WorldWideScience

Sample records for model intestinal epithelia

  1. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy.

    Science.gov (United States)

    Sarker, Protim; Ahmed, Sultan; Tiash, Snigdha; Rekha, Rokeya Sultana; Stromberg, Roger; Andersson, Jan; Bergman, Peter; Gudmundsson, Gudmundur H; Agerberth, Birgitta; Raqib, Rubhana

    2011-01-01

    Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs) that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB) reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB), a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR) and release of the CAP-18 peptide/protein in stool (Western blot). Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from secondary respiratory infections that frequently are the lethal causes in

  2. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy.

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    Full Text Available BACKGROUND: Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18 in the large intestinal epithelia. AIMS: To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB, a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. METHODS: The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR and release of the CAP-18 peptide/protein in stool (Western blot. PRINCIPAL FINDINGS: Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. CONCLUSION: Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from

  3. Proteomic analysis of rainbow trout (Oncorhynchus mykiss) intestinal epithelia: physiological acclimation to short-term starvation.

    Science.gov (United States)

    Baumgarner, Bradley L; Bharadwaj, Anant S; Inerowicz, Dorota; Goodman, Angela S; Brown, Paul B

    2013-03-01

    The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. beta1 integrins are not required for the maintenance of lymphocytes within intestinal epithelia

    DEFF Research Database (Denmark)

    Marsal, Jan; Brakebusch, Cord; Bungartz, Gerd

    2005-01-01

    beta(1) integrins are thought to play a central role in maintaining lymphocytes within mucosal epithelia via their interactions with extracellular matrix proteins and subepithelial cellular components within and underlying the basement membrane. In the current study type a (CD8alphabetaTCRalphabe......beta(1) integrins are thought to play a central role in maintaining lymphocytes within mucosal epithelia via their interactions with extracellular matrix proteins and subepithelial cellular components within and underlying the basement membrane. In the current study type a (CD8alphabeta......TCRalphabeta) and type b (CD8alphaalphaTCRgammadelta and CD8alphaalphaTCRalphabeta) intraepithelial lymphocyte (IEL) subsets within the mouse small intestine were found to express functional beta(1) integrin and the beta(1) integrin alpha chain partners alpha(1), alpha(2), and alpha(4). Using inducible beta(1) integrin......-knockout bone marrow-chimeric mice we demonstrate that IEL expression of alpha(1) and alpha(2) but not alpha(4) is dependent on expression of the beta(1) chain. Importantly, deletion of the beta(1) chain in IEL did not alter the number or composition of lymphocytes within the intestinal epithelium. Thus, while...

  5. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Directory of Open Access Journals (Sweden)

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  6. Membrane lipid microenvironment modulates thermodynamic properties of the Na+-K+-ATPase in branchial and intestinal epithelia in euryhaline fish in vivo

    Directory of Open Access Journals (Sweden)

    Mario Diaz

    2016-12-01

    Full Text Available We have analyzed the effects of different native membrane lipid composition on the thermodynamic properties of the Na+-K+-ATPase in different epithelia from the gilthead seabream Sparus aurata. Thermodynamic parameters of activation for the Na+-K+-ATPase, as well as contents of lipid classes and fatty acids from polar lipids were determined for gill epithelia and enterocytes isolated from pyloric caeca, anterior intestine and posterior intestine. Arrhenius analyses of control animals revealed differences in thermal discontinuity values (Td and activation energies determined at both sides of Td between intestinal and gill epithelia. Eyring plots disclosed important differences in enthalpy of activation (H‡ and entropy of activation (S‡ between enterocytes and branchial cells. Induction of n-3 LCPUFA deficiency dramatically altered membrane lipid composition in enterocytes, being the most dramatic changes the increase in 18:1n-9 (oleic acid and the reduction of n-3 LCPUFA (mainly DHA, docosahexaenoic acid. Strikingly, branchial cells were much more resistant to diet-induced lipid alterations than enterocytes, indicating the existence of potent lipostatic mechanisms preserving membrane lipid matrix in gill epithelia. Paralleling lipid alterations, values of Ea1, H‡ and S‡ for the Na+-K+-ATPase were all increased, while Td values vanished, in LCPUFA deficient enterocytes. In turn, Differences in thermodynamic parameters were highly correlated with specific changes in fatty acids, but not with individual lipid classes including cholesterol in vivo. Thus, Td was positively related to 18:1n-9 and negatively to DHA. Td, Ea1 and H‡ were exponentially related to DHA/18:1n-9 ratio. The exponential nature of these relationships highlights the strong impact of subtle changes in the contents of oleic acid and DHA in setting the thermodynamic properties of epithelial Na+-K+-ATPase in vivo. The effects are consistent with physical

  7. The small intestinal epithelia of beef steers differentially express sugar transporter messenger ribonucleic acid in response to abomasal versus ruminal infusion of starch hydrolysate.

    Science.gov (United States)

    Liao, S F; Harmon, D L; Vanzant, E S; McLeod, K R; Boling, J A; Matthews, J C

    2010-01-01

    In mammals, the absorption of monosaccharides from small intestinal lumen involves at least 3 sugar transporters (SugT): sodium-dependent glucose transporter 1 (SGLT1; gene SLC5A1) transports glucose and galactose, whereas glucose transporter (GLUT) 5 (GLUT5; gene SLC2A5) transports fructose, across the apical membrane of enterocytes. In contrast, GLUT2 (gene SLC2A2) transports all of these sugars across basolateral and apical membranes. To compare the distribution patterns and sensitivity with nutritional regulation of these 3 SugT mRNA in beef cattle small intestinal tissue, 18 ruminally and abomasally catheterized Angus steers (BW approximately 260 kg) were assigned to water (control), ruminal cornstarch (partially hydrolyzed by alpha-amylase; SH), or abomasal SH infusion treatments (n = 6) and fed an alfalfa-cube-based diet at 1.3 x NE(m) requirement. The SH infusions amounted to 20% of ME intake. After 14- or 16-d of infusion, steers were killed; duodenal, jejunal, and ileal epithelia harvested; and total RNA extracted. The relative amount of SugT mRNA in epithelia was determined using real-time reverse transcription-PCR quantification methods. Basal expression of GLUT2 and SGLT1 mRNA was greater (P content of GLUT5 mRNA was greater (P content of GLUT5 mRNA in small intestinal epithelia was not affected (P > or = 0.16) by either SH infusion treatment. In contrast, GLUT2 and SGLT1 mRNA content in the ileal epithelium was increased (P content also was increased (P = 0.07) by 64% after ruminal SH infusion. These results demonstrate that the ileum of beef cattle small intestine adapts to an increased luminal supply of glucose by increasing SGLT1 and GLUT2 mRNA content, whereas increased ruminal SH supply results in duodenal upregulation of SGLT1 mRNA content. These adaptive responses of GLUT2 and SGLT1 mRNA to abomasal or ruminal SH infusion suggest that beef cattle can adapt to increase their carbohydrate assimilation through small intestinal epithelia, assuming

  8. Treatment with Entinostat Heals Experimental Cholera by Affecting Physical and Chemical Barrier Functions of Intestinal Epithelia.

    Science.gov (United States)

    Sarker, Protim; Banik, Atanu; Stromberg, Roger; Gudmundsson, Gudmundur H; Raqib, Rubhana; Agerberth, Birgitta

    2017-07-01

    We have shown previously that oral treatment with sodium butyrate or phenylbutyrate in an experimental model of shigellosis improves clinical outcomes and induces the expression of the antimicrobial peptide CAP-18 in the large intestinal epithelia. In a subsequent study, we found that entinostat, an aroylated phenylenediamine compound, has similar therapeutic potential against shigellosis. In this study, we aimed to evaluate entinostat as a potential candidate for host-directed therapy against cholera in an experimental model. Vibrio cholerae -infected rabbits were treated with two different dose regimens of entinostat: either 0.5 mg twice daily for 2 days or 1 mg once daily for 2 days. The effects of treatment on clinical outcomes and V. cholerae shedding (CFU count in stool) were observed. Immunohistochemical analysis was carried out to assess CAP-18 expression in ileal and jejunal mucosae. The serum zonulin level was measured by an enzyme-linked immunosorbent assay (ELISA) to evaluate gut permeability. Infection of rabbits with V. cholerae downregulated CAP-18 expression in the ileal epithelium; the expression was replenished by oral treatment with entinostat at either dose regimen. The level of zonulin, a marker of gut permeability, in serum was upregulated after infection, and this upregulation was counteracted after treatment with entinostat. Entinostat treatment also led to recovery from cholera and a decline in the V. cholerae count in stool. In conclusion, the improved clinical outcome of cholera for rabbits treated with entinostat is associated with the induction of CAP-18 and the reduction of gut epithelial permeability. Copyright © 2017 American Society for Microbiology.

  9. Modeling and inferring cleavage patterns in proliferating epithelia.

    Directory of Open Access Journals (Sweden)

    Ankit B Patel

    2009-06-01

    Full Text Available The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate "signature" equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

  10. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  11. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    OpenAIRE

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequ...

  12. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.

    Science.gov (United States)

    Fasano, A; Not, T; Wang, W; Uzzau, S; Berti, I; Tommasini, A; Goldblum, S E

    2000-04-29

    We identified zonulin, a novel human protein analogue to the Vibrio cholerae derived Zonula occludens toxin, which induces tight junction disassembly and a subsequent increase in intestinal permeability in non-human primate intestinal epithelia. Zonulin expression was raised in intestinal tissues during the acute phase of coeliac disease, a clinical condition in which tight junctions are opened and permeability is increased.

  13. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    Science.gov (United States)

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.

  14. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection.

    Science.gov (United States)

    Huang, Fu-Chen

    2017-08-07

    Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella , a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.

  15. The intestinal microenvironment in sepsis.

    Science.gov (United States)

    Fay, Katherine T; Ford, Mandy L; Coopersmith, Craig M

    2017-10-01

    The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients. Published by Elsevier B.V.

  16. Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia.

    Science.gov (United States)

    Glover, Chris N; Niyogi, Som; Blewett, Tamzin A; Wood, Chris M

    2016-09-01

    In most animals, the acquisition of the essential trace metal iron (Fe) is achieved by the gut, but in hagfishes, the skin is a nutrient absorbing epithelium, and thus may also play a role in Fe uptake. In the current study, the absorption of Fe, as Fe(II), across the intestinal and cutaneous epithelia of Pacific hagfish (Eptatretus cirrhatus) was investigated. Both epithelia absorbed Fe, with saturation at lower tested concentrations, superseded by a diffusive component at higher Fe exposure concentrations. Affinity constants (Km) of 9.4 and 137μM, and maximal Fe transport rates (Jmax) of 0.81 and 0.57nmolcm(-2)h(-1) were determined for the skin and the gut, respectively. This characterises the skin as a relatively high-affinity Fe transport epithelium. The majority of the absorbed Fe in the skin remained in the tissue, whereas in the gut, most absorbed Fe was found in the serosal fluid, suggesting distinct mechanisms of Fe handling between the two epithelia. To determine if reduced dissolved oxygen altered Fe transport, hagfish were subjected to hypoxia for 24h, before Fe transport was again assessed. Hypoxia had no effect on Fe transport across gut or skin, likely owing to the relative lack of change in haematological variables, and thus an unaltered Fe demand under such conditions. These data are the first to kinetically characterise the absorption of a nutritive trace metal across the epithelia of hagfish and add to the growing understanding of the role of the skin in nutritive transport in this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  18. Examining urea flux across the intestine of the spiny dogfish, Squalus acanthias.

    Science.gov (United States)

    Gary Anderson, W; McCabe, Chris; Brandt, Catherine; Wood, Chris M

    2015-03-01

    Recent examination of urea flux in the intestine of the spiny dogfish shark, Squalus acanthias, has shown that feeding significantly enhances urea uptake across the intestine, and this was significantly inhibited following mucosal addition of phloretin. The present study examined potential mechanisms of urea uptake across the dogfish intestine in starved and fed dogfish. Unidirectional flux chambers were used to examine the kinetics of urea uptake, and to determine the influence of sodium, ouabain, competitive urea analogues, and phloretin on urea uptake across the gut of fed dogfish. Intestinal epithelial preparations from starved and fed dogfish were mounted in Ussing chambers to examine the effect of phloretin on bidirectional solute transport across the intestine. In the unidirectional studies, the maximum uptake rate of urea was found to be 35.3±6.9 μmol.cm(-2).h(-1) and Km was found to be 291.8±9.6 mM in fed fish, and there was a mild inhibition of urea uptake following mucosal addition of competitive agonists. Addition of phloretin, Na-free Ringers and ouabain to the mucosal side of intestinal epithelia also led to a significant reduction in urea uptake in fed fish. In the Ussing chamber studies there was a net influx of urea in fed fish and a small insignificant efflux in starved fish. Addition of phloretin blocked urea uptake in fed fish when added to the mucosal side. Furthermore, phloretin had no effect on ion transport across the intestinal epithelia with the exception of the divalent cations, magnesium and calcium. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats

    NARCIS (Netherlands)

    M. Verburg (Melissa); I.B. Renes (Ingrid); H.P. Meijer; J.A. Taminiau; H.A. Büller (Hans); A.W.C. Einerhand (Sandra); J. Dekker (Jan)

    2000-01-01

    textabstractProliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths

  20. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  1. Vitamin D Receptor Negatively Regulates Bacterial-Stimulated NF-κB Activity in Intestine

    OpenAIRE

    Wu, Shaoping; Liao, Anne P.; Xia, Yinglin; Li, Yan Chun; Li, Jian-Dong; Sartor, R. Balfour; Sun, Jun

    2010-01-01

    Vitamin D receptor (VDR) plays an essential role in gastrointestinal inflammation. Most investigations have focused on the immune response; however, how bacteria regulate VDR and how VDR modulates the nuclear factor (NF)-κB pathway in intestinal epithelial cells remain unexplored. This study investigated the effects of VDR ablation on NF-κB activation in intestinal epithelia and the role of enteric bacteria on VDR expression. We found that VDR−/− mice exhibited a pro-inflammatory bias. After ...

  2. Gross and fine dissection of inner ear sensory epithelia in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Liang, Jin; Burgess, Shawn M

    2009-05-08

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss. Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.

  3. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  4. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  5. Submucosal chromoendoscopy: a technique that highlights epithelia and differentiates histological components, and renders colon polypectomy easier and safer

    Directory of Open Access Journals (Sweden)

    Carlos Dolz-Abadía

    2015-07-01

    Full Text Available Submucosal chromoendoscopy involves the injection of a solution containing a vital stain, usually indigo carmine, into the intestinal wall submucosal layer. This allows to: Better delimit and characterize the various epithelia present (colonic mucosa, adenoma, hyperplastic polyp, serrated polyp, small bowel mucosa; expose and delimit lesion implantation areas; cooperate in the lifting of resectable lesions; ensure section across the submucosal plane; identify intestinal wall structures; render complex polypectomy feasible; and facilitate the identification of perforations. The present paper offers information on the endoscopic technique for submucosal injection, solution preparation and concentration, and on the potential benefits it may provide for polypectomy or endocopic mucosal resection whether en block or piecemeal. This endoscopic technique simultaneously combines a diagnostic and a therapeutic aspect, since lesion lifting in association with better delimited contours may improve not only accuracy but also endoscopic resection safety and feasibility.

  6. Constitutive and inducible expression of SKALP/elafin provides anti-elastase defense in human epithelia.

    Science.gov (United States)

    Pfundt, R; van Ruissen, F; van Vlijmen-Willems, I M; Alkemade, H A; Zeeuwen, P L; Jap, P H; Dijkman, H; Fransen, J; Croes, H; van Erp, P E; Schalkwijk, J

    1996-01-01

    Skin-derived antileukoproteinase (SKALP), also known as elafin, is a serine proteinase inhibitor first discovered in keratinocytes from hyperproliferative human epidermis. In addition to the proteinase inhibiting domain which is directed against polymorphonuclear leukocyte (PMN) derived enzymes such as elastase and proteinase 3, SKALP contains multiple transglutaminase (TGase) substrate domains which enable crosslinking to extracellular and cell envelope proteins. Here we show that SKALP is constitutively expressed in several epithelia that are continuously subjected to inflammatory stimuli, such as the oral cavity and the vagina where it co-localizes with type 1 TGase. All epithelia from sterile body cavities are negative for SKALP. In general, stratified squamous epithelia are positive, whereas pseudostratified epithelia, simple/glandular epithelia and normal epidermis are negative. SKALP was found in fetal tissues of the oral cavity from 17 wk gestation onwards where it continued to be expressed up to adult life. Remarkably, in fetal epidermis SKALP was found from week 28 onwards, but was downregulated to undetectable levels in neonatal skin within three months, suggesting a role during pregnancy in feto-maternal interactions or in the early maturation phase of the epidermis. Immunoelectron microscopy revealed the presence of SKALP in secretory vesicles including the lamellar granules. In culture models for epidermal keratinocytes we found that expression of the endogenous SKALP gene provided protection against cell detachment caused by purified elastase or activated PMNs. Addition of exogenous recombinant SKALP fully protected the keratinocytes against PMN-dependent detachment whereas superoxide dismutase and catalase were only marginally effective. These findings strongly suggest that the constitutive expression of SKALP in squamous epithelia, and the inducible expression in epidermis participate in the control of epithelial integrity, by inhibiting PMN

  7. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  8. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  9. Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Hao

    2015-08-01

    Full Text Available Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC in a human bronchial epithelial cell line (16HBE14o-, and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172, but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS, Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.

  10. Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis

    DEFF Research Database (Denmark)

    Skjødt, Mikkel-Ole; Palarasah, Yaseelan; Rasmussen, Karina Juhl

    2010-01-01

    The lectin complement pathway has important functions in vertebrate host defence and accumulating evidence of primordial complement components trace its emergence to invertebrate phyla. We introduce two putative mannose-binding lectin homologues (CioMBLs) from the urochordate species Ciona intest...... protease in the epithelia cells lining the stomach and intestine. In conclusion we present two urochordate MBLs and identify an associated serine protease, which support the concept of an evolutionary ancient origin of the lectin complement pathway....

  11. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    Science.gov (United States)

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. Copyright © 2015 the American Physiological Society.

  12. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium

    NARCIS (Netherlands)

    Gerbe, F.; van Es, J.H.; Makrini, L.; Brulin, B.; Mellitzer, G.; Robine, S.; Romagnolo, B.; Shroyer, N.F.; Bourgaux, J.F.; Pignodel, C.; Clevers, H.; Jay, P.

    2011-01-01

    The unique morphology of tuft cells was first revealed by electron microscopy analyses in several endoderm-derived epithelia. Here, we explore the relationship of these cells with the other cell types of the intestinal epithelium and describe the first marker signature allowing their unambiguous

  13. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    Science.gov (United States)

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  14. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    DEFF Research Database (Denmark)

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...

  15. Expression of blood group-related glycoconjugates in the junctional and other oral epithelia of rodents

    DEFF Research Database (Denmark)

    Mackenzie, I C; Dabelsteen, Erik; Rittman, G

    1995-01-01

    BACKGROUND: The junctional epithelium (JE) attaches the gingiva to the non-vital tooth surface and has other unusual properties which protect the underlying periodontal tissues. The JE differs from other gingival and oral epithelia in its unusual expression of cytokeratins typical of both...... and provide an alternative marker system for regionally-differing patterns of cell maturation. RESULTS: Markers that are typical of basal cells in other stratifying epithelia were expressed by all cell strata of JE. JE lacked differentiation markers typical of other stratifying oral epithelial but showed...... suprabasal expression of markers typically expressed by simple epithelia and specialized epithelia, such as taste buds. CONCLUSIONS: The phenotype of rodent JE differs from that of other oral epithelia and the pattern of differentiation assessed by its expression of glycoconjugates parallels that for other...

  16. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP technique to study the effect of food compounds. In vitro digested yellow (YOd and white onion extracts (WOd were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.

  17. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Beggs, Megan R; Zamani, Reza

    2015-01-01

    role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestine, while pan-specific Pmca antibodies...... the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In human kidney, a similar pattern of distribution was observed, with highest PMCA4 expression in NCC positive tubules. Electron microscopy demonstrated Pmca4 localization...... in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments, but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing...

  18. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen

    2012-01-01

    Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin...... and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3...... isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression...

  19. Gross and Fine Dissection of Inner Ear Sensory Epithelia in Adult Zebrafish (Danio rerio)

    OpenAIRE

    Liang, Jin; Burgess, Shawn M.

    2009-01-01

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is...

  20. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  1. Autoradiographic investigations on the question of diurnal variations of cell proliferation in the jejunal crypt epithelia of mice

    International Nuclear Information System (INIS)

    Herterich, G.C.

    1982-01-01

    In this work the question was investigated whether the proliferation activity of the crypt epithelia of the small intestine of mice is subject to diurnal variations. The results published so far to settle this question are contradictory. The flow rate at the beginning and end of the S phase was measured as a function of daytime for the jejunal crypt epithelia of mice following a double labelling with 3-H and 14-C-TdR. The quotient of the cell flow rate in and out of the S phase is supposed to be = 1 over the whole day if there are no diurnal variations. The method of measurements of the cell flow rate was chosen above all because the quotient is largely independent of the variation from animal to animal. The experiments provided dues as to the presence of deviations of the quotient of cell flow rate at the end and beginning of the S phase and of the mitotic index from the daily mean value. However, on account of the relatively large statistical variations of the values at the different daytimes it is not possible to state clearly whether the cell proliferation of the jejunal epithelium is subject to diurnal variations. Should there be such variations, then they are not large at any rate. (orig./MG) [de

  2. Microfluidic Organ-on-a-Chip Models of Human IntestineSummary

    Directory of Open Access Journals (Sweden)

    Amir Bein

    Full Text Available Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine. Keywords: Organs-on-Chips, Gut-on-a-Chip, Intestine-on-a-Chip, Microfluidic

  3. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.

    Science.gov (United States)

    Aijima, Reona; Wang, Bing; Takao, Tomoka; Mihara, Hiroshi; Kashio, Makiko; Ohsaki, Yasuyoshi; Zhang, Jing-Qi; Mizuno, Atsuko; Suzuki, Makoto; Yamashita, Yoshio; Masuko, Sadahiko; Goto, Masaaki; Tominaga, Makoto; Kido, Mizuho A

    2015-01-01

    The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa. © FASEB.

  4. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Zhou Bingsheng; Nichols, Joel; Playle, Richard C.; Wood, Chris M.

    2005-01-01

    'Reconstructed' gill epithelia on filter supports were grown in primary culture from dispersed gill cells of freshwater rainbow trout (Oncorhynchus mykiss). This preparation contains both pavement cells and chloride cells, and after 7-9 days in culture, permits exposure of the apical surface to true freshwater while maintaining blood-like culture media on the basolateral surface, and exhibits a stable transepithelial resistance (TER) and transepithelial potential (TEP) under these conditions. These epithelia were used to develop a possible in vitro version of the biotic ligand model (BLM) for silver; the in vivo BLM uses short-term gill binding of the metal to predict acute silver toxicity as a function of freshwater chemistry. Radio-labeled silver ( 110m Ag as AgNO 3 ) was placed on the apical side (freshwater), and the appearance of 110m Ag in the epithelia (binding) and in the basolateral media (flux) over 3 h were monitored. Silver binding (greater than the approximate range 0-100 μg l -1 ) and silver flux were concentration-dependent with a 50% saturation point (apparent K d ) value of about 10 μg l -1 or 10 -7 M, very close to the 96-h LC50 in vivo in the same water chemistry. There were no adverse effects of silver on TER, TEP, or Na + , K + -ATPase activity, though the latter declined over longer exposures, as in vivo. Silver flux over 3 h was small ( + and dissolved organic carbon (humic acid) concentrations, increased by elevations in freshwater Cl - and reductions in pH, and insensitive to elevations in Ca 2+ . With the exception of the pH response, these effects were qualitatively and quantitatively similar to in vivo BLM responses. The results suggest that an in vitro BLM approach may provide a simple and cost-effective way for evaluating the protective effects of site-specific waters

  5. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.

    Science.gov (United States)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per; Skjødt, Karsten; Alexander, R Todd; Dimke, Henrik

    2017-09-01

    Significant alterations in maternal calcium (Ca 2+ ) and magnesium (Mg 2+ ) balance occur during lactation. Ca 2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca 2+ transport. Mg 2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca 2+ and Mg 2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca 2+ , but not Mg 2+ , rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca 2+ and Mg 2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D 28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca 2+ and Mg 2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca 2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca 2+ uptake by the kidney. Copyright © 2017 the American Physiological Society.

  6. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Sateesh Krishnamurthy

    2012-01-01

    Full Text Available The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE or human airway epithelia (HAE grown at the air–liquid interface (ALI, the delivery of a Dicer-substrate small-interfering RNA (DsiRNA duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF, a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi responses.

  7. Precision cut intestinal slices are an appropriate ex vivo model to study NSAID-induced intestinal toxicity in rats

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; van der Bij, Hendrik A.; Groothuis, Geny M. M.

    2014-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used therapeutic agents, however, they are associated with a high prevalence of intestinal side effects. In this investigation, rat precision cut intestinal slices (PCIS) were evaluated as an ex vivo model to study NSAID-induced intestinal

  8. Na+ -K+ -2Cl- Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia.

    Science.gov (United States)

    Delpire, Eric; Gagnon, Kenneth B

    2018-03-25

    Two genes encode the Na + -K + -2Cl - cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na + , 1K + , and 2Cl - across the plasma membrane of cells. Na + -K + -2Cl - cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na + /K + pump. In many cells, NKCC1 accumulates Cl - above its electrochemical potential equilibrium, thereby facilitating Cl - channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca 2+ channels, leading to Ca 2+ influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl - conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl - . In combination with the Na + /K + pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl - -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K + -driven fluid secretion in inner ear, and possibly in Na + -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na + /K + pump participates in reabsorbing 30% of the glomerular-filtered Na + . Overall, many critical physiological functions are maintained by the activity of the two Na + -K + -2Cl - cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  9. IL-33 activates tumor stroma to promote intestinal polyposis.

    Science.gov (United States)

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  10. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    Science.gov (United States)

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies

  11. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Nazanin Navabi

    Full Text Available Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12 and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6 origins using Ussing chamber methodology and (immunohistology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces

  12. Increases in guanylin and uroguanylin in a mouse model of osmotic diarrhea are guanylate cyclase C-independent.

    Science.gov (United States)

    Steinbrecher, K A; Mann, E A; Giannella, R A; Cohen, M B

    2001-11-01

    Guanylin and uroguanylin are peptide hormones that are homologous to the diarrhea-causing Escherichia coli enterotoxins. These secretagogues are released from the intestinal epithelia into the intestinal lumen and systemic circulation and bind to the receptor guanylate cyclase C (GC-C). We hypothesized that a hypertonic diet would result in osmotic diarrhea and cause a compensatory down-regulation of guanylin/uroguanylin. Gut-to-carcass weights were used to measure fluid accumulation in the intestine. Northern and/or Western analysis was used to determine the levels of guanylin, uroguanylin, and GC-C in mice with osmotic diarrhea. Wild-type mice fed a polyethylene glycol or lactose-based diet developed weight loss, diarrhea, and an increased gut-to-carcass ratio. Unexpectedly, 2 days on either diet resulted in increased guanylin/uroguanylin RNA and prohormone throughout the intestine, elevated uroguanylin RNA, and prohormone levels in the kidney and increased levels of circulating prouroguanylin. GC-C-deficient mice given the lactose diet reacted with higher gut-to-carcass ratios. Although they did not develop diarrhea, GC-C-sufficient and -deficient mice on the lactose diet responded with elevated levels of guanylin and uroguanylin RNA and protein. A polyethylene glycol drinking water solution resulted in diarrhea, higher gut-to-carcass ratios, and induction of guanylin and uroguanylin in both GC-C heterozygous and null animals. We conclude that this model of osmotic diarrhea results in a GC-C-independent increase in intestinal fluid accumulation, in levels of these peptide ligands in the epithelia of the intestine, and in prouroguanylin in the kidney and blood.

  13. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  14. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    Science.gov (United States)

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  15. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins

    OpenAIRE

    1989-01-01

    M cells of intestinal epithelia overlying lymphoid follicles endocytose luminal macromolecules and microorganisms and deliver them to underlying lymphoid tissue. The effect of luminal secretory IgA antibodies on adherence and transepithelial transport of antigens and microorganisms by M cells is unknown. We have studied the interaction of monoclonal IgA antibodies directed against specific enteric viruses, or the hapten trinitrophenyl (TNP), with M cells. To produce monospecific IgA antibodie...

  16. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  17. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  18. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    and immunohistochemical studies. In cortical collecting ducts, BK channels were exclusively located in principal cells while no channels could be found in intercalated cells. The abundant and distinct distribution in kidney epithelia talks in favor for BK channels being important contributors in maintaining salt......Big conductance Ca2+ activated K+ channels (BK channels) is an abundant channel present in almost all kind of tissue. The accurate quantity and especially the precise distribution of this channel in kidney epithelia are, however, still debated. The aim of the present study has therefore been...... to examine the presence of BK channels in kidney epithelia and determine the actual number and distribution of these channels. For this purpose, a selective peptidyl ligand for BK channels called iberiotoxin or the radiolabeled double mutant analog 125I-IbTX-D19Y/Y36F has been employed. The presence of BK...

  19. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  20. High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia

    Directory of Open Access Journals (Sweden)

    Fanny A. Pelissier Vatter

    2018-04-01

    Full Text Available Summary: Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. : Vatter et al. find that single-cell mass cytometry of human mammary epithelial cells from 57 women, from 16 to 91 years old, depicts an in-depth phenotyping of aging mammary epithelia. Subpopulations of altered luminal and progenitor cells that accumulate with age may be at increased risk for oncogenic transformation. Keywords: human mammary epithelia, aging, mass cytometry, single-cell analysis, heterogeneity, breast cancer

  1. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  2. A Revised Model for Dosimetry in the Human Small Intestine

    International Nuclear Information System (INIS)

    John Poston; Bhuiyan, Nasir U.; Redd, R. Alex; Neil Parham; Jennifer Watson

    2005-01-01

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents

  3. A Revised Model for Dosimetry in the Human Small Intestine

    Energy Technology Data Exchange (ETDEWEB)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  4. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  5. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  6. Multi-walled carbon nanotubes: biodegradation by gastric agents in vitro and effect on murine intestinal system

    Science.gov (United States)

    Masyutin, A.; Erokhina, M.; Sychevskaya, K.; Gusev, A.; Vasyukova, I.; Smirnova, E.; Onishchenko, G.

    2015-11-01

    One of the main questions limiting application of fibrous carbon nanomaterials (CNM) in medicine and food industry concerns presumptive degradation of CNM in living organisms. In this study, we have investigated biodegradation of multi-walled carbon nanotubes (MWCNTs) by gastric agents in vitro and influence of ingested MWCNTs on murine intestine. Using scanning, conventional transmission and analytical electron microscopy, we demonstrated that industrial MWCNTs treated in vitro by 0.1 M hydrochloric acid (pH=1) and gastric juice (pH=2-3) isolated from murine stomach, are subjected to incomplete degradation. After 30 days of oral administration to experimental mice, we did find MWCNTs in the cells of small intestine, and it may indicate that agglomerates of MWCNTs do not penetrate into colon epithelia and do not accumulate in enterocytes. However, we observed local areas of necrotic damages of intestinal villi. It seems likely, therefore, that MWCNTs end up leaving gastrointestinal tract by excretion with the feces. Our results suggest that MWCNTs do not undergo complete degradation in gastrointestinal tract of mice, and passing through non-degraded particles may negatively affect intestinal system.

  7. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  8. Models of antimicrobial pressure on intestinal bacteria of the treated host populations.

    Science.gov (United States)

    Volkova, V V; Cazer, C L; Gröhn, Y T

    2017-07-01

    Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.

  9. [Intestinal lengthening techniques: an experimental model in dogs].

    Science.gov (United States)

    Garibay González, Francisco; Díaz Martínez, Daniel Alberto; Valencia Flores, Alejandro; González Hernández, Miguel Angel

    2005-01-01

    To compare two intestinal lengthening procedures in an experimental dog model. Intestinal lengthening is one of the methods for gastrointestinal reconstruction used for treatment of short bowel syndrome. The modification to the Bianchi's technique is an alternative. The modified technique decreases the number of anastomoses to a single one, thus reducing the risk of leaks and strictures. To our knowledge there is not any clinical or experimental report that studied both techniques, so we realized the present report. Twelve creole dogs were operated with the Bianchi technique for intestinal lengthening (group A) and other 12 creole dogs from the same race and weight were operated by the modified technique (Group B). Both groups were compared in relation to operating time, difficulties in technique, cost, intestinal lengthening and anastomoses diameter. There were no statistical difference in the anastomoses diameter (A = 9.0 mm vs. B = 8.5 mm, p = 0.3846). Operating time (142 min vs. 63 min) cost and technique difficulties were lower in group B (p anastomoses (of Group B) and intestinal segments had good blood supply and were patent along their full length. Bianchi technique and the modified technique offer two good reliable alternatives for the treatment of short bowel syndrome. The modified technique improved operating time, cost and technical issues.

  10. Plasticity within stem cell hierarchies in mammalian epithelia.

    Science.gov (United States)

    Tetteh, Paul W; Farin, Henner F; Clevers, Hans

    2015-02-01

    Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur unidirectionally, with the arrows 'pointing away' from the stem cell. Recent studies, all based on genetic lineage tracing, describe various strategies employed by epithelial stem cell hierarchies to replace damaged or lost cells. While transdifferentiation from one tissue type into another ('metaplasia') appears to be generally forbidden in nonpathological contexts, plasticity within an individual tissue stem cell hierarchy may be much more common than previously appreciated. In this review, we discuss recent examples of such plasticity in selected mammalian epithelia, highlighting the different modes of regeneration and their implications for our understanding of cellular hierarchy and tissue self-renewal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Expression of Trans- and Paracellular Calcium and Magnesium Transport Proteins in Renal and Intestinal Epithelia During Lactation

    DEFF Research Database (Denmark)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per

    2017-01-01

    Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk...

  12. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  13. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    Science.gov (United States)

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  14. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  15. Dosimetry of paranasal sinus and mastoid epithelia in radium-exposed humans

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1981-01-01

    Dose calculations for 228 Ra and 226 Ra are presented for the sinus and mastoid epithelia and lead to the conclusion that the isotopes are of comparable dosimetric significance for the production of carcinomas in patients exposed to comparable levels

  16. Histamine H1 receptors are expressed in mouse and frog semicircular canal sensory epithelia.

    Science.gov (United States)

    Botta, Laura; Tritto, Simona; Perin, Paola; Laforenza, Umberto; Gastaldi, Giulia; Zampini, Valeria; Zucca, Gianpiero; Valli, Stefano; Masetto, Sergio; Valli, Paolo

    2008-03-05

    Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. Their site and mechanism of action, however, are still poorly understood. To increase our knowledge of the histaminergic system in the vestibular organs, we have investigated the expression of H1 and H3 histamine receptors in the frog and mouse semicircular canal sensory epithelia. Analysis was performed by mRNA reverse transcriptase-PCR, immunoblotting and immunocytochemistry experiments. Our data show that both frog and mouse vestibular epithelia express H1 receptors. Conversely no clear evidence for H3 receptors expression was found.

  17. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    NARCIS (Netherlands)

    Janssen, Sarah F.; Gorgels, Theo G. M. F.; Bossers, Koen; ten Brink, Jacoline B.; Essing, Anke H. W.; Nagtegaal, Martijn; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2012-01-01

    Purpose: The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular

  18. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.

    Science.gov (United States)

    Lammers, Karen M; Lu, Ruliang; Brownley, Julie; Lu, Bao; Gerard, Craig; Thomas, Karen; Rallabhandi, Prasad; Shea-Donohue, Terez; Tamiz, Amir; Alkan, Sefik; Netzel-Arnett, Sarah; Antalis, Toni; Vogel, Stefanie N; Fasano, Alessio

    2008-07-01

    Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.

  19. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    Science.gov (United States)

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  20. Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia

    DEFF Research Database (Denmark)

    Geyti, Christine Stride; Odgaard, Elvin V. P.; Overgaard, Morten Thaarup

    2008-01-01

    Renal epithelia can be provoked mechanically to release nucleotides, which subsequently increases the intracellular Ca(2+) concentration [Ca(2+)](i) through activation of purinergic (P2) receptors. Cultured cells often show spontaneous [Ca(2+)](i) oscillations, a feature suggested to involve nucl...

  1. Ccdc85C, a causative protein for hydrocephalus and subcortical heterotopia, is expressed in the systemic epithelia with proliferative activity in rats.

    Science.gov (United States)

    Tanaka, Natsuki; Izawa, Takeshi; Takenaka, Shigeo; Yamate, Jyoji; Kuwamura, Mitsuru

    2015-07-01

    Coiled-coil domain containing 85c (Ccdc85c) is a causative gene for spontaneous mutant mouse with non-obstructive hydrocephalus and subcortical heterotopia. Detailed functions of Ccdc85C protein have not been clarified. To reveal roles of Ccdc85C, we examined the distribution and expression pattern of Ccdc85C in the systemic developing organs in rats. Ccdc85C was expressed in various simple epithelia but not stratified epithelia. In the various epithelia, Ccdc85C was localized at cell-cell junctions and its expression was strong at apical junctions. Furthermore, intense expression was seen at developing period and gradually decreased with advancing development. Distribution of Ccdc85C coincides with that of proliferating epithelial cells. These results suggest that Ccdc85C plays an important role in the proliferative property of simple epithelia.

  2. Biorelevant media resistant co-culture model mimicking permeability of human intestine.

    Science.gov (United States)

    Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud

    2015-03-15

    Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. Copyright © 2015. Published by Elsevier B.V.

  3. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine

    Directory of Open Access Journals (Sweden)

    Rehman Ateequr

    2012-03-01

    Full Text Available Abstract Background Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia and the intestinal microbiota were analyzed. Results Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli. Conclusions Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable

  4. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research.

    Science.gov (United States)

    Li, Ming; de Graaf, Inge A M; Groothuis, Geny M M

    2016-01-01

    The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, precision-cut intestinal slices (PCIS) are discussed and highlighted as model for ADME-tox studies. This review provides an overview of the applications and an update of the most recent research on PCIS as an ex vivo model to study the transport, metabolism and toxicology of drugs and other xenobiotics. The unique features of PCIS and the differences with other models as well as the translational aspects are also discussed. PCIS are a simple, fast, and reliable ex vivo model for drug ADME-tox research. Therefore, PCIS are expected to become an indispensable link in the in vitro-ex vivo-in vivo extrapolation, and a bridge in translation of animal data to the human situation. In the future, this model may be helpful to study the effects of interorgan interactions, intestinal bacteria, excipients and drug formulations on the ADME-tox properties of drugs. The optimization of culture medium and the development of a (cryo)preservation technique require more research.

  5. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  6. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  7. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  8. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  9. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Geurden, Inge; Jutfelt, Fredrik; Olsen, Rolf-Erik; Sundell, Kristina S

    2009-04-01

    Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.

  10. Protective effect of lactobacillus acidophilus and isomaltooligosaccharide on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2008-01-01

    Objective: To investigate the protective effect of synbiotics combined lactobacillus acidophilus and iso-malto-oligosaccharide (IMO) on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea(AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 5 days. The synbiotics was orally administered to the AAD rats daily at three different strengths for 7 days. The intestinal flora and intestinal mucus SIgA levels were determined on d6, d9 and d13. The histopathological changes of ileal mucosa were studied on d13. Results: In the prepared AAD model rats (on d6) there were lower intestinal mucus SIgA levels and intestinal flora disorders were demonstrated. The intestinal floras of the rats administering synbiotics were readjusted to the similar pattern of healthy rats with bacterial translocation corrected on d13 and the levels of SIgA were not significantly different from of the control (P>0.05). The histopathological picture was basically normal in the treated models on d13. Conclusion: The synbiotics combined lactobacillus acidophilus and isomaltooligosaccharide possessed good protective effect on the intestinal mucosal barrier in lincomycin induced rat models of AAD. (authors)

  11. Electrocautery effect on intestinal vascularisation in a murine model.

    Science.gov (United States)

    Tremblay, Jean-François; Sideris, Lucas; Leblond, François A; Trépanier, Jean-Sébastien; Badrudin, David; Drolet, Pierre; Mitchell, Andrew; Dubé, Pierre

    2016-09-01

    The use of electrocautery devices is associated with complications such as perforation or fistulisation when used near intestinal structures. This is likely due to its effect on vascularisation of the bowel wall. To test this hypothesis we established a murine model to quantify the effect of electrocautery injury on the intestinal microvascularisation. Sprague-Dawley rats were subjected to five electrocautery injuries on the small bowel in coagulation mode (30 W intensity) and in cut mode (40 W, 80 W and 200 W intensities) for durations of 1, 2 and 5 s. 5 mg/kg of fluorescein was injected intravenously, the injured bowel segments harvested and the rat sacrificed. The segments were analysed to measure the fluorescence of injured bowel compared to adjacent unharmed tissue. A significant decrease in bowel wall microvascularisation occurred with increasing intensity (coag 30 W/cut 40 W versus cut 200 W 1 s: p electrocautery injury (cut 40 W 1/2 s versus 5 s: p electrocautery injury, a significantly greater microvascularisation decrease was observed in jejunum compared to ileum (p electrocautery use. Unsurprisingly, the decrease in microvascularisation is greater with higher intensity and duration of electrocautery and is associated with more perforations in the experimental model. The jejunum seems more vulnerable to electrocautery injury than the ileum. These observations support caution when using electrocautery devices near intestinal structures.

  12. Development of Yam Dioscorin-Loaded Nanoparticles for Paracellular Transport Across Human Intestinal Caco-2 Cell Monolayers.

    Science.gov (United States)

    Hsieh, Hung-Ling; Lee, Chia-Hung; Lin, Kuo-Chih

    2018-02-07

    Dioscorins, the major storage proteins of yam tubers, exert immunomodulatory activities. To improve oral bioavailability of dioscorins in the intestine, recombinant dioscorin (rDioscorin) was coated with N,N,N-trimethyl chitosan (TMC) and tripolyphosphate (TPP), resulting in the formation of TMC-rDio-TPP nanoparticles (NPs). The loading capacity and entrapment efficiency of rDioscorin in the NPs were 26 ± 0.7% and 61 ± 1.4%, respectively. The NPs demonstrated a substantial release profile in the pH environment of the jejunum. The rDioscorin released from the NPs stimulated proliferation and phagocytosis of the macrophage RAW264.7 and activated the gene expression of IL-1β and IL-6. Incubation of the NPs in the Caco-2 cell monolayer led to a 5.2-fold increase of P app compared with rDioscorin alone, suggesting that rDioscorin, with the assistance of TMC, can be promptly transported across the intestinal epithelia. These results demonstrate that the TMC-rDio-TPP NPs can be utilized for elucidating the immunopharmacological effects of dioscorins through oral delivery.

  13. The small intestine and irritable bowel syndrome (IBS): a batch process model.

    Science.gov (United States)

    Dobson, Brian C

    2008-11-01

    Faults in a batch process model of the small intestine create the symptoms of all types of irritable bowel syndrome. The model has three sequential processing sections corresponding to the natural divisions of the intestine. It is governed by a brain controller that is divided into four sub-controllers, each with a unique neurotransmitter. Each section has a sub-controller to manage transport. Sensors in the walls of the intestine provide input and output goes to the muscles lining the walls of the intestine. The output controls the speed of the food soup, moves it in both directions, mixes it, controls absorption, and transfers it to the next section at the correct speed (slow). The fourth sub-controller manages the addition of chemicals. It obtains input from the first section of the process via the signalling hormone Cholecystokinin and sends output to the muscles that empty the gall bladder and pancreas. The correct amounts of bile salts and enzymes are then added to the first section. The sub-controllers produce output only when input is received. When output is missing the enteric nervous system applies a default condition. This default condition normally happens when no food is in the intestine. If food is in the intestine and a transport sub-controller fails to provide output then the default condition moves the food soup to the end of that section. The movement is in one direction only (forward), at a speed dependent on the amount and type of fibre present. Cereal, bean and vegetable fibre causes high speeds. This default high speed transport causes irritable bowel syndrome. A barrier is created when a section moving fast at the default speed, precedes a section controlled by a transport sub-controller. Then the sub-controller constricts the intestine to stop the fast flow. The barrier causes constipation, cramping, and bloating. Diarrhoea results when the section terminating the process moves at the fast default speed. Two problems can occur to prevent

  14. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing

    OpenAIRE

    Taylor, Ruth R.; Jagger, Daniel J.; Saeed, Shakeel R.; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R.; Lloyd, Simon K.; Forge, Andrew

    2015-01-01

    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We ...

  15. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model.

    Science.gov (United States)

    Zhang, Yu-Sheng; Li, Ye; Wang, Yan; Sun, Shi-Yue; Jiang, Tao; Li, Cong; Cui, Shu-Xiang; Qu, Xian-Jun

    2016-05-01

    Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model. Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.o. gavage daily for 12 consecutive weeks. Mice were killed with ether, and blood samples were collected to assess the concentrations of IL-6 and PGE2. Total intestines were removed, and the number of polyps was examined. Tissue samples of intestinal polyps were subjected to the assays of histopathology, immunohistochemical analysis and Western blotting analysis. Apc (Min/+) mice fed with naringin developed less and smaller polyps in total intestines. Naringin prevented intestinal tumorigenesis without adverse effects. Histopathologic analysis revealed the reduction of dysplastic cells and dysplasia in the adenomatous polyps. The treatments' effects might arise from its anti-proliferation, induction of apoptosis and modulation of GSK-3β and APC/β-catenin signaling pathways. Naringin also exerted its effects on tumorigenesis through anti-chronic inflammation. Naringin prevented intestinal tumorigenesis likely through a collection of activities including anti-proliferation, induction of apoptosis, modulation of GSK-3β and APC/β-catenin pathways and anti-inflammation. Naringin is a potential chemopreventive agent for reducing the risk of colonic cancers.

  16. Intestine-Specific Mttp Deletion Decreases Mortality and Prevents Sepsis-Induced Intestinal Injury in a Murine Model of Pseudomonas aeruginosa Pneumonia

    Science.gov (United States)

    Dominguez, Jessica A.; Xie, Yan; Dunne, W. Michael; Yoseph, Benyam P.; Burd, Eileen M.; Coopersmith, Craig M.; Davidson, Nicholas O.

    2012-01-01

    Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by

  17. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia.

    Directory of Open Access Journals (Sweden)

    Jessica A Dominguez

    Full Text Available The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO, which exhibit a block in chylomicron assembly together with lipid malabsorption.Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0% dying compared to 5/17 (29% control mice (p<0.05. This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice.These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and

  18. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    Directory of Open Access Journals (Sweden)

    Christensen Jon

    2012-06-01

    Full Text Available Abstract Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models

  19. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    Science.gov (United States)

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  20. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  1. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    Science.gov (United States)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  2. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  3. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yuxia Xiong

    2018-02-01

    Full Text Available Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP. Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg or normal saline (control immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET, interleukin 1β (IL-1β, tumor necrosis factor α (TNF-α, nitric oxide (NO, myeloperoxidase (MPO, capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3, apoptosis-associated speck-like protein containing a CARD domain (ASC, casepase-1, secretary immunoglobulin A (SIgA, regulatory T cells (Tregs, and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while

  4. Postmitotic basal cells in squamous cell epithelia are identified with Dolichos biflorus agglutinin - functional consequences

    Czech Academy of Sciences Publication Activity Database

    Hrdličková-Celá, E.; Plzák, J.; Holíková, Z.; Dvořánková, B.; Smetana, Karel

    2001-01-01

    Roč. 109, č. 10 (2001), s. 714-720 ISSN 0903-4641 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : squamous cell epithelia * carcinoma * lectin Subject RIV: CE - Biochemistry Impact factor: 1.924, year: 2001

  5. Feeding manipulation elicits different proliferative responses in the gastrointestinal tract of suckling and weanling rats

    Directory of Open Access Journals (Sweden)

    Palanch A.C.

    1998-01-01

    Full Text Available Food deprivation has been found to stimulate cell proliferation in the gastric mucosa of suckling rats, whereas the weanling period has been reported to be unresponsive in terms of proliferative activity. In the present study we analyze regional differences in the effect of milk or food deprivation on cell proliferation of the epithelia of the esophagus and of five segments of small intestine in suckling, weanling and newly weaned Wistar rats of both sexes. DNA synthesis was determined using tritiated thymidine to obtain labeling indices (LI; crypt depth and villus height were also determined. Milk deprivation decreased LI by 50% in the esophagus (from 15 to 8.35% and small intestine (from 40 to 20% of 14-day-old rats. In 18-day-old rats, milk and food deprivation decreased LI in the esophagus (from 13 to 5% and in the distal segments of the small intestine (from 36-40 to 24-32%. In contrast, the LI of the epithelia of the esophagus (5% and of all small intestine segments (around 30% of 22-day-old rats were not modified by food deprivation. Crypt depth did not change after treatment (80 to 120 µm in 14- and 22-day-old rats, respectively. Villus height decreased in some small intestine segments of unfed 14- (from 400 to 300 µm and 18-day-old rats (from 480 to 360 µm. The results show that, contrary to the stomach response, milk deprivation inhibited cell proliferation in the esophagus and small intestine of suckling rats, demonstrating the regional variability of each segment of the gastrointestinal tract in suckling rats. In newly weaned rats, food deprivation did not alter the proliferation of these epithelia, similarly to the stomach, indicating that weanling is a period marked by the insensitivity of gastrointestinal epithelia to dietary alterations

  6. Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model.

    Directory of Open Access Journals (Sweden)

    Marianne Sødring

    Full Text Available Red and processed meats are considered risk factors for colorectal cancer (CRC; however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat, and hemin in combination with nitrite (a model of processed meat on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.

  7. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Science.gov (United States)

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission.

    Directory of Open Access Journals (Sweden)

    Minh H Dinh

    2015-03-01

    Full Text Available To gain insight into female-to-male HIV sexual transmission and how male circumcision protects against this mode of transmission, we visualized HIV-1 interactions with foreskin and penile tissues in ex vivo tissue culture and in vivo rhesus macaque models utilizing epifluorescent microscopy. 12 foreskin and 14 cadaveric penile specimens were cultured with R5-tropic photoactivatable (PA-GFP HIV-1 for 4 or 24 hours. Tissue cryosections were immunofluorescently imaged for epithelial and immune cell markers. Images were analyzed for total virions, proportion of penetrators, depth of virion penetration, as well as immune cell counts and depths in the tissue. We visualized individual PA virions breaching penile epithelial surfaces in the explant and macaque model. Using kernel density estimated probabilities of localizing a virion or immune cell at certain tissue depths revealed that interactions between virions and cells were more likely to occur in the inner foreskin or glans penis (from local or cadaveric donors, respectively. Using statistical models to account for repeated measures and zero-inflated datasets, we found no difference in total virions visualized at 4 hours between inner and outer foreskins from local donors. At 24 hours, there were more virions in inner as compared to outer foreskin (0.0495 +/- 0.0154 and 0.0171 +/- 0.0038 virions/image, p = 0.001. In the cadaveric specimens, we observed more virions in inner foreskin (0.0507 +/- 0.0079 virions/image than glans tissue (0.0167 +/- 0.0033 virions/image, p<0.001, but a greater proportion was seen penetrating uncircumcised glans tissue (0.0458 +/- 0.0188 vs. 0.0151 +/- 0.0100 virions/image, p = 0.099 and to significantly greater mean depths (29.162 +/- 3.908 vs. 12.466 +/- 2.985 μm. Our in vivo macaque model confirmed that virions can breach penile squamous epithelia in a living model. In summary, these results suggest that the inner foreskin and glans epithelia may be important sites

  9. Human organoids: a model system for intestinal diseases

    OpenAIRE

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the diseased intestine to take up certain food. A cell layer, the epithelium, covers the intestine, and harbors the main functions of the intestine: uptake, digestion of food, and a barrier against unwanted...

  10. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models

    NARCIS (Netherlands)

    Islam, M.A.; Punt, A.; Spenkelink, A.; Murk, A.J.; Leeuwen, F.X.R.; Rietjens, I.

    2014-01-01

    ScopeThis study compares conversion of three major soy isoflavone glucosides and their aglycones in a series of in vitro intestinal models. Methods and resultsIn an in vitro human digestion model isoflavone glucosides were not deconjugated, whereas studies in a Caco-2 transwell model confirmed that

  11. Protective effect of NSA on intestinal epithelial cells in a necroptosis model.

    Science.gov (United States)

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-10-17

    This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF- α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF- α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF- α and Z-VAD-fmk. NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.

  12. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    Science.gov (United States)

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  13. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing.

    Science.gov (United States)

    Taylor, Ruth R; Jagger, Daniel J; Saeed, Shakeel R; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R; Lloyd, Simon K; Forge, Andrew

    2015-06-01

    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Development and application of a low volume, increased throughput in vitro model simulating the passage through small intestine

    DEFF Research Database (Denmark)

    Cieplak, Tomasz Maciej

    are unevenly distributed along the GIT, ranging from 101-103 cells/g in the stomach, through 103-108 cells/g in the small intestine and up to 1012 cells/g in the colon. In the last decade, numerous studies have been conducted focussing on the faecal microbiota composition and its impact on the host health...... conditions (fed, fasted) and the presence of small intestine microbiota influence intestine persistence of probiotic bacteria. In the same manuscript, we described for the first time the fully functional in vitro model prototype called “The Smallest Intestine (TSI)”. The model proved to be a cost...... and naked cells in the small intestine was investigated in both fed and fasted conditions in the TSI model. Results indicated a protective effect of xanthan/gellan gum for L. plantarum and decreased viability of coated A. muciniphila due to the desiccation effect of coating, which probably caused leakage...

  15. BMP4 signaling is involved in the generation of inner ear sensory epithelia

    Directory of Open Access Journals (Sweden)

    Wang Yucheng

    2005-08-01

    Full Text Available Abstract Background The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple gene knockout experiments. Results Here we use a chicken otocyst culture system to perform quantitative studies on the development of inner ear cell types and show that hair cell and supporting cell generation is remarkably reduced when BMP signaling is blocked, either with its antagonist noggin or by using soluble BMP receptors. Conversely, we observed an increase in the number of hair cells when cultured otocysts were treated with exogenous BMP4. BMP4 treatment additionally prompted down-regulation of Pax-2 protein in proliferating sensory epithelial progenitors, leading to reduced progenitor cell proliferation. Conclusion Our results implicate BMP4 in two events during chicken inner ear sensory epithelium formation: first, in inducing the switch from proliferative sensory epithelium progenitors to differentiating epithelial cells and secondly, in promoting the differentiation of hair cells within the developing sensory epithelia.

  16. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer.

    Science.gov (United States)

    Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei

    2018-02-21

    Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.

  17. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  18. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  19. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  20. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

    NARCIS (Netherlands)

    Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; Zande, M. van der; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    Intestinal translocation is a key factor for determining bioavailability of nanoparticles (NPs) after oral uptake. Therefore, we evaluated three in vitro intestinal cell models of increasing complexity which might affect the translocation of NPs: a mono-culture (Caco-2 cells), a co-culture with

  1. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  2. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia.

    Science.gov (United States)

    Almansour, Khaled; Taverner, Alistair; Eggleston, Ian M; Mrsny, Randall J

    2018-06-10

    Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS 19 ) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH 2 ) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS 19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of

  3. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    Science.gov (United States)

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  4. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.

    Science.gov (United States)

    Yüksek, Yunus Nadi; Kologlu, Murat; Daglar, Gül; Doganay, Mutlu; Dolapci, Istar; Bilgihan, Ayse; Dolapçi, Mete; Kama, Nuri Aydin

    2004-01-01

    The aim of this study was to evaluate local effects and degree of bacterial translocation related with intestinal ischemia-reperfusion injury in a rat obstructive jaundice model. Thirty adult Sprague-Dawley rats (200-250 g) were divided into three groups; including Group 1 (jaundice group), Group 2 (jaundice-ischemia group) and Group 3 (ischemia group). All rats had 2 laparotomies. After experimental interventions, tissue samples for translocation; liver and ileum samples for histopathological examination, 25 cm of small intestine for mucosal myeloperoxidase and malondialdehyde levels and blood samples for biochemical analysis were obtained. Jaundiced rats had increased liver enzyme levels and total and direct bilirubin levels (p<0.05). Intestinal mucosal myeloperoxidase and malondialdehyde levels were found to be high in intestinal ischemia-reperfusion groups (p<0.05). Intestinal mucosal damage was more severe in rats with intestinal ischemia-reperfusion after bile duct ligation (p<0.05). Degree of bacterial translocation was also found to be significantly high in these rats (p<0.05). Intestinal mucosa is disturbed more severely in obstructive jaundice with the development of ischemia and reperfusion. Development of intestinal ischemia-reperfusion in obstructive jaundice increases bacterial translocation.

  5. Generation of BAC Transgenic Epithelial Organoids

    NARCIS (Netherlands)

    Schwank, G.; Andersson-Rolf, A.; Koo, B.K.; Sasaki, N.; Clevers, H.

    2013-01-01

    Under previously developed culture conditions, mouse and human intestinal epithelia can be cultured and expanded over long periods. These so-called organoids recapitulate the three-dimensional architecture of the gut epithelium, and consist of all major intestinal cell types. One key advantage of

  6. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  7. Research on measurement and modeling of the gastro intestine's frictional characteristics

    International Nuclear Information System (INIS)

    Wang, Kun Dong; Yan, Guo Zheng

    2009-01-01

    The frictional characteristics of an intestine are required basically for the development of a noninvasive endoscope for the human intestine. The frictional force is tested by measuring the current of the motor hauling the frictional coupons at an even speed. A multifunction data acquisition device with model NI-6008 USB is used and the data process is performed on the Labview software. Two kinds of materials with aluminum and copper are used. The surfaces are designed as triangle, rectangular, cylindrical and plane forms. The tested results indicate that the frictional resistance force includes the nominal frictional force and the visco-adhesive force. When the surface contour changes from the triangle to the rectangular, to the cylindrical and finally to the plane, the nominal frictional coefficients will decrease and the visco-adhesive force will increase. The nominal frictional force is related to the elastic restoring force, the real frictional force and the contact angle. The cohesive force is determined by the contact area and the contact angle. This research will provide some preliminary references to the design and the parameter selection of locomotion devices in the human gastro-intestine

  8. Intestinal Stem Cell Niche Insights Gathered from Both In Vivo and Novel In Vitro Models

    Directory of Open Access Journals (Sweden)

    Nikolce Gjorevski

    2017-01-01

    Full Text Available Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.

  9. Effect of Da-Cheng-Qi Decoction on Pancreatitis-Associated Intestinal Dysmotility in Patients and in Rat Models

    Directory of Open Access Journals (Sweden)

    Jianlei Zhao

    2015-01-01

    Full Text Available The impairment of intestinal motility and related infectious complications are the predominant clinical phenomenon in patients with severe acute pancreatitis (SAP. We aimed to investigate the effects of Da-Cheng-Qi decoction (DCQD on the gastrointestinal injury in SAP patients and the potential mechanism involved in rats. DCQD was enema administered to 70 patients for 7 days in West China Hospital. Mortality and organ failure during admission were observed and blood samples for laboratory analysis were collected. We also experimentally examined plasma inflammatory cytokines in rat serum and carried the morphometric studies of the gut. Intestinal propulsion index and serum and tissue vasoactive intestinal peptide (VIP were also detected. Though DCQD did not affect the overall incidence of organ failure, it shortened the average time of paralytic intestinal obstruction and decreased the morbidity of infectious complications in patients with SAP. Compared with untreated rats, the DCQD lowered the levels of proinflammatory cytokine and decreased the mean pathological intestinal lesion scores. The VIP level in intestinal tissue or serum in DCQD group was obviously lowered and intestinal propulsion index was significantly improved. In conclusion, DCQD has good effect on pancreatitis-associated intestinal dysmotility in patients and in rat models.

  10. Pathogenicity of Shigella in chickens.

    Science.gov (United States)

    Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.

  11. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara

    Directory of Open Access Journals (Sweden)

    Ana F. Vigário

    2014-06-01

    Full Text Available The 2,4-dichlorophenoxyacetic acid, usually named 2,4-D is one of the most widely used herbicides in the world. Acute toxicity of 2,4-D herbicide was investigated through its effects on guppies (Poecilia vivipara Bloch et Schneider 1801. Fish were exposed to the herbicide at concentrations of 10, 20 and 40µl per liter of water for 24 hours to determine its effects on gills and liver epithelia. The estimated LC50 was 34.64µl of 2,4-D per liter of water. Histochemical analyses and Feulgen's reaction were conducted to detect glycoconjugates and DNA, respectively, in gills and liver epithelia. Histochemistry revealed qualitative variations of glycoconjugates present on mucous cells and granules. The four types of mucous cells contained neutral granules, acids, or both. Increasing amounts of syalomucins were observed from the control group to the group exposed to the highest concentration of 2,4-D, suggesting increased mucous viscosity and the formation of plaques that could inhibit gas exchange and osmoregulation. Lamellar fusion observed in the group exposed to 40µl of 2,4-D suggests a defense mechanism. Hepatocytes showed vacuolization in the 10 and 20µl/L groups. The 40 µl/L group showed normal hepatocytes as well as changed ones, many Ito cells, micronuclei, and nuclear swelling. These effects may be associated with toxicity or adaptative processes to cellular stress. The data from this study indicates the importance of assessing similar risks to aquatic species and suggests that Poecilia vivipara is an adequate biological model for analysis of environmental contamination.

  12. Si-Jun-Zi Decoction Treatment Promotes the Restoration of Intestinal Function after Obstruction by Regulating Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Xiangyang Yu

    2014-01-01

    Full Text Available Intestinal obstruction is a common disease requiring abdominal surgery with significant morbidity and mortality. Currently, an effective medical treatment for obstruction, other than surgical resection or decompression, does not exist. Si-Jun-Zi Decoction is a famous Chinese medicine used to replenish qi and invigorate the functions of the spleen. Modern pharmacological studies show that this prescription can improve gastrointestinal function and strengthen immune function. In this study, we investigated the effects of a famous Chinese herbal formula, Si-Jun-Zi Decoction, on the restoration of intestinal function after the relief of obstruction in a rabbit model. We found that Si-Jun-Zi Decoction could reduce intestinal mucosal injury while promoting the recovery of the small intestine. Further, Si-Jun-Zi Decoction could regulate the intestinal immune system. Our results suggest that Si-Jun-Zi Decoction promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Our observations indicate that Si-Jun-Zi Decoction is potentially a therapeutic drug for intestinal obstruction.

  13. Novel Polyfermentor intestinal model (PolyFermS for controlled ecological studies: validation and effect of pH.

    Directory of Open Access Journals (Sweden)

    Annina Zihler Berner

    Full Text Available In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study we describe a novel Polyfermentor Intestinal Model (PolyFermS designed to compare the effects of different treatments on the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models, the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be developed for the direct comparison of different

  14. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells

    Directory of Open Access Journals (Sweden)

    Matyunina Lilya V

    2009-12-01

    Full Text Available Abstract Background Accumulating evidence suggests that somatic stem cells undergo mutagenic transformation into cancer initiating cells. The serous subtype of ovarian adenocarcinoma in humans has been hypothesized to arise from at least two possible classes of progenitor cells: the ovarian surface epithelia (OSE and/or an as yet undefined class of progenitor cells residing in the distal end of the fallopian tube. Methods Comparative gene expression profiling analyses were carried out on OSE removed from the surface of normal human ovaries and ovarian cancer epithelial cells (CEPI isolated by laser capture micro-dissection (LCM from human serous papillary ovarian adenocarcinomas. The results of the gene expression analyses were randomly confirmed in paraffin embedded tissues from ovarian adenocarcinoma of serous subtype and non-neoplastic ovarian tissues using immunohistochemistry. Differentially expressed genes were analyzed using gene ontology, molecular pathway, and gene set enrichment analysis algorithms. Results Consistent with multipotent capacity, genes in pathways previously associated with adult stem cell maintenance are highly expressed in ovarian surface epithelia and are not expressed or expressed at very low levels in serous ovarian adenocarcinoma. Among the over 2000 genes that are significantly differentially expressed, a number of pathways and novel pathway interactions are identified that may contribute to ovarian adenocarcinoma development. Conclusions Our results are consistent with the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as the origin of ovarian adenocarcinoma. While our findings do not rule out the possibility that ovarian cancers may also arise from other sources, they are inconsistent with claims that ovarian surface epithelia cannot serve as the origin of ovarian cancer initiating cells.

  15. [Adult intestinal malrotation associated with intestinal volvulus].

    Science.gov (United States)

    Hernando-Almudí, Ernesto; Cerdán-Pascual, Rafael; Vallejo-Bernad, Cristina; Martín-Cuartero, Joaquín; Sánchez-Rubio, María; Casamayor-Franco, Carmen

    Intestinal malrotation is a congenital anomaly of the intestinal rotation and fixation, and usually occurs in the neonatal age. Description of a clinical case associated with acute occlusive symptoms. A case of intestinal malrotation is presented in a previously asymptomatic woman of 46 years old with an intestinal obstruction, with radiology and surgical findings showing an absence of intestinal rotation. Intestinal malrotation in adults is often asymptomatic, and is diagnosed as a casual finding during a radiological examination performed for other reasons. Infrequently, it can be diagnosed in adults, associated with an acute abdomen. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  16. The food processing contaminant glyoxal promotes tumour growth in the multiple intestinal neoplasia (Min) mouse model.

    Science.gov (United States)

    Svendsen, Camilla; Høie, Anja Hortemo; Alexander, Jan; Murkovic, Michael; Husøy, Trine

    2016-08-01

    Glyoxal is formed endogenously and at a higher rate in the case of hyperglycemia. Glyoxal is also a food processing contaminant and has been shown to be mutagenic and genotoxic in vitro. The tumourigenic potential of glyoxal was investigated using the multiple intestinal neoplasia (Min) mouse model, which spontaneously develops intestinal tumours and is susceptible to intestinal carcinogens. C57BL/6J females were mated with Min males. Four days after mating and throughout gestation and lactation, the pregnant dams were exposed to glyoxal through drinking water (0.0125%, 0.025%, 0.05%, 0.1%) or regular tap water. Female and male offspring were housed separately from PND21 and continued with the same treatment. One group were only exposed to 0.1% glyoxal from postnatal day (PND) 21. There was no difference in the number of intestinal tumours between control and treatment groups. However, exposure to 0.1% glyoxal starting in utero and at PND21 caused a significant increase in tumour size in the small intestine for male and female mice in comparison with respective control groups. This study suggests that glyoxal has tumour growth promoting properties in the small intestine in Min mice. Copyright © 2016 Norwegian Institute of Public Health. Published by Elsevier Ltd.. All rights reserved.

  17. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    Science.gov (United States)

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA

  18. Autophagy and tight junction proteins in the intestine and intestinal diseases

    Directory of Open Access Journals (Sweden)

    Chien-An A. Hu

    2015-09-01

    Full Text Available The intestinal epithelium (IE forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens (bacteria, fungi and virus and antigens. The apical intercellular tight junctions (TJ are responsible for the paracellular barrier function and regulate trans-epithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease (IBD, necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy (self-eating mechanism is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis. Dysregulated autophagy has been shown to be directly associated with many pathological processes, including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2, a cation-selective, pore-forming, transmembrane TJ protein, for lysosome (autophagy-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines (for example, tumor necrosis factor-α, interleukin-6

  19. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition.

    Science.gov (United States)

    Attia, Suzanna; Feenstra, Marjon; Swain, Nathan; Cuesta, Melina; Bandsma, Robert H J

    2017-11-01

    Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.

  20. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  1. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection

    Directory of Open Access Journals (Sweden)

    Yuka Matsumoto

    2017-09-01

    Full Text Available Ileocecal resection (ICR, one of several types of intestinal resection that results in short bowel syndrome (SBS, causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.

  2. SURVIVAL OF MICROORGANISMS FROM MODERN PROBIOTICS IN MODEL CONDITIONS OF THE INTESTINE

    Directory of Open Access Journals (Sweden)

    Kabluchko TV

    2017-03-01

    Full Text Available Introduction. The staye of intestinal microflora affects the work of the whole organism. When composition of normal ibtestine microflora changes, its restoration is required. In our days a wide variety of probiotic drugs are available on the market which can be used to solve this problem. Most bacteria having probiotic properties represent the families Lactobacillus and Bifidobacterium, which have poor resistance to acidic content of the stomach and toxic effects of bile salts. Various studies have clearly shown that in a person with normal acidic and bile secretion, the lactobacilli and bifidobacteria are not detected after the passage through the duodenum, i.e., they perish before reaching the small intestines. In this study we compared the survival of different microorganisms which are contained in 9 probiotic drugs in a model of gastric and intestinal environments. Material and methods. In the laboratory of SI: “Mechnikov Institute Microbiology and Immunology, National Ukrainian Academy Medical Sciences" the in vitro experiments have been evaluated to test the ability of different probiotic bacteria which were contained in 9 probiotic drugs to survive the impact of the model environment of the stomach and duodenum. Bacillus coagulans persistence was evaluated under impact of simulated environment of the stomach and duodenum, it also was assessed by the quantity of CFU by incubation on culture medium. The following were studied: Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus bulgaricus, Bifidobacterium bifidum, Bifidobacterium longum , Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium animalis subsp. Lactis BB-12, Saccharomyces boulardii, Bacillus coagulans, Bacillus clausii, Enterococcus faecium. Microorganisms were incubated for 3 hours in a model environment of the stomach (pepsin 3 g / l, hydrochloric acid of 160 mmol / l, pH 2

  3. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  4. Update on small intestinal stem cells.

    Science.gov (United States)

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-08-07

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.

  5. Mechanical Elongation of the Small Intestine: Evaluation of Techniques for Optimal Screw Placement in a Rodent Model

    Directory of Open Access Journals (Sweden)

    P. A. Hausbrandt

    2013-01-01

    Full Text Available Introduction. The aim of this study was to evaluate techniques and establish an optimal method for mechanical elongation of small intestine (MESI using screws in a rodent model in order to develop a potential therapy for short bowel syndrome (SBS. Material and Methods. Adult female Sprague Dawley rats (n=24 with body weight from 250 to 300 g (Σ=283 were evaluated using 5 different groups in which the basic denominator for the technique involved the fixation of a blind loop of the intestine on the abdominal wall with the placement of a screw in the lumen secured to the abdominal wall. Results. In all groups with accessible screws, the rodents removed the implants despite the use of washers or suits to prevent removal. Subcutaneous placement of the screw combined with antibiotic treatment and dietary modifications was finally successful. In two animals autologous transplantation of the lengthened intestinal segment was successful. Discussion. While the rodent model may provide useful basic information on mechanical intestinal lengthening, further investigations should be performed in larger animals to make use of the translational nature of MESI in human SBS treatment.

  6. How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation

    Directory of Open Access Journals (Sweden)

    Fabrizio Antonangeli

    2017-11-01

    Full Text Available Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.

  7. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia.

    Science.gov (United States)

    Davids, Barbara J; Palm, J E Daniel; Housley, Michael P; Smith, Jennifer R; Andersen, Yolanda S; Martin, Martin G; Hendrickson, Barbara A; Johansen, Finn-Eirik; Svärd, Staffan G; Gillin, Frances D; Eckmann, Lars

    2006-11-01

    The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.

  8. Anti-inflammatory and antioxidant effects of infliximab in a rat model of intestinal ischemia/reperfusion injury.

    Science.gov (United States)

    Pergel, Ahmet; Kanter, Mehmet; Yucel, Ahmet Fikret; Aydin, Ibrahim; Erboga, Mustafa; Guzel, Ahmet

    2012-11-01

    The aim of this study was to investigate the possible protective effects of infliximab on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group comprised 10 animals. Sham group animals underwent laparotomy without I/R injury. I/R groups after undergoing laparotomy, 1 hour of superior mesenteric artery ligation occurred, which was followed by 1 hour of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered intravenously. All animals were killed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no biochemical and histopathological changes have been reported regarding intestinal I/R injury in rats due to infliximab treatment. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased reduced superoxide dismutase and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions, inflammatory cell infiltration, necrosis, hemorrhage, and villous congestion. Infliximab treatment significantly attenuated the severity of intestinal I/R injury, inhibiting I/R-induced apoptosis, and cell proliferation. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects on the experimental intestinal I/R model of rats.

  9. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure.

    Science.gov (United States)

    Korpela, Katri; Mutanen, Annika; Salonen, Anne; Savilahti, Erkki; de Vos, Willem M; Pakarinen, Mikko P

    2017-02-01

    Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent phylogenetic microarray analysis. The microbiota was related to histological liver injury, fecal markers of intestinal inflammation, matrix metalloproteinase 9 and calprotectin, and disease characteristics. Overabundance of Lactobacilli, Proteobacteria, and Actinobacteria was observed in IF, whereas bacteria related to Clostridium clusters III, IV, and XIVa along with overall diversity and richness were reduced. Patients were segregated into 3 subgroups based on dominating bacteria: Clostridium cluster XIVa, Proteobacteria, and bacteria related to Lactobacillus plantarum. In addition to liver steatosis and fibrosis, Proteobacteria were associated with prolonged current parenteral nutrition (PN) as well as liver and intestinal inflammation. Lactobacilli were related to advanced steatosis and fibrosis mostly after weaning off PN without associated inflammation. In multivariate permutational analysis of variance, liver steatosis, bowel length, PN calories, and antibiotic treatment best explained the microbiota variation among patients with IF. Intestinal microbiota composition was associated with liver steatosis in IF and better predicted steatosis than duration of PN or length of the remaining intestine. Our results may be explained by a model in which steatosis is initiated during PN in response to proinflammatory lipopolysaccharides produced by Proteobacteria and progresses after weaning off PN, as the L plantarum group Lactobacilli becomes dominant and affects lipid metabolism by altering bile acid signaling.

  10. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice.

    Science.gov (United States)

    Pierre, Christina C; Longo, Joseph; Mavor, Meaghan; Milosavljevic, Snezana B; Chaudhary, Roopali; Gilbreath, Ebony; Yates, Clayton; Daniel, Juliet M

    2015-09-01

    Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia.

    Science.gov (United States)

    Badea, Liviu; Herlea, Vlad; Dima, Simona Olimpia; Dumitrascu, Traian; Popescu, Irinel

    2008-01-01

    The precise details of pancreatic ductal adenocarcinoma (PDAC) pathogenesis are still insufficiently known, requiring the use of high-throughput methods. However, PDAC is especially difficult to study using microarrays due to its strong desmoplastic reaction, which involves a hyperproliferating stroma that effectively "masks" the contribution of the minoritary neoplastic epithelial cells. Thus it is not clear which of the genes that have been found differentially expressed between normal and whole tumor tissues are due to the tumor epithelia and which simply reflect the differences in cellular composition. To address this problem, laser microdissection studies have been performed, but these have to deal with much smaller tissue sample quantities and therefore have significantly higher experimental noise. In this paper we combine our own large sample whole-tissue study with a previously published smaller sample microdissection study by Grützmann et al. to identify the genes that are specifically overexpressed in PDAC tumor epithelia. The overlap of this list of genes with other microarray studies of pancreatic cancer as well as with the published literature is impressive. Moreover, we find a number of genes whose over-expression appears to be inversely correlated with patient survival: keratin 7, laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and OACT2 (MBOAT2), which are all specifically upregulated in the neoplastic epithelia, rather than the tumor stroma. We improve on other microarray studies of PDAC by putting together the higher statistical power due to a larger number of samples with information about cell-type specific expression and patient survival.

  12. Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    N. Selve

    1992-01-01

    Full Text Available An enteritis, based on a delayed-type hypersensitivity reaction, was induced in TNBS (2,4,4-trinitrobenzenesulphonic acid sensitized rats by multiple intrajejunal challenge with TNBS via an implanted catheter. This treatment induced chronic inflammation of the distal small intestine characterized by intense hyperaemia, oedema and gut wall thickening as assessed by macroscopic scoring and weighing a defined part of the dissected intestine. Histologically, the inflammatory response included mucosal and submucosal cell infiltration by lymphocytes and histiocytes, transmural granulomatous inflammation with multinucleated cells and activated mesenteric lymph nodes. Ex vivo stimulated release of the inflammatory mediator LTB4 in the dissected part of the intestine was increased following TNBS treatment. Drug treatment with sulphasalazine or 5-aminosalicylic acid improved the enteritis score and attenuated TNBS induced oedema formation and LTB4 production. The applicability and relevance of this new model are discussed with respect to drug development and basic research of inflammatory bowel diseases.

  13. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  14. Deciphering the porcine intestinal microRNA transcriptome

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2010-04-01

    Full Text Available Abstract Background While more than 700 microRNAs (miRNAs are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy. Results Here, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks. Conclusions In this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.

  15. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.

    Science.gov (United States)

    Dahan, Arik; West, Brady T; Amidon, Gordon L

    2009-02-15

    In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

  16. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  17. [Morphological changes of the intestine in experimental acute intestinal infection in the treatment of colloidal silver].

    Science.gov (United States)

    Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N

    2012-06-01

    At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.

  18. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  19. Dyslipidaemia--hepatic and intestinal cross-talk.

    LENUS (Irish Health Repository)

    Tomkin, Gerald H

    2010-06-01

    Cholesterol metabolism is tightly regulated with the majority of de novo cholesterol synthesis occurring in the liver and intestine. 3 Hydroxy-3-methylglutaryl coenzyme A reductase, a major enzyme involved in cholesterol synthesis, is raised in both liver and intestine in diabetic animals. Niemann PickC1-like1 protein regulates cholesterol absorption in the intestine and facilitates cholesterol transport through the liver. There is evidence to suggest that the effect of inhibition of Niemann PickC1-like1 lowers cholesterol through its effect not only in the intestine but also in the liver. ATP binding cassette proteins G5\\/G8 regulate cholesterol re-excretion in the intestine and in the liver, cholesterol excretion into the bile. Diabetes is associated with reduced ATP binding cassette protein G5\\/G8 expression in both the liver and intestine in animal models. Microsomal triglyceride transfer protein is central to the formation of the chylomicron in the intestine and VLDL in the liver. Microsomal triglyceride transfer protein mRNA is increased in diabetes in both the intestine and liver. Cross-talk between the intestine and liver is poorly documented in humans due to the difficulty in obtaining liver biopsies but animal studies are fairly consistent in showing relationships that explain in part mechanisms involved in cholesterol homeostasis.

  20. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    Science.gov (United States)

    2016-08-01

    intestine epithelial response is built into the Radiation- Induced Performance Decrement (RIPD) model (Anno et al., 1989, Anno et al., 1991). RIPD, a...compartments, simulating dose response with a multitarget single -hit model (Joiner, 2009). This theory proposes that one hit of radiation in n different... single -hit model was implemented to represent dose response. The dose response parameters (D0 and n) were chosen to match experimental data approximated

  1. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent.

    Directory of Open Access Journals (Sweden)

    Claudia A Bertuccio

    Full Text Available The intermediate conductance, Ca2+-activated K+ channel (KCa3.1 targets to the basolateral (BL membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3

  2. Adherent-invasive Escherichia coli, strain LF82 disrupts apical junctional complexes in polarized epithelia

    Directory of Open Access Journals (Sweden)

    Ossa Juan C

    2009-08-01

    Full Text Available Abstract Background Although bacteria are implicated in the pathogenesis of chronic inflammatory bowel diseases (IBD, mechanisms of intestinal injury and immune activation remain unclear. Identification of adherent-invasive Escherichia coli (AIEC strains in IBD patients offers an opportunity to characterize the pathogenesis of microbial-induced intestinal inflammation in IBD. Previous studies have focused on the invasive phenotype of AIEC and the ability to replicate and survive in phagocytes. However, the precise mechanisms by which these newly identified microbes penetrate the epithelial lining remain to be clarified. Therefore, the aim of this study was to delineate the effects of AIEC, strain LF82 (serotype O83:H1 on model polarized epithelial monolayers as a contributor to intestinal injury in IBD. Results Infection of T84 and Madin-Darby Canine Kidney-I polarized epithelial cell monolayers with AIEC, strain LF82 led to a reduction in transepithelial electrical resistance and increased macromolecular (10 kilodalton dextran flux. Basolateral AIEC infection resulted in more severe disruption of the epithelial barrier. Increased permeability was accompanied by a redistribution of the tight junction adaptor protein, zonula occludens-1, demonstrated by confocal microscopy and formation of gaps between cells, as shown by transmission electron microscopy. After 4 h of infection of intestine 407 cells, bacteria replicated in the cell cytoplasm and were enclosed in membrane-bound vesicles positive for the late endosomal marker, LAMP1. Conclusion These findings indicate that AIEC, strain LF82 disrupts the integrity of the polarized epithelial cell barrier. This disruption enables bacteria to penetrate into the epithelium and replicate in the host cell cytoplasm. These findings provide important links between microbes related to IBD, the intestinal epithelial cell barrier and disease pathogenesis.

  3. Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing

    NARCIS (Netherlands)

    Egert, M.; Graaf, A.A. de; Maathuis, A.; Waard, P. de; Plugge, C.M.; Smidt, H.; Deutz, N.E.P.; Dijkema, C.; Vos, W.M. de; Venema, K.

    2007-01-01

    16S rRNA-based stable isotope probing (SIP) and nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling were used to identify bacteria fermenting glucose under conditions simulating the human intestine. The TIM-2 in vitro model of the human intestine was inoculated with a GI tract

  4. Effect of lactobacillus acidophilus combined with iso-malto-oligosaccharide on the intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD)

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Du; Lichao, Fang; Bingbo, Chen; Hong, Wei [Third Military Medical Univ., Chongqing (China). Laboratory Animal Center

    2005-02-15

    Objective: To investigate the corrective effect of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) on the decreased intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 6 days. One group of models were left with natural recovery and three other groups were given gavage with different strengths of synbiotic for 7 days. In each group, stool specimens were taken from 6-8 rats for flora examination, then the animals sacrificed and intestinal mucus contents of SIgA determined (with RIA) on d6, d9 and d13. Results: The intestinal flora in rat models of AAD was greatly altered with marked reduction in probiotics. Also, the intestinal mucus contents of SIgA were significantly decreased. Treatment with different strengths of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) would significantly improve the condition with SIgA contents approaching normal. Conclusion: Synbiotic treatment could increase the intestinal mucosal secretion of SIgA with restoration of the mucosal immuno-barrier function in rat models with AAD. (authors)

  5. Effect of lactobacillus acidophilus combined with iso-malto-oligosaccharide on the intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD)

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2005-01-01

    Objective: To investigate the corrective effect of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) on the decreased intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 6 days. One group of models were left with natural recovery and three other groups were given gavage with different strengths of synbiotic for 7 days. In each group, stool specimens were taken from 6-8 rats for flora examination, then the animals sacrificed and intestinal mucus contents of SIgA determined (with RIA) on d6, d9 and d13. Results: The intestinal flora in rat models of AAD was greatly altered with marked reduction in probiotics. Also, the intestinal mucus contents of SIgA were significantly decreased. Treatment with different strengths of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) would significantly improve the condition with SIgA contents approaching normal. Conclusion: Synbiotic treatment could increase the intestinal mucosal secretion of SIgA with restoration of the mucosal immuno-barrier function in rat models with AAD. (authors)

  6. Evaluation of dual-phase multi-detector-row CT for detection of intestinal bleeding using an experimental bowel model

    International Nuclear Information System (INIS)

    Dobritz, Martin; Engels, Heinz-Peter; Wieder, Hinrich; Rummeny, Ernst J.; Stollfuss, Jens C.; Schneider, Armin; Feussner, Hubertus

    2009-01-01

    To evaluate dual-phase multi-detector-row computed tomography (MDCT) in the detection of intestinal bleeding using an experimental bowel model and varying bleeding velocities. The model consisted of a high pressure injector tube with a single perforation (1 mm) placed in 10-m-long small bowel of a pig. The bowel was filled with water/contrast solution of 30-40 HU and was incorporated in a phantom model containing vegetable oil to simulate mesenteric fat. Intestinal bleeding in different locations and bleeding velocities varying from zero to 1 ml/min (0.05 ml/min increments, constant bleeding duration of 20 s) was simulated. Nineteen complete datasets in arterial and portal-venous phase using increasing bleeding velocities, and seven negative controls were measured using a 64 MDCT (3-mm slice thickness, 1.5-mm reconstruction increment). Three radiologists blinded to the experimental settings evaluated the datasets in a random order. The likelihood for intestinal bleeding was assessed using a 5-point scale with subsequent ROC analysis. The sensitivity to detect bleeding was 0.44 for a bleeding velocity of 0.10-0.50 ml/min and 0.97 for 0.55-1.00 ml/min. The specificity was 1.00. The area under the curve was calculated to be 0.73, 0.88 and 0.89 for reader 1, 2 and 3, respectively. Dual-phase MDCT provides high sensitivity and specificity in the detection of intestinal bleeding with bleeding velocities of 0.5-1.0 ml/min. Therefore, MDCT should be considered as a primary diagnostic technique in the management of patients with suspected intestinal bleeding. (orig.)

  7. Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets.

    Science.gov (United States)

    Penner, G B; Steele, M A; Aschenbach, J R; McBride, B W

    2011-04-01

    Feeding highly fermentable diets to ruminants is one strategy to increase energy intake. The increase in short-chain fatty acid (SCFA) production and reduced ruminal pH associated with highly fermentable diets imposes a challenge to the metabolism and the regulation of intracellular pH homeostasis of ruminal epithelia. The ruminal epithelia respond to these challenges in a coordinated manner. Whereas the enlargement of absorptive surface area is well documented, emerging evidence at the mRNA and transporter and enzyme activity levels indicate that changes in epithelial cell function may be the initial response. It is not surprising that gene expression analysis has identified pathways involved in fatty acid metabolism, ion transport, and intracellular homeostasis to be the pathways dominantly affected during adaptation and after adaptation to a highly fermentable diet. These findings are important because the intraepithelial metabolism of SCFA, particularly butyrate, helps to maintain the concentration gradient between the cytosol and lumen, thereby facilitating absorption. Butyrate metabolism also controls the intracellular availability of butyrate, which is widely regarded as a signaling molecule. Current data indicate that for butyrate metabolism, 3-hydroxy-3-methylglutaryl-CoA synthase and acetyl-CoA acetyltransferase are potential regulatory points with transient up- and downregulation during diet adaptation. In addition to nutrient transport and utilization, genes involved in the maintenance of cellular tight junction integrity and induction of inflammation have been identified as differentially expressed genes during adaptation to highly fermentable diets. This may have important implications on ruminal epithelial barrier function and the inflammatory response often associated with subacute ruminal acidosis. The objective of this review is to summarize ruminal epithelial adaptation to highly fermentable diets focusing on the changes at the enzyme and

  8. Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear.

    Science.gov (United States)

    Warchol, Mark E

    2002-04-01

    Sensory hair cells in the inner ears of nonmammalian vertebrates can regenerate after injury. In many species, replacement hair cells are produced by the proliferation of epithelial supporting cells. Thus, the ability of supporting cells to undergo renewed proliferation is a key determinant of regenerative ability. The present study used cultures of isolated inner ear sensory epithelia to identify cellular signals that regulate supporting cell proliferation. Small pieces of sensory epithelia from the chicken utricle were cultured in glass microwells. Under those conditions, cell proliferation was inversely related to local cell density. The signaling molecules N-cadherin, beta-catenin, and focal adhesion kinase were immunolocalized in the cultured epithelial cells, and high levels of phosphotyrosine immunoreactivity were present at cell-cell junctions and focal contacts of proliferating cells. Binding of microbeads coated with a function-blocking antibody to N-cadherin inhibited ongoing proliferation. The growth of epithelial cells was also affected by the density of extracellular matrix molecules. The results suggest that cell density, cell-cell contact, and the composition of the extracellular matrix may be critical influences on the regulation of sensory regeneration in the inner ear.

  9. Fractional intestinal absorption and retention of calcium measured by whole-body counting. Application of a power function model

    International Nuclear Information System (INIS)

    Pors Nielsen, S.; Baerenholdt, O.; Munck, O.

    1975-01-01

    By application of a power function model, fractional intestinal calcium absorption was investigated with a new technique involving whole-body counting after successive oral and intravenous administration of standard doses of 47 Ca. The fractional calcium retention 7 days after the oral load of 47 Ca was also measured. Fractional calcium retention averaged 30.3% in normal subjects and 11.5% in 11 patients with intestinal malabsorption. In the same groups fractional calcium absorption averaged 46.6% and 16.4%, respectively. Fractional calcium retention and intestinal calcium absorption were significantly correlated to body surface area, and there was a well-defined relation between fractional retention and absorption of calcium. These studies demonstrate that measurements of fractional retention and fractional intestinal absorption of calcium can be combined by the use of a whole-body counter, that fractional retention and intestinal absorption are proportional to total body surface area and therefore probably also to the total bone mass, and that fractional retention and absorption are so closely interrelated that frational absorption can be estimated from fractional retention with reasonable accuracy in normal subjects. (auth.)

  10. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Qingchao Zhu

    Full Text Available Recent reports have suggested that multiple factors such as host genetics, environment and diet can promote the progression of healthy mucosa towards sporadic colorectal carcinoma. Accumulating evidence has additionally associated intestinal bacteria with disease initiation and progression. In order to examine and analyze the composition of gut microbiota in the absence of confounding influences, we have established an animal model of 1, 2-dimethylhydrazine (DMH-induced colon cancer. Using this model, we have performed pyrosequencing of the V3 region of the 16S rRNA genes in this study to determine the diversity and breadth of the intestinal microbial species. Our findings indicate that the microbial composition of the intestinal lumen differs significantly between control and tumor groups. The abundance of Firmicutes was elevated whereas the abundance of Bacteroidetes and Spirochetes was reduced in the lumen of CRC rats. Fusobacteria was not detected in any of the healthy rats and there was no significant difference in observed Proteobacteria species when comparing the bacterial communities between our two groups. Interestingly, the abundance of Proteobacteria was higher in CRC rats. At the genus level, Bacteroides exhibited a relatively higher abundance in CRC rats compared to controls (14.92% vs. 9.22%, p<0.001. Meanwhile, Prevotella (55.22% vs. 26.19%, Lactobacillus (3.71% vs. 2.32% and Treponema (3.04% vs. 2.43%, were found to be significantly more abundant in healthy rats than CRC rats (p<0.001, respectively. We also demonstrate a significant reduction of butyrate-producing bacteria such as Roseburia and Eubacterium in the gut microbiota of CRC rats. Furthermore, a significant increase in Desulfovibrio, Erysipelotrichaceae and Fusobacterium was also observed in the tumor group. A decrease in probiotic species such as Ruminococcus and Lactobacillus was likewise observed in the tumor group. Collectively, we can conclude that a significant

  11. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers.

    NARCIS (Netherlands)

    Bokhorst-van de Veen, H. van; Swam, I. van; Wels, M.W.; Bron, P.A.; Kleerebezem, M

    2012-01-01

    BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species.

  12. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Swam, van I.; Wels, M.; Bron, P.A.; Kleerebezem, M.

    2012-01-01

    BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species.

  13. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  14. Efeitos hemodinâmicos e metabólicos iniciais da perfusão hipotérmica intestinal in situ.: avaliação de um novo modelo canino de autotransplante intestinal Initial hemodynamic and metabolic effects of intestinal hypothermic perfusion in situ: an alternative model of canine intestinal autotransplantation

    Directory of Open Access Journals (Sweden)

    Ruy Jorge Cruz Junior

    2004-08-01

    , hemoglobina assim como na temperatura central. CONCLUSÃO: O modelo de autotransplante intestinal é extremamente útil e de fácil execução, para a avaliação inicial de soluções de preservação e/ou drogas antioxidantes, comumente utilizadas no transplante de intestino.Intestinal transplantation is an acceptable therapy for children and adults with short bowel syndrome. The great majority of large animal experimental models of intestinal transplantation are complex and take a lot of time to be performed. In this study, we developed an alternative model of intestinal autotransplantation and evaluate the initial impact of isolated hypothermic intestinal perfusion with Ringer’s lactate solution on hemodynamic and metabolic parameters. METHODS: Six pentobarbital anesthetized mongrel dogs were used in this study (22,8±1,4 Kg. Systemic hemodynamic were evaluated through a Swan-Ganz and arterial catheters; while gastrointestinal tract perfusion by superior mesenteric vein blood flow (SMVBF, ultrasonic flowprobe and intestinal mucosal pCO2 (pCO2-int and pCO2-gap, gas tonometry. Initially, the proximal jejunum and distal ileum were transected; at the basis of the mesentery excepting the superior mesenteric artery and vein. The small bowel was then perfused in situ with cold (4ºC Ringer’s lactate solution for 30 minutes, with an automatic pump. The animals where observed for 120 minutes after reperfusion. Blood samples were collected from thoracic aorta for gas blood analysis. RESULTS: Hypothermic intestinal perfusion induced a partial reduction on SMVBF, only in the first 30 min of reperfusion (398±102,8 to 587±70,9 ml/min and an increase on pCO2-gap (2±2,7 to 29,8±6 mmHg. During the experimental protocol, we did not observe significant alterations on systemic hemodynamic or metabolic parameters (MAP, CO, pH, base excess and hemoglobin levels as well as on central core temperature. CONCLUSION: The model of intestinal transplantation is very useful to test different

  15. Intestinal Cancer

    Science.gov (United States)

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  16. Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models.

    Science.gov (United States)

    Liu, Yulan; Wang, Xiuying; Hou, Yongqing; Yin, Yulong; Qiu, Yinsheng; Wu, Guoyao; Hu, Chien-An Andy

    2017-08-01

    Animal models are needed to study and understand a human complex disease. Because of their similarities in anatomy, structure, physiology, and pathophysiology, the pig has proven its usefulness in studying human gastrointestinal diseases, such as inflammatory bowel disease, ischemia/reperfusion injury, diarrhea, and cancer. To understand the pathogenesis of these diseases, a number of experimental models generated in pigs are available, for example, through surgical manipulation, chemical induction, microbial infection, and genetic engineering. Our interests have been using amino acids as therapeutics in pig and human disease models. Amino acids not only play an important role in protein biosynthesis, but also exert significant physiological effects in regulating immunity, anti-oxidation, redox regulation, energy metabolism, signal transduction, and animal behavior. Recent studies in pigs have shown that specific dietary amino acids can improve intestinal integrity and function under normal and pathological conditions that protect the host from different diseases. In this review, we summarize several pig models in intestinal diseases and how amino acids can be used as therapeutics in treating pig and human diseases.

  17. TREM-1 Promotes Pancreatitis-Associated Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Shengchun Dang

    2012-01-01

    Full Text Available Severe acute pancreatitis (SAP can cause intestinal barrier dysfunction (IBD, which significantly increases the disease severity and risk of mortality. We hypothesized that the innate immunity- and inflammatory-related protein-triggering receptor expressed on myeloid cells-1 (TREM-1 contributes to this complication of SAP. Thus, we investigated the effect of TREM-1 pathway modulation on a rat model of pancreatitis-associated IBD. In this study we sought to clarify the role of TREM-1 in the pathophysiology of intestinal barrier dysfunction in SAP. Specifically, we evaluated levels of serum TREM-1 and membrane-bound TREM-1 in the intestine and pancreas from an animal model of experimentally induced SAP. TREM-1 pathway blockade by LP17 treatment may suppress pancreatitis-associated IBD and ameliorate the damage to the intestinal mucosa barrier.

  18. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  19. Changes in Enteric Neurons of Small Intestine in a Rat Model of Irritable Bowel Syndrome with Diarrhea.

    Science.gov (United States)

    Li, Shan; Fei, Guijun; Fang, Xiucai; Yang, Xilin; Sun, Xiaohong; Qian, Jiaming; Wood, Jackie D; Ke, Meiyun

    2016-04-30

    Physical and/or emotional stresses are important factors in the exacerbation of symptoms in irritable bowel syndrome (IBS). Several lines of evidence support that a major impact of stress on the gastrointestinal tract occurs via the enteric nervous system. We aimed to evaluate histological changes in the submucosal plexus (SMP) and myenteric plexus (MP) of the distal ileum in concert with the intestinal motor function in a rat model of IBS with diarrhea. The rat model was induced by heterotypic chronic and acute stress (CAS). The intestinal transit was measured by administering powdered carbon by gastric gavage. Double immunohistochemical fluorescence staining with whole-mount preparations of SMP and MP of enteric nervous system was used to assess changes in expression of choline acetyltransferase, vasoactive intestinal peptide, or nitric oxide synthase in relation to the pan neuronal marker, anti-Hu. The intestinal transit ratio increased significantly from control values of 50.8% to 60.6% in the CAS group. The numbers of enteric ganglia and neurons in the SMP were increased in the CAS group. The proportions of choline acetyltransferase- and vasoactive intestinal peptide-immunoreactive neurons in the SMP were increased (82.1 ± 4.3% vs. 76.0 ± 5.0%, P = 0.021; 40.5 ± 5.9% vs 28.9 ± 3.7%, P = 0.001), while nitric oxide synthase-immunoreactive neurons in the MP were decreased compared with controls (23.3 ± 4.5% vs 32.4 ± 4.5%, P = 0.002). These morphological changes in enteric neurons to CAS might contribute to the dysfunction in motility and secretion in IBS with diarrhea.

  20. Intestinal tract diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1985-01-01

    Roentgenoanatomy and physiology of the small intestine are described. Indications for radiological examinations and their possibilities in the diagnosis of the small intestine diseases are considered.Congenital anomalies and failures in the small intestine development, clinical indications and diagnosis methods for the detection of different aetiology enteritis are described. Characteristics of primary malabsorption due to congenital or acquired inferiority of the small intestine, is provided. Radiological picture of intestinal allergies is described. Clinical, morphological, radiological pictures of Crohn's disease are considered in detail. Special attention is paid to the frequency of primary and secondary tuberculosis of intestinal tract. The description of clinical indications and frequency of benign and malignant tumours of the small intestine, methods for their diagnosis are given. Radiological pictures of parasitogenic and rare diseases of the small intestine are presented. Changes in the small intestine as a result of its reaction to pathological processes, developing in other organs and systems of the organism, are described

  1. Orazipone, a locally acting immunomodulator, ameliorates intestinal radiation injury: A preclinical study in a novel rat model

    International Nuclear Information System (INIS)

    Boerma, Marjan; Wang, Junru; Richter, Konrad K.; Hauer-Jensen, Martin

    2006-01-01

    Purpose: Intestinal radiation injury (radiation enteropathy) is relevant to cancer treatment, as well as to radiation accidents and radiation terrorism scenarios. This study assessed the protective efficacy of orazipone, a locally-acting small molecule immunomodulator. Methods and Materials: Male rats were orchiectomized, a 4-cm segment of small bowel was sutured to the inside of the scrotum, a proximal anteperistaltic ileostomy was created for intraluminal drug administration, and intestinal continuity was re-established by end-to-side anastomosis. After three weeks postoperative recovery, the intestine in the 'scrotal hernia' was exposed locally to single-dose or fractionated X-radiation. Orazipone (30 mg/kg/day) or vehicle was administered daily through the ileostomy, either during and after irradiation, or only after irradiation. Structural, cellular, and molecular aspects of intestinal radiation toxicity were assessed two weeks after irradiation. Results: Orazipone significantly ameliorated histologic injury and transforming growth factor-β immunoreactivity levels, both after single-dose and fractionated irradiation. Intestinal wall thickness was significantly reduced after single-dose and nonsignificantly after fractionated irradiation. Mucosal surface area and numbers of mast cells were partially restored by orazipone after single-dose irradiation. Conclusions: This work (1) demonstrates the utility of the ileostomy rat model for intraluminal administration of response modifiers in single-dose and fractionated radiation studies; (2) shows that mucosal immunomodulation during and/or after irradiation ameliorates intestinal toxicity; and (3) highlights important differences between single-dose and fractionated radiation regimens

  2. Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

    Science.gov (United States)

    Yoseph, Benyam P; Klingensmith, Nathan J; Liang, Zhe; Breed, Elise R; Burd, Eileen M; Mittal, Rohit; Dominguez, Jessica A; Petrie, Benjamin; Ford, Mandy L; Coopersmith, Craig M

    2016-07-01

    Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis

  3. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  4. Optical modeling toward optimizing monitoring of intestinal perfusion in trauma patients

    Science.gov (United States)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. N.; Coté, Gerard L.

    2013-02-01

    Trauma is the number one cause of death for people between the ages 1 and 44 years in the United States. In addition, according to the Centers of Disease Control and Prevention, injury results in over 31 million emergency department visits annually. Minimizing the resuscitation period in major abdominal injuries increases survival rates by correcting impaired tissue oxygen delivery. Optimization of resuscitation requires a monitoring method to determine sufficient tissue oxygenation. Oxygenation can be assessed by determining the adequacy of tissue perfusion. In this work, we present the design of a wireless perfusion and oxygenation sensor based on photoplethysmography. Through optical modeling, the benefit of using the visible wavelengths 470, 525 and 590nm (around the 525nm hemoglobin isobestic point) for intestinal perfusion monitoring is compared to the typical near infrared (NIR) wavelengths (805nm isobestic point) used in such sensors. Specifically, NIR wavelengths penetrate through the thin intestinal wall ( 4mm) leading to high background signals. However, these visible wavelengths have two times shorter penetration depth that the NIR wavelengths. Monte-Carlo simulations show that the transmittance of the three selected wavelengths is lower by 5 orders of magnitude depending on the perfusion state. Due to the high absorbance of hemoglobin in the visible range, the perfusion signal carried by diffusely reflected light is also enhanced by an order of magnitude while oxygenation signal levels are maintained. In addition, short source-detector separations proved to be beneficial for limiting the probing depth to the thickness of the intestinal wall.

  5. Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: impact of a "Top-Down" approach to intestinal fibrosis in mice.

    Science.gov (United States)

    Johnson, Laura A; Luke, Amy; Sauder, Kay; Moons, David S; Horowitz, Jeffrey C; Higgins, Peter D R

    2012-03-01

    The natural history of Crohn's disease follows a path of progression from an inflammatory to a fibrostenosing disease, with most patients requiring surgical resection of fibrotic strictures. Potent antiinflammatory therapies reduce inflammation but do not appear to alter the natural history of intestinal fibrosis. The aim of this study was to determine the relationship between intestinal inflammation and fibrogenesis and the impact of a very early "top-down" interventional approach on fibrosis in vivo. In this study we removed the inflammatory stimulus from the Salmonella typhimurium mouse model of intestinal fibrosis by eradicating the S. typhimurium infection with levofloxacin at sequential timepoints during the infection. We evaluated the effect of this elimination of the inflammatory stimulus on the natural history of inflammation and fibrosis as determined by gross pathology, histopathology, mRNA expression, and protein expression. Fibrogenesis is preceded by inflammation. Delayed eradication of the inflammatory stimulus by antibiotic treatment represses inflammation without preventing fibrosis. Early intervention significantly ameliorates but does not completely prevent subsequent fibrosis. This study demonstrates that intestinal fibrosis develops despite removal of an inflammatory stimulus and elimination of inflammation. Early intervention ameliorates but does not abolish subsequent fibrosis, suggesting that fibrosis, once initiated, is self-propagating, suggesting that a very early top-down interventional approach may have the most impact on fibrostenosing disease. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  6. CriticalSorb™ promotes permeation of flux markers across isolated rat intestinal mucosae and Caco-2 monolayers.

    Science.gov (United States)

    Brayden, D J; Bzik, V A; Lewis, A L; Illum, L

    2012-09-01

    CriticalSorb™ is a novel absorption enhancer based on Solutol(®) HS15, one that has been found to enhance the nasal transport. It is in clinical trials for nasal delivery of human growth hormone. The hypothesis was that permeating enhancement effects of the Solutol(®)HS15 component would translate to the intestine. Rat colonic mucosae were mounted in Ussing chambers and Papp values of [(14)C]-mannitol, [(14)C]-antipyrine, FITC-dextran 4000 (FD-4), and TEER values were calculated in the presence of CriticalSorb™. Tissues were fixed for H & E staining. Caco-2 monolayers were grown on Transwells™ for similar experiments. CriticalSorb™(0.01% v/v) significantly increased the Papp of [(14)C]-mannitol, FD-4 [(14)C]-antipyrine across ileal and colonic mucosae, accompanied by a decrease in TEER. In Caco-2 monolayers, it also increased the Papp of [(14)C]-mannitol FD-4 and [(14)C]-antipyrine over 120 min. In both monolayers and tissues, it acted as a moderately effective P-glycoprotein inhibitor. There was no evidence of cytotoxicity in Caco-2 at concentrations of 0.01% for up to 24 h and histology of tissues showed intact epithelia at 120 min. Solutol(®) HS15 is the key component in CriticalSorb™ that enables non-cytotoxic in vitro intestinal permeation and its mechanism of action is a combination of increased paracellular and transcellular flux.

  7. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    International Nuclear Information System (INIS)

    Minuth, Will W; Strehl, Raimund

    2007-01-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  8. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Minuth, Will W [Department of Molecular and Cellular Anatomy, University of Regensburg, D-93053 Regensburg, University Street 31 (Germany); Strehl, Raimund [Cellartis AB, S-41346 Goeteborg, Arvid Wallgrens Backe 20 (Sweden)

    2007-06-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  9. Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2017-09-01

    Full Text Available Colorectal cancer (CRC is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.

  10. Mathematical modelling of the death rate dynamics in mammals with intestinal form of radiation sicleness

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1990-01-01

    A mathematical models has been developed to describe the death rate dynamics in irradiated mammals. The model links statistical biometric functions with statistical and dynamic characteristics of the organism's 'critical' system. There is an agreement between the results of modelling and experiments with respect to death rate dynamics of small laboratory animals subjected to acute and chronic irradiation with doses and dose-rates at which small intestine epithelium is 'ctitical'

  11. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  12. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorub......Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated...... to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue...

  13. Wnt, stem cells and cancer in the intestine.

    NARCIS (Netherlands)

    Pinto, D.; Clevers, J.C.

    2005-01-01

    The intestinal epithelium is a self-renewing tissue which represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. Although the stem cells of the intestine have not yet been physically characterized or

  14. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.

    Science.gov (United States)

    Gullmets, Josef; Torvaldson, Elin; Lindqvist, Julia; Imanishi, Susumu Y; Taimen, Pekka; Meinander, Annika; Eriksson, John E

    2017-12-01

    Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila , transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila , a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila , we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. © FASEB.

  15. JAK/STAT-1 Signaling Is Required for Reserve Intestinal Stem Cell Activation during Intestinal Regeneration Following Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Camilla A. Richmond

    2018-01-01

    Full Text Available The intestinal epithelium serves as an essential barrier to the outside world and is maintained by functionally distinct populations of rapidly cycling intestinal stem cells (CBC ISCs and slowly cycling, reserve ISCs (r-ISCs. Because disruptions in the epithelial barrier can result from pathological activation of the immune system, we sought to investigate the impact of inflammation on ISC behavior during the regenerative response. In a murine model of αCD3 antibody-induced small-intestinal inflammation, r-ISCs proved highly resistant to injury, while CBC ISCs underwent apoptosis. Moreover, r-ISCs were induced to proliferate and functionally contribute to intestinal regeneration. Further analysis revealed that the inflammatory cytokines interferon gamma and tumor necrosis factor alpha led to r-ISC activation in enteroid culture, which could be blocked by the JAK/STAT inhibitor, tofacitinib. These results highlight an important role for r-ISCs in response to acute intestinal inflammation and show that JAK/STAT-1 signaling is required for the r-ISC regenerative response.

  16. Intestinal Surgery.

    Science.gov (United States)

    Desrochers, André; Anderson, David E

    2016-11-01

    A wide variety of disorders affecting the intestinal tract in cattle may require surgery. Among those disorders the more common are: intestinal volvulus, jejunal hemorrhage syndrome and more recently the duodenal sigmoid flexure volvulus. Although general principles of intestinal surgery can be applied, cattle has anatomical and behavior particularities that must be known before invading the abdomen. This article focuses on surgical techniques used to optimize outcomes and discusses specific disorders of small intestine. Diagnoses and surgical techniques presented can be applied in field conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  18. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    Science.gov (United States)

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-04-17

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5+ cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5+ cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model

    DEFF Research Database (Denmark)

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine

    2010-01-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions......, and systemic enteric hormones on intestinal adaptation in short bowel syndrome....

  20. Exposure to Engineered Nanomaterial Results in Disruption of Brush Borders in Epithelia Models in vitro

    Science.gov (United States)

    Faust, James J.

    Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.

  1. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection.

    Science.gov (United States)

    Peer, Xavier; An, Gary

    2014-10-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of

  2. Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

    Directory of Open Access Journals (Sweden)

    Shannon R M Kinney

    Full Text Available IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g. exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs, and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In

  3. Oligomannose-Rich Membranes of Dying Intestinal Epithelial Cells Promote Host Colonization by Adherent-Invasive E. coli

    Directory of Open Access Journals (Sweden)

    Tetiana Dumych

    2018-04-01

    Full Text Available A novel mechanism is revealed by which clinical isolates of adherent-invasive Escherichia coli (AIEC penetrate into the epithelial cell layer, replicate, and establish biofilms in Crohn's disease. AIEC uses the FimH fimbrial adhesin to bind to oligomannose glycans on the surface of host cells. Oligomannose glycans exposed on early apoptotic cells are the preferred binding targets of AIEC, so apoptotic cells serve as potential entry points for bacteria into the epithelial cell layer. Thereafter, the bacteria propagate laterally in the epithelial intercellular spaces. We demonstrate oligomannosylation at two distinct sites of a glycoprotein receptor for AIEC, carcinoembryonic antigen related cell adhesion molecule 6 (CEACAM6 or CD66c, on human intestinal epithelia. After bacterial binding, FimH interacts with CEACAM6, which then clusters. The presence of the highest-affinity epitope for FimH, oligomannose-5, on CEACAM6 is demonstrated using LC-MS/MS. As mannose-dependent infections are abundant, this mechanism might also be used by other adherent-invasive pathogens.

  4. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    Science.gov (United States)

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  5. Small Intestine Disorders

    Science.gov (United States)

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  6. Morphological development of the small intestine in White Roman ...

    African Journals Online (AJOL)

    Customer

    2013-02-06

    Feb 6, 2013 ... intestine using the light microscope and scanning electron microscope in order to ... in morphology and structure of small intestinal segments in geese from ... in the multi-regression model (Steel and Torrie, 1960). RESULTS.

  7. Precision-cut intestinal slices as an in vitro model to predict NSAID induced intestinal toxicity

    NARCIS (Netherlands)

    Niu, Xiaoyu; van der Bijl, Henk; Groothuis, Geny; de Graaf, Inge

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are associated with high prevalence of gastro-intestinal side-effects. In vivo studies suggest that uncoupling of oxidative phosphorylation is an important cause of the toxicity and that the toxicity is aggravated by enterohepatic circulation.

  8. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  9. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  10. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  11. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment.

    Science.gov (United States)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo; Græsbøll, Kaare; Toft, Nils; Matthews, Louise; Nielsen, Søren Saxmose; Olsen, John Elmerdahl

    2016-09-06

    This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains in the intestine of nursery pigs. It also examined the dynamics of the composition of bacterial strains during and after the treatment. The growth responses of strains to ampicillin concentrations were determined using in vitro growth curves. Using these results as input data, growth predictions were generated using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most susceptible strains were more affected by increasing concentrations of antibiotics that the rest of the strains. The modeling revealed that short treatment duration resulted in lower levels of resistance and that dosing frequency did not substantially influence the growth of resistant strains. Resistance levels were found to be sensitive to the number of competing strains, and this effect was enhanced by longer duration of treatment. High excretion of bacteria from the intestine favored resistant strains over sensitive strains, but at the same time it resulted in a faster return to pre-treatment levels after the treatment ended. When the duration of high excretion was set to be limited to the treatment time (i.e. the treatment was assumed to result in a cure of diarrhea) resistant strains required longer time to reach the previous level. No fitness cost was found to be associated with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in

  12. Comparison of partial and complete arterial occlusion models for studying intestinal ischemia

    International Nuclear Information System (INIS)

    Parks, D.A.; Grogaard, B.; Granger, D.N.

    1982-01-01

    Mucosal albumin clearance was measured in jejunal segments of dogs under control conditions and following complete or partial arterial occlusion of varying durations (1, 2, 3, or 4 hours). The rate of albumin clearance was estimated from the luminal perfusion rate and the activity of protein bound 125 I in the perfusate and plasma. Partial and total arterial occlusions of 60 minutes to 4 hours' duration produced significant increases in mucosal albumin clearance. The magnitude of the rise in albumin clearance was directly related to the duration of ischemia in both total and partial arterial occlusion models. However, the magnitude of the increase in albumin clearance was significantly greater with total arterial occlusion for any given duration of ischemia. The albumin clearance results obtained in the present study compare favorably with previously reported morphologic changes in the intestinal mucosa produced by both total and partial occlusion of the superior mesenteric artery. The agreement between morphologic and physiologic measurements indicates that mucosal albumin clearance may be a useful tool for studying the pathophysiology of intestinal ischemia

  13. Profound Chemopreventative Effects of a Hydrogen Sulfide-Releasing NSAID in the APCMin/+ Mouse Model of Intestinal Tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Mark Paul-Clark

    Full Text Available Nonsteroidal anti-inflammatory drugs have been shown to reduce the incidence of gastrointestinal cancers, but the propensity of these drugs to cause ulcers and bleeding limits their use. H2S has been shown to be a powerful cytoprotective and anti-inflammatory substance in the digestive system. This study explored the possibility that a H2S-releasing nonsteroidal anti-inflammatory drug (ATB-346 would be effective in a murine model of hereditary intestinal cancer (APCMin+ mouse and investigated potential mechanisms of action via transcriptomics analysis. Daily treatment with ATB-346 was significantly more effective at preventing intestinal polyp formation than naproxen. Significant beneficial effects were seen with a treatment period of only 3-7 days, and reversal of existing polyps was observed in the colon. ATB-346, but not naproxen, significantly decreased expression of intestinal cancer-associated signaling molecules (cMyc, β-catenin. Transcriptomic analysis identified 20 genes that were up-regulated in APCMin+ mice, 18 of which were reduced to wild-type levels by one week of treatment with ATB-346. ATB-346 is a novel, gastrointestinal-sparing anti-inflammatory drug that potently and rapidly prevents and reverses the development of pre-cancerous lesions in a mouse model of hereditary intestinal tumorigenesis. These effects may be related to the combined effects of suppression of cyclooxygenase and release of H2S, and correction of most of the APCMin+-associated alterations in the transcriptome. ATB-346 may represent a promising agent for chemoprevention of tumorigenesis in the GI tract and elsewhere.

  14. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.

    Science.gov (United States)

    Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi

    2017-01-01

    The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish. Copyright © 2016. Published by Elsevier Inc.

  15. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. Results : In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most...... with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in relation to optimal treatment strategies. The modeling approach used in the study is generic......Background : This study evaluated how dosing regimen for intramuscularly-administered ampicillin, composition of Escherichia coli strains with regard to ampicillin susceptibility, and excretion of bacteria from the intestine affected the level of resistance among Escherichia coli strains...

  16. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Laurens J Ceulemans

    Full Text Available The farnesoid X receptor (FXR is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA could attenuate intestinal ischemia reperfusion injury.In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping, 3 conditions were tested (n = 16/group: laparotomy only (sham group; ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group; ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group. Vehicle or OCA (INT-747, 2*30mg/kg was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP; histology (morphologic injury to villi/crypts and villus length; intestinal permeability (Ussing chamber; endotoxin translocation (Lipopolysaccharide assay; cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13; apoptosis (cleaved caspase-3; and autophagy (LC3, p62.It was found that intestinal IRI was associated with high mortality (90%; loss of intestinal integrity (structurally and functionally; increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition.Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn

  17. Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia.

    Science.gov (United States)

    Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio

    2015-01-01

    The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.

  18. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  19. Model prodrugs for the intestinal peptide transporter. a synthetic approach for coupling of hydroxy-containing compounds to dieptides

    DEFF Research Database (Denmark)

    Friedrichsen, G; Nielsen, Carsten Uhd; Steffansen, Bente

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  20. Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response.

    Directory of Open Access Journals (Sweden)

    Poornima L N Kotha

    2015-03-01

    Full Text Available Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR, a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.

  1. PVA gel as a potential adhesion barrier: a safety study in a large animal model of intestinal surgery.

    Science.gov (United States)

    Renz, Bernhard W; Leitner, Kurt; Odermatt, Erich; Worthley, Daniel L; Angele, Martin K; Jauch, Karl-Walter; Lang, Reinhold A

    2014-03-01

    Intra-abdominal adhesions following surgery are a major source of morbidity and mortality including abdominal pain and small bowel obstruction. This study evaluated the safety of PVA gel (polyvinyl alcohol and carboxymethylated cellulose gel) on intestinal anastomoses and its potential effectiveness in preventing adhesions in a clinically relevant large animal model. Experiments were performed in a pig model with median laparotomy and intestinal anastomosis following small bowel resection. The primary endpoint was the safety of PVA on small intestinal anastomoses. We also measured the incidence of postoperative adhesions in PVA vs. control groups: group A (eight pigs): stapled anastomosis with PVA gel compared to group B (eight pigs), which had no PVA gel; group C (eight pigs): hand-sewn anastomosis with PVA gel compared to group B (eight pigs), which had no anti-adhesive barrier. Animals were sacrificed 14 days after surgery and analyzed. All anastomoses had a patent lumen without any stenosis. No anastomoses leaked at an intraluminal pressure of 40 cmH2O. Thus, anastomoses healed very well in both groups, regardless of whether PVA was administered. PVA-treated animals, however, had significantly fewer adhesions in the area of stapled anastomoses. The hand-sewn PVA group also had weaker adhesions and trended towards fewer adhesions to adjacent organs. These results suggest that PVA gel does not jeopardize the integrity of intestinal anastomoses. However, larger trials are needed to investigate the potential of PVA gel to prevent adhesions in gastrointestinal surgery.

  2. Evidence from Animal Models: Is a Restricted or Conventional Intestinal Microbiota Composition Predisposing to Risk for High-LET Radiation Injury?

    Science.gov (United States)

    Maier, Irene; Schiestl, Robert H

    2015-06-01

    Intestinal microbiota affect cell responses to ionizing radiation at the molecular level and can be linked to the development of the immune system, controlled cell death or apoptosis. We have developed a microbiota mouse model and report here that high-linear energy transfer (LET) radiation induced the repair of chromosomal DNA lesions more efficiently in conventional than in restricted intestinal microbiota mice. Based on different phylotype densities after whole-body irradiation, bacterial indicator phylotypes were found to be more abundant in restricted in microbiota than in conventional microbiota. Genotoxic phenotypes of irradiated restricted and conventional microbiota mice were compared with ataxia telangiectasia-deficient restricted and conventional microbiota mice, respectively. Those indicator phylotypes, including Bacteroides (Gram-negative bacterium cTPY-13), Barnesiella intestinihominis and others, which were identified in nonirradiated restricted microbiota mice, increase in radiation-exposed conventional microbiota along with a reduction of persistent DNA double-strand breaks in blood lymphocytes. The dynamic change of phylotype abundances elucidated a feedback mechanism and effect of intestinal microbiota composition on the adaptive response to high-LET radiation. Several other bacterial phylotypes ( Helicobacter hepaticus , Helicobacter spp and others) were found to be more abundant in conventional than restricted microbiota. In this commentary, mouse models used in cancer research and radiotherapy for the study on the effects of intestinal microbiota composition on normal tissue radiation response are characterized and discussed. Highlights of this commentary: 1. Restricted microbiota phylotypes were correlated with persistent DNA double-strand breaks (DSBs) and were found to orchestrate onco-protective controlled cell death after radiation; 2. Restricted microbiota composition reduced proinflammatory extracellular-stimulated immune responses, but

  3. The urokinase receptor homolog Haldisin is a novel differentiation marker of stratum granulosum in squamous epithelia

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Kriegbaum, Mette C; Hertz, Emil P

    2013-01-01

    Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated....... In accordance with its expression pattern, we denote this protein product, which is encoded by the LYPD5 gene, as Haldisin (human antigen with LU-domains expressed in skin). Two of the five human glycolipid-anchored membrane proteins with multiple LU-domains characterized so far are predominantly confined...

  4. Intestinal complications following accelerated fractionated X-irradiation

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.; Poulakos, L.; Osborne, J.W.

    1990-01-01

    Due to paucity of suitable animal models, it has been difficult to study the development of long-term intestinal complications following fractionated irradiation. We recently developed a model which allows multiple radiation exposures of a short segment of rat ileum without the need for repeated surgery. In the present series, this model was used to study the influence of shortening the total treatment time (accelerated fractionation) on development of radiation enteropathy. Male rats were orchiectomized and a short segment of distal ileum was transposed to the scrotum. Starting 3 weeks after surgery, the scrotum containing the intestinal segment was X-irradiated with 20 fractions of 2.8 Gy (total dose 56 Gy). Two fractionation schedules were compared: one fraction per day (total treatment time 26 days) and 3 fractions per day (total treatment time 7 days). Actuarial survival curves were obtained, and the degree of radiation injury was assessed 2, 8 and 26 weeks after the last radiation exposure using a semiquantitative histopathologic scoring system. There was no mortality from acute radiation injury in either treatment group. All animals of the 1-fraction/day group survived the observation period (26 weeks). In the 3-fraction/day group, there was significant mortality due to intestinal obstruction, and cumulative mortality at 26 weeks was 100%. Radiation injury, as assessed by the histopathologic scoring system, was also more pronounced in this group than in the 1-fraction/day group. We conclude that shortening the total treatment time significantly increases the severity of late intestinal complications. Our data are suggestive of an association between acute mucosal damage and chronic radiation injury of the small intestine. (orig.)

  5. Maternal administration of cannabidiol promotes an anti-inflammatory effect on the intestinal wall in a gastroschisis rat model

    Directory of Open Access Journals (Sweden)

    G.H. Callejas

    2018-03-01

    Full Text Available Gastroschisis (GS is an abdominal wall defect that results in histological and morphological changes leading to intestinal motility perturbation and impaired absorption of nutrients. Due to its anti-inflammatory, antioxidant, and neuroprotective effects, cannabidiol (CBD has been used as a therapeutic agent in many diseases. Our aim was to test the effect of maternal CBD in the intestine of an experimental model of GS. Pregnant rats were treated over 3 days with CBD (30 mg/kg after the surgical induction of GS (day 18.5 of gestation and compared to controls. Fetuses were divided into 4 groups: 1 control (C; 2 C+CBD (CCBD; 3 gastroschisis (G, and 4 G+CBD (GCBD. On day 21.5 of gestation, the fetuses were harvested and evaluated for: a body weight (BW, intestinal weight (IW, and IW/BW ratio; b histometric analysis of the intestinal wall; c immunohistochemically analysis of inflammation (iNOS and nitrite/nitrate level. BW: GCBD was lower than CCBD (P<0.005, IW and IW/BW ratio: GCBD was smaller than G (P<0.005, GCBD presented lower thickness in all parameters compared to G (P<0.005, iNOS and nitrite/nitrate were lower concentration in GCBD than to G (P<0.005. Maternal use of CBD had a beneficial effect on the intestinal loops of GS with decreased nitrite/nitrate and iNOS expression.

  6. Octreotide in Intestinal Lymphangiectasia: Lack of a Clinical Response and Failure to Alter Lymphatic Function in a Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    S Makhija

    2004-01-01

    Full Text Available Intestinal lymphangiectasia, which can be classified as primary or secondary, is an unusual cause of protein-losing enteropathy. The main clinical features include edema, fat malabsorption, lymphopenia and hypoalbuminemia. Clinical management generally includes a low-fat diet and supplementation with medium chain triglycerides. A small number of recent reports advocate the use of octreotide in intestinal lymphangiectasia. It is unclear why octreotide was used in these studies; although octreotide can alter splanchnic blood flow and intestinal motility, its actions on lymphatic function has never been investigated. A case of a patient with intestinal lymphangiectasia who required a shunt procedure after failing medium chain triglycerides and octreotide therapy is presented. During the management of this case, all existing literature on intestinal lymphangiectasia and all the known actions of octreotide were reviewed. Because some of the case reports suggested that octreotide may improve the clinical course of intestinal lymphangiectasia by altering lymphatic function, a series of experiments were undertaken to assess this. In an established guinea pig model, the role of octreotide in lymphatic function was examined. In this model system, the mesenteric lymphatic vessels responded to 5-hydroxytryptamine with a decrease in constriction frequency, while histamine administration markedly increased lymphatic constriction frequency. Octreotide failed to produce any change in lymphatic function when a wide range of concentrations were applied to the mesenteric lymphatic vessel preparation. In conclusion, in this case, octreotide failed to induce a clinical response and laboratory studies showed that octreotide did not alter lymphatic function. Thus, the mechanisms by which octreotide induced clinical responses in the cases reported elsewhere in the literature remain unclear, but the present study suggests that it does not appear to act via increasing

  7. [Morphologic study of the intestine in an experimental model of amnioinfusion in fetal rabbits with gastroschisis].

    Science.gov (United States)

    Muñoz, M E; Albert, A; Juliá, V; Sancho, M A; Grande, C; Martínez, A; Morales, L

    2002-10-01

    An experimental model of serial amnioinfusion has been developed in fetal rabbits with gastroschisis, using an intraamniotic catheter connected to a subcutaneous port. Fetuses of 4 groups were compared 7 days after surgery: group A: gastroschisis and daily amnioinfusion through an implanted catheter; group C: gastroschisis and blind amniotic catheter; group G: gastroschisis without catheter; group O: nonoperated fetuses. Survival rate, fetal body weight, lung weight, intestinal weight and length were determined. Computer aided morphometric analysis was performed, in which intestinal diameter, thickness and villi length were measured. Amniotic fluid samples were recovered along the experimental period. Intestinal length was significantly shorter and had a significantly thicker wall than nonoperated fetuses; we found no other morphometric differences between gastroschisis treated with amnioinfusion (group A) and the other gastroschisis groups (C and G). Amnioinfusion did not affect fetal survival rate; the amniotic catheter alone did not cause pulmonary hypoplasia due to significant amniotic leak. The physiological decrease in amniotic volume towards the end of gestation has not been modified by this regime of amnioinfusion.

  8. Colon in acute intestinal infection.

    Science.gov (United States)

    Guarino, Alfredo; Buccigrossi, Vittoria; Armellino, Carla

    2009-04-01

    The colon is actively implicated in intestinal infections not only as a target of enteric pathogens and their products but also as a target organ for treatment. In the presence of diarrhea, both of osmotic and secretory nature, the colon reacts with homeostatic mechanisms to increase ion absorption. These mechanisms can be effectively exploited to decrease fluid discharge. A model of intestinal infections using rotavirus (RV) in colonic cells was set up and used to define a dual model of secretory and osmotic diarrhea in sequence. Using this model, antidiarrheal drugs were tested, namely zinc and the enkephalinase inhibitor racecadotril. Zinc was able to decrease the enterotoxic activity responsible for secretory diarrhea. It also inhibited the cytotoxic effect of RV. The mechanism of zinc was related at least in part to the activation of MAPK activity, but also a direct antiviral effect was observed. Racecadotril showed a potent and selective inhibition of active secretion, being particularly effective in the first phase of RV diarrhea. The use of drugs active at the colonic level, therefore, offers effective options to treat intestinal infections in childhood. In addition, the colon is the natural site of colonic microflora, a target of probiotic therapy, which is the first line of approach recommended by the European Society for Paediatric Gastroenterology, Hepatology and Nutrition to treat infectious diarrhea.

  9. The Induction of Protective Immunity against Experimental Eimeria tenella Infection using Serum Exosomes

    Science.gov (United States)

    Avian coccidiosis is caused by Eimeria, a unicellular, apicomplexan protist which primarily infects intestinal epithelia resulting in nutrition malabsorption and reduced growth of commercial poultry. Vaccination of chickens with exosomes isolated from antigen presenting cells and containing parasit...

  10. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  11. Scintigraphic visualization of bacterial translocation in experimental strangulated intestinal obstruction

    International Nuclear Information System (INIS)

    Galeev, Yu.M.; Popov, M.V.; Salato, O.V.; Lishmanov, Yu.B.; Grigorev, E.G.; Aparcin, K.A.

    2009-01-01

    The purpose of this study was to obtain scintigraphic images depicting translocation of 99m Tc-labelled Escherichia coli bacteria through the intestinal barrier and to quantify this process using methods of nuclear medicine. Thirty male Wistar rats (including 20 rats with modelled strangulated intestinal obstruction and 10 healthy rats) were used for bacterial scintigraphy. 99m Tc-labelled E. coli bacteria ( 99m Ts-E. coli) with an activity of 7.4-11.1 MBq were administered into a section of the small intestine. Scintigraphic visualization of bacterial translocation into organs and tissues of laboratory animals was recorded in dynamic (240 min) and static (15 min) modes. The number of labelled bacteria, which migrated through the intestinal barrier, was quantified by calculating the translocation index (TI). Control indicated no translocation of 99m Ts-E. coli administered into the intestine through the parietes of the small intestine's distal part in healthy animals. Animals with strangulated obstruction demonstrated different migration strength and routes of labelled bacteria from strangulated and superior to strangulation sections of the small intestine. 99m Ts-E. coli migrated from the strangulated loop into the peritoneal cavity later causing systemic bacteraemia through peritoneal resorption. The section of the small intestine, which was superior to the strangulation, demonstrated migration of labelled bacteria first into the portal and then into the systemic circulation. The strangulated section of the small intestine was the main source of bacteria dissemination since the number of labelled bacteria, which migrated from this section significantly, exceeded that of the area superior to the strangulation section of the small intestine (p = 0.0003). Bacterial scintigraphy demonstrated the possibility of visualizing migration routes of labelled bacteria and quantifying their translocation through the intestinal barrier. This approach to study bacterial

  12. L-lysine escinat, thiotriazolin, gordox and mydocalm influence on oxygen tension in the intestinal wall and acid-base balance and limited proteolysis in intestinal venous blood in terms of intraabdominal hypertension modeling

    Directory of Open Access Journals (Sweden)

    Sapegin V.I.

    2014-11-01

    Full Text Available In acute experiments on rabbits there were studied changes in oxygen tension in the intestinal wall tissues, acid-base balance and limited proteolysis and its inhibitors in intestinal venous blood, protective action of L-lysine escinat (0,15 mg/kg / single dose, thiotriazolin (25 mg/kg / single dose, aprotinin (gordox (10,000 units/kg / single dose in sequential modeling of standard levels increasing of intra-abdominal hypertension (IAH — 50, 100, 150, 200, 250, 300, 350 m H2O, and also of tolperison (mydocalm (5 mg/kg / single dose on modeling of stable 3-hour IAH 200 m H2O. The IAH modeling was performed by means of stand of our construction. Under the influence of IAH the compensated metabolic acidosis in intestinal venous blood with a compensative hyperpnoe develops, decline of oxygen tension in tissues and activating of a limited proteolysis as well as decline of its inhibitors activity in intestinal venous blood occur. By the degree of metabolic acidosis prevention investigational preparations were distributed as follows gordox > thiotriazolin = L-lysine escinat = mydocalm, and by prevention of decline of oxygen tension in tissues — thiotriazolin > L-lysine escinat > mydocalm > gordox, it is is connected with different rate of methabolic products excretion into the blood, due to the influence on blood circulation and transcapilary exchange. By the degree of prevention of proteolytic activity and inhibitory potential changes, investigational preparations were distributed as follows: gordox > mydocalm > thiotriazolin > L-lysine escinat, this is connected with inhibition of proteolysis in gordox, and in other ones – with reduction of ischemic damage of tissues. Owing to different mechanism of action thiotriazolin, L-lysine escinat and mydocalm may be simultaneously recommended for a conservative treatment of patients with intraabdominal hypertension syndrome.

  13. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  14. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  15. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  16. Intestinal Lymphangiectasia

    Science.gov (United States)

    ... Overview of Crohn Disease Additional Content Medical News Intestinal Lymphangiectasia (Idiopathic Hypoproteinemia) By Atenodoro R. Ruiz, Jr., MD, ... Overview of Malabsorption Bacterial Overgrowth Syndrome Celiac Disease Intestinal ... Intolerance Short Bowel Syndrome Tropical Sprue Whipple ...

  17. In Silico Modelling of the Human Intestinal Microflora

    NARCIS (Netherlands)

    Kamerman, Derk Jan; Wilkinson, Michael H.F.

    2002-01-01

    The ecology of the human intestinal microflora and its interaction with the host are poorly understood. Though more and more data are being acquired, in part using modern molecular methods, development of a quantitative theory has not kept pace with this development. This is in part due to the

  18. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    Science.gov (United States)

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin.

    Science.gov (United States)

    Fasano, A

    2000-01-01

    The intestinal epithelium represents the largest interface between the external environment and the internal host milieu and constitutes the major barrier through which molecules can either be absorbed or secreted. There is now substantial evidence that tight junctions (tj) play a major role in regulating epithelial permeability by influencing paracellular flow of fluid and solutes. Tj are one of the hallmarks of absorptive and secretory epithelia. Evidence now exists that tj are dynamic rather than static structures and readily adapt to a variety of developmental, physiological, and pathological circumstances. These adaptive mechanisms are still incompletely understood. Activation of PKC either by Zonula occludens toxin (Zot) or by phorbol esters increases paracellular permeability. Alteration of epithelial tj is a recently described property for infectious agents. Clostridium difficile toxin A and B and influenza and vesicular stomatitis viruses have been shown to loosen tj in tissue culture monolayers. Unlike what occurs after the Zot stimulus, these changes appear to be irreversible and are associated with destruction of the tj complex. On the basis of this observation, we postulated that Zot may mimic the effect of a functionally and immunologically related endogenous modulator of epithelial tj. We were able to identify an intestinal Zot analogue, which we named zonulin. It is conceivable that the zonulins participate in the physiological regulation of intercellular tj not only in the small intestine, but also throughout a wide range of extraintestinal epithelia as well as the ubiquitous vascular endothelium, including the blood-brain barrier. Disregulation of this hypothetical zonulin model may contribute to disease states that involve disordered intercellular communication, including developmental and intestinal disorders, tissue inflammation, malignant transformation, and metastasis.

  20. Intestinal parasites : associations with intestinal and systemic inflammation

    NARCIS (Netherlands)

    Zavala, Gerardo A; García, Olga P; Camacho, Mariela; Ronquillo, Dolores; Campos-Ponce, Maiza; Doak, Colleen; Polman, Katja; Rosado, Jorge L

    2018-01-01

    AIMS: Evaluate associations between intestinal parasitic infection with intestinal and systemic inflammatory markers in school-aged children with high rates of obesity. METHODS AND RESULTS: Plasma concentrations of CRP, leptin, TNF-α, IL-6 and IL-10 were measured as systemic inflammation markers and

  1. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella pneumoniae Challenge

    Directory of Open Access Journals (Sweden)

    Sammeta V. Raju

    2013-07-01

    Full Text Available Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 h did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.

  2. Intestinal Obstruction

    Science.gov (United States)

    ... Colostomy ) is required to relieve an obstruction. Understanding Colostomy In a colostomy, the large intestine (colon) is cut. The part ... 1 What Causes Intestinal Strangulation? Figure 2 Understanding Colostomy Gastrointestinal Emergencies Overview of Gastrointestinal Emergencies Abdominal Abscesses ...

  3. Chemotherapy does not influence intestinal amino acid uptake in children

    NARCIS (Netherlands)

    de Koning, Barbara A.; van der Schoor, Sophie R.; Wattimena, Darcos L.; de Laat, Peter C.; Pieters, Rob; van Goudoever, Johannes B.

    2007-01-01

    Chemotherapy will frequently induce intestinal damage (mucositis). Enteral nutrition is then often withheld for fear of impaired intestinal absorption as shown in animal models. There is no clinical evidence, however, that absorption is indeed compromised during chemotherapy-induced mucositis. The

  4. Administration of Protein kinase D1 induce an immunomodulatory effect on lipopolysaccharide-induced intestinal inflammation in a co-culture model of intestinal epithelial Caco-2 cells and RAW 264.7 macrophage cells

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Fredborg, Marlene; Andersen, Vibeke

    2017-01-01

    the effects of human PKD1 in relation to intestinal inflammation, using a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. An inflammatory response was induced in the macrophages by lipopolysaccharide (LPS), upregulating the expression of tumour necrosis factor alpha (TNF......-α), interleukin- (IL-) 1β, and IL-6 besides increasing the secretion of TNF-α protein. The effect of administering PKD1 to Caco-2 was evaluated in relation to both amelioration of inflammation and the ability to suppress inflammation initiation. Administration of PKD1 (10–100 ng/ml) following induction...

  5. The function of 7D-cadherins: a mathematical model predicts physiological importance for water transport through simple epithelia

    Directory of Open Access Journals (Sweden)

    Walcher Sebastian

    2011-06-01

    Full Text Available Abstract Background 7D-cadherins like LI-cadherin are cell adhesion molecules and represent exceptional members of the cadherin superfamily. Although LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells together, and to be dysregulated in a variety of diseases, the physiological role is still enigmatic. Interestingly 7D-cadherins occur only in the lateral plasma membranes of cells from epithelia of water transporting tissues like the gut, the liver or the kidney. Furthermore LI-cadherin was shown to exhibit a highly cooperative Ca2+-dependency of the binding activity. Thus it is tempting to assume that LI-cadherin regulates the water transport through the epithelium in a passive fashion by changing its binding activity in dependence on the extracellular Ca2+. Results We developed a simple mathematical model describing the epithelial lining of a lumen with a content of variable osmolarity covering an interstitium of constant osmolarity. The width of the lateral intercellular cleft was found to influence the water transport significantly. In the case of hypertonic luminal content a narrow cleft is necessary to further increase concentration of the luminal content. If the cleft is too wide, the water flux will change direction and water is transported into the lumen. Electron microscopic images show that in fact areas of the gut can be found where the lateral intercellular cleft is narrow throughout the lateral cell border whereas in other areas the lateral intercellular cleft is widened. Conclusions Our simple model clearly predicts that changes of the width of the lateral intercellular cleft can regulate the direction and efficiency of water transport through a simple epithelium. In a narrow cleft the cells can increase the concentration of osmotic active substances easily by active transport whereas if the cleft is wide, friction is reduced but the cells can hardly build up high osmotic

  6. Amebiasis intestinal Intestinal amebiasis

    Directory of Open Access Journals (Sweden)

    JULIO CÉSAR GÓMEZ

    2007-03-01

    Full Text Available Entamoeba histolytica es el patógeno intestinal más frecuente en nuestro medio -después de Giardia lamblia-, una de las principales causas de diarrea en menores de cinco años y la cuarta causa de muerte en el mundo debida a infección por protozoarios. Posee mecanismos patogénicos complejos que le permiten invadir la mucosa intestinal y causar colitis amebiana. El examen microscópico es el método más usado para su identificación pero la existencia de dos especies morfológicamente iguales, una patógena ( E. histolytica y una no patógena ( Entamoeba dispar, ha llevado al desarrollo de otros métodos de diagnóstico. El acceso al agua potable y los servicios sanitarios adecuados, un tratamiento médico oportuno y el desarrollo de una vacuna, son los ejes para disminuir la incidencia y mortalidad de esta entidad.Entamoeba histolytica is the most frequent intestinal pathogen seen in our country, after Giardia lamblia, being one of the main causes of diarrhea in children younger than five years of age, and the fourth leading cause of death due to infection for protozoa in the world. It possesses complex pathogenic mechanisms that allow it to invade the intestinal mucosa, causing amoebic colitis. Microscopy is the most used method for its identification, but the existence of two species morphologically identical, the pathogen one ( E. histolytica, and the non pathogen one ( E. dispar, have taken to the development of other methods of diagnosis. The access to drinkable water and appropriate sanitary services, an opportune medical treatment, and the development of a vaccine are the axes to diminish the incidence and mortality of this entity.

  7. Intestinal Leiomyositis: A Cause of Chronic Intestinal Pseudo-Obstruction in 6 Dogs.

    Science.gov (United States)

    Zacuto, A C; Pesavento, P A; Hill, S; McAlister, A; Rosenthal, K; Cherbinsky, O; Marks, S L

    2016-01-01

    Intestinal leiomyositis is a suspected autoimmune disorder affecting the muscularis propria layer of the gastrointestinal tract and is a cause of chronic intestinal pseudo-obstruction in humans and animals. To characterize the clinical presentation, histopathologic features, and outcome of dogs with intestinal leiomyositis in an effort to optimize treatment and prognosis. Six client-owned dogs. Retrospective case series. Medical records were reviewed to describe signalment, clinicopathologic and imaging findings, histopathologic diagnoses, treatment, and outcome. All biopsy specimens were reviewed by a board-certified pathologist. Median age of dogs was 5.4 years (range, 15 months-9 years). Consistent clinical signs included vomiting (6/6), regurgitation (2/6), and small bowel diarrhea (3/6). Median duration of clinical signs before presentation was 13 days (range, 5-150 days). Diagnostic imaging showed marked gastric distension with dilated small intestines in 4/6 dogs. Full-thickness intestinal biopsies were obtained in all dogs by laparotomy. Histopathology of the stomach and intestines disclosed mononuclear inflammation, myofiber degeneration and necrosis, and fibrosis centered within the region of myofiber loss in the intestinal muscularis propria. All dogs received various combinations of immunomodulatory and prokinetic treatment, antimicrobial agents, antiemetics, and IV fluids, but none of the dogs showed a clinically relevant improvement with treatment. Median survival was 19 days after diagnosis (range, 3-270 days). Intestinal leiomyositis is a cause of intestinal pseudo-obstruction and must be diagnosed by full-thickness intestinal biopsy. This disease should be considered in dogs with acute and chronic vomiting, regurgitation, and small bowel diarrhea. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  8. The intestinal complement system in inflammatory bowel disease: Shaping intestinal barrier function.

    Science.gov (United States)

    Sina, Christian; Kemper, Claudia; Derer, Stefanie

    2018-06-01

    The complement system is part of innate sensor and effector systems such as the Toll-like receptors (TLRs). It recognizes and quickly systemically and/or locally respond to microbial-associated molecular patterns (MAMPs) with a tailored defense reaction. MAMP recognition by intestinal epithelial cells (IECs) and appropriate immune responses are of major importance for the maintenance of intestinal barrier function. Enterocytes highly express various complement components that are suggested to be pivotal for proper IEC function. Appropriate activation of the intestinal complement system seems to play an important role in the resolution of chronic intestinal inflammation, while over-activation and/or dysregulation may worsen intestinal inflammation. Mice deficient for single complement components suffer from enhanced intestinal inflammation mimicking the phenotype of patients with chronic inflammatory bowel disease (IBD) such as Crohn's disease (CD) or ulcerative colitis (UC). However, the mechanisms leading to complement expression in IECs seem to differ markedly between UC and CD patients. Hence, how IECs, intestinal bacteria and epithelial cell expressed complement components interact in the course of IBD still remains to be mostly elucidated to define potential unique patterns contributing to the distinct subtypes of intestinal inflammation observed in CD and UC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier

    NARCIS (Netherlands)

    Ulluwishewa, D.; Anderson, R.C.; Young, W.; McNabb, W.C.; Baarlen, van P.; Moughan, P.J.; Wells, J.M.; Roy, N.C.

    2015-01-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique

  10. Preservation of intestinal microvascular Po2 during normovolemic hemodilution in a rat model

    NARCIS (Netherlands)

    van Bommel, J.; Siegemund, M.; Henny, C. P.; van den Heuvel, D. A.; Trouwborst, A.; Ince, C.

    2000-01-01

    The effect of hemodilution on the intestinal microcirculatory oxygenation is not clear. The aim of this study was to determine the effect of moderate normovolemic hemodilution on intestinal microvascular partial oxygen pressure (Po2) and its relation to the mesenteric venous Po2 (Pmvo2).

  11. Gastro-intestinal handling of water and solutes in three species of elasmobranch fish, the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate Raja eglanteria.

    Science.gov (United States)

    Anderson, W Gary; Dasiewicz, Patricia J; Liban, Suadi; Ryan, Calen; Taylor, Josi R; Grosell, Martin; Weihrauch, Dirk

    2010-04-01

    The present study reports aspects of GI tract physiology in the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate, Raja eglanteria. Plasma and stomach fluid osmolality and solute values were comparable between species, and stomach pH was low in all species (2.2 to 3.4) suggesting these elasmobranchs may maintain a consistently low stomach pH. Intestinal osmolality, pH and ion values were comparable between species, however, some differences in ion values were observed. In particular Ca(2+) (19.67+/-3.65mM) and Mg(2+) (43.99+/-5.11mM) were high in L. erinacea and Mg(2+) was high (130.0+/-39.8mM) in C. palgiosum which may be an indication of drinking. Furthermore, intestinal fluid HCO(3)(-) values were low (8.19+/-2.42 and 8.63+/-1.48mM) in both skates but very high in C. plagiosum (73.3+/-16.3mM) suggesting ingested seawater may be processed by species-specific mechanisms. Urea values from the intestine to the colon dropped precipitously in all species, with the greatest decrease seen in C. plagiosum (426.0+/-8.1 to 0mM). This led to the examination of the molecular expression of both a urea transporter and a Rhesus like ammonia transporter in the intestine, rectal gland and kidney in L. erinacea. Both these transporters were expressed in all tissues; however, expression levels of the Rhesus like ammonia transporter were orders of magnitude higher than the urea transporter in the same tissue. Intestinal flux rates of solutes in L. erinacea were, for the most part, in an inward direction with the notable exception of urea. Colon flux rates of solutes in L. erinacea were all in an outward direction, although absolute rates were considerably lower than the intestine, suggestive of a much tighter epithelia. Results are discussed in the context of the potential role of the GI tract in salt and water, and nitrogen, homeostasis in elasmobranchs.

  12. [Treatment of children with intestinal failure: intestinal rehabilitation, home parenteral nutrition or small intestine transplantation?

    NARCIS (Netherlands)

    Neelis, E.G.; Oers, H.A. van; Escher, J.C.; Damen, G.M.; Rings, E.H.; Tabbers, M.M.

    2014-01-01

    Intestinal failure is characterised by inadequate absorption of food or fluids, which is caused by insufficient bowel surface area or functioning. Children with chronic intestinal failure are dependent on parenteral nutrition (PN), which can be provided at home (HPN). In the Netherlands, HPN for

  13. Enteric Neuron Imbalance and Proximal Dysmotility in Ganglionated Intestine of the Sox10Dom/+ Hirschsprung Mouse ModelSummary

    Directory of Open Access Journals (Sweden)

    Melissa A. Musser

    2015-01-01

    Full Text Available Background & Aims: In Hirschsprung disease (HSCR, neural crest-derived progenitors (NCPs fail to completely colonize the intestine so that the enteric nervous system is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. Methods: Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wild-type controls. Results: Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as calretinin+ and neuronal nitric oxide synthase (nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4 weeks of age; at 6 weeks of age, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6 weeks of age had little or no colonic inflammation when compared with wild-type littermates, suggesting that these changes in gastrointestinal motility are neurally mediated. Conclusions: The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects gastrointestinal motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification. Keywords: Aganglionosis, Enteric Nervous System, Neural Crest

  14. Quantitative estimation of intestinal dilation as a predictor of obstruction in the dog.

    Science.gov (United States)

    Graham, J P; Lord, P F; Harrison, J M

    1998-11-01

    Mechanical obstruction is a major differential diagnosis for dogs presented with gastrointestinal problems. Small intestinal dilation is a cardinal sign of obstruction but its recognition depends upon the observer's experience and anecdotally derived parameters for normal small intestinal diameter. The objective of this study was to formulate a quantitative index for normal intestinal diameter and evaluate its usefulness in predicting small intestinal obstruction. The material consisted of survey abdominal radiographs of 50 normal dogs, 44 cases of intestinal obstruction and 86 patients which subsequently had an upper gastrointestinal examination. A ratio of the maximum small intestinal diameter (SI) and the height of the body of the fifth lumbar vertebra at its narrowest point (L5) was used, and a logistic regression model employed to determine the probability of an obstruction existing with varying degrees of intestinal dilation. A value of 1.6 for SI/L5 is recommended as the upper limit of normal intestinal diameter for clinical use. The model showed that obstruction is very unlikely if the SI/L5 value is less than this. Higher values were significantly associated with obstruction.

  15. Quantitative estimation of intestinal dilation as a predictor of obstruction in the dog

    International Nuclear Information System (INIS)

    Graham, J.P.; Lord, P.F.; Harrison, J.M.

    1998-01-01

    Mechanical obstruction is a major differential diagnosis for dogs presented with gastrointestinal problems. Small intestinal dilation is a cardinal sign of obstruction but its recognition depends upon the observer's experience and anecdotally derived parameters for normal small intestinal diameter. The objective of this study was to formulate a quantitative index for normal intestinal diameter and evaluate its usefulness in predicting small intestinal obstruction. The material consisted of survey abdominal radiographs of 50 normal dogs, 44 cases of intestinal obstruction and 86 patients which subsequently had an upper gastrointestinal examination. A ratio of the maximum small intestinal diameter (SI) and the height of the body of the fifth lumbar vertebra at its narrowest point (L5) was used, and a logistic regression model employed to determine the probability of an obstruction existing with varying degrees of intestinal dilation. A value of 1.6 for SI/L5 is recommended as the upper limit of normal intestinal diameter for clinical use. The model showed that obstruction is very unlikely if the SI/L5 value is less than this. Higher values were significantly associated with obstruction

  16. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Eiichi [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Hosokawa, Masaya [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Faculty of Human Sciences, Tezukayama Gakuin University, Osaka (Japan); Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Tsukiyama, Katsushi; Yamada, Yuichiro [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Department of Internal Medicine, Division of Endocrinology, Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita (Japan); Seino, Yutaka [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); Kansai Electric Power Hospital, Osaka (Japan); Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp [Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University (Japan); CREST of Japan Science and Technology Cooperation (JST), Kyoto (Japan)

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin

  17. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    International Nuclear Information System (INIS)

    Ogawa, Eiichi; Hosokawa, Masaya; Harada, Norio; Yamane, Shunsuke; Hamasaki, Akihiro; Toyoda, Kentaro; Fujimoto, Shimpei; Fujita, Yoshihito; Fukuda, Kazuhito; Tsukiyama, Katsushi; Yamada, Yuichiro; Seino, Yutaka; Inagaki, Nobuya

    2011-01-01

    Research highlights: → Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. → Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. → The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [ 14 C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [ 14 C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather

  18. Location and pathogenic potential of Blastocystis in the porcine intestine.

    Directory of Open Access Journals (Sweden)

    Wenqi Wang

    Full Text Available Blastocystis is an ubiquitous, enteric protozoan of humans and many other species. Human infection has been associated with gastrointestinal disease such as irritable bowel syndrome, however, this remains unproven. A relevant animal model is needed to investigate the pathogenesis/pathogenicity of Blastocystis. We concluded previously that pigs are likely natural hosts of Blastocystis with a potentially zoonotic, host-adapted subtype (ST, ST5, and may make suitable animal models. In this study, we aimed to characterise the host-agent interaction of Blastocystis and the pig, including localising Blastocystis in porcine intestine using microscopy, PCR and histopathological examination of tissues. Intestines from pigs in three different management systems, i.e., a commercial piggery, a small family farm and a research herd (where the animals were immunosuppressed were examined. This design was used to determine if environment or immune status influences intestinal colonisation of Blastocystis as immunocompromised individuals may potentially be more susceptible to blastocystosis and development of associated clinical signs. Intestines from all 28 pigs were positive for Blastocystis with all pigs harbouring ST5. In addition, the farm pigs had mixed infections with STs 1 and/or 3. Blastocystis organisms/DNA were predominantly found in the large intestine but were also detected in the small intestine of the immunosuppressed and some of the farm pigs, suggesting that immunosuppression and/or husbandry factors may influence Blastocystis colonisation of the small intestine. No obvious pathology was observed in the histological sections. Blastocystis was present as vacuolar/granular forms and these were found within luminal material or in close proximity to epithelial cells, with no evidence of attachment or invasion. These results concur with most human studies, in which Blastocystis is predominantly found in the large intestine in the absence of

  19. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease.

    Science.gov (United States)

    Schwiertz, Andreas; Spiegel, Jörg; Dillmann, Ulrich; Grundmann, David; Bürmann, Jan; Faßbender, Klaus; Schäfer, Karl-Herbert; Unger, Marcus M

    2018-02-12

    Intestinal inflammation and increased intestinal permeability (both possibly fueled by dysbiosis) have been suggested to be implicated in the multifactorial pathogenesis of Parkinson's disease (PD). The objective of the current study was to investigate whether fecal markers of inflammation and impaired intestinal barrier function corroborate this pathogenic aspect of PD. In a case-control study, we quantitatively analyzed established fecal markers of intestinal inflammation (calprotectin and lactoferrin) and fecal markers of intestinal permeability (alpha-1-antitrypsin and zonulin) in PD patients (n = 34) and controls (n = 28, group-matched for age) by enzyme-linked immunosorbent assay. The study design controlled for potential confounding factors. Calprotectin, a fecal marker of intestinal inflammation, and two fecal markers of increased intestinal permeability (alpha-1-antitrypsin and zonulin) were significantly elevated in PD patients compared to age-matched controls. Lactoferrin, as a second fecal marker of intestinal inflammation, showed a non-significant trend towards elevated concentrations in PD patients. None of the four fecal markers correlated with disease severity, PD subtype, dopaminergic therapy, or presence of constipation. Fecal markers reflecting intestinal inflammation and increased intestinal permeability have been primarily investigated in inflammatory bowel disease so far. Our data indicate that calprotectin, alpha-1-antitrypsin and zonulin could be useful non-invasive markers in PD as well. Even though these markers are not disease-specific, they corroborate the hypothesis of an intestinal inflammation as contributing factor in the pathogenesis of PD. Further investigations are needed to determine whether calprotectin, alpha-1-antitrypsin and zonulin can be used to define PD subgroups and to monitor the effect of interventions in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  1. Contribution of H. pylori and smoking trends to US incidence of intestinal-type noncardia gastric adenocarcinoma: a microsimulation model.

    Science.gov (United States)

    Yeh, Jennifer M; Hur, Chin; Schrag, Deb; Kuntz, Karen M; Ezzati, Majid; Stout, Natasha; Ward, Zachary; Goldie, Sue J

    2013-01-01

    Although gastric cancer has declined dramatically in the US, the disease remains the second leading cause of cancer mortality worldwide. A better understanding of reasons for the decline can provide important insights into effective preventive strategies. We sought to estimate the contribution of risk factor trends on past and future intestinal-type noncardia gastric adenocarcinoma (NCGA) incidence. We developed a population-based microsimulation model of intestinal-type NCGA and calibrated it to US epidemiologic data on precancerous lesions and cancer. The model explicitly incorporated the impact of Helicobacter pylori and smoking on disease natural history, for which birth cohort-specific trends were derived from the National Health and Nutrition Examination Survey (NHANES) and National Health Interview Survey (NHIS). Between 1978 and 2008, the model estimated that intestinal-type NCGA incidence declined 60% from 11.0 to 4.4 per 100,000 men, <3% discrepancy from national statistics. H. pylori and smoking trends combined accounted for 47% (range = 30%-58%) of the observed decline. With no tobacco control, incidence would have declined only 56%, suggesting that lower smoking initiation and higher cessation rates observed after the 1960s accelerated the relative decline in cancer incidence by 7% (range = 0%-21%). With continued risk factor trends, incidence is projected to decline an additional 47% between 2008 and 2040, the majority of which will be attributable to H. pylori and smoking (81%; range = 61%-100%). Limitations include assuming all other risk factors influenced gastric carcinogenesis as one factor and restricting the analysis to men. Trends in modifiable risk factors explain a significant proportion of the decline of intestinal-type NCGA incidence in the US, and are projected to continue. Although past tobacco control efforts have hastened the decline, full benefits will take decades to be realized, and further discouragement of smoking and reduction of

  2. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    Science.gov (United States)

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  3. [Myosin B ATPase activity of the intestinal smooth muscle in intestinal obstruction].

    Science.gov (United States)

    Takamatsu, H

    1983-06-01

    Intestinal smooth myosin B was prepared from muscle layers around the lesion in dogs with experimental colonic stenosis and in patients with congenital intestinal obstruction. Mg2+-ATPase activity of the myosin B was compared between the proximal dilated segment and distal segment to obstruction. Experimental colonic stenosis: In early period after surgery, proximal colons showed higher activity of myosin B ATPase than distal colons, decreasing to less than distal colon as time passed. Congenital intestinal obstruction: In three cases, whose atresia might have occurred at earlier period of gestation, proximal bowels showed less activity of myosin B ATPase than distal bowels. However, in two cases, whose atresia might have occurred at later period of gestation, and two cases with intestinal stenosis, proximal bowels indicated higher activity of myosin B ATPase than distal bowels. These data suggested that the contractibility of the proximal intestine was depending on the duration of obstruction, and it was depressed in the former patients and was accelerated in the latter patients. These results suggested that the extensive resection of dilated proximal bowel in the congenital atresia is not always necessary to obtain good postoperative intestinal dynamics at the operation of the atresial lesions which may be induced at later period of gestation. They also suggested that surgery for intestinal obstruction should be performed before the depression of intestinal contractibility to get good bowel function.

  4. [Congenital intestinal lymphangiectasia].

    Science.gov (United States)

    Popović, Dugan D j; Spuran, Milan; Alempijević, Tamara; Krstić, Miodrag; Djuranović, Srdjan; Kovacević, Nada; Damnjanović, Svetozar; Micev, Marjan

    2011-03-01

    Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortuous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and supportive therapy. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  5. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  6. The effect of bovine colostrum products on intestinal dysfunction and inflammation in a preterm pig model of necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal

    Necrotizing enterocolitis (NEC), primarily seen in preterm infants, is associated with high morbidity and mortality. The pathogenesis is not fully understood but risk factors include prematurity, enteral feeding (especially with milk formula), and the intestinal microbiota. Mother’s milk, rich...... in bioactive factors, has a protective effect against NEC, but not all preterm infants are able to receive mother’s milk. The overall aim of this thesis was to investigate if bovine colostrum (BC), also rich in bioactive factors, could serve as an alternative to mother’s milk. A preterm pig model of NEC...... formula. All three BC products maintained trophic and anti-inflammatory effects on the immature pig intestine. A simple and standardized system was required to investigate the effects of milk formula versus BC on intestinal epithelial cells. In Study III, the IPEC-J2 cell line was evaluated as an in vitro...

  7. The formation of intestinal organoids in a hanging drop culture.

    Science.gov (United States)

    Panek, Malgorzata; Grabacka, Maja; Pierzchalska, Malgorzata

    2018-01-25

    Recently organoids have become widely used in vitro models of many tissue and organs. These type of structures, originated from embryonic or adult mammalian intestines, are called "mini guts". They organize spontaneously when intestinal crypts or stem cells are embedded in the extracellular matrix proteins preparation scaffold (Matrigel). This approach has some disadvantages, as Matrigel is undefined (the concentrations of growth factors and other biologically active components in it may vary from batch to batch), difficult to handle and expensive. Here we show that the organoids derived from chicken embryo intestine are formed in a hanging drop without embedding, providing an attractive alternative for currently used protocols. Using this technique we obtained compact structures composed of contiguous organoids, which were generally similar to chicken organoids cultured in Matrigel in terms of morphology and expression of intestinal epithelial markers. Due to the simplicity, high reproducibility and throughput capacity of hanging drop technique our model may be applied in various studies concerning the gut biology.

  8. Congenital intestinal lymphangiectasia

    Directory of Open Access Journals (Sweden)

    Popović Dušan Đ.

    2011-01-01

    Full Text Available Background. Congenital intestinal lymphangiectasia is a disease which leads to protein losing enteropathy. Tortous, dilated lymphatic vessels in the intestinal wall and mesenterium are typical features of the disease. Clinical manifestations include malabsorption, diarrhea, steatorrhea, edema and effusions. Specific diet and medication are required for disease control. Case report. A 19-year old male patient was hospitalized due to diarrhea, abdominal swelling, weariness and fatigue. Physical examination revealed growth impairment, ascites, and lymphedema of the right hand and forearm. Laboratory assessment indicated iron deficiency anaemia, lymphopenia, malabsorption, inflammatory syndrome, and urinary infection. Enteroscopy and video capsule endoscopy demonstrated dilated lymphatic vessels in the small intestine. The diagnosis was confirmed by intestinal biopsy. The patient was put on high-protein diet containing medium-chain fatty acids, somatotropin and suportive therapy. Conclusion. Congenital intestinal lymphangiectasia is a rare disease, usually diagnosed in childhood. Early recognition of the disease and adequate treatment can prevent development of various complications.

  9. Intestine transplantation

    Directory of Open Access Journals (Sweden)

    Tadeja Pintar

    2011-02-01

    Conclusion: Intestine transplantation is reserved for patients with irreversible intestinal failure due to short gut syndrome requiring total paranteral nutrition with no possibility of discontinuation and loss of venous access for patient maintenance. In these patients complications of underlying disease and long-term total parenteral nutrition are present.

  10. The effect of ozone and naringin on intestinal ischemia/reperfusion injury in an experimental model.

    Science.gov (United States)

    Isik, Arda; Peker, Kemal; Gursul, Cebrail; Sayar, Ilyas; Firat, Deniz; Yilmaz, Ismayil; Demiryilmaz, Ismail

    2015-09-01

    The aim of the study was to evaulate the effect of ozone and naringin on the intestine after intestinal ischemia-reperfusion(II/R) injury. Thirty five rats divided into 5 groups of 7 animals: control, II/R, ozone, naringin and naringin + ozone. Only laparotomy and exploration of the superior mesenteric artery (SMA) were done in control group. In the experimental groups, SAM was occluded for 1 h and reperfused for 1 h. 15 min after ischemia, ozone (25 μg/ml, 0.5 mg/kg), naringin (80 mg/kg) and naringin + ozone(80 mg/kg + 25 μg/ml, 0.5 mg/kg) were infused intraperitoneally to each groups. Ileum tissues were harvested to determine intestinal mucosal injury and oxidative stress markers. For SMA occlusion, different than literature, silk suture binding was used. Oxidative stress markers were significantly low in experimental groups compared with II/R group (p < 0.05). Histopathologically, the injury score was significantly low at experimental groups compared with II/R group (p < 0.05). The lowest injury score was encountered at naringine + ozone group. Ozone alone or combined with naringin has a protective effect for mesenteric ischemia. Instead of using instruments such as clamps in the II/R rat model, silk binding may be used safely. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  11. Circadian disorganization alters intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Robin M Voigt

    Full Text Available Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  12. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2017-08-01

    Full Text Available Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4–induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4–induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor–BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process.

  13. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response.

    Science.gov (United States)

    Jayakumar, Asha; Bothwell, Alfred L M

    2017-08-01

    Intestinal tumorigenesis in the ApcMin/+ model is initiated by aberrant activation of Wnt pathway. Increased IL-4 expression in human colorectal cancer tissue and growth of colon cancer cell lines implied that IL-4-induced Stat6-mediated tumorigenic signaling likely contributes to intestinal tumor progression in ApcMin/+ mice. Stat6 also appears to promote expansion of myeloid-derived suppressor cells (MDSCs) cells. MDSCs promote polyp formation in the ApcMin/+ model. Hence, Stat6 could have a broad role in coordinating both polyp cell proliferation and MDSC expansion. We found that IL-4-induced Stat6-mediated proliferation of intestinal epithelial cells is augmented by platelet-derived growth factor-BB, a tumor-promoting growth factor. To determine whether polyp progression in ApcMin/+ mice is dependent on Stat6 signaling, we disrupted Stat6 in this model. Total polyps in the small intestine were fewer in ApcMin/+ mice lacking Stat6. Furthermore, proliferation of polyp epithelial cells was reduced, indicating that Stat6 in part controlled polyp formation. Stat6 also promoted expansion of MDSCs in the spleen and lamina propria of ApcMin/+ mice, implying regulation of antitumor T-cell response. More CD8 cells and reduced PD-1 expression on CD4 cells correlated with reduced polyps. In addition, a strong CD8-mediated cytotoxic response led to killing of tumor cells in Stat6-deficient ApcMin/+ mice. Therefore, these findings show that Stat6 has an oncogenic role in intestinal tumorigenesis by promoting polyp cell proliferation and immunosuppressive mediators, and preventing an active cytotoxic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Lymphoma Caused by Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Mitsuko L. Yamamoto

    2014-09-01

    Full Text Available The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

  15. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  16. Bacterial translocation in an experimental intestinal obstruction model: C-reactive protein reliability? Translocação bacteriana no modelo experimental de obstrução intestinal: A proteína C-reativa é confiável?

    Directory of Open Access Journals (Sweden)

    Saleh Ibrahim El-Awady

    2009-04-01

    Full Text Available BACKGROUND: Bacterial translocation occurs in preseptic conditions such as intestinal obstruction through unclear mechanism. The C-reactive protein is an acute phase reactant and a marker of ischemia. METHODS: 45 albino male rats were divided into 3 groups each 15 rats. GI control, GII simple intestinal-obstruction and GIII strangulated obstruction. Outcome measures were: (1 Bacteriologic count and typing for intestinal contents, intestinal wall, liver, mesenteric lymph nodes and blood (cardiac and portal (2 Histopathologic: mucosal injury score, inflammatory cell infiltrate in the wall, MLN, liver, (3 Biochemical: serum CRP, IL-10, mucosal stress pattern (glutathione peroxidase-malonyldialdhyde tissue levels. RESULTS: (1 Intestinal obstruction associates with BT precursors (Bact-overgrowth, mucosal-acidosis, immuno-incomptence, (2 Bacterial translocation (frequency and density was found higher in strangulated I.O, that was mainly enteric (aerobic and anaerobic and mostly E.coli, (3 The pathogen commonality supports the gut origin hypothesis but the systemic inflammatory response goes with the cytokine generating one. (4 The CRP median values for GI, II, III were 0.5, 6.9, 8.5 mg/L, for BT +ve 8 mg/L and 0.75 mg/L for BT -ve rats. CONCLUSION: Bacterial translocation occurs bi-directional (systemic-portal in intestinal obstruction and the resultant inflammatory response pathogenesis is mostly 3 hit model. The CRP is a non selective marker of suspected I.O cases. However, it is a reliable marker of BT, BT density and vascular compromise during I.O.OBJETIVO: Translocação bacteriana ocorre em condições pré-sépticas como na obstrução intestinal por mecanismo não esclarecido. A proteína C-reativa é um marcador de ischemia em fase aguda. A proposição é investigar os possíveis efeitos da obstrução intestinal no equilíbrio ecológico microbiano. MÉTODOS: 45 ratos machos albinos foram distribuídos em três grupos de 15 ratos. GI

  17. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  18. [Establishment and comparison of stoma and stoma-free heterotopic small intestine transplantation models in mice].

    Science.gov (United States)

    Meng, Ning; Pan, Zhijian; Liu, Yadong; Xu, Xin; Shen, Jiliang; Shen, Bo

    2016-03-01

    To establish stoma and stoma-free murine models of heterotopic small intestine transplantation in order to choose a more effective and reliable model. A total of 140 male 8-10 weeks age C57BL/6(B6) mice weighted 25-30 g were enrolled in the experiment. Syngeneic heterotopic small intestine transplantation was performed between C57BL/6 mice, and recipient mice were divided into either stoma or stoma-free group. Heterotopic small intestine transplantation was performed in 70 mice, with 35 mice in each group. After closing the proximal end of the graft by ligation, the distal end of graft was exteriorized as a stoma then secured to the skin of the abdominal wall in stoma group. In stoma-free group, the distal end of graft was anastomosed end-to-side to the recipient ileum. Successful rate of operation, two-week survival rate, operation time, associated complications, postoperative care time and body weight change were recorded and compared between two groups. The successful rate of stoma group was 65.7%, while it was 80.0% of stoma-free group (χ(2)=1.806, P=0.179). The operation time of donor in stoma group was (48.1±6.6) minutes, while it was (47.2±5.9) minutes in stoma-free group (t=0.598, P=0.552). The operation time of recipient in stoma group was (77.9±9.1) minutes, while it was (76.4±8.3) minutes in stoma-free group (t=0.683, P=0.497). The cold ischemic time of graft in stoma group was (34.7±4.0) minutes, while it was (33.9±4.6) minutes in stoma-free group(t=0.667, P=0.507). The two-week survival rate of stoma group was 45.7%, and it was 77.1% of stoma-free group(χ(2)=7.295, P=0.007). The stoma group had more complications[54.3%(19/35) vs. 22.9%(8/35), χ(2)=7.295, P=0.007], which needed more postoperative care time(191 min vs. 35 min). The weight loss in stoma group in the third day after operation was more significant [(81.52±5.20)% vs. (85.46±4.65)%, t=2.856, P=0.006]. By 2 weeks after operation, the weight of mice in both groups retruned to 95% of

  19. What causes the spatial heterogeneity of bacterial flora in the intestine of zebrafish larvae?

    Science.gov (United States)

    Yang, Jinyou; Shimogonya, Yuji; Ishikawa, Takuji

    2018-06-07

    Microbial flora in the intestine has been thoroughly investigated, as it plays an important role in the health of the host. Jemielita et al. (2014) showed experimentally that Aeromonas bacteria in the intestine of zebrafish larvae have a heterogeneous spatial distribution. Although bacterial aggregation is important biologically and clinically, there is no mathematical model describing the phenomenon and its mechanism remains largely unknown. In this study, we developed a computational model to describe the heterogeneous distribution of bacteria in the intestine of zebrafish larvae. The results showed that biological taxis could cause the bacterial aggregation. Intestinal peristalsis had the effect of reducing bacterial aggregation through mixing function. Using a scaling argument, we showed that the taxis velocity of bacteria must be larger than the sum of the diffusive velocity and background bulk flow velocity to induce bacterial aggregation. Our model and findings will be useful to further the scientific understanding of intestinal microbial flora. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  1. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  2. Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia

    Science.gov (United States)

    Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J.; Tucci, Joseph

    2018-01-01

    The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases. PMID:29495355

  3. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  4. Studies on colon cancer prone rats. Spontaneous small intestinal carcinomas and tumor induction of small intestine by x-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maeura, Y [Osaka Univ. (Japan). Faculty of Medicine

    1979-12-01

    Histological investigation was carried out for Wister-Furth (WF) rats, prone to cancers of the colon and small intestine. Gastric cancer was observed in about 1/4 of the rats with the cancers of the colon and the small intestine, indicating that these rats could be the model animals of the cancer family syndrome with multi-cancers in the gastrointestinal tracts. The small intestine of WF and SD (Sprague-Dowley) rats as exposed to 1000, 2 x 1000, 1500, and 2000 R of x-rays at a dose rate of 157 R/min. In each group the stomach, small intestine, cecum, and colon were histologically investigated, immediately and 15, 25, and 35 weeks after irradiation. The rates of cancer occurrence in 15, 25, and 35 weeks were 5/17, 9/19, and 9/14 for WF strain and 1/8, 2/7, and 2/8 for SD strain, respectively. The rate increased with the increment of the days after irradiation. It was suggested that the atypical epithelium of the gastrointestinal tracts induced the cancer in high rates when some trigger was added.

  5. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure

    NARCIS (Netherlands)

    Korpela, K.; Mutanen, A.; Salonen, A.; Savilahti, E.; Vos, de W.M.; Pakarinen, M.P.

    2017-01-01

    BACKGROUND: Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. METHODS: We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent

  6. Lipopolysaccharide Binding Protein Enables Intestinal Epithelial Restitution Despite Lipopolysaccharide Exposure

    Science.gov (United States)

    Richter, Juli M.; Schanbacher, Brandon L.; Huang, Hong; Xue, Jianjing; Bauer, John A.; Giannone, Peter J.

    2011-01-01

    Intestinal epithelial restitution is the first part in the process of mucosal repair after injury in the intestine. Integrity of the intestinal mucosal barrier is important as a first line of defense against bacteria and endotoxin. Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in extremely low birth weight infants, but its mechanisms are not well defined. Abnormal bacterial colonization, immature barrier function, innate immunity activation and inflammation likely play a role. Lipopolysaccharide (LPS) binding protein (LBP) is secreted by enterocytes in response to inflammatory stimuli and has concentration-dependent effects. At basal concentrations, LBP stimulates the inflammatory response by presenting LPS to its receptor. However, at high concentrations, LBP is able to neutralize LPS and prevent an exaggerated inflammatory response. We sought to determine how LBP would affect wound healing in an in vitro model of intestinal cell restitution and protect against intestinal injury in a rodent model of NEC. Immature intestinal epithelial cells (IEC-6) were seeded in poly-l-lysine coated 8 chamber slides and grown to confluence. A 500μm wound was created using a cell scraper mounted on the microscope to achieve uniform wounding. Media was replaced with media containing LPS +/− LBP. Slide wells were imaged after 0, 8, and 24 hours and then fixed. Cellular restitution was evaluated via digital images captured on an inverted microscope and wound closure was determined by automated analysis. TLR4 was determined by rtPCR after RNA isolation from wounded cells 24 hours after treatment. LPS alone attenuated wound healing in immature intestinal epithelium. This attenuation is reversed by 24 hours with increasing concentrations of LBP so that wound healing is equivalent to control (p< 0.001). TLR4 was increased with LPS alone but levels returned to that of control after addition of LBP in the higher concentrations. LBP had no effect on the

  7. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans.

    Science.gov (United States)

    Lermann, Ulrich; Morschhäuser, Joachim

    2008-11-01

    A well-known virulence attribute of the human-pathogenic yeast Candida albicans is the secretion of aspartic proteases (Saps), which may contribute to colonization and infection of different host niches by degrading tissue barriers, destroying host defence molecules, or digesting proteins for nutrient supply. The role of individual Sap isoenzymes, which are encoded by a large gene family, for the pathogenicity of C. albicans has been investigated by assessing the virulence of mutants lacking specific SAP genes and by studying the expression pattern of the SAP genes in various models of superficial and systemic infections. We used a recombination-based genetic reporter system to detect the induction of the SAP1-SAP6 genes during infection of reconstituted human vaginal epithelium. Only SAP5, but none of the other tested SAP genes, was detectably activated in this in vitro infection model. To directly address the importance of the SAP1-SAP6 genes for invasion of reconstituted human epithelia (RHE), we constructed a set of mutants of the wild-type C. albicans model strain SC5314 in which either single or multiple SAP genes were specifically deleted. Even mutants lacking all of the SAP1-SAP3 or the SAP4-SAP6 genes displayed the same capacity to invade and damage both oral and vaginal RHE as their wild-type parental strain, in contrast to a nonfilamentous efg1Delta mutant that was avirulent under these conditions. We therefore conclude from these results that the secreted aspartic proteases Sap1p-Sap6p are not required for invasion of RHE by C. albicans.

  8. Intestinal lymphangiectasia in children

    Science.gov (United States)

    Isa, Hasan M.; Al-Arayedh, Ghadeer G.; Mohamed, Afaf M.

    2016-01-01

    Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification. PMID:26837404

  9. Trefoil factors are expressed in human and rat endocrine pancreas: differential regulation by growth hormone

    DEFF Research Database (Denmark)

    Jackerott, Malene; Lee, Ying C; Møllgård, Kjeld

    2006-01-01

    Trefoil factors (TFFs) 1, 2, and 3 are expressed in mucosal epithelia. TFFs are particular abundant in the intestine in which they play a crucial role in maintenance and restitution of the epithelium. Because pancreas developmentally arises from the primitive foregut, we explored the expression o...

  10. Food Stabilizing Antioxidants Increase Nutrient Bioavailability in the in Vitro Model.

    Science.gov (United States)

    Mika, Magdalena; Wikiera, Agnieszka; Antończyk, Anna; Grabacka, Maja

    2017-01-01

    We investigated whether antioxidants may enhance bioavailability of lipids and carbohydrates and therefore increase the risk of obesity development. We tested how supplementation with antioxidants (0.01% butylated hydroxytoluene [BHT], α-tocopherol, and green tea catechins) of a diet containing butter and wheat bread affects bioavailability of fats and carbohydrates. The absorption of the in vitro digested diet was estimated in the intestinal epithelia model of the Caco-2 cells cultured in Transwell chambers. In the case of the antioxidant-supplemented diets, we observed increased bioavailability of glucose, cholesterol, and lipids, as well as elevated secretion of the main chylomicron protein apoB-48 to the basal compartment. Importantly, we did not detect any rise in the concentrations of lipid peroxidation products (malondialdehyde, MDA) in the control samples prepared without antioxidants. Addition of antioxidants (in particular BHT) to the diet increases bioavailability of lipids and carbohydrates, which consequently may increase the risk of obesity development. The dose of antioxidants is a factor of fundamental importance, particularly for catechins: low doses increase absorption of lipids, whereas high doses exert the opposite effect.

  11. Intestinal pseudo-obstruction

    Science.gov (United States)

    ... Staying in bed for long periods of time (bedridden). Taking drugs that slow intestinal movements. These include ... be tried: Colonoscopy may be used to remove air from the large intestine. Fluids can be given ...

  12. A model to study intestinal and hepatic metabolism of propranolol in the dog.

    Science.gov (United States)

    Mills, P C; Siebert, G A; Roberts, M S

    2004-02-01

    A model to investigate hepatic drug uptake and metabolism in the dog was developed for this study. Catheters were placed in the portal and hepatic veins during exploratory laparotomy to collect pre- and posthepatic blood samples at defined intervals. Drug concentrations in the portal vein were taken to reflect intestinal uptake and metabolism of an p.o. administered drug (propranolol), while differences in drug and metabolite concentrations between portal and hepatic veins reflected hepatic uptake and metabolism. A significant difference in propranolol concentration between hepatic and portal veins confirmed a high hepatic extraction of this therapeutic agent in the dog. This technically uncomplicated model may be used experimentally or clinically to determine hepatic function and metabolism of drugs that may be administered during anaesthesia and surgery.

  13. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  14. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Contribution of H. pylori and smoking trends to US incidence of intestinal-type noncardia gastric adenocarcinoma: a microsimulation model.

    Directory of Open Access Journals (Sweden)

    Jennifer M Yeh

    Full Text Available Although gastric cancer has declined dramatically in the US, the disease remains the second leading cause of cancer mortality worldwide. A better understanding of reasons for the decline can provide important insights into effective preventive strategies. We sought to estimate the contribution of risk factor trends on past and future intestinal-type noncardia gastric adenocarcinoma (NCGA incidence.We developed a population-based microsimulation model of intestinal-type NCGA and calibrated it to US epidemiologic data on precancerous lesions and cancer. The model explicitly incorporated the impact of Helicobacter pylori and smoking on disease natural history, for which birth cohort-specific trends were derived from the National Health and Nutrition Examination Survey (NHANES and National Health Interview Survey (NHIS. Between 1978 and 2008, the model estimated that intestinal-type NCGA incidence declined 60% from 11.0 to 4.4 per 100,000 men, <3% discrepancy from national statistics. H. pylori and smoking trends combined accounted for 47% (range = 30%-58% of the observed decline. With no tobacco control, incidence would have declined only 56%, suggesting that lower smoking initiation and higher cessation rates observed after the 1960s accelerated the relative decline in cancer incidence by 7% (range = 0%-21%. With continued risk factor trends, incidence is projected to decline an additional 47% between 2008 and 2040, the majority of which will be attributable to H. pylori and smoking (81%; range = 61%-100%. Limitations include assuming all other risk factors influenced gastric carcinogenesis as one factor and restricting the analysis to men.Trends in modifiable risk factors explain a significant proportion of the decline of intestinal-type NCGA incidence in the US, and are projected to continue. Although past tobacco control efforts have hastened the decline, full benefits will take decades to be realized, and further discouragement of smoking and

  16. Digestion of starch in a dynamic small intestinal model.

    Science.gov (United States)

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  17. Intestinal Leiomyositis: A Cause of Chronic Intestinal Pseudo?Obstruction in 6 Dogs

    OpenAIRE

    Zacuto, A.C.; Pesavento, P.A.; Hill, S.; McAlister, A.; Rosenthal, K.; Cherbinsky, O.; Marks, S.L.

    2015-01-01

    Background Intestinal leiomyositis is a suspected autoimmune disorder affecting the muscularis propria layer of the gastrointestinal tract and is a cause of chronic intestinal pseudo?obstruction in humans and animals. Objective To characterize the clinical presentation, histopathologic features, and outcome of dogs with intestinal leiomyositis in an effort to optimize treatment and prognosis. Animals Six client?owned dogs. Methods Retrospective case series. Medical records were reviewed to de...

  18. Diffused and sustained inhibitory effects of intestinal electrical stimulation on intestinal motility mediated via sympathetic pathway.

    Science.gov (United States)

    Zhao, Xiaotuan; Yin, Jieyun; Wang, Lijie; Chen, Jiande D Z

    2014-06-01

    The aims were to investigate the energy-dose response effect of intestinal electrical stimulation (IES) on small bowel motility, to compare the effect of forward and backward IES, and to explore the possibility of using intermittent IES and mechanism of IES on intestinal motility. Five dogs implanted with a duodenal cannula and one pair of intestinal serosal electrodes were studied in five sessions: 1) energy-dose response study; 2) forward IES; 3) backward IES; 4) intermittent IES vs. continuous IES; 5) administration of guanethidine. The contractile activity and tonic pressure of the small intestine were recorded. The duration of sustained effect after turning off IES was manually calculated. 1) IES with long pulse energy dose dependently inhibited contractile activity and tonic pressure of the small intestine (p intestine depended on the energy of IES delivered (p intestine. 5) Guanethidine blocked the inhibitory effect of IES on intestinal motility. IES with long pulses inhibits small intestinal motility; the effect is energy-dose dependent, diffused, and sustained. Intermittent IES has the same efficacy as the continuous IES in inhibiting small intestinal motility. Forward and backward IES have similar inhibitory effects on small bowel motility. This IES-induced inhibitory effect is mediated via the sympathetic pathway. © 2013 International Neuromodulation Society.

  19. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors

    NARCIS (Netherlands)

    Stange, D.E.; Clevers, H.

    2013-01-01

    The intestine has developed over the last few years into a prime model system for adult stem cell research. Intestinal cells have an average lifetime of 5 days, moving within this time from the bottom of intestinal crypts to the top of villi. This rapid self-renewal capacity combined with an easy to

  20. (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6.

    NARCIS (Netherlands)

    Nijenhuis, T.; Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M.

    2003-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry mechanism in active Ca(2+) (re)absorption. These two members of the superfamily of transient receptor potential (TRP) channels were cloned from the vitamin-D-responsive epithelia of kidney and small intestine and

  1. FcγRI (CD64): an identity card for intestinal macrophages.

    Science.gov (United States)

    De Calisto, Jaime; Villablanca, Eduardo J; Mora, J Rodrigo

    2012-12-01

    Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Intestinal microdialysis--applicability, reproducibility and local tissue response in a pig model

    DEFF Research Database (Denmark)

    Emmertsen, K J; Wara, P; Sørensen, Flemming Brandt

    2005-01-01

    BACKGROUND AND AIMS: Microdialysis has been applied to the intestinal wall for the purpose of monitoring local ischemia. The aim of this study was to investigate the applicability, reproducibility and local response to microdialysis in the intestinal wall. MATERIALS AND METHODS: In 12 pigs two...... the probes were processed for histological examination. RESULTS: Large intra- and inter-group differences in the relative recovery were found between all locations. Absolute values of metabolites showed no significant changes during the study period. The lactate in blood was 25-30% of the intra-tissue values...

  3. Intestinal lymphangiectasia in adults.

    Science.gov (United States)

    Freeman, Hugh James; Nimmo, Michael

    2011-02-15

    Intestinal lymphangiectasia in the adult may be characterized as a disorder with dilated intestinal lacteals causing loss of lymph into the lumen of the small intestine and resultant hypoproteinemia, hypogammaglobulinemia, hypoalbuminemia and reduced number of circulating lymphocytes or lymphopenia. Most often, intestinal lymphangiectasia has been recorded in children, often in neonates, usually with other congenital abnormalities but initial definition in adults including the elderly has become increasingly more common. Shared clinical features with the pediatric population such as bilateral lower limb edema, sometimes with lymphedema, pleural effusion and chylous ascites may occur but these reflect the severe end of the clinical spectrum. In some, diarrhea occurs with steatorrhea along with increased fecal loss of protein, reflected in increased fecal alpha-1-antitrypsin levels, while others may present with iron deficiency anemia, sometimes associated with occult small intestinal bleeding. Most lymphangiectasia in adults detected in recent years, however, appears to have few or no clinical features of malabsorption. Diagnosis remains dependent on endoscopic changes confirmed by small bowel biopsy showing histological evidence of intestinal lymphangiectasia. In some, video capsule endoscopy and enteroscopy have revealed more extensive changes along the length of the small intestine. A critical diagnostic element in adults with lymphangiectasia is the exclusion of entities (e.g. malignancies including lymphoma) that might lead to obstruction of the lymphatic system and "secondary" changes in the small bowel biopsy. In addition, occult infectious (e.g. Whipple's disease from Tropheryma whipplei) or inflammatory disorders (e.g. Crohn's disease) may also present with profound changes in intestinal permeability and protein-losing enteropathy that also require exclusion. Conversely, rare B-cell type lymphomas have also been described even decades following initial

  4. Expression of an Intestine-Specific Transcription Factor (CDX1) in Intestinal Metaplasia and in Subsequently Developed Intestinal Type of Cholangiocarcinoma in Rat Liver

    Science.gov (United States)

    Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.

    2000-01-01

    CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391

  5. Effects of ethanol and acetaldehyde on tight junction integrity: in vitro study in a three dimensional intestinal epithelial cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND: Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model. METHODS AND FINDINGS: Caco-2 cells were grown in a basement membrane matrix (Matrigel™ to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10-40 mM or acetaldehyde (25-200 µM for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation. CONCLUSIONS: These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in

  6. The CT signs of intestinal volvulus

    International Nuclear Information System (INIS)

    Ji Jiansong; Wang Zufei; Xu Zhaolong; Lv Guijian; Xu Min; Zhao Zhongwei; Su Jinliang; Zhou Limin

    2005-01-01

    Objective: To improve the accuracy rate of spiral CT diagnosing intestinal volvulus. Methods: To analysis the CT findings of 9 cases of intestinal volvulus proved by operation, the main reconstruction techniques were multiplanar reformation (MPR) and sliding thin-slab maximum intensity projection (STS-MIP). Results: All the 9 cases were diagnosed accurately, the main signs were 'whirlpool' of intestine (6 cases) and vessels (9 cases),'target loop' (2 cases),'beak'(6 cases). Conclusion: 'Whirlpool' of vessels is a specific sign to diagnose intestinal volvulus, 'target loop', reduced enhancement of intestinal wall and ascites are the reliable signs to strangulated intestinal obstruction. Spiral CT and reconstructions have important value to diagnose the intestinal volvulus. (authors)

  7. Lifespan extension by preserving proliferative homeostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Benoît Biteau

    2010-10-01

    Full Text Available Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.

  8. Cytokeratin 19 promoter directs the expression of Cre recombinase in various epithelia of transgenic mice.

    Science.gov (United States)

    Zhao, Gui-Feng; Zhao, Shuang; Liu, Jia-Jie; Wu, Ji-Cheng; He, Hao-Yu; Ding, Xiao-Qing; Yu, Xue-Wen; Huang, Ke-Qiang; Li, Zhi-Jie; Zheng, Hua-Chuan

    2017-03-14

    Cytokeratin 19 (K19) is expressed in various differentiated cells, including gastric, intestinal and bronchial epithelial cells, and liver duct cells. Here, we generated a transgenic mouse line, K19-Cre, in which the expression of Cre recombinase was controlled by the promoter of K19. To test the tissue distribution and excision activity of Cre recombinase, K19-Cre transgenic mice were bred with Rosa26 reporter strain and a mouse strain that carries PTEN conditional alleles (PTENLoxp/Loxp). At mRNA level, Cre was strongly expressed in the stomach, lung and intestine, while in stomach, lung, and liver at protein level. The immunoreactivity to Cre was strongly observed the cytoplasm of gastric, bronchial and intestinal epithelial cells. Cre activity was detectable in gastric, bronchial and intestinal epithelial cells, according to LacZ staining. In K19-Cre/PTEN Loxp/Loxp mice, PTEN was abrogated in stomach, intestine, lung, liver and breast, the former two of which were verified by in situ PCR. There appeared breast cancer with PTEN loss. These data suggest that K19 promoter may be a useful tool to study the pathophysiological functions of cytokeratin 19-positive cells, especially gastrointestinal epithelial cells. Cell specificity of neoplasia is not completely attributable to the cell-specific expression of oncogenes and cell-specific loss of tumor suppressor genes.

  9. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ. Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC. It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01. Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01 and suppressed zonulin release (P < 0.05. In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01 and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05 and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05. Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01, decreased the levels of serum zonulin (P < 0.05, normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may

  10. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  11. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Rachel G Khadaroo

    Full Text Available Sepsis and septic shock are the leading causes of death in critically ill patients. Acute intestinal ischemia/reperfusion (AII/R is an adaptive response to shock. The high mortality rate from AII/R is due to the severity of the disease and, more importantly, the failure of timely diagnosis. The objective of this investigation is to use nuclear magnetic resonance (NMR analysis to characterize urine metabolomic profile of AII/R injury in a mouse model. Animals were exposed to sham, early (30 min or late (60 min acute intestinal ischemia by complete occlusion of the superior mesenteric artery, followed by 2 hrs of reperfusion. Urine was collected and analyzed by NMR spectroscopy. Urinary metabolite concentrations demonstrated that different profiles could be delineated based on the duration of the intestinal ischemia. Metabolites such as allantoin, creatinine, proline, and methylamine could be predictive of AII/R injury. Lactate, currently used for clinical diagnosis, was found not to significantly contribute to the classification model for either early or late ischemia. This study demonstrates that patterns of changes in urinary metabolites are effective at distinguishing AII/R progression in an animal model. This is a proof-of-concept study to further support examination of metabolites in the clinical diagnosis of intestinal ischemia reperfusion injury in patients. The discovery of a fingerprint metabolite profile of AII/R will be a major advancement in the diagnosis, treatment, and prevention of systemic injury in critically ill patients.

  12. Intestinal tract is an important organ for lowering serum uric acid in rats

    Science.gov (United States)

    Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei

    2017-01-01

    The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat’s intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower. PMID:29267361

  13. Intestinal tract is an important organ for lowering serum uric acid in rats.

    Science.gov (United States)

    Yun, Yu; Yin, Hua; Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei; Duan, Weigang

    2017-01-01

    The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat's intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower.

  14. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  15. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jang, Won-Suk; Lee, Sun-Joo [Laboratory of Experimental Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Lee, Seung-Sook [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Department of Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Sunhoo, E-mail: sunhoo@kcch.re.kr [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Department of Pathology, Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  16. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Science.gov (United States)

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice.

    Science.gov (United States)

    Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J; Vennaro, Olivia H; Mortha, Arthur; Colombel, Jean-Frederic; Grinspan, Ari; Clemente, Jose C; Merad, Miriam; Faith, Jeremiah J

    2018-03-01

    It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient

  18. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  19. Treatment-time-dependence models of early and delayed radiation injury in rat small intestine

    International Nuclear Information System (INIS)

    Denham, James W.; Hauer-Jensen, Martin; Kron, Tomas; Langberg, Carl W.

    2000-01-01

    Background: The present study modeled data from a large series of experiments originally designed to investigate the influence of time, dose, and fractionation on early and late pathologic endpoints in rat small intestine after localized irradiation. The objective was to obtain satisfactory descriptions of the regenerative response to injury together with the possible relationships between early and late endpoints. Methods: Two- and 26-week pathologic radiation injury data in groups of Sprague-Dawley rats irradiated with 27 different fractionation schedules were modeled using the incomplete repair (IR) version of the linear-quadratic model with or without various time correction models. The following time correction models were tested: (1) No time correction; (2) A simple exponential (SE) regenerative response beginning at an arbitrary time after starting treatment; and (3) A bi-exponential response with its commencement linked to accumulated cellular depletion and fraction size (the 'intelligent response model' [INTR]). Goodness of fit of the various models was assessed by correlating the predicted biological effective dose for each dose group with the observed radiation injury score. Results: (1) The incomplete repair model without time correction did not provide a satisfactory description of either the 2- or 26-week data. (2) The models using SE time correction performed better, providing modest descriptions of the data. (3) The INTR model provided reasonable descriptions of both the 2- and 26-week data, confirming a treatment time dependence of both early and late pathological endpoints. (4) The most satisfactory descriptions of the data by the INTR model were obtained when the regenerative response was assumed to cease 2 weeks after irradiation rather than at the end of irradiation. A fraction-size-dependent delay of the regenerative response was also suggested in the best fitting models. (5) Late endpoints were associated with low-fractionation sensitivity

  20. Foreign body-associated intestinal pyogranuloma resulting in intestinal obstruction in four dogs.

    Science.gov (United States)

    Papazoglou, L G; Tontis, D; Loukopoulos, P; Patsikas, M N; Hermanns, W; Kouti, V; Timotheou, T; Liapis, I; Tziris, N; Rallis, T S

    2010-04-17

    Intestinal obstruction resulting from an intramural foreign body-associated pyogranuloma was diagnosed in four dogs. Vomiting and weight loss were the main clinical signs. On physical examination, a mass in the abdomen was detected in three dogs. Abdominal radiography demonstrated the presence of soft tissue opacity in three of the dogs and gas-filled dilated intestinal loops in all four dogs. Abdominal ultrasonography showed hyperkinetic fluid-filled dilated intestinal loops and a hypoechoic small intestinal mass in all the dogs. Exploratory coeliotomy confirmed the presence of a jejunal mass, which was removed by resection and anastomosis in all the dogs. In one of the dogs a linear foreign body was also found cranial to the mass and was removed through a separate enterotomy incision. The lesions were diagnosed as foreign body-associated intestinal pyogranulomas on histological examination. Three dogs recovered without complications, but the fourth showed signs of septic peritonitis four days after surgery and was euthanased at the owner's request. The other three dogs remained disease-free 12 to 42 months after surgery.

  1. Use of Fluorescein Isothiocyanate-Inulin as a Marker for Intestinal Ischemic Injury.

    Science.gov (United States)

    AlKukhun, Abedalrazaq; Caturegli, Giorgio; Munoz-Abraham, Armando Salim; Judeeba, Sami; Patron-Lozano, Roger; Morotti, Raffaella; Rodriguez-Davalos, Manuel I; Geibel, John P

    2017-06-01

    Intestinal ischemia is observed in conditions such as mesenteric ischemia, or during traumatic events such as intestinal transplantation. Intestinal ischemia leads to pathophysiologic disruptions that present as increased fluid secretion into the intestinal lumen. We propose a novel method to detect real-time ischemic injury that is used in an in vitro model applicable to intestinal transplantation. Small intestine segments from rats were procured. The segments were attached to customized perfusion chambers. Both intestines were perfused on the vascular side with a Ringer buffer solution. The experimental buffer solution was bubbled with 100% nitrogen to mimic ischemia. Both lumens were perfused with 3 mL HEPES-Ringer solution containing 50 μM fluorescein isothiocyanate (FITC)-inulin. Intraluminal samples were collected at 15-minute intervals to measure FITC-inulin concentration using a nanofluorospectrophotometer. Intestinal tissue samples were processed and evaluated by a blinded pathologist using the Park/Chiu scoring system for grading intestinal ischemia. Samples collected from the ischemic intestine showed a significant decrease in FITC-inulin fluorescence compared with the control intestine, indicating enhanced fluid secretion. Histopathologic samples from the experimental arm exhibited higher scores of ischemic injury in comparison with the control arm, confirming the FITC-inulin as a correlation to ischemia. Fluorescein isothiocyanate-inulin can be used as a real-time volume marker to monitor the ischemic state of intestinal tissue. A positive correlation between the degree of fluid shift and presence of ischemic injury. The changes in fluorescence signal provide a potential selective method to measure real-time fluid changes inside an intestinal graft to evaluate viability. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Transplantation of Expanded Fetal Intestinal Progenitors Contributes to Colon Regeneration after Injury

    DEFF Research Database (Denmark)

    Fordham, Robert P; Yui, Shiro; Hannan, Nicholas R F

    2013-01-01

    Regeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can...... be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells. Established cultures of mouse fetal intestinal progenitors express lower levels of Lgr5 than mature progenitors and propagate...... in the presence of the Wnt antagonist Dkk1, and new cultures can be induced to form mature intestinal organoids by exposure to Wnt3a. Following transplantation in a colonic injury model, FEnS contribute to regeneration of colonic epithelium by forming epithelial crypt-like structures expressing region...

  3. FETAL METABOLIC PROGRAMMING OF THE SMALL INTESTINE IN A COPENHAGEN SHEEP MODEL

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Khanal, Prabhat; Kongsted, Anna Hauntoft

    for diabetes development. Twin-pregnant ewes where fed a Normal, a Low or a High diet during the last 6 weeks of gestation and the twin lambs where fed either a Conventional or a High fat, High carbohydrate (HCHF) diet during the first 6 months of life. Feeding challenge tests were performed on all lambs...... have shown unexpected involvement of the small intestine in diabetes pathophysiology as it in most cases result in a complete resolution of the diabetes before weight loss. Therefore we hypothesize that the small intestine is a subject of metabolic programming and that this programming can predispose...

  4. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  5. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  6. Primary intestinal lymphangiectasia.

    Science.gov (United States)

    Suresh, N; Ganesh, R; Sankar, Janani; Sathiyasekaran, Malathi

    2009-10-01

    Primary intestinal lymphangiectasia (PIL) is a rare disease of intestinal lymphatics presenting with hypoproteinemia, bilateral lower limb edema, ascites, and protein losing enteropathy. We report a series of 4 children from Chennai, India presenting with anasarca, recurrent diarrhea, hypoproteinemia and confirmatory features of PIL on endoscopy and histopathology.

  7. Heparin-Binding EGF-like Growth Factor (HB-EGF) Therapy for Intestinal Injury: Application and Future Prospects

    Science.gov (United States)

    Yang, Jixin; Su, Yanwei; Zhou, Yu; Besner, Gail E.

    2014-01-01

    Throughout the past 20 years, we have been investigating the potential therapeutic roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor family, in various models of intestinal injury including necrotizing enterocolitis (NEC), intestinal ischemia/reperfusion (I/R) injury, and hemorrhagic shock and resuscitation (HS/R). Our studies have demonstrated that HB-EGF acts as an effective mitogen, a restitution-inducing reagent, a cellular trophic factor, an anti-apoptotic protein and a vasodilator, via its effects on various cell types in the intestine. In the current paper, we have reviewed the application and therapeutic effects of HB-EGF in three classic animal models of intestinal injury, with particular emphasis on its protection of the intestines from NEC. Additionally, we have summarized the protective functions of HB-EGF on various target cells in the intestine. Lastly, we have provided a brief discussion focusing on the future development of HB-EGF clinical applications for the treatment of various forms of intestinal injury including NEC. PMID:24345808

  8. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    Science.gov (United States)

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. © 2015 Wiley Periodicals, Inc.

  9. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    International Nuclear Information System (INIS)

    Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S.

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  10. Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Dominguez, Jessica A; Vithayathil, Paul J; Khailova, Ludmila; Lawrance, Christopher P; Samocha, Alexandr J; Jung, Enjae; Leathersich, Ann M; Dunne, W Michael; Coopersmith, Craig M

    2011-10-01

    Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.

  11. Gastric and intestinal surgery.

    Science.gov (United States)

    Fossum, Theresa W; Hedlund, Cheryl S

    2003-09-01

    Gastric surgery is commonly performed to remove foreign bodies and correct gastric dilatation-volvulus and is less commonly performed to treat gastric ulceration or erosion, neoplasia, and benign gastric outflow obstruction. Intestinal surgery, although commonly performed by veterinarians, should never be considered routine. The most common procedures of the small intestinal tract performed in dogs and cats include enterotomy and resection/anastomosis. Surgery of the large intestine is indicated for lesions causing obstruction, perforations, colonic inertia, or chronic inflammation.

  12. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  13. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis.

    Directory of Open Access Journals (Sweden)

    Jaume Pérez-Sánchez

    Full Text Available Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB, to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb. Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc. Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO by vegetable oils (VO in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health.

  14. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  15. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Brenda M Geiger

    Full Text Available BACKGROUND: Melanin-concentrating hormone (MCH, an evolutionarily conserved appetite-regulating neuropeptide, has been recently implicated in the pathogenesis of inflammatory bowel disease (IBD. Expression of MCH is upregulated in inflamed intestinal mucosa in humans with colitis and MCH-deficient mice treated with trinitrobenzene-sulfonic acid (TNBS develop an attenuated form of colitis compared to wild type animals. Zebrafish have emerged as a new animal model of IBD, although the majority of the reported studies concern zebrafish larvae. Regulation MCH expression in the adult zebrafish intestine remains unknown. METHODS: In the present study we induced enterocolitis in adult zebrafish by intrarectal administration of TNBS. Follow-up included survival analysis, histological assessment of changes in intestinal architecture, and assessment of intestinal infiltration by myeloperoxidase positive cells and cytokine transcript levels. RESULTS: Treatment with TNBS dose-dependently reduced fish survival. This response required the presence of an intact microbiome, since fish pre-treated with vancomycin developed less severe enterocolitis. At 6 hours post-challenge, we detected a significant influx of myeloperoxidase positive cells in the intestine and upregulation of both proinflammatory and anti-inflammatory cytokines. Most importantly, and in analogy to human IBD and TNBS-induced mouse experimental colitis, we found increased intestinal expression of MCH and its receptor in TNBS-treated zebrafish. CONCLUSIONS: Taken together these findings not only establish a model of chemically-induced experimental enterocolitis in adult zebrafish, but point to effects of MCH in intestinal inflammation that are conserved across species.

  16. Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.

    Science.gov (United States)

    Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan

    2015-01-01

    To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.

  17. Effects of synbiotics on intestinal mucosal barrier in rat model

    Directory of Open Access Journals (Sweden)

    Zhigang Xue

    2017-06-01

    Conclusions: Probiotics can improve the concentration of colonic probiotics, while synbiotics can improve probiotics concentration and mucosa thickness in colon, decrease L/M ratio and bacterial translocation. Synbiotics shows more protective effects on intestinal mucosal barrier in rats after cecectomy and gastrostomy and the intervention of specific antibiotics.

  18. Stem cells and cancer of the stomach and intestine.

    Science.gov (United States)

    Vries, Robert G J; Huch, Meritxell; Clevers, Hans

    2010-10-01

    Cancer in the 21st century has become the number one cause of death in developed countries. Although much progress has been made in improving patient survival, tumour relapse is one of the important causes of cancer treatment failure. An early observation in the study of cancer was the heterogeneity of tumours. Traditionally, this was explained by a combination of genomic instability of tumours and micro environmental factors leading to diverse phenotypical characteristics. It was assumed that cells in a tumour have an equal capacity to propagate the cancer. This model is currently known as the stochastic model. Recently, the Cancer stem cell model has been proposed to explain the heterogeneity of a tumour and its progression. According to this model, the heterogeneity of tumours is the result of aberrant differentiation of tumour cells into the cells of the tissue the tumour originated from. Tumours were suggested to contain stem cell-like cells, the cancer stem cells or tumour-initiating cells, which are uniquely capable of propagating a tumour much like normal stem cells fuel proliferation and differentiation in normal tissue. In this review we discuss the normal stem cell biology of the stomach and intestine followed by both the stochastic and cancer stem cell models in light of recent findings in the gastric and intestinal systems. The molecular pathways underlying normal and tumourigenic growth have been well studied, and recently the stem cells of the stomach and intestine have been identified. Furthermore, intestinal stem cells were identified as the cells-of-origin of colon cancer upon loss of the tumour suppressor APC. Lastly, several studies have proposed the positive identification of a cancer stem cell of human colon cancer. At the end we compare the cancer stem cell model and the stochastic model. We conclude that clonal evolution of tumour cells resulting from genetic mutations underlies tumour initiation and progression in both cancer models. This

  19. Cdx function is required for maintenance of intestinal identity in the adult.

    Science.gov (United States)

    Hryniuk, Alexa; Grainger, Stephanie; Savory, Joanne G A; Lohnes, David

    2012-03-15

    The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection.

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    Full Text Available Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR.Cultured human airway epithelial cells (CaLu-3 were used as a model to investigate the effect of sidestream cigarette smoke (SSS, mainstream cigarette smoke (MSS, or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection.This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant

  1. Protective effect of superoxide dismutase in radiation-induced intestinal inflammation

    International Nuclear Information System (INIS)

    Molla, Meritxell; Gironella, Meritxell; Salas, Antonio; Closa, Daniel; Biete, Albert; Gimeno, Mercedes; Coronel, Pilar; Pique, Josep M.; Panes, Julian

    2005-01-01

    Purpose: To analyze the therapeutic value of Cu/Zn-superoxide dismutase (SOD1) supplementation in an experimental model of radiation-induced intestinal inflammation and explore its mechanistic effects. Methods and materials: Mice were subjected to abdominal irradiation with 10 Gy or sham irradiation and studied 24 or 72 hours after radiation. Groups of mice were treated with 0.1, 4, or 6 mg/kg/day of SOD1 or vehicle. Leukocyte-endothelial cell interactions in intestinal venules were assessed by intravital microscopy. Endothelial intercellular adhesion molecule-1 (ICAM-1) expression was determined with radiolabeled antibodies. Effects of SOD1 on histologic damage and levels of lipid hydroperoxides were also measured. Results: A significant increase in the flux of rolling leukocytes and number of firmly adherent leukocytes in intestinal venules was observed at 24 and 72 hours after irradiation. Treatment with SOD1 had no effect on leukocyte rolling but significantly and dose-dependently decreased firm leukocyte adhesion to intestinal venules. Treatment with SOD1 at doses that reduced leukocyte recruitment abrogated the increase in hydroperoxides in intestinal tissue and ICAM-1 upregulation in intestinal endothelial cells. The inflammatory score, but not a combined histology damage score, was also significantly reduced by SOD1. Conclusions: Treatment with SOD1 decreases oxidative stress and adhesion molecule upregulation in response to abdominal irradiation. This is associated with an attenuation of the radiation-induced intestinal inflammatory response

  2. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice.

    Science.gov (United States)

    Horie, Masanori; Miura, Takamasa; Hirakata, Satomi; Hosoyama, Akira; Sugino, Sakiko; Umeno, Aya; Murotomi, Kazutoshi; Yoshida, Yasukazu; Koike, Taisuke

    2017-10-30

    A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes.

  3. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    Science.gov (United States)

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted

  4. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Trier, Sofie; Rahbek, Ulrik L

    2018-01-01

    with platinum wires, enabling parallel real-time monitoring of barrier integrity for the eight chambers. Additionally, the translucent porous Teflon membrane enabled optical monitoring of cell monolayers. The device was developed and tested with the Caco-2 intestinal model, and compared to the conventional...... through permeability studies of mannitol, dextran and insulin, alone or in combination with the absorption enhancer tetradecylmaltoside (TDM). The thiol-ene-based microchip material and electrodes were highly compatible with cell growth. In fact, Caco-2 cells cultured in the device displayed...

  5. Expression of GLUT1 in stratified squamous epithelia and oral carcinoma from humans and rats

    DEFF Research Database (Denmark)

    Voldstedlund, M; Dabelsteen, Erik

    1997-01-01

    mucosa from rat and man, and a human oral carcinoma by indirect immunofluorescence microscopy. The results showed that GLUT1 was expressed in the basal and parabasal layers of the different stratified squamous epithelia, with some variations between keratinized and non-keratinized subtypes. GLUT1...... was also expressed in ductal- and myoepithelial cells of minor salivary glands and perineural sheath located in the lamina propra, and furthermore in the cells of an oral carcinoma. GLUT4 was not expressed in any of the tissues examined. This distribution of GLUT1 does not fit with the idea of GLUT1......Most cells express facilitative glucose transporters. Four isoforms (GLUT1-4) transporting D-glucose across the plasma membrane show a specific tissue distribution, which is the basis for tissue-specific patterns in glucose metabolism. GLUT1 is expressed at high levels in tissue barriers...

  6. Diagnosis of intestinal and extra intestinal amoebiasis

    International Nuclear Information System (INIS)

    Lopez, Myriam Consuelo; Quiroz, Damian Arnoldo; Pinilla, Analida Elizabeth

    2007-01-01

    The objective is to carry out a review of the national and international literature as of the XXth century in order to update the advances for the diagnosis of complex odd Entamoeba histolytic / Entamoeba dispar and that of intestinal and extra intestinal amoebiasis that may be of use to the scientific community. As well as to unify the diagnostic criteria of this parasitosis known as a public health problem, and as a consequence of that, optimize the quality of population care. Data source: there was a systematic search for the scientific literature Publisher in Spanish and English since 1960 until today, this selection started on the first semester of 2006 until 2007, in the development of the line on intestinal and extra-intestinal amoebiasis of the Medical School of the National University of Colombia. A retrospective search process was carried out, systematically reviewing the most relevant articles as well as the products of this research line. In deciding how to make this article, there was a continuous search in different data bases such as Medline, SciELO and other bases in the library of the National University of Colombia, as well as other classical books related to the subject. For that purpose the terms amoebiasis, odd Entamoeba histolytic, Entamoeba, diagnosis, epidemiology, dysentery, amoebic liver abscess, were used. Studies selection: titles and abstracts were reviewed to select the original publications and the most representative ones related to this article's subject. Data extraction: the articles were classified according to the subject, the chronology and the authors according to the scientific contribution to solve the problem. Synthesis of the data: in the fi rst instance, a chronological critical analysis was carried out to order and synthesize the progress made in the diagnosis until confirmation of the experts' agreements in the field of amoebiasis was obtained throughout the world. Conclusion: this article summarizes what has taken place

  7. Injury-induced inhibition of small intestinal protein and nucleic acid synthesis

    International Nuclear Information System (INIS)

    Carter, E.A.; Hatz, R.A.; Yarmush, M.L.; Tompkins, R.G.

    1990-01-01

    Small intestinal mucosal weight and nutrient absorption are significantly diminished early after cutaneous thermal injuries. Because these intestinal properties are highly dependent on rates of nucleic acid and protein synthesis, in vivo incorporation of thymidine, uridine, and leucine into small intestinal deoxyribonucleic acid, ribonucleic acid, and proteins were measured. Deoxyribonucleic acid synthesis was markedly decreased with the lowest thymidine incorporation in the jejunum (p less than 0.01); these findings were confirmed by autoradiographic identification of radiolabeled nuclei in the intestinal crypts. Protein synthesis was decreased by 6 h postinjury (p less than 0.01) but had returned to normal by 48 h. Consistent with a decreased rate of protein synthesis, ribonucleic acid synthesis was also decreased 18 h postinjury (p less than 0.01). These decreased deoxyribonucleic acid, ribonucleic acid, and protein synthesis rates are not likely a result of ischemia because in other studies of this injury model, intestinal blood flow was not significantly changed by the burn injury. Potentially, factors initiating the acute inflammatory reaction may directly inhibit nucleic acid and protein synthesis and lead to alterations in nutrient absorption and intestinal barrier function after injury

  8. Intestinal transplantation: The anesthesia perspective.

    Science.gov (United States)

    Dalal, Aparna

    2016-04-01

    Intestinal transplantation is a complex and challenging surgery. It is very effective for treating intestinal failure, especially for those patients who cannot tolerate parenteral nutrition nor have extensive abdominal disease. Chronic parental nutrition can induce intestinal failure associated liver disease (IFALD). According to United Network for Organ Sharing (UNOS) data, children with intestinal failure affected by liver disease secondary to parenteral nutrition have the highest mortality on a waiting list when compared with all candidates for solid organ transplantation. Intestinal transplant grafts can be isolated or combined with the liver/duodenum/pancreas. Organ Procurement and Transplantation Network (OPTN) has defined intestinal donor criteria. Living donor intestinal transplant (LDIT) has the advantages of optimal timing, short ischemia time and good human leukocyte antigen matching contributing to lower postoperative complications in the recipient. Thoracic epidurals provide excellent analgesia for the donors, as well as recipients. Recipient management can be challenging. Thrombosis and obstruction of venous access maybe common due to prolonged parenteral nutrition and/or hypercoaguability. Thromboelastography (TEG) is helpful for managing intraoperative product therapy or thrombosis. Large fluid shifts and electrolyte disturbances may occur due to massive blood loss, dehydration, third spacing etc. Intestinal grafts are susceptible to warm and cold ischemia and ischemia-reperfusion injury (IRI). Post-reperfusion syndrome is common. Cardiac or pulmonary clots can be monitored with transesophageal echocardiography (TEE) and treated with recombinant tissue plasminogen activator. Vasopressors maybe used to ensure stable hemodynamics. Post-intestinal transplant patients may need anesthesia for procedures such as biopsies for surveillance of rejection, bronchoscopy, endoscopy, postoperative hemorrhage, anastomotic leaks, thrombosis of grafts etc. Asepsis

  9. Presentation of a nationwide multicenter registry of intestinal failure and intestinal transplantation

    NARCIS (Netherlands)

    Neelis, E. G.; Roskott, A. M.; Dijkstra, G.; Wanten, G. J.; Serlie, M. J.; Tabbers, M. M.; Damen, G.; Olthof, E. D.; Jonkers, C. F.; Kloeze, J. H.; Ploeg, R. J.; Imhann, F.; Nieuwenhuijs, V. B.; Rings, E. H. H. M.

    Background & aims: Exact data on Dutch patients with chronic intestinal failure (CIF) and after intestinal transplantation (ITx) have been lacking. To improve standard care of these patients, a nationwide collaboration has been established. Objectives of this study were obtaining an up-to-date

  10. Presentation of a nationwide multicenter registry of intestinal failure and intestinal transplantation

    NARCIS (Netherlands)

    Neelis, E.G.; Roskott, A.M.; Dijkstra, G.; Wanten, G.J.A.; Serlie, M.J.; Tabbers, M.M.; Damen, G.M.; Olthof, E.D.; Jonkers, C.F.; Kloeze, J.H.; Ploeg, R.J.; Imhann, F.; Nieuwenhuijs, V.B.; Rings, E.H.

    2016-01-01

    BACKGROUND & AIMS: Exact data on Dutch patients with chronic intestinal failure (CIF) and after intestinal transplantation (ITx) have been lacking. To improve standard care of these patients, a nationwide collaboration has been established. Objectives of this study were obtaining an up-to-date

  11. Whole-Blood Taurine Concentrations in Cats With Intestinal Disease.

    Science.gov (United States)

    Kathrani, A; Fascetti, A J; Larsen, J A; Maunder, C; Hall, E J

    2017-07-01

    Increased delivery of taurine-conjugated bile acids to the distal bowel can lead to dysbiosis resulting in colitis in mouse models of inflammatory bowel disease. A similar situation also could occur in cats with intestinal disease and might therefore result in decreased whole-body taurine concentration. To determine whether whole-blood taurine concentrations are decreased at the time of diagnosis in cats with intestinal disease and to correlate concentrations with clinical and laboratory variables. Twenty-one cats with chronic inflammatory enteropathy and 7 cats with intestinal neoplasia from the University of Bristol. Cats that had undergone a thorough investigation consisting of a CBC, serum biochemistry, serum cobalamin and folate concentrations, transabdominal ultrasound examination and histopathology of intestinal biopsy specimens, as well as additional testing if indicated, were included. Whole-blood from these cats collected at the time of histologic diagnosis and stored in ethylenediaminetetraacetic acid was retrospectively analyzed for taurine with an automated high-performance liquid chromatography amino acid analyzer. Although whole-blood taurine concentrations remained within the reference range, those cats with predominantly large intestinal clinical signs had significantly lower concentrations than did cats with small intestinal and mixed bowel clinical signs (P = 0.033) and this difference also was significant when assessed only in cats with chronic inflammatory enteropathy (P = 0.019). Additional studies are needed to determine whether large intestinal signs in cats with chronic inflammatory enteropathy are caused by alterations in the microbiota arising as a consequence of increased delivery of taurine-conjugated bile acids. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett's Esophagus.

    Directory of Open Access Journals (Sweden)

    Bo Gun Jang

    Full Text Available Gastric intestinal metaplasia (IM is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.

  13. Non-Meckel Small Intestine Diverticulitis

    Directory of Open Access Journals (Sweden)

    Shamim Ejaz

    2017-08-01

    Full Text Available Non-Meckel small intestine diverticulitis can have many manifestations and its management is not well-defined. We report 4 unselect cases of small intestine diverticulitis; all patients were seen by the same physician at the Emergency Center at The University of Texas MD Anderson Cancer Center between 1999 and 2014. The median age at diagnosis of these patients was 82 years (range, 76–87 years. All 4 patients presented with acute onset of abdominal pain, and computed tomography scans showed characteristics of small intestine diverticulitis unrelated to cancer. Most of the diverticula were found in the region of the duodenum and jejuno-ileal segments of the small intestine. The patients, even those with peripancreatic inflammation and localized perforation, were treated conservatively. Non-Meckel diverticulitis can be overlooked in the initial diagnosis because of the location of the diverticulosis, the age of the patient, and the rarity of the disease. Because patients with non-Meckel small intestine diverticulitis can present with acute abdominal pain, non-Meckel small intestine diverticulitis should be considered in the differential diagnosis of patients with acute abdominal pain, and computed tomography scans can help identify the condition. Because of the rarity of non-Meckel small intestine diverticulitis, few studies have been published, and the data are inconclusive about how best to approach these patients. Our experience with these 4 elderly patients indicates that non-Meckel small intestine diverticulitis can be treated conservatively, which avoids the potential morbidity and mortality of a surgical approach.

  14. Presentation of a nationwide multicenter registry of intestinal failure and intestinal transplantation

    NARCIS (Netherlands)

    Neelis, E. G.; Roskott, A. M.; Dijkstra, G.; Wanten, G. J.; Serlie, M. J.; Tabbers, M. M.; Damen, G.; Olthof, E. D.; Jonkers, C. F.; Kloeze, J. H.; Ploeg, R. J.; Imhann, F.; Nieuwenhuijs, V. B.; Rings, E. H. H. M.

    2016-01-01

    Exact data on Dutch patients with chronic intestinal failure (CIF) and after intestinal transplantation (ITx) have been lacking. To improve standard care of these patients, a nationwide collaboration has been established. Objectives of this study were obtaining an up-to-date prevalence of CIF and

  15. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...... objective was to determine whether supplemental enteral nutrients (SEN) modulate the intestinotrophic response to a low dose of GLP-2 coinfused with PN in a rat model of SBS (60% jejunoileal resection plus cecectomy). DESIGN: Rats were randomly assigned to 8 treatments by using a 2 x 2 x 2 factorial design...

  16. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    Science.gov (United States)

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence

  17. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  18. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model.

    Science.gov (United States)

    Studer, Nicolas; Desharnais, Lyne; Beutler, Markus; Brugiroux, Sandrine; Terrazos, Miguel A; Menin, Laure; Schürch, Christian M; McCoy, Kathy D; Kuehne, Sarah A; Minton, Nigel P; Stecher, Bärbel; Bernier-Latmani, Rizlan; Hapfelmeier, Siegfried

    2016-01-01

    Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile . Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens . Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo . Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species "oligo-mouse microbiota" (Oligo-MM 12 ). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM 12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM 12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7

  19. Small Intestinal Infections.

    Science.gov (United States)

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections.

  20. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Jonna Jalanka-Tuovinen

    Full Text Available While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point.A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected.A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The

  1. New insights into the molecular mechanism of intestinal fatty acid absorption.

    Science.gov (United States)

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  2. Small Intestine Cancer—Health Professional Version

    Science.gov (United States)

    Adenocarcinoma is the most common type of small intestine cancer. Other types of small intestine cancer are sarcomas, carcinoid tumors, gastrointestinal stromal tumors, and lymphomas. Find evidence-based information on small intestine cancer treatment, research, and statistics.

  3. Protective effects of ischemic postconditioning on intestinal

    Directory of Open Access Journals (Sweden)

    DING Jun-tao

    2011-04-01

    Full Text Available 【Abstract】Objective: To explore the protective effects of two types of ischemic postconditioning (IP on intestinal mucosa barrier in rabbits with crush injury of the hind limb. Methods: This study was conducted between August and December 2008 in the Department of Trauma Surgery, Daping Hospital, Third Military Medical University, Chongqing, China. The model of crush injury to the hind limb of rabbits was firstly developed by a 25 kg object with the right hind limbs fixed by wooden splints, and then two types of IP were established, including occluding/opening the common iliac artery and vein alternatively (traditional IP, IP A and binding/loosening the proximum of the injured hind limb alternatively (modified IP, IP B. Thirty-six male New Zealand white rabbits were randomly divided into three groups: IP A group, IP B group and control group, with 12 rabbits in each group. The serum levels of diamine oxidase (DAO and intestinal fatty acid-binding protein (I-FABP were detected at 2, 6, 12 and 24 hours after injury. Pathological changes of ileum were examined at 24 hours after injury. Results: The serum levels of I-FABP at 2, 6, 12 and 24 hours after injury in both IP A and IP B groups had a significant decrease, compared with control group. DAO levels also showed the same change trend at 2 and 6 hours after injury, but showed no significant difference between two IP groups. No difference in pathological changes of ileum was found among the three groups. Conclusions: IP can protect intestinal mucosa barrier function on the model of hind limb crush injury in rabbits. Meanwhile the modified IP B shows the same protection as the traditional IP A, and is worth applying in clinic. Key words: Ischemic postconditioning; Crush syndrome; Intestinal mucosa

  4. CFTR is a tumor suppressor gene in murine and human intestinal cancer

    NARCIS (Netherlands)

    Than, B. L. N.; Linnekamp, J. F.; Starr, T. K.; Largaespada, D. A.; Rod, A.; Zhang, Y.; Bruner, V.; Abrahante, J.; Schumann, A.; Luczak, T.; Niemczyk, A.; O'Sullivan, M. G.; Medema, J. P.; Fijneman, R. J. A.; Meijer, G. A.; van den Broek, E.; Hodges, C. A.; Scott, P. M.; Vermeulen, L.; Cormier, R. T.

    2016-01-01

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base

  5. Parenteral Nutrition and Intestinal Failure.

    Science.gov (United States)

    Bielawska, Barbara; Allard, Johane P

    2017-05-06

    Severe short bowel syndrome (SBS) is a major cause of chronic (Type 3) intestinal failure (IF) where structural and functional changes contribute to malabsorption and risk of micronutrient deficiencies. Chronic IF may be reversible, depending on anatomy and intestinal adaptation, but most patients require long-term nutritional support, generally in the form of parenteral nutrition (PN). SBS management begins with dietary changes and pharmacologic therapies taking into account individual anatomy and physiology, but these are rarely sufficient to avoid PN. New hormonal therapies targeting intestinal adaptation hold promise. Surgical options for SBS including intestinal transplant are available, but have significant limitations. Home PN (HPN) is therefore the mainstay of treatment for severe SBS. HPN involves chronic administration of macronutrients, micronutrients, fluid, and electrolytes via central venous access in the patient's home. HPN requires careful clinical and biochemical monitoring. Main complications of HPN are related to venous access (infection, thrombosis) and metabolic complications including intestinal failure associated liver disease (IFALD). Although HPN significantly impacts quality of life, outcomes are generally good and survival is mostly determined by the underlying disease. As chronic intestinal failure is a rare disease, registries are a promising strategy for studying HPN patients to improve outcomes.

  6. Determination of Intestine Inflammation Markers in Diagnostic Search in Children with Intestinal Diseases

    Directory of Open Access Journals (Sweden)

    N.V. Pavlenko

    2016-08-01

    Full Text Available Introduction. Prevalence of bowel diseases in children is the second, trailing only the diseases of gastroduodenal zone and growing in recent years. Actual one is the problem of differential diagnosis of functional and inflammatory intestinal diseases using non-invasive methods on the prehospital stage and as a screening. Objective. Comparative analysis of fecal markers of the bowel inflammation (lactoferrine and calprotectine with endoscopy and morphology of intestinal mucosa in children. Matherials and methods. 49 children aged 6–18 years were examined. All patients underwent endoscopic and morphological study of the intestine, coprotest, determination of fecal markers of bowel inflammation (lactoferrin and calprotectine. Results. It is shown that in young children, the intestinal mucosa mainly hadn’t endoscopic changes, coprotest and morphological examination didn’t reveal the signs of inflammation, fecal intestinal inflammation markers were negative (p < 0.05. In the group of older children, moderate or marked catarrhal changes were found endoscopically, coprotest results were typical of inflammation in the intestines, it was morphologically proved the presence of chronic inflammation of the mucous membrane of the colon with signs of atrophy, the results of lactoferrin and calprotectine determination were positive (p < 0.05. Conclusion. The findings suggest that the evaluation of calprotectine and lactoferrin can be used in pediatric patients because of its non-invasiveness as diagnostic screening for the selection of patients for the further endoscopic examination and diagnostic search.

  7. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  8. Intestinal spirochetosis and colon diverticulosis Espiroquetose intestinal e diverticulose do cólon

    Directory of Open Access Journals (Sweden)

    Marcus Aurelho de Lima

    2005-02-01

    Full Text Available A case of intestinal spirochetosis in a 62-year-old white male is reported. The condition was characterized by chronic flatulence and episodes of intestinal hemorrhage, in addition to the evidence of hypotonic diverticular disease, with a large number of slender organisms in the colon epithelium and cryptae. Spirochetes were demonstrated by Whartin-Starry stain. The serologic tests for syphilis and HIV were positive. Spirochetosis was treated with penicillin G, and the patient remains free of intestinal complaints 20 months later.Um caso de espiroquetose intestinal é relatado em um homem branco de 62 anos. A condição foi caracterizada por flatulência crônica e episódios de hemorragia intestinal, além da evidência de doença diverticular hipotônica dos cólons, com numerosos organismos filamentosos no epitélio e nas criptas do cólon. Os espiroquetas foram demonstrados pela coloração de Whartin-Starry. Os testes sorológicos para sífilis e HIV foram positivos. A espiroquetose foi tratada com penicilina G e o paciente permanece sem queixas intestinais após 20 meses.

  9. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  10. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...... of inflammatory bowel disease (IBD). Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets....

  11. Radiation-induced intestinal neoplasia in a genetically-predisposed mouse (Min)

    International Nuclear Information System (INIS)

    Ellender, M.; Larder, S.M.; Harrison, J.D.; Cox, R.; Silver, A.R.J.

    1997-01-01

    A mouse lineage with inherited predisposition to multiple intestinal neoplasia (min) has been proposed as a model to study human colorectal cancer. Min mice are heterozygous for the adenomatous polyposis coli (Apc) gene implicated in human familial adenomatous polyposis (FAP). There is an increased risk of intestinal cancer in humans following radiation exposure and the min mouse model may be used to further our understanding of the molecular mechanisms involved. The present study showed a 2 Gy dose of x-rays doubles the tumour numbers in the murine gastrointestinal tract of F1 min heterozygotes. The distribution of tumours through the gut was also recorded. (authors)

  12. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine.

    Science.gov (United States)

    Ren, Xiaomeng; Zhu, Yanyan; Gamallat, Yaser; Ma, Shenhao; Chiwala, Gift; Meyiah, Abdo; Xin, Yi

    2017-10-01

    Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    Science.gov (United States)

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  14. Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers.

    Directory of Open Access Journals (Sweden)

    Hermien van Bokhorst-van de Veen

    Full Text Available BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date. METHODOLOGY/PRINCIPAL FINDINGS: The GI-tract survival of individual L. plantarum strains was determined using an intestine mimicking model system, revealing substantial inter-strain differences. The obtained data were correlated to genomic diversity of the strains using comparative genome hybridization (CGH datasets, but this approach failed to discover specific genetic loci that explain the observed differences between the strains. Moreover, we developed a next-generation sequencing-based method that targets a variable intergenic region, and employed this method to assess the in vivo GI-tract persistence of different L. plantarum strains when administered in mixtures to healthy human volunteers. Remarkable consistency of the strain-specific persistence curves were observed between individual volunteers, which also correlated significantly with the GI-tract survival predicted on basis of the in vitro assay. CONCLUSION: The survival of individual L. plantarum strains in the GI-tract could not be correlated to the absence or presence of specific genes compared to the reference strain L. plantarum WCFS1. Nevertheless, in vivo persistence analysis in the human GI-tract confirmed the strain-specific persistence, which appeared to be remarkably similar in different healthy volunteers. Moreover, the relative strain-specific persistence in vivo appeared to be accurately and significantly predicted by their relative survival in the intestine-mimicking in vitro

  15. Alkaline Phosphatase for the Prevention of Intestinal and Renal Injury in a Rat Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest

    Science.gov (United States)

    2017-09-01

    prevention of intestinal and kidney injury after pediatric cardiopulmonary bypass with deep hypothermic circulatory arrest. In this model, we place 5-10kg...first abstract submissions to either Pediatric Academic Society or American Thoracic Society meetings by November. Secondary analysis of serum...rats. Transition to the piglet model also had multiple benefits beyond greater consistency of surgical approach. We now have a true pediatric model and

  16. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  17. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis.

    Science.gov (United States)

    Scarminio, Viviane; Fruet, Andrea C; Witaicenis, Aline; Rall, Vera L M; Di Stasi, Luiz C

    2012-03-01

    Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models.

    Science.gov (United States)

    Chen, Y P; Lee, T Y; Hong, W S; Hsieh, H H; Chen, M J

    2013-01-01

    A potential probiotic strain, Lactobacillus kefiranofaciens M1, was previously isolated from kefir grains, which are used to manufacture the traditional fermented drink kefir. The aim of this study was to investigate the effects of Lb. kefiranofaciens M1 on enterohemorrhagic Escherichia coli (EHEC) infection, using mice and intestinal cell models. BALB/c mice were daily administrated with either phosphate buffered saline or Lb. kefiranofaciens M1 at 2×10(8) cfu/mouse per day intragastrically for 7 d. Intragastric challenges with EHEC (2×10(9) cfu/mouse) were conducted on d 0, 4, and 7 after treatment. Administration of Lb. kefiranofaciens M1 was able to prevent EHEC infection-induced symptoms, intestinal damage, renal damage, bacterial translocation, and Shiga toxin penetration. Furthermore, the mucosal EHEC-specific IgA responses were increased after Lb. kefiranofaciens M1 administration in the EHEC-infected mouse system. Additionally, in vitro, Lb. kefiranofaciens M1 was shown to have a protective effect on Caco-2 intestinal epithelial cells and Caco-2 intestinal epithelial cell monolayers; the bacteria limited EHEC-induced cell death and reduced the loss of epithelial integrity. These findings support the potential of Lb. kefiranofaciens M1 treatment as an approach to preventing EHEC infection and its effects. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Primary intestinal lymphangiectasia (Waldmann's disease).

    Science.gov (United States)

    Vignes, Stéphane; Bellanger, Jérôme

    2008-02-22

    Primary intestinal lymphangiectasia (PIL) is a rare disorder characterized by dilated intestinal lacteals resulting in lymph leakage into the small bowel lumen and responsible for protein-losing enteropathy leading to lymphopenia, hypoalbuminemia and hypogammaglobulinemia. PIL is generally diagnosed before 3 years of age but may be diagnosed in older patients. Prevalence is unknown. The main symptom is predominantly bilateral lower limb edema. Edema may be moderate to severe with anasarca and includes pleural effusion, pericarditis or chylous ascites. Fatigue, abdominal pain, weight loss, inability to gain weight, moderate diarrhea or fat-soluble vitamin deficiencies due to malabsorption may also be present. In some patients, limb lymphedema is associated with PIL and is difficult to distinguish lymphedema from edema. Exsudative enteropathy is confirmed by the elevated 24-h stool alpha1-antitrypsin clearance. Etiology remains unknown. Very rare familial cases of PIL have been reported. Diagnosis is confirmed by endoscopic observation of intestinal lymphangiectasia with the corresponding histology of intestinal biopsy specimens. Videocapsule endoscopy may be useful when endoscopic findings are not contributive. Differential diagnosis includes constrictive pericarditis, intestinal lymphoma, Whipple's disease, Crohn's disease, intestinal tuberculosis, sarcoidosis or systemic sclerosis. Several B-cell lymphomas confined to the gastrointestinal tract (stomach, jejunum, midgut, ileum) or with extra-intestinal localizations were reported in PIL patients. A low-fat diet associated with medium-chain triglyceride supplementation is the cornerstone of PIL medical management. The absence of fat in the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are absorbed directly into the portal venous circulation and avoid lacteal overloading. Other inconsistently effective

  20. Primary intestinal lymphangiectasia (Waldmann's disease

    Directory of Open Access Journals (Sweden)

    Bellanger Jérôme

    2008-02-01

    Full Text Available Abstract Primary intestinal lymphangiectasia (PIL is a rare disorder characterized by dilated intestinal lacteals resulting in lymph leakage into the small bowel lumen and responsible for protein-losing enteropathy leading to lymphopenia, hypoalbuminemia and hypogammaglobulinemia. PIL is generally diagnosed before 3 years of age but may be diagnosed in older patients. Prevalence is unknown. The main symptom is predominantly bilateral lower limb edema. Edema may be moderate to severe with anasarca and includes pleural effusion, pericarditis or chylous ascites. Fatigue, abdominal pain, weight loss, inability to gain weight, moderate diarrhea or fat-soluble vitamin deficiencies due to malabsorption may also be present. In some patients, limb lymphedema is associated with PIL and is difficult to distinguish lymphedema from edema. Exsudative enteropathy is confirmed by the elevated 24-h stool α1-antitrypsin clearance. Etiology remains unknown. Very rare familial cases of PIL have been reported. Diagnosis is confirmed by endoscopic observation of intestinal lymphangiectasia with the corresponding histology of intestinal biopsy specimens. Videocapsule endoscopy may be useful when endoscopic findings are not contributive. Differential diagnosis includes constrictive pericarditis, intestinal lymphoma, Whipple's disease, Crohn's disease, intestinal tuberculosis, sarcoidosis or systemic sclerosis. Several B-cell lymphomas confined to the gastrointestinal tract (stomach, jejunum, midgut, ileum or with extra-intestinal localizations were reported in PIL patients. A low-fat diet associated with medium-chain triglyceride supplementation is the cornerstone of PIL medical management. The absence of fat in the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are absorbed directly into the portal venous circulation and avoid lacteal overloading. Other

  1. A etiological factors in mechanical intestinal obstruction

    International Nuclear Information System (INIS)

    Asad, S.; Khan, H.; Khan, I.A.; Ghaffar, S.; Rehman, Z.U.

    2012-01-01

    Background: Intestinal obstruction occurs when the normal flow of intestinal contents is interrupted. The most frequent causes of intestinal obstruction are postoperative adhesions and hernias, which cause extrinsic compression of the intestine. Less frequently, tumours or strictures of the bowel can cause intrinsic blockage. Objective of the study was to find out the various a etiological factors of mechanical intestinal obstruction and to evaluate the morbidity and mortality in adult patients presenting to Surgical 'A' unit of Ayub teaching hospital with mechanical intestinal obstruction. Methods: This cross-sectional study was conducted from March 2009 to September, 2009. All patients presenting with intestinal obstruction and were above the age of 12 years were included in the study. Patients with non-mechanical obstruction were excluded from the study and those who responded to conservative measures were also excluded. Results: A total of 36 patients with age ranging from 12 to 80 years (Mean age 37.72+-19.74 years) and male to female ratio of 1.77:1, were treated for mechanical intestinal obstruction. The most common cause for mechanical intestinal obstruction was adhesions (36.1%). Intestinal tuberculosis was the second most common cause (19.4%), while hernias and sigmoid volvulus affected 13.9% patients each. Malignancies were found in 5.6% cases. Conclusion: Adhesions and Tuberculosis are the leading causes of mechanical intestinal obstruction in Pakistan. Although some patients can be treated conservatively, a substantial portion requires immediate surgical intervention. (author)

  2. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  3. The extent of intestinal failure-associated liver disease in patients referred for intestinal rehabilitation is associated with increased mortality: an analysis of the pediatric intestinal failure consortium database.

    Science.gov (United States)

    Javid, Patrick J; Oron, Assaf P; Duggan, Christopher; Squires, Robert H; Horslen, Simon P

    2017-09-05

    The advent of regional multidisciplinary intestinal rehabilitation programs has been associated with improved survival in pediatric intestinal failure. Yet, the optimal timing of referral for intestinal rehabilitation remains unknown. We hypothesized that the degree of intestinal failure-associated liver disease (IFALD) at initiation of intestinal rehabilitation would be associated with overall outcome. The multicenter, retrospective Pediatric Intestinal Failure Consortium (PIFCon) database was used to identify all subjects with baseline bilirubin data. Conjugated bilirubin (CBili) was used as a marker for IFALD, and we stratified baseline bilirubin values as CBili4 mg/dL. The association between baseline CBili and mortality was examined using Cox proportional hazards regression. Of 272 subjects in the database, 191 (70%) children had baseline bilirubin data collected. 38% and 28% of patients had CBili >4 mg/dL and CBili 4 mg/dL, prematurity, race, and small bowel atresia. On regression analysis controlling for age, prematurity, and diagnosis, the risk of mortality was increased by 3-fold for baseline CBili 2-4 mg/dL (HR 3.25 [1.07-9.92], p=0.04) and 4-fold for baseline CBili >4 mg/dL (HR 4.24 [1.51-11.92], p=0.006). On secondary analysis, CBili >4 mg/dL at baseline was associated with a lower chance of attaining enteral autonomy. In children with intestinal failure treated at intestinal rehabilitation programs, more advanced IFALD at referral is associated with increased mortality and decreased prospect of attaining enteral autonomy. Early referral of children with intestinal failure to intestinal rehabilitation programs should be strongly encouraged. Treatment Study, Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [An experimental assessment of methods for applying intestinal sutures in intestinal obstruction].

    Science.gov (United States)

    Akhmadudinov, M G

    1992-04-01

    The results of various methods used in applying intestinal sutures in obturation were studied. Three series of experiments were conducted on 30 dogs--resection of the intestine after obstruction with the formation of anastomoses by means of double-row suture (Albert--Shmiden--Lambert) in the first series (10 dogs), by a single-row suture after V. M. Mateshchuk [correction of Mateshuku] in the second series, and bu a single-row stretching suture suggested by the author in the third series. The postoperative complications and the parameters of physical airtightness of the intestinal anastomosis were studied in dynamics in the experimental animals. The results of the study: incompetence of the anastomosis sutures in the first series 6, in the second 4, and in the third series one. Adhesions occurred in all animals of the first and second series and in 2 of the third series. Six dogs of the first series died, 4 of the second, and one of the third. Study of the dynamics of the results showed a direct connection of the complications with the parameters of the physical airtightness of the anastomosis, and the last-named with the method of the intestinal suture. Relatively better results were noted in formation of the anastomosis by means of our suggested stretshing continuous suture passed through the serous, muscular, and submucous coats of the intestine.

  5. Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains.

    Science.gov (United States)

    Santarmaki, Valentini; Kourkoutas, Yiannis; Zoumpopoulou, Georgia; Mavrogonatou, Eleni; Kiourtzidis, Mikis; Chorianopoulos, Nikos; Tassou, Chrysoula; Tsakalidou, Effie; Simopoulos, Constantinos; Ypsilantis, Petros

    2017-09-01

    Survival during transit through the gastrointestinal track, intestinal mucosa adhesion, and a potential immunomodulatory effect of Lactobacillus plantarum strains 2035 and ACA-DC 2640 were investigated in a rat model. According to microbiological and multiplex PCR analysis, both strains were detected in feces 24 h after either single-dose or daily administration for 7 days. Intestinal mucosa adhesion of L. plantarum 2035 was noted in the large intestine at 24 h after single-dose administration, while it was not detected at 48 h. Daily dosing, prolonged detection of the strain up to 48 h post-administration, and expanded adhesion to the small intestine. Adhesion of L. plantarum ACA-DC 2640 to the intestinal mucosa after single-dose administration was prolonged and more extended compared to L. plantarum 2035. Daily dosing increased both the levels and the rate of positive cultures of the strains compared to those of the single-dose scheme. In addition, both strains increased total IgG while decreased IgM and IgA serum levels. In conclusion, L. plantarum 2035 and L. plantarum ACA-DC 2640 survived transit through the gastrointestinal track, exhibited transient distinct adhesion to the intestinal mucosa and modulated the systemic immune response.

  6. Update on small intestinal stem cells

    OpenAIRE

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-01-01

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to id...

  7. Immunity to intestinal pathogens: lessons learned from Salmonella

    Science.gov (United States)

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  8. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine.

    Science.gov (United States)

    Guerra, Aurélie; Denis, Sylvain; le Goff, Olivier; Sicardi, Vincent; François, Olivier; Yao, Anne-Françoise; Garrait, Ghislain; Manzi, Aimé Pacifique; Beyssac, Eric; Alric, Monique; Blanquet-Diot, Stéphanie

    2016-06-01

    For ethical, regulatory, and economic reasons, in vitro human digestion models are increasingly used as an alternative to in vivo assays. This study aims to present the new Engineered Stomach and small INtestine (ESIN) model and its validation for pharmaceutical applications. This dynamic computer-controlled system reproduces, according to in vivo data, the complex physiology of the human stomach and small intestine, including pH, transit times, chyme mixing, digestive secretions, and passive absorption of digestion products. Its innovative design allows a progressive meal intake and the differential gastric emptying of solids and liquids. The pharmaceutical behavior of two model drugs (paracetamol immediate release form and theophylline sustained release tablet) was studied in ESIN during liquid digestion. The results were compared to those found with a classical compendial method (paddle apparatus) and in human volunteers. Paracetamol and theophylline tablets showed similar absorption profiles in ESIN and in healthy subjects. For theophylline, a level A in vitro-in vivo correlation could be established between the results obtained in ESIN and in humans. Interestingly, using a pharmaceutical basket, the swelling and erosion of the theophylline sustained release form was followed during transit throughout ESIN. ESIN emerges as a relevant tool for pharmaceutical studies but once further validated may find many other applications in nutritional, toxicological, and microbiological fields. Biotechnol. Bioeng. 2016;113: 1325-1335. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Effect of peristalsis in balance of intestinal microbial ecosystem

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2017-11-01

    A balance of microbiota density in gastrointestinal tracts is necessary for health of the host. Although peristaltic flow made by intestinal muscles is constantly evacuating the lumen, bacterial density stay balanced. Some of bacteria colonize in the secreted mucus where there is no flow, but the rest resist the peristaltic flow in lumen and maintain their population. Using a coupled two-dimensional model of flow induced by large amplitude peristaltic waves, bacterial motility, reproduction, and diffusion, we address how bacterial growth and motility combined with peristaltic flow affect the balance of the intestinal microbial ecosystem.

  10. Exposure to contaminated sediments induces alterations in the gill epithelia in juvenile Solea senegalensis: a comparative in situ and ex situ study

    Directory of Open Access Journals (Sweden)

    Carla Martins

    2014-06-01

    Full Text Available The loss of biodiversity in aquatic ecosystems is a major problem for society, with very significant ecological and economic deleterious effects. Estuaries, as the Sado Estuary (SW Portugal, are fragile ecosystems always associated to multiple anthropogenic stressors, such as heavy industry, shipping and agricultural activities, which can affect biodiversity and, therefore, environmental health, as well as the local economy, through its impact on fisheries. In the Sado Estuary there are many important commercial fish species that support a significant part of the local communities. As such, fish population are continuously exposed to pollutants that can have repercussions in the animals’ physiology and survival. This estuary is characterized by its multiple sources of toxicants, which is reflected onto a complex pattern of sediment contamination. In order to evaluate the physiological effects onto an important commercial species in the Sado Estuary, juvenile Solea senegalensis were subjected to a series of in and ex situ sediment-based bioassays, since this flatfish, being benthic, is particularly exposed to sediment-bound pollutants. Histological alterations in gill epithelia were taken as the main endpoint, since this is the main apical entry organ of toxicants. Sediment contaminants, mostly adsorbed to fine particles and organic matter, namely organochlorides, PAHs and same metals, presented a relation with alterations in gill epithelia. Even though no significant gross histopathological lesions were found, the animals exposed to sediments from the most polluted sites presented physiological alterations, when compared to those exposed to sediments from a reference site. These alterations were particularly related to the number of mucous cells and hypertrophied chloride cells per interlamellar space. These changes imply physiological hampering of normal gill functions and, therefore, affect the health status of animals exposed to

  11. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Welak, Scott R; Pritchard, Kirkwood A; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2012-10-01

    Supplementation of intestinal alkaline phosphatase (IAP), an endogenous protein expressed in the intestines, decreases the severity of necrotizing enterocolitis (NEC)-associated intestinal injury and permeability. We hypothesized that IAP administration is protective in a dose-dependent manner of the inflammatory response in a neonatal rat model. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day of life 3. Control pups were vaginally delivered and dam fed. Preterm pups were delivered via cesarean section and exposed to intermittent hypoxia and formula feeds containing lipopolysaccharide (NEC) with and without IAP. Three different standardized doses were administered to a group of pups treated with 40, 4, and 0.4U/kg of bovine IAP (NEC+IAP40, IAP4, or IAP0.4U). Reverse transcription-real-time polymerase chain reaction (RT-PCR) for inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α on liver and lung tissues and serum cytokine analysis for interleukin (IL)-1β, IL-6, IL-10, and TNF-α were performed. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests, expressed as mean±standard error of the mean and P≤0.05 considered significant. Levels of cytokines IL-1β, IL-6, and TNF-α increased significantly in NEC versus control, returning to control levels with increasing doses of supplemental enteral IAP. Hepatic and pulmonary TNF-α and iNOS messenger ribonucleic acid expressions increased in NEC, and the remaining elevated despite IAP supplementation. Proinflammatory cytokine expression is increased systemically with intestinal NEC injury. Administration of IAP significantly reduces systemic proinflammatory cytokine expression in a dose-dependent manner. Early supplemental enteral IAP may reduce NEC-related injury and be useful for reducing effects caused by a proinflammatory cascade. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Very late onset small intestinal B cell lymphoma associated with primary intestinal lymphangiectasia and diffuse cutaneous warts

    OpenAIRE

    Bouhnik, Y; Etienney, I; Nemeth, J; Thevenot, T; Lavergne-Slove, A; Matuchansky, C

    2000-01-01

    As only a handful of lymphoma cases have been reported in conjunction with primary intestinal lymphangiectasia, it is not yet clear if this association is merely fortuitous or related to primary intestinal lymphangiectasia induced immune deficiency. We report on two female patients, 50 and 58 years old, who developed small intestinal high grade B cell lymphoma a long time (45 and 40 years, respectively) after the initial clinical manifestations of primary intestinal lymphangiectasia. They pre...

  13. Scap is required for sterol synthesis and crypt growth in intestinal mucosa.

    Science.gov (United States)

    McFarlane, Matthew R; Cantoria, Mary Jo; Linden, Albert G; January, Brandon A; Liang, Guosheng; Engelking, Luke J

    2015-08-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine

    NARCIS (Netherlands)

    Gänzle, M.G.; Hertel, C.; Vossen, J.M.B.M. van der; Hammes, W.P.

    1999-01-01

    The survival of Lactobacillus curvatus LTH 1174 (bac+) and (bac-) in combination with Escherichia coli LTH 1600 or Listeria innocua DSM20649 during transit through a dynamic model of the human stomach and small intestine (GIT model) was studied. Furthermore, we determined the digestion of curvacin A

  15. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis.

    Science.gov (United States)

    Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-04-01

    Targeted IL-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic Inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild-type (WT) littermates (n = 127) were subjected to cecal ligation and puncture with a 27-gauge needle. The 7-day survival rate was 45% in transgenic animals and 30% in WT animals (P < or = 0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals regardless of whether they expressed the transgene. Local parameter of injury, including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines, and stimulated cytokines from intraepithelial lymphocytes, were similar between transgenic and WT mice. However, in stimulated splenocytes, proinflammatory cytokines monocyte chemoattractant protein 1 (189 +/- 43 vs. 40 +/- 8 pg/mL) and IL-6 (116 +/- 28 vs. 34 +/- 9 pg/mL) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (P < 0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the 2 groups, as were circulating LPS levels. Transgenic mice also had lower white blood cell counts associated with lower absolute neutrophil counts (0.5 +/- 0.1 vs. 1.0 +/- 0.2 10(3)/mm3; P < 0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage.

  16. Radiation-induced recurrent intestinal pseudo-obstruction

    International Nuclear Information System (INIS)

    Conklin, J.L.; Anuras, S.

    1981-01-01

    The syndrome of intestinal pseudo-obstruction is a complex of signs and symptoms of intestinal obstruction without evidence of mechanical obstruction of the intestinal lumen. A patient with radiation-induced intestinal pseudoobstruction is described. The patient is a 74-year old woman with a history of chronic diarrhea, recurrent episodes of crampy abdominal pain, nausea and vomiting since receiving a 13,000 rad radiation dose to the pelvis in 1954. She has been hospitalized on many occasions for symptoms and signs of bowel obstruction. Upper gastrointestinal contrast roentgenograms with small bowel follow-through done during these episodes revealed multiple dilated loops of small bowel with no obstructing lesion. Barium enemas revealed no obstructing lesion. Each episode resolved with conservative therapy. Other secondary causes for intestinal pseudo-obstruction were ruled out in our patient. She gave no history of familial gastrointestinal disorders. Although postirradiation motility abnormalities have been demonstrated experimentally this is the first report of radiation induced intestinal pseudo-obstruction

  17. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  18. Lipo sarcoma in small intestine

    International Nuclear Information System (INIS)

    Rodriguez Iglesias, J.; Pineyro Gutierrez, A.; Taroco Medeiros, L.; Fein Kolodny, C.; Navarrete Pedocchi, H.

    1987-01-01

    A case is presented by primitive liposarcoma in small intestine , an extensive bibliographical review foreigner and national in this case. It detach the exceptional of the intestinal topography of the liposarcomas; and making stress in the relative value of the computerized tomography and ultrasonography in the diagnose of the small intestine tumors . As well as in the sarcomas of another topography, chemo and radiotherapy associated to the exeresis surgery, it can be of benefit [es

  19. [Intrauterine intestinal volvulus].

    Science.gov (United States)

    Gawrych, Elzbieta; Chojnacka, Hanna; Wegrzynowski, Jerzy; Rajewska, Justyna

    2009-07-01

    Intrauterine intestinal volvulus is an extremely rare case of acute congenital intestinal obstruction. The diagnosis is usually possible in the third trimester of a pregnancy. Fetal midgut volvulus is most likely to be recognized by observing a typical clockwise whirlpool sign during color Doppler investigation. Multiple dilated intestinal loops with fluid levels are usually visible during the antenatal ultrasound as well. Physical and radiographic findings in the newborn indicate intestinal obstruction and an emergency surgery is required. The authors describe intrauterine volvulus in 3 female newborns in which surgical treatment was individualized. The decision about primary or delayed anastomosis after resection of the gangrenous part of the small bowel was made at the time of the surgery and depended on the general condition of the newborn, as well as presence or absence of meconium peritonitis. Double loop jejunostomy was performed in case of two newborns, followed by a delayed end-to-end anastomosis. In case of the third newborn, good blood supply of the small intestine after untwisting and 0.25% lignocaine injections into mesentery led to the assumption that the torsion was not complete and ischemia was reversible. In the two cases of incomplete rotation the cecum was sutured to the left abdominal wall to prevent further twisting. The postoperative course was uneventful and oral alimentation caused no problems. Physical development of all these children has been normal (current age: 1-2 years) and the parents have not observed any disorders or problems regarding passage of food through the alimentary canal. Prompt antenatal diagnosis of this surgical emergency and adequate choice of intervention may greatly reduce mortality due to intrauterine volvulus.

  20. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability

    Directory of Open Access Journals (Sweden)

    Lijun Du

    2016-01-01

    Full Text Available The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn’s disease (CD, ulcerative colitis (UC, celiac disease, and irritable bowel syndrome (IBS. Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK- and myosin light chain kinase- (MLCK- mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.

  1. Lymphatic deletion of calcitonin receptor–like receptor exacerbates intestinal inflammation

    Science.gov (United States)

    Davis, Reema B.; Kechele, Daniel O.; Blakeney, Elizabeth S.; Pawlak, John B.

    2017-01-01

    Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor–like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation. PMID:28352669

  2. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  3. Exercise and the gastro-intestinal tract

    African Journals Online (AJOL)

    on perfonnance and me value of cardiovascular training in improving performance in aerobic sports is well recognised. The role of me gastro-intestinal tracr, bom as a limiting and sustaining facror in aerobic exercises, is less well appreciared. Gastro-intestinal symptoms. The spectrum of gastro-intestinal effecrs of exercise ...

  4. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    Full Text Available Many of the symptoms of Gulf War Illness (GWI that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4 activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  5. Effect of trefoil factor 3 on intestinal mucous barrier in rats with nonalcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    LIANG Kai

    2017-08-01

    Full Text Available ObjectiveTo investigate the change in intestinal mucous barrier in rats with nonalcoholic steatohepatitis (NASH, the effect of trefoil factor 3 (TFF3 on intestinal mucous barrier in NASH rats, and the therapeutic effect of TFF3 on NASH. MethodsA total of 60 clean male Sprague-Dawley rats were randomly divided into normal group, model group, and treatment group, with 20 rats in each group. The rats in the normal group were given normal diet, and those in the model group and the treatment group were given high-fat diet to induce NASH. The rats in the treatment group were given intraperitoneal injection of rhTFF3 at a dose of 1 ml/kg/d (a concentration of 0.1 mg/ml, and those in the normal group and the model group were given normal saline at a dose of 1 ml/kg/d; the course of treatment was 3 weeks for all groups. At the end of week 15, fluorescein isothiocyanate-labeled dextran was given by gavage to evaluate intestinal permeability, and after the rats were sacrificed, serum levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, total cholesterol (TC, triglyceride (TG, and endotoxin (ET and diamine oxidase (DAO activity were measured. HE staining was performed to observe the histopathological changes of the liver and the terminal ileum, PAS staining was performed to observe and count the goblet cells of the terminal ileum, immunohistochemistry was used to measure the expression of the tight junction protein Occludin and TFF3 in the terminal ileum, and quantitative real-time PCR was used to measure the mRNA transcription level of TFF3. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between any two groups. ResultsThe model group had significant increases in serum levels of AST, ALT, TC, TG, and ET and DAO activity, and the treatment group had significant reductions compared with the model group (all P<0.01. The model

  6. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  7. Isotopic identification of intestinal strangulation

    International Nuclear Information System (INIS)

    Anderson, M.C.; Selby, J.B.

    1982-01-01

    A small series of eleven dogs prepared with a strangulating segment of jejunum demonstrated that a radionuclide, 99 mTc-labelled albumin, concentrates in the lumen and bowel wall of the affected intestinal segment. Modern scanning equipment accurately localized the strangulating loop. This technique has the potential of identifying patients with intestinal obstruction, in whom strangulation is a factor, prior to the development of impaired arterial inflow and frank gangrene. These findings confirmed earlier obstructions that were reported when nuclear scanning instrumentation was less sophisticated. Identification of patients at risk for intestinal strangulation requires a high index of suspicion. Excruciating cramping abdominal pain out of proportion to physical findings, roentgenogram evidence, and laboratory studies should alert the physician to the possibility of intestinal ischemia and closed loop obstruction. Radionuclide scanning in such cases may be of assistance in defining or excluding the diagnosis of a strangulating mechanism. The test is simple, relatively economical, and represents a low risk procedure to patients. It would have no place when the classic physical and laboratory findings of intestinal infarction are present

  8. Isotopic identification of intestinal strangulation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.C.; Selby, J.B.

    1982-12-01

    A small series of eleven dogs prepared with a strangulating segment of jejunum demonstrated that a radionuclide, /sup 99/mTc-labelled albumin, concentrates in the lumen and bowel wall of the affected intestinal segment. Modern scanning equipment accurately localized the strangulating loop. This technique has the potential of identifying patients with intestinal obstruction, in whom strangulation is a factor, prior to the development of impaired arterial inflow and frank gangrene. These findings confirmed earlier obstructions that were reported when nuclear scanning instrumentation was less sophisticated. Identification of patients at risk for intestinal strangulation requires a high index of suspicion. Excruciating cramping abdominal pain out of proportion to physical findings, roentgenogram evidence, and laboratory studies should alert the physician to the possibility of intestinal ischemia and closed loop obstruction. Radionuclide scanning in such cases may be of assistance in defining or excluding the diagnosis of a strangulating mechanism. The test is simple, relatively economical, and represents a low risk procedure to patients. It would have no place when the classic physical and laboratory findings of intestinal infarction are present.

  9. Evaluation of the passage of Lactobacillus gasseri K7 and bifidobacteria from the stomach to intestines using a single reactor model

    Directory of Open Access Journals (Sweden)

    von Ah Ueli

    2009-05-01

    Full Text Available Abstract Background Probiotic bacteria are thought to play an important role in the digestive system and therefore have to survive the passage from stomach to intestines. Recently, a novel approach to simulate the passage from stomach to intestines in a single bioreactor was developed. The advantage of this automated one reactor system was the ability to test the influence of acid, bile salts and pancreatin. Lactobacillus gasseri K7 is a strain isolated from infant faeces with properties making the strain interesting for cheese production. In this study, a single reactor system was used to evaluate the survival of L. gasseri K7 and selected bifidobacteria from our collection through the stomach-intestine passage. Results Initial screening for acid resistance in acidified culture media showed a low tolerance of Bifidobacterium dentium for this condition indicating low survival in the passage. Similar results were achieved with B. longum subsp. infantis whereas B. animalis subsp. lactis had a high survival. These initial results were confirmed in the bioreactor model of the stomach-intestine passage. B. animalis subsp. lactis had the highest survival rate (10% attaining approximately 5 × 106 cfu ml-1 compared to the other tested bifidobacteria strains which were reduced by a factor of up to 106. Lactobacillus gasseri K7 was less resistant than B. animalis subsp. lactis but survived at cell concentrations approximately 1000 times higher than other bifidobacteria. Conclusion In this study, we were able to show that L. gasseri K7 had a high survival rate in the stomach-intestine passage. By comparing the results with a previous study in piglets we could confirm the reliability of our simulation. Of the tested bifidobacteria strains, only B. animalis subsp. lactis showed acceptable survival for a successful passage in the simulation system.

  10. Evaluation of an FDA approved library against laboratory models of human intestinal nematode infections.

    Science.gov (United States)

    Keiser, Jennifer; Panic, Gordana; Adelfio, Roberto; Cowan, Noemi; Vargas, Mireille; Scandale, Ivan

    2016-07-01

    Treatment options for infections with soil-transmitted helminths (STH) - Ascaris lumbricoides, Trichuris trichiura and the two hookworm species, Ancylostoma duodenale and Necator americanus - are limited despite their considerable global health burden. The aim of the present study was to test the activity of an openly available FDA library against laboratory models of human intestinal nematode infections. All 1,600 drugs were first screened against Ancylostoma ceylanicum third-stage larvae (L3). Active compounds were scrutinized and toxic compounds, drugs indicated solely for topical use, and already well-studied anthelmintics were excluded. The remaining hit compounds were tested in parallel against Trichuris muris first-stage larvae (L1), Heligmosomoides polygyrus third-stage larvae (L3), and adult stages of the three species in vitro. In vivo studies were performed in the H. polygyrus and T. muris mice models. Fifty-four of the 1,600 compounds tested revealed an activity of > 60 % against A. ceylanicum L3 (hit rate of 3.4 %), following incubation at 200 μM for 72 h. Twelve compounds progressed into further screens. Adult A. ceylanicum were the least affected (1/12 compounds active at 50 μM), while eight of the 12 test compounds revealed activity against T. muris L1 (100 μM) and adults (50 μM), and H. polygyrus L3 (200 μM). Trichlorfon was the only compound active against all stages of A. ceylanicum, H. polygyrus and T. muris. In addition, trichlorfon achieved high worm burden reductions of 80.1 and 98.9 %, following a single oral dose of 200 mg/kg in the T. muris and H. polygyrus mouse model, respectively. Drug screening on the larval stages of intestinal parasitic nematodes is feasible using small libraries and important given the empty drug discovery and development pipeline for STH infections. Differences and commonalities in drug activities across the different STH species and stages were confirmed. Hits identified might serve as a

  11. Distribution of Y-receptors in murine lingual epithelia.

    Directory of Open Access Journals (Sweden)

    Maria D Hurtado

    Full Text Available Peptide hormones and their cognate receptors belonging to neuropeptide Y (NPY family mediate diverse biological functions in a number of tissues. Recently, we discovered the presence of the gut satiation peptide YY (PYY in saliva of mice and humans and defined its role in the regulation of food intake and body weight maintenance. Here we report the systematic analysis of expression patterns of all NPY receptors (Rs, Y1R, Y2R, Y4R, and Y5R in lingual epithelia in mice. Using four independent assays, immunohistochemistry, in situ hybridization, immunocytochemistry and RT PCR, we show that the morphologically different layers of the keratinized stratified epithelium of the dorsal layer of the tongue express Y receptors in a very distinctive yet overlapping pattern. In particular, the monolayer of basal progenitor cells expresses both Y1 and Y2 receptors. Y1Rs are present in the parabasal prickle cell layer and the granular layer, while differentiated keratinocytes display abundant Y5Rs. Y4Rs are expressed substantially in the neuronal fibers innervating the lamina propria and mechanoreceptors. Basal epithelial cells positive for Y2Rs respond robustly to PYY(3-36 by increasing intracellular Ca(2+ suggesting their possible functional interaction with salivary PYY. In taste buds of the circumvallate papillae, some taste receptor cells (TRCs express YRs localized primarily at the apical domain, indicative of their potential role in taste perception. Some of the YR-positive TRCs are co-localized with neuronal cell adhesion molecule (NCAM, suggesting that these TRCs may have synaptic contacts with nerve terminals. In summary, we show that all YRs are abundantly expressed in multiple lingual cell types, including epithelial progenitors, keratinocytes, neuronal dendrites and TRCs. These results suggest that these receptors may be involved in the mediation of a wide variety of functions, including proliferation, differentiation, motility, taste perception

  12. Stimulation of intestinal growth and function with DPP-IV inhibition in a mouse short bowel syndrome model

    DEFF Research Database (Denmark)

    Sueyoshi, Ryo; Ignatoski, Kathleen M Woods; Okawada, Manabu

    2014-01-01

    , and 7 days followed by 23 days washout period. Adaptive response was assessed by morphology, intestinal epithelial cell (IEC) proliferation (PCNA), epithelial barrier function (transepithelial resistance), RT-PCR for intestinal transport proteins, GLP-2R, and IGF-1R, and GLP-2 plasma levels. Glucose-stimulated...... sodium transport was assessed for intestinal absorptive function. Seven days of DPP4-I treatment facilitated an increase in GLP-2R levels, intestinal growth, and IEC proliferation. Treatment led to differential effects over time with greater absorptive function early, and enhanced proliferation at later...... time points. Interestingly, 7 day treatment followed by 23 days of non-treatment showed continued adaptation. DPP-IV-I enhanced IEC proliferative action up to 90-days post-resection, but this action seemed to peak by 30 days, as did GLP-2 plasma levels. Thus, use of DPP4-I treatment may prove...

  13. Nitrogen metabolism of the intestine during digestion in a teleost fish, the plainfin midshipman (Porichthys notatus).

    Science.gov (United States)

    Bucking, Carol; LeMoine, Christophe M R; Craig, Paul M; Walsh, Patrick J

    2013-08-01

    Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.

  14. A pSMAD/CDX2 Complex Is Essential for the Intestinalization of Epithelial Metaplasia

    Directory of Open Access Journals (Sweden)

    Luigi Mari

    2014-05-01

    Full Text Available The molecular mechanisms leading to epithelial metaplasias are poorly understood. Barrett's esophagus is a premalignant metaplastic change of the esophageal epithelium into columnar epithelium, occurring in patients suffering from gastroesophageal reflux disease. Mechanisms behind the development of the intestinal subtype, which is associated with the highest cancer risk, are unclear. In humans, it has been suggested that a nonspecialized columnar metaplasia precedes the development of intestinal metaplasia. Here, we propose that a complex made up of at least two factors needs to be activated simultaneously to drive the expression of intestinal type of genes. Using unique animal models and robust in vitro assays, we show that the nonspecialized columnar metaplasia is a precursor of intestinal metaplasia and that pSMAD/CDX2 interaction is essential for the switch toward an intestinal phenotype.

  15. Oral and nasal administration of chicken type II collagen suppresses adjuvant arthritis in rats with intestinal lesions induced by meloxicam.

    Science.gov (United States)

    Zheng, Yong-Qiu; Wei, Wei; Shen, Yu-Xian; Dai, Min; Liu, Li-Hua

    2004-11-01

    To investigate the curative effects of oral and nasal administration of chicken type II collagen (CII) on adjuvant arthritis (AA) in rats with meloxicam-induced intestinal lesions. AA model in Sprague-Dawley (SD) rats with or without intestinal lesions induced by meloxicam was established and those rats were divided randomly into six groups which included AA model, AA model+meloxicam, AA model+oral CII, AA model+nasal CII, AA model+ meloxicam+oral C II and AA model+meloxicam+nasal CII (n = 12). Rats was treated with meloxicam intragastrically for 7 d from d 14 after immunization with complete Freund's adjuvant (CFA), and then treated with chicken CII intragastrically or nasally for 7 d. Histological changes of right hind knees were examined. Hind paw secondary swelling and intestinal lesions were evaluated. Synoviocyte proliferation was measured by 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) method. Activities of myeloperoxidase (MPO) and diamine oxidase (DAO) from supernatants of intestinal homogenates were assayed by spectrophotometric analysis. Intragastrical administration of meloxicam (1.5 mg/kg) induced multiple intestinal lesions in AA rats. There was a significant decrease of intestinal DAO activities in AA+meloxicam group (P<0.01) and AA model group (P<0.01) compared with normal group. DAO activities of intestinal homogenates in AA+meloxicam group were significantly less than those in AA rats (P<0.01). There was a significant increase of intestinal MPO activities in AA+meloxicam group compared with normal control (P<0.01). Oral or nasal administration of CII (20 microg/kg) could suppress the secondary hind paw swelling(P<0.05 for oral CII; P<0.01 for nasal CII), synoviocyte proliferation (P<0.01) and histopathological degradation in AA rats, but they had no significant effects on DAO and MPO changes. However, oral administration of CII (20 microg/kg) showed the limited efficacy on arthritis in AA+meloxicam model and the

  16. Small intestine aspirate and culture

    Science.gov (United States)

    ... ency/article/003731.htm Small intestine aspirate and culture To use the sharing features on this page, please enable JavaScript. Small intestine aspirate and culture is a lab test to check for infection ...

  17. Multivariate Regression of Liver on Intestine of Mice: A ...

    African Journals Online (AJOL)

    Multivariate Regression of Liver on Intestine of Mice: A Chemotherapeutic Evaluation of Plant ... Using an analysis of covariance model, the effects ... The findings revealed, with the aid of likelihood-ratio statistic, a marked improvement in

  18. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Science.gov (United States)

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  19. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Prenatal intestinal volvulus: look for cystic fibrosis.

    Science.gov (United States)

    Chouikh, Taieb; Mottet, Nicolas; Cabrol, Christelle; Chaussy, Yann

    2016-12-21

    Intestinal volvulus is a life-threatening emergency requiring prompt surgical management. Prenatal intestinal volvulus is rare, and most are secondary to intestinal atresia, mesenteric defect or without any underlying cause. Cystic fibrosis (CF) is known to cause digestive tract disorders. After birth, 10-15% of newborns with CF may develop intestinal obstruction within a few days of birth because of meconial ileus. 1 This obstruction is a result of dehydrated thickened meconium obstructing the intestinal lumen. We report two cases of fetuses with prenatal diagnosis of segmental volvulus in whom CF was diagnosed. 2016 BMJ Publishing Group Ltd.

  1. Two Techniques of Intestinal Wall Suture in Surgical Treatment of Ileus in Dogs and the Importance of Omentalisation

    OpenAIRE

    M. Crha; J. Lorenzová; L. Urbanová; T. Fichtel; A. Nečas

    2008-01-01

    Model experimental studies focused on the intestinal suture techniques in relation to healing, postoperative narrowing of the intestinal lumen or adhesion formation can not comprise a number of clinical factors (foreign body presence in the intestine, haematological abnormalities, septic peritonitis, different age of patients, etc.) that under clinical practice conditions may have an effect on the healing of the intestinal suture. The aim of this clinical study was to confirm in a group of do...

  2. Telescoping Intestine in an Adult

    Directory of Open Access Journals (Sweden)

    Khaldoon Shaheen

    2013-01-01

    Full Text Available Protrusion of a bowel segment into another (intussusception produces severe abdominal pain and culminates in intestinal obstruction. In adults, intestinal obstruction due to intussusception is relatively rare phenomenon, as it accounts for minority of intestinal obstructions in this population demographic. Organic lesion is usually identifiable as the cause of adult intussusceptions, neoplasms account for the majority. Therefore, surgical resection without reduction is almost always necessary and is advocated as the best treatment of adult intussusception. Here, we describe a rare case of a 44-year-old male with a diffuse large B-cell lymphoma involving the terminal ileum, which had caused ileocolic intussusception and subsequently developed intestinal obstruction requiring surgical intervention. This case emphasizes the importance of recognizing intussusception as the initial presentation for bowel malignancy.

  3. Intestinal volvulus in cetaceans.

    Science.gov (United States)

    Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I

    2013-07-01

    Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition.

  4. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells.

    Directory of Open Access Journals (Sweden)

    Shun Kitaoka

    Full Text Available Caenorhabditis elegans (C. elegans is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS, that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT, we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01, indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.

  5. Short Bowel Syndrome, a Case of Intestinal Rehabilitation

    Directory of Open Access Journals (Sweden)

    Dianna Ramírez Prada

    2015-05-01

    Full Text Available Case: The objective is to present the successful experience of multidisciplinary management of a patient with short bowel syndrome and intestinal failure with progression to intestinal adaptation. This is a newly born premature with intestinal atresia type IV with multiple intestinal atresia who evolved to intestinal failure and required managed with prolonged parenteral nutritional support, multiple antibiotic schemes, prebiotics, multivitamins, enteral nutrition with elemental formula to achieve their adaptation intestinal until lead to a normal diet. The evolution of these patients intestinal failure is a challenge for the health team, as it not only involves the surgical management of your condition if not basic nutritional support, fluid and electrolyte balance, hepatic dysfunction cholestasis associated infections etc. Discussion: Short bowel syndrome with progression to intestinal failure in children is a condition whose prevalence is increasing worldwide, thanks to advances in neonatal intensive care, neonatal surgery, and nutritional support of patients with conditions such as gastroschisis, omphalocele and necrotizing enterocolitis. Despite the limitations of our health system, it is possible to offer a multidisciplinary and integrated to lead to intestinal adaptation treatment.

  6. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    Full Text Available The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2, double (SPI-1/2 and complete T3SS knockout (SPI-1/SPI-2: flhDC also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.

  7. INFANTS’ INTESTINAL COLICS. MODERN DATA

    Directory of Open Access Journals (Sweden)

    N.I. Ursova

    2011-01-01

    Full Text Available The article analyzes modern data on infants’ intestinal colics. Peculiarities of nutrition, intestinal microbiocenose in healthy infants, methods of colcs’ correction are discussed. Author describes the principles of probiotics choice based on their clinical effectiveness in infants. Milk formula «Nan Comfort» can be useful in prophylaxis and treatment of functional disorders of gastrointestinal tract in children.Key words: infants, gastrointestinal tract, anatomy, physiology, intestinal colics, nutrition, probiotics.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2011; 10 (2: 125–131

  8. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge

    Science.gov (United States)

    Secretory IgA (sIgA) and its transcytosis receptor, polymeric immunoglobulin receptor (pIgR), along with mucus, form the first lines of intestinal defense. Threonine (Thr) is a major constituent component of intestinal mucins and IgA, which are highly secreted under lipopolysaccharide (LPS) induced ...

  9. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats.

    Directory of Open Access Journals (Sweden)

    Jana Cinova

    Full Text Available BACKGROUND AND AIMS: Celiac disease (CD is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. METHODOLOGY/PRINCIPAL FINDINGS: Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively and CD-triggering agents (gliadin and IFN-γ by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. CONCLUSIONS: Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa

  10. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.

    Science.gov (United States)

    Drago, Sandro; El Asmar, Ramzi; Di Pierro, Mariarosaria; Grazia Clemente, Maria; Tripathi, Amit; Sapone, Anna; Thakar, Manjusha; Iacono, Giuseppe; Carroccio, Antonio; D'Agate, Cinzia; Not, Tarcisio; Zampini, Lucia; Catassi, Carlo; Fasano, Alessio

    2006-04-01

    Little is known about the interaction of gliadin with intestinal epithelial cells and the mechanism(s) through which gliadin crosses the intestinal epithelial barrier. We investigated whether gliadin has any immediate effect on zonulin release and signaling. Both ex vivo human small intestines and intestinal cell monolayers were exposed to gliadin, and zonulin release and changes in paracellular permeability were monitored in the presence and absence of zonulin antagonism. Zonulin binding, cytoskeletal rearrangement, and zonula occludens-1 (ZO-1) redistribution were evaluated by immunofluorescence microscopy. Tight junction occludin and ZO-1 gene expression was evaluated by real-time polymerase chain reaction (PCR). When exposed to gliadin, zonulin receptor-positive IEC6 and Caco2 cells released zonulin in the cell medium with subsequent zonulin binding to the cell surface, rearrangement of the cell cytoskeleton, loss of occludin-ZO1 protein-protein interaction, and increased monolayer permeability. Pretreatment with the zonulin antagonist FZI/0 blocked these changes without affecting zonulin release. When exposed to luminal gliadin, intestinal biopsies from celiac patients in remission expressed a sustained luminal zonulin release and increase in intestinal permeability that was blocked by FZI/0 pretreatment. Conversely, biopsies from non-celiac patients demonstrated a limited, transient zonulin release which was paralleled by an increase in intestinal permeability that never reached the level of permeability seen in celiac disease (CD) tissues. Chronic gliadin exposure caused down-regulation of both ZO-1 and occludin gene expression. Based on our results, we concluded that gliadin activates zonulin signaling irrespective of the genetic expression of autoimmunity, leading to increased intestinal permeability to macromolecules.

  11. Effect of adenine on bacterial translocation using technetium-99m labeled E. coli in an intestinal obstruction model in rats

    International Nuclear Information System (INIS)

    Ugur Oflaz; Fatma Yurt Lambrecht; Osman Yilmaz; Cetin Pekcetin

    2013-01-01

    This study aims to investigate effects of adenine on bacterial translocation (BT) using 99m Tc-labeled E. coli in an intestinal obstruction rat model. In the study twenty-one rats were used. The rats were divided into three groups according to different feeding patterns. The control group (CG) was fed with a standard chow diet for 7 days. Group A1 and group A2 were fed with adenine supplemented chow diet for 7 days. At the end of the feeding period, after all groups was submitted intestinal obstruction. 99m Tc-E. coli was injected into the rats' terminal ileum under anesthetic. The rats were sacrificed under aseptic conditions at 24th h after the surgery. The uptake of 99m Tc-E. coli was determined in organs such as the liver, mesenteric lymph nodes, spleen and ileum. Group A1 and group A2 results show that the uptake of 99m Tc-E. coli decreased in the blood and organs comparing to the CG. As a result, it was observed that adenine reduced the level of BT when compared with CG. The beneficial effect of adenine on BT in intestinal obstruction was observed. However, further studies are needed to more clearly assess how this benefit can be achieved. (author)

  12. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  13. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junru; Kulkarni, Ashwini [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Chintala, Madhu [Schering-Plough Research Institute, Kenilworth, New Jersey (United States); Fink, Louis M. [Nevada Cancer Institute, Las Vegas, Nevada (United States); Hauer-Jensen, Martin, E-mail: mhjensen@life.uams.edu [Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgery Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States)

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  14. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    DEFF Research Database (Denmark)

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we...... in normal human intestinal epithelia and could play a role in cholera....

  15. Interfacial dilational properties of tea polyphenols and milk proteins with gut epithelia and the role of mucus in nutrient adsorption.

    Science.gov (United States)

    Guri, Anilda; Li, Yang; Corredig, Milena

    2015-12-01

    By interacting with nutrients, the mucus layer covering the intestinal epithelium may mediate absorption. This study aimed to determine possible interactions between epigallocatechin-3-gallate (EGCG), skim milk proteins or their complexes with human intestinal mucin films. The films were extracted from postconfluent monolayers of HT29-MTX, a human intestinal cell line, and a model system was created using drop shape tensiometry. The EGCG uptake tested in vitro on postconfluent Caco-2 cells or co-cultures of Caco-2/HT29-MTX (mucus producing) showed recovery of bioavailable EGCG only for Caco-2 cell monolayers, suggesting an effect of mucus on absorption. Interfacial dilational rheology was employed to characterize the properties of the interface mixed with mucus dispersion. Adsorption of polyphenols greatly enhanced the viscoelastic modulus of the mucus film, showing the presence of interactions between the nutrient molecules and mucus films. On the other hand, in situ digestion of milk proteins using trypsin showed higher surface activities as a result of protein unfolding and competitive adsorption of the hydrolyzed products. There was an increase of viscoelastic modulus over the drop ageing time for the mixed interfaces, indicating the formation of a stiffer interfacial network. These results bring new insights into the role of the mucus layer in nutrient absorption and the interactions of mucus and dairy products.

  16. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis

    DEFF Research Database (Denmark)

    Parmentier, Johannes; Thomas, Nicky; Müllertz, Anette

    2012-01-01

    precipitation was detected during the lipolysis assay, despite pronounced lipolytic degradation and change in vesicle size. In conclusion, the tested dynamic in vitro lipolysis model is suitable for the assessment of liposome stability in the intestine. Furthermore, liposomes might be a useful alternative......Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine......, a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition...

  17. Small intestinal sulphoxidation of albendazole.

    Science.gov (United States)

    Villaverde, C; Alvarez, A I; Redondo, P; Voces, J; Del Estal, J L; Prieto, J G

    1995-05-01

    1. The in vitro sulphoxidation of Albendazole (ABZ) by rat intestinal microsomes has been examined. The results revealed intestinal sulphoxidation of ABZ by intestinal microsomes in a NADPH-dependent enzymatic system. The kinetic constants for sulphoxidase activity were Vmax = 46 pmol/min/mg protein and Michaelis constant Km = 6.8 microM. 2. The possible effect of inducers (Arochlor 1254 and ABZ pretreatment) and inhibitors (erythromycin, methimazole, carbon monoxide and fenbendazole), was also studied. In rat pretreated with Arochlor 1254, Vmax was 52 pmol/min/mg protein, whereas oral administration of ABZ increased the intestinal sulphoxidation of the drug, Vmax being 103 pmol/min/mg protein. 3. Erythromycin did not change the enzymatic bioconversion of ABZ, but methimazole and carbon monoxide inhibited the enzyme activity by approximately 60 and 30% respectively. Fenbendazole (a structural analogue of ABZ) was a competitive inhibitor of the sulphoxidation process, characterized by a Ki or 69 microM. 4. These data demonstrate that the intestinal enzymes contributing to the initial sulphoxidation of ABZ may be similar to the hepatic enzymes involved in the biotransformation process by the P450 and FMO systems, a conclusion that needs to be further established.

  18. Small intestine diverticuli

    International Nuclear Information System (INIS)

    Pomakov, P.; Risov, A.

    1991-01-01

    The routine method of contrast matter passage applied to 850 patients with different gastrointestinal diseases proved inefficient to detect any small-intestinal diverticuli. The following modiffications of the method have been tested in order to improve the diagnostic possibilities of the X-ray: study at short intervals, assisted passage, enteroclysm, pharmacodynamic impact, retrograde filling of the ileum by irrigoscopy. Twelve diverticuli of the small-intestinal loops were identified: 5 Meckel's diverticuli, 2 solitary of which one of the therminal ileum, 2 double diverticuli and 1 multiple diverticulosis of the jejunum. The results show that the short interval X-ray examination of the small intestines is the method of choice for identifying local changes in them. The solitary diverticuli are not casuistic scarcity, its occurrence is about 0.5% at purposeful X-ray investigation. The assisted passage method is proposed as a method of choice for detection of the Meckel's diverticulum. 5 figs., 3 tabs. 18 refs

  19. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E

    1976-01-01

    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  20. The role of metabolism in diclofenac-induced intestinal toxicity in rat and human in vitro

    NARCIS (Netherlands)

    Niu, Xiaoyu; Makkinje, Miriam; de Graaf, Inge; Groothuis, Genoveva

    The use of Diclofenac (DCF), a non-steroidal anti-inflammatory drug is associated with severe gastro-intestinal side-effects. The mechanisms of drug-induced intestinal toxicity are largely unknown due to the lack of in vitro models. In vivo rat studies suggested that reactive metabolites of DCF

  1. Megacystis microcolon intestinal hypoperistalsis syndrome

    Science.gov (United States)

    Hiradfar, Mehran; Shojaeian, Reza; Dehghanian, Paria; Hajian, Sara

    2013-01-01

    Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a multisystemic disorder in which impaired intestinal motor activity causes recurrent symptoms of intestinal obstruction in the absence of mechanical occlusion, associated with bladder distention without distal obstruction of the urinary tract. MMIHS and prune belly syndrome may overlap in most of the clinical features and discrimination of these two entities is important because the prognosis, management and consulting with parents are completely different. MMIHS outcome is very poor and in this article we present two neonates with MMIHS that both died in a few days. PMID:23729700

  2. Antibiotic concentrations in intestinal mucosa.

    Science.gov (United States)

    Malmborg, A S

    1985-01-01

    The concentrations in the intestinal mucosa after the initial dose of cefoxitin, piperacillin and clindamycin have been studied. The antibiotics were given at the induction of anesthesia as prophylaxis to patients undergoing elective colorectal surgery. The concentrations of the antibiotics in serum and intestinal mucosa taken during the operation were determined by the microbiological agar diffusion method. Therapeutic concentrations in intestinal mucosa were maintained during the major part of the operation period. The mean mucosa/serum concentration ratios were for cefoxitin 0.4, for piperacillin 0.5 and for clindamycin 1.2.

  3. Intestinal cellular localization of PCNA protein and CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant

    Directory of Open Access Journals (Sweden)

    Olsvik Pål A

    2009-03-01

    Full Text Available Abstract Background The aim of the study was to examine the intestinal cellular localization of proliferating cell nuclear antigen (PCNA and cytochrome P450 A1 (CYP1A expression in Atlantic salmon Salmo salar L. exposed to a model toxicant. The stress response was induced by intraperitoneal injection of four salmon with a single dose (50 mg/kg of the CYP1A inducer β-naphthoflavone (BNF and intestinal tissue (mid and distal intestine; MI and DI was sampled seven days later. Samples for histology and gene transcription analysis were collected from four exposed fish and four control fish. PCNA was assessed by immunohistochemistry, CYP1A mRNA was studied by in situ hybridization (ISH and finally the transcription of five genes was quantified by real-time quantitative RT-PCR (real-time RT-PCR; two detoxifying genes (CYP1A and glutathione S-transferase; GST, a stress marker gene (heat shock protein 70; HSP70, PCNA and a gene marker of apoptosis (caspase 6A. Results PCNA protein and CYP1A mRNA were successfully localized in the intestinal cells (MI of both experimental groups. At the cellular level, BNF significantly lowered intestinal cell proliferation and increased the CYP1A mRNA levels compared to the control group. The real-time RT-PCR data, which showed an increased mRNA expression both in the MI and DI of 139- and 62-fold, respectively, confirmed the increased cellular CYP1A mRNA levels detected using ISH. HSP70 expression was also up-regulated in the exposed fish. The other examined genes did not show any differential regulation in the experimental fish group. Conclusion This study showed that CYP1A mRNA had a specific intestinal cellular transcription pattern in Atlantic salmon exposed to BNF. At the cellular level CYP1A mRNA expression was always observed at or around the cell nucleus close to the basolateral cell membrane and at the tissue level CYP1A mRNA expression was most frequently observed in the basal and apex area of the intestinal

  4. The detection of intestinal spike activity on surface electroenterograms

    Energy Technology Data Exchange (ETDEWEB)

    Ye-Lin, Y; Garcia-Casado, J; Martinez-de-Juan, J L; Prats-Boluda, G [Instituto interuniversitario de investigacion en bioingenierIa y tecnologIa orientada al ser humano (I3BH), Universidad Politecnica de Valencia, Camino de Vera, s/n, Ed. 8E, Acceso N, 2a, planta 46022 Valencia (Spain); Ponce, J L [Department of Surgery, Hospital Universitario La Fe de Valencia, Avenida Campanar n0. 51, 46009 Valencia (Spain)], E-mail: yiye@eln.upv.es, E-mail: jgarciac@eln.upv.es, E-mail: jlmartinez@eln.upv.es, E-mail: geprabo@eln.upv.es, E-mail: drjlponce@ono.com

    2010-02-07

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 {+-} 0.10 for channel 1 and 0.57 {+-} 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  5. The detection of intestinal spike activity on surface electroenterograms

    International Nuclear Information System (INIS)

    Ye-Lin, Y; Garcia-Casado, J; Martinez-de-Juan, J L; Prats-Boluda, G; Ponce, J L

    2010-01-01

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 ± 0.10 for channel 1 and 0.57 ± 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  6. Humoral immunity provides resident intestinal eosinophils access to luminal antigen via eosinophil-expressed low affinity Fc gamma receptors

    Science.gov (United States)

    Smith, Kalmia M.; Rahman, Raiann S.; Spencer, Lisa A.

    2016-01-01

    Eosinophils are native to the healthy gastrointestinal tract, and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g. food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct antigen engagement elicits eosinophil effector functions including degranulation and antigen presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food antigens by a columnar epithelium might similarly engage food antigens. Using an intestinal ligated loop model in mice, here we determined that resident intestinal eosinophils acquire antigen from the lumen of antigen-sensitized but not naïve mice in vivo. Antigen acquisition was immunoglobulin-dependent; intestinal eosinophils were unable to acquire antigen in sensitized immunoglobulin-deficient mice, and passive immunization with immune serum or antigen-specific IgG was sufficient to enable intestinal eosinophils in otherwise naïve mice to acquire antigen in vivo. Intestinal eosinophils expressed low affinity IgG receptors, and the activating receptor FcγRIII was necessary for immunoglobulin-mediated acquisition of antigens by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food antigens in sensitized mice via FcγRIII antigen focusing, and may therefore participate in antigen-driven secondary immune responses to oral antigens. PMID:27683752

  7. Humoral Immunity Provides Resident Intestinal Eosinophils Access to Luminal Antigen via Eosinophil-Expressed Low-Affinity Fcγ Receptors.

    Science.gov (United States)

    Smith, Kalmia M; Rahman, Raiann S; Spencer, Lisa A

    2016-11-01

    Eosinophils are native to the healthy gastrointestinal tract and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g., food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct Ag engagement elicits eosinophil effector functions, including degranulation and Ag presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food Ags by a columnar epithelium might similarly engage food Ags. Using an intestinal ligated loop model in mice, in this study we determined that resident intestinal eosinophils acquire Ag from the lumen of Ag-sensitized but not naive mice in vivo. Ag acquisition was Ig-dependent; intestinal eosinophils were unable to acquire Ag in sensitized Ig-deficient mice, and passive immunization with immune serum or Ag-specific IgG was sufficient to enable intestinal eosinophils in otherwise naive mice to acquire Ag in vivo. Intestinal eosinophils expressed low-affinity IgG receptors, and the activating receptor FcγRIII was necessary for Ig-mediated acquisition of Ags by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food Ags in sensitized mice via FcγRIII Ag focusing and that they may therefore participate in Ag-driven secondary immune responses to oral Ags. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation

    Science.gov (United States)

    Reddy, Vishruth K.; Short, Sarah P.; Barrett, Caitlyn W.; Mittal, Mukul K.; Keating, Cody E.; Thompson, Joshua J.; Harris, Elizabeth I.; Revetta, Frank; Bader, David M.; Brand, Thomas; Washington, M. Kay; Williams, Christopher S.

    2016-01-01

    Blood Vessel Epicardial Substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves−/− mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wildtype (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves−/− mice. To examine stem cell function after BVES deletion, we employed ex vivo 3D-enteroid cultures. Bves−/− enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar “CBC” and “+4” stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves−/− enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves−/− mice demonstrated significantly greater small intestinal crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves−/− mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. PMID:26891025

  9. Evaluation value of intestinal flora detection for intestinal mucosal inflammation and immune response in patients with ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Yan Zou

    2017-09-01

    Full Text Available Objective: To study the evaluation value of intestinal flora detection for intestinal mucosal inflammatory response and immune response in patients with ulcerative colitis. Methods: The patients who were diagnosed with ulcerative colitis in Zigong Fifth People’s Hospital between March 2015 and February 2017 were selected as the UC group, and those who were diagnosed with colonic polyps were selected as the control group. Fresh excreta were collected to detect the number of intestinal flora, and the diseased intestinal mucosa tissue was collected to detect the expression of inflammatory response molecules and immune cell transcription factors. Results: enterococcus contents in intestinal tract and TLR4, NF-kB, TNF-α, HMGB-1, T-bet and RORC mRNA expression levels in intestinal mucosa of UC group were significantly higher than those of control group while bifidobacteria contents in intestinal tract and SOCS2, SOCS3, Foxp3 and GATA-3 mRNA expression levels were significantly lower than those of control group; TLR4, NF-kB, TNF-α, HMGB-1, T-bet and RORC mRNA expression levels in intestinal mucosa of UC patients with grade II and grade III flora disturbance were significantly higher than those of UC patients with normal flora and grade I flora disturbance while SOCS2, SOCS3, Foxp3 and GATA-3 mRNA expression levels were significantly lower than those of UC patients with normal flora and grade I flora disturbance; TLR4, NF-kB, TNF-α, HMGB-1, T-bet and RORC mRNA expression levels in intestinal mucosa of UC patients with grade III flora disturbance were significantly higher than those of UC patients with grade II flora disturbance while SOCS2, SOCS3, Foxp3 and GATA-3 mRNA expression levels were significantly lower than those of UC patients with grade II flora disturbance. Conclusion: The intestinal flora disturbance in patients with ulcerative colitis can result in inflammatory response activation and immune response disorder.

  10. Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal-endothelial co-culture cell model.

    Science.gov (United States)

    Vieira, Elsa F; Van Camp, John; Ferreira, Isabel M P L V O; Grootaert, Charlotte

    2017-07-17

    The anti-inflammatory activity of sardine protein hydrolysates (SPH) obtained by hydrolysis with proteases from brewing yeast surplus was ascertained. For this purpose, a digested and desalted SPH fraction with molecular weight lower than 10 kDa was investigated using an endothelial cell line (EA.hy926) as such and in a co-culture model with an intestinal cell line (Caco-2). Effects of SPH <10 kDa on nitric oxide (NO) production, reactive oxygen species (ROS) inhibition and secretion of monocyte chemoattractant protein 1 (MCP-1), vascular endothelial growth factor (VEGF), chemokine IL-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) were evaluated in TNF-α-treated and untreated cells. Upon TNF-α treatment, levels of NO, MCP-1, VEGF, IL-8, ICAM-1 and endothelial ROS were significantly increased in both mono- and co-culture models. Treatment with SPH <10 kDa (2.0 mg peptides/mL) significantly decreased all the inflammation markers when compared to TNF-α-treated control. This protective effect was more pronounced in the co-culture model, suggesting that SPH <10 kDa Caco-2 cells metabolites produced in the course of intestinal absorption may provide a more relevant protective effect against endothelial dysfunction. Additionally, indirect cross-talk between two cell types was established, suggesting that SPH <10 kDa may also bind to receptors on the Caco-2 cells, thereby triggering a pathway to secrete the pro-inflammatory compounds. Overall, these in vitro screening results, in which intestinal digestion, absorption and endothelial bioactivity are simulated, show the potential of SPH to be used as a functional food with anti-inflammatory properties.

  11. Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model

    DEFF Research Database (Denmark)

    Barnes, Jennifer L; Hartmann, Bolette; Holst, Jens Juul

    2012-01-01

    Butyrate has been shown to stimulate intestinal adaptation when added to parenteral nutrition (PN) following small bowel resection but is not available in current PN formulations. The authors hypothesized that pre- and probiotic administration may be a clinically feasible method to administer but...

  12. Epithelial morphogenesis: the mouse eye as a model system.

    Science.gov (United States)

    Chauhan, Bharesh; Plageman, Timothy; Lou, Ming; Lang, Richard

    2015-01-01

    Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development. © 2015 Elsevier Inc. All rights reserved.

  13. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  14. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development.

    Science.gov (United States)

    Fung, Camille M; White, Jessica R; Brown, Ashley S; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R; McElroy, Steven J

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent "first hit", rendering IUGR intestine susceptible to further injury, infection, or inflammation.

  15. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    Science.gov (United States)

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  16. Intestinal perfusion in the study of intestinal absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Several techniques for studying absorption by means of intestinal perfusion have been developed. While the principle is simple, the practice is complicated by absorption of the solvent and by excretion of fluid into the lumen. To improve reliability a ''marker'' is incorporated into the system; it should behave as nearly as possible like the nutrient of interest, except that it should be unabsorbable. A great many markers, including several labelled with radionuclides, have been developed for use with numerous nutrients, and perfusion methods using double or triple tubes or occlusive balloons have been tested. The perfusion technique is too complicated for routine diagnostic use, but it offers at present the only possibility of studying the function of defined sections of the small intestine in the intact human. (author)

  17. The jagged-2/notch-1/hes-1 pathway is involved in intestinal epithelium regeneration after intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    Full Text Available Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R injury.Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA. The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.

  18. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium.

    Science.gov (United States)

    Pukkila-Worley, Read; Ausubel, Frederick M

    2012-02-01

    Intestinal epithelial cells provide an essential line of defense for Caernohabditis elegans against ingested pathogens. Because nematodes consume microorganisms as their food source, there has presumably been selection pressure to evolve and maintain immune defense mechanisms within the intestinal epithelium. Here we review recent advances that further define the immune signaling network within these cells and suggest mechanisms used by the nematode to monitor for infection. In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some of the basic principles of epithelial immunity that may also be of relevance in higher order hosts. Copyright © 2012. Published by Elsevier Ltd.

  19. Does sucralfate prevent apoptosis occurring in the ischemia/reperfusion-induced intestinal injury?

    Science.gov (United States)

    Sencan, A; Yilmaz, O; Ozer, E; Günşar, C; Genç, K; Ulukuş, C; Taneli, C; Mir, E

    2003-08-01

    We have shown in a previous study that sucralfate is beneficial in the prophylaxis and treatment of hypoxia/reoxygenation-induced intestinal injury. The aim of this study is to investigate whether sucralfate has any effect on the prevention of apoptosis in the ischemia/reperfusion (I/R)-induced intestinal injury. Rats were randomized into three groups. Group 1 and 2 were subjected to I/R. Group 1 (treatment group) received sucralfate while group 2 (treatment control group) did not. Group 3 served as a normal control group (sham group). The terminal ileum was harvested for histopathologic investigation by light microscopy. The presence of apoptotic enterocytes (DNA fragmentation in cell nuclei) was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) reaction. In treatment control group, 3 of 7 rats had severe inflammation. None of the sucralfate-treated rats showed severe inflammation, 6 of them only showed mild inflammatory changes (p < 0.05). The apoptotic percentage was found to be 37.1 +/- 9.4 in the sucralfate-treated group (group 1), whereas it was 45.4 +/- 3.9 in the untreated group (group 2) (p < 0.05). The sham group had a completely normal intestinal architecture. The present study shows that 1) the experimental model of I/R-induced intestinal injury induces enterocyte apoptosis; 2) sucralfate decreases enterocyte apoptosis in the experimental model of I/R-induced intestinal injury which may play a key role in the pathophysiological events leading to failure of the intrinsic gut barrier defense mechanisms.

  20. An intestinal Trojan horse for gene delivery.

    Science.gov (United States)

    Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun

    2015-03-14

    The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.

  1. Modeling the growth dynamics of multiple Escherichia coli strains in the pig intestine following intramuscular ampicillin treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    using a mathematical model to simulate the competitive growth of E. coli strains in a pig intestine under specified plasma concentration profiles of ampicillin. Results : In vitro growth results demonstrated that the resistant strains did not carry a fitness cost for their resistance, and that the most...... susceptible strains were more affected by increasing concentrations of antibiotics that the rest of the strains. The modeling revealed that short treatment duration resulted in lower levels of resistance and that dosing frequency did not substantially influence the growth of resistant strains. Resistance...... with ampicillin resistance in E. coli. Besides dosing factors, epidemiological factors (such as number of competing strains and bacterial excretion) influenced resistance development and need to be considered further in relation to optimal treatment strategies. The modeling approach used in the study is generic...

  2. Transformation of trollioside and isoquercetin by human intestinal flora in vitro.

    Science.gov (United States)

    Yuan, Ming; Shi, Duo-Zhi; Wang, Teng-Yu; Zheng, Shi-Qi; Liu, Li-Jia; Sun, Zhen-Xiao; Wang, Ru-Feng; Ding, Yi

    2016-03-01

    The present study was designed to determine the intestinal bacterial metabolites of trollioside and isoquercetin and their antibacterial activities. A systematic in vitro biotransformation investigation on trollioside and isoquercetin, including metabolite identification, metabolic pathway deduction, and time course, was accomplished using a human intestinal bacterial model. The metabolites were analyzed and identified by HPLC and HPLC-MS. The antibacterial activities of trollioside, isoquercetin, and their metabolites were evaluated using the broth microdilution method with berberine as a positive control, and their potency was measured as minimal inhibitory concentration (MIC). Our results indicated that trollioside and isoquercetin were metabolized by human intestinal flora through O-deglycosylation, yielding aglycones proglobeflowery acid and quercetin, respectively The antibacterial activities of both metabolites were more potent than that of their parent compounds. In conclusion, trollioside and isoquercetin are totally and rapidly transformed by human intestinal bacteria in vitro and the transformation favors the improvement of the antibacterial activities of the parent compounds. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  3. Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats.

    Science.gov (United States)

    Pinheiro, P F; Marinho, A T; Antunes, A M M; Marques, M M; Pereira, S A; Miranda, J P

    2015-05-25

    The understanding of the intestine contribution to drug biotransformation improved significantly in recent years. However, the sources of inter-individual variability in intestinal drug biotransformation, namely sex-differences, are still elusive. Nevirapine (NVP) is an orally taken anti-HIV drug associated with severe idiosyncratic reactions elicited by toxic metabolites, with women at increased risk. As such, NVP is a good model to assess sex-dimorphic metabolism. The aim of this study was to perform a comparative profiling of NVP biotransformation in rat intestine and liver and evaluate whether or not it is organ- and sex-dependent. Therefore, nevirapine-containing solutions were perfused through the intestine, in a specially designed chamber, or incubated with liver slices, from male and female Wistar rats. The levels of NVP and its Phase I metabolites were quantified by HPLC-UV. Liver incubation experiments yielded the metabolites 2-, 3-, 8-, and 12-OH-NVP, being 12-OH-NVP and 2-OH-NVP the major metabolites in males and females, respectively. Inter-sex differences in the metabolic profile were also detected in the intestine perfusion experiments. Herein, the metabolites 3- and 12-OH-NVP were only found in male rats, whereas 2-OH-NVP levels were higher in females, both in extraluminal (pbiotransformation was observed, strengthening the relevance of the intestinal contribution in the biotransformation of orally taken-drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. A study of the small intestine as a limiting normal tissue in radiotherapy

    International Nuclear Information System (INIS)

    Hamlet, R.

    1980-09-01

    The thesis describes intestinal crypt survival and scanning electron microscopy of the mucosa of the small intestine after single whole doses of neutron or gamma irradiation. The results demonstrate that scanning electron microscopy of the surface mucosa of the intestine, although difficult to quantitate, is a much more sensitive indicator of intestinal damage at low dose levels than the more standard methods involving the enumeration of surviving crypts of Lieberkuhn in a section of intestine. The results also show that the morphology of the jejunal mucosa follows a different pattern following neutron irradiation than after gamma irradiation. Survival and surface morphology after fractionated x and gamma irradiation is also discussed. There was lack of correlation between damage expressed in terms of crypt survival of mucosal damage in two out of three schedules. an investigation of the alternating fractionation formula of the Cumulative Radiation Effect model is discussed, together with possible reasons underlying differences between predictions and experimental results, and an assessment of the formula in general use. (U.K.)

  5. Radioimmunoassay studies of intestinal calcium-binding protein in the pig. 2. The distribution of intestinal CaBP in pig tissues

    International Nuclear Information System (INIS)

    Arnold, B.M.; Kuttner, M.; Willis, D.M.; Hitchman, A.J.W.; Harrison, J.E.; Murray, T.M.

    1975-01-01

    Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP. (author)

  6. Radioimmunoassay studies of intestinal calcium-binding protein in the pig. II. The distribution of intestinal CaBP in pig tissues

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B M; Kuttner, M; Willis, D M; Hitchman, A J.W.; Harrison, J E; Murray, T M [Toronto Univ., Ontario (Canada). Dept. of Medicine

    1975-12-01

    Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP.

  7. Parenteral nutrition in intestinal failure

    Directory of Open Access Journals (Sweden)

    Kurkchubasche AG

    2015-01-01

    Full Text Available Arlet G Kurkchubasche,1 Thomas J Herron,2 Marion F Winkler31Department of Surgery and Pediatrics, 2Department of Surgery, Alpert Medical School of Brown University, 3Department of Surgery/Nutritional Support Service, Rhode Island Hospital, Providence, RI, USAAbstract: Intestinal failure is a consequence of extensive surgical resection resulting in anatomic loss and/or functional impairment in motility or absorptive capacity. The condition is clinically characterized by the inability to maintain fluid, energy, protein, electrolyte, or micronutrient balance when on a conventionally accepted, normal diet. Parenteral nutrition (PN is the cornerstone of management until intestinal adaptation returns the patient to a PN-independent state. Intestinal length, residual anatomic segments and motility determine the need for and duration of parenteral support. The goals of therapy are to provide sufficient nutrients to enable normal growth and development in children, and support a healthy functional status in adults. This review addresses indications for PN, the formulation of the PN solution, patient monitoring, and considerations for prevention of PN-associated complications. With the ultimate goal of achieving enteral autonomy, the important role of diet, pharmacologic interventions, and surgery is discussed.Keywords: intestinal failure, short-bowel syndrome, parenteral nutrition, home nutrition support, intestinal rehabilitation

  8. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation.

    Science.gov (United States)

    Peled, Jonathan U; Devlin, Sean M; Staffas, Anna; Lumish, Melissa; Khanin, Raya; Littmann, Eric R; Ling, Lilan; Kosuri, Satyajit; Maloy, Molly; Slingerland, John B; Ahr, Katya F; Porosnicu Rodriguez, Kori A; Shono, Yusuke; Slingerland, Ann E; Docampo, Melissa D; Sung, Anthony D; Weber, Daniela; Alousi, Amin M; Gyurkocza, Boglarka; Ponce, Doris M; Barker, Juliet N; Perales, Miguel-Angel; Giralt, Sergio A; Taur, Ying; Pamer, Eric G; Jenq, Robert R; van den Brink, Marcel R M

    2017-05-20

    Purpose The major causes of mortality after allogeneic hematopoietic-cell transplantation (allo-HCT) are relapse, graft-versus-host disease (GVHD), and infection. We have reported previously that alterations in the intestinal flora are associated with GVHD, bacteremia, and reduced overall survival after allo-HCT. Because intestinal bacteria are potent modulators of systemic immune responses, including antitumor effects, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HCT. Methods The intestinal microbiota of 541 patients admitted for allo-HCT was profiled by means of 16S ribosomal sequencing of prospectively collected stool samples. We examined the relationship between abundance of microbiota species or groups of related species and relapse/progression of disease during 2 years of follow-up time after allo-HCT by using cause-specific proportional hazards in a retrospective discovery-validation cohort study. Results Higher abundance of a bacterial group composed mostly of Eubacterium limosum in the validation set was associated with a decreased risk of relapse/progression of disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance; 95% CI, 0.71 to 0.95; P = .009). When the patients were categorized according to presence or absence of this bacterial group, presence also was associated with less relapse/progression of disease (HR, 0.52; 95% CI, 0.31 to 0.87; P = .01). The 2-year cumulative incidences of relapse/progression among patients with and without this group of bacteria were 19.8% and 33.8%, respectively. These associations remained significant in multivariable models and were strongest among recipients of T-cell-replete allografts. Conclusion We found associations between the abundance of a group of bacteria in the intestinal flora and relapse/progression of disease after allo-HCT. These might serve as potential biomarkers or therapeutic targets to prevent relapse and improve survival after allo-HCT.

  9. Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs.

    Science.gov (United States)

    Neef, N A; Lysons, R J; Trott, D J; Hampson, D J; Jones, P W; Morgan, J H

    1994-06-01

    Twelve intestinal spirochete strains of porcine origin were characterized on the basis of their phenotypic properties, by multilocus enzyme electrophoresis, and by pathogenicity testing in gnotobiotic pigs. The spirochetes used included two strains of Serpulina hyodysenteriae (B204 and P18A), two strains of Serpulina innocens (B256 and 4/71), one strain from the proposed new genus and species "Anguillina coli" (P43/6/78), and seven non-S. hyodysenteriae strains recently isolated from United Kingdom pig herds with a history of nonspecific diarrhea and typhlocolitis. By multilocus enzyme electrophoresis, five of these were identified as S. innocens, one was identified as an unspecified Serpulina sp., and one was identified as "A. coli." S. hyodysenteriae B204 and P18A, "A. coli" P43/6/78 and 2/7, and three (22/7, P280/1, and 14/5) of the five S. innocens field isolates induced mucoid feces and typhlocolitis in gnotobiotic pigs. None of the other spirochetes produced clinical signs or large intestinal pathology in this model. The "A. coli" strains induced a more watery diarrhea, with lesions present more proximally in the large intestine, than did the other pathogenic spirochetes. S. innocens 22/7 was also tested for pathogenicity in hysterotomy-derived pigs that had previously been artificially colonized with a spirochete-free intestinal flora and shown to be susceptible to swine dysentery. Despite effective colonization, strain 22/7 did not produce any disease, nor was there any exacerbation of large intestinal pathology or clinical signs when pigs with an experimentally induced existing colitis caused by Yersinia pseudotuberculosis were superinfected with strain 22/7. Certain non-S. hyodysenteriae spirochetes are therefore capable of inducing disease in gnotobiotic pigs, but their role as primary or opportunistic pathogens in conventional pigs remains equivocal.

  10. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  11. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  12. [The staphylococcal enterotoxin burden determines the ultrastructure of ciliated epithelia and inflammatory changes in maxillary sinus mucosa of rabbits].

    Science.gov (United States)

    Wei, Hongqi; Zhu, Zhengwen; Cao, Zhongsheng; Liu, Zhiyong; Wu, Xiaofan; Yuan, Hui

    2014-12-01

    To investigate the ultrastructure of ciliated epithelia and inflammatory changes upon repeated exposure to staphylococcal enterotoxin A (SEA) of different concentrations in the maxillary sinus mucosa of rabbits. The rabbits were randomly divided into 2 groups (24 rabbits per group): low-dose SEA group and high-dose SEA group. The low-dose SEA group and high-dose SEA group received daily injections of 0.6 ng of SEA (2 ml) and 60 ng of SEA (2 ml) into the left maxillary sinus of rabbits for 28 days, respectively. Concurrent treatment of the right maxillary sinus with normal saline was used as control. Six rabbits chosen randomly in two groups were examined by computed tomography (CT) scans and then sacrificed to obtain the sinus mucosa from the two-side of maxillary sinuses for histological assessment on days 3, 7, 14 and 28. To characterize the inflammatory changes of the sinus mucosa examined using light microscope, hematoxylin and eosin (HE) and toluidine blue staining was performed. Scanning and transmission electron microscopy were performed to observe ultrastructure of ciliated epithelia in the maxillary sinus mucosa. SPSS 13.0 software was used to analyze the data. On days 14 and 28, CT images showed opacification of the left maxillary sinus in the high-dose SEA group. The percentage of epithelial disruption was (22.73 ± 5.72) % and (30.79 ± 4.30)% in the high-dose SEA group respectively, and were significantly greater than those in the low-dose SEA group (5.12% ± 1.98% and 5.38% ± 1.64%, q value was 10.079 and 19.132) and control group (4.08% ± 1.29% and 4.81% ± 1.62%, q value was 11.016 and 19.592, respectively, all P microscope, loss of cilia was observed, a few compound cilia and cytoplasmic protrusion were found, an obvious stretching of the endoplasmic reticulum and an obvious turgescence of the mitochondria was also observed. However, in the low-dose SEA group on days 14 and 28, CT scan of the left maxillary sinus showed transparency; light

  13. Daikenchuto, a Kampo medicine, regulates intestinal fibrosis associated with decreasing expression of heat shock protein 47 and collagen content in a rat colitis model.

    Science.gov (United States)

    Inoue, Ken; Naito, Yuji; Takagi, Tomohisa; Hayashi, Natsuko; Hirai, Yasuko; Mizushima, Katsura; Horie, Ryusuke; Fukumoto, Kohei; Yamada, Shinya; Harusato, Akihito; Hirata, Ikuhiro; Omatsu, Tatsushi; Yoshida, Naohisa; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Handa, Osamu; Konishi, Hideyuki; Wakabayashi, Naoki; Yagi, Nobuaki; Ichikawa, Hiroshi; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-01-01

    Heat shock protein (HSP) 47 may play an important role in the pathogenesis of intestinal fibrosis. Daikenchuto (DKT), a traditional Japanese herbal (Kampo) medicine, has been reported to ameliorate intestinal inflammation. The aims of this study were to determine time-course profiles of several parameters of fibrosis in a rat model, to confirm the HSP47-expressing cells in the colon, and finally to evaluate DKT's effects on intestinal fibrosis. Colitis was induced in male Wistar rats weighing 200 g using an enema of trinitrobenzene sulfonic acid (TNBS). HSP47 localization was determined by immunohistochemistry. Colonic inflammation and fibrosis were assessed by macroscopic, histological, morphometric, and immunohistochemical analyses. Colonic mRNA expression of transforming growth factor β1 (TGF-β1), HSP47, and collagen type I were assessed by real time-polymerase chain reaction (PCR). DKT was administered orally once a day from 8 to 14 d after TNBS administration. The colon was removed on the 15th day. HSP47 immunoreactivity was coexpressed with α-smooth muscle actin-positive cells located in the subepithelial space. Intracolonic administration of TNBS resulted in grossly visible ulcers. Colonic inflammation persisted for 6 weeks, and fibrosis persisted for 4 weeks after cessation of TNBS treatment. The expression levels of mRNA and proteins for TGF-β1, HSP47, and collagen I were elevated in colonic mucosa treated with TNBS. These fibrosis markers indicated that DKT treatment significantly inhibited TNBS-induced fibrosis. These findings suggest that DKT reduces intestinal fibrosis associated with decreasing expression of HSP47 and collagen content in the intestine.

  14. Transcriptome Analysis of Three Sheep Intestinal Regions reveals Key Pathways and Hub Regulatory Genes of Large Intestinal Lipid Metabolism.

    Science.gov (United States)

    Chao, Tianle; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Wang, Jin; Wang, Jianmin

    2017-07-13

    The large intestine, also known as the hindgut, is an important part of the animal digestive system. Recent studies on digestive system development in ruminants have focused on the rumen and the small intestine, but the molecular mechanisms underlying sheep large intestine metabolism remain poorly understood. To identify genes related to intestinal metabolism and to reveal molecular regulation mechanisms, we sequenced and compared the transcriptomes of mucosal epithelial tissues among the cecum, proximal colon and duodenum. A total of 4,221 transcripts from 3,254 genes were identified as differentially expressed transcripts. Between the large intestine and duodenum, differentially expressed transcripts were found to be significantly enriched in 6 metabolism-related pathways, among which PPAR signaling was identified as a key pathway. Three genes, CPT1A, LPL and PCK1, were identified as higher expression hub genes in the large intestine. Between the cecum and colon, differentially expressed transcripts were significantly enriched in 5 lipid metabolism related pathways, and CEPT1 and MBOAT1 were identified as hub genes. This study provides important information regarding the molecular mechanisms of intestinal metabolism in sheep and may provide a basis for further study.

  15. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    Science.gov (United States)

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.

  16. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  17. ACUTE INTESTINAL INFECTIONS: THERAPEUTICAL TACTICS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A.N. Surkov

    2011-01-01

    Full Text Available Acute intestinal infections are quite common among children. Their clinical presentations include intoxication syndrome (drowsiness, low appetite, fever etc, infectious toxic syndrome (toxicosis with exicosis, neurotoxicosi, hypovolemic or infectious-toxic shockand diarrhea syndrome. Sometimes intestinal infections can be quite severe and even lethal. However disease duration and outcome depend on timelines and adequacy of prescribed treatment. Main guidelines of intestinal infections treatment include probiotics. That is why the right choice of probiotics is important for a pediatrician. The article contains basic information upon etiopathogenesis, classification, diagnostic criteria and acute pediatric intestinal infections treatment guidelines.Key words: acute intestinal infections, etiopathogenesis, diagnostic criteria, treatment, probiotics, children. (Voprosy sovremennoi pediatrii — Current Pediatrics. — 2011; 10 (6: 141–147

  18. Identification of genes with altered expression in medullary breast cancer vs. ductal breast cancer and normal breast epithelia

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Benoit, Vivian; Laenkholm, Anne-Vibeke

    2006-01-01

    to both immunological and endogenous cellular factors, although little is known about the distinct biology of MCB that may contribute to the improved outcome of MCB patients. To identify candidate genes, we performed gene array expression analysis of cell lines of MCB, ductal breast cancer and normal......Medullary breast cancer (MCB) is a morphologically and biologically distinct subtype that, despite cytologically highly malignant characteristics, has a favorable prognosis compared to the more common infiltrating ductal breast carcinoma. MCB metastasizes less frequently, which has been attributed...... breast epithelia, and the differential expression of a panel of candidate genes was further validated by quantitative PCR and immunohistochemical analysis of cell lines and tumor biopsies. A limited number of genes, including several members of the GAGE and insulin growth factor binding protein (IGFBP...

  19. CDX2 hox gene product in a rat model of esophageal cancer

    Directory of Open Access Journals (Sweden)

    Rizzetto Christian

    2009-08-01

    Full Text Available Abstract Background Barrett's mucosa is the precursor of esophageal adenocarcinoma. The molecular mechanisms behind Barrett's carcinogenesis are largely unknown. Experimental models of longstanding esophageal reflux of duodenal-gastric contents may provide important information on the biological sequence of the Barrett's oncogenesis. Methods The expression of CDX2 hox-gene product was assessed in a rat model of Barrett's carcinogenesis. Seventy-four rats underwent esophago-jejunostomy with gastric preservation. Excluding perisurgical deaths, the animals were sacrificed at various times after the surgical treatment (Group A: 30 weeks. Results No Cdx2 expression was detected in either squamous epithelia of the proximal esophagus or squamous cell carcinomas. De novo Cdx2 expression was consistently documented in the proliferative zone of the squamous epithelium close to reflux ulcers (Group A: 68%; Group B: 64%; Group C: 80%, multilayered epithelium and intestinal metaplasia (Group A: 9%; Group B: 41%; Group C: 60%, and esophageal adenocarcinomas (Group B: 36%; Group C: 35%. A trend for increasing overall Cdx2 expression was documented during the course of the experiment (p = 0.001. Conclusion De novo expression of Cdx2 is an early event in the spectrum of the lesions induced by experimental gastro-esophageal reflux and should be considered as a key step in the morphogenesis of esophageal adenocarcinoma.

  20. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    Science.gov (United States)

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    secretion over 24 h, yet had no effect on the HCO3 − content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR‐dependent, electrogenic Cl− and fluid secretion, but not CFTR‐dependent HCO3 − secretion, which highlights a differential sensitivity of Cl− and HCO3 − transporters to raised CO2 in Calu‐3 cells. Hypercapnia also reduced forskolin‐stimulated CFTR‐dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs. PMID:26574187

  1. Negative regulation of Toll-like receptor signaling plays an essential role in the homeostasis of the intestine

    OpenAIRE

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S.

    2010-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases (IBDs). However it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, c...

  2. Protective Effects of Female Reproductive Factors on Lauren Intestinal-Type Gastric Adenocarcinoma.

    Science.gov (United States)

    Kim, Su Mi; Min, Byung Hoon; Lee, Jeeyun; An, Ji Yeong; Lee, Jun Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Jae J; Kang, Won Ki; Kim, Sung; Choi, Min Gew

    2018-01-01

    Gastric cancer shows a male predominance that might be explained by protective effects from estrogens in females. Two Lauren classification histological subtypes, intestinal and diffuse, have distinct carcinogeneses. The purpose of this study was to estimate the effects of sex hormone on female gastric cancer according to Lauren classification. We reviewed medical records for and administered questionnaires, surveying reproductive and hormonal factors, to 758 patients who underwent gastrectomy for gastric cancer at Samsung Medical Center from May 2012 to November 2014. Clinicopathological characteristics were compared between females and males. The incidence of intestinal-type gastric cancer was compared between females subgroups, consist of premenopausal women and three groups of postmenopausal women (five-year intervals after menopause), and males. The association between reproductive factors and intestinal-type gastric cancer was analyzed by multivariate models for the female group. In total, 227 females (29.9%) and 531 males (70.9%) were included in the analysis. Undifferentiated adenocarcinoma and diffuse-type histology were more frequent in female patients than male patients. While 221 (41.6%) male patients had intestinal-type gastric cancer, no premenopausal female patient had this type of gastric cancer. The incidence of intestinal-type gastric cancer increased with time after menopause, and was similar to males after 10 years from menopause. Parity was associated with an increased risk of intestinal-type gastric cancer in menopausal women. These findings support that female sex hormones might be protective against intestinal-type gastric cancer. © Copyright: Yonsei University College of Medicine 2018

  3. Hippo signalling directs intestinal fate

    DEFF Research Database (Denmark)

    le Bouteiller, Marie Catherine M; Jensen, Kim Bak

    2015-01-01

    Hippo signalling has been associated with many important tissue functions including the regulation of organ size. In the intestinal epithelium differing functions have been proposed for the effectors of Hippo signalling, YAP and TAZ1. These are now shown to have a dual role in the intestinal...

  4. Effects of Onion (Allium cepa L. Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Sun-Ho Kim

    2011-06-01

    Full Text Available Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes,α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L. extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50 of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose, a strong α-glucosidase inhibitor in the Sprague-Dawley (SD rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast in EOS-treated SD rats (0.5 g-EOS/kg was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL. The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL. Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053 on sucrase and maltase activities in intestine were evaluated in SD rat model

  5. Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers--an in vitro model for intestinal absorption.

    Science.gov (United States)

    Waltenberger, B; Avula, B; Ganzera, M; Khan, I A; Stuppner, H; Khan, S I

    2008-05-01

    Laxative effects of Senna preparations are mainly mediated by rheinanthrone, a metabolite formed in the intestinal flora from dianthrones. Nevertheless, it was not clear whether dianthrones are bioavailable at all and contribute to the overall effects of this important medicinal plant. Using the Caco-2 human colonic cell line as an in vitro model of the human intestinal mucosal barrier, the bioavailability of dianthrones was studied in apical to basolateral (absorptive) and basolateral to apical (secretive) direction. Permeability coefficients (P(c)) and percent transport were calculated based on quantitations by HPLC. From the data obtained it was concluded that sennosides A and B, as well as their aglycones sennidine A and B are transported through the Caco-2 monolayers in a concentration-dependent manner and their transport was linear with time. The absorption in apical to basolateral direction was poor and P(c) values were comparable to mannitol. The transport was higher in the secretory direction, indicating a significant efflux (e.g. by efflux pumps) of the (poorly) absorbed compounds in the intestinal lumen again. Our findings support the general understanding that the laxative effects of Senna are explainable mainly by metabolites and not by the natively present dianthrones.

  6. Combined Effects of Muricid Extract and 5-Fluorouracil on Intestinal Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Roger Yazbeck

    2015-01-01

    Full Text Available Chemotherapy drugs, such as 5-fluorouracil (5FU, are the standard approach for cancer and are associated with several peripheral toxicities. We previously demonstrated that Muricidae marine molluscs exhibit chemopreventive properties. This study investigated the combined effect of muricid extract derived from Dicathais orbita, with 5FU, on intestinal toxicity in rats. Groups of rats were orally gavaged water, muricid extract, or sunflower oil, with or without 5FU (150 mg/kg. Metabolic data was collected daily and small intestinal brush border enzyme activity was measured by sucrose breath test (SBT. Blood was collected by cardiac puncture for whole blood analysis. Intestinal biopsies were taken for histopathology. Neutrophil activity was measured by myeloperoxidase activity. No additional toxicity effects were observed in rats receiving the combination of 5FU and muricid extract compared to 5FU alone, as indicated by SBT, histopathology, and myeloperoxidase activity. Intestinal integrity was protected from 5FU-induced damage in the sunflower oil vehicle group, compared to controls, as measured by SBT, villus height, and crypt depth. We concluded that combination of muricid extract and 5FU did not confer any additional intestinal toxicity, further supporting its potential as a chemopreventive food product. In this model system, sunflower oil partially protected against 5FU-induced intestinal toxicity.

  7. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish.

    Science.gov (United States)

    Whittamore, Jonathan M

    2012-01-01

    For teleost fish living in seawater, drinking the surrounding medium is necessary to avoid dehydration. This is a key component of their osmoregulatory strategy presenting the challenge of excreting excess salts while achieving a net retention of water. The intestine has an established role in osmoregulation, and its ability to effectively absorb fluid is crucial to compensating for water losses to the hyperosmotic environment. Despite this, the potential for the teleost intestine to serve as a comparative model for detailed, integrative experimental studies on epithelial water transport has so far gone largely untapped. The following review aims to present an assessment of the teleost intestine as a fluid-transporting epithelium. Beginning with a brief overview of marine teleost osmoregulation, emphasis shifts to the processing of ingested seawater by the gastrointestinal tract and the characteristics of intestinal ion and fluid transport. Particular attention is given to acid-base transfers by the intestine, specifically bicarbonate secretion, which creates the distinctly alkaline gut fluids responsible for the formation of solid calcium carbonate precipitates. The respective contributions of these unique features to intestinal fluid absorption, alongside other recognised ion transport processes, are then subsequently considered within the wider context of the classic physiological problem of epithelial water transport.

  8. Intestinal leiomyoma

    Science.gov (United States)

    ... most often found when a person has an upper gastrointestinal (GI) endoscopy or colonoscopy for another reason. Rarely, these tumors can cause bleeding, blockage or rupture of the intestines If this ...

  9. Gene therapy for barrett's esophagus: adenoviral gene transfer in different intestinal models

    NARCIS (Netherlands)

    Marsman, Willem A.; Buskens, Christianne J.; Wesseling, John G.; van Lanschot, J. Jan B.; Bosma, Piter J.

    2005-01-01

    Adenoviral gene therapy could potentially be used for treatment of patients with a Barrett's esophagus. In order to study the feasibility of this approach it is important to study adenoviral intestinal transduction both in vitro and in vivo. In the present study, we used differentiating Caco-2

  10. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  11. Epithelial Cell-Neutrophil Interactions in the Alimentary Tract: A Complex Dialog in Mucosal Surveillance and Inflammation

    Directory of Open Access Journals (Sweden)

    Sean P. Colgan

    2002-01-01

    Full Text Available Inflammatory diseases of mucosal organs as diverse as the lung, kidney, and intestine, inevitably require the intimate interactions of neutrophils with columnar epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets for the treatment of mucosal inflammation. Elegant in vitro model systems incorporating purified human neutrophils and human epithelial cells grown in physiologic orientations have aided in discovery of new and insightful pathways to define basic inflammatory pathways. Here, we will review the recent literature regarding the interactions between columnar epithelial cells and neutrophils, with an emphasis on intestinal epithelial cells, structural aspects of neutrophil transepithelial migration, molecular determinants of neutrophil-epithelial cell interactions, as well as modulation of these pathways. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.

  12. Quantification of Salmonella Survival and Infection in an In vitro Model of the Human Intestinal Tract as Proxy for Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Lucas M. Wijnands

    2017-06-01

    Full Text Available Different techniques are available for assessing differences in virulence of bacterial foodborne pathogens. The use of animal models or human volunteers is not expedient for various reasons; the use of epidemiological data is often hampered by lack of crucial data. In this paper, we describe a static, sequential gastrointestinal tract (GIT model system in which foodborne pathogens are exposed to simulated gastric and intestinal contents of the human digestive tract, including the interaction of pathogens with the intestinal epithelium. The system can be employed with any foodborne bacterial pathogens. Five strains of Salmonella Heidelberg and one strain of Salmonella Typhimurium were used to assess the robustness of the system. Four S. Heidelberg strains originated from an outbreak, the fifth S. Heidelberg strain and the S. Typhimurium strain originated from routine meat inspections. Data from plate counts, collected for determining the numbers of surviving bacteria in each stage, were used to quantify both the experimental uncertainty and biological variability of pathogen survival throughout the system. For this, a hierarchical Bayesian framework using Markov chain Monte Carlo (MCMC was employed. The model system is able to distinguish serovars/strains for in vitro infectivity when accounting for within strain biological variability and experimental uncertainty.

  13. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices

    NARCIS (Netherlands)

    Westerhout, J.; Steeg, E. van de; Grossouw, D.; Zeijdner, E.E.; Krul, C.A.M.; Verwei, M.; Wortelboer, H.M.

    2014-01-01

    A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption,

  14. Alteration of intestinal microbiota in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    Directory of Open Access Journals (Sweden)

    Krisana Asano

    Full Text Available Proteoglycan (PG extracted from salmon nasal cartilage has potential to be a prophylactic agent. Daily oral administration of the PG attenuates systemic inflammatory response in the experimental mouse models. In this study, we applied the culture-independent approach to investigate an alteration of intestinal microbiota composition in PG-administered mice. The results indicated that the population level of bacilli increased in the small and large intestine upon PG administration. On the other hand, the population level of clostridia decreased in the large intestine. The proportion of bacteria that are able to ferment saccharides and produce short-chain fatty acids increased in the small intestine and decreased in the large intestine. Importantly, population level of probiotic lactobacilli and bacteria exhibiting the immunomodulatory effect increased in the PG-administered mice. In addition, several disease-associated bacteria decreased upon PG administration. These results provided an understanding of the specific role of PG involved in host immune modulation and supported our hypothesis that daily oral administration of PG improves the overall balance in composition of the intestinal microbial community.

  15. Regional specialization within the intestinal immune system

    DEFF Research Database (Denmark)

    Mowat, Allan M.; Agace, William Winston

    2014-01-01

    The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly...... implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout...... the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease...

  16. Intestinal metaplasia induced by x-irradiation in rat

    International Nuclear Information System (INIS)

    Watanabe, Hiromitsu; Terada, Yoritaka; Fujii, Isao; Yamamoto, Yukiko; Takizawa, Shoichi

    1978-01-01

    Total 400 rad of x-ray was given in 100 or 150 rad doses to the whole body of rats at intervals of one week, and one year and a half later, rats were killed. Disaccharidase was formed in most of animals, intestinal metaplasia only with goblet cells occurred in 65% of animals, and that with intestinal type of lacuna occurred in 36% of them. When 500 rad of x-ray was irradiated to each part of stomach day after day up to the total dose of 3,000 rad, biochemical intestinal metaplasia already occurred one week after the irradiation, and intestinal type lacuna occurred 2 months after the irradiation. Intestinal type lacuna was recognized in all animals killed 499 days after the irradiation, and intestinal metaplasia with Paneth's cells occurred in 6 out of 11 cases (56%). When a dose of 1,000 rad was irradiated to stomach three times at intervals of 2 days up to the total of 3,000 rad, much intestinal type lacuna was recognized 2 months after the irradiation, gastric adenoid cancerous changes appeared 4 months after, and gastric adenoid cancer occurred 6 months after. The above-mentioned results clarified that even if x-ray of a small dose was irradiated, intestinal metaplasia occurred, and that the period from the irradiation to occurrence of intestinal metaplasia was shortened by increasing a dose of x-ray. It was also clarified that not only intestinal metaplasia but also gastric adenoic cancer occurred due to a great amount of x-ray irradiation. (Ueda, J.)

  17. Intestinal metaplasia induced by x-irradiation in rat

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H; Terada, Y; Fujii, I; Yamamoto, Y; Takizawa, S [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1978-04-01

    Total 400 rad of x-ray was given in 100 or 150 rad doses to the whole body of rats at intervals of one week, and one year and a half later, rats were killed. Disaccharidase was formed in most of animals, intestinal metaplasia only with goblet cells occurred in 65% of animals, and that with intestinal type of lacuna occurred in 36% of them. When 500 rad of x-ray was irradiated to each part of stomach day after day up to the total dose of 3,000 rad, biochemical intestinal metaplasia already occurred one week after the irradiation, and intestinal type lacuna occurred 2 months after the irradiation. Intestinal type lacuna was recognized in all animals killed 499 days after the irradiation, and intestinal metaplasia with Paneth's cells occurred in 6 out of 11 cases (56%). When a dose of 1,000 rad was irradiated to stomach three times at intervals of 2 days up to the total of 3,000 rad, much intestinal type lacuna was recognized 2 months after the irradiation, gastric adenoid cancerous changes appeared 4 months after, and gastric adenoid cancer occurred 6 months after. The above-mentioned results clarified that even if x-ray of a small dose was irradiated, intestinal metaplasia occurred, and that the period from the irradiation to occurrence of intestinal metaplasia was shortened by increasing a dose of x-ray. It was also clarified that not only intestinal metaplasia but also gastric adenoic cancer occurred due to a great amount of x-ray irradiation.

  18. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Derrick R Samuelson

    2017-06-01

    Full Text Available Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis. To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein

  19. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model.

    Science.gov (United States)

    Krul, Cyrille; Humblot, Christèle; Philippe, Catherine; Vermeulen, Martijn; van Nuenen, Marleen; Havenaar, Robert; Rabot, Sylvie

    2002-06-01

    Cruciferous vegetables, such as Brassica, which contain substantial quantities of glucosinolates, have been suggested to possess anticarcinogenic activity. Cutting and chewing of cruciferous vegetables releases the thioglucosidase enzyme myrosinase, which degrades glucosinolates to isothiocyanates and other minor metabolites. Cooking of cruciferous vegetables inactivates the myrosinase enzyme, allowing intact glucosinolates to reach the large intestine, where they can be degraded by the indigenous microflora into isothiocyanates. This local release of isothiocyanates may explain the protective effect of cruciferous vegetables on the colon epithelium. However, little is known about the amounts and identities of glucosinolate metabolites produced by the human microflora. The production of allyl isothiocyanate from sinigrin was investigated in a dynamic in vitro large-intestinal model, after inoculation with a complex microflora of human origin. Sinigrin and allyl isothiocyanate concentrations were analysed in the lumen and dialysis fluid of the model. Peak levels of allyl isothiocyanate were observed between 9 and 12 h after the addition of sinigrin. The model was first set up with a pooled and cultured human microflora, in which 1 and 4% of, respectively, 1 and 15 mM sinigrin, was converted into AITC. However, the conversion rate was remarkably higher if different individual human microflora were used. Between 10% and 30% (mean 19%) of the sinigrin was converted into allyl isothiocyanate. The results of this study suggest that allyl isothiocyanate is converted further into other, yet unknown, metabolites.

  20. Intestinal sclerosis with pseudo-obstruction in three dogs.

    Science.gov (United States)

    Moore, R; Carpenter, J

    1984-04-01

    Intestinal sclerosis causing chronic intestinal pseudo-obstruction was diagnosed in 3 dogs. The pseudo-obstruction was characterized by vomiting and weight loss of 2 weeks' to 3 months' duration. A patent intestinal lumen was determined by contrast radiography and verified at surgery. Intestinal biopsy revealed diffuse atrophy, fibrosis, and mononuclear cell infiltration of the tunica muscularis. Each dog was euthanatized because of a progressive, deteriorating clinical course.