenolics to mitigate glycemic response has been proposed, the translation of these effects to phenolic rich foods such as 100% grape juice (GJ remains unclear. Initial in vitro screening of GJ phenolic extracts from American grape varieties (V. labrusca; Niagara and Concord suggested limited inhibitory capacity for amylase and α-glucosidase (6.2%–11.5% inhibition; p < 0.05. Separately, all GJ extracts (10–100 µM total phenolics did reduce intestinal trans-epithelial transport of deuterated glucose (d7-glu and fructose (d7-fru by Caco-2 monolayers in a dose-dependent fashion, with 60 min d7-glu/d7-fru transport reduced 10%–38% by GJ extracts compared to control. To expand on these findings by assessing the ability of 100% GJ to modify starch digestion and glucose transport from a model starch-rich meal, 100% Niagara and Concord GJ samples were combined with a starch rich model meal (1:1 and 1:2 wt:wt and glucose release and transport were assessed in a coupled in vitro digestion/Caco-2 cell model. Digestive release of glucose from the starch model meal was decreased when digested in the presence of GJs (5.9%–15% relative to sugar matched control. Furthermore, transport of d7-glu was reduced 10%–38% by digesta containing bioaccessible phenolics from Concord and Niagara GJ compared to control. These data suggest that phenolics present in 100% GJ may alter absorption of monosaccharides naturally present in 100% GJ and may potentially alter glycemic response if consumed with a starch rich meal.

  14. Contribution of H. pylori and smoking trends to US incidence of intestinal-type noncardia gastric adenocarcinoma: a microsimulation model.

    Directory of Open Access Journals (Sweden)

    Jennifer M Yeh

    Full Text Available Although gastric cancer has declined dramatically in the US, the disease remains the second leading cause of cancer mortality worldwide. A better understanding of reasons for the decline can provide important insights into effective preventive strategies. We sought to estimate the contribution of risk factor trends on past and future intestinal-type noncardia gastric adenocarcinoma (NCGA incidence.We developed a population-based microsimulation model of intestinal-type NCGA and calibrated it to US epidemiologic data on precancerous lesions and cancer. The model explicitly incorporated the impact of Helicobacter pylori and smoking on disease natural history, for which birth cohort-specific trends were derived from the National Health and Nutrition Examination Survey (NHANES and National Health Interview Survey (NHIS. Between 1978 and 2008, the model estimated that intestinal-type NCGA incidence declined 60% from 11.0 to 4.4 per 100,000 men, <3% discrepancy from national statistics. H. pylori and smoking trends combined accounted for 47% (range = 30%-58% of the observed decline. With no tobacco control, incidence would have declined only 56%, suggesting that lower smoking initiation and higher cessation rates observed after the 1960s accelerated the relative decline in cancer incidence by 7% (range = 0%-21%. With continued risk factor trends, incidence is projected to decline an additional 47% between 2008 and 2040, the majority of which will be attributable to H. pylori and smoking (81%; range = 61%-100%. Limitations include assuming all other risk factors influenced gastric carcinogenesis as one factor and restricting the analysis to men.Trends in modifiable risk factors explain a significant proportion of the decline of intestinal-type NCGA incidence in the US, and are projected to continue. Although past tobacco control efforts have hastened the decline, full benefits will take decades to be realized, and further discouragement of smoking and

  15. FETAL METABOLIC PROGRAMMING OF THE SMALL INTESTINE IN A COPENHAGEN SHEEP MODEL

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Khanal, Prabhat; Kongsted, Anna Hauntoft

    Fetal metabolic programming states that early life nutrition is implicated with the risk of later disease development and both under- and overnutrition during gestation might predispose individuals to develop obesity or diabetes later in life. Obesity operations called “gastric bypass” operations...... have shown unexpected involvement of the small intestine in diabetes pathophysiology as it in most cases result in a complete resolution of the diabetes before weight loss. Therefore we hypothesize that the small intestine is a subject of metabolic programming and that this programming can predispose...... effects on gene-expression, however the results vary between genes. These observations suggest that small intestine function has been programmed by the late-gestation Low or High diet at gene expression level, whereas the physiological metabolic functions has mainly been affected by the HCHF diet...

  16. Protective effects of L-carnitine on intestinal ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Yuan, Yong; Guo, Hao; Zhang, Yi; Zhou, Dong; Gan, Ping; Liang, Dao Ming; Chen, Jia Yong

    2011-04-04

    Ischemia/reperfusion (IR) injury of the intestine is a major problem in abdominal pathological condition and is associated with a high morbidity and mortality. The purpose of the study is to determine whether the L-carnitine can prevent the harmful effects of small intestinal IR injury in rats. Thirty Sprague-Dawley rats were randomly divided into three groups. Sham operated group (S), for shamoperated, the IR group for rats submitted to 45-minute of intestinal ischemia and 2-hour reperfusion, and IR+L group for those IR group treated with L-carnitine before reperfusion. All the rats were given EmGFP labelled E. coli DH5α through gavage 2-hour before the operative procedure. Afterwards the bacterial translocation (BT) from mesenteric lymph nodes (MLN), liver, spleen, lung and portal vein blood were detected. And the colony forming units/g (CFU/g) were counted. The TNF-α, IL-1β, IL-6, and IL-10 in serum were measured by ELISA. The morphometric study was measured by Chius classification. The levels of BT were higher in the IR group than IR+L group (P E. coli DH5α was hardly detected in the S group. The IR+L rats had enhancement of IL-10 and suppressed production of serum TNF-α, IL-1β and IL-6, compared to IR group rats (P L-carnitine pretreatment has a positive effect on reducing levels of BT, on inhibiting secretion of proinflammatory cytokines, and on lessening intestinal mucosa injury during small intestinal IR injury. L-carnitine; Ischemia/reperfusion injury; Intestine.

  17. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Directory of Open Access Journals (Sweden)

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  18. An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis.

    Directory of Open Access Journals (Sweden)

    Devendra Bansal

    Full Text Available Amoebiasis (a human intestinal infection affecting 50 million people every year is caused by the protozoan parasite Entamoeba histolytica. To study the molecular mechanisms underlying human colon invasion by E. histolytica, we have set up an ex vivo human colon model to study the early steps in amoebiasis. Using scanning electron microscopy and histological analyses, we have established that E. histolytica caused the removal of the protective mucus coat during the first two hours of incubation, detached the enterocytes, and then penetrated into the lamina propria by following the crypts of Lieberkühn. Significant cell lysis (determined by the release of lactodehydrogenase and inflammation (marked by the secretion of pro-inflammatory molecules such as interleukin 1 beta, interferon gamma, interleukin 6, interleukin 8 and tumour necrosis factor were detected after four hours of incubation. Entamoeba dispar (a closely related non-pathogenic amoeba that also colonizes the human colon was unable to invade colonic mucosa, lyse cells or induce an inflammatory response. We also examined the behaviour of trophozoites in which genes coding for known virulent factors (such as amoebapores, the Gal/GalNAc lectin and the cysteine protease 5 (CP-A5, which have major roles in cell death, adhesion (to target cells or mucus and mucus degradation, respectively were silenced, together with the corresponding tissue responses. Our data revealed that the signalling via the heavy chain Hgl2 or via the light chain Lgl1 of the Gal/GalNAc lectin is not essential to penetrate the human colonic mucosa. In addition, our study demonstrates that E. histolytica silenced for CP-A5 does not penetrate the colonic lamina propria and does not induce the host's pro-inflammatory cytokine secretion.

  19. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  20. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  1. The Effect of Lactulose on the Composition of the Intestinal Microbiota and Short-chain Fatty Acid Production in Human Volunteers and a Computer-controlled Model of the Proximal Large Intestine

    NARCIS (Netherlands)

    Venema, K.; Nuenen, M.H.M.C. van; Heuvel, E.G. van den; Pool, W.; Vossen, J.M.B.M. van der

    2003-01-01

    The objective of this study was to compare the in vivo effect of lactulose on faecal parameters with the effect in a dynamic, computer-controlled in vitro model of the proximal large intestine (TIM-2). Faecal samples from 10 human volunteers collected before (non-adapted) and after 1 week of

  2. Efeitos hemodinâmicos e metabólicos iniciais da perfusão hipotérmica intestinal in situ.: avaliação de um novo modelo canino de autotransplante intestinal Initial hemodynamic and metabolic effects of intestinal hypothermic perfusion in situ: an alternative model of canine intestinal autotransplantation

    Directory of Open Access Journals (Sweden)

    Ruy Jorge Cruz Junior

    2004-08-01

    , hemoglobina assim como na temperatura central. CONCLUSÃO: O modelo de autotransplante intestinal é extremamente útil e de fácil execução, para a avaliação inicial de soluções de preservação e/ou drogas antioxidantes, comumente utilizadas no transplante de intestino.Intestinal transplantation is an acceptable therapy for children and adults with short bowel syndrome. The great majority of large animal experimental models of intestinal transplantation are complex and take a lot of time to be performed. In this study, we developed an alternative model of intestinal autotransplantation and evaluate the initial impact of isolated hypothermic intestinal perfusion with Ringer’s lactate solution on hemodynamic and metabolic parameters. METHODS: Six pentobarbital anesthetized mongrel dogs were used in this study (22,8±1,4 Kg. Systemic hemodynamic were evaluated through a Swan-Ganz and arterial catheters; while gastrointestinal tract perfusion by superior mesenteric vein blood flow (SMVBF, ultrasonic flowprobe and intestinal mucosal pCO2 (pCO2-int and pCO2-gap, gas tonometry. Initially, the proximal jejunum and distal ileum were transected; at the basis of the mesentery excepting the superior mesenteric artery and vein. The small bowel was then perfused in situ with cold (4ºC Ringer’s lactate solution for 30 minutes, with an automatic pump. The animals where observed for 120 minutes after reperfusion. Blood samples were collected from thoracic aorta for gas blood analysis. RESULTS: Hypothermic intestinal perfusion induced a partial reduction on SMVBF, only in the first 30 min of reperfusion (398±102,8 to 587±70,9 ml/min and an increase on pCO2-gap (2±2,7 to 29,8±6 mmHg. During the experimental protocol, we did not observe significant alterations on systemic hemodynamic or metabolic parameters (MAP, CO, pH, base excess and hemoglobin levels as well as on central core temperature. CONCLUSION: The model of intestinal transplantation is very useful to test different

  3. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium

    NARCIS (Netherlands)

    Gerbe, F.; van Es, J.H.; Makrini, L.; Brulin, B.; Mellitzer, G.; Robine, S.; Romagnolo, B.; Shroyer, N.F.; Bourgaux, J.F.; Pignodel, C.; Clevers, H.; Jay, P.

    2011-01-01

    The unique morphology of tuft cells was first revealed by electron microscopy analyses in several endoderm-derived epithelia. Here, we explore the relationship of these cells with the other cell types of the intestinal epithelium and describe the first marker signature allowing their unambiguous

  4. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models

    NARCIS (Netherlands)

    Heijmans, Jarom; Muncan, Vanesa; Jacobs, Rutger J.; de Jonge-Muller, Eveline S. M.; Graven, Laura; Biemond, Izak; Ederveen, Antwan G.; Groothuis, Patrick G.; Mosselman, Sietse; Hardwick, James C.; Hommes, Daniel W.; van den Brink, Gijs R.

    2011-01-01

    Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the

  5. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  6. Intestinal capacity to digest and absorb carbohydrates is maintained in a rat model of cholestasis

    NARCIS (Netherlands)

    Los, E. Leonie; Wolters, Henk; Stellaard, Frans; Kuipers, Folkert; Verkade, Henkjan J.; Rings, Edmond H. H. M.

    Cholestasis is associated with systemic accumulation of bile salts and with deficiency of bile in the intestinal lumen. During the past years bile salts have been identified as signaling molecules that regulate lipid, glucose, and energy metabolism. Bile salts have also been shown to activate

  7. Changes of intestinal mucosa in hand-fed rats-model for human coeliac disease

    Czech Academy of Sciences Publication Activity Database

    Kozáková, Hana; Štěpánková, Renata; Kolínská, Jiřina; Tučková, Ludmila; Tlaskalová, Helena

    1998-01-01

    Roč. 36, č. 4 (1998), s. 336 ISSN 0044-2771. [European Intestinal Transport Group Meeting /15./. Sundvollen, 17.05.1998-21.05.1998] R&D Projects: GA ČR GA303/96/1256; GA ČR GA311/97/0784; GA MZd IZ3761 Subject RIV: EC - Immunology Impact factor: 0.890, year: 1998

  8. Effect of adenine on bacterial translocation using technetium-99m labeled E. coli in an intestinal obstruction model in rats

    International Nuclear Information System (INIS)

    Ugur Oflaz; Fatma Yurt Lambrecht; Osman Yilmaz; Cetin Pekcetin

    2013-01-01

    This study aims to investigate effects of adenine on bacterial translocation (BT) using 99m Tc-labeled E. coli in an intestinal obstruction rat model. In the study twenty-one rats were used. The rats were divided into three groups according to different feeding patterns. The control group (CG) was fed with a standard chow diet for 7 days. Group A1 and group A2 were fed with adenine supplemented chow diet for 7 days. At the end of the feeding period, after all groups was submitted intestinal obstruction. 99m Tc-E. coli was injected into the rats' terminal ileum under anesthetic. The rats were sacrificed under aseptic conditions at 24th h after the surgery. The uptake of 99m Tc-E. coli was determined in organs such as the liver, mesenteric lymph nodes, spleen and ileum. Group A1 and group A2 results show that the uptake of 99m Tc-E. coli decreased in the blood and organs comparing to the CG. As a result, it was observed that adenine reduced the level of BT when compared with CG. The beneficial effect of adenine on BT in intestinal obstruction was observed. However, further studies are needed to more clearly assess how this benefit can be achieved. (author)

  9. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Welak, Scott R; Pritchard, Kirkwood A; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2012-10-01

    Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3. Control pups were vaginally delivered and dam fed. Preterm pups were delivered via cesarean section and exposed to intermittent hypoxia and formula feeds containing lipopolysaccharide (NEC) with and without IAP. Three different standardized doses were administered to a group of pups treated with 40, 4, and 0.4U/kg of bovine IAP (NEC+IAP40, IAP4, or IAP0.4U). Reverse transcription-real-time polymerase chain reaction (RT-PCR) for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α on liver and lung tissues and serum cytokine analysis for interleukin (IL)-1β, IL-6, IL-10, and TNF-α were performed. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests, expressed as mean±standard error of the mean and P≤0.05 considered significant. Levels of cytokines IL-1β, IL-6, and TNF-α increased significantly in NEC versus control, returning to control levels with increasing doses of supplemental enteral IAP. Hepatic and pulmonary TNF-α and iNOS messenger ribonucleic acid expressions increased in NEC, and the remaining elevated despite IAP supplementation. Proinflammatory cytokine expression is increased systemically with intestinal NEC injury. Administration of IAP significantly reduces systemic proinflammatory cytokine expression in a dose-dependent manner. Early supplemental enteral IAP may reduce NEC-related injury and be useful for reducing effects caused by a proinflammatory cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella pneumoniae Challenge

    Directory of Open Access Journals (Sweden)

    Sammeta V. Raju

    2013-07-01

    Full Text Available Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 h did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.

  11. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  12. Disruption of the F-actin cytoskeleton and monolayer barrier integrity induced by PAF and the protective effect of ITF on intestinal epithelium.

    Science.gov (United States)

    Xu, Ling-fen; Xu, Cheng; Mao, Zhi-Qin; Teng, Xu; Ma, Li; Sun, Mei

    2011-02-01

    To explore whether platelet-activating factor (PAF) can disrupt the intestinal epithelial barrier directly and is associated with structural alterations of the F-actin-based cytoskeleton, and to observe the protective effect of intestinal trefoil factor (ITF), we establish an intestinal epithelia barrier model using Caco-2 cells in vitro. Transepithelial electrical resistance and unidirectional flux of lucifer yellow were measured to evaluate barrier permeability; immunofluorescent staining and flow cytometry were applied to observe morphological alterations and to quantify proteins of the F-actin cytoskeleton: the tight junction marker ZO-1 and Claudin-1 were observed using immunofluorescent staining. PAF significantly increased paracellular permeability, at the same time, F-actin and tight junction proteins were disrupted. It was thought that ITF could reverse the high permeability by restoring normal F-actin, ZO-1 and Claudin-1 structures. These results collectively demonstrated that PAF plays an important role in the regulation of mucosal permeability and the effects of PAF are correlated with structural alterations of the F-actin-based cytoskeleton and of tight junctions. ITF can protect intestinal epithelium against PAF-induced disruption by restricting the rearrangement of the F-actin cytoskeleton and of tight junctions.

  13. Computer-aided three-dimensional images of the helical structure in the apical tubule of absorbing epithelia

    International Nuclear Information System (INIS)

    Kawai, Yoshinori; Hatae, Tanenori

    1990-01-01

    Computer-aided three-dimensional models of the helical structure within an apical tubule (AT) of several absorbing epithelia (kidney proximal tubule, visceral yolk sac, and ductuli efferentes) were constructed using ray-tracing graphics software to further understand the highly ordered structural configuration. Our previous electron microscopic studies using thin-section technique have first revealed the helical structure within the AT fixed in situ with a mixture of formaldehyde, glutaraldehyde, and osmium tetroxide. In the present study, we construct a computer-aided three-dimensional model of the helical structure in the AT to explain quantitative data obtained by the electron microscopy. The model could well explain several aspects of electron microscopical images and enables us to understand more clearly the three-dimensional configuration of the unique structure associated with the AT. (author)

  14. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F

    2005-01-01

    Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore......, the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium...

  15. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  16. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  17. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been...... to examine the presence of BK channels in kidney epithelia and determine the actual number and distribution of these channels. For this purpose, a selective peptidyl ligand for BK channels called iberiotoxin or the radiolabeled double mutant analog 125I-IbTX-D19Y/Y36F has been employed. The presence of BK...... channels were determined by a isotope flux assay where up to 44% of the total K+ channel activity could be inhibited by iberiotoxin indicating that BK channels are widely present in kidney epithelia. Consistent with these functional studies, 125I-IbTX-D19Y/Y36F binds to membrane vesicles from outer cortex...

  18. Methods to Study Epithelial Transport Protein Function and Expression in Native Intestine and Caco-2 Cells Grown in 3D.

    Science.gov (United States)

    Anabazhagan, Arivarasu N; Chatterjee, Ishita; Priyamvada, Shubha; Kumar, Anoop; Tyagi, Sangeeta; Saksena, Seema; Alrefai, Waddah A; Dudeja, Pradeep K; Gill, Ravinder K

    2017-03-16

    The intestinal epithelium has important transport and barrier functions that play key roles in normal physiological functions of the body while providing a barrier to foreign particles. Impaired epithelial transport (ion, nutrient, or drugs) has been associated with many diseases and can have consequences that extend beyond the normal physiological functions of the transporters, such as by influencing epithelial integrity and the gut microbiome. Understanding the function and regulation of transport proteins is critical for the development of improved therapeutic interventions. The biggest challenge in the study of epithelial transport is developing a suitable model system that recapitulates important features of the native intestinal epithelial cells. Several in vitro cell culture models, such as Caco-2, T-84, and HT-29-Cl.19A cells are typically used in epithelial transport research. These cell lines represent a reductionist approach to modeling the epithelium and have been used in many mechanistic studies, including their examination of epithelial-microbial interactions. However, cell monolayers do not accurately reflect cell-cell interactions and the in vivo microenvironment. Cells grown in 3D have shown to be promising models for drug permeability studies. We show that Caco-2 cells in 3D can be used to study epithelial transporters. It is also important that studies in Caco-2 cells are complemented with other models to rule out cell specific effects and to take into account the complexity of the native intestine. Several methods have been previously used to assess the functionality of transporters, such as everted sac and uptake in isolated epithelial cells or in isolated plasma membrane vesicles. Taking into consideration the challenges in the field with respect to models and the measurement of transport function, we demonstrate here a protocol to grow Caco-2 cells in 3D and describe the use of an Ussing chamber as an effective approach to measure serotonin

  19. A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development.

    Science.gov (United States)

    De Matteis, Giovanni; Graudenzi, Alex; Antoniotti, Marco

    2013-06-01

    Colon rectal cancers (CRC) are the result of sequences of mutations which lead the intestinal tissue to develop in a carcinoma following a "progression" of observable phenotypes. The actual modeling and simulation of the key biological structures involved in this process is of interest to biologists and physicians and, at the same time, it poses significant challenges from the mathematics and computer science viewpoints. In this report we give an overview of some mathematical models for cell sorting (a basic phenomenon that underlies several dynamical processes in an organism), intestinal crypt dynamics and related problems and open questions. In particular, major attention is devoted to the survey of so-called in-lattice (or grid) models and off-lattice (off-grid) models. The current work is the groundwork for future research on semi-automated hypotheses formation and testing about the behavior of the various actors taking part in the adenoma-carcinoma progression, from regulatory processes to cell-cell signaling pathways.

  20. FETAL METABOLIC PROGRAMMING OF THE SMALL INTESTINE IN A COPENHAGEN SHEEP MODEL

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Khanal, Prabhat; Kongsted, Anna Hauntoft

    Fetal metabolic programming states that early life nutrition is implicated with the risk of later disease development and both under- and overnutrition during gestation might predispose individuals to develop obesity or diabetes later in life. Obesity operations called “gastric bypass” operations...... have shown unexpected involvement of the small intestine in diabetes pathophysiology as it in most cases result in a complete resolution of the diabetes before weight loss. Therefore we hypothesize that the small intestine is a subject of metabolic programming and that this programming can predispose...... for diabetes development. Twin-pregnant ewes where fed a Normal, a Low or a High diet during the last 6 weeks of gestation and the twin lambs where fed either a Conventional or a High fat, High carbohydrate (HCHF) diet during the first 6 months of life. Feeding challenge tests were performed on all lambs...

  1. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy

    NARCIS (Netherlands)

    Grabinger, T.; Luks, L.; Kostadinova, F.; Zimberlin, C.; Medema, J. P.; Leist, M.; Brunner, T.

    2014-01-01

    Intestinal epithelial cells (IECs) not only have a critical function in the absorption of nutrients, but also act as a physical barrier between our body and the outside world. Damage and death of the epithelial cells lead to the breakdown of this barrier function and inflammation due to access of

  2. Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model

    DEFF Research Database (Denmark)

    Barnes, Jennifer L; Hartmann, Bolette; Holst, Jens Juul

    2012-01-01

    Butyrate has been shown to stimulate intestinal adaptation when added to parenteral nutrition (PN) following small bowel resection but is not available in current PN formulations. The authors hypothesized that pre- and probiotic administration may be a clinically feasible method to administer...

  3. Histamine H1 receptors are expressed in mouse and frog semicircular canal sensory epithelia.

    Science.gov (United States)

    Botta, Laura; Tritto, Simona; Perin, Paola; Laforenza, Umberto; Gastaldi, Giulia; Zampini, Valeria; Zucca, Gianpiero; Valli, Stefano; Masetto, Sergio; Valli, Paolo

    2008-03-05

    Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. Their site and mechanism of action, however, are still poorly understood. To increase our knowledge of the histaminergic system in the vestibular organs, we have investigated the expression of H1 and H3 histamine receptors in the frog and mouse semicircular canal sensory epithelia. Analysis was performed by mRNA reverse transcriptase-PCR, immunoblotting and immunocytochemistry experiments. Our data show that both frog and mouse vestibular epithelia express H1 receptors. Conversely no clear evidence for H3 receptors expression was found.

  4. Differential expression of integrins and laminin-5 in normal oral epithelia

    DEFF Research Database (Denmark)

    Thorup, A K; Dabelsteen, Erik; Schou, S

    1997-01-01

    of different integrins and laminin-5 was studied in oral epithelium to characterize regional variations in these adhesion molecules. Monoclonal antibodies directed against alpha 2-alpha 6 beta 1/alpha 6 beta 4 and laminin-5 were examined in cryopreserved biopsies of normal mucosa by immunohistochemistry...... epithelia, whereas there was increased suprabasal expression in nonkeratinized mucosa. These results indicate inhomogeneity in the basal cell population of oral squamous epithelia and differential expression of integrins, which may reflect differences in the underlying stroma. Laminin-5 deposits...... in the stroma underneath the junctional epithelium may indicate subclinical gingival inflammation....

  5. Development and application of a low volume, increased throughput in vitro model simulating the passage through small intestine

    DEFF Research Database (Denmark)

    Cieplak, Tomasz Maciej

    The gastrointestinal tract (GIT) is an organ system responsible for food digestion, absorption of nutrients and the expelling of waste. Due to a high demand for testing the intestinal faith of pharmaceutical and bioactive food formulations, there is great interest from food, bioscience...... in vitro model of the small intestine (duodenum, jejunum, ileum) as a screening platform for the study of food digestibility, intestinal survival of probiotics and absorption of drugs and small nutrients. The GIT harbours a vast number of microorganisms called the gut microbiota. These bacteria...... are unevenly distributed along the GIT, ranging from 101-103 cells/g in the stomach, through 103-108 cells/g in the small intestine and up to 1012 cells/g in the colon. In the last decade, numerous studies have been conducted focussing on the faecal microbiota composition and its impact on the host health...

  6. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model.

    Science.gov (United States)

    Huang, Xiao-Zhong; Li, Zhong-Rong; Zhu, Li-Bin; Huang, Hui-Ya; Hou, Long-Long; Lin, Jing

    2014-08-01

    Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.

  7. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model.

    Science.gov (United States)

    Krul, Cyrille; Humblot, Christèle; Philippe, Catherine; Vermeulen, Martijn; van Nuenen, Marleen; Havenaar, Robert; Rabot, Sylvie

    2002-06-01

    Cruciferous vegetables, such as Brassica, which contain substantial quantities of glucosinolates, have been suggested to possess anticarcinogenic activity. Cutting and chewing of cruciferous vegetables releases the thioglucosidase enzyme myrosinase, which degrades glucosinolates to isothiocyanates and other minor metabolites. Cooking of cruciferous vegetables inactivates the myrosinase enzyme, allowing intact glucosinolates to reach the large intestine, where they can be degraded by the indigenous microflora into isothiocyanates. This local release of isothiocyanates may explain the protective effect of cruciferous vegetables on the colon epithelium. However, little is known about the amounts and identities of glucosinolate metabolites produced by the human microflora. The production of allyl isothiocyanate from sinigrin was investigated in a dynamic in vitro large-intestinal model, after inoculation with a complex microflora of human origin. Sinigrin and allyl isothiocyanate concentrations were analysed in the lumen and dialysis fluid of the model. Peak levels of allyl isothiocyanate were observed between 9 and 12 h after the addition of sinigrin. The model was first set up with a pooled and cultured human microflora, in which 1 and 4% of, respectively, 1 and 15 mM sinigrin, was converted into AITC. However, the conversion rate was remarkably higher if different individual human microflora were used. Between 10% and 30% (mean 19%) of the sinigrin was converted into allyl isothiocyanate. The results of this study suggest that allyl isothiocyanate is converted further into other, yet unknown, metabolites.

  8. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Science.gov (United States)

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adherent-invasive Escherichia coli, strain LF82 disrupts apical junctional complexes in polarized epithelia

    Directory of Open Access Journals (Sweden)

    Ossa Juan C

    2009-08-01

    Full Text Available Abstract Background Although bacteria are implicated in the pathogenesis of chronic inflammatory bowel diseases (IBD, mechanisms of intestinal injury and immune activation remain unclear. Identification of adherent-invasive Escherichia coli (AIEC strains in IBD patients offers an opportunity to characterize the pathogenesis of microbial-induced intestinal inflammation in IBD. Previous studies have focused on the invasive phenotype of AIEC and the ability to replicate and survive in phagocytes. However, the precise mechanisms by which these newly identified microbes penetrate the epithelial lining remain to be clarified. Therefore, the aim of this study was to delineate the effects of AIEC, strain LF82 (serotype O83:H1 on model polarized epithelial monolayers as a contributor to intestinal injury in IBD. Results Infection of T84 and Madin-Darby Canine Kidney-I polarized epithelial cell monolayers with AIEC, strain LF82 led to a reduction in transepithelial electrical resistance and increased macromolecular (10 kilodalton dextran flux. Basolateral AIEC infection resulted in more severe disruption of the epithelial barrier. Increased permeability was accompanied by a redistribution of the tight junction adaptor protein, zonula occludens-1, demonstrated by confocal microscopy and formation of gaps between cells, as shown by transmission electron microscopy. After 4 h of infection of intestine 407 cells, bacteria replicated in the cell cytoplasm and were enclosed in membrane-bound vesicles positive for the late endosomal marker, LAMP1. Conclusion These findings indicate that AIEC, strain LF82 disrupts the integrity of the polarized epithelial cell barrier. This disruption enables bacteria to penetrate into the epithelium and replicate in the host cell cytoplasm. These findings provide important links between microbes related to IBD, the intestinal epithelial cell barrier and disease pathogenesis.

  10. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Jonathan M. Williams

    2013-11-01

    The gut barrier, composed of a single layer of intestinal epithelial cells (IECs held together by tight junctions, prevents the entrance of harmful microorganisms, antigens and toxins from the gut lumen into the blood. Small intestinal homeostasis is normally maintained by the rate of shedding of senescent enterocytes from the villus tip exactly matching the rate of generation of new cells in the crypt. However, in various localized and systemic inflammatory conditions, intestinal homeostasis can be disturbed as a result of increased IEC shedding. Such pathological IEC shedding can cause transient gaps to develop in the epithelial barrier and result in increased intestinal permeability. Although pathological IEC shedding has been implicated in the pathogenesis of conditions such as inflammatory bowel disease, our understanding of the underlying mechanisms remains limited. We have therefore developed a murine model to study this phenomenon, because IEC shedding in this species is morphologically analogous to humans. IEC shedding was induced by systemic lipopolysaccharide (LPS administration in wild-type C57BL/6 mice, and in mice deficient in TNF-receptor 1 (Tnfr1−/−, Tnfr2 (Tnfr2−/−, nuclear factor kappa B1 (Nfκb1−/− or Nfĸb2 (Nfĸb2−/−. Apoptosis and cell shedding was quantified using immunohistochemistry for active caspase-3, and gut-to-circulation permeability was assessed by measuring plasma fluorescence following fluorescein-isothiocyanate–dextran gavage. LPS, at doses ≥0.125 mg/kg body weight, induced rapid villus IEC apoptosis, with peak cell shedding occurring at 1.5 hours after treatment. This coincided with significant villus shortening, fluid exudation into the gut lumen and diarrhea. A significant increase in gut-to-circulation permeability was observed at 5 hours. TNFR1 was essential for LPS-induced IEC apoptosis and shedding, and the fate of the IECs was also dependent on NFκB, with signaling via NFκB1 favoring cell survival and

  11. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  12. Intestinal absorption of aloin, aloe-emodin, and aloesin; A comparative study using two in vitro absorption models.

    Science.gov (United States)

    Park, Mi-Young; Kwon, Hoon-Jeong; Sung, Mi-Kyung

    2009-01-01

    Aloe products are one of the top selling health-functional foods in Korea, however the adequate level of intake to achieve desirable effects are not well understood. The objective of this study was to determine the intestinal uptake and metabolism of physiologically active aloe components using in vitro intestinal absorption model. The Caco-2 cell monolayer and the everted gut sac were incubated with 5-50 microM of aloin, aloe-emodin, and aloesin. The basolateral appearance of test compounds and their glucuronosyl or sulfated forms were quantified using HPLC. The % absorption of aloin, aloe-emodin, and aloesin was ranged from 5.51% to 6.60%, 6.60% to 11.32%, and 7.61% to 13.64%, respectively. Up to 18.15%, 18.18%, and 38.86% of aloin, aloe-emodin, and aloesin, respectively, was absorbed as glucuronidated or sulfated form. These results suggest that a significant amount is transformed during absorption. The absorption rate of test compounds except aloesin was similar in two models; more aloesin was absorbed in the everted gut sac than in the Caco-2 monolayer. These results provide information to establish adequate intake level of aloe supplements to maintain effective plasma level.

  13. Intestinal Ischemia

    Science.gov (United States)

    ... weight loss Intestinal ischemia Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  14. Effects of Tylosin on Bacterial Mucolysis, Clostridium perfringens Colonization, and Intestinal Barrier Function in a Chick Model of Necrotic Enteritis

    Science.gov (United States)

    Collier, C. T.; van der Klis, J. D.; Deplancke, B.; Anderson, D. B.; Gaskins, H. R.

    2003-01-01

    Necrotic enteritis (NE) is a worldwide poultry disease caused by the alpha toxin-producing bacterium Clostridium perfringens. Disease risk factors include concurrent coccidial infection and the dietary use of cereal grains high in nonstarch polysaccharides (NSP), such as wheat, barley, rye, and oats. Outbreaks of NE can be prevented or treated by the use of in-feed antibiotics. However, the current debate regarding the prophylactic use of antibiotics in animal diets necessitates a better understanding of factors that influence intestinal colonization by C. perfringens as well as the pathophysiological consequences of its growth. We report a study with a chick model of NE, which used molecular (16S rRNA gene [16S rDNA]) and culture-based microbiological techniques to investigate the impact of the macrolide antibiotic tylosin phosphate (100 ppm) and a dietary NSP (pectin) on the community structure of the small intestinal microbiota relative to colonization by C. perfringens. The effects of tylosin and pectin on mucolytic activity of the microbiota and C. perfringens colonization and their relationship to pathological indices of NE were of particular interest. The data demonstrate that tylosin reduced the percentage of mucolytic bacteria in general and the concentration of C. perfringens in particular, and these responses correlated in a temporal fashion with a reduction in the occurrence of NE lesions and an improvement in barrier function. The presence of pectin did not significantly affect the variables measured. Thus, it appears that tylosin can control NE through its modulation of C. perfringens colonization and the mucolytic activity of the intestinal microbiota. PMID:14506046

  15. Intestinal ischemia-reperfusion induced diaphragm contractility dysfunction: Electrophysiological and ultrastructural study in a neonatal rat model.

    Science.gov (United States)

    Taşkınlar, Hakan; Naycı, Ali; Çömelekoğlu, Ülkü; Polat, Gürbüz; Zorludemir, Suzan; Avlan, Dinçer

    2016-03-01

    To evaluate the remote effect of intestinal ischemia reperfusion (IR) injury mediated by tumor necrosis factor alpha (TNF-α) on diaphragm contractility functions and whether administration of NAC may counteract the possible detrimental effects in an experimental neonatal rat model. 40 Wistar rat pups were randomized into four groups; ten animals in each. Intestinal ischemia was conducted by obstructing mesentery of intestines by a silk loop. In the control group; only laparotomy was performed. After 1h ischemia, reperfusion was conducted for 1h in 1h group, 24h for 24h group and 24h for 24h+NAC group but administration of NAC (150mg/kg/day) intraperitoneally twice a day was performed. Inflammatory response was evaluated by tissue TNF-α level and contractility functions by mechanic activity studies of the diaphragm. Electrophysiology of the diaphragm and the phrenic nerve was conducted to determine neuropathy or myopathy and transmission electron microscopy was performed to evaluate ultrastructural changes in the phrenic nerve. Diaphragm tissue TNF-α level significantly increased in 1h and 24h groups (P=0.004, P=0.0001; respectively). Diaphragm mechanic activation force and duration significantly decreased at 1h and 24h (P=0.004, P=0.02 and P=0.0001, P=0.0001; respectively). NAC administration significantly prevented decrease in the maximal contraction and the duration (PIntestinal IR induced elevation of TNF-α level in the diaphragm. Impairment in the diaphragm contractility and neuropathic changes in the phrenic nerve occurred even in the first hour of reperfusion. NAC administration prevented these detrimental effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model.

    Science.gov (United States)

    Walczak, Agata P; Kramer, Evelien; Hendriksen, Peter J M; Helsdingen, Richard; van der Zande, Meike; Rietjens, Ivonne M C M; Bouwmeester, Hans

    2015-01-01

    The conditions of the gastrointestinal tract may change the physicochemical properties of nanoparticles (NPs) and therewith the bioavailability of orally taken NPs. Therefore, we assessed the impact of in vitro gastrointestinal digestion on the protein corona of polystyrene NPs (PS-NPs) and their subsequent translocation across an in vitro intestinal barrier. A co-culture of intestinal Caco-2 and HT29-MTX cells was exposed to 50 nm PS-NPs of different charges (positive and negative) in two forms: pristine and digested in an in vitro gastrointestinal digestion model. In vitro digestion significantly increased the translocation of all, except the "neutral", PS-NPs. Upon in vitro digestion, translocation was 4-fold higher for positively charged NPs and 80- and 1.7-fold higher for two types of negatively charged NPs. Digestion significantly reduced the amount of protein in the corona of three out of four types of NPs. This reduction of proteins was 4.8-fold for "neutral", 3.5-fold for positively charged and 1.8-fold for one type of negatively charged PS-NPs. In vitro digestion also affected the composition of the protein corona of PS-NPs by decreasing the presence of higher molecular weight proteins and shifting the protein content of the corona to low molecular weight proteins. These findings are the first to report that in vitro gastrointestinal digestion significantly affects the protein corona and significantly increases the in vitro translocation of differently charged PS-NPs. These findings stress the importance of including the in vitro digestion in future in vitro intestinal translocation screening studies for risk assessment of orally taken NPs.

  17. Elevation of HO-1 Expression Mitigates Intestinal Ischemia-Reperfusion Injury and Restores Tight Junction Function in a Rat Liver Transplantation Model

    Directory of Open Access Journals (Sweden)

    Xinjin Chi

    2015-01-01

    Full Text Available Aims. This study was aimed at investigating whether elevation of heme oxygenase-1 (HO-1 expression could lead to restoring intestinal tight junction (TJ function in a rat liver transplantation model. Methods. Intestinal mucosa injury was induced by orthotopic autologous liver transplantation (OALT on male Sprague-Dawley rats. Hemin (a potent HO-1 activator and zinc-protoporphyrin (ZnPP, a HO-1 competitive inhibitor, were separately administered in selected groups before OALT. The serum and intestinal mucosa samples were collected at 8 hours after the operation for analysis. Results. Hemin pretreatment significantly reduced the inflammation and oxidative stress in the mucosal tissue after OALT by elevating HO-1 protein expression, while ZnPP pretreatment aggravated the OALT mucosa injury. Meanwhile, the restriction on the expression of tight junction proteins zonula occludens-1 and occludin was removed after hemin pretreatment. These molecular events led to significant improvement on intestinal barrier function, which was proved to be through increasing nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2 and reducing nuclear translocation of nuclear factor kappa-B (NF-κB in intestinal injured mucosa. Summary. Our study demonstrated that elevation of HO-1 expression reduced the OALT-induced intestinal mucosa injury and TJ dysfunction. The HO-1 protective function was likely mediated through its effects of anti-inflammation and antioxidative stress.

  18. Elevation of HO-1 Expression Mitigates Intestinal Ischemia-Reperfusion Injury and Restores Tight Junction Function in a Rat Liver Transplantation Model

    Science.gov (United States)

    Chi, Xinjin; Yao, Weifeng; Xia, Hua; Jin, Yi; Li, Xi; Cai, Jun; Hei, Ziqing

    2015-01-01

    Aims. This study was aimed at investigating whether elevation of heme oxygenase-1 (HO-1) expression could lead to restoring intestinal tight junction (TJ) function in a rat liver transplantation model. Methods. Intestinal mucosa injury was induced by orthotopic autologous liver transplantation (OALT) on male Sprague-Dawley rats. Hemin (a potent HO-1 activator) and zinc-protoporphyrin (ZnPP, a HO-1 competitive inhibitor), were separately administered in selected groups before OALT. The serum and intestinal mucosa samples were collected at 8 hours after the operation for analysis. Results. Hemin pretreatment significantly reduced the inflammation and oxidative stress in the mucosal tissue after OALT by elevating HO-1 protein expression, while ZnPP pretreatment aggravated the OALT mucosa injury. Meanwhile, the restriction on the expression of tight junction proteins zonula occludens-1 and occludin was removed after hemin pretreatment. These molecular events led to significant improvement on intestinal barrier function, which was proved to be through increasing nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and reducing nuclear translocation of nuclear factor kappa-B (NF-κB) in intestinal injured mucosa. Summary. Our study demonstrated that elevation of HO-1 expression reduced the OALT-induced intestinal mucosa injury and TJ dysfunction. The HO-1 protective function was likely mediated through its effects of anti-inflammation and antioxidative stress. PMID:26064429

  19. Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model.

    Science.gov (United States)

    Generoso, Simone V; Viana, Mirelle; Santos, Rosana; Martins, Flaviano S; Machado, José A N; Arantes, Rosa M E; Nicoli, Jacques R; Correia, Maria I T D; Cardoso, Valbert N

    2010-06-01

    Probiotic is a preparation containing microorganisms that confers beneficial effect to the host. This work assessed whether oral treatment with viable or heat-killed yeast Saccharomyces cerevisiae strain UFMG 905 prevents bacterial translocation (BT), intestinal barrier integrity, and stimulates the immunity, in a murine intestinal obstruction (IO) model. Four groups of mice were used: mice undergoing only laparotomy (CTL), undergoing intestinal obstruction (IO) and undergoing intestinal obstruction after previous treatment with viable or heat-killed yeast. BT, determined as uptake of (99m)Tc-E. coli in blood, mesenteric lymph nodes, liver, spleen and lungs, was significantly higher in IO group than in CTL group. Treatments with both yeasts reduced BT in blood and all organs investigated. The treatment with both yeasts also reduced intestinal permeability as determined by blood uptake of (99m)Tc-DTPA. Immunological data demonstrated that both treatments were able to significantly increase IL-10 levels, but only viable yeast had the same effect on sIgA levels. Intestinal lesions were more severe in IO group when compared to CTL and yeasts groups. Concluding, both viable and heat-killed cells of yeast prevent BT, probably by immunomodulation and by maintaining gut barrier integrity. Only the stimulation of IgA production seems to depend on the yeast viability.

  20. The effect of ulinastatin on the small intestine injury and mast cell degranulation in a rat model of sepsis induced by CLP.

    Science.gov (United States)

    Zhang, Yi-Jing; Li, Ming; Meng, Mei; Feng, Mei; Qin, Cheng-Yong

    2009-09-01

    Sepsis could be initiated by the gastrointestinal tract injury and subsequent bacterial translocation. In the present experiment, we aimed to investigate effect of ulinastatin (UTI) on the small intestinal injury and bacterial translocation in septic rats and role of mast cells degranulation in its action. Fifty-four male Wistar rats were randomly divided into three groups: sham laparatomy, cecal ligation and puncture (CLP), and CLP plus UTI. CLP was used to develop septic rat model and UTI was administered to rats intraperitoneally (50,000 U/kg) 30 min prior to CLP operation. After CLP or sham operation, variable parameters were investigated in three subsets of animals. One subset was used for measurements of nitrite and nitrate (NO(x)) concentration in plasma at 1, 6, 12, 18, and 24h and levels of NO(x) and iNOS mRNA in the small intestine, RMCP-II released into the small intestinal lumen, bacterial translocation and morphologic changes at 24h. The other subsets were used for the small intestinal motility and microvascular in vivo at 24h. Bacterial translocation, barrier injury, impaired motility and blood flow, mast cells degranulation of the small intestine in the CLP group were found more severe than that in the sham group. Elevated RMCP-II, NO(x), and iNOS mRNA levels were also detected in the CLP group. Application of UTI not only protected the small intestine from sepsis but also diminished changes of intestinal mast cells. UTI can significantly ameliorate the small intestinal injury and subsequent bacterial translocation by inhibiting mast cells degranulation in septic rats.

  1. Intestinal Coccidia

    OpenAIRE

    MJ Ggaravi

    2007-01-01

    Intestinal Coccidia are a subclass of Apicomplexa phylum. Eucoccidida are facultative heteroxenous, but some of them are monoxenous. They have sexual and asexual life cycle. Some coccidia are human pathogens, for example: Cryptosporidium: Cryptosporidiums has many species that are mammalian intestinal parasites.C. Parvum specie is a human pathogenic protozoa. Cryptosporidum has circle or ellipse shapes and nearly 4-6 mm. It is transmitted in warm seasons. Oocyst is obtained insexual life cycl...

  2. Expression of blood group-related glycoconjugates in the junctional and other oral epithelia of rodents

    DEFF Research Database (Denmark)

    Mackenzie, I C; Dabelsteen, Erik; Rittman, G

    1995-01-01

    BACKGROUND: The junctional epithelium (JE) attaches the gingiva to the non-vital tooth surface and has other unusual properties which protect the underlying periodontal tissues. The JE differs from other gingival and oral epithelia in its unusual expression of cytokeratins typical of both stratif...

  3. A scanning electron microscopic study of the dysplastic epithelia adjacent to oral squamous cell carcinoma.

    Science.gov (United States)

    Worawongvasu, Ratthapong

    2007-01-01

    By light microscopy, the dysplastic oral epithelia due to the neoplastic processes are similar to epithelial changes due to the inflammatory processes. Scanning electron microscopy may elucidate the different surface changes between the two. The aim of this study was to examine the surface appearances of the dysplastic oral epithelia adjacent to oral squamous cell carcinoma to see if there are any surface changes. A total of 2 specimens, one specimen from each patient with oral squamous cell carcinoma, were used for this study. Each specimen was divided in two. One half was prepared for light microscopy and the other half was prepared for scanning electron microscopy. Light microscopically, the epithelia showed mild dysplasia. By scanning electron microscopy, the keratinized cells showed irregular microridges surrounding pits, which were variable and irregular in size and shape, and the nonkeratinized cells showed parallel microridges with irregularly widened intervals between each microridge. Irregular, broad, and partly swollen microridges and irregular short, stubby surface projections were also seen. The oral epithelia adjacent to oral squamous cell carcinoma showed mild dysplasia light microscopically but appeared abnormal by scanning electron microscopy. The abnormal epithelial cells showed pleomorphism, irregular and disoriented microridges, and abnormal surface microstructures.

  4. Postmitotic basal cells in squamous cell epithelia are identified with Dolichos biflorus agglutinin - functional consequences

    Czech Academy of Sciences Publication Activity Database

    Hrdličková-Celá, E.; Plzák, J.; Holíková, Z.; Dvořánková, B.; Smetana, Karel

    2001-01-01

    Roč. 109, č. 10 (2001), s. 714-720 ISSN 0903-4641 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : squamous cell epithelia * carcinoma * lectin Subject RIV: CE - Biochemistry Impact factor: 1.924, year: 2001

  5. The urokinase receptor homolog Haldisin is a novel differentiation marker of stratum granulosum in squamous epithelia

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Kriegbaum, Mette C; Hertz, Emil P

    2013-01-01

    Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated ...

  6. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Katherine J D A Excoffon

    2010-03-01

    Full Text Available Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7 and CAR(Ex8. We found low-level expression of the CAR(Ex8 isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7, CAR(Ex8 localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7, CAR(Ex8 differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8 providing a potential mechanism for the apical localization of CAR(Ex8 in airway epithelial. In summary, apical localization of CAR(Ex8 may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.

  7. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia.

    Science.gov (United States)

    Excoffon, Katherine J D A; Gansemer, Nicholas D; Mobily, Matthew E; Karp, Philip H; Parekh, Kalpaj R; Zabner, Joseph

    2010-03-26

    Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR) to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7) and CAR(Ex8)). We found low-level expression of the CAR(Ex8) isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7), CAR(Ex8) localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7), CAR(Ex8) differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8) providing a potential mechanism for the apical localization of CAR(Ex8) in airway epithelial. In summary, apical localization of CAR(Ex8) may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.

  8. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  9. Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine

    NARCIS (Netherlands)

    Gänzle, M.G.; Hertel, C.; Vossen, J.M.B.M. van der; Hammes, W.P.

    1999-01-01

    The survival of Lactobacillus curvatus LTH 1174 (bac+) and (bac-) in combination with Escherichia coli LTH 1600 or Listeria innocua DSM20649 during transit through a dynamic model of the human stomach and small intestine (GIT model) was studied. Furthermore, we determined the digestion of curvacin A

  10. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Sateesh Krishnamurthy

    2012-01-01

    Full Text Available The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE or human airway epithelia (HAE grown at the air–liquid interface (ALI, the delivery of a Dicer-substrate small-interfering RNA (DsiRNA duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF, a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi responses.

  11. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle.

    Science.gov (United States)

    Stecher, Bärbel; Berry, David; Loy, Alexander

    2013-09-01

    The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Intestinal Absorption of Triterpenoids and Flavonoids from Glycyrrhizae radix et rhizoma in the Human Caco-2 Monolayer Cell Model.

    Science.gov (United States)

    Wang, Xiao-Xue; Liu, Gui-Yan; Yang, Yan-Fang; Wu, Xiu-Wen; Xu, Wei; Yang, Xiu-Wei

    2017-09-29

    Glycyrrhizae radix et rhizoma has been used as a traditional Chinese medicine for the treatment of various diseases. Triterpenoids and flavonoids from the plant have many beneficial effects and their chemical structures are modified in the gastrointestinal tract after oral administration. However, absorption of these triterpenoids and flavonoids still needs to be defined. Here, the uptake and transepithelial transport of the selected major triterpenoids, glycyrrhizin ( 1 ), glycyrrhetic acid-3- O -mono-β-d-glucuronide ( 2 ), and glycyrrhetinic acid ( 3 ); and the selected major flavonoids, licochalcone A ( 4 ), licochalcone B ( 5 ), licochalcone C ( 6 ), echinatin ( 7 ), isoliquiritin apioside ( 8 ), liquiritigenin ( 9 ), liquiritin apioside ( 10 ) isolated from Glycyrrhizae radix et rhizoma , were investigated in the human intestinal epithelium-like Caco-2 cell monolayer model. Compounds 3 , 5 - 7 , and 9 were designated as well-absorbed compounds, 2 and 4 were designated as moderately absorbed ones, and 1 , 8 , and 10 were assigned for the poorly absorbed ones. The absorption mechanism of well and moderately absorbed compound was mainly passive diffusion to pass through the human intestinal Caco-2 cell monolayer. These findings provided useful information for predicting their oral bioavailability and the clinical application.

  13. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  14. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  15. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis.

    Science.gov (United States)

    Marín, Marta; María Giner, Rosa; Ríos, José-Luis; Recio, María Carmen

    2013-12-12

    Pomegranate (Punica granatum L.; Lythraceae) has traditionally been used for the treatment of various inflammatory diseases, including ulcerative colitis (UC). Because its fruits and extracts are rich in ellagitannins, which release ellagic acid when hydrolyzed, consumption of pomegranate products is currently being widely promoted for their potential health effects, including the prevention of inflammatory diseases and cancer. To evaluate the anti-inflammatory effects of ellagic acid on dextran sulfate sodium (DSS)-induced acute and chronic experimental colitis in two different strains of mice and to elucidate its possible mechanisms of action. In the acute UC model, female Balb/C mice were treated with DSS (5%) for seven days while concomitantly receiving a dietary supplement of ellagic acid (2%). In the chronic UC model, female C57BL/6 mice received four week-long cycles of DSS (1% and 2%) interspersed with week-long recovery periods along with a diet supplemented with ellagic acid (0.5%). In acute model of UC, ellagic acid ameliorated disease severity slightly as observed both macroscopically and through the profile of inflammatory mediators (IL-6, TNF-α, and IFN-γ). In the chronic UC model, ellagic acid significantly inhibited the progression of the disease, reducing intestinal inflammation and decreasing histological scores. Moreover, mediators such as COX-2 and iNOS were downregulated and the signaling pathways p38 MAPK, NF-κB, and STAT3 were blocked. Our study reinforces the hypothetical use of ellagic acid as an anti-inflammatory complement to conventional UC treatment in chronic UC patients and could be considered in the dietary prevention of intestinal inflammation and related cancer development. © 2013 Published by Elsevier Ireland Ltd.

  16. Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection.

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    Full Text Available Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR.Cultured human airway epithelial cells (CaLu-3 were used as a model to investigate the effect of sidestream cigarette smoke (SSS, mainstream cigarette smoke (MSS, or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection.This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant

  17. Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection.

    Science.gov (United States)

    Sharma, Priyanka; Kolawole, Abimbola O; Core, Susan B; Kajon, Adriana E; Excoffon, Katherine J D A

    2012-01-01

    Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR. Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β) is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection. This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant therapeutics and

  18. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection.

    Science.gov (United States)

    Huang, Fu-Chen

    2017-08-07

    Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella , a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.

  19. Infliximab's influence on anastomotic strength and degree of inflammation in intestinal surgery in a rabbit model

    DEFF Research Database (Denmark)

    Frostberg, Erik; Ström, Petter; Gerke, Oke

    2014-01-01

    BACKGROUND: Infliximab, a TNF-alpha inhibitor, is a potent anti-inflammatory drug in the treatment of inflammatory bowel diseases. Recent studies have investigated the effect of infliximab treatment on postoperative complications such as anastomotic leakage, however, with conflicting results...... and conclusions. The purpose of this study was to investigate whether a single dose infliximab has an adverse effect on the anastomotic healing process, observed as reduced anastomotic breaking strength and histopathologically verified lower grade of inflammatory response, in the small intestine of a rabbit....... METHODS: Thirty New Zealand rabbits (median weight 2.5 kg) were allocated to treatment with an intravenous bolus of either 10 mg/kg infliximab (n = 15) or placebo (n = 15). One week later all rabbits underwent two separate end-to-end anastomoses in the jejunum under general anesthesia. At postoperative...

  20. Models for Incretin Research: From the Intestine to the Whole Body

    Directory of Open Access Journals (Sweden)

    Tae Jung Oh

    2016-03-01

    Full Text Available Incretin hormones are produced by enteroendocrine cells (EECs in the intestine in response to ingested nutrient stimuli. The incretin effect is defined as the difference in the insulin secretory response between the oral glucose tolerance test and an isoglycemic intravenous glucose infusion study. The pathophysiology of the decreased incretin effect has been studied as decreased incretin sensitivity and/or β-cell dysfunction per se. Interestingly, robust increases in endogenous incretin secretion have been observed in many types of metabolic/bariatric surgery. Therefore, metabolic/bariatric surgery has been extensively studied for incretin physiology, not only the hormones themselves but also alterations in EECs distribution and genetic expression levels of gut hormones. These efforts have given us an enormous understanding of incretin biology from synthesis to in vivo behavior. Further innovative studies are needed to determine the mechanisms and targets of incretin hormones.

  1. Application of a pig ligated intestinal loop model for early Lawsonia intracellularis infection

    DEFF Research Database (Denmark)

    Boutrup, Torsten Snogdal; Schauser, Kirsten; Agerholm, Jørgen S

    2010-01-01

    (Enterisol® Ileitis Vet), and 3) vaccine bacteria propagated in cell culture. The bacteria-enterocyte interaction was visualised using immunohistochemistry on specimens derived 1, 3 and 6 h PI respectively. Results Although at a low level, close contact between bacteria and the enterocyte brush border...... including intracellular uptake of bacteria in mature enterocytes was seen at 3 and 6 h PI for the vaccine and the propagated vaccine inocula. Interaction between the wild-type bacteria and villus enterocytes was scarce and only seen at 6 h PI, where a few bacteria were found in close contact with the brush...... and that the bacterium, as shown for the vaccine bacteria, propagated as well as non-propagated, was able to invade mature enterocytes. Thus, the study demonstrates the early intestinal invasion of L. intracellularis in vivo....

  2. Inhibition of intestinal epithelial apoptosis improves survival in a murine model of radiation combined injury.

    Science.gov (United States)

    Jung, Enjae; Perrone, Erin E; Brahmamdan, Pavan; McDonough, Jacquelyn S; Leathersich, Ann M; Dominguez, Jessica A; Clark, Andrew T; Fox, Amy C; Dunne, W Michael; Hotchkiss, Richard S; Coopersmith, Craig M

    2013-01-01

    World conditions place large populations at risk from ionizing radiation (IR) from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy) followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA). While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01). Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01). These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.

  3. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis.

    Science.gov (United States)

    García-Lezana, Teresa; Raurell, Imma; Bravo, Miren; Torres-Arauz, Manuel; Salcedo, María Teresa; Santiago, Alba; Schoenenberger, Andreu; Manichanh, Chaysavanh; Genescà, Joan; Martell, María; Augustin, Salvador

    2018-04-01

    Portal hypertension (PH) drives most of the clinical complications in chronic liver diseases. However, its progression in nonalcoholic steatohepatitis (NASH) and its association with the intestinal microbiota (IM) have been scarcely studied. Our aim was to investigate the role of the IM in the mechanisms leading to PH in early NASH. The experimental design was divided in two stages. In stage 1, Sprague-Dawley rats were fed for 8 weeks a high-fat, high-glucose/fructose diet (HFGFD) or a control diet/water (CD). Representative rats were selected as IM donors for stage 2. In stage 2, additional HFGFD and CD rats underwent intestinal decontamination, followed by IM transplantation with feces from opposite-diet donors (heterologous transplant) or autologous fecal transplant (as controls), generating four groups: CD-autotransplanted, CD-transplanted, HFGFD-autotransplanted, HFGFD-transplanted. After IM transplantation, the original diet was maintained for 12-14 days until death. HFGFD rats developed obesity, insulin resistance, NASH without fibrosis but with PH, intrahepatic endothelial dysfunction, and IM dysbiosis. In HFGFD rats, transplantation with feces from CD donors caused a significant reduction of PH to levels comparable to CD without significant changes in NASH histology. The reduction in PH was due to a 31% decrease of intrahepatic vascular resistance compared to the HFGFD-autotransplanted group (P protein kinase B-dependent endothelial nitric oxide synthase signaling pathway. The IM exerts a direct influence in the development of PH in rats with diet-induced NASH and dysbiosis; PH, insulin resistance, and endothelial dysfunction revert when a healthy IM is restored. (Hepatology 2018;67:1485-1498). © 2017 by the American Association for the Study of Liver Diseases.

  4. Inhibition of intestinal epithelial apoptosis improves survival in a murine model of radiation combined injury.

    Directory of Open Access Journals (Sweden)

    Enjae Jung

    Full Text Available World conditions place large populations at risk from ionizing radiation (IR from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA. While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01. Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01. These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.

  5. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara

    Directory of Open Access Journals (Sweden)

    Ana F. Vigário

    2014-06-01

    Full Text Available The 2,4-dichlorophenoxyacetic acid, usually named 2,4-D is one of the most widely used herbicides in the world. Acute toxicity of 2,4-D herbicide was investigated through its effects on guppies (Poecilia vivipara Bloch et Schneider 1801. Fish were exposed to the herbicide at concentrations of 10, 20 and 40µl per liter of water for 24 hours to determine its effects on gills and liver epithelia. The estimated LC50 was 34.64µl of 2,4-D per liter of water. Histochemical analyses and Feulgen's reaction were conducted to detect glycoconjugates and DNA, respectively, in gills and liver epithelia. Histochemistry revealed qualitative variations of glycoconjugates present on mucous cells and granules. The four types of mucous cells contained neutral granules, acids, or both. Increasing amounts of syalomucins were observed from the control group to the group exposed to the highest concentration of 2,4-D, suggesting increased mucous viscosity and the formation of plaques that could inhibit gas exchange and osmoregulation. Lamellar fusion observed in the group exposed to 40µl of 2,4-D suggests a defense mechanism. Hepatocytes showed vacuolization in the 10 and 20µl/L groups. The 40 µl/L group showed normal hepatocytes as well as changed ones, many Ito cells, micronuclei, and nuclear swelling. These effects may be associated with toxicity or adaptative processes to cellular stress. The data from this study indicates the importance of assessing similar risks to aquatic species and suggests that Poecilia vivipara is an adequate biological model for analysis of environmental contamination.

  6. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  7. Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism

    OpenAIRE

    Hallstrom, Kelly; McCormick, Beth A.

    2011-01-01

    Salmonella enterica serotypes are invasive enteric pathogens spread through fecal contamination of food and water sources, and represent a constant public health threat around the world. The symptoms associated with salmonellosis and typhoid disease are largely due to the host response to invading Salmonella, and to the mechanisms these bacteria employ to survive in the presence of, and invade through the intestinal mucosal epithelia. Surmounting this barrier is required for survival within t...

  8. The effect of bovine colostrum products on intestinal dysfunction and inflammation in a preterm pig model of necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal

    and spray dried BC. The study showed that even though spray drying and pasteurization affected BC proteins, pasteurized and/or spray dried BC decreased the severity of NEC in pigs compared with milk formula, while a tendency towards lower NEC severity was observed in pig fed raw BC compared with milk......Necrotizing enterocolitis (NEC), primarily seen in preterm infants, is associated with high morbidity and mortality. The pathogenesis is not fully understood but risk factors include prematurity, enteral feeding (especially with milk formula), and the intestinal microbiota. Mother’s milk, rich...... in bioactive factors, has a protective effect against NEC, but not all preterm infants are able to receive mother’s milk. The overall aim of this thesis was to investigate if bovine colostrum (BC), also rich in bioactive factors, could serve as an alternative to mother’s milk. A preterm pig model of NEC...

  9. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC

    OpenAIRE

    Minghetti, Matteo; Drieschner, Carolin; Bramaz, Nadine; Schug, Hannah; Schirmer, Kristin

    2017-01-01

    The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow tr...

  10. Stimulation of intestinal growth and function with DPP-IV inhibition in a mouse short bowel syndrome model

    DEFF Research Database (Denmark)

    Sueyoshi, Ryo; Ignatoski, Kathleen M Woods; Okawada, Manabu

    2014-01-01

    , and 7 days followed by 23 days washout period. Adaptive response was assessed by morphology, intestinal epithelial cell (IEC) proliferation (PCNA), epithelial barrier function (transepithelial resistance), RT-PCR for intestinal transport proteins, GLP-2R, and IGF-1R, and GLP-2 plasma levels. Glucose-stimulated...... sodium transport was assessed for intestinal absorptive function. Seven days of DPP4-I treatment facilitated an increase in GLP-2R levels, intestinal growth, and IEC proliferation. Treatment led to differential effects over time with greater absorptive function early, and enhanced proliferation at later...

  11. Increases in guanylin and uroguanylin in a mouse model of osmotic diarrhea are guanylate cyclase C-independent.

    Science.gov (United States)

    Steinbrecher, K A; Mann, E A; Giannella, R A; Cohen, M B

    2001-11-01

    Guanylin and uroguanylin are peptide hormones that are homologous to the diarrhea-causing Escherichia coli enterotoxins. These secretagogues are released from the intestinal epithelia into the intestinal lumen and systemic circulation and bind to the receptor guanylate cyclase C (GC-C). We hypothesized that a hypertonic diet would result in osmotic diarrhea and cause a compensatory down-regulation of guanylin/uroguanylin. Gut-to-carcass weights were used to measure fluid accumulation in the intestine. Northern and/or Western analysis was used to determine the levels of guanylin, uroguanylin, and GC-C in mice with osmotic diarrhea. Wild-type mice fed a polyethylene glycol or lactose-based diet developed weight loss, diarrhea, and an increased gut-to-carcass ratio. Unexpectedly, 2 days on either diet resulted in increased guanylin/uroguanylin RNA and prohormone throughout the intestine, elevated uroguanylin RNA, and prohormone levels in the kidney and increased levels of circulating prouroguanylin. GC-C-deficient mice given the lactose diet reacted with higher gut-to-carcass ratios. Although they did not develop diarrhea, GC-C-sufficient and -deficient mice on the lactose diet responded with elevated levels of guanylin and uroguanylin RNA and protein. A polyethylene glycol drinking water solution resulted in diarrhea, higher gut-to-carcass ratios, and induction of guanylin and uroguanylin in both GC-C heterozygous and null animals. We conclude that this model of osmotic diarrhea results in a GC-C-independent increase in intestinal fluid accumulation, in levels of these peptide ligands in the epithelia of the intestine, and in prouroguanylin in the kidney and blood.

  12. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  13. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...... objective was to determine whether supplemental enteral nutrients (SEN) modulate the intestinotrophic response to a low dose of GLP-2 coinfused with PN in a rat model of SBS (60% jejunoileal resection plus cecectomy). DESIGN: Rats were randomly assigned to 8 treatments by using a 2 x 2 x 2 factorial design...

  14. Development of consensus on Models of Care in Adults with Intestinal Failure using a modified Delphi approach.

    Science.gov (United States)

    Carey, Sharon; Kalachov, Michelle; Jones, Lynn; Koh, Cherry

    2018-02-27

    To establish consensus on service delivery models for management of Type III intestinal failure (IF) and home parenteral nutrition (HPN) within the Australian health care system and to identify barriers and enablers in moving towards this ideal model. A modified Delphi methodology was utilised to survey experts working in Type III IF HPN. The panel comprised physicians, dietitians, nurses and pharmacists from 18 of the 20 adult Type III IF HPN centres across Australia. The study consisted of two rounds of email administered questionnaires developed around four key areas of health service delivery: access to services, clinical care, service guidance and models of care. Open ended responses were evaluated via an inductive thematic approach to identify areas of consensus. Experts reviewed the final report to consolidate consensus and validity. There was >80% consensus that an ideal team should consist of a physician, nurse, dietitian, pharmacist and access to psychological support. Consensus supported the need for updated guidelines (75%) and a hub and spoke model of care (82%). However, further consultation is required in order to establish consensus around the use of HPN in the palliative oncology setting (69%). This consensus provides a framework within which health professionals, managers, policy makers, and consumer groups can move towards optimal management for Type III IF HPN patients. Advocacy and a review of service delivery across Australia are now required to facilitate the ideal model of care identified. This article is protected by copyright. All rights reserved.

  15. para-Sulphonato-calix[n]arenes as selective activators for the passage of molecules across the Caco-2 model intestinal membrane.

    Science.gov (United States)

    Roka, Eszter; Vecsernyes, Miklos; Bacskay, Ildiko; Félix, Caroline; Rhimi, Moez; Coleman, Anthony W; Perret, Florent

    2015-06-07

    The passage of Lucifer Yellow across the Caco-2 intestinal model membrane has been studied for the para-sulphonato-calix[n]arenes, the results show that para-sulphonato-calix[4]arene and para-sulphonato-calix[8]arene activate membrane passage when used simultaneously with a transport probe, Lucifer Yellow, whereas para-sulphonato-calix[6]arene has no effect.

  16. C-reactive protein and natural IgM antibodies are activators of complement in a rat model of intestinal ischemia and reperfusion

    NARCIS (Netherlands)

    Padilla, Niubel Diaz; van Vliet, Arlene K.; Schoots, Ivo G.; Seron, Mercedes Valls; Maas, M. Adrie; Peltenburg, Esther E. Posno; de Vries, Annebeth; Niessen, Hans W. M.; Hack, C. Erik; van Gulik, Thomas M.

    2007-01-01

    Background. The role of C-reactive protein (CRP), natural immunoglobulin M (IgM), and natural IgM against phosphorylcholine (anti-Pc IgM) was investigated in relation with complement activation in a rat model of intestinal ischemia and reperfusion (II/R). The effect of Cl-esterase inhibitor (C1-Inh)

  17. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, G.; Gold, C.; Ferro-Luzzi, A.; Ames, B.N.

    1980-08-01

    Many substances in the plant kingdom and in man's diet occur as glycosides. Recent studies have indicated that many glycosides that are not mutagenic in tests such as the Salmonella test become mutagenic upon hydrolysis of the glycosidic linkages. The Salmonella test utilizes a liver homogenate to approximate mammalian metabolism but does not provide a source of the enzymes present in intestinal bacterial flora that hydrolyze the wide variety of glycosides present in nature. We describe a stable cell-free extract of human feces, fecalase, which is shown to contain various glycosidases that allow the in vitro activation of many natural glycosides to mutagens in the Salmonella/liver homogenate test. Many beverages, such as red wine (but apparently not white wine) and tea, contain glycosides of the mutagen quercetin. Red wine, red grape juice, and teas were mutagenic in the test when fecalase was added, and red wine contained considerable direct mutagenic activity in the absence of fecalase. The implications of quercetin mutagenicity and carcinogenicity are discussed.

  18. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium.

    Science.gov (United States)

    Iacomino, Giuseppe; Di Stasio, Luigia; Fierro, Olga; Picariello, Gianluca; Venezia, Antonella; Gazza, Laura; Ferranti, Pasquale; Mamone, Gianfranco

    2016-12-01

    A growing interest in developing new strategies for preventing coeliac disease has motivated efforts to identify cereals with null or reduced toxicity. In the current study, we investigate the biological effects of ID331 Triticum monococcum gliadin-derived peptides in human Caco-2 intestinal epithelial cells. Triticum aestivum gliadin derived peptides were employed as a positive control. The effects on epithelial permeability, zonulin release, viability, and cytoskeleton reorganization were investigated. Our findings confirmed that ID331 gliadin did not enhance permeability and did not induce zonulin release, cytotoxicity or cytoskeleton reorganization of Caco-2 cell monolayers. We also demonstrated that ID331 ω-gliadin and its derived peptide ω(105-123) exerted a protective action, mitigating the injury of Triticum aestivum gliadin on cell viability and cytoskeleton reorganization. These results may represent a new opportunity for the future development of innovative strategies to reduce gluten toxicity in the diet of patients with gluten intolerance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Intestinal Anti-Inflammatory Activity of Baccharis dracunculifolia in the Trinitrobenzenesulphonic Acid Model of Rat Colitis

    Science.gov (United States)

    Cestari, Sílvia Helena; Bastos, Jairo Kennup; Di Stasi, Luiz Claudio

    2011-01-01

    Baccharis dracunculifolia DC (Asteraceae) is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS). Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO) and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mg kg−1) significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract. PMID:19592480

  20. Intestinal Anti-Inflammatory Activity of Baccharis dracunculifolia in the Trinitrobenzenesulphonic Acid Model of Rat Colitis

    Directory of Open Access Journals (Sweden)

    Sílvia Helena Cestari

    2011-01-01

    Full Text Available Baccharis dracunculifolia DC (Asteraceae is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS. Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mg kg−1 significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract.

  1. The intestinal barrier in irritable bowel syndrome: subtype-specific effects of the systemic compartment in an in vitro model.

    Directory of Open Access Journals (Sweden)

    Samefko Ludidi

    Full Text Available Irritable bowel syndrome (IBS is a disorder with multifactorial pathophysiology. Intestinal barrier may be altered, especially in diarrhea-predominant IBS (IBS-D. Several mediators may contribute to increased intestinal permeability in IBS.We aimed to assess effects of tryptase and LPS on in vitro permeability using a 3-dimensional cell model after basolateral cell exposure. Furthermore, we assessed the extent to which these mediators in IBS plasma play a role in intestinal barrier function.Caco-2 cells were grown in extracellular matrix to develop into polarized spheroids and were exposed to tryptase (10 - 50 mU, LPS (1 - 50 ng/mL and two-fold diluted plasma samples of 7 patients with IBS-D, 7 with constipation-predominant IBS (IBS-C and 7 healthy controls (HC. Barrier function was assessed by the flux of FITC-dextran (FD4 using live cell imaging. Furthermore, plasma tryptase and LPS were determined.Tryptase (20 and 50 mU and LPS (6.25 - 50 ng/mL significantly increased Caco-2 permeability versus control (all P< 0.05. Plasma of IBS-D only showed significantly elevated median tryptase concentrations (7.1 [3.9 - 11.0] vs. 4.2 [2.2 - 7.0] vs. 4.2 [2.5 - 5.9] μg/mL; P<0.05 and LPS concentrations (3.65 [3.00 - 6.10] vs. 3.10 [2.60-3.80] vs. 2.65 [2.40 - 3.40] EU/ml; P< 0.05 vs. IBS-C and HC. Also, plasma of IBS-D increased Caco-2 permeability versus HC (0.14450 ± 0.00472 vs. 0.00021 ± 0.00003; P < 0.001, which was attenuated by selective inhibition of tryptase and LPS (P< 0.05.Basolateral exposure of spheroids to plasma of IBS-D patients resulted in a significantly increased FD4 permeation, which was partially abolished by selective inhibition of tryptase and LPS. These findings point to a role of systemic tryptase and LPS in the epithelial barrier alterations observed in patients with IBS-D.

  2. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation

    Science.gov (United States)

    Soo, Isaac; Madsen, Karen L; Tejpar, Qassim; Sydora, Beate C; Sherbaniuk, Richard; Cinque, Benedetta; Di Marzio, Luisa; Cifone, Maria Grazia; Desimone, Claudio; Fedorak, Richard N

    2008-01-01

    BACKGROUND: Alkaline sphingomyelinase, an enzyme found exclusively in bile and the intestinal brush border, hydrolyzes sphingomyelin into ceramide, sphingosine and sphingosine-1-phosphate, thereby inducing epithelial apoptosis. Reduced levels of alkaline sphingomyelinase have been found in premalignant and malignant intestinal epithelia and in ulcerative colitis tissue. Probiotic bacteria can be a source of sphingomyelinase. OBJECTIVE: To determine the effect of VSL#3 probiotic therapy on mucosal levels of alkaline sphingomyelinase, both in a mouse model of colitis and in patients with ulcerative colitis. METHODS: Interleukin-10 gene-deficient (IL10KO) and wild type control mice were treated with VSL#3 (109 colony-forming units per day) for three weeks, after which alkaline sphingomyelinase activity was measured in ileal and colonic tissue. As well, 15 patients with ulcerative colitis were treated with VSL#3 (900 billion bacteria two times per day for five weeks). Alkaline sphingomyelinase activity was measured through biopsies and comparison of ulcerative colitis disease activity index scores obtained before and after treatment. RESULTS: Lowered alkaline sphingomyelinase levels were seen in the colon (P=0.02) and ileum (P=0.04) of IL10KO mice, as compared with controls. Treatment of these mice with VSL#3 resulted in upregulation of mucosal alkaline sphingomyelinase activity in both the colon (P=0.04) and the ileum (P=0.01). VSL#3 treatment of human patients who had ulcerative colitis decreased mean (± SEM) ulcerative colitis disease activity index scores from 5.3±1.8946 to 0.70±0.34 (P=0.02) and increased mucosal alkaline sphingomyelinase activity. CONCLUSION: Mucosal alkaline sphingomyelinase activity is reduced in the intestine of IL10KO mice with colitis and in humans with ulcerative colitis. VSL#3 probiotic therapy upregulates mucosal alkaline sphingomyelinase activity. PMID:18354751

  3. Cellular and Humoral Autoimmunity Directed at Bile Duct Epithelia in Murine Biliary Atresia

    OpenAIRE

    Mack, Cara L.; Tucker, Rebecca M.; Lu, Brandy R.; Sokol, Ronald J.; Fontenot, Andrew P.; Ueno, Yoshiyuki; Gill, Ronald G.

    2006-01-01

    Biliary atresia is an inflammatory fibrosclerosing lesion of the bile ducts that leads to biliary cirrhosis and is the most frequent indication for liver transplantation in children. The pathogenesis of biliary atresia is not known; one theory is that of a virus-induced, subsequent autoimmune-mediated injury of bile ducts. The aim of this study was to determine whether autoreactive T cells and autoantibodies specific to bile duct epithelia are present in the rotavirus (RRV)- induced murine mo...

  4. Regulation of Nutrient Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia.

    Science.gov (United States)

    1996-10-01

    ability to understand and alter the amount of subcellular targeting of GLUT1 may have therapeutic implications in breast cancer. 14. SUBJECT TERMS...and absence of prolactin and dexamethasone and in mammary epithelia isolated from human milk and reduction mammoplasty tissue, to identify candidate...from reduction mammoplasty v. screening of an expression library from lactating mammary gland with antibodies generated against partially purified

  5. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge

    Science.gov (United States)

    Secretory IgA (sIgA) and its transcytosis receptor, polymeric immunoglobulin receptor (pIgR), along with mucus, form the first lines of intestinal defense. Threonine (Thr) is a major constituent component of intestinal mucins and IgA, which are highly secreted under lipopolysaccharide (LPS) induced ...

  6. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  7. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  8. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen

    2012-01-01

    Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin...... and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3...

  9. A reaction–diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2012-07-01

    Full Text Available Abstract Background Colon crypts, a single sheet of epithelia cells, consist of a periodic pattern of stem cells, transit-amplifying cells, and terminally differentiated cells that constantly renew and turnover. Experimental evidence suggests that Wnt signaling promotes and regulates stem cell division, differentiation, and possible cell migrations while intestinal BMP signaling inhibits stem cell self-renewal and repression in crypt formation. As more molecular details on Wnt and BMP in crypts are being discovered, little is still known about how complex interactions among Wnt, BMP, and different types of cells, and surrounding environments may lead to de novo formation of multiple crypts or how such interactions affect regeneration and stability of crypts. Results We present a mathematical model that contains Wnt and BMP, a cell lineage, and their feedback regulations to study formation, regeneration, and stability of multiple crypts. The computational explorations and linear stability analysis of the model suggest a reaction–diffusion mechanism, which exhibits a short-range activation of Wnt plus a long-range inhibition with modulation of BMP signals in a growing tissue of cell lineage, can account for spontaneous formation of multiple crypts with the spatial and temporal pattern observed in experiments. Through this mechanism, the model can recapitulate some distinctive and important experimental findings such as crypt regeneration and crypt multiplication. BMP is important in maintaining stability of crypts and loss of BMP usually leads to crypt multiplication with a fingering pattern. Conclusions The study provides a mechanism for de novo formation of multiple intestinal crypts and demonstrates a synergetic role of Wnt and BMP in regeneration and stability of intestinal crypts. The proposed model presents a robust framework for studying spatial and temporal dynamics of cell lineages in growing tissues driven by multiple signaling

  10. The effects of 18β-glycyrrhetinic acid and glycyrrhizin on intestinal absorption of paeoniflorin using the everted rat gut sac model.

    Science.gov (United States)

    He, Rui; Xu, Yongsong; Peng, Jingjing; Ma, Tingting; Li, Jing; Gong, Muxin

    2017-01-01

    Paeoniflorin (PF), the main active component of Shaoyao-Gancao-tang, possesses significantly antinociceptive effects and many other pharmacological activities. However, its poor intestinal absorption results in low bioavailability. Therefore, enhancing PF absorption plays a vital role in exerting its therapeutic effect. Shaoyao combined with Gancao exhibited a synergistic effect. The enhancement of PF absorption through the interaction of its constituents in intestinal absorption would be greatly implicated. The present study aimed at investigating the effects of glycyrrhizin, the main constituent of Gancao, and its main metabolite, 18β-glycyrrhetinic acid (18β-GA), on the intestinal absorptive behavior of PF, and the role of P-glycoprotein (P-gp) in PF absorption using the in vitro everted rat gut sac model. The results demonstrated that 1 mM of 18β-GA significantly increased PF absorption in both the jejunum and the ileum, while 100 μM of 18β-GA only promoted the ileum absorption and had no obvious effect on the jejunum absorption. The effect of glycyrrhizin on intestinal PF absorption was related to concentrations. One mM of glycyrrhizin significantly increased PF absorption in the jejunum after 45 min and in the ileum after 90 min. But 100 μM of glycyrrhizin had an inhibitory effect in the jejunum and no effect in the ileum before 60 min. Moreover, verapamil, the well-known P-gp inhibitor, could significantly enhance the PF absorption. In conclusion, the influence of 18β-GA and glycyrrhizin on the PF absorption was related to concentrations and intestinal segments. This might be involved in the intervention of efflux transport of PF mediated by intestinal P-gp.

  11. Supplemental butyrate does not enhance the absorptive or barrier functions of the isolated ovine ruminal epithelia.

    Science.gov (United States)

    Wilson, D J; Mutsvangwa, T; Penner, G B

    2012-09-01

    Our objective was to determine if increasing the ruminal butyrate concentration would improve the selective permeability of ruminal epithelia. Suffolk wether lambs (n = 18) with an initial BW of 47.4 ±1.4 kg were housed in individual pens (1.5 × 1.5 m) with rubber mats on the floor. Lambs were blocked by initial BW into 6 blocks and, within block, were randomly assigned to either the control (CON) or 1 of 2 butyrate supplementation amounts (i.e., 1.25% or 2.50% butyrate as a proportion of DMI). With the exception of butyrate supplementation, all lambs were fed a common diet (90% concentrate and 10% barley silage). After a 14-d feeding period, lambs were killed, and ruminal epithelia from the ventral sac were mounted in Ussing chambers. To facilitate the Ussing chamber measurements, only 1 lamb was killed on an individual day. Thus, the starting date was staggered so that all lambs were exposed to the same experimental protocol. In Ussing chambers, epithelia were incubated using separate mucosal (pH 6.2) and serosal (pH 7.4) bathing solutions. Then 1-14C-butyrate (74 kBq/10 mL) was added to the mucosal side and was used to measure the mucosal-to-serosal flux (J(ms-butyrate)) in 2 consecutive 60-min flux periods with simultaneous measurement of transepithelial conductance (G(t)). During the first (challenge) flux period, the mucosal buffer solution was either acidified to pH 5.2 (ACID) or used as a control (pH 6.2; SHAM). Buffer solutions bathing the epithelia were replaced before the second flux period (recovery). Total ruminal short-chain fatty acid and butyrate concentrations were greater (P = 0.001) in lambs fed 2.50% compared with those fed 0% or 1.25% butyrate. The J(ms-butyrate) was less for lambs fed 1.25% and 2.50% butyrate [3.00 and 3.12 μmol/(cm2·h), respectively] than for CON [3.91 μmol/(cm2· h)]. However, no difference (P = 0.13)was observed for G(t). An ex vivo treatment × flux period interaction was detected (P = 0.003) for J(ms-butyrate), where

  12. Evidence from Animal Models: Is a Restricted or Conventional Intestinal Microbiota Composition Predisposing to Risk for High-LET Radiation Injury?

    Science.gov (United States)

    Maier, Irene; Schiestl, Robert H

    2015-06-01

    Intestinal microbiota affect cell responses to ionizing radiation at the molecular level and can be linked to the development of the immune system, controlled cell death or apoptosis. We have developed a microbiota mouse model and report here that high-linear energy transfer (LET) radiation induced the repair of chromosomal DNA lesions more efficiently in conventional than in restricted intestinal microbiota mice. Based on different phylotype densities after whole-body irradiation, bacterial indicator phylotypes were found to be more abundant in restricted in microbiota than in conventional microbiota. Genotoxic phenotypes of irradiated restricted and conventional microbiota mice were compared with ataxia telangiectasia-deficient restricted and conventional microbiota mice, respectively. Those indicator phylotypes, including Bacteroides (Gram-negative bacterium cTPY-13), Barnesiella intestinihominis and others, which were identified in nonirradiated restricted microbiota mice, increase in radiation-exposed conventional microbiota along with a reduction of persistent DNA double-strand breaks in blood lymphocytes. The dynamic change of phylotype abundances elucidated a feedback mechanism and effect of intestinal microbiota composition on the adaptive response to high-LET radiation. Several other bacterial phylotypes ( Helicobacter hepaticus , Helicobacter spp and others) were found to be more abundant in conventional than restricted microbiota. In this commentary, mouse models used in cancer research and radiotherapy for the study on the effects of intestinal microbiota composition on normal tissue radiation response are characterized and discussed. Highlights of this commentary: 1. Restricted microbiota phylotypes were correlated with persistent DNA double-strand breaks (DSBs) and were found to orchestrate onco-protective controlled cell death after radiation; 2. Restricted microbiota composition reduced proinflammatory extracellular-stimulated immune responses, but

  13. The roles of tumor necrosis factor-alpha in colon tight junction protein expression and intestinal mucosa structure in a mouse model of acute liver failure

    Directory of Open Access Journals (Sweden)

    Lv Sa

    2009-09-01

    Full Text Available Abstract Background Spontaneous bacterial peritonitis (SBP is a common clinical disease and one of the most severe complications of acute liver failure (ALF. Although the mechanism responsible for SBP is unclear, cytokines play an important role. The aim of this study was to investigate the effects of tumor necrosis factor-alpha (TNF-α on the structure of the intestinal mucosa and the expression of tight junction (Zona Occludens 1; ZO-1 protein in a mouse model of ALF. Methods We induced ALF using D-galactosamine/lipopolysaccharide (GalN/LPS or GalN/TNF-α and assessed the results using transmission electron microscopy, immunohistochemistry, Western blotting, ELISA and real-time quantitative PCR. The effects of administration of anti-TNF-α IgG antibody or anti-TNF-α R1 antibody before administration of GalN/LPS or GalN/TNF-α, respectively, on TNF-α were also assessed. Results Morphological abnormalities in the intestinal mucosa of ALF mice were positively correlated with serum TNF-α level. Electron microscopic analysis revealed tight junction (TJ disruptions, epithelial cell swelling, and atrophy of intestinal villi. Gut bacteria invaded the body at sites where TJ disruptions occurred. Expression of ZO-1 mRNA was significantly decreased in both ALF models, as was the level of ZO-1 protein. Prophylactic treatment with either anti-TNF-α IgG antibody or anti-tumor necrosis factor-a receptor1 (anti-TNF-α R1 antibody prevented changes in intestinal tissue ultrastructure and ZO-1 expression. Conclusion TNF-α affects the structure of the intestinal mucosa, decreases expression of ZO-1, and affects the morphology of the colon in a mouse model of ALF. It also may participate in the pathophysiological mechanism of SBP complicated to ALF.

  14. Effects of sodium hydrosulfide on intestinal mucosal injury in a rat model of cardiac arrest and cardiopulmonary resuscitation.

    Science.gov (United States)

    Pan, Hao; Chen, Di; Liu, Beibei; Xie, Xuemeng; Zhang, Jincheng; Yang, Guangtian

    2013-07-19

    Cardiac arrest and cardiopulmonary resuscitation (CPR) can lead to intestinal ischemia/reperfusion (I/R) injury. Increasing studies have indicated that hydrogen sulfide (H2S) is in favor of a variety of tissue I/R injury. The purpose of this study was to explore whether sodium hydrosulfide (NaHS), a H2S donor, can protect intestinal mucosa after CPR and its potential mechanisms. Male Sprague-Dawley rats were subjected to 6min cardiac arrest induced by transcutaneous electrical epicardium stimulation and then resuscitated successfully. A bolus of either NaHS (0.5mg/kg) or placebo (NaCl 0.9%) was blindly injected 1min before the start of CPR intravenously, followed by a continuous injection of NaHS (2mg/kg/h) or placebo for 3h. Intestinal and plasma samples were collected for assessments 24h after CPR. We found that NaHS can markedly alleviate cardiac arrest induced intestinal mucosal injury. Rats treated with NaHS showed a lower malondialdehyde content, higher superoxide dismutase activity and glutathione content in intestine after CPR. Increased intestinal myeloperoxidase activity was significantly decreased by NaHS after CPR. Moreover, a reduced intestinal apoptotic cells after CPR were evident when pretreated with NaHS. Further studies indicated that NaHS enhances the expression of hypoxia-inducible factor-1α (HIF-1α) in intestine after CPR. Our data demonstrated that NaHS treatment before CPR induces intestinal mucosal protection 24h post-resuscitation. The protective effects may be through oxidative stress reduction, inflammation alleviation, apoptosis inhibition and HIF-1α activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Sox9 overexpression in uterine epithelia induces endometrial gland hyperplasia

    Science.gov (United States)

    Gonzalez, Gabriel; Mehra, Shyamin; Wang, Ying; Akiyama, Haruhiko

    2016-01-01

    SOX9 is a high mobility group transcription factor that is required in many biological processes, including cartilage differentiation, endoderm progenitor maintenance, hair differentiation, and testis determination. SOX9 has also been linked to colorectal, prostate, and lung cancer. We found that SOX9 is expressed in the epithelium of the adult mouse and human uterus, predominantly marking the uterine glands. To determine if SOX9 plays a role in the development of endometrial cancer we overexpressed Sox9 in the uterine epithelium using a progesterone receptor-Cre mouse model. Sox9 overexpression in the uterine epithelium led to the formation of simple and complex cystic glandular structures in the endometrium of aged-females. Histological analysis revealed that these structures appeared morphologically similar to structures present in patients with endometrial hyperplastic lesions and endometrial polyps that are thought to be precursors of endometrial cancer. The molecular mechanisms that cause the glandular epithelium to become hyperplastic, leading to endometrial cancer are still poorly understood. These findings indicate that chronic overexpression of Sox9 in the uterine epithelium can induce the development of endometrial hyperplastic lesions. Thus, SOX9 expression may be a factor in the formation of endometrial cancer. PMID:27262401

  16. Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport.

    Science.gov (United States)

    Maares, Maria; Keil, Claudia; Thomsen, Susanne; Günzel, Dorothee; Wiesner, Burkhard; Haase, Hajo

    2018-01-29

    Intestinal zinc resorption, in particular its regulation and mechanisms, are not yet fully understood. Suitable intestinal cell models are needed to investigate zinc uptake kinetics and the role of labile zinc in enterocytes in vitro. Therefore, a Caco-2 cell clone was produced, stably expressing the genetically encoded zinc biosensor eCalwy-5. The aim of the present study was to reassure the presence of characteristic enterocyte-specific properties in the Caco-2-eCalwy clone. Comparison of Caco-2-WT and Caco-2-eCalwy cells revealed only slight differences regarding subcellular localization of the tight junction protein occludin and alkaline phosphatase activity, which did not affect basic integrity of the intestinal barrier or the characteristic brush border membrane morphology. Furthermore, introduction of the additional zinc-binding protein in Caco-2 cells did not alter mRNA expression of the major intestinal zinc transporters (zip4, zip5, znt-1 and znt-5), but increased metallothionein 1a-expression and cellular resistance to higher zinc concentrations. Moreover, this study examines the effect of sensor expression level on its saturation with zinc. Fluorescence cell imaging indicated considerable intercellular heterogeneity in biosensor-expression. However, FRET-measurements confirmed that these differences in expression levels have no effect on fractional zinc-saturation of the probe. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Intestinal growth and pathology of Giardia duodenalis assemblage subtype A(I), A(II), B and E in the gerbil model.

    Science.gov (United States)

    Bénéré, E; Van Assche, T; Van Ginneken, C; Peulen, O; Cos, P; Maes, L

    2012-04-01

    This study investigated the significance of the genetic differences between assemblages A, B and E on intestinal growth and virulence. Intestinal growth and virulence were studied in 2 laboratory (A(I): WB and B: GS/M-83-H7) and 6 field isolates of assemblage subtype A(I), A(II), B and E(III). Intestinal trophozoite burdens, body weight and faecal consistency were monitored until day 29 post-infection (p.i.), morphological (mucosal architecture and inflammation) and functional (disaccharidase and alkaline phosphatase enzyme activity) damage to the small intestine were evaluated on days 7 and 18 p.i. The assemblage subtypes A(I) and B were more infectious and produced higher trophozoite loads for a longer period compared to the subtypes A(II) and E(III). The body weight of infected gerbils was significantly reduced compared to uninfected controls, but did not differ between the assemblage subtypes. Consistent softening of the faeces was only observed with assemblage B. Assemblage B next to assemblage subtype A(I) elicited relatively higher pathogenicity, characterized by more extensive damage to mucosal architecture, decreased brush-border enzyme function and infiltration of inflammatory cells. Assemblage E(III) and A(II) isolates showed relatively low virulence. The Giardia assemblage subtypes exhibit different levels of growth and virulence in the gerbil model.

  18. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis.

    Science.gov (United States)

    Scarminio, Viviane; Fruet, Andrea C; Witaicenis, Aline; Rall, Vera L M; Di Stasi, Luiz C

    2012-03-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model.

    Science.gov (United States)

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine; Chelikani, Prasanth K; Zheng, Huiyuan; Berthoud, Hans-Rudolph; Holst, Jens J; Sigalet, David L

    2010-05-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome. Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days. Weight and serum hormonal levels (glucagon-like peptide-2 [GLP-2], PYY) were quantified. Adaptation was assessed by intestinal morphology and crypt cell kinetics in each intestinal limb of the bypass and the equivalent points in the sham intestine. Mucosal growth factors and expression of transporter proteins were measured in each limb of the model. The GRYB animals lost weight compared to controls and exhibited significant adaptive changes with increased bowel width, villus height, crypt depth, and proliferation indices in the alimentary and common intestinal limbs. Although the biliary limb did not adapt at the mucosa, it did show an increased bowel width and crypt cell proliferation rate. The bypass animals had elevated levels of systemic PYY and GLP-2. At the mucosal level, insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) increased in all limbs of the bypass animals, whereas keratinocyte growth factor (KGF) and epidermal growth factor (EGF) had variable responses. The expression of the passive transporter of glucose, GLUT-2, expression was increased, whereas GLUT-5 was unchanged in all limbs of the bypass groups. Expression of the active mucosal transporter of glucose, SGLT-1 was decreased in the alimentary limb. Adaptation occurred maximally in intestinal segments stimulated by nutrients. Partial adaptation in the biliary limb may reflect the effects of systemic hormones. Mucosal content of IGF-1, bFGF, and EGF appear to be stimulated by systemic hormones

  20. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  1. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds.

    Science.gov (United States)

    Breynaert, Annelies; Bosscher, Douwina; Kahnt, Ariane; Claeys, Magda; Cos, Paul; Pieters, Luc; Hermans, Nina

    2015-08-01

    The biological effects of polyphenols depend on their mechanism of action in the body. This is affected by bioconversion by colon microbiota and absorption of colonic metabolites. We developed and validated an in vitro continuous flow dialysis model with colon phase (GastroIntestinal dialysis model with colon phase) to study the gastrointestinal metabolism and absorption of phenolic food constituents. Chlorogenic acid was used as model compound. The physiological conditions during gastrointestinal digestion were mimicked. A continuous flow dialysis system simulated the one-way absorption by passive diffusion from lumen to mucosa. The colon phase was developed using pooled faecal suspensions. Several methodological aspects including implementation of an anaerobic environment, adapted Wilkins Chalgren broth medium, 1.10(8) CFU/mL bacteria suspension as inoculum, pH adaptation to 5.8 and implementation of the dialysis system were conducted. Validation of the GastroIntestinal dialysis model with colon phase system showed a good recovery and precision (CV GastroIntestinal dialysis model with colon phase is comparable with in vivo studies on ileostomy patients. In the colon phase, the human faecal microbiota deconjugated chlorogenic acid to caffeic acid, 3,4-dihydroxyphenyl propionic acid, 4-hydroxybenzoic acid, 3- or 4-hydroxyphenyl acetic acid, 2-methoxy-4-methylphenol and 3-phenylpropionic acid. The GastroIntestinal dialysis model with colon phase is a new, reliable gastrointestinal simulation system. It permits a fast and easy way to predict the availability of complex secondary metabolites, and to detect metabolites in an early stage after digestion. Isolation and identification of these metabolites may be used as references for in vivo bioavailability experiments and for investigating their bioactivity in in vitro experiments. Georg Thieme Verlag KG Stuttgart · New York.

  2. The effect of storage time of human red cells on intestinal microcirculatory oxygenation in a rat isovolemic exchange model

    NARCIS (Netherlands)

    Raat, N. J.; Verhoeven, A. J.; Mik, E. G.; Gouwerok, C. W.; Verhaar, R.; Goedhart, P. T.; de Korte, D.; Ince, C.

    2005-01-01

    Objective: To determine whether the storage time of human leukodepleted red blood cell concentrates compromises intestinal microvascular oxygen concentration oxygen (muPo(2)) during isovolemic exchange transfusion at low hematocrit. Design: Prospective, randomized, controlled study. Setting:

  3. Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Dominguez, Jessica A; Vithayathil, Paul J; Khailova, Ludmila; Lawrance, Christopher P; Samocha, Alexandr J; Jung, Enjae; Leathersich, Ann M; Dunne, W Michael; Coopersmith, Craig M

    2011-10-01

    Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.

  4. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome

    DEFF Research Database (Denmark)

    Okawada, Manabu; Holst, Jens Juul; Teitelbaum, Daniel H

    2011-01-01

    Glucagon-like peptide-2 induces small intestine mucosal epithelial cell proliferation and may have benefit for patients who suffer from short bowel syndrome. However, glucagon-like peptide-2 is inactivated rapidly in vivo by dipeptidyl peptidase IV. Therefore, we hypothesized that selectively...... inhibiting dipeptidyl peptidase IV would prolong the circulating life of glucagon-like peptide-2 and lead to increased intestinal adaptation after development of short bowel syndrome....

  5. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications

    Science.gov (United States)

    Pohl, Calvin S.; Medland, Julia E.

    2015-01-01

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004

  6. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    Science.gov (United States)

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the

  7. CCR9+ T cells contribute to the resolution of the inflammatory response in a mouse model of intestinal amoebiasis.

    Science.gov (United States)

    Rojas-López, A E; Soldevila, G; Meza-Pérez, S; Dupont, G; Ostoa-Saloma, P; Wurbel, M A; Ventura-Juárez, J; Flores-Romo, L; García-Zepeda, E A

    2012-08-01

    Analysis of the mechanisms underlying the inflammatory response in amoebiasis is important to understand the immunopathology of the disease. Mucosal associated effector and regulatory T cells may play a role in regulating the inflammatory immune response associated to Entamoeba histolytica infection in the colon. A subpopulation of regulatory T cells has recently been identified and is characterized by the expression of the chemokine receptor CCR9. In this report, we used CCR9 deficient (CCR9(-/-)) mice to investigate the role of the CCR9(+) T cells in a murine model of E. histolytica intestinal infection. Intracecal infection of CCR9(+/+), CCR9(+/-) and CCR9(-/-) mice with E. histolytica trophozoites, revealed striking differences in the development and nature of the intestinal inflammatory response observed between these strains. While CCR9(+/+) and CCR9(+/-) mice were resistant to the infection and resolved the pathogen-induced inflammatory response, CCR9(-/-) mice developed a chronic inflammatory response, which was associated with over-expression of the cytokines IFN-γ, TNF-α, IL-4, IL-6 and IL-17, while IL-10 was not present. In addition, increased levels of CCL11, CCL20 and CCL28 chemokines were detected by qRT-PCR in CCR9(-/-) mice. E. histolytica trophozoites were identified in the lumen of the cecum of CCR9(-/-) mice at seven days post infection (pi), whereas in CCR9(+/+) mice trophozoites disappeared by day 1 pi. Interestingly, the inflammation observed in CCR9(-/-) mice, was associated with a delayed recruitment of CD4(+)CD25(+)FoxP3(+) T cells to the cecal epithelium and lamina propria, suggesting that this population may play a role in the early regulation of the inflammatory response against E. histolytica, likely through IL-10 production. In support of these data, CCR9(+) T cells were also identified in colon tissue sections obtained from patients with amoebic colitis. Our data suggest that a population of CCR9(+)CD4(+)CD25(+)FoxP3(+) T cells may

  8. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development.

    Science.gov (United States)

    Ding, Mengmeng; Jin, Li; Xie, Lin; Park, So Hyun; Tong, Yixin; Wu, Di; Chhabra, A Bobby; Fu, Zheng; Li, Xudong

    2018-03-01

    An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.

  9. Immunogenicity and protective efficacy of heparan sulphate binding proteins of Entamoeba histolytica in a guinea pig model of intestinal amoebiasis.

    Science.gov (United States)

    Kaur, Upninder; Khurana, Sumeeta; Saikia, Uma Nahar; Dubey, M L

    2013-11-01

    Entamoeba histolytica infection is associated with considerable morbidity and mortality in the form of intestinal and extraintestinal amoebiasis. No vaccine is yet available for amoebiasis. Heparan Sulphate Binding Proteins (HSBPs) from E. histolytica were evaluated for immunogenicity and protective efficacy in a Guinea pig model. Animals were immunized subcutaneously with 30μg of HSBP by three weekly inoculations. The immunogenicity of HSBP was determined by antibody response (IgG, IgM and IgA), splenocyte proliferation assay and in vitro direct amoebicidal assay with splenic lymphocytes and monocytes from vaccinated and control animals. The efficacy of the vaccine was evaluated by challenge infection to vaccinated and control animals by intra-caecal inoculation of E. histolytica trophozoites and comparing gross and histopathological findings in caeca of these animals. HSBP was found to induce specific anti-amoebic response as seen by specific antibody production and direct amoebicidal activity of splenocytes. The vaccine also showed partial protection against challenge infection in vaccinated animals as shown by mild/absent lesions and histopathological findings. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Intestinal pseudo-obstruction

    Science.gov (United States)

    Primary intestinal pseudo-obstruction; Acute colonic ileus; Colonic pseudo-obstruction; Idiopathic intestinal pseudo-obstruction; Ogilvie syndrome; Chronic intestinal pseudo-obstruction; Paralytic ileus - pseudo-obstruction

  11. Evaluation of the passage of Lactobacillus gasseri K7 and bifidobacteria from the stomach to intestines using a single reactor model

    Directory of Open Access Journals (Sweden)

    von Ah Ueli

    2009-05-01

    Full Text Available Abstract Background Probiotic bacteria are thought to play an important role in the digestive system and therefore have to survive the passage from stomach to intestines. Recently, a novel approach to simulate the passage from stomach to intestines in a single bioreactor was developed. The advantage of this automated one reactor system was the ability to test the influence of acid, bile salts and pancreatin. Lactobacillus gasseri K7 is a strain isolated from infant faeces with properties making the strain interesting for cheese production. In this study, a single reactor system was used to evaluate the survival of L. gasseri K7 and selected bifidobacteria from our collection through the stomach-intestine passage. Results Initial screening for acid resistance in acidified culture media showed a low tolerance of Bifidobacterium dentium for this condition indicating low survival in the passage. Similar results were achieved with B. longum subsp. infantis whereas B. animalis subsp. lactis had a high survival. These initial results were confirmed in the bioreactor model of the stomach-intestine passage. B. animalis subsp. lactis had the highest survival rate (10% attaining approximately 5 × 106 cfu ml-1 compared to the other tested bifidobacteria strains which were reduced by a factor of up to 106. Lactobacillus gasseri K7 was less resistant than B. animalis subsp. lactis but survived at cell concentrations approximately 1000 times higher than other bifidobacteria. Conclusion In this study, we were able to show that L. gasseri K7 had a high survival rate in the stomach-intestine passage. By comparing the results with a previous study in piglets we could confirm the reliability of our simulation. Of the tested bifidobacteria strains, only B. animalis subsp. lactis showed acceptable survival for a successful passage in the simulation system.

  12. Systematic and intestinal antibody-secreting cell responses and correlates of protective immunity to human rotavirus in a gnotobiotic pig model of disease.

    Science.gov (United States)

    Yuan, L; Ward, L A; Rosen, B I; To, T L; Saif, L J

    1996-05-01

    Neonatal gnotobiotic pigs orally inoculated with virulent (intestinal-suspension) Wa strain human rotavirus (which mimics human natural infection) developed diarrhea, and most pigs which recovered (87% protection rate) were immune to disease upon homologous virulent virus challenge at postinoculation day (PID) 21. Pigs inoculated with cell culture-attenuated Wa rotavirus (which mimics live oral vaccines) developed subclinical infections and seroconverted but were only partially protected against challenge (33% protection rate). Isotype-specific antibody-secreting cells (ASC were enumerated at selected PID in intestinal (duodenal and ileal lamina propria and mesenteric lymph node [MLN]) and systemic (spleen and blood) lymphoid tissues by using enzyme-linked immunospot assays. At challenge (PID 21), the numbers of virus-specific immunoglobulin A (IgA) ASC, but not IgG ASC, in intestines and blood were significantly greater in virulent-Wa rotavirus-inoculated pigs than in attenuated-Wa rotavirus-inoculated pigs and were correlated (correlation coefficients: for duodenum and ileum, 0.9; for MLN, 0.8; for blood, 0.6) with the degree of protection induced. After challenge, the numbers of IgA and IgG virus-specific ASC and serum-neutralizing antibodies increased significantly in the attenuated-Wa rotavirus-inoculated pigs but not in the virulent-Wa rotavirus-inoculated pigs (except in the spleen and except for IgA ASC in the duodenum). The transient appearance of IgA ASC in the blood mirrored the IgA ASC responses in the gut, albeit at a lower level, suggesting that IgA ASC in the blood of humans could serve as an indicator for IgA ASC responses in the intestine after rotavirus infection. To our knowledge, this is the first report to study and identify intestinal IgA ASC as a correlate of protective active immunity in an animal model of human-rotavirus-induced disease.

  13. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  14. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia.

    Science.gov (United States)

    Nguyen, V T; Hall, L L; Gallacher, G; Ndoye, A; Jolkovsky, D L; Webber, R J; Buchli, R; Grando, S A

    2000-04-01

    A non-neuronal cholinergic system that includes neuronal-like nicotinic acetylcholine receptors (nAChRs) has recently been described in epithelial cells that line the skin and the upper respiratory tract. Since the use of nicotine-containing products is associated with morbidity in the upper digestive tract, and since nicotine may alter cellular functions directly via nAChRs, we sought to identify and characterize a non-neuronal cholinergic system in the gingival and esophageal epithelia. mRNA transcripts for alpha3, alpha5, alpha7, and beta2 nAChR subunits, choline acetyltransferase, and the asymmetric and globular forms of acetylcholinesterase were amplified from gingival keratinocytes (KC) by means of polymerase chain-reactions. These proteins were visualized in the gingival and esophageal epithelia by means of specific antibodies. Variations in distribution and intensity of immunostaining were found, indicating that the repertoire of cholinergic enzymes and receptors expressed by the cells changes during epithelial maturation, and that an upward concentration gradient of free acetylcholine exists. Blocking of the nAChRs with mecamylamine resulted in reversible loss of cell-to-cell adhesion, and shrinking and rounding of cultured gingival KC. Activation of the receptors with acetylcholine or carbachol caused stretching and peripheral ruffling of the cytoplasmic aprons, and formation of new intercellular contacts. These results demonstrate that both the keratinizing epithelium of attached gingiva and the non-keratinizing epithelium lining the upper two-thirds of the esophageal mucosa possess a non-neuronal cholinergic system. The nAChRs expressed by these epithelia are coupled to regulation of cell adhesion and motility, and may provide a target for the deleterious effects of nicotine.

  15. Modulation of Intestinal Microbiome Prevents Intestinal Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Alessandra Bertacco

    2017-12-01

    Full Text Available Background: Butyrate protects against ischemic injury to the small intestine by reducing inflammation and maintaining the structure of the intestinal barrier, but is expensive, short-lived, and cannot be administered easily due to its odor. Lactate, both economical and more palatable, can be converted into butyrate by the intestinal microbiome. This study aimed to assess in a rat model whether lactate perfusion can also protect against intestinal ischemia.Materials and Methods: Rat intestinal segments were loaded in an in vitro bowel perfusion device, and water absorption or secretion was assessed based on fluorescence of FITC-inulin, a fluorescent marker bound to a biologically inert sugar. Change in FITC concentration was used as a measure of ischemic injury, given the tendency of ischemic cells to retain water. Hematoxylin and eosin-stained sections at light level microscopy were examined to evaluate intestinal epithelium morphology. Comparisons between the data sets were paired Student t-tests or ANOVA with p < 0.05 performed on GraphPad.Results: Lactate administration resulted in a protective effect against intestinal ischemia of similar magnitude to that observed with butyrate. Both exhibited approximately 1.5 times the secretion exhibited by control sections (p = 0.03. Perfusion with lactate and methoxyacetate, a specific inhibitor of lactate-butyrate conversion, abolished this effect (p = 0.09. Antibiotic treatment also eliminated this effect, rendering lactate-perfused sections similar to control sections (p = 0.72. Perfusion with butyrate and methoxyacetate did not eliminate the observed increased secretion, which indicates that ischemic protection was mediated by microbial conversion of lactate to butyrate (p = 0.71.Conclusions: Lactate's protective effect against intestinal ischemia due to microbial conversion to butyrate suggests possible applications in the transplant setting for reducing ischemic injury and ameliorating intestinal

  16. Intestinal myiasis

    Directory of Open Access Journals (Sweden)

    U S Udgaonkar

    2012-01-01

    Full Text Available Purpose: Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. Materials and Methods: We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar. This medium is simple and can be easily prepared in the laboratory. Results: Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. Conclusions: S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.

  17. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats

    DEFF Research Database (Denmark)

    Voldstedlund, M; Dabelsteen, Erik

    1997-01-01

    Most cells express facilitative glucose transporters. Four isoforms (GLUT1-4) transporting D-glucose across the plasma membrane show a specific tissue distribution, which is the basis for tissue-specific patterns in glucose metabolism. GLUT1 is expressed at high levels in tissue barriers...... as a general indicator of tissue barriers. In contrast, our results support the prevailing, but limited knowledge of glucose metabolism in squamous stratified epithelia, a metabolism believed to depend mostly on glycolysis, especially in the basal layers. High-level expression seemed to be confined...

  18. Development of hypoparathyroidism animal model and the feasibility of small intestinal submucosa application on the parathyroid autotransplantation.

    Science.gov (United States)

    Park, Hae Sang; Jung, Soo Yeon; Kim, Ha Young; Kim, Da Yeon; Kim, Moon Suk; Chung, Sung Min; Rho, Young-Soo; Kim, Han Su

    2015-10-01

    The purpose of this study is to evaluate the feasibility of small intestinal submucosa (SIS) application on the parathyroid autotransplantation in a rat model of hypoparathyroidism. The rats were divided into four groups: NC (no procedure, n = 5), PTX (total parathyroidectomy, n = 6), PT (total parathyroidectomy and parathyroid autotransplantation, n = 10) and PT + SIS group (total parathyroidectomy and parathyroid autotransplantation with SIS, n = 10). The levels of parathyroid hormone (PTH), calcium, and phosphorous were measured on 0, 3, 7, 21, 56 and 84 days after surgery. PTH level was expressed as median (interquartile range) and histological and immunohistochemical examinations were performed. PTH levels were significantly decreased to "not detectable level" from day 3 in PTX group. PTH was not detected in both PT and PT + SIS groups on the 21st day. On the 56th day, PTH levels were increased in both groups: 3 out of 8 rats (37.5%) in the PT group, 6 out of 9 rats (66.7%) in the PT + SIS group. The PTH level was fully recovered to its preoperative range on the day 84 as 6 of 8 rats (75%) of the PT group and 7 of 9 rats (77.8%) of the PT + SIS group were recovered; the PTH levels were 117.84 and 178.36 pg/ml, respectively. The neo-vascularization was well observed around the parathyroid tissue, and the number of new vessels formed was higher in the PT + SIS group (15 vessels/high power field) as compared to the PT group (10 vessels/high power field). This study showed the feasibility and the treatment effect of SIS as the success rate of autotransplantation of parathyroid tissue was significantly increased without severe inflammatory response in hypothyroidism animal model.

  19. Organ Culture as a Model System for Studies on Enterotoxin Interactions with the Intestinal Epithelium

    DEFF Research Database (Denmark)

    Lorenzen, Ulver Spangsberg; Hansen, Gert H; Danielsen, E Michael

    2015-01-01

    Studies on bacterial enterotoxin-epithelium interactions require model systems capable of mimicking the events occurring at the molecular and cellular levels during intoxication. In this chapter, we describe organ culture as an often neglected alternative to whole-animal experiments or enterocyte......-like cell lines. Like cell culture, organ culture is versatile and suitable for studying rapidly occurring events, such as enterotoxin binding and uptake. In addition, it is advantageous in offering an epithelium with more authentic permeability/barrier properties than any cell line, as well...

  20. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND: Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model. METHODS AND FINDINGS: Caco-2 cells were grown in a basement membrane matrix (Matrigel™ to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10-40 mM or acetaldehyde (25-200 µM for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation. CONCLUSIONS: These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in

  1. Psidium guajava leaf extract prevents intestinal colonization of Citrobacter rodentium in the mouse model

    Directory of Open Access Journals (Sweden)

    Pooja Gupta

    2015-01-01

    Full Text Available Diarrheal diseases are the second highest cause of mortality of children under 5 years worldwide. There is a continuous search for developing a cost-effective treatment for diarrhea as the present ones are facing challenges. Medicinal plants can be explored further as an alternative treatment for diarrhea. Psidium guajava leaves have been used as an antidiarrheal globally. Citrobacter rodentium, a common mouse pathogen, is known to mimic the pathogenecity of enteropathogenic and enterohemorrhagic E. coli. It can thus present an effective model to study infectious diarrhea. In the present study, the P. guajava leaf extract was tested for its efficacy in treating infectious diarrhea using a C. rodentium mouse model. The mice in the test group (treated with P. guajava leaf extract showed quicker clearance of infection as compared with the control group. The bacterial load in the fecal sample of the mice in the test group was high on Day 4 as compared with that in the control group, suggesting a flush out of the bacteria. In the test group, 6/7 (85.71% mice showed clearance of infection by Day 19. The control group continued to show infection till Day 29. P. guajava leaf extract thus has the potential for use in the treatment of infectious diarrhea.

  2. Psidium guajava leaf extract prevents intestinal colonization of Citrobacter rodentium in the mouse model

    Science.gov (United States)

    Gupta, Pooja; Birdi, Tannaz

    2015-01-01

    Diarrheal diseases are the second highest cause of mortality of children under 5 years worldwide. There is a continuous search for developing a cost-effective treatment for diarrhea as the present ones are facing challenges. Medicinal plants can be explored further as an alternative treatment for diarrhea. Psidium guajava leaves have been used as an antidiarrheal globally. Citrobacter rodentium, a common mouse pathogen, is known to mimic the pathogenecity of enteropathogenic and enterohemorrhagic E. coli. It can thus present an effective model to study infectious diarrhea. In the present study, the P. guajava leaf extract was tested for its efficacy in treating infectious diarrhea using a C. rodentium mouse model. The mice in the test group (treated with P. guajava leaf extract) showed quicker clearance of infection as compared with the control group. The bacterial load in the fecal sample of the mice in the test group was high on Day 4 as compared with that in the control group, suggesting a flush out of the bacteria. In the test group, 6/7 (85.71%) mice showed clearance of infection by Day 19. The control group continued to show infection till Day 29. P. guajava leaf extract thus has the potential for use in the treatment of infectious diarrhea. PMID:25878465

  3. Effects of Onion (Allium cepa L. Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Sun-Ho Kim

    2011-06-01

    Full Text Available Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes,α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L. extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50 of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose, a strong α-glucosidase inhibitor in the Sprague-Dawley (SD rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast in EOS-treated SD rats (0.5 g-EOS/kg was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL. The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL. Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053 on sucrase and maltase activities in intestine were evaluated in SD rat model

  4. Effects of Onion (Allium cepa L.) Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Science.gov (United States)

    Kim, Sun-Ho; Jo, Sung-Hoon; Kwon, Young-In; Hwang, Jae-Kwan

    2011-01-01

    Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L.) extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS) was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50) of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast) in EOS-treated SD rats (0.5 g-EOS/kg) was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL). The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg) was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL). Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053) on sucrase and maltase activities in intestine were evaluated in SD rat model. Compared to

  5. Intestinal Failure (Short Bowel Syndrome)

    Science.gov (United States)

    Intestinal Failure (Short Bowel Syndrome) What is intestinal failure? Intestinal failure occurs when a significant portion of the small ... intestine does. Who is at risk for intestinal failure? N Babies (usually premature) who have had surgery ...

  6. Development of a high-throughput in vitro intestinal lipolysis model for rapid screening of lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Mosgaard, Mette D; Sassene, Philip; Mu, Huiling

    2015-01-01

    PURPOSE: To develop a high-throughput in vitro intestinal lipolysis (HTP) model, without any means of pH-stat-titration, to enable a fast evaluation of lipid-based drug delivery systems (LbDDS). MATERIAL AND METHOD: The HTP model was compared to the traditionally used dynamic in vitro lipolysis......OH to neutralize the free fatty acids (FFAs), due to an increased buffer capacity. Cinnarizine was primarily located in the aqueous phase during digestion of all three LbDDS and did not differ significantly between the two models. The distribution of danazol varied from formulation to formulation...

  7. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model

    Science.gov (United States)

    Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI. PMID:26030918

  8. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.

    Directory of Open Access Journals (Sweden)

    Bo Sun

    Full Text Available Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.

  9. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    Full Text Available Many of the symptoms of Gulf War Illness (GWI that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4 activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  10. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.

    Science.gov (United States)

    Gullmets, Josef; Torvaldson, Elin; Lindqvist, Julia; Imanishi, Susumu Y; Taimen, Pekka; Meinander, Annika; Eriksson, John E

    2017-12-01

    Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila , transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila , a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila , we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. © FASEB.

  11. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model.

    Science.gov (United States)

    de Almeida, Ana Beatriz Albino; Sánchez-Hidalgo, Marina; Martín, Antonio Ramón; Luiz-Ferreira, Anderson; Trigo, José Roberto; Vilegas, Wagner; dos Santos, Lourdes Campaner; Souza-Brito, Alba Regina Monteiro; de la Lastra, Catalina Alarcón

    2013-03-07

    In Brazilian traditional medicine, Arctium lappa (Asteraceae), has been reported to relieve gastrointestinal symptoms. In the present study, we investigated the effects of the lactone sesquiterpene onopordopicrin enriched fraction (ONP fraction) from Arctium lappa in an experimental colitis model induced by 2,4,6 trinitrobenzene sulfonic acid and performed experiments to elucidate the underlying action mechanisms involved in that effect. ONP fraction (25 and 50 mg/kg/day) was orally administered 48, 24 and 1 h prior to the induction of colitis and 24 h after. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) levels and a histological study of the lesions. We determined cyclooxygenase (COX)-1 and -2 protein expressions by western blotting and immunohistochemistry assays. TNBS group was characterized by increased colonic wall thickness, edema, diffuse inflammatory cell infiltration, increased MPO activity and TNF-α levels. On the contrary, ONP fraction (25 and 50 mg/kg) treatment significantly reduced the macroscopic inflammation scores (pArctium lappa exert marked protective effects in acute experimental colitis, confirming and justifying, at least in part, the popular use of this plant to treat gastrointestinal diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Effectiveness of trimebutine maleate on modulating intestinal hypercontractility in a mouse model of postinfectious irritable bowel syndrome.

    Science.gov (United States)

    Long, Yanqin; Liu, Ying; Tong, Jingjing; Qian, Wei; Hou, Xiaohua

    2010-06-25

    Trimebutine maleate, which modulates the calcium and potassium channels, relieves abdominal pain in patients with irritable bowel syndrome. However, its effect on postinfectious irritable bowel syndrome is not clarified. The aim of this study was to investigate the effectiveness of trimebutine maleate on modulating colonic hypercontractility in a mouse model of postinfectious irritable bowel syndrome. Mice infected up to 8 weeks with T. spiralis underwent abdominal withdrawal reflex to colorectal distention to evaluate the visceral sensitivity at different time points. Tissues were examined for histopathology scores. Colonic longitudinal muscle strips were prepared in the organ bath under basal condition or to be stimulated by acetylcholine and potassium chloride, and consecutive concentrations of trimebutine maleate were added to the bath to record the strip responses. Significant inflammation was observed in the intestines of the mice infected 2 weeks, and it resolved in 8 weeks after infection. Visceral hyperalgesia and colonic muscle hypercontractility emerged after infection, and trimebutine maleate could effectively reduce the colonic hyperreactivity. Hypercontractility of the colonic muscle stimulated by acetylcholine and high K(+) could be inhibited by trimebutine maleate in solution with Ca(2+), but not in Ca(2+) free solution. Compared with 8-week postinfectious irritable bowel syndrome group, 2-week acute infected strips were much more sensitive to the stimulators and the drug trimebutine maleate. Trimebutine maleate was effective in reducing the colonic muscle hypercontractility of postinfectious irritable bowel syndrome mice. The findings may provide evidence for trimebutine maleate to treat postinfectious irritable bowel syndrome patients effectively. (c) 2010 Elsevier B.V. All rights reserved.

  13. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    Science.gov (United States)

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (Psubtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (Psubtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (PBacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  14. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    -moieties for benzyl alcohol have been shown to maintain affinity for hPepT1. The primary aim of the present study was to investigate if modifications of the benzyl alcohol model drug influence the corresponding D-Glu-Ala and D-Asp-Ala model prodrugs' affinity for hPepT1 in Caco-2 cells. A second aim...... was to investigate the transepithelial transport and hydrolysis parameters for D-Asp(BnO)-Ala and D-Glu(BnO)-Ala across Caco-2 cell monolayers. In the present study, all investigated D-Asp-Ala and D-Glu-Ala model prodrugs retained various degrees of affinity for hPepT1 in Caco-2 cells. These affinities are used....... Transepithelial transport studies performed using Caco-2 cells of D-Asp(BnO)-Ala and D-Glu(BnO)-Ala showed that the K(m) for transepithelial transport was not significantly different for the two compounds. The maximal transport rate of the carrier-mediated flux component does not differ between the two model...

  15. Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia L. prevents intestinal inflammation in the trinitrobenzenesulphonic acid model of rat colitis

    Directory of Open Access Journals (Sweden)

    Fruet Andréa

    2012-05-01

    Full Text Available Abstract Background Inflammatory bowel disease (IBD is a chronic inflammation of the intestinal epithelium that is driven by the intestinal immune system, oxidative stress and the loss of tolerance to the luminal microbiota. The use of dietary products containing ingredients such as fibres and carbohydrates and/or antioxidant compounds have been used as a therapeutic strategy for intestinal diseases because these products are considered effective in the modulation of the immune system and colonic microbiota. We investigated the beneficial effects of cattail rhizome flour (Typha angustifolia L. in the trinitrobenzenesulphonic acid (TNBS model of rat colitis. In addition, we investigated the effects of cattail rhizome flour on the intestinal anti-inflammatory activity of prednisolone, which is a reference drug that is used for treatment of human IBD. Methods The present study included the preparation of flour from rhizomes of cattail (Typha angustifolia L.; an evaluation of the qualitative phytochemical profile of cattail rhizomes; an evaluation of the efficacy of cattail rhizome flour in TNBS-induced rat colitis; an evaluation of the synergistic effects of cattail rhizome flour on the intestinal anti-inflammatory activity of prednisolone; and macroscopic, clinical, biochemical, histopathological and microbiological studies to assess the healing effects of cattail rhizome flour and its synergistic effects in TNBS-induced rat colitis. The data were analysed by ANOVA, Kruskal-Wallis and χ2 tests. Results We tested several concentrations of cattail rhizome flour and found that dietary supplementation with 10% cattail rhizome flour showed the best effects at reducing the extension of the lesion, the colon weight ratio, adherences to adjacent organs and diarrhoea. These effects were related to inhibition of myeloperoxidase (MPO and alkaline phosphatase (AP activities and an attenuation of glutathione (GSH depletion. The 10% cattail rhizome flour was

  16. The Prediction of the Relative Importance of CYP3A/P-glycoprotein to the Nonlinear Intestinal Absorption of Drugs by Advanced Compartmental Absorption and Transit Model.

    Science.gov (United States)

    Takano, Junichi; Maeda, Kazuya; Bolger, Michael B; Sugiyama, Yuichi

    2016-11-01

    Intestinal CYP3A and P-glycoprotein (P-gp) decrease the intestinal absorption of substrate drugs. Since substrate specificity of CYP3A often overlaps that of P-gp, and estimation of their saturability in the intestine is difficult, dose-dependent F a F g (fraction of the administered drugs that reach the portal blood) of substrate drugs and the relative importance of CYP3A and P-gp have not been clarified in many cases. Thus, we tried to establish the universal methodology for predicting the in vivo absorption of several CYP3A and/or P-gp substrates from in vitro assays. One of the key points is to set up the scaling factor (SF), correcting the difference between the observed in vivo clearance and the predicted clearance from in vitro data. The SFs of V max for CYP3A (SF CYP3A ) and P-gp (SF P-gp ) were simultaneously optimized to explain the F a F g of CYP3A and/or P-gp substrate drugs. The best predictability of F a F g was achieved when considering both SF CYP3A and SF P-gp The simulation also clarified the relative importance of CYP3A and P-gp in determining F a F g In particular, the nonlinear intestinal absorption of verapamil was caused by the saturation of intestinal CYP3A, whereas that of quinidine was governed by the saturation of both CYP3A and P-gp. In addition, the dose-dependent F a F g of selective and dual CYP3A and/or P-gp substrates was well predicted. We therefore propose a methodology for predicting the F a F g of drugs using a mathematical model with optimized SF CYP3A and SF P-gp Our methodology is applicable to in vitro-in vivo extrapolation of intestinal absorption, even if absolute in vivo functions of enzymes/transporters are unclear. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Bacterial translocation in an experimental intestinal obstruction model: C-reactive protein reliability? Translocação bacteriana no modelo experimental de obstrução intestinal: A proteína C-reativa é confiável?

    Directory of Open Access Journals (Sweden)

    Saleh Ibrahim El-Awady

    2009-04-01

    Full Text Available BACKGROUND: Bacterial translocation occurs in preseptic conditions such as intestinal obstruction through unclear mechanism. The C-reactive protein is an acute phase reactant and a marker of ischemia. METHODS: 45 albino male rats were divided into 3 groups each 15 rats. GI control, GII simple intestinal-obstruction and GIII strangulated obstruction. Outcome measures were: (1 Bacteriologic count and typing for intestinal contents, intestinal wall, liver, mesenteric lymph nodes and blood (cardiac and portal (2 Histopathologic: mucosal injury score, inflammatory cell infiltrate in the wall, MLN, liver, (3 Biochemical: serum CRP, IL-10, mucosal stress pattern (glutathione peroxidase-malonyldialdhyde tissue levels. RESULTS: (1 Intestinal obstruction associates with BT precursors (Bact-overgrowth, mucosal-acidosis, immuno-incomptence, (2 Bacterial translocation (frequency and density was found higher in strangulated I.O, that was mainly enteric (aerobic and anaerobic and mostly E.coli, (3 The pathogen commonality supports the gut origin hypothesis but the systemic inflammatory response goes with the cytokine generating one. (4 The CRP median values for GI, II, III were 0.5, 6.9, 8.5 mg/L, for BT +ve 8 mg/L and 0.75 mg/L for BT -ve rats. CONCLUSION: Bacterial translocation occurs bi-directional (systemic-portal in intestinal obstruction and the resultant inflammatory response pathogenesis is mostly 3 hit model. The CRP is a non selective marker of suspected I.O cases. However, it is a reliable marker of BT, BT density and vascular compromise during I.O.OBJETIVO: Translocação bacteriana ocorre em condições pré-sépticas como na obstrução intestinal por mecanismo não esclarecido. A proteína C-reativa é um marcador de ischemia em fase aguda. A proposição é investigar os possíveis efeitos da obstrução intestinal no equilíbrio ecológico microbiano. MÉTODOS: 45 ratos machos albinos foram distribuídos em três grupos de 15 ratos. GI

  18. A coculture model mimicking the intestinal mucosa reveals a regulatory role for myofibroblasts in immune-mediated barrier disruption

    NARCIS (Netherlands)

    Willemsen, L. E. M.; Schreurs, C. C. H. M.; Kroes, H.; Spillenaar Bilgen, E. J.; van Deventer, S. J. H.; van Tol, E. A. F.

    2002-01-01

    The pathogenesis of Crohn's disease involves a mucosal inflammatory response affecting the barrier function of the gut. Myofibroblasts directly underlining the intestinal epithelium may have a regulatory role in immune-mediated barrier disruption. A coculture system of T84 epithelial and CCD-18Co

  19. Loss of sigma factor RpoN increases intestinal colonization of vibrio parahaemolyticus in an adult mouse model"

    Science.gov (United States)

    Vibrio parahaemolyticus is the leading cause of bacterial seafood-borne gastroenteritis worldwide, yet little is known about how this pathogen colonizes the human intestine. The alternative sigma factor RpoN/sigma-54 is a global regulator that controls flagella synthesis as well as a wide range of ...

  20. Modified Dietary Fiber from Cassava Pulp and Assessment of Mercury Bioaccessibility and Intestinal Uptake Using an In Vitro Digestion/Caco-2 Model System.

    Science.gov (United States)

    Kachenpukdee, Natta; Santerre, Charles R; Ferruzzi, Mario G; Oonsivilai, Ratchadaporn

    2016-07-01

    The ability of modified dietary fiber (MDF) generated from cassava pulp to modulate the bioaccessibility and intestinal absorption of heavy metals may be helpful to mitigate health risk associated with select foods including select fish high in methyl mercury. Using a coupled in vitro digestion/Caco-2 human intestinal cell model, the reduction of fish mercury bioaccessibility and intestinal uptake by MDF was investiaged. MDF was prepared from cassava pulp, a byproduct of tapioca production. The highest yield (79.68%) of MDF was obtained by enzymatic digestion with 0.1% α-amylase (w/v), 0.1% amyloglucosidase (v/v) and 1% neutrase (v/v). MDF and fish tissue were subjected to in vitro digestion and results suggest that MDF may reduce mercury bioaccessibility from fish to 34% to 85% compared to control in a dose-dependent manner. Additionally, accumulation of mercury from digesta containing fish and MDF was only modestly impacted by the presence of MDF. In conclusion, MDF prepared from cassava pulp may be useful as an ingredient to reduce mercury bioavailability from food such as fish specifically by inhibiting mercury transfer to the bioaccessibile fraction during digestion. © 2016 Institute of Food Technologists®

  1. The mediating role of resilience in the relationship between social support and posttraumatic growth among colorectal cancer survivors with permanent intestinal ostomies: A structural equation model analysis.

    Science.gov (United States)

    Dong, Xiaoling; Li, Guopeng; Liu, Chunlei; Kong, Linghua; Fang, Yueyan; Kang, Xiaofei; Li, Ping

    2017-08-01

    Information on posttraumatic growth (PTG) among colorectal cancer (CRC) survivors with permanent intestinal ostomies is limited. The aim of this cross-sectional study was to investigate the occurrence of PTG among CRC survivors with permanent intestinal ostomies and its association with perceived social support and resilience. This study was conducted with 164 CRC survivors with permanent intestinal ostomies at least one month after surgery. Participants completed questionnaires assessing socio-demographic and clinical characteristics, perceived social support, resilience and PTG. The mean total score on the Post Traumatic Growth Inventory was 66.74 (SD = 13.99). Perceived social support (r = 0.450) and resilience (r = 0.545) were significantly positively correlated with PTG. Structural equation modeling analysis showed that resilience mediated the relationship between perceived social support and PTG in which the indirect effect of perceived social support on PTG through resilience was 0.203 (P resilience might be scientific intervention strategies for promoting PTG among CRC survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Lupin protein isolate versus casein modifies cholesterol excretion and mRNA expression of intestinal sterol transporters in a pig model.

    Science.gov (United States)

    Radtke, Juliane; Geissler, Stefanie; Schutkowski, Alexandra; Brandsch, Corinna; Kluge, Holger; Duranti, Marcello M; Keller, Sylvia; Jahreis, Gerhard; Hirche, Frank; Stangl, Gabriele I

    2014-02-03

    Lupin proteins exert hypocholesterolemic effects in man and animals, although the underlying mechanism remains uncertain. Herein we investigated whether lupin proteins compared to casein modulate sterol excretion and mRNA expression of intestinal sterol transporters by use of pigs as an animal model with similar lipid metabolism as humans, and cellular cholesterol-uptake by Caco-2 cells. Two groups of pigs were fed cholesterol-containing diets with either 230 g/kg of lupin protein isolate from L. angustifolius or 230 g/kg casein, for 4 weeks. Faeces were collected quantitatively over a 5 d period for analysis of neutral sterols and bile acids by gas chromatographically methods. The mRNA abundances of intestinal lipid transporters were analysed by real-time RT-PCR. Cholesterol-uptake studies were performed with Caco-2 cells that were incubated with lupin conglutin γ, phytate, ezetimibe or albumin in the presence of labelled [4-14C]-cholesterol. Pigs fed the lupin protein isolate revealed lower cholesterol concentrations in total plasma, LDL and HDL than pigs fed casein (P isolate compared to pigs that received casein (+57.1%; P isolate than in those who received casein (P isolate is attributable to an increased faecal output of cholesterol and a reduced intestinal uptake of cholesterol. The findings indicate phytate as a possible biofunctional ingredient of lupin protein isolate.

  3. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats.

    Science.gov (United States)

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J; Franch, Àngels; Untersmayr, Eva; Castell, Margarida

    2017-04-01

    Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Monitoring changes in plasma levels of pancreatic and intestinal enzymes in a model of pancreatic exocrine insufficiency--induced by pancreatic duct-ligation--in young pigs.

    Science.gov (United States)

    Lozinska, Liudmyla; Prykhodko, Olena; Sureda, Ester Arévalo; Szwiec, Katarzyna; Podgurniak, Pawel; Pierzynowski, Stefan; Weström, Björn

    2015-03-01

    Plasma levels of pancreatic and intestinal enzymes were measured after pancreatic duct ligation (PDL) to monitor pancreatic exocrine insufficiency (PEI) in a model using young pigs. Five, 6 week-old pigs (10.9±0.2kg), underwent PDL while age-matched, un-operated pigs were used as controls. Plasma levels of immunoreactive cationic trypsinogen (IRCT), amylase, lipase, and diamine oxidase (DAO) activities were analyzed for 48 days after PDL, including 1 week of oral pancreatic enzyme supplementation (PES) with Creon(®). PDL resulted in an arrested body growth and a rapid surge of pancreatic enzymes (IRCT, amylase and lipase) into the plasma. Nine days after PDL, the plasma levels of these pancreatic enzymes had decreased. IRCT then remained below the level in un-operated pigs while amylase only fell below control at 25 days. The intestinally derived marker DAO and plasma protein levels were unaffected by PDL but DAO decreased slightly with time in PEI pigs. One-week of oral PES restored body growth, but had little effect on pancreatic enzyme plasma levels, except for a tendency towards increased DAO. The study showed that PEI developed within 1-2 weeks after PDL and that only IRCT is a reliable plasma enzyme marker for this. The reduced plasma DAO indicated that PEI also affected the intestines, while PES therapy restored growth of the PDL pigs and slightly increased plasma DAO, suggesting an improved intestinal function. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules.

    Science.gov (United States)

    Mori, Kazumi; Saito, Ryuta; Nakamaru, Yoshinobu; Shimizu, Makiko; Yamazaki, Hiroshi

    2016-11-01

    Canagliflozin is a recently developed sodium-glucose cotransporter (SGLT) 2 inhibitor that promotes renal glucose excretion and is considered to inhibit renal SGLT2 from the luminal side of proximal tubules. Canagliflozin reportedly inhibits SGLT1 weakly and suppresses postprandial plasma glucose, suggesting that it also inhibits intestinal SGLT1. However, it is difficult to measure the drug concentrations of these assumed sites of action directly. The pharmacokinetic-pharmacodynamic (PK/PD) relationships of canagliflozin remain poorly characterized. Therefore, a physiologically based pharmacokinetic (PBPK) model of canagliflozin was developed based on clinical data from healthy volunteers and it was used to simulate luminal concentrations in intestines and renal tubules. In small intestine simulations, the inhibition ratios for SGLT1 were predicted to be 40%-60% after the oral administration of clinical doses (100-300 mg/day). In contrast, inhibition ratios of canagliflozin for renal SGLT2 and SGLT1 were predicted to be approximately 100% and 0.2%-0.4%, respectively. These analyses suggest that canagliflozin only inhibits SGLT2 in the kidney. Using the simulated proximal tubule luminal concentrations of canagliflozin, the urinary glucose excretion rates in canagliflozin-treated diabetic patients were accurately predicted using the renal glucose reabsorption model as a PD model. Because the simulation of canagliflozin pharmacokinetics was successful, this PBPK methodology was further validated by successfully simulating the pharmacokinetics of dapagliflozin, another SGLT2 inhibitor. The present results suggest the utility of this PBPK/PD model for predicting canagliflozin concentrations at target sites and help to elucidate the pharmacological effects of SGLT1/2 inhibition in humans. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats

    DEFF Research Database (Denmark)

    Voldstedlund, M; Dabelsteen, Erik

    1997-01-01

    mucosa from rat and man, and a human oral carcinoma by indirect immunofluorescence microscopy. The results showed that GLUT1 was expressed in the basal and parabasal layers of the different stratified squamous epithelia, with some variations between keratinized and non-keratinized subtypes. GLUT1...... was also expressed in ductal- and myoepithelial cells of minor salivary glands and perineural sheath located in the lamina propra, and furthermore in the cells of an oral carcinoma. GLUT4 was not expressed in any of the tissues examined. This distribution of GLUT1 does not fit with the idea of GLUT1......Most cells express facilitative glucose transporters. Four isoforms (GLUT1-4) transporting D-glucose across the plasma membrane show a specific tissue distribution, which is the basis for tissue-specific patterns in glucose metabolism. GLUT1 is expressed at high levels in tissue barriers...

  7. Cholera toxin enhances Na+ absorption across MCF10A human mammary epithelia

    Science.gov (United States)

    Wang, Qian

    2013-01-01

    Cellular mechanisms to account for the low Na+ concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na+ channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na+ concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na+ transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body. PMID:24371040

  8. Cholera toxin enhances Na(+) absorption across MCF10A human mammary epithelia.

    Science.gov (United States)

    Wang, Qian; Schultz, Bruce D

    2014-03-01

    Cellular mechanisms to account for the low Na(+) concentration in human milk are poorly defined. MCF10A cells, which were derived from human mammary epithelium and grown on permeable supports, exhibit amiloride- and benzamil-sensitive short-circuit current (Isc; a sensitive indicator of net ion transport), suggesting activity of the epithelial Na(+) channel ENaC. When cultured in the presence of cholera toxin (Ctx), MCF10A cells exhibit greater amiloride-sensitive Isc at all time points tested (2 h to 7 days), an effect that is not reduced with Ctx washout for 12 h. Amiloride-sensitive Isc remains elevated by Ctx in the presence of inhibitors for PKA (H-89, Rp-cAMP), PI3K (LY294002), and protein trafficking (brefeldin A). Additionally, the Ctx B subunit, alone, does not replicate these effects. RT-PCR and Western blot analyses indicate no significant increase in either the mRNA or protein expression for α-, β-, or, γ-ENaC subunits. Ctx increases the abundance of both β- and γ-ENaC in the apical membrane. Additionally, Ctx increases both phosphorylated and nonphosphorylated Nedd4-2 expression. These results demonstrate that human mammary epithelia express ENaC, which can account for the low Na(+) concentration in milk. Importantly, the results suggest that Ctx increases the expression but reduces the activity of the E3 ubiquitin ligase Nedd4-2, which would tend to reduce the ENaC retrieval and increase steady-state membrane residency. The results reveal a novel mechanism in human mammary gland epithelia by which Ctx regulates ENaC-mediated Na(+) transport, which may have inferences for epithelial ion transport regulation in other tissues throughout the body.

  9. Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets.

    Science.gov (United States)

    Penner, G B; Steele, M A; Aschenbach, J R; McBride, B W

    2011-04-01

    Feeding highly fermentable diets to ruminants is one strategy to increase energy intake. The increase in short-chain fatty acid (SCFA) production and reduced ruminal pH associated with highly fermentable diets imposes a challenge to the metabolism and the regulation of intracellular pH homeostasis of ruminal epithelia. The ruminal epithelia respond to these challenges in a coordinated manner. Whereas the enlargement of absorptive surface area is well documented, emerging evidence at the mRNA and transporter and enzyme activity levels indicate that changes in epithelial cell function may be the initial response. It is not surprising that gene expression analysis has identified pathways involved in fatty acid metabolism, ion transport, and intracellular homeostasis to be the pathways dominantly affected during adaptation and after adaptation to a highly fermentable diet. These findings are important because the intraepithelial metabolism of SCFA, particularly butyrate, helps to maintain the concentration gradient between the cytosol and lumen, thereby facilitating absorption. Butyrate metabolism also controls the intracellular availability of butyrate, which is widely regarded as a signaling molecule. Current data indicate that for butyrate metabolism, 3-hydroxy-3-methylglutaryl-CoA synthase and acetyl-CoA acetyltransferase are potential regulatory points with transient up- and downregulation during diet adaptation. In addition to nutrient transport and utilization, genes involved in the maintenance of cellular tight junction integrity and induction of inflammation have been identified as differentially expressed genes during adaptation to highly fermentable diets. This may have important implications on ruminal epithelial barrier function and the inflammatory response often associated with subacute ruminal acidosis. The objective of this review is to summarize ruminal epithelial adaptation to highly fermentable diets focusing on the changes at the enzyme and

  10. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet.

    Science.gov (United States)

    Zhou, Xin; Han, Dewu; Xu, Ruiling; Li, Suhong; Wu, Huiwen; Qu, Chongxiao; Wang, Feng; Wang, Xiangyu; Zhao, Yuanchang

    2014-01-01

    We sought develop and characterize a diet-induced model of metabolic syndrome and its related diseases. The experimental animals (Spague-Dawley rats) were randomly divided into two groups, and each group was fed a different feed for 48 weeks as follows: 1) standard control diet (SC), and 2) a high sucrose and high fat diet (HSHF). The blood, small intestine, liver, pancreas, and adipose tissues were sampled for analysis and characterization. Typical metabolic syndrome (MS), non-alcoholic fatty liver disease (NAFLD), and type II diabetes (T2DM) were common in the HSHF group after a 48 week feeding period. The rats fed HSHF exhibited signs of obesity, dyslipidemia, hyperglycaemia, glucose intolerance, and insulin resistance (IR). At the same time, these animals had significantly increased levels of circulating LPS, TNFα, and IL-6 and increased ALP in their intestinal tissue homogenates. These animals also showed a significant reduction in the expression of occluding protein. The HSHF rats showed fatty degeneration, inflammation, fibrosis, cirrhosis, and lipid accumulation when their liver pathologies were examined. The HSHF rats also displayed increased islet diameters from 12 to 24 weeks, while reduced islet diameters occurred from 36 to 48 weeks with inflammatory cell infiltration and islet fat deposition. The morphometry of adipocytes in HSHF rats showed hypertrophy and inflammatory cell infiltration. HSHF CD68 analysis showed macrophage infiltration and significant increases in fat and pancreas size. HSHF Tunel analysis showed significant increases in liver and pancreas cell apoptosis. This work demonstrated the following: 1) a characteristic rat model of metabolic syndrome (MS) can be induced by a high sucrose and high fat diet, 2) this model can be used to research metabolic syndrome and its related diseases, such as NAFLD and T2DM, and 3) intestinal endotoxemia (IETM) may play an important role in the pathogenesis of MS and related diseases, such as NAFLD and

  11. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet.

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    Full Text Available We sought develop and characterize a diet-induced model of metabolic syndrome and its related diseases.The experimental animals (Spague-Dawley rats were randomly divided into two groups, and each group was fed a different feed for 48 weeks as follows: 1 standard control diet (SC, and 2 a high sucrose and high fat diet (HSHF. The blood, small intestine, liver, pancreas, and adipose tissues were sampled for analysis and characterization.Typical metabolic syndrome (MS, non-alcoholic fatty liver disease (NAFLD, and type II diabetes (T2DM were common in the HSHF group after a 48 week feeding period. The rats fed HSHF exhibited signs of obesity, dyslipidemia, hyperglycaemia, glucose intolerance, and insulin resistance (IR. At the same time, these animals had significantly increased levels of circulating LPS, TNFα, and IL-6 and increased ALP in their intestinal tissue homogenates. These animals also showed a significant reduction in the expression of occluding protein. The HSHF rats showed fatty degeneration, inflammation, fibrosis, cirrhosis, and lipid accumulation when their liver pathologies were examined. The HSHF rats also displayed increased islet diameters from 12 to 24 weeks, while reduced islet diameters occurred from 36 to 48 weeks with inflammatory cell infiltration and islet fat deposition. The morphometry of adipocytes in HSHF rats showed hypertrophy and inflammatory cell infiltration. HSHF CD68 analysis showed macrophage infiltration and significant increases in fat and pancreas size. HSHF Tunel analysis showed significant increases in liver and pancreas cell apoptosis.This work demonstrated the following: 1 a characteristic rat model of metabolic syndrome (MS can be induced by a high sucrose and high fat diet, 2 this model can be used to research metabolic syndrome and its related diseases, such as NAFLD and T2DM, and 3 intestinal endotoxemia (IETM may play an important role in the pathogenesis of MS and related diseases, such as NAFLD

  12. Dietary Nucleotides Supplementation Improves the Intestinal Development and Immune Function of Neonates with Intra-Uterine Growth Restriction in a Pig Model.

    Directory of Open Access Journals (Sweden)

    Lianqiang Che

    Full Text Available The current study aimed to determine whether dietary nucleotides supplementation could improve growth performance, intestinal development and immune function of intra-uterine growth restricted (IUGR neonate using pig as animal model. A total of 14 pairs of normal birth weight (NBW and IUGR piglets (7 days old were randomly assigned to receive a milk-based control diet (CON diet or diet supplemented with nucleotides (NT diet for a period of 21 days. Blood samples, intestinal tissues and digesta were collected at necropsy and analyzed for morphology, digestive enzyme activities, microbial populations, peripheral immune cells, expression of intestinal innate immunity and barrier-related genes and proteins. Compared with NBW piglets, IUGR piglets had significantly lower average daily dry matter intake and body weight gain (P<0.05. Moreover, IUGR markedly decreased the villous height and villi: crypt ratio in duodenum (P<0.05, as well as the maltase activity in jejunum (P<0.05. In addition, IUGR significantly decreased the serum concentrations of IgA, IL-1βand IL-10 (P<0.05, as well as the percentage of peripheral lymphocytes (P<0.05. Meanwhile, the down-regulation of innate immunity-related genes such as TOLLIP (P<0.05, TLR-9 (P = 0.08 and TLR-2 (P = 0.07 was observed in the ileum of IUGR relative to NBW piglets. Regardless of birth weight, however, feeding NT diet markedly decreased (P<0.05 feed conversion ratio, increased the villous height in duodenum (P<0.05, activities of lactase and maltase in jejunum (P<0.05, count of peripheral leukocytes (P<0.05, serum concentrations of IgA and IL-1β as well as gene expressions of TLR-9, TLR-4 and TOLLIP in ileum (P<0.05. In addition, expressions of tight junction proteins (Claudin-1 and ZO-1 in ileum were markedly increased by feeding NT diet relative to CON diet (P<0.05. These results indicated that IUGR impaired growth performance, intestinal and immune function, but dietary nucleotides supplementation

  13. Intestinal proteomics in pig models of necrotising enterocolitis, short bowel syndrome and intra-uterine growth restriction

    DEFF Research Database (Denmark)

    Jiang, Pingping; Sangild, Per Torp

    2014-01-01

    are also affected by SBS and IUGR. Parallel changes in some plasma and urinary proteins (e.g., haptoglobin, globulins, complement proteins, fatty acid binding proteins) may mirror the intestinal responses and pave the way to biomarker discovery. Explorative non-targeted proteomics provide ideas about......, but only supplement, classical hypothesis-driven research that investigate disease mechanisms using a single or few endpoints. This article is protected by copyright. All rights reserved....

  14. Intermittent fasting modulates IgA levels in the small intestine under intense stress: a mouse model.

    Science.gov (United States)

    Lara-Padilla, Eleazar; Godínez-Victoria, Marycarmen; Drago-Serrano, Maria Elisa; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Campos-Rodríguez, Rafael

    2015-08-15

    Intermittent fasting prolongs the lifespan and unlike intense stress provides health benefits. Given the role of the immunoglobulin A (IgA) in the intestinal homeostasis, the aim of this study was to assess the impact of intermittent fasting plus intense stress on secretory IgA (SIgA) production and other mucosal parameters in the duodenum and ileum. Two groups of six mice, with intermittent fasting or fed ad libitum for 12weeks, were submitted to a session of intense stress by a bout of forced swimming. Unstressed ad libitum fed or intermittently fasted groups were included as controls. After sacrifice, we evaluated intestinal SIgA and plasma adrenal hormones, lamina propria IgA+ plasma-cells, mRNA expression of polymeric immunoglobulin receptor, α- and J-chains in the liver and intestinal mucosa, as well as pro- (tumor necrosis factor-α, interleukin-6 and Interferon-γ) and anti- (interleukin-2, -4, -10 and transforming growth factor-β) inflammatory cytokines in mucosal samples. Under intense stress, intermittent fasting down- or up-modulated the levels of most parameters in the duodenum and ileum, respectively while up-regulated corticosterone levels without affecting epinephrine. Our data suggest intermittent fasting plus intense stress elicited neuroendocrine pathways that differentially controlled IgA and pIgR expression in duodenum and ileum. These findings provide experimental foundations for a presumable impact of intermittent fasting under intense stress on the intestinal homeostasis or inflammation by triggering or reducing the IgA production in ileum or duodenum respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Preclinical Studies on Intestinal Administration of Antisense Oligonucleotides as a Model for Oral Delivery for Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Maaike van Putten

    2014-01-01

    Full Text Available Antisense oligonucleotides (AONs used to reframe dystrophin mRNA transcripts for Duchenne muscular dystrophy (DMD patients are tested in clinical trials. Here, AONs are administered subcutaneously and intravenously, while the less invasive oral route would be preferred. Oral delivery of encapsulated AONs supplemented with a permeation enhancer, sodium caprate, has been successfully used to target tumor necrosis factor (TNF-α expression in liver. To test the feasibility of orally delivered AONs for DMD, we applied 2′-O-methyl phosphorothioate AONs (with or without sodium caprate supplementation directly to the intestine of mdx mice and compared pharmacokinetics and -dynamics with intravenous, intraperitoneal, and subcutaneous delivery. Intestinally infused AONs were taken up, but resulted in lower plasma levels compared to other delivery routes, although bioavailability could be largely improved by supplementation of sodium caprate. After intestinal infusion, AON levels in all tissues were lower than for other administration routes, as were the ratios of target versus nontarget organ levels, except for diaphragm and heart where comparable levels and ratios were observed. For each administration route, low levels of exon skipping in triceps was observed 3 hours post-AON administration. These data suggest that oral administration of naked 2′-O-methyl phosphorothioate AONs may be feasible, but only when high AON concentrations are used in combination with sodium caprate.

  16. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestinal failure

    DEFF Research Database (Denmark)

    Brinkman, Adam S; Murali, Sangita G; Hitt, Stacy

    2012-01-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that shows promise for the treatment of short bowel syndrome (SBS). Our objective was to investigate how combination GLP-2 + enteral nutrients (EN) affects intestinal adaption in a rat model that mimics severe...... human SBS and requires parenteral nutrition (PN). Male Sprague-Dawley rats were assigned to one of five groups and maintained with PN for 18 days: total parenteral nutrition (TPN) alone, TPN + GLP-2 (100 μg·kg(-1)·day(-1)), PN + EN + GLP-2(7 days), PN + EN + GLP-2(18 days), and a nonsurgical oral...

  17. Protein and mRNA expression of simple epithelial keratins in normal, dysplastic, and malignant oral epithelia.

    Science.gov (United States)

    Su, L.; Morgan, P. R.; Lane, E. B.

    1994-01-01

    Simple epithelial keratins K7, K8, and K18 are present in no more than trace amounts in normal stratified squamous epithelial but have been reported in squamous cell carcinomas. With the aim of determining the level at which keratin synthesis is regulated in vivo, we have compared the expression of mRNA by in situ hybridization and protein by immunohistochemistry for K7, K8, and K18 in a series of normal, dysplastic, and malignant oral epithelia. In normal epithelia mRNAs for K7, K8, and K18 were present in basal and lower spinous cells but adjacent sections were generally negative for the respective proteins. In severe dysplasia there was irregular suprabasal extension of K8 and K18 mRNAs in all cases and their proteins were expressed in more than half of the cases. The carcinomas expressed K8 and K18 mRNAs homogeneously and were strongly reactive for these keratin proteins but K7 expression appeared reduced in malignancy. These results are consistent with the post-transcriptional regulation of K7, K8, and K18 expression in normal epithelia and the presence of their proteins in dysplastic and malignant epithelia suggests the release of these epithelial cells from a post-transcriptional block on K8 and K18 translation. Alternatively, rapid degradation of K8 and K18 protein might be occurring in normal epithelia but be suppressed in dysplasia and malignancy. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7527618

  18. Baicalin pharmacokinetic profile of absorption process using novel in-vitro model: cytochrome P450 3A4-induced Caco-2 cell monolayers combined with rat intestinal rinse fluids.

    Science.gov (United States)

    Morisaki, Tomoko; Hou, Xiao-Long; Takahashi, Kyoko; Takahashi, Koichi

    2013-10-01

    This study was designed to investigate baicalin (BG) pharmacokinetic profile in absorption process using a new model and evaluate the potentiality as a new model. The effects of BG on intestinal cytochrome P450 3A4 (CYP3A) protein/mRNA expression, activity and permeability glycoprotein (P-gp) were evaluated in CYP3A4-induced Caco-2 cell monolayers or rats. Intestinal rinse fluids (IF) were obtained from rat were added to modified Caco-2 monolayers. Orally administered BG (7 days pretreatment) inhibited intestinal CYP3A activity and protein expression. Baicalein (B) converted from BG by IF was detected in the upper jejunum in a portion-dependent manner. Subsequently, most BG were converted to B in the caecum. In modified Caco-2 monolayers, BG exhibited no effect on CYP3A4 activity or mRNA, whereas B and BG treated with IF inhibited CYP3A4 transcription and activity. Intestinal CYP3A was inhibited following oral administration of BG to rat. Correspondingly, BG-mediated CYP3A inhibition was shown in vitro using modified Caco-2 monolayers treated with IF. Hence, in-vivo intestinal absorption pharmacokinetic was reproduced in vitro. IF is a key determinant of intestinal absorption, and it facilitated inhibition of CYP3A by B, not BG. © 2013 Royal Pharmaceutical Society.

  19. Quantification of Salmonella Survival and Infection in an In vitro Model of the Human Intestinal Tract as Proxy for Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Lucas M. Wijnands

    2017-06-01

    Full Text Available Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a static, sequential gastrointestinal tract (GIT model system in which foodborne pathogens are exposed to simulated gastric and intestinal contents of the human digestive tract, including the interaction of pathogens with the intestinal epithelium. The system can be employed with any foodborne bacterial pathogens. Five strains of Salmonella Heidelberg and one strain of Salmonella Typhimurium were used to assess the robustness of the system. Four S. Heidelberg strains originated from an outbreak, the fifth S. Heidelberg strain and the S. Typhimurium strain originated from routine meat inspections. Data from plate counts, collected for determining the numbers of surviving bacteria in each stage, were used to quantify both the experimental uncertainty and biological variability of pathogen survival throughout the system. For this, a hierarchical Bayesian framework using Markov chain Monte Carlo (MCMC was employed. The model system is able to distinguish serovars/strains for in vitro infectivity when accounting for within strain biological variability and experimental uncertainty.

  20. Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota.

    Science.gov (United States)

    Chen, Shuai; Bin, Peng; Ren, Wenkai; Gao, Wei; Liu, Gang; Yin, Jie; Duan, Jielin; Li, Yinghui; Yao, Kang; Huang, Ruilin; Tan, Bie; Yin, Yulong

    2017-06-13

    Alpha-ketoglutarate (AKG), a precursor of glutamate and a critical intermediate in the tricarboxylic acid cycle, shows beneficial effects on intestinal function. However, the influence of AKG on the intestinal innate immune system and intestinal microbiota is unknown. This study explores the effect of oral AKG administration in drinking water (10 g/L) on intestinal innate immunity and intestinal microbiota in a mouse model. Mouse water intake, feed intake and body weight were recorded throughout the entire experiment. The ileum was collected for detecting the expression of intestinal proinflammatory cytokines and innate immune factors by Real-time Polymerase Chain Reaction. Additionally, the ileal luminal contents and feces were collected for 16S rDNA sequencing to analyze the microbial composition. The intestinal microbiota in mice was disrupted with an antibiotic cocktail. The results revealed that AKG supplementation lowered body weight, promoted ileal expression of mammalian defensins of the alpha subfamily (such as cryptdins-1, cryptdins-4, and cryptdins-5) while influencing the intestinal microbial composition (i.e., lowering the Firmicutes to Bacteroidetes ratio). In the antibiotic-treated mouse model, AKG supplementation failed to affect mouse body weight and inhibited the expression of cryptdins-1 and cryptdins-5 in the ileum. We concluded that AKG might affect body weight and intestinal innate immunity through influencing intestinal microbiota.

  1. Intestinal absorption of fluorescently labeled nanoparticles.

    Science.gov (United States)

    Simovic, Spomenka; Song, Yunmei; Nann, Thomas; Desai, Tejal A

    2015-07-01

    Characterization of intestinal absorption of nanoparticles is critical in the design of noninvasive anticancer, protein-based, and gene nanoparticle-based therapeutics. Here we demonstrate a general approach for the characterization of the intestinal absorption of nanoparticles and for understanding the mechanisms active in their processing within healthy intestinal cells. It is generally accepted that the cellular processing represents a major drawback of current nanoparticle-based therapeutic systems. In particular, endolysosomal trafficking causes degradation of therapeutic molecules such as proteins, lipids, acid-sensitive anticancer drugs, and genes. To date, investigations into nanoparticle processing within intestinal cells have studied mass transport through Caco-2 cells or everted rat intestinal sac models. We developed an approach to visualize directly the mechanisms of nanoparticle processing within intestinal tissue. These results clearly identify a mechanism by which healthy intestinal cells process nanoparticles and point to the possible use of this approach in the design of noninvasive nanoparticle-based therapies. Advances in nanomedicine have resulted in the development of new therapies for various diseases. Intestinal route of administration remains the easiest and most natural. The authors here designed experiments to explore and characterize the process of nanoparticle transport across the intestinal tissue. In so doing, further insights were gained for future drug design. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Intestinal microbiome landscaping

    NARCIS (Netherlands)

    Shetty, Sudarshan A.; Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; Vos, de Willem M.

    2017-01-01

    High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss

  3. Intestinal Lymphangiectasia

    Science.gov (United States)

    ... Study ALL NEWS > Resources First Aid Videos Figures 3D Models Images Infographics Audio Pronunciations The One-Page Manual of Health Quizzes ... Commentary ALL NEWS > Resources First Aid Videos Figures 3D Models Images Infographics Audio Pronunciations The One-Page Manual of Health Quizzes ...

  4. Effect of acute, slightly increased intra-abdominal pressure on intestinal permeability and oxidative stress in a rat model.

    Directory of Open Access Journals (Sweden)

    Yuxin Leng

    Full Text Available INTRODUCTION: Intra-abdominal hypertension (IAH is known as a common, serious complication in critically ill patients. Bacterial translocation and permeability changes are considered the pathophysiological bases for IAH-induced enterogenic endotoxemia and subsequent multiorgan failure. Nevertheless, the effects of slightly elevated intra-abdominal pressures (IAPs on the intestinal mucosa and the associated mechanisms remain unclear. METHODS: To investigate the acute effects of different nitrogen pneumoperitoneum grades on colonic mucosa, male Sprague-Dawley rats were assigned to six groups with different IAPs (0 [control], 4, 8, 12, 16, and 20 mmHg, n = 6/group. During 90 min of exposure, we dynamically monitored the heart rate and noninvasive hemodynamic parameters. After gradual decompression, arterial blood gas analyses were conducted. Thereafter, structural injuries to the colonic mucosa were identified using light microscopy. Colon permeability was determined using the expression of tight junction proteins, combined with fluorescein isothiocyanate dextran (FD-4 absorption. The pro-oxidant-antioxidant balance was determined based on the levels of malondialdehyde (MDA and antioxidant enzymes. RESULTS: IAH significantly affected the histological scores of the colonic mucosa, tight junction protein expression, mucosal permeability, and pro-oxidant-antioxidant balance. Interestingly, elevations of IAP that were lower than the threshold for IAH also showed a similar, undesirable effect. In the 8 mmHg group, mild hyponatremia, hypocalcemia, and hypoxemia occurred, accompanied by reduced blood and abdominal perfusion pressures. Mild microscopic inflammatory infiltration and increased MDA levels were also detected. Moreover, an 8-mm Hg IAP markedly inhibited the expression of tight junction proteins, although no significant differences in FD-4 permeability were observed between the 0- and 8-mmHg groups. CONCLUSIONS: Acute exposure to slightly

  5. Late effects of intraoperative radiation therapy on retroperitoneal tissues, intestine, and bile duct in a large animal model

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, W.F.; Tepper, J.E.; Kinslla, T.J.; Barnes, M.; DeLuca, A.M.; Terrill, R.; Matthews, D.; Johnstone, P.A.S. [National Institutes of Health, Bethesda, MD (United States); Anderson, W.J. [Terre Haute Center for Medical Education, IN (United States); Bollinger, B.K. [National Naval Medical Center, Bethesda, MD (United States)

    1994-07-01

    The late histopathological effects of intraoperative radiotherapy (IORT) on retroperitoneal tissues, intestine, and bile duct were investigated in dogs. Fourteen adult foxhounds were subjected to laparotomy and varying doses (0-45 Gy) of IORT (11 MeV electrons) delivered to retroperitoneal tissues including the great vessels and ureters, to a loop of defunctionalized small bowel, or to the extrahepatic bile duct. One control animal received an aortic transection and reanastomosis at the time of laparotomy; another control received laparotomy alone. This paper describes the late effects of single-fraction IORT occurring 3-5 years following treatment. Dogs receiving IORT to the retroperitoneum through a 4 X 15 cm portal showed few gross or histologic abnormalities at 20 Gy. At doses ranging from 30-45 Gy, radiation changes in normal tissues were consistently observed. Retroperitoneal fibrosis with encasement of the ureters and great vessels developed at doses {ge}30 Gy. Radiation changes were present in the aorta and vena cava at doses {ge}40 Gy. A 30 Gy dog developed an in-field malignant osteosarcoma at 3 years which invaded the vertebral column and compressed the spinal cord. A 40 Gy animal developed obstruction of the right ureter with fatal septic hydronephrosis at 4 years. Animals receiving IORT through a 5 cm IORT portal to an upper abdominal field which included a defunctionalized loop of small bowel, showed few gross or histologic abnormalities at a dose of 20 Gy. At 30 Gy, hyaline degeneration of the intestinal muscularis layer of the bowel occurred. At a dose of 45 Gy, internal intestinal fistulae developed. One 30 Gy animal developed right ureteral obstruction and hydronephrosis at 5 years. A dog receiving 30 Gy IORT through a 5 cm portal to the extrahepatic bile duct showed diffuse fibrosis through the gastroduodenal ligament. These canine studies contribute to the area of late tissue tolerance to IORT. 7 refs., 3 figs., 5 tabs.

  6. Late effects of intraoperative radiation therapy on retroperitoneal tissues, intestine, and bile duct in a large animal model

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Tepper, J.E.; Kinslla, T.J.; Barnes, M.; DeLuca, A.M.; Terrill, R.; Matthews, D.; Johnstone, P.A.S.; Anderson, W.J.; Bollinger, B.K.

    1994-01-01

    The late histopathological effects of intraoperative radiotherapy (IORT) on retroperitoneal tissues, intestine, and bile duct were investigated in dogs. Fourteen adult foxhounds were subjected to laparotomy and varying doses (0-45 Gy) of IORT (11 MeV electrons) delivered to retroperitoneal tissues including the great vessels and ureters, to a loop of defunctionalized small bowel, or to the extrahepatic bile duct. One control animal received an aortic transection and reanastomosis at the time of laparotomy; another control received laparotomy alone. This paper describes the late effects of single-fraction IORT occurring 3-5 years following treatment. Dogs receiving IORT to the retroperitoneum through a 4 X 15 cm portal showed few gross or histologic abnormalities at 20 Gy. At doses ranging from 30-45 Gy, radiation changes in normal tissues were consistently observed. Retroperitoneal fibrosis with encasement of the ureters and great vessels developed at doses ≥30 Gy. Radiation changes were present in the aorta and vena cava at doses ≥40 Gy. A 30 Gy dog developed an in-field malignant osteosarcoma at 3 years which invaded the vertebral column and compressed the spinal cord. A 40 Gy animal developed obstruction of the right ureter with fatal septic hydronephrosis at 4 years. Animals receiving IORT through a 5 cm IORT portal to an upper abdominal field which included a defunctionalized loop of small bowel, showed few gross or histologic abnormalities at a dose of 20 Gy. At 30 Gy, hyaline degeneration of the intestinal muscularis layer of the bowel occurred. At a dose of 45 Gy, internal intestinal fistulae developed. One 30 Gy animal developed right ureteral obstruction and hydronephrosis at 5 years. A dog receiving 30 Gy IORT through a 5 cm portal to the extrahepatic bile duct showed diffuse fibrosis through the gastroduodenal ligament. These canine studies contribute to the area of late tissue tolerance to IORT. 7 refs., 3 figs., 5 tabs

  7. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... all of an organ that contains cancer. The resection may include the small intestine and nearby organs (if the cancer has spread). The doctor may remove the section of the small intestine that contains cancer and perform an anastomosis (joining the cut ends of the intestine together). ...

  8. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets

    Science.gov (United States)

    Liu, Hongbin; Hou, Chengli; Wang, Gang; Jia, Hongmin; Yu, Haitao; Zeng, Xiangfang; Thacker, Philip A.; Zhang, Guolong; Qiao, Shiyan

    2017-01-01

    Modulation of the synthesis of endogenous host defense peptides (HDPs) by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2) cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 108 colony forming units (CFU)/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2), pBD3, pBD114, pBD129, and protegrins (PG) 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets (p reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure. PMID:28561758

  9. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets.

    Science.gov (United States)

    Liu, Hongbin; Hou, Chengli; Wang, Gang; Jia, Hongmin; Yu, Haitao; Zeng, Xiangfang; Thacker, Philip A; Zhang, Guolong; Qiao, Shiyan

    2017-05-31

    Modulation of the synthesis of endogenous host defense peptides (HDPs) by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2) cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 10⁸ colony forming units (CFU)/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2), pBD3, pBD114, pBD129, and protegrins (PG) 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets ( p L. reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure.

  10. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    Science.gov (United States)

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    Science.gov (United States)

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cytokeratin 19 promoter directs the expression of Cre recombinase in various epithelia of transgenic mice.

    Science.gov (United States)

    Zhao, Gui-Feng; Zhao, Shuang; Liu, Jia-Jie; Wu, Ji-Cheng; He, Hao-Yu; Ding, Xiao-Qing; Yu, Xue-Wen; Huang, Ke-Qiang; Li, Zhi-Jie; Zheng, Hua-Chuan

    2017-03-14

    Cytokeratin 19 (K19) is expressed in various differentiated cells, including gastric, intestinal and bronchial epithelial cells, and liver duct cells. Here, we generated a transgenic mouse line, K19-Cre, in which the expression of Cre recombinase was controlled by the promoter of K19. To test the tissue distribution and excision activity of Cre recombinase, K19-Cre transgenic mice were bred with Rosa26 reporter strain and a mouse strain that carries PTEN conditional alleles (PTENLoxp/Loxp). At mRNA level, Cre was strongly expressed in the stomach, lung and intestine, while in stomach, lung, and liver at protein level. The immunoreactivity to Cre was strongly observed the cytoplasm of gastric, bronchial and intestinal epithelial cells. Cre activity was detectable in gastric, bronchial and intestinal epithelial cells, according to LacZ staining. In K19-Cre/PTEN Loxp/Loxp mice, PTEN was abrogated in stomach, intestine, lung, liver and breast, the former two of which were verified by in situ PCR. There appeared breast cancer with PTEN loss. These data suggest that K19 promoter may be a useful tool to study the pathophysiological functions of cytokeratin 19-positive cells, especially gastrointestinal epithelial cells. Cell specificity of neoplasia is not completely attributable to the cell-specific expression of oncogenes and cell-specific loss of tumor suppressor genes.

  13. Temporal changes in the intestinal growth promoting effects of glucagon-like peptide 2 following intestinal resection

    DEFF Research Database (Denmark)

    Kaji, Tatsuru; Tanaka, Hiroaki; Redstone, Heather

    2008-01-01

    BACKGROUND: We investigated the effects of variations in the postresection timing of glucagon-like peptide-2 (GLP-2) administration on intestinal morphology and activity. METHODS: A rat model of 90% intestinal resection (SBR) with exclusively parenteral nutritional (TPN) was used. Early versus late...... that the intestinal adaptive and growth promoting actions of GLP-2 may be mediated by non-neuronal effector pathways. Although further studies are required, early treatment with GLP-2 following resection may maximize intestinal growth....

  14. Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model

    Directory of Open Access Journals (Sweden)

    Ulrike Lodemann

    2015-01-01

    Full Text Available The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC and enteropathogenic Escherichia coli (EPEC. Porcine (IPEC-J2 and human (Caco-2 intestinal epithelial cells were incubated with bacterial strains and epithelial integrity was assessed by measuring transepithelial electrical resistance (TEER and mannitol flux rates. E. faecium alone increased TEER of Caco-2 cells without affecting mannitol fluxes whereas the E. coli strains decreased TEER and concomitantly increased mannitol flux rates in both cell lines. Preincubation with E. faecium had no effect on the TEER decrease induced by E. coli in preliminary experiments. However, in a second set of experiments using a slightly different protocol, E. faecium ameliorated the TEER decrease induced by ETEC at 4 h in IPEC-J2 and at 2, 4, and 6 h in Caco-2 cells. We conclude that E. faecium positively affected epithelial integrity in monoinfected Caco-2 cells and could ameliorate the damage on TEER induced by an ETEC strain. Reproducibility of the results is, however, limited when experiments are performed with living bacteria over longer periods.

  15. Neutron and X-ray effects on small intestine summarized by using a mathematical model or paradigm

    International Nuclear Information System (INIS)

    Carr, K.E.; McCullough, J.S.; Nunn, S.; Hume, S.P.; Nelson, A.C.

    1991-01-01

    The responses of intestinal tissues to ionizing radiation can be described by comparing irradiated cell populations qualitatively or quantitatively with corresponding controls. This paper describes quantitative data obtained from resin-embedded sections of neutron-irradiated mouse small intestine at different times after treatment. Information is collected by counting cells or structures present per complete circumference. The data are assessed by using standard statistical tests, which show that early mitotic arrest precedes changes in goblet, absorptive, endocrine and stromal cells and a decrease in crypt numbers. The data can also produce ratios of irradiated:control figures for cells or structural elements. These ratios, along with tissue area measurements, can be used to summarize the structural damage as a composite graph and table, including a total figure, known as the Morphological Index. This is used to quantify the temporal response of the wall as a whole and to compare the effects of different qualities of radiation, here X-ray and cyclotron-produced neutron radiations. It is possible that such analysis can be used predictively along with other reference data to identify the treatment, dose and time required to produce observed tissue damage. (author)

  16. Neutron and X-Ray Effects on Small Intestine Summarized by Using a Mathematical Model or Paradigm

    Science.gov (United States)

    Carr, K. E.; McCullough, J. S.; Nunn, S.; Hume, S. P.; Nelson, A. C.

    1991-03-01

    The responses of intestinal tissues to ionizing radiation can be described by comparing irradiated cell populations qualitatively or quantitatively with corresponding controls. This paper describes quantitative data obtained from resin-embedded sections of neutron-irradiated mouse small intestine at different times after treatment. Information is collected by counting cells or structures present per complete circumference. The data are assessed by using standard statistical tests, which show that early mitotic arrest precedes changes in goblet, absorptive, endocrine and stromal cells and a decrease in crypt numbers. The data can also produce ratios of irradiated: control figures for cells or structural elements. These ratios, along with tissue area measurements, can be used to summarize the structural damage as a composite graph and table, including a total figure, known as the Morphological Index. This is used to quantify the temporal response of the wall as a whole and to compare the effects of different qualities of radiation, here X-ray and cyclotron-produced neutron radiations. It is possible that such analysis can be used predictively along with other reference data to identify the treatment, dose and time required to produce observed tissue damage.

  17. Effect of L-ascorbate on chloride transport in freshly excised sinonasal epithelia.

    Science.gov (United States)

    Cho, Do-Yeon; Hwang, Peter H; Illek, Beate

    2009-01-01

    Chronic rhinosinusitis (CRS) occurs at high frequency in patients with cystic fibrosis, suggesting that the cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl) ion channel might be involved in the development of chronic sinusitis in the general population. CFTR Cl ion transport controls the hydration of mucosal surfaces and promotes effective mucociliary clearance. Altered ion transport and, hence, disrupted mucociliary function, could play a role in the pathogenesis of sinus disease. L-ascorbate is a metabolically active component of the nasal and tracheobronchial airway lining fluids and appears to serve as an important biological effector of CFTR-mediated chloride secretion. The purpose of this study was to determine the effects of L-ascorbate on Cl ion transport in freshly excised sinonasal epithelia from normal controls and patients with CRS. Four different types of sinonasal tissue (normal sinus mucosa, sinus mucosa from CRS, normal nasal mucosa, nasal mucosa from CRS) were obtained during endoscopic sinus surgery and mounted on sliders with open areas of 0.03-0.71 cm2 between Ussing hemichambers. Short-circuit current (Isc) was continuously recorded, and a serosa-to-mucosa-directed Cl gradient was applied to increase the electrochemical driving force. L-ascorbate (500 microM) stimulated Cl currents (DeltaI(Cl), microA/cm2) across sinonasal epithelia from normal and CRS patients. The Cl secretory response to L-ascorbate was effectively blocked by the Cl ion transport inhibitors glibenclamide and bumetanide. A maximal dose of L-ascorbate (at 1 mM) stimulated 53-70% of Cl currents elicited by the cAMP agonist forskolin. CRS sinonasal tissue was characterized by impaired Cl secretory responses to L-ascorbate that were reduced by 33% in sinus epithelial tissue and by 70% in nasal epithelial tissue when compared with normal subjects. In nasal epithelial tissue from normal subjects, Cl secretion was approximately twofold increased when compared

  18. Bovine Immunoglobulin/Protein Isolate Binds Pro-Inflammatory Bacterial Compounds and Prevents Immune Activation in an Intestinal Co-Culture Model

    Science.gov (United States)

    Detzel, Christopher J.; Horgan, Alan; Henderson, Abigail L.; Petschow, Bryon W.; Warner, Christopher D.; Maas, Kenneth J.; Weaver, Eric M.

    2015-01-01

    Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-α cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (≤50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI

  19. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  20. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia.

    Science.gov (United States)

    Ellis, Bryon; Kaercher, Leah; Snavely, Courtney; Zhao, Yutong; Zou, Chunbin

    2012-07-26

    To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene transcription. Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. Lpcat1 translocates into the nucleus from the cytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli, two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overexpressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment. These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.

  1. Peptidases Compartmentalized to the Ascaris suum Intestinal Lumen and Apical Intestinal Membrane

    Science.gov (United States)

    Rosa, Bruce A.

    2015-01-01

    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine. PMID:25569475

  2. Histochemistry of reactive oxygen-species (ROS)-generating oxidases in cutaneous and mucous epithelia of laboratory rodents with special reference to xanthine oxidase

    NARCIS (Netherlands)

    Gossrau, R.; Frederiks, W. M.; van Noorden, C. J.

    1990-01-01

    Cutaneous and mucous epithelia of various organs of laboratory rodents were analysed histochemically for reactive oxygen species (ROS)-generating oxidases using cerium methods. High activities of xanthine oxidase and also superoxide dismutase were present in orthokeratotic stratified squamous

  3. Confocal laser scanning and electron microscopical studies on osmoregulatory epithelia in the branchial cavity of the lobster homarus gammarus

    Science.gov (United States)

    Haond; Flik; Charmantier

    1998-06-01

    The adult lobster Homarus gammarus is a weak hyper-regulator at low salinity. The objective of this study was to locate the ion-transporting tissues in the branchial chamber of this species, using electron microscopy and confocal laser scanning microscopy with a fluorescent vital stain for mitochondria, DASPMI, which is widely used to locate mitochondria-rich cells in ion-transporting epithelia of fish. A thick mitochondria-rich epithelium is present on the inner side of the branchiostegite and over the entire surface of the epipodites. Ultrastructural observations confirm that this tissue has features typical of an ion-transporting epithelium. When the lobster is transferred to low salinity, these epithelia undergo marked ultrastructural changes, such as an increase in thickness related to the development of basolateral infoldings, the appearance of numerous vesicles and an increase in height of the apical microvilli. In the gills, the branchial filaments are lined by a thin and poorly differentiated epithelium, containing numerous mitochondria; no significant ultrastructural changes were observed in the gills of animals acclimated to low salinity. In summary, in H. gammarus, no evidence of osmoregulatory structures was found in the gills. Differentiated ion-transporting epithelia are present in the branchial cavity, on the inner side of the branchiostegite and on the epipodites; these organs are probably involved in osmoregulation.

  4. Application of the Na+ recirculation theory to ion coupled water transport in low- and high resistance osmoregulatory epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Møbjerg, Nadja; Nielsen, Robert

    2007-01-01

    approaches: (i) An isotope tracer method in small intestine. Simultaneous measurement of water flow and ion transport in toad skin epithelium demonstrating, (ii) occasional hyposmotic absorbates, and (iii) reduced fluid absorption in the presence of serosal bumetanide. (iv) Studies of the metabolic cost...... of net Na+ absorption demonstrating an efficiency that is lower than the 18 Na+ per O2 consumed given by the stoichiometry of the Na+/K+-pump. Mathematical modeling predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag....... Certain types of observations are poorly or not at all reproduced by the model. It is discussed that such lack of agreement between model and experiment is due to cellular regulations of ion permeabilities that are not incorporated in the modeling. Clarification of these problems requires further...

  5. Development of a high-throughput in vitro intestinal lipolysis model for rapid screening of lipid-based drug delivery systems.

    Science.gov (United States)

    Mosgaard, Mette D; Sassene, Philip; Mu, Huiling; Rades, Thomas; Müllertz, Anette

    2015-08-01

    To develop a high-throughput in vitro intestinal lipolysis (HTP) model, without any means of pH-stat-titration, to enable a fast evaluation of lipid-based drug delivery systems (LbDDS). The HTP model was compared to the traditionally used dynamic in vitro lipolysis (DIVL) model with regard to the extent of lipid digestion and drug distribution of two poorly soluble model drugs (cinnarizine and danazol), during digestion of three LbDDS (LbDDS I-III). The HTP model was able to maintain pH around 6.5 during digestion, without the addition of NaOH to neutralize the free fatty acids (FFAs), due to an increased buffer capacity. Cinnarizine was primarily located in the aqueous phase during digestion of all three LbDDS and did not differ significantly between the two models. The distribution of danazol varied from formulation to formulation, but no significant difference between the models was observed. The triacylglycerides (TAG) in LbDDS III were digested to the same extent in both models, whereas the TAG present in LbDDS II was digested slightly less in the HTP model. No TAG was present in LbDDS I and digestion was therefore not analyzed. The HTP model is able to predict drug distribution during digestion of LbDDS containing poorly water soluble drugs in the same manner as the DIVL model. Thus the HTP model might prove applicable for high-throughput evaluation of LbDDS in e.g. 96 well plates or small scale dissolution equipment. Copyright © 2015. Published by Elsevier B.V.

  6. Survival of Five Strains of Shiga Toxigenic Escherichia coli in a Sausage Fermentation Model and Subsequent Sensitivity to Stress from Gastric Acid and Intestinal Fluid

    Directory of Open Access Journals (Sweden)

    Tone Mari Rode

    2017-01-01

    Full Text Available The ability of foodborne pathogens to exhibit adaptive responses to stressful conditions in foods may enhance their survival when passing through the gastrointestinal system. We aimed to determine whether Escherichia coli surviving stresses encountered during a model dry-fermented sausage (DFS production process exhibit enhanced tolerance and survival in an in vitro gastrointestinal model. Salami sausage batters spiked with five E. coli isolates, including enterohaemorrhagic E. coli strains isolated from different DFS outbreaks, were fermented in a model DFS process (20°C, 21 days. Control batters spiked with the same strains were stored at 4°C for the same period. Samples from matured model sausages and controls were thereafter exposed to an in vitro digestion challenge. Gastric exposure (pH 3 resulted in considerably reduced survival of the E. coli strains that had undergone the model DFS process. This reduction continued after entering intestinal challenge (pH 8, but growth resumed after 120 min. When subjected to gastric challenge for 120 min, E. coli that had undergone the DFS process showed about 2.3 log10⁡​ lower survival compared with those kept in sausage batter at 4°C. Our results indicated that E. coli strains surviving a model DFS process exhibited reduced tolerance to subsequent gastric challenge at low pH.

  7. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function

    Science.gov (United States)

    Wu, Richard Y.; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C.; Scruten, Erin; Johnson-Henry, Kathene C.; Napper, Scott; O’Brien, Catherine; Jones, Nicola L.; Sherman, Philip M.

    2017-01-01

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics. PMID:28098206

  8. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function.

    Science.gov (United States)

    Wu, Richard Y; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C; Scruten, Erin; Johnson-Henry, Kathene C; Napper, Scott; O'Brien, Catherine; Jones, Nicola L; Sherman, Philip M

    2017-01-18

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics.

  9. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine.

    Science.gov (United States)

    Yang, Hui-Ting; Zou, Song-Song; Zhai, Li-Juan; Wang, Yao; Zhang, Fu-Miao; An, Li-Guo; Yang, Gui-Wen

    2017-12-01

    Numerous bacteria are harbored in the animal digestive tract and are impacted by several factors. Intestinal microbiota homeostasis is critical for maintaining the health of an organism. However, how pathogen invasion affects the microbiota composition has not been fully clarified. The mechanisms for preventing invasion by pathogenic microorganisms are yet to be elucidated. Zebrafish is a useful model for developmental biology, and studies in this organism have gradually become focused on intestinal immunity. In this study, we analyzed the microbiota of normal cultivated and infected zebrafish intestines, the aquarium water and feed samples. We found that the predominant bacteria in the zebrafish intestine belonged to Gammaproteobacteria (67%) and that feed and environment merely influenced intestinal microbiota composition only partially. Intestinal microbiota changed after a pathogenic bacterial challenge. At the genus level, the abundance of some pathogenic intestinal bacteria increased, and these genera included Halomonas (50%), Pelagibacterium (3.6%), Aeromonas (2.6%), Nesterenkonia (1%), Chryseobacterium (3.4‰), Mesorhizobium (1.4‰), Vibrio (1‰), Mycoplasma (0.7‰) and Methylobacterium (0.6‰) in IAh group. However, the abundance of some beneficial intestinal bacteria decreased, and these genera included Nitratireductor (0.8‰), Enterococcus (0.8‰), Brevundimonas (0.7‰), Lactococcus (0.7‰) and Lactobacillus (0.4‰). Additionally, we investigated the innate immune responses after infection. ROS levels in intestine increased in the early stages after a challenge and recovered subsequently. The mRNA levels of antimicrobial peptide genes lectin, hepcidin and defensin1, were upregulated in the intestine after pathogen infection. These results suggested that the invasion of pathogen could change the intestinal microbiota composition and induce intestinal innate immune responses in zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells.

    Directory of Open Access Journals (Sweden)

    Pascale S Guiton

    Full Text Available Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world's human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection.

  11. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems

    Directory of Open Access Journals (Sweden)

    Tae Hyun Kang

    2016-06-01

    Full Text Available The human intestine is a dynamic organ where the complex host-microbe interactions that orchestrate intestinal homeostasis occur. Major contributing factors associated with intestinal health and diseases include metabolically-active gut microbiota, intestinal epithelium, immune components, and rhythmical bowel movement known as peristalsis. Human intestinal disease models have been developed; however, a considerable number of existing models often fail to reproducibly predict human intestinal pathophysiology in response to biological and chemical perturbations or clinical interventions. Intestinal organoid models have provided promising cytodifferentiation and regeneration, but the lack of luminal flow and physical bowel movements seriously hamper mimicking complex host-microbe crosstalk. Here, we discuss recent advances of human intestinal microphysiological systems, such as the biomimetic human “Gut-on-a-Chip” that can employ key intestinal components, such as villus epithelium, gut microbiota, and immune components under peristalsis-like motions and flow, to reconstitute the transmural 3D lumen-capillary tissue interface. By encompassing cutting-edge tools in microfluidics, tissue engineering, and clinical microbiology, gut-on-a-chip has been leveraged not only to recapitulate organ-level intestinal functions, but also emulate the pathophysiology of intestinal disorders, such as chronic inflammation. Finally, we provide potential perspectives of the next generation microphysiological systems as a personalized platform to validate the efficacy, safety, metabolism, and therapeutic responses of new drug compounds in the preclinical stage.

  12. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis

    OpenAIRE

    Scarminio, Viviane [UNESP; Fruet, Andrea C. [UNESP; Witaicenis, Aline [UNESP; Rall, Vera L. M. [UNESP; Di Stasi, Luiz C. [UNESP

    2012-01-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, c...

  13. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  14. IL-18Rα-deficient CD4+T cells induce intestinal inflammation in the CD45RBhitransfer model of colitis despite impaired innate responsiveness

    DEFF Research Database (Denmark)

    Holmkvist, Petra; Pool, Lieneke; Hägerbrand, Karin

    2016-01-01

    IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced on these ce......IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced...

  15. Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism.

    Science.gov (United States)

    Hallstrom, Kelly; McCormick, Beth A

    2011-01-01

    Salmonella enterica serotypes are invasive enteric pathogens spread through fecal contamination of food and water sources, and represent a constant public health threat around the world. The symptoms associated with salmonellosis and typhoid disease are largely due to the host response to invading Salmonella, and to the mechanisms these bacteria employ to survive in the presence of, and invade through the intestinal mucosal epithelia. Surmounting this barrier is required for survival within the host, as well as for further dissemination throughout the body, and subsequent systemic disease. In this review, we highlight some of the major hurdles Salmonella must overcome upon encountering the intestinal mucosal epithelial barrier, and examine how these bacteria surmount and exploit host defense mechanisms.

  16. Salmonella interaction with and passage through the intestinal mucosa: through the lens of the organism.

    Directory of Open Access Journals (Sweden)

    Kelly eHallstrom

    2011-04-01

    Full Text Available Salmonella enterica serotypes are invasive enteric pathogens spread through fecal contamination of food and water sources, and represent a constant public health threat around the world. The symptoms associated with salmonellosis and typhoid disease are largely due to the host response to invading Salmonella, and to the mechanisms these bacteria employ to survive in the presence of, and invade through the intestinal mucosal epithelia. Surmounting this barrier is required for survival within the host, as well as for further dissemination throughout the body, and subsequent systemic disease. In this review, we highlight some of the major hurdles Salmonella must overcome upon encountering the intestinal mucosal epithelial barrier, and examine how these bacteria surmount and exploit host defense mechanisms.

  17. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  18. Intestinal parasites and tuberculosis

    Directory of Open Access Journals (Sweden)

    Anuar Alonso Cedeño-Burbano

    2017-10-01

    Conclusions: The available evidence was insufficient to affirm that intestinal parasites predispose to developing tuberculous. The studies carried out so far have found statistically insignificant results.

  19. Circadian disorganization alters intestinal microbiota.

    Science.gov (United States)

    Voigt, Robin M; Forsyth, Christopher B; Green, Stefan J; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H; Turek, Fred W; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  20. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.

    Science.gov (United States)

    Lammers, Karen M; Lu, Ruliang; Brownley, Julie; Lu, Bao; Gerard, Craig; Thomas, Karen; Rallabhandi, Prasad; Shea-Donohue, Terez; Tamiz, Amir; Alkan, Sefik; Netzel-Arnett, Sarah; Antalis, Toni; Vogel, Stefanie N; Fasano, Alessio

    2008-07-01

    Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.

  1. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: Comparison of active and passive transport with the human colon carcinoma Caco-2 cell line

    NARCIS (Netherlands)

    Versantvoort, C.H.M.; Ondrewater, R.C.A.; Duizer, E.; Sandt, J.J.M. van de; Gilde, A.J.; Groten, J.P.

    2002-01-01

    Purpose: previous studies have shown that the rat small intestinal cell line IEC-18 provides a size-selective barrier for paracellularly transported hydrophilic macromolecules. In order to determine the utility of IEC-18 cells as an in vitro model to screen the passive paracellular and transcellular

  2. Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry

    NARCIS (Netherlands)

    Kong, H.; Wang, M.; Venema, K.; Maathuis, A.; Heijden, R. van der; Greef, J. van der; Xu, G.; Hankemeier, T.

    2009-01-01

    A high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry (HPLC-FTICR-MS) method was developed to investigate the metabolism of ginsenosides in in vitro models of the gastro-intestinal tract. The metabolites were identified by

  3. Gene expression and functional annotation of the human ciliary body epithelia.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available PURPOSE: The ciliary body (CB of the human eye consists of the non-pigmented (NPE and pigmented (PE neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma. METHODS: We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity. RESULTS: The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (NPE of 35 genes previously implicated in molecular mechanisms related to glaucoma. CONCLUSION: Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.

  4. Improvement of lipid profile by probiotic/protective cultures: study in a non-carcinogenic small intestinal cell model.

    Science.gov (United States)

    Gorenjak, Mario; Gradišnik, Lidija; Trapečar, Martin; Pistello, Mauro; Kozmus, Carina Pinto; Škorjanc, Dejan; Skok, Pavel; Langerholc, Tomaž; Cencič, Avrelija

    2014-01-01

    Plasma lipid levels are important risk factors for the development of atherosclerosis and coronary heart disease. Previous findings have shown that probiotic bacteria exert positive effects on hypercholesterolemia by lowering serum cholesterol and improving lipid profile that, in turn, leads to a reduced risk of coronary heart disease and atherosclerosis. Most of these studies were carried out with tumoral cell lines that have a metabolism quite different from that of normal cells and may thus respond differently to various stimuli. Here, we demonstrate the beneficial effects of some probiotics on cholesterol levels and pathways in normal small intestinal foetal epithelial tissue cells. The results show that Lactobacillus plantarum strain PCS 26 efficiently removes cholesterol from media, exhibits bile salt hydrolase activity, and up-regulates several genes involved in cholesterol metabolism. This study suggests that Lactobacillus plantarum PCS 26 might act as a liver X receptor agonist and help to improve lipid profiles in hypercholesterolemic patients or even dislipidemias in complex diseases such as the metabolic syndrome.

  5. Student performance study: the outcomes of metabolic, molecular and physical-chemical characterization of intestinal tract microbiome on a four mammalian species model

    Directory of Open Access Journals (Sweden)

    Nataša CIBER

    2015-11-01

    Full Text Available Many environmental factors influence the structure of microbial communities, their activity and properties of the environment of the digestive tract. Contrary to constant disturbances, the system provides the basis for energy conversion and thus the long-term stable coexistence of different hosts and their specific intestinal microbiota over geological timescales. Since the methodological approaches proved to be the largest source of systematic errors in comparisons of microbial communities among different organisms of the same species or between different species, we tested a number of methods on samples from different species of mammals in order to verify the feasibility of this approach for future routine analysis of microbiomes:(i analyses of physical-chemical parameters;(iithe metabolic properties of attached, planktonic fractions in comparison to the total;(iiistructure of microbial communities of bacteria and archaea; (ivdata analysis. We used a model of intestinal samples from four species of mammals, encompassing the differences between the various types of intestinal tracts: ruminants and rodents (such as pre- and post- peptic fermentors, omnivores and carnivores. The second purpose of the study was to(iassess the extent of spread of data due to the cooperation of the various operators on the data obtained, and(ii to evaluate the skills of the students to carry out industry-oriented investigations and measurements in 1st year of MSc study Microbiology; and(iii to promote awareness of the importance of routine laboratory work day and the corresponding duties. The results suggest(ithat the operators independently organized and shared tasks;(iisuccessfully completed all methods;(iiiobtain relevant information;(ivcritically evaluated and interpreted within the extent of their knowledge;(v that relative standard deviation(RSD typically could be compared to those of the automated analytical procedures(<10 % and therefore represented the

  6. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets

    Directory of Open Access Journals (Sweden)

    Hongbin Liu

    2017-05-01

    Full Text Available Modulation of the synthesis of endogenous host defense peptides (HDPs by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2 cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 108 colony forming units (CFU/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2, pBD3, pBD114, pBD129, and protegrins (PG 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets (p < 0.05. This was probably associated with the increase in colonic butyric acid concentration and up-regulating expression of Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ and G Protein-Coupled Receptor 41 (GPR41 (p < 0.05, but not with stimulation of Pattern-Recognition Receptors. Additionally, supplementation with L. reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure.

  7. Intestinal parasitosis in relation to CD4+T cells levels and anemia among HAART initiated and HAART naive pediatric HIV patients in a Model ART center in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Mengist, Hylemariam Mihiretie; Taye, Bineyam; Tsegaye, Aster

    2015-01-01

    Intestinal parasites (IPs) are major concerns in most developing countries where HIV/AIDS cases are concentrated and almost 80% of AIDS patients die of AIDS-related infections. In the absence of highly active antiretroviral therapy (HAART), HIV/AIDS patients in developing countries unfortunately continue to suffer from the consequences of opportunistic and other intestinal parasites. The aim of the study was to determine the prevalence of intestinal parasites in relation to CD4+ T cells levels and anemia among HAART initiated and HAART naïve pediatric HIV patients in a Model ART center in Addis Ababa, Ethiopia. A prospective comparative cross-sectional study was conducted among HAART initiated and HAART naive pediatric HIV/AIDS patients attending a model ART center at Zewditu Memorial Hospital between August 05, 2013 and November 25, 2013. A total of 180 (79 HAART initiated and 101 HAART naïve) children were included by using consecutive sampling. Stool specimen was collected and processed using direct wet mount, formol-ether concentration and modified Ziehl-Neelsen staining techniques. A structured questionnaire was used to collect data on socio-demographic and associated risk factors. CD4+ T cells and complete blood counts were performed using BD FACScalibur and Cell-Dyn 1800, respectively. The data was analyzed by SPSS version 16 software. Logistic regressions were applied to assess any association between explanatory factors and outcome variables. P values intestinal parasites significantly differed by HAART status and cryptosporidium species were found only in HAART naïve patients with low CD4+ T cell counts. Anemia was also more prevalent and significantly associated with IPs in non-HAART patients. This study identified some environmental and associated risk factors for intestinal parasitic infections. Therefore, Public health measures should continue to emphasize the importance of environmental and personal hygiene to protect HIV/AIDS patients from

  8. Preventive Effect of TU-100 on a Type-2 Model of Colitis in Mice: Possible Involvement of Enhancing Adrenomedullin in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Kaneko

    2013-01-01

    Full Text Available Purpose. Crohn's disease (CD and ulcerative colitis (UC, the two major forms of inflammatory bowel disease (IBD, have histopathologically and immunologically different characteristics. We previously reported that a traditional Japanese medicine, daikenchuto (TU-100, ameliorated a trinitrobenzenesulfonic acid- (TNBS- induced type-1 model colitis exhibiting histopathological features of CD through adrenomedullin (ADM enhancement. Our current aims were to examine whether TU-100 ameliorates a type-2 model colitis that histologically resembles UC and identify the active ingredients. Methods. TU-100 was administered orally to mice with oxazolone- (OXN- induced type-2 model colitis. The morbidity was evaluated by body weight loss and the macroscopic score of colonic lesions. ADM was quantified using an EIA kit. Results. TU-100 prevented weight loss and colon ulceration. ADM production by intestinal epithelial cells was increased by TU-100 addition. Screening to identify active ingredients showed that [6]-shogaol and hydroxy α-sanshool enhanced ADM production. Conclusions. TU-100 exerted a protective effect in OXN-induced type-2 model colitis, indicating that TU-100 may be a beneficial agent for treatment of UC.

  9. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model.

    Science.gov (United States)

    Ran, Chao; Hu, Jun; Liu, Wenshu; Liu, Zhi; He, Suxu; Dan, Bui Chau Truc; Diem, Nguyen Ngoc; Ooi, Ei Lin; Zhou, Zhigang

    2016-05-01

    Essential oils (EOs) are commonly used as animal feed additives. Information is lacking on the mechanisms driving the beneficial effects of EOs in animals, especially the role played by the intestinal microbiota of the host. The purpose of this study was to clarify the relative contribution of direct effects of EOs on the physiology and immune system of tilapia and indirect effects mediated by the intestinal microbiota by using a germ-free zebrafish model. Juvenile hybrid tilapia were fed a control diet or 1 of 4 treatment diets containing 60-800 mg Next Enhance 150 (NE) (an EO product containing equal levels of thymol and carvacrol)/kg for 6 wk. The key humoral and cellular innate immune parameters were evaluated after the feeding period. In another experiment, the gut microbiota of tilapia fed a control or an NE diet (200 mg/kg) for 2 wk were transferred to 3-d postfertilization (dpf) germ-free (GF) zebrafish, and the expression of genes involved in innate immunity and tight junctions was evaluated in zebrafish at 6 dpf. Lastly, NE was directly applied to 3-dpf GF zebrafish at 3 doses ranging from 0.2 to 20 mg/L, and the direct effect of NE on zebrafish was evaluated after 1 and 3 d. NE supplementation at 200 mg/kg enhanced phagocytosis activity of head kidney macrophages (×1.36) (P tilapia compared with the control (P tilapia through a combination of factors, i.e., primarily through a direct effect on host tissue (immune-stimulating) but also an indirect effect mediated by microbial changes (immune-relieving). © 2016 American Society for Nutrition.

  10. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...... of GLP-2 (SEN x GLP-2 interaction, P cellularity and digestive capacity in parenterally fed rats with SBS...

  11. Propofol Does Not Reduce Pyroptosis of Enterocytes and Intestinal Epithelial Injury After Lipopolysaccharide Challenge.

    Science.gov (United States)

    Zhang, Xu-Yu; Chen, Xi; Zhang, Hu-Fei; Guan, Su; Wen, Shi-Hong; Huang, Wen-Qi; Liu, Zi-Meng

    2018-01-01

    To date, mechanisms of sepsis-induced intestinal epithelial injury are not well known. P2X7 receptor (P2X7R) regulates pyroptosis of lymphocytes, and propofol is usually used for sedation in septic patients. We aimed to determine the occurrence of enterocyte pyroptosis mediated by P2X7R and to explore the effects of propofol on pyroptosis and intestinal epithelial injury after lipopolysaccharide (LPS) challenge. A novel regimen of LPS challenge was applied in vitro and in vivo. Inhibitors of P2X7R (A438079) and NLRP3 inflammasome (MCC950), and different doses of propofol were administered. The caspase-1 expression, caspase-3 expression, caspase-11 expression, P2X7R expression and NLRP3 expression, extracellular ATP concentration and YO-PRO-1 uptake, and cytotoxicity and HMGB1 concentration were detected to evaluate enterocyte pyroptosis in cultured cells and intestinal epithelial tissues. Chiu's score, diamine oxidase and villus length were used to evaluate intestinal epithelial injury. Moreover, survival analysis was performed. LPS challenge activated caspase-11 expression and P2X7R expression, enhanced ATP concentration and YO-PRO-1 uptake, and led to increased cytotoxicity and HMGB1 concentration. Subsequently, LPS resulted in intestinal epithelial damage, as evidenced by increased levels of Chiu's score and diamine oxidase, and shorter villus length and high mortality of animals. A438079, but not MCC950, significantly relieved LPS-induced enterocyte pyroptosis and intestinal epithelial injury. Importantly, propofol did not confer the protective effects on enterocyte pyroptosis and intestinal epithelia although it markedly decreased P2X7R expression. LPS attack leads to activation of caspase-11/P2X7R and pyroptosis of enterocytes. Propofol does not reduce LPS-induced pyroptosis and intestinal epithelial injury, although it inhibits P2X7R upregulation.

  12. Vitamin D and intestinal calcium absorption.

    Science.gov (United States)

    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J; Seth, Tanya

    2011-12-05

    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the intestinal plasma membrane pump. This article reviews recent studies that have challenged the traditional model of vitamin D mediated transcellular calcium absorption and the crucial role of specific calcium transport proteins in intestinal calcium absorption. There is also increasing evidence that 1,25(OH)(2)D(3) can enhance paracellular calcium diffusion. The influence of estrogen, prolactin, glucocorticoids and aging on intestinal calcium absorption and the role of the distal intestine in vitamin D mediated intestinal calcium absorption are also discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Robust bioengineered 3D functional human intestinal epithelium.

    Science.gov (United States)

    Chen, Ying; Lin, Yinan; Davis, Kimberly M; Wang, Qianrui; Rnjak-Kovacina, Jelena; Li, Chunmei; Isberg, Ralph R; Kumamoto, Carol A; Mecsas, Joan; Kaplan, David L

    2015-09-16

    Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments.

  14. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  15. Intestinal Barrier and Behavior.

    Science.gov (United States)

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses. © 2016 Elsevier Inc. All rights reserved.

  16. Impact of a High-Fat or High-Fiber Diet on Intestinal Microbiota and Metabolic Markers in a Pig Model

    Directory of Open Access Journals (Sweden)

    Sonja N. Heinritz

    2016-05-01

    Full Text Available To further elaborate interactions between nutrition, gut microbiota and host health, an animal model to simulate changes in microbial composition and activity due to dietary changes similar to those in humans is needed. Therefore, the impact of two different diets on cecal and colonic microbial gene copies and metabolic activity, organ development and biochemical parameters in blood serum was investigated using a pig model. Four pigs were either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for seven weeks, with both diets being isocaloric. A hypotrophic effect of the HF diet on digestive organs could be observed compared to the LF diet (p < 0.05. Higher gene copy numbers of Bacteroides (p < 0.05 and Enterobacteriaceae (p < 0.001 were present in intestinal contents of HF pigs, bifidobacteria were more abundant in LF pigs (p < 0.05. Concentrations of acetate and butyrate were higher in LF pigs (p < 0.05. Glucose was higher in HF pigs, while glutamic pyruvic transaminase (GPT showed higher concentrations upon feeding the LF diet (p < 0.001. However, C-reactive protein (CRP decreased with time in LF pigs (p < 0.05. In part, these findings correspond to those in humans, and are in support of the concept of using the pig as human model.

  17. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  18. Colon in acute intestinal infection.

    Science.gov (United States)

    Guarino, Alfredo; Buccigrossi, Vittoria; Armellino, Carla

    2009-04-01

    The colon is actively implicated in intestinal infections not only as a target of enteric pathogens and their products but also as a target organ for treatment. In the presence of diarrhea, both of osmotic and secretory nature, the colon reacts with homeostatic mechanisms to increase ion absorption. These mechanisms can be effectively exploited to decrease fluid discharge. A model of intestinal infections using rotavirus (RV) in colonic cells was set up and used to define a dual model of secretory and osmotic diarrhea in sequence. Using this model, antidiarrheal drugs were tested, namely zinc and the enkephalinase inhibitor racecadotril. Zinc was able to decrease the enterotoxic activity responsible for secretory diarrhea. It also inhibited the cytotoxic effect of RV. The mechanism of zinc was related at least in part to the activation of MAPK activity, but also a direct antiviral effect was observed. Racecadotril showed a potent and selective inhibition of active secretion, being particularly effective in the first phase of RV diarrhea. The use of drugs active at the colonic level, therefore, offers effective options to treat intestinal infections in childhood. In addition, the colon is the natural site of colonic microflora, a target of probiotic therapy, which is the first line of approach recommended by the European Society for Paediatric Gastroenterology, Hepatology and Nutrition to treat infectious diarrhea.

  19. Gastrin-releasing peptide receptor expression in non-cancerous bronchial epithelia is associated with lung cancer: a case-control study

    Directory of Open Access Journals (Sweden)

    Egloff Ann Marie

    2012-02-01

    Full Text Available Abstract Background Normal bronchial tissue expression of GRPR, which encodes the gastrin-releasing peptide receptor, has been previously reported by us to be associated with lung cancer risk in 78 subjects, especially in females. We sought to define the contribution of GRPR expression in bronchial epithelia to lung cancer risk in a larger case-control study where adjustments could be made for tobacco exposure and sex. Methods We evaluated GRPR mRNA levels in histologically normal bronchial epithelial cells from 224 lung cancer patients and 107 surgical cancer-free controls. Associations with lung cancer were tested using logistic regression models. Results Bronchial GRPR expression was significantly associated with lung cancer (OR = 4.76; 95% CI = 2.32-9.77 in a multivariable logistic regression (MLR model adjusted for age, sex, smoking status and pulmonary function. MLR analysis stratified by smoking status indicated that ORs were higher in never and former smokers (OR = 7.74; 95% CI = 2.96-20.25 compared to active smokers (OR = 1.69; 95% CI = 0.46-6.33. GRPR expression did not differ by subject sex, and lung cancer risk associated with GRPR expression was not modified by sex. Conclusions GRPR expression in non-cancerous bronchial epithelium was significantly associated with the presence of lung cancer in never and former smokers. The association in never and former smokers was found in males and females. Association with lung cancer did not differ by sex in any smoking group.

  20. Intestinal Cgi-58 deficiency reduces postprandial lipid absorption.

    Science.gov (United States)

    Xie, Ping; Guo, Feng; Ma, Yinyan; Zhu, Hongling; Wang, Freddy; Xue, Bingzhong; Shi, Hang; Yang, Jian; Yu, Liqing

    2014-01-01

    Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.

  1. Intestinal Cgi-58 deficiency reduces postprandial lipid absorption.

    Directory of Open Access Journals (Sweden)

    Ping Xie

    Full Text Available Comparative Gene Identification-58 (CGI-58, a lipid droplet (LD-associated protein, promotes intracellular triglyceride (TG hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.

  2. Nrf2-AKT interactions regulate heme oxygenase 1 expression in kidney epithelia during hypoxia and hypoxia-reoxygenation.

    Science.gov (United States)

    Potteti, Haranatha R; Tamatam, Chandramohan R; Marreddy, Rakesh; Reddy, Narsa M; Noel, Sanjeev; Rabb, Hamid; Reddy, Sekhar P

    2016-11-01

    Ischemia-reperfusion (IR)-induced kidney injury is a major clinical problem, but its underlying mechanisms remain unclear. The transcription factor known as nuclear factor, erythroid 2-like 2 (NFE2L2 or Nrf2) is crucial for protection against oxidative stress generated by pro-oxidant insults. We have previously shown that Nrf2 deficiency enhances susceptibility to IR-induced kidney injury in mice and that its upregulation is protective. Here, we examined Nrf2 target antioxidant gene expression and the mechanisms of its activation in both human and murine kidney epithelia following acute (2 h) and chronic (12 h) hypoxia and reoxygenation conditions. We found that acute hypoxia modestly stimulates and chronic hypoxia strongly stimulates Nrf2 putative target HMOX1 expression, but not that of other antioxidant genes. Inhibition of AKT1/2 or ERK1/2 signaling blocked this induction; AKT1/2 but not ERK1/2 inhibition affected Nrf2 levels in basal and acute hypoxia-reoxygenation states. Unexpectedly, chromatin immunoprecipitation assays revealed reduced levels of Nrf2 binding at the distal AB1 and SX2 enhancers and proximal promoter of HMOX1 in acute hypoxia, accompanied by diminished levels of nuclear Nrf2. In contrast, Nrf2 binding at the AB1 and SX2 enhancers significantly but differentially increased during chronic hypoxia and reoxygenation, with reaccumulation of nuclear Nrf2 levels. Small interfering-RNA-mediated Nrf2 depletion attenuated acute and chronic hypoxia-inducible HMOX1 expression, and primary Nrf2-null kidney epithelia showed reduced levels of HMOX1 induction in response to both acute and chronic hypoxia. Collectively, our data demonstrate that Nrf2 upregulates HMOX1 expression in kidney epithelia through a distinct mechanism during acute and chronic hypoxia reoxygenation, and that both AKT1/2 and ERK1/2 signaling are required for this process. Copyright © 2016 the American Physiological Society.

  3. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.

    Science.gov (United States)

    Yüksek, Yunus Nadi; Kologlu, Murat; Daglar, Gül; Doganay, Mutlu; Dolapci, Istar; Bilgihan, Ayse; Dolapçi, Mete; Kama, Nuri Aydin

    2004-01-01

    The aim of this study was to evaluate local effects and degree of bacterial translocation related with intestinal ischemia-reperfusion injury in a rat obstructive jaundice model. Thirty adult Sprague-Dawley rats (200-250 g) were divided into three groups; including Group 1 (jaundice group), Group 2 (jaundice-ischemia group) and Group 3 (ischemia group). All rats had 2 laparotomies. After experimental interventions, tissue samples for translocation; liver and ileum samples for histopathological examination, 25 cm of small intestine for mucosal myeloperoxidase and malondialdehyde levels and blood samples for biochemical analysis were obtained. Jaundiced rats had increased liver enzyme levels and total and direct bilirubin levels (p<0.05). Intestinal mucosal myeloperoxidase and malondialdehyde levels were found to be high in intestinal ischemia-reperfusion groups (p<0.05). Intestinal mucosal damage was more severe in rats with intestinal ischemia-reperfusion after bile duct ligation (p<0.05). Degree of bacterial translocation was also found to be significantly high in these rats (p<0.05). Intestinal mucosa is disturbed more severely in obstructive jaundice with the development of ischemia and reperfusion. Development of intestinal ischemia-reperfusion in obstructive jaundice increases bacterial translocation.

  4. Study of Absorption Characteristics of the Total Saponins from Radix Ilicis Pubescentis in an In Situ Single-Pass Intestinal Perfusion (SPIP Rat Model by Using Ultra Performance Liquid Chromatography (UPLC

    Directory of Open Access Journals (Sweden)

    Guojun Kuang

    2017-11-01

    Full Text Available In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ. This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1, ilexsaponin A1 (C2, ilexsaponin B1 (C3, ilexsaponin B2 (C4, ilexsaponin B3 (DC1, and ilexoside O (DC2 when administrated with the total saponins from MDQ (MDQ-TS. An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp inhibitor (verapomil, endocytosis inhibitor (amantadine and ethylene diamine tetraacetic acid (EDTA, tight junction modulator on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10−2 cm·min−1. Meanwhile, Papp and effective absorption rate constant (Ka values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the

  5. Anterior cruciate ligament reconstruction in a rabbit model using canine small intestinal submucosa and autologous platelet-rich plasma.

    Science.gov (United States)

    Lee, A-Jin; Chung, Wook-Hun; Kim, Dae-Hyun; Lee, Kyung-Pil; Chung, Dai-Jung; Do, Sun Hee; Kim, Hwi-Yool

    2012-11-01

    The bone-ligament interface is the main point of failure after anterior cruciate ligament reconstruction. Synthetic ligament materials have problems such as a greater failure rate of the bone-ligament insertion than autografts. Small intestinal submucosa (SIS) is a biologic scaffold that has been used to repair musculoskeletal tissue and has been shown to promote cell migration and enhance collagen fiber regeneration. Autologous platelet-rich plasma (PRP) has also been investigated as a potential promoter of tendon healing. We investigated SIS and PRP as biomaterials that might strengthen the bone-tunnel interface and improve tendon structure formation. Anterior cruciate ligament grafts were formed of braid-twist canine SIS. These canine SIS ligament grafts were used for anterior cruciate ligament reconstruction in 20 New Zealand white rabbits. The rabbits were divided into 2 treatment groups. In 1 group (SIS group; n = 10), we only implanted the canine SIS grafts. In the second group (PRP group; n = 10), we applied autologous PRP to the surgical area after implantation of canine SIS grafts. We determined the cytokine level of the autologous PRP using a transforming growth factor-β1 enzyme-linked immunosorbent assay kit. At 1 and 4 wk after surgery, magnetic resonance imaging was performed to evaluate the grafts. The femur-graft-tibia complex was assessed histologically and biomechanically at 8 wk after surgery. At 1 wk after surgery, the magnetic resonance imaging scans of the PRP group showed high signal-intensity lesions. In biomechanical tests, the SIS group had a significantly greater maximum load, maximum stress, and ultimate load and strain than the PRP group. The histologic findings of the PRP group revealed a greater cellular response, fibrotic tissue regeneration around the graft, broad chondrocyte cell infiltration, and collagen fibers that were loosely attached to the bone. The PRP group had significantly lower tension load values than the SIS group

  6. Intestinal Colonization Dynamics of Vibrio cholerae

    Science.gov (United States)

    Almagro-Moreno, Salvador; Pruss, Kali; Taylor, Ronald K.

    2015-01-01

    To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms. PMID:25996593

  7. Mycotoxins and the intestine

    Directory of Open Access Journals (Sweden)

    Leon Broom

    2015-12-01

    Full Text Available Fungal biochemical pathways can yield various compounds that are not considered to be necessary for their growth and are thus referred to as secondary metabolites. These compounds have been found to have wide ranging biological effects and include potent poisons (mycotoxins. Mycotoxins invariably contaminate crops and (thus animal feeds. The intestine is the key link between ingested mycotoxins and their detrimental effects on the animal. Effects on the intestine, or intestinal environment, and immune system have been reported with various mycotoxins. These effects are almost certainly occurring across species. Most, if not all, of the reported effects of mycotoxins are negative in terms of intestinal health, for example, decreased intestinal cell viability, reductions in short chain fatty acid (SCFA concentrations and elimination of beneficial bacteria, increased expression of genes involved in promoting inflammation and counteracting oxidative stress. This challenge to intestinal health will predispose the animal to intestinal (and systemic infections and impair efficient digestion and absorption of nutrients, with the associated effect on animal productivity.

  8. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol.

    Science.gov (United States)

    Chien, Shih-Yung; Sheen, Shiowshuh; Sommers, Christopher H; Sheen, Lee-Yan

    2016-01-01

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing (HPP) in with (the hurdle concept) and without thymol essential oil as a sensitizer. UPEC was found slightly more resistant than E. coli O157:H7 (iPEC O157:H7) at 450 and 500 MPa. A central composite experimental design was used to evaluate the effect of pressure (300-400 MPa), thymol concentration (100-200 ppm), and pressure-holding time (10-20 min) on the inactivation of iPEC O157:H7 and UPEC in ground chicken. The hurdle approach reduced the high pressure levels and thymol doses imposed on the food matrices and potentially decreased food quality damaged after treatment. The quadratic equations were developed to predict the impact (lethality) on iPEC O157:H7 (R (2) = 0.94) and UPEC (R (2) = 0.98), as well as dimensionless non-linear models [Pr > F (UPEC in regard to how they may survive HPP in the presence or absence of thymol. The models may further assist regulatory agencies and food industry to assess the potential risk of iPEC O157:H7 and UPEC in ground chicken.

  9. Lactobacillus bulgaricus Prevents Intestinal Epithelial Cell Injury Caused by Enterobacter sakazakii-Induced Nitric Oxide both In Vitro and in the Newborn Rat Model of Necrotizing Enterocolitis▿

    Science.gov (United States)

    Hunter, Catherine J.; Williams, Monica; Petrosyan, Mikael; Guner, Yigit; Mittal, Rahul; Mock, Dennis; Upperman, Jeffrey S.; Ford, Henri R.; Prasadarao, Nemani V.

    2009-01-01

    Enterobacter sakazakii is an emerging pathogen that has been associated with outbreaks of necrotizing enterocolitis (NEC) as well as infant sepsis and meningitis. Our previous studies demonstrated that E. sakazakii induces NEC in a newborn rat model by inducing enterocyte apoptosis. However, the mechanisms responsible for enterocyte apoptosis are not known. Here we demonstrate that E. sakazakii induces significant production of nitric oxide (NO) in rat intestinal epithelial cells (IEC-6) upon infection. The elevated production of NO, which is due to increased expression of inducible NO synthase, is responsible for apoptosis of IEC-6 cells. Notably, pretreatment of IEC-6 cells with Lactobacillus bulgaricus (ATCC 12278) attenuated the upregulation of NO production and thereby protected the cells from E. sakazakii-induced apoptosis. Furthermore, pretreatment with L. bulgaricus promoted the integrity of enterocytes both in vitro and in the infant rat model of NEC, even after challenge with E. sakazakii. Infection of IEC-6 cells with E. sakazakii upregulated several genes related to apoptosis, cytokine production, and various signaling pathways, as demonstrated by rat gene array analysis, and this upregulation was subdued by pretreatment with L. bulgaricus. In agreement with these data, L. bulgaricus pretreatment protected newborn rats infected with E. sakazakii from developing NEC, resulting in improved survival. PMID:19075027

  10. Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion.

    Science.gov (United States)

    Padayachee, Anneline; Netzel, Gabriele; Netzel, Michael; Day, Li; Mikkelsen, Deirdre; Gidley, Michael J

    2013-06-01

    Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only ∼20% of total anthocyanins to ∼30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial non-specific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.

  11. Intestinal translocation of clinical isolates of vancomycin-resistant Enterococcus faecalis and ESBL-producing Escherichia coli in a rat model of bacterial colonization and liver ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Karin M van der Heijden

    Full Text Available The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE and extended-spectrum beta-lactamase (ESBL-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis; Group II (with partial liver ischemia without intestinal stasis; Group III (surgical manipulation without hepatic ischemia or intestinal stasis; Group IV (anesthetized without surgical manipulation. After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results - The best inocula were: VRE: 2.4×10(10 cfu and ESBL-E. coli: 1.12×10(10 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04. VRE growth was more frequent in mesenteric lymph nodes for Groups I (67% and III (38% than for Groups II (13% and IV (none (p:0.002. LPS was significantly higher in systemic blood of Group I (9.761 ± 13.804 EU/mL-p:0.01. No differences for endotoxin occurred in portal blood. Conclusion -We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups

  12. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...... membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption...

  13. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...

  14. Dynamics of spread of intestinal colonization with extended-spectrum beta-lactamases in E.coli: a mathematical model

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Bootsma, M. C. J.; Leverstein-van Hall, M.A.

    In this study a mathematical model for the spread of ESBL resistant E.coli among patients in a hospital and the surrounding catchment population has been introduced and used to described prevalence data from the Netherlands. Several statistical methods have been applied to estimate the model...

  15. Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Eliane von Klitzing

    acute ileitis following peroral high dose T. gondii infection. Thus, hma mice constitute a suitable model to further dissect the interactions between pathogens, human microbiota and vertebrate host immunity during acute intestinal inflammation.

  16. Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation.

    Science.gov (United States)

    Liu, Xiaoxi; Li, Huanrong; Lu, An; Zhong, Yougang; Hou, Xiaolin; Wang, Ning; Jia, Dan; Zan, Junlan; Zhao, Hong; Xu, Jianqin; Liu, Fenghua

    2012-01-01

    The aim of this study was to further understand the effects and mechanism of heat stress on the intestinal mucosal immune system of the rat, including changes in the intestinal mucosal barrier and immune function and their effects on bacterial translocation. Sprague Dawley (SD) rats were randomly divided into control and heat-stress groups. Both groups were housed in a 25°C environment of 60% relative humidity. The heat-stress group was subjected to 40°C for 2 h daily over 3 days. Compared with the control group villi length in the small intestines of the heat-stress group was shortened. Jejunal mucosa were seriously damaged and the number of goblet cells in the epithelia of the duodenum and jejunum was significantly reduced. Electron microscopy revealed intestinal mucosal disorder, a large number of exudates of inflammatory fibrous material, fuzzy tight junction structure between epithelial cells, and cell gap increases in the heat-stress group. Transcription of IFN-γ, IL-2, IL-4, and IL-10, was significantly reduced, as was that of the intestinal mucosal immune-related proteins TLR2, TLR4, and IgA. The number of CD3(+) T cells and CD3(+)CD4(+)CD8(-) T cells in the mesenteric lymph nodes (MLNs) was significantly lower, while the number of CD3(+)CD4(-)CD8(+) T cells was significantly increased. The bacteria isolated from the MLNs were Escherichia coli. Heat stress damages rat intestinal mechanical and mucosal immune barriers, and reduces immune function of the intestinal mucosa and mesenteric lymphoid tissues, leading to bacterial translocation.

  17. Adjuvant Probiotics and the Intestinal Microbiome: Enhancing Vaccines and Immunotherapy Outcomes

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2017-12-01

    Full Text Available Immune defence against pathogenic agents comprises the basic premise for the administration of vaccines. Vaccinations have hence prevented millions of infectious illnesses, hospitalizations and mortality. Acquired immunity comprises antibody and cell mediated responses and is characterized by its specificity and memory. Along a similar congruent yet diverse mode of disease prevention, the human host has negotiated from in utero and at birth with the intestinal commensal bacterial cohort to maintain local homeostasis in order to achieve immunological tolerance in the new born. The advent of the Human Microbiome Project has redefined an appreciation of the interactions between the host and bacteria in the intestines from one of a collection of toxic waste to one of a symbiotic existence. Probiotics comprise bacterial genera thought to provide a health benefit to the host. The intestinal microbiota has profound effects on local and extra-intestinal end organ physiology. As such, we further posit that the adjuvant administration of dedicated probiotic formulations can encourage the intestinal commensal cohort to beneficially participate in the intestinal microbiome-intestinal epithelia-innate-cell mediated immunity axes and cell mediated cellular immunity with vaccines aimed at preventing infectious diseases whilst conserving immunological tolerance. The strength of evidence for the positive effect of probiotic administration on acquired immune responses has come from various studies with viral and bacterial vaccines. We posit that the introduction early of probiotics may provide significant beneficial immune outcomes in neonates prior to commencing a vaccination schedule or in elderly adults prior to the administration of vaccinations against influenza viruses.

  18. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    Science.gov (United States)

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  19. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model.

    Science.gov (United States)

    Zhang, Yuanyuan; Frimberger, Dominic; Cheng, Earl Y; Lin, Hsueh-Kung; Kropp, Bradley P

    2006-11-01

    To evaluate small intestinal submucosa (SIS), unseeded or seeded, as a possible augmentation material in a canine model of subtotal cystectomy. In all, 22 male dogs had a 90% partial cystectomy and were then divided into three groups. At 1 month after the initial cystectomy, dogs in group 1 (unseeded, six) and group 2 (seeded, six) received a bladder augmentation with a corresponding SIS graft. The dogs in group 3 (ten) received no further surgery and were considered the surgical control group. All dogs were evaluated before and after surgery with blood chemistry, urine culture, intravenous urography, cystograms and cystometrograms. After surgery (at 1, 5 and 9 months), the bladders were examined using routine histology and immunohistochemistry. All 22 dogs survived the subtotal cystectomy, and 18 survived their intended survival period. One dog, in group 2 (seeded), was killed at 1 month after augmentation due to bladder perforation caused by a large piece of incompletely absorbed SIS. Three other dogs (group 1, two; and group 2, one) were killed within 2 months after augmentation due to bladder obstruction by stones. Group 1 and group 2 SIS grafts had moderate to heavy adhesion, graft shrinkage, and some had bone and calcification at the graft site. Histologically, there was limited bladder regeneration in both groups. Interestingly, dogs in group 3 at 1 month after cystectomy (when group 1 and 2 received their augmentations) had severely shrunken bladders and histologically had severe inflammation, fibroblast infiltration and muscle hypertrophy. These results verify the subtotal cystectomy model. The use of seeded or unseeded SIS in a subtotal cystectomy model does not induce the same quality and quantity of bladder regeneration that is seen in the 40% non-inflammatory cystectomy model. This study provides important insights into the process of regeneration in a severely damaged bladder. The results led us to re-evaluate the critical elements required for a

  20. Characterization of Translocation of Silver Nanoparticles and Effects on Whole-Genome Gene Expression Using an In Vitro Intestinal Epithelium Coculture Model

    NARCIS (Netherlands)

    Bouwmeester, H.; Poortman, J.H.; Peters, R.J.B.; Wijma, E.; Kramer, E.H.M.; Makama, S.; Puspitaninganindita, K.; Marvin, H.J.P.; Peijnenburg, A.A.C.M.; Hendriksen, P.J.M.

    2011-01-01

    Applications of nanoparticles in the food sector are eminent. Silver nanoparticles are among the most frequently used, making consumer exposure to silver nanoparticles inevitable. Information about uptake through the intestines and possible toxic effects of silver nanoparticles is therefore very

  1. Adenovirus Entry From the Apical Surface of Polarized Epithelia Is Facilitated by the Host Innate Immune Response

    Science.gov (United States)

    Kotha, Poornima L. N.; Sharma, Priyanka; Kolawole, Abimbola O.; Yan, Ran; Alghamri, Mahmoud S.; Brockman, Trisha L.; Gomez-Cambronero, Julian; Excoffon, Katherine J. D. A.

    2015-01-01

    Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection. PMID:25768646

  2. Modulation of inflammatory mediators by Opuntia ficus-indica and Prunus avium bioproducts using an in vitro cell-based model of intestinal inflammation

    OpenAIRE

    Nunes, Sara Alexandra Luis

    2011-01-01

    Dissertation to obtain a Master Degree in Biotechnology Inflammatory Bowel Diseases, namely Ulcerative colitis and Crohn’s disease, are chronic intestinal inflammatory disorders characterized by an excessive release of pro-inflammatory mediators, intestinal barrier dysfunction and altered permeability and excessive activation of NF-κB cascade that can lead to development of colon cancer. IBD conventional therapy involves multiple medications and long-term up to life-long treatments. Furthe...

  3. Krogh’s principle or a multiple fish model approach to phosphate balance: is there a centrally regulated intestinal-skeletal-renal axis?

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Guerreiro

    2015-10-01

    Full Text Available Inorganic phosphate (Pi is a crucial ion for vertebrate life. In addition to many physiological roles it is, together with calcium, the major element forming the internal skeleton and Pi balance has been considered a secondary consequence of calciotropic endocrine factors. However, contrary to calcium which can be readily obtained from even Ca-poor environments, Pi is not available in water, and fish can only obtain it via the food. Intestinal absorption drives Pi into the blood stream, but a central part of Pi balance is renal excretion and conservation. Recently, several Pi specific regulatory factors have been brought to light, and we use fish models to investigate their role and the hypothesis of a centrally controlled intestinal-skeletal-renal Pi axis. Using tissues mounted in Ussing chambers under symmetrical and asymmetrical short-circuited conditions we measure unidirectional 33Pi fluxes and test PTHrP, but also STC and FGF23 as regulatory factors, as well as specific drugs to unveil the functional transporting mechanisms. Pi absorption is modified in starved and fed sea bass, an effect dependent on Pi availability in diet, which modifies gene expression of uptake mechanisms. Phosphate secretion across flounder primary renal cell cultures is increased by PTHrP, which reduces the expression of reabsorption mechanisms such as NaPiII and evokes an increase in GFR in cannulated fish, thus resulting in net Pi excretion. A similar effect occurs in the toadfish urinary bladder, which displays moderate Pi transport that is abolished by the drug ouabain and modified by endocrines. Finally we used the shark choroid plexus (CP to show active CSF-to-blood transport with biochemical properties consistent with PiT Na+-dependent transporters. RT-PCR revealed the PiT1/2, but no NaPiII gene expression and we localized PiT2 in CP apical membranes while PiT1 occurred in vascular endothelial cells. Shark CP expresses both PTHrP and its receptor. Could

  4. Intestinal Metabolites Are Profoundly Altered in the Context of HLA-B27 Expression and Functionally Modulate Disease in a Rat Model of Spondyloarthritis.

    Science.gov (United States)

    Asquith, Mark; Davin, Sean; Stauffer, Patrick; Michell, Claire; Janowitz, Cathleen; Lin, Phoebe; Ensign-Lewis, Joe; Kinchen, Jason M; Koop, Dennis R; Rosenbaum, James T

    2017-10-01

    HLA-B27-associated spondyloarthritides are associated with an altered intestinal microbiota and bowel inflammation. We undertook this study to identify HLA-B27-dependent changes in both host and microbial metabolites in the HLA-B27/β 2 -microglobulin (β 2 m)-transgenic rat and to determine whether microbiota-derived metabolites could impact disease in this major model of spondyloarthritis. Cecal contents were collected from Fischer 344 33-3 HLA-B27/β 2 m-transgenic rats and wild-type controls at 6 weeks (before disease) and 16 weeks (with active bowel inflammation). Metabolomic profiling was performed by high-throughput gas and liquid chromatography-based mass spectrometry. HLA-B27/β 2 m-transgenic rats were treated with the microbial metabolites propionate or butyrate in drinking water for 10 weeks, and disease activity was subsequently assessed. Our screen identified 582 metabolites, of which more than half were significantly altered by HLA-B27 expression at 16 weeks. Both microbial and host metabolites were altered, with multiple pathways affected, including those for amino acid, carbohydrate, xenobiotic, and medium-chain fatty acid metabolism. Differences were even observed at 6 weeks, with up-regulation of histidine, tyrosine, spermidine, N-acetylmuramate, and glycerate in HLA-B27/β 2 m-transgenic rats. Administration of the short-chain fatty acid propionate significantly attenuated HLA-B27-associated inflammatory disease, although this was not associated with increased FoxP3+ T cell induction or with altered expression of the immunomodulatory cytokines interleukin-10 (IL-10) or IL-33 or of the tight junction protein zonula occludens 1. HLA-B27 expression was also associated with altered host expression of messenger RNA for the microbial metabolite receptors free fatty acid receptor 2 (FFAR2), FFAR3, and niacin receptor 1. HLA-B27 expression profoundly impacts the intestinal metabolome, with changes evident in rats even at age 6 weeks. Critically, we

  5. Peripheral nerve reconstruction with epsilon-caprolactone conduits seeded with vasoactive intestinal peptide gene-transfected mesenchymal stem cells in a rat model

    Science.gov (United States)

    Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.

    2014-08-01

    Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.

  6. Antioxidant effects of extra virgin olive oil enriched by myrtle phenolic extracts on iron-mediated lipid peroxidation under intestinal conditions model.

    Science.gov (United States)

    Dairi, Sofiane; Carbonneau, Marie-Annette; Galeano-Diaz, Teresa; Remini, Hocine; Dahmoune, Farid; Aoun, Omar; Belbahi, Amine; Lauret, Céline; Cristol, Jean-Paul; Madani, Khodir

    2017-12-15

    Chelating and free radicals scavenging activities of extra virgin olive oil (EVOO) enriched by Myrtus communis phenolic compounds (McPCs), α-tocopherol and Butylated hydroxytoluene (BHT) were evaluated using chemical assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Oxygen radical absorbance capacity (ORAC), and biological model as 2,2'-azobis (2-aminopropane) dihydrochloride (AAPH) or Fe +3 /Ascorbic acid (Fe +3 /AsA) system mediated peroxidation of l-α-phosphatidylcholine aqueous dispersions stabilized by bile salts (BS) under simulated intestinal conditions (pH 7.4). McPC-EEVOO increased significantly the neutralization of DPPH radical and AAPH-derived radicals in ORAC assay more than α-tocopherol and BHT. The phospholipid stability increased by a factor of 33.6%, 34.8%, 19.3% and 10.7% for myrtle microwave assisted extraction (MAE) and conventional extraction (CE) extracts, α-tocopherol and BHT, respectively, as compared to the control (EVOO without enrichment) in Fe +3 /AsA system. But a slightly additive effect was observed when AAPH system was used. Our observation showed that McPCs may interact positively with EVOO to inhibit phospholipid peroxidation, and thus, McPC-EEVOO could be a potential functional food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  8. Application of the Na+ recirculation theory to ion coupled water transport in low- and high resistance osmoregulatory epithelia.

    Science.gov (United States)

    Larsen, Erik Hviid; Møbjerg, Nadja; Nielsen, Robert

    2007-09-01

    The theory of Na+ recirculation for isosmotic fluid absorption follows logically from Hertz's convection-diffusion equation applied to the exit of water and solutes from the lateral intercellular space. Experimental evidence is discussed indicating Na+ recirculation based upon the following approaches: (i) An isotope tracer method in small intestine. Simultaneous measurement of water flow and ion transport in toad skin epithelium demonstrating, (ii) occasional hyposmotic absorbates, and (iii) reduced fluid absorption in the presence of serosal bumetanide. (iv) Studies of the metabolic cost of net Na+ absorption demonstrating an efficiency that is lower than the 18 Na+ per O2 consumed given by the stoichiometry of the Na+/K+-pump. Mathematical modeling predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1(-/-) mice, the adverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow, and in a non-contradictory way the wide range of metabolic efficiencies from above to below 18 Na+/O2. Certain types of observations are poorly or not at all reproduced by the model. It is discussed that such lack of agreement between model and experiment is due to cellular regulations of ion permeabilities that are not incorporated in the modeling. Clarification of these problems requires further experimental studies.

  9. Morphometric analysis of small intestine of BALB/c mice in models developed for food allegy study

    OpenAIRE

    Tatiana Coura Oliveira; Maria do Carmo Gouveia Pelúzio; Sérgio Luis Pinto da Matta; José Mário da Silveira Mezêncio; Josefina Bressan

    2013-01-01

    Although some animal models of food allergy in have already have been described, none of them uses the allergen in the animals' diet. This work describes the comparison between two developed models of food allergy in BALB/c mice, based in the administration of the allergen in the diet or by intragastric way. The experiment last for 28 days and the animals had been sensitized by means of subcutaneous injection in 1st and 14th days with in natura extract milk, bovine extract meat or frog extrac...

  10. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Maathuis, A.; Heilig, G.H.J.; Venema, K.; Vos, de W.M.; Smidt, H.

    2010-01-01

    A high-density phylogenetic microarray targeting small subunit rRNA (SSU rRNA) sequences of over 1000 microbial phylotypes of the human gastrointestinal tract, the HITChip, was used to assess the impact of faecal inoculum preparation and operation conditions on an in vitro model of the human large

  11. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure.

    Science.gov (United States)

    Korpela, Katri; Mutanen, Annika; Salonen, Anne; Savilahti, Erkki; de Vos, Willem M; Pakarinen, Mikko P

    2017-02-01

    Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent phylogenetic microarray analysis. The microbiota was related to histological liver injury, fecal markers of intestinal inflammation, matrix metalloproteinase 9 and calprotectin, and disease characteristics. Overabundance of Lactobacilli, Proteobacteria, and Actinobacteria was observed in IF, whereas bacteria related to Clostridium clusters III, IV, and XIVa along with overall diversity and richness were reduced. Patients were segregated into 3 subgroups based on dominating bacteria: Clostridium cluster XIVa, Proteobacteria, and bacteria related to Lactobacillus plantarum. In addition to liver steatosis and fibrosis, Proteobacteria were associated with prolonged current parenteral nutrition (PN) as well as liver and intestinal inflammation. Lactobacilli were related to advanced steatosis and fibrosis mostly after weaning off PN without associated inflammation. In multivariate permutational analysis of variance, liver steatosis, bowel length, PN calories, and antibiotic treatment best explained the microbiota variation among patients with IF. Intestinal microbiota composition was associated with liver steatosis in IF and better predicted steatosis than duration of PN or length of the remaining intestine. Our results may be explained by a model in which steatosis is initiated during PN in response to proinflammatory lipopolysaccharides produced by Proteobacteria and progresses after weaning off PN, as the L plantarum group Lactobacilli becomes dominant and affects lipid metabolism by altering bile acid signaling.

  12. Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model.

    Science.gov (United States)

    Zhu, Huiling; Wang, Haibo; Wang, Shuhui; Tu, Zhixiao; Zhang, Lin; Wang, Xiuying; Hou, Yongqing; Wang, Chunwei; Chen, Jie; Liu, Yulan

    2018-03-06

    Flaxseed oil is a rich source of α-linolenic acid (ALA), which is the precursor of the long-chain n-3 polyunsaturated fatty acids (PUFAs) including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). This study investigated the protective effect of flaxseed oil against intestinal injury induced by lipopolysaccharide (LPS). Twenty-four weaned pigs were used in a 2 × 2 factorial experiment with dietary treatment (5% corn oil vs. 5% flaxseed oil) and LPS challenge (saline vs. LPS). On d 21 of the experiment, pigs were administrated with LPS or saline. At 2 and 4 h post-administration, blood samples were collected. After the blood harvest at 4 h, all piglets were slaughtered and intestinal samples were collected. Flaxseed oil supplementation led to the enrichment of ALA, EPA and total n-3 PUFAs in intestine. Flaxseed oil improved intestinal morphology, jejunal lactase activity and claudin-1 protein expression. Flaxseed oil downregulated the mRNA expression of intestinal necroptotic signals. Flaxseed oil also downregulated the mRNA expression of intestinal toll-like receptors 4 (TLR4) and its downstream signals myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NFκB), and nucleotide-binding oligomerization domain proteins 1, 2 (NOD1, NOD2) and its adaptor molecule, receptor interacting protein kinases 2 (RIPK2). These results suggest that dietary addition of flaxseed oil enhances intestinal integrity and barrier function, which is involved in modulating necroptosis and TLR4/NOD signaling pathways. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Identification of TNF-α-responsive promoters and enhancers in the intestinal epithelial cell model Caco-2

    DEFF Research Database (Denmark)

    Boyd, Mette; Coskun, Mehmet; Lilje, Berit

    2014-01-01

    The Caco-2 cell line is one of the most important in vitro models for enterocytes, and is used to study drug absorption and disease, including inflammatory bowel disease and cancer. In order to use the model optimally, it is necessary to map its functional entities. In this study, we have generated...... genome-wide maps of active transcription start sites (TSSs), and active enhancers in Caco-2 cells with or without tumour necrosis factor (TNF)-α stimulation to mimic an inflammatory state. We found 520 promoters that significantly changed their usage level upon TNF-α stimulation; of these, 52...... promoters. As a case example, we characterize an enhancer regulating the laminin-5 γ2-chain (LAMC2) gene by nuclear factor (NF)-κB binding. This report is the first to present comprehensive TSS and enhancer maps over Caco-2 cells, and highlights many novel inflammation-specific promoters and enhancers....

  14. Scintigraphic visualization of bacterial translocation in experimental strangulated intestinal obstruction

    International Nuclear Information System (INIS)

    Galeev, Yu.M.; Popov, M.V.; Salato, O.V.; Lishmanov, Yu.B.; Grigorev, E.G.; Aparcin, K.A.

    2009-01-01

    The purpose of this study was to obtain scintigraphic images depicting translocation of 99m Tc-labelled Escherichia coli bacteria through the intestinal barrier and to quantify this process using methods of nuclear medicine. Thirty male Wistar rats (including 20 rats with modelled strangulated intestinal obstruction and 10 healthy rats) were used for bacterial scintigraphy. 99m Tc-labelled E. coli bacteria ( 99m Ts-E. coli) with an activity of 7.4-11.1 MBq were administered into a section of the small intestine. Scintigraphic visualization of bacterial translocation into organs and tissues of laboratory animals was recorded in dynamic (240 min) and static (15 min) modes. The number of labelled bacteria, which migrated through the intestinal barrier, was quantified by calculating the translocation index (TI). Control indicated no translocation of 99m Ts-E. coli administered into the intestine through the parietes of the small intestine's distal part in healthy animals. Animals with strangulated obstruction demonstrated different migration strength and routes of labelled bacteria from strangulated and superior to strangulation sections of the small intestine. 99m Ts-E. coli migrated from the strangulated loop into the peritoneal cavity later causing systemic bacteraemia through peritoneal resorption. The section of the small intestine, which was superior to the strangulation, demonstrated migration of labelled bacteria first into the portal and then into the systemic circulation. The strangulated section of the small intestine was the main source of bacteria dissemination since the number of labelled bacteria, which migrated from this section significantly, exceeded that of the area superior to the strangulation section of the small intestine (p = 0.0003). Bacterial scintigraphy demonstrated the possibility of visualizing migration routes of labelled bacteria and quantifying their translocation through the intestinal barrier. This approach to study bacterial

  15. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  16. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute...... concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped...

  17. Statistical modelling coupled with LC-MS analysis to predict human upper intestinal absorption of phytochemical mixtures.

    Science.gov (United States)

    Selby-Pham, Sophie N B; Howell, Kate S; Dunshea, Frank R; Ludbey, Joel; Lutz, Adrian; Bennett, Louise

    2018-04-15

    A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (T max ) should be synchronised with the time of increased OSI. A statistical model has been reported to predict T max of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lymphoma Caused by Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Mitsuko L. Yamamoto

    2014-09-01

    Full Text Available The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

  19. Diagnosis of intestinal and extra intestinal amoebiasis

    International Nuclear Information System (INIS)

    Lopez, Myriam Consuelo; Quiroz, Damian Arnoldo; Pinilla, Analida Elizabeth

    2007-01-01

    The objective is to carry out a review of the national and international literature as of the XXth century in order to update the advances for the diagnosis of complex odd Entamoeba histolytic / Entamoeba dispar and that of intestinal and extra intestinal amoebiasis that may be of use to the scientific community. As well as to unify the diagnostic criteria of this parasitosis known as a public health problem, and as a consequence of that, optimize the quality of population care. Data source: there was a systematic search for the scientific literature Publisher in Spanish and English since 1960 until today, this selection started on the first semester of 2006 until 2007, in the development of the line on intestinal and extra-intestinal amoebiasis of the Medical School of the National University of Colombia. A retrospective search process was carried out, systematically reviewing the most relevant articles as well as the products of this research line. In deciding how to make this article, there was a continuous search in different data bases such as Medline, SciELO and other bases in the library of the National University of Colombia, as well as other classical books related to the subject. For that purpose the terms amoebiasis, odd Entamoeba histolytic, Entamoeba, diagnosis, epidemiology, dysentery, amoebic liver abscess, were used. Studies selection: titles and abstracts were reviewed to select the original publications and the most representative ones related to this article's subject. Data extraction: the articles were classified according to the subject, the chronology and the authors according to the scientific contribution to solve the problem. Synthesis of the data: in the fi rst instance, a chronological critical analysis was carried out to order and synthesize the progress made in the diagnosis until confirmation of the experts' agreements in the field of amoebiasis was obtained throughout the world. Conclusion: this article summarizes what has taken place

  20. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  1. Oxazolone-Induced Intestinal Inflammation in Adult Zebrafish

    NARCIS (Netherlands)

    Brugman, Sylvia; Nieuwenhuis, EES

    2017-01-01

    Zebrafish are an excellent model for the study of intestinal immunity. The availability of several transgenic reporter fish for different innate and adaptive immune cells and the high homology in terms of gut function and morphology enables in depth analysis of the process of intestinal

  2. Oxazolone-induced intestinal inflammation in adult zebrafish

    NARCIS (Netherlands)

    Brugman, Sylvia; Nieuwenhuis, Edward E.S.

    2017-01-01

    Zebrafish are an excellent model for the study of intestinal immunity. The availability of several transgenic reporter fish for different innate and adaptive immune cells and the high homology in terms of gut function and morphology enables in depth analysis of the process of intestinal

  3. Wnt, stem cells and cancer in the intestine.

    NARCIS (Netherlands)

    Pinto, D.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or

  4. In vitro and in vivo efficacy of Monepantel (AAD 1566 against laboratory models of human intestinal nematode infections.

    Directory of Open Access Journals (Sweden)

    Lucienne Tritten

    2011-12-01

    Full Text Available BACKGROUND: Few effective drugs are available for soil-transmitted helminthiases and drug resistance is of concern. In the present work, we tested the efficacy of the veterinary drug monepantel, a potential drug development candidate compared to standard drugs in vitro and in parasite-rodent models of relevance to human soil-transmitted helminthiases. METHODOLOGY: A motility assay was used to assess the efficacy of monepantel, albendazole, levamisole, and pyrantel pamoate in vitro on third-stage larvae (L3 and adult worms of Ancylostoma ceylanicum, Necator americanus and Trichuris muris. Ancylostoma ceylanicum- or N. americanus-infected hamsters, T. muris- or Ascaris suum-infected mice, and Strongyloides ratti-infected rats were treated with single oral doses of monepantel or with one of the reference drugs. PRINCIPAL FINDINGS: Monepantel showed excellent activity on A. ceylanicum adults (IC(50 = 1.7 µg/ml, a moderate effect on T. muris L3 (IC(50 = 78.7 µg/ml, whereas no effect was observed on A. ceylanicum L3, T. muris adults, and both stages of N. americanus. Of the standard drugs, levamisole showed the highest potency in vitro (IC(50 = 1.6 and 33.1 µg/ml on A. ceylanicum and T. muris L3, respectively. Complete elimination of worms was observed with monepantel (10 mg/kg and albendazole (2.5 mg/kg in A. ceylanicum-infected hamsters. In the N. americanus hamster model single 10 mg/kg oral doses of monepantel and albendazole resulted in worm burden reductions of 58.3% and 100%, respectively. Trichuris muris, S. ratti and A. suum were not affected by treatment with monepantel in vivo (following doses of 600 mg/kg, 32 mg/kg and 600 mg/kg, respectively. In contrast, worm burden reductions of 95.9% and 76.6% were observed following treatment of T. muris- and A. suum infected mice with levamisole (200 mg/kg and albendazole (600 mg/kg, respectively. CONCLUSIONS/SIGNIFICANCE: Monepantel reveals low or no activities against N. americanus

  5. Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia

    DEFF Research Database (Denmark)

    Geyti, Christine Stride; Odgaard, Elvin V. P.; Overgaard, Morten Thaarup

    2008-01-01

    Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca(2+) concentration [Ca(2+)](i) through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca(2+)](i) oscillations, a feature suggested to involve...... period of 1 min, 10.9 +/- 6.7% (n = 23) of the cells showed spontaneous [Ca(2+)](i) increases. Spontaneous adenosine triphosphate (ATP) release from MDCK cells was detected directly by luciferin/luciferase. Scavenging of ATP by apyrase or hexokinase markedly reduced the [Ca(2+)](i) oscillatory activity......, whereas inhibition of ecto-ATPases (ARL67156) enhanced the [Ca(2+)](i) oscillatory activity. The association between spontaneous [Ca(2+)](i) increases and nucleotide signalling was further tested in 132-1N1 cells lacking P2 receptors. These cells hardly showed any spontaneous [Ca(2+)](i) increases...

  6. Roux-en-Y Gastric Bypass Surgery Suppresses Hepatic Gluconeogenesis and Increases Intestinal Gluconeogenesis in a T2DM Rat Model.

    Science.gov (United States)

    Yan, Yong; Zhou, Zhou; Kong, Fanzhi; Feng, Suibin; Li, Xuzhong; Sha, Yanhua; Zhang, Guangjun; Liu, Haijun; Zhang, Haiqing; Wang, Shiguang; Hu, Cheng; Zhang, Xueli

    2016-11-01

    Roux-en-Y gastric bypass (RYGB) is an effective surgical treatment for type 2 diabetes mellitus (T2DM). The present study aimed to investigate the effects of RYGB on glucose homeostasis, lipid metabolism, and intestinal morphological adaption, as well as hepatic and intestinal gluconeogenesis. Twenty adult male T2DM rats induced by high-fat diet and low dose of streptozotocin were randomly divided into sham and RYGB groups. The parameters of body weight, food intake, glucose tolerance, insulin sensitivity, and serum lipid profiles were assessed to evaluate metabolic changes. Intestinal sections were stained with hematoxylin and eosin (H&E) for light microscopy examination. The messenger RNA (mRNA) and protein expression levels of key regulatory enzymes of gluconeogenesis [phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase)] were determined through reverse-transcription PCR (RT-PCR) and Western blotting, respectively. RYGB induced significant improvements in glucose tolerance and insulin sensitivity, along with weight loss and decreased food intake. RYGB also decreased serum triglyceride (TG) and free fatty acid (FFA) levels. The jejunum and ileum exhibited a marked increase in the length and number of intestinal villi after RYGB. The RYGB group exhibited downregulated mRNA and protein expression levels of PEPCK and G6Pase in the liver and upregulated expression of these enzymes in the jejunum and ileum tissues. RYGB ameliorates glucose and lipid metabolism accompanied by weight loss and calorie restriction. The small intestine shows hyperplasia and hypertrophy after RYGB. Meanwhile, our study demonstrated that the reduced hepatic gluconeogenesis and increased intestinal gluconeogenesis may contribute to improved glucose homeostasis after RYGB.

  7. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Directory of Open Access Journals (Sweden)

    Julie Reygner

    2016-11-01

    Full Text Available The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil of the pesticide chlorpyrifos (CPF on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract. The last three reactors (representing the colon were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses; (ii the changes are “SHIME®-compartment” specific; and (iii the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.

  8. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model.

    Science.gov (United States)

    Oueslati, Khaled; de La Pomélie, Diane; Santé-Lhoutellier, Véronique; Gatellier, Philippe

    2016-10-15

    The production of oxygen free radicals catalysed by non-haem iron was investigated in an in vitro mimetic model of the digestive tract using specific chemical traps. Superoxide radicals (O2(∗-)) and their protonated form (hydroperoxyl radicals, HO2(∗)) were detected by the reduction of nitroblue tetrazolium into formazan, and hydroxyl radicals (OH(∗)) were detected by the hydroxylation of terephthalate. Under gastric conditions, O2(∗-)/HO2(∗) were detected in higher quantity than OH(∗). Increasing the pH from 3.5 to 6.5 poorly affected the kinetics of free radical production. The oxidations generated by these free radicals were estimated on myofibrils prepared from pork rectus femoris muscle. Myofibrillar lipid and protein oxidation increased with time and oxidant concentration, with a negative impact on the digestibility of myofibrillar proteins. Plant food antioxidants considerably decreased free radical production and lipid oxidation but not protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Absorption, Conjugation and Efflux of the Flavonoids, Kaempferol and Galangin, Using the Intestinal CACO-2/TC7 Cell Model.

    Science.gov (United States)

    Barrington, Robert; Williamson, Gary; Bennett, Richard N; Davis, Barry D; Brodbelt, Jennifer S; Kroon, Paul A

    2009-01-01

    Flavonoids are biologically active compounds in food with potential health effects. We have used the Caco-2 cell monolayer model to study the absorption and metabolism of two flavonols, a class of flavonoids, specifically kaempferol and galangin. Metabolism experiments allowed identification of 5 kaempferol conjugates: 3-, 7- and 4'-glucuronide, a sulphate and a glucurono-sulphate; and 4 galangin conjugates: 3-, 5- and 7-glucuronides, and a sulphate, using specific enzyme hydrolysis, HPLC-MS, and HPLC with post column metal complexation/tandem MS. Transport studies showed that the flavonols were conjugated inside the cells then transported across the monolayer or effluxed back to the apical side. Sulphated conjugates were preferentially effluxed back to the apical side, whereas glucuronides were mostly transported to the basolateral side. For kaempferol, a small amount of the unconjugated aglycone permeated in both directions, indicating some passive diffusion. When kaempferol-3-glucuronide and quercetin7-sulphate were applied to either side of the cells, no permeation in either direction was observed, indicating that conjugates cannot re-cross the cell monolayer. Formation of apical kaempferol-7- and 4'-glucuronides was readily saturated, whereas formation of other conjugates at the apical side and all at the basolateral side increased with increasing concentration of kaempferol, implying different transporters are responsible at the apical and basolateral sides. The results highlight the important but complex metabolic changes occurring in flavonoids during absorption.

  10. Intestinal anisakidosis (anisakiosis).

    Science.gov (United States)

    Takei, Hidehiro; Powell, Suzanne Z

    2007-10-01

    A case of intestinal anisakidosis in a 42-year-old man in Japan is presented. His chief complaint was an acute onset of severe abdominal pain. Approximately 12 hours before the onset of this symptom, he had eaten sliced raw mackerel ("sashimi"). Upper endoscopy was unremarkable. At exploratory laparotomy, an edematous, diffusely thickened segment of jejunum was observed, which was resected. The postoperative course was uneventful. The segment of small intestine showed a granular indurated area on the mucosal surface, and microscopically, a helminthic larva penetrating the intestinal wall, which was surrounded by a cuff of numerous neutrophils and eosinophils, as well as diffuse acute serositis. A cross section of the larva revealed the internal structures, pathognomonic of Anisakis simplex. Although anisakidosis is rare in the United States, with the increasing popularity of Japanese cuisine, the incidence is expected to increase, and pathologists should be familiar with this disease.

  11. Intestinal failure: a review

    Science.gov (United States)

    Allan, Philip; Lal, Simon

    2018-01-01

    Intestinal failure (IF) is the inability of the gut to absorb necessary water, macronutrients (carbohydrate, protein, and fat), micronutrients, and electrolytes sufficient to sustain life and requiring intravenous supplementation or replacement. Acute IF (types 1 and 2) is the initial phase of the illness and may last for weeks to a few months, and chronic IF (type 3) from months to years. The challenge of caring for patients with IF is not merely the management of the underlying condition leading to IF or the correct provision of appropriate nutrition or both but also the prevention of complications, whether thromboembolic phenomenon (for example, venous occlusion), central venous catheter-related bloodstream infection, IF-associated liver disease, or metabolic bone disease. This review looks at recent questions regarding chronic IF (type 3), its diagnosis and management, the role of the multidisciplinary team, and novel therapies, including hormonal treatment for short bowel syndrome but also surgical options for intestinal lengthening and intestinal transplant. PMID:29399329

  12. Small intestine diverticuli

    International Nuclear Information System (INIS)

    Pomakov, P.; Risov, A.

    1991-01-01

    The routine method of contrast matter passage applied to 850 patients with different gastrointestinal diseases proved inefficient to detect any small-intestinal diverticuli. The following modiffications of the method have been tested in order to improve the diagnostic possibilities of the X-ray: study at short intervals, assisted passage, enteroclysm, pharmacodynamic impact, retrograde filling of the ileum by irrigoscopy. Twelve diverticuli of the small-intestinal loops were identified: 5 Meckel's diverticuli, 2 solitary of which one of the therminal ileum, 2 double diverticuli and 1 multiple diverticulosis of the jejunum. The results show that the short interval X-ray examination of the small intestines is the method of choice for identifying local changes in them. The solitary diverticuli are not casuistic scarcity, its occurrence is about 0.5% at purposeful X-ray investigation. The assisted passage method is proposed as a method of choice for detection of the Meckel's diverticulum. 5 figs., 3 tabs. 18 refs

  13. Chronic intestinal pseudoobstruction syndrome

    International Nuclear Inf